Science.gov

Sample records for aircraft ground handling

  1. Factors influencing aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  2. Recent progress towards predicting aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed.

  3. Aircraft handling qualities data

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Jewell, W. F.

    1972-01-01

    Available information on weight and inertia, aerodynamic derivatives, control characteristics, and stability augmentation systems is documented for 10 representative contemporary airplanes. Data sources are given for each airplane. Flight envelopes are presented and dimensional derivatives, transfer functions for control inputs, and several selected handling qualities parameters have been computed and are tabulated for 10 different flight conditions including the power approach configuration. The airplanes documented are the NT-33A, F-104A, F-4C, X-15, HL-10, Jetstar, CV-880M, B-747, C-5A, and XB-70A.

  4. 14 CFR 25.489 - Ground handling conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground handling conditions. 25.489 Section 25.489 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.489 Ground handling conditions. Unless otherwise prescribed,...

  5. An Investigation of Large Aircraft Handling Qualities

    NASA Astrophysics Data System (ADS)

    Joyce, Richard D.

    An analytical technique for investigating transport aircraft handling qualities is exercised in a study using models of two such vehicles, a Boeing 747 and Lockheed C-5A. Two flight conditions are employed for climb and directional tasks, and a third included for a flare task. The analysis technique is based upon a "structural model" of the human pilot developed by Hess. The associated analysis procedure has been discussed previously in the literature, but centered almost exclusively on the characteristics of high-performance fighter aircraft. The handling qualities rating level (HQRL) and pilot induced oscillation tendencies rating level (PIORL) are predicted for nominal configurations of the aircraft and for "damaged" configurations where actuator rate limits are introduced as nonlinearites. It is demonstrated that the analysis can accommodate nonlinear pilot/vehicle behavior and do so in the context of specific flight tasks, yielding estimates of handling qualities, pilot-induced oscillation tendencies and upper limits of task performance. A brief human-in-the-loop tracking study was performed to provide a limited validation of the pilot model employed.

  6. Mooring and ground handling rigid airships

    NASA Technical Reports Server (NTRS)

    Walker, H., Jr.

    1975-01-01

    The problems of mooring and ground handling rigid airships are discussed. A brief history of Mooring and Ground Handling Rigid Airships from July 2, 1900 through September 1, 1939 is included. Also a brief history of ground handling developments with large U. S. Navy nonrigid airships between September 1, 1939 and August 31, 1962 is included wherein developed equipment and techniques appear applicable to future large rigid airships. Finally recommendations are made pertaining to equipment and procedures which appear desirable and feasible for future rigid airship programs.

  7. How Surface Treatments Enhance Ground Handling

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    2002-01-01

    Several runway surface treatments developed in recent years are described in terms of how aircraft tire landing and takeoff friction requirements are met, particularly during adverse weather conditions. Changing the surface texture with grooving, grinding and shot peening, use of chemicals to remove or prevent accumulation of natural or man-made contaminants, and the use of new techniques and materials are discussed as means of improving surface friction performance. Test data are presented to illustrate the effects of runway conditions on aircraft ground performance. The severity of the problem of operating on runway surfaces which cannot provide sufficient aircraft tire friction capability is also illustrated from documented aircraft accident/incident reports. The paper concludes with recommendations for future pavement research activities.

  8. Simulation of Aircraft Behaviour on and Close to the Ground

    NASA Technical Reports Server (NTRS)

    Barnes, A. G.; Yager, T. J.

    1985-01-01

    A guide to the current state of the technology of simulating fixed-wing aircraft handling qualities and performance on or close to the ground is presented and pitfalls which may prevent an adequate implementation are indicated. The scope of possible applications in both aircraft design work and pilot training is considered and the requirements for mathematical model definitions and implementations are discussed. The current requirements for visual and motion systems, cockpit cueing, and software modelling are also reviewed, and illustrated with specific examples in areas of aircraft research and development studies and pilot training uses. Needs for further improvements and additional data acquisition are identified.

  9. Effects of simulated turbulence on aircraft handling qualities

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Joshi, D. S.

    1977-01-01

    The influence of simulated turbulence on aircraft handling qualities is presented. Pilot opinions of the handling qualities of a light general aviation aircraft were evaluated in a motion-base simulator using a simulated turbulence environment. A realistic representation of turbulence disturbances is described in terms of rms intensity and scale length and their random variations with time. The time histories generated by the proposed turbulence models showed characteristics which are more similar to real turbulence than the frequently-used Gaussian turbulence model. The proposed turbulence models flexibly accommodate changes in atmospheric conditions and are easily implemented in flight simulator studies.

  10. Handling Qualities of Large Flexible Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poopaka, S.

    1980-01-01

    The effects on handling qualities of elastic modes interaction with the rigid body dynamics of a large flexible aircraft are studied by a mathematical computer simulation. An analytical method to predict the pilot ratings when there is a severe modes interactions is developed. This is done by extending the optimal control model of the human pilot response to include the mode decomposition mechanism into the model. The handling qualities are determined for a longitudinal tracking task using a large flexible aircraft with parametric variations in the undamped natural frequencies of the two lowest frequency, symmetric elastic modes made to induce varying amounts of mode interaction.

  11. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  12. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  13. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  14. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  15. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  16. 14 CFR 252.11 - Aircraft on the ground.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Aircraft on the ground. 252.11 Section 252...) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.11 Aircraft on the ground. (a) Air carriers shall prohibit smoking whenever the aircraft is on the ground. (b) With respect to the restrictions on...

  17. Modeling procedures for handling qualities evaluation of flexible aircraft

    NASA Technical Reports Server (NTRS)

    Govindaraj, K. S.; Eulrich, B. J.; Chalk, C. R.

    1981-01-01

    This paper presents simplified modeling procedures to evaluate the impact of flexible modes and the unsteady aerodynamic effects on the handling qualities of Supersonic Cruise Aircraft (SCR). The modeling procedures involve obtaining reduced order transfer function models of SCR vehicles, including the important flexible mode responses and unsteady aerodynamic effects, and conversion of the transfer function models to time domain equations for use in simulations. The use of the modeling procedures is illustrated by a simple example.

  18. Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1997-01-01

    A unified theory for aircraft handling qualities and adverse aircraft-pilot coupling or pilot-induced oscillations is introduced. The theory is based on a structural model of the human pilot. A methodology is presented for the prediction of (1) handling qualities levels; (2) pilot-induced oscillation rating levels; and (3) a frequency range in which pilot-induced oscillations are likely to occur. Although the dynamics of the force-feel system of the cockpit inceptor is included, the methodology will not account for effects attributable to control sensitivity and is limited to single-axis tasks and, at present, to linear vehicle models. The theory is derived from the feedback topology of the structural model and an examination of flight test results for 32 aircraft configurations simulated by the U.S. Air Force/CALSPAN NT-33A and Total In-Flight Simulator variable stability aircraft. An extension to nonlinear vehicle dynamics such as that encountered with actuator saturation is discussed.

  19. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect

    Shipers, L.R.; Allen, G.C.

    1992-09-09

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  20. Earth resources ground data handling systems for the 1980's

    NASA Technical Reports Server (NTRS)

    Vanvleck, E. M.; Sinclair, K. F.; Pitts, S. W.; Slye, R. E.

    1973-01-01

    The system requirements of an operational data handling system for earth resources in the decade of the 1980's are investigated. Attention is drawn to problems encountered in meeting the stringent agricultural user requirements of that time frame. Such an understanding of requirements is essential not only in designing the ground system that will ultimately handle the data, but also in design studies of the earth resources platform, sensors, and data relay satellites which may be needed.

  1. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  2. A survey of handling qualities criteria and their applications to high performance aircraft

    NASA Technical Reports Server (NTRS)

    Peahl, D. L.; Kolkailah, F.; Sandlin, D. R.

    1986-01-01

    Various handling qualities criteria and their application to high performance aircraft including state-of-the-art and highly augmented aircraft were surveyed. Neal-Smith, Bandwidth, Equivalent Systems, and Military Specification 8785 criteria are applied to flight test data from aircraft such as the F-8 Digital Fly-By-Wire, the YF-12, and an Advanced Fighter Aircraft. Backgrounds and example applications of each criteria are given. The results show that the handling qualities criteria investigated can be applied to highly augmented aircraft with fairly good results in most cases; however, since no one method excelled, more than one criteria should be used whenever possible. Equivalent time delays appear to be the most frequent critical factor in determining pilot rating levels of highly augmented aircraft.

  3. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  4. Handling Qualities Prediction of an F-16XL-Based Reduced Sonic Boom Aircraft

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce; Yoo, Seung

    2010-01-01

    A major goal of the Supersonics Project under NASA s Fundamental Aeronautics program is sonic boom reduction of supersonic aircraft. An important part of this effort is development and validation of sonic boom prediction tools used in aircraft design. NASA Dryden s F- 16XL was selected as a potential testbed aircraft to provide flight validation. Part of this task was predicting the handling qualities of the modified aircraft. Due to the high cost of modifying the existing F-16XL control laws, it was desirable to find modifications that reduced the aircraft sonic boom but did not degrade baseline aircraft handling qualities allowing for the potential of flight test without changing the current control laws. This was not a requirement for the initial modification design work, but an important consideration for proceeding to the flight test option. The primary objective of this work was to determine an aerodynamic and mass properties envelope of the F-16XL aircraft. The designers could use this envelope to determine the effect of proposed modifications on aircraft handling qualities.

  5. Payload retention fittings for space shuttle payload ground handling mechanism

    NASA Technical Reports Server (NTRS)

    Cassisi, V.

    1983-01-01

    New ground fittings for Space Shuttle payload handling were designed, built, and tested by Government and contractor personnel at the NASA John F. Kennedy Space Center (KSC), Florida, from May 1981 through November 1982. Design evolution of the Space Shuttle Orbiter payload retention fittings, which contained a load-sensitive split bushing in a pillow-block housing, created an incompatibility between the interfacing ground and airborne equipment. New fittings were designed and successfully used beginning with the fifth Space Shuttle flight, STS-5. An active hydraulic spring system containing a gas accumulator in the hydraulic system provided the load relief required to protect the Orbiter bushing from damage.

  6. Aircraft and Ground Vehicle Winter Runway Friction Assessment

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1999-01-01

    Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.

  7. A design procedure for the handling qualities optimization of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Cox, Timothy H.

    1989-01-01

    A design technique for handling qualities improvement was developed for the X-29A aircraft. As with any new aircraft, the X-29A control law designers were presented with a relatively high degree of uncertainty in their mathematical models. The presence of uncertainties, and the high level of static instability of the X-29A caused the control law designers to stress stability and robustness over handling qualities. During flight test, the mathematical models of the vehicle were validated or corrected to match the vehicle dynamic behavior. The updated models were then used to fine tune the control system to provide fighter-like handling characteristics. A design methodology was developed which works within the existing control system architecture to provide improved handling qualities and acceptable stability with a minimum of cost in both implementation as well as software verification and validation.

  8. Study of ground handling characteristics of a maritime patrol airship

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mooring concepts appropriate for maritime patrol airship (MPA) vehicles are investigated. The evolution of ground handling systems and procedures for all airship types is reviewed to ensure that appropriate consideration is given to past experiences. A tri-rotor maritime patrol airship is identified and described. Wind loads on a moored airship and the effects of these loads on vehicle design are analyzed. Several mooring concepts are assessed with respect to the airship design, wind loads, and mooring site considerations. Basing requirements and applicability of expeditionary mooring also are addressed.

  9. An overview of the joint FAA/NASA aircraft/ground runway friction program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    There is a need for information on runways which may become slippery due to various forms and types of contaminants. Experience has shown that since the beginning of all weather aircraft operations, there have been landing and aborted takeoff incidents and/or accidents each year where aircraft have either run off the end or veered off the shoulder of low friction runways. NASA Langley's Landing and Impact Dynamics Branch is involved in several research programs directed towards obtaining a better understanding of how different tire properties interact with varying pavement surface characteristics to produce acceptable performance for aircraft ground handling requirements. One such effort, which was jointly supported by not only NASA and the FAA but by several aviation industry groups including the Flight Safety Foundation, is described.

  10. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 1: Analysis methods

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. S.

    1985-01-01

    As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.

  11. Evaluating the Handling Qualities of Flight Control Systems Including Nonlinear Aircraft and System Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Raymond Chao

    The handling qualities evaluation of nonlinear aircraft systems is an area of concern in loss-of-control (LOC) prevention. The Get Transfer Function (GetTF) method was demonstrated for evaluating the handling qualities of flight control systems and aircraft containing nonlinearities. NASA's Generic Transport Model (GTM), a nonlinear model of a civilian jet transport aircraft, was evaluated. Using classical techniques, the stability, control, and augmentation (SCAS) systems were designed to control pitch rate, roll rate, and airspeed. Hess's structural pilot model was used to model pilot dynamics in pitch and roll-attitude tracking. The simulated task was simultaneous tracking of, both, pitch and roll attitudes. Eight cases were evaluated: 1) gain increase of pitch-attitude command signal, 2) gain increase of roll-attitude command signal, 3) gain reduction of elevator command signal, 4) backlash in elevator actuator, 5) combination 3 and 4 in elevator actuator, 6) gain reduction of aileron command signal, 7) backlash in aileron actuator, and 8) combination of 6 and 7 in aileron actuator. The GetTF method was used to estimate the transfer function approximating a linear relationship between the proprioceptive signal of the pilot model and the command input. The transfer function was then used to predict the handling qualities ratings (HQR) and pilot-induced oscillation ratings (PIOR). The HQR is based on the Cooper-Harper rating scale. In pitch-attitude tracking, the nominal aircraft is predicted to have Level 2* HQRpitch and 2 < PIORpitch < 4. The GetTF method generally predicted degraded handling qualities for cases with impaired actuators. The results demonstrate GetTF's utility in evaluating the handling qualities during the design phase of flight control and aircraft systems. A limited human-in-the-loop pitch tracking exercise was also conducted to validate the structural pilot model.

  12. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Aircraft ground and flight... and Clauses 1852.228-70 Aircraft ground and flight risk. As prescribed in 1828.370(a), insert the..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  13. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Aircraft ground and flight... and Clauses 1852.228-70 Aircraft ground and flight risk. As prescribed in 1828.370(a), insert the..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  14. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Aircraft ground and flight... and Clauses 1852.228-70 Aircraft ground and flight risk. As prescribed in 1828.370(a), insert the..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  15. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  16. Prediction of aircraft handling qualities using analytical models of the human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1982-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations is formulated. Finally, a model based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  17. Prediction of aircraft handling qualities using analytical models of the human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1982-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot-induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  18. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  19. Longitudinal handling qualities during approach and landing of a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1972-01-01

    Longitudinal handling qualities evaluations were conducted on the Ames Research Center Flight Simulator for Advanced Aircraft (FSAA) for the approach and landing tasks of a powered lift STOL research aircraft. The test vehicle was a C-8A aircraft modified with a new wing incorporating internal blowing over an augmentor flap. The investigation included: (1) use of various flight path and airspeed control techniques for the basic vehicle; (2) assessment of stability and command augmentation schemes for pitch attitude and airspeed control; (3) determination of the influence of longitudinal and vertical force coupling for the power control; (4) determination of the influence of pitch axis coupling with the thrust vector control; and (5) evaluations of the contribution of stability and command augmentation to recovery from a single engine failure. Results are presented in the form of pilot ratings and commentary substantiated by landing approach time histories.

  20. Piloted Simulation Assessment of the Impact of Flexible Structures on Handling Qualities of Generic Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Stringer, Mary T.; Cowen, Brandon; Hoffler, Keith D.; Couch, Jesse C.; Ogburn, Marilyn E.; Diebler, Corey G.

    2013-01-01

    The NASA Langley Research Center Cockpit Motion Facility (CMF) was used to conduct a piloted simulation assessment of the impact of flexible structures on flying qualities. The CMF was used because of its relatively high bandwidth, six degree-of-freedom motion capability. Previous studies assessed and attempted to mitigate the effects of multiple dynamic aeroservoelastic modes (DASE). Those results indicated problems existed, but the specific cause and effect was difficult to ascertain. The goal of this study was to identify specific DASE frequencies, damping ratios, and gains that cause degradation in handling qualities. A generic aircraft simulation was developed and designed to have Cooper-Harper Level 1 handling qualities when flown without DASE models. A test matrix of thirty-six DASE modes was implemented. The modes had frequencies ranging from 1 to 3.5 Hz and were applied to each axis independently. Each mode consisted of a single axis, frequency, damping, and gain, and was evaluated individually by six subject pilots with test pilot backgrounds. Analysis completed to date suggests that a number of the DASE models evaluated degrade the handling qualities of this class of aircraft to an uncontrollable condition.

  1. Factors affecting handling qualities of a lift-fan aircraft during steep terminal area approaches

    NASA Technical Reports Server (NTRS)

    Gerdes, R. M.; Hynes, C. S.

    1975-01-01

    The XV-5B lift-fan aircraft was used to explore the factors affecting handling qualities in the terminal area. A 10 deg ILS approach task was selected to explore these problems. Interception of the glide slope at 457.2 m, glide slope tracking, deceleration along the glide slope to a spot hover were considered. Variations in airplane deck angle, deceleration schedule, and powered-lift management were studied. The overall descent performance envelope was identified on the basis of fan stall, maximum comfortable descent rate, and controllability restrictions. The collective-lift stick provided precise glide slope tracking capability. The pilot preferred a deck-parallel attitude for which he used powered lift to control glide slope and pitch attitude to keep the angle of attack near zero. Workload was reduced when the deceleration schedule was delayed until the aircraft was well established on the glide slope, since thrust vector changes induced flight path disturbances.

  2. Modal control theory and application to aircraft lateral handling qualities design

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.

    1978-01-01

    A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.

  3. Flight Validation of a Handling Qualities Metric for a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R.

    2009-01-01

    Objectives: a) Develop an asymmetric handling qualities metric to predict cross coupling effects of a damaged aircraft: 1) Initial use of U.S Army Aeronautical Design Specification ADS-33; 2) Modification as required based on flight test results. b) Simulation and Flight Validation of proposed metric: 1) F-16 VISTA (March 2010); 2) F-18 Full Scale Test bed (Potential Early Experiment); and 3) Flight Simulators (GTM, ACFS, F-18 HILS). c) Provide flight validated metric and tool box to control law designers.

  4. TDRSS data handling and management system study. Ground station systems for data handling and relay satellite control

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a two-phase study of the (Data Handling and Management System DHMS) are presented. An original baseline DHMS is described. Its estimated costs are presented in detail. The DHMS automates the Tracking and Data Relay Satellite System (TDRSS) ground station's functions and handles both the forward and return link user and relay satellite data passing through the station. Direction of the DHMS is effected via a TDRSS Operations Control Central (OCC) that is remotely located. A composite ground station system, a modified DHMS (MDHMS), was conceptually developed. The MDHMS performs both the DHMS and OCC functions. Configurations and costs are presented for systems using minicomputers and midicomputers. It is concluded that a MDHMS should be configured with a combination of the two computer types. The midicomputers provide the system's organizational direction and computational power, and the minicomputers (or interface processors) perform repetitive data handling functions that relieve the midicomputers of these burdensome tasks.

  5. Ground effects on aircraft noise. [near grazing incidence

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.; Hilton, D. A.

    1979-01-01

    A flight experiment was conducted to investigate air-to-ground propagation of sound near grazing incidence. A turbojet-powered aircraft was flown at low altitudes over the ends of two microphone arrays. An eight-microphone array was positioned along a 1850 m concrete runway. The second array consisted of 12 microphones positioned parallel to the runway over grass. Twenty-eight flights were flown at altitudes ranging from 10 m to 160 m. The acoustic data recorded in the field reduced to one-third-octave band spectra and time correlated with the flight and weather information. A small portion of the data was further reduced to values of ground attenuation as a function of frequency and incidence angle by two different methods. In both methods, the acoustic signals compared originated from identical sources. Attenuation results obtained by using the two methods were in general agreement. The measured ground attenuation was largest in the frequency range of 200 to 400 Hz. A strong dependence was found between ground attenuation and incidence angle with little attenuation measured for angles of incidence greater than 10 to 15 degrees.

  6. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft ground and flight risk. 1852.228-70 Section 1852.228-70 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  7. Dynamic ground effects flight test of an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Stephenson, Mark T.; Burcham, Frank W.; Curry, Robert E.

    1994-01-01

    Flight tests to determine the changes in the aerodynamic characteristics of an F-15 aircraft caused by dynamic ground effects are described. Data were obtained for low and high sink rates between 0.7 and 6.5 ft/sec and at two landing approach speeds and flap settings: 150 kn with the flaps down and 170 kn with the flaps up. Simple correlation curves are given for the change in aerodynamic coefficients because of ground effects as a function of sink rate. Ground effects generally caused an increase in the lift, drag, and nose-down pitching movement coefficients. The change in the lift coefficient increased from approximately 0.05 at the high-sink rate to approximately 0.10 at the low-sink rate. The change in the drag coefficient increased from approximately 0 to 0.03 over this decreasing sink rate range. No significant difference because of the approach configuration was evident for lift and drag; however, a significant difference in pitching movement was observed for the two approach speeds and flap settings. For the 170 kn with the flaps up configuration, the change in the nose-down pitching movement increased from approximately -0.008 to -0.016. For the 150 kn with the flaps down configuration, the change was approximately -0.008 to -0.038.

  8. Heat stress in an aircraft cockpit during ground standby.

    PubMed

    Harrison, M H; Higenbottam, C

    1977-06-01

    Measurements have been made of cockpit temperatures in a Buccaneer aircraft exposed to high air temperatures and radiation loads. With the canopy open 8 cm, and with the wind direction unfavourable for convective cooling, air temperatures inside the cockpit exceeded those outside by approximately 20 degrees C. This reduced to 10 degrees C with a favourable wind direction. An assessment of the likely heating effect of cockpit avionic equipment indicated that the addition of 1 kW and 2 kW of heat would raise cockpit temperatures by 20 degrees C and 30 degrees C respectively. Prediction of the combined effect of solar and avionic heat suggests that, in hot weather conditions, cockpit temperatures will be considerably in excess of the upper limit for effective physiological temperature regulation. Therefore, if aircrews are to be required to remain on ground standby within their aircraft under such conditions, maximum use must be made of convective cooling of the cockpit by the prevailing wind, and of sun shades to eliminate the greenhouse effect completely.

  9. Temperature distribution in an aircraft tire at low ground speeds

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.; Tanner, J. A.

    1983-01-01

    An experimental study was conducted to define temperature profiles of 22 x 5.5, type 7, bias ply aircraft tires subjected to freely rolling, yawed rolling, and light braking conditions. Temperatures along the inner wall of freely rolling tires were greater than those near the outer surface. The effect of increasing tire deflection was to increase the temperature within the shoulder and sidewall areas of the tire carcass. The effect of cornering and braking was to increase the treat temperature. For taxi operations at fixed yaw angles, temperature profiles were not symmetric. Increasing the ground speed produced only moderate increases in tread temperature, whereas temperatures in the carcass shoulder and sidewall were essentially unaffected.

  10. Estimation of Handling Qualities Parameters of the Tu-144 Supersonic Transport Aircraft from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Curry, Timothy J.; Batterson, James G. (Technical Monitor)

    2000-01-01

    Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.

  11. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport

    NASA Astrophysics Data System (ADS)

    Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias

    2015-01-01

    This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a

  12. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    NASA Astrophysics Data System (ADS)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  13. Ground beef handling and cooking practices in restaurants in eight States.

    PubMed

    Bogard, April K; Fuller, Candace C; Radke, Vincent; Selman, Carol A; Smith, Kirk E

    2013-12-01

    Eating in table-service restaurants has been implicated as a risk factor for Escherichia coli O157:H7 infection. To explore this association and learn about the prevalence of risky ground beef preparation practices in restaurants, the Environmental Health Specialists Network (EHS-Net) assessed ground beef handling policies and practices in restaurants in California, Colorado, Connecticut, Georgia, Minnesota, New York, Oregon, and Tennessee. Eligible restaurants prepared and served hamburgers. EHS-Net specialists interviewed a restaurant employee with authority over the kitchen (defined as the manager) using a standard questionnaire about food safety policies, hamburger preparation policies, and use of irradiated ground beef. Interviews were followed by observations of ground beef preparation. Data from 385 restaurants were analyzed: 67% of the restaurants were independently owned and 33% were chain restaurants; 75% of the restaurants were sit down, 19% were quick service or fast food, and 6% were cafeteria or buffet restaurants. Eighty-one percent of restaurants reported determining doneness of hamburgers by one or more subjective measures, and 49% reported that they never measure the final cook temperatures of hamburgers. At least two risky ground beef handling practices were observed in 53% of restaurants. Only 1% of restaurants reported purchasing irradiated ground beef, and 29% were unfamiliar with irradiated ground beef. Differences in risky ground beef handling policies and practices were noted for type of restaurant ownership (independently owned versus chain) and type of food service style (sit down versus quick service or fast food). This study revealed the pervasiveness of risky ground beef handling policies and practices in restaurants and the need for educational campaigns targeting food workers and managers. These results highlight the importance of continued efforts to reduce the prevalence of E. coli O157:H7 in ground beef.

  14. Effects of aircraft noise on flight and ground structures

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.

    1976-01-01

    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  15. Influence of landing gear flexibility on aircraft performance during ground roll

    NASA Technical Reports Server (NTRS)

    Sivaramakrishnan, M. M.

    1981-01-01

    An analysis is made of the influence of landing gear deflection characteristics on aircraft performance on the ground up to rotation. A quasi-steady dynamic equilibrium state is assumed, including other simplifying assumptions such as calm air conditions and normal aircraft lift and drag. Ground incidence is defined as the angle made by the mean aerodynamic chord of the wing with respect to the ground plane, and equations are given for force and balance which determine the quasi-equilibrium conditions for the aircraft during ground roll. Results indicate that the landing gear deflections lead to a substantial increase in the angle of attack, and the variation in the ground incidence due to landing gear flexibility could be as much as + or - 50%, and the reduction in tail load requirements almost 25%.

  16. Dynamic ground effects flight test of the NASA F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Corda, Stephen

    1995-01-01

    Aerodynamic characteristics of an aircraft may significantly differ when flying close to the ground rather than when flying up and away. Recent research has also determined that dynamic effects (i.e., sink rate) influence ground effects (GE). A ground effects flight test program of the F-15 aircraft was conducted to support the propulsion controlled aircraft (PCA) program at the NASA Dryden Flight Research Center. Flight data was collected for 24 landings on seven test flights. Dynamic ground effects data were obtained for low- and high-sink rates, between 0.8 and 6.5 ft/sec, at two approach speed and flap combinations. These combinations consisted of 150 kt with the flaps down (30 deg deflection) and 170 kt with the flaps up (0 deg deflection), both with the inlet ramps in the full-up position. The aerodynamic coefficients caused by ground effects were estimated from the flight data. These ground effects data were correlated with the aircraft speed, flap setting, and sink rate. Results are compared to previous flight test and wind-tunnel ground effects data for various wings and for complete aircraft.

  17. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  18. Automated Analysis of Radar Imagery of Venus: Handling Lack of Ground Truth

    NASA Technical Reports Server (NTRS)

    Burl, M.; Fayyad, U.; Perona, P.; Smyth, P.

    1994-01-01

    Lack of verifiable ground truth is a common problem in remote sensing image analysis. For example, consider the synthetic aperture radar (SAR) image data of Venus obtained by the Magellan spacecraft. Planetary scientists are interested in automatically cataloging the locations of all the small volcanoes in this data set; however, the problem is very difficult and cannot be performed with perfect reliability even by human experts. Thus, training and evaluating the performance of an automatic algorithm on this data set must be handled carefully. We discuss the use of weighted free-response receiver-operating characteristics (wFROC) for evaluating detection performance when the ground truth is subjective.

  19. STS payload ground handling mechanism at John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Cassisi, V.; Tatem, B. C., Jr.

    1985-01-01

    The payload ground handling mechanism (PGHM), which lifts payloads out of the payload canister that brings them to the launch pad, is described. The PGHM then loads the payloads into the orbiter through the open payload bay doors. The challenge was to provide this capability in time for space shuttle mission 31-A. Meeting this STS requirement was considerably more challenging than using the stacking method for loading payloads on top of expendable vehicles. The new mechanism and its main features are discussed.

  20. Ground effects on V/STOL and STOL aircraft: A survey

    NASA Technical Reports Server (NTRS)

    Kuhn, R. E.; Eshleman, J.

    1985-01-01

    The flow fields encountered by jet- and fan-powered Vertical/Short Takeoff and Landing (V/STOL) aircraft operating in ground effect are reviewed and their general effects on the aerodynamic characteristics are discussed. The ground effects considered include: (1) the suckdown experienced by a single jet configuration in hover; (2) the fountain flow and additional suckdown experienced by multiple jet configurations in hover; (3) the ground vortex generated by jet and jet flap configurations in short takeoff and landing (STOL) operation and the associated aerodynamic and hot-gas-ingestion effects; and (4) the change in the downwash at the tail due to ground proximity. After over 30 years of research on V/STOL aircraft, the general flow phenomena are well-known and, in most areas, the effects of ground proximity can be established or can be determined experimentally. However, there are some anomalies in the current data base which are discussed.

  1. The handling qualities and flight characteristics of the Grumman design 698 simulated twin-engine tilt Nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Eskey, M. A.; Wilson, S. B., III

    1986-01-01

    This paper describes three government-conducted, piloted flight simulations of the Grumman Design 698 vertical and short takeoff and landing (V/STOL) aircraft. Emphasis is placed on the aircraft's handling qualities as rated by various NASA, Navy, and Grumman Aerospace Corporating pilots with flight experience ranging from conventional takeoff and landing (CTOL) to V/STOL aircraft. Each successive simulation incorporated modifications to the aircraft in order to resolve the flight problems which were of most concern to the pilots in the previous simulation. The objective of the first simulation was to assess the basic handling qualities of the aircraft with the noncross-shafted propulsion system. The objective of the second simulation was to examine the effects of incorporating the cross-shafted propulsion system. The objective of the third simulation was to examine inoperative single-engine characteristics with and without cross-shafted engines.

  2. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  3. Application of fiber Bragg grating sensors in light aircraft: ground and flight test

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Shrestha, Pratik; Park, Yurim; Kim, Chun-Gon

    2014-05-01

    Fiber optic sensors are being spotlighted as the means to monitoring aircraft conditions due to their excellent characteristics. This paper presents an affordable structural health monitoring system based on a fiber Bragg grating sensor (FBG) for application in light aircrafts. A total of 24 FBG sensors were installed in the main wing of the test bed aircraft. In the ground test, the intactness of the installed sensors and device operability were confirmed. During the flight test, the strain and temperature responses of the wing structure were measured by the on-board low-speed FBG interrogator. The measured strains were successfully converted into the flight load history through the load calibration coefficient obtained from the ground calibration test.

  4. Development of longitudinal handling qualities criteria for large advanced supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sudderth, R. W.; Bohn, J. G.; Caniff, M. A.; Bennett, G. R.

    1975-01-01

    Longitudinal handling qualities criteria in terms of airplane response characteristics were developed. The criteria cover high speed cruise maneuvering, landing approach, and stall recovery. Data substantiating the study results are reported.

  5. Aircraft model prototypes which have specified handling-quality time histories

    NASA Technical Reports Server (NTRS)

    Johnson, S. H.

    1976-01-01

    Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. One technique, the pseudodata method, solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The method is fully illustrated for a fourth-order stability-axis small-motion model with three lateral handling-quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.

  6. Preliminary study of ground handling characteristics of Buoyant Quad Rotor (BQR) vehicles

    NASA Technical Reports Server (NTRS)

    Browning, R. G. E.

    1980-01-01

    A preliminary investigation of mooring concepts appropriate for heavy lift buoyant quad rotor (BQR) vehicles was performed. A review of the evolution of ground handling systems and procedures for all airship types is presented to ensure that appropriate consideration is given to past experiences. Two buoyant quad rotor designs are identified and described. An analysis of wind loads on a moored airship and the effects of these loads on vehicle design is provided. Four mooring concepts are assessed with respect to the airship design, wind loads and mooring site considerations. Basing requirements and applicability of expeditionary mooring at various operational scenarios are addressed.

  7. Workbook for estimating effects of accidental explosions in propellant ground handling and transport systems

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Westine, P. S.; Parr, V. B.; Vargas, L. M.; Moseley, P. K.

    1978-01-01

    A workbook is presented to supplement an earlier NASA publication, which was intended to provide the designer and safety engineer with rapid methods for predicting damage and hazards from explosions of liquid propellant and compressed gas vessels used in ground storage, transport and handling. Information is presented in the form of graphs and tables to allow easy calculation, using only desk or handheld calculators. Topics covered in various chapters are: (1) estimates of explosive yield; (2) characteristics of pressure waves; (3) effects of pressure waves; (4) characteristics of fragments; and (5) effects of fragments and related topics.

  8. Ground-recorded sonic boom signatures of F-18 aircraft formation flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1995-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  9. Ground-Recorded Sonic Boom Signatures of F-18 Aircraft in Formation Flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1996-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the tail shock of the upper F-18 (called tail-canopy). The second formation had the canopy of the lower F- 18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft . An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  10. Longitudinal Handling Qualities of the Tu-144LL Airplane and Comparisons With Other Large, Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Marshall, Alisa

    2000-01-01

    Four flights have been conducted using the Tu-144LL supersonic transport aircraft with the dedicated objective of collecting quantitative data and qualitative pilot comments. These data are compared with the following longitudinal flying qualities criteria: Neal-Smith, short-period damping, time delay, control anticipation parameter, phase delay (omega(sp)*T(theta(2))), pitch bandwidth as a function of time delay, and flight path as a function of pitch bandwidth. Determining the applicability of these criteria and gaining insight into the flying qualities of a large, supersonic aircraft are attempted. Where appropriate, YF-12, XB-70, and SR-71 pilot ratings are compared with the Tu-144LL results to aid in the interpretation of the Tu-144LL data and to gain insight into the application of criteria. The data show that approach and landing requirements appear to be applicable to the precision flightpath control required for up-and-away flight of large, supersonic aircraft. The Neal-Smith, control anticipation parameter, and pitch-bandwidth criteria tend to correlate with the pilot comments better than the phase delay criterion, omega(sp)*T(theta(2)). The data indicate that the detrimental flying qualities implication of decoupled pitch-attitude and flightpath responses occurring for high-speed flight may be mitigated by requiring the pilot to close the loop on flightpath or vertical speed.

  11. Effects of higher order control systems on aircraft approach and landing longitudinal handling qualities

    NASA Technical Reports Server (NTRS)

    Pasha, M. A.; Dazzo, J. J.; Silverthorn, J. T.

    1982-01-01

    An investigation of approach and landing longitudinal flying qualities, based on data generated using a variable stability NT-33 aircraft combined with significant control system dynamics is described. An optimum pilot lead time for pitch tracking, flight path angle tracking, and combined pitch and flight path angle tracking tasks is determined from a closed loop simulation using integral squared error (ISE) as a performance measure. Pilot gain and lead time were varied in the closed loop simulation of the pilot and aircraft to obtain the best performance for different control system configurations. The results lead to the selection of an optimum lead time using ISE as a performance criterion. Using this value of optimum lead time, a correlation is then found between pilot rating and performance with changes in the control system and in the aircraft dynamics. It is also shown that pilot rating is closely related to pilot workload which, in turn, is related to the amount of lead which the pilot must generate to obtain satisfactory response. The results also indicate that the pilot may use pitch angle tracking for the approach task and then add flight path angle tracking for the flare and touchdown.

  12. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  13. Film/chemistry selection for the earth resources technology satellite /ERTS/ ground data handling system

    NASA Technical Reports Server (NTRS)

    Shaffer, R. M.

    1973-01-01

    A detailed description is given of the methods of choose the duplication film and chemistry currently used in the NASA-ERTS Ground Data Handling System. The major ERTS photographic duplication goals are given as background information to justify the specifications for the desirable film/chemistry combination. Once these specifications were defined, a quantitative evaluation program was designed and implemented to determine if any recommended combinations could meet the ERTS laboratory specifications. The specifications include tone reproduction, granularity, MTF and cosmetic effects. A complete description of the techniques used to measure the test response variables is given. It is anticipated that similar quantitative techniques could be used on other programs to determine the optimum film/chemistry consistent with the engineering goals of the program.

  14. Chemical Characterization of the Aerosol During the CLAMS Experiment Using Aircraft and Ground Stations

    NASA Astrophysics Data System (ADS)

    Castanho, A. D.; Martins, J.; Artaxo, P.; Hobbs, P. V.; Remer, L.; Yamasoe, M.; Fattori, A.

    2002-05-01

    During the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment Nuclepore filters were collected in two ground stations and aboard the University of Wasghington's Convair 580 Reserarch Aircraft. The two ground stations were chosen in strategic positions to characterize the chemical composition, the mass concentration, black carbon (BC) content, and the absorption properties of the aerosol particles at the surface level. One of the stations was located at the Cheasapeake lighthouse (25 km from the coast) and the other one was located at the Wallops Island. Aerosol particles where collected in two stages, fine (d<2.5um) and coarse mode (2.5Aircraft. The aircraft samples where used to characterize the elemental composition, mass concentration, BC content, and absorption properties of the aerosol in the atmospheric column in the CLAMS Experiment area. Some of the filters were also submitted to Scanning Electron Microscopy analysis. The particulate matter mass for all the samples were obtained gravimetrically. The concentration of black carbon in the fine filters was optically determined by a broadband reflectance technique. The spectral (from UV to near IR) reflectance in the fine and coarse mode filter were also obtained with a FieldSpec ASD spectrometer. Aerosol elemental characterization (Na through Pb) was obtained by the PIXE (Particle induced X ray emission) analyses of the nuclepore filters. The sources of the aerosol measured at the ground stations were estimated by principal component analyses mainly in the Wallops Island, where a longer time series was collected. One of the main urban components identified in the aerosol during the experiment was sulfate. Black carbon

  15. Flow visualization studies of VTOL aircraft models during Hover in ground effect

    NASA Technical Reports Server (NTRS)

    Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.

    1995-01-01

    A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.

  16. Flight performance using a hyperstereo helmet-mounted display: aircraft handling

    NASA Astrophysics Data System (ADS)

    Jennings, Sion A.; Craig, Gregory L.; Stuart, Geoffrey W.; Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.

    2009-05-01

    A flight study was conducted to assess the impact of hyperstereopsis on helicopter handling proficiency, workload and pilot acceptance. Three pilots with varying levels of night vision goggle and hyperstereo helmet-mounted display experience participated in the test. The pilots carried out a series of flights consisting of low-level maneuvers over a period of two weeks. Four of the test maneuvers, The turn around the tail, the hard surface landing, the hover height estimation and the tree-line following were analysed in detail. At the end of the testing period, no significant difference was observed in the performance data, between maneuvers performed with the TopOwl helmet and maneuvers performed with the standard night vision goggle. This study addressed only the image intensification display aspects of the TopOwl helmet system. The tests did not assess the added benefits of overlaid symbology or head slaved infrared camera imagery. These capabilities need to be taken into account when assessing the overall usefulness of the TopOwl system. Even so, this test showed that pilots can utilize the image intensification imagery displayed on the TopOwl to perform benign night flying tasks to an equivalent level as pilots using ANVIS. The study should be extended to investigate more dynamic and aggressive low level flying, slope landings and ship deck landings. While there may be concerns regarding the effect of hyperstereopsis on piloting, this initial study suggests that pilots can either adapt or compensate for hyperstereo effects with sufficient exposure and training. Further analysis and testing is required to determine the extent of training required.

  17. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  18. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  19. ADS-B within a Multi-Aircraft Simulation for Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Chung, William W.; Loveness, Ghyrn W.

    2004-01-01

    Automatic Dependent Surveillance Broadcast (ADS-B) is an enabling technology for NASA s Distributed Air-Ground Traffic Management (DAG-TM) concept. DAG-TM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, aircraft exchange state and intent information over ADS-B with other aircraft and ground stations. This information supports various surveillance functions including conflict detection and resolution, scheduling, and conformance monitoring. To conduct more rigorous concept feasibility studies, NASA Langley Research Center s PC-based Air Traffic Operations Simulation models a 1090 MHz ADS-B communication structure, based on industry standards for message content, range, and reception probability. The current ADS-B model reflects a mature operating environment and message interference effects are limited to Mode S transponder replies and ADS-B squitters. This model was recently evaluated in a Joint DAG-TM Air/Ground Coordination Experiment with NASA Ames Research Center. Message probability of reception vs. range was lower at higher traffic levels. The highest message collision probability occurred near the meter fix serving as the confluence for two arrival streams. Even the highest traffic level encountered in the experiment was significantly less than the industry standard "LA Basin 2020" scenario. Future studies will account for Mode A and C message interference (a major effect in several industry studies) and will include Mode A and C aircraft in the simulation, thereby increasing the total traffic level. These changes will support ongoing enhancements to separation assurance functions that focus on accommodating longer ADS-B information update intervals.

  20. Semi-automatic handling of meteorological ground measurements using WeatherProg: prospects and practical implications

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; De Mascellis, Roberto; Manna, Piero; Terribile, Fabio

    2016-04-01

    WeatherProg is a computer program for the semi-automatic handling of data measured at ground stations within a climatic network. The program performs a set of tasks ranging from gathering raw point-based sensors measurements to the production of digital climatic maps. Originally the program was developed as the baseline asynchronous engine for the weather records management within the SOILCONSWEB Project (LIFE08 ENV/IT/000408), in which daily and hourly data where used to run water balance in the soil-plant-atmosphere continuum or pest simulation models. WeatherProg can be configured to automatically perform the following main operations: 1) data retrieval; 2) data decoding and ingestion into a database (e.g. SQL based); 3) data checking to recognize missing and anomalous values (using a set of differently combined checks including logical, climatological, spatial, temporal and persistence checks); 4) infilling of data flagged as missing or anomalous (deterministic or statistical methods); 5) spatial interpolation based on alternative/comparative methods such as inverse distance weighting, iterative regression kriging, and a weighted least squares regression (based on physiography), using an approach similar to PRISM. 6) data ingestion into a geodatabase (e.g. PostgreSQL+PostGIS or rasdaman). There is an increasing demand for digital climatic maps both for research and development (there is a gap between the major of scientific modelling approaches that requires digital climate maps and the gauged measurements) and for practical applications (e.g. the need to improve the management of weather records which in turn raises the support provided to farmers). The demand is particularly burdensome considering the requirement to handle climatic data at the daily (e.g. in the soil hydrological modelling) or even at the hourly time step (e.g. risk modelling in phytopathology). The key advantage of WeatherProg is the ability to perform all the required operations and

  1. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Kamine, Tovy Haber

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

  2. Ground Vibration and Flight Flutter Tests of the Single-seat F-16XL Aircraft with a Modified Wing

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    1993-01-01

    The NASA single-seat F-16XL aircraft was modified by the addition of a glove to the left wing. Vibration tests were conducted on the ground to assess the changes to the aircraft caused by the glove. Flight Luther testing was conducted on the aircraft with the glove installed to ensure that the flight envelope was free of aeroelastic or aeroservoelastic instabilities. The ground vibration tests showed that above 20 Hz, several modes that involved the control surfaces were significantly changed. Flight test data showed that modal damping levels and trends were satisfactory where obtainable. The data presented in this report include estimated modal parameters from the ground vibration and flight flutter test.

  3. Spatial and temporal variation in CO over Alberta using measurements from satellites, aircraft, and ground stations

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2015-04-01

    Alberta is Canada's largest oil producer, and its oil sands deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) is examined for the 12-year period from 2002 to 2013. The Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations in forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons: summer and spring. Distinct seasonal patterns of CO at the urban sites (Edmonton and Calgary) point to the strong influence of traffic. Meteorological parameters play an important role in the CO spatial distribution at various pressure levels. Northern Alberta shows a stronger upward lifting motion which leads to larger CO total column values, while the poor dispersion in central and southern Alberta exacerbates the surface CO pollution. Interannual variations in satellite data depict a slightly decreasing trend for both regions, while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  4. Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2014-12-01

    Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) are examined for the 12 year period from 2002-2013. Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities) point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbates the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  5. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Kamine, Tovy Haber; Bendrick, Gregg A.

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three

  6. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  7. VTOL in ground effect flows for closely spaced jets. [to predict pressure and upwash forces on aircraft structures

    NASA Technical Reports Server (NTRS)

    Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.

    1979-01-01

    Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.

  8. USE OF REMPI-TOFMS FOR REAL-TIME MEASUREMENT OF TRACE AROMATICS DURING OPERATION OF AIRCRAFT GROUND EQUIPMENT

    EPA Science Inventory

    Emissions of aromatic air toxics from aircraft ground equipment were measured with a resonance enhanced multiphoton ionization—time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. T...

  9. New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations

    NASA Astrophysics Data System (ADS)

    Varotsos, C. A.; Melnikova, I. N.; Cracknell, A. P.; Tzanis, C.; Vasilyev, A. V.

    2013-06-01

    The airborne spectral observations of the upward and downward irradiances are revisited to investigate the dependence of the near-ground albedo as a function of wavelength in the entire solar spectrum for different surfaces (sand, water, snow) and in different conditions (clear or cloudy sky). The radiative upward and downward fluxes were determined by a diffraction spectrometer flown on a research aircraft that was performing multiple flight paths near ground. The results obtained show that the near-ground albedo does not generally increase with increasing wavelengths for all kinds of surfaces as is widely believed today. Particularly, in the case of water surfaces we found that the albedo in the ultraviolet region is more or less independent of the wavelength on a long-term basis. Interestingly, in the visible and near-infrared spectra the water albedo obeys an almost constant power-law relationship with wavelength. In the case of sand surfaces we found that the sand albedo is a quadratic function of wavelength, which becomes more accurate, if the ultraviolet wavelengths are neglected. Finally, we found that the spectral dependence of snow albedo behaves similarly to that of water, i.e. both decrease from the ultraviolet to the near-infrared wavelengths by 20-50%, despite of the fact that their values differ by one order of magnitude (water albedo being lower). In addition, the snow albedo versus ultraviolet wavelength is almost constant, while in the visible-near infrared spectrum the best simulation is achieved by a second-order polynomial, as in the case of sand, but with opposite slopes.

  10. New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations

    NASA Astrophysics Data System (ADS)

    Varotsos, C. A.; Melnikova, I. N.; Cracknell, A. P.; Tzanis, C.; Vasilyev, A. V.

    2014-07-01

    The airborne spectral observations of the upward and downward irradiances are revisited to investigate the dependence of the near-ground albedo as a function of wavelength in the entire solar spectrum for different surfaces (sand, water, snow) and under different conditions (clear or cloudy sky). The radiative upward and downward fluxes were determined by a diffraction spectrometer flown on a research aircraft that was performing multiple flight paths near the ground. The results obtained show that the near-ground albedo does not generally increase with increasing wavelengths for all kinds of surfaces as is widely believed today. Particularly, in the case of water surfaces it was found that the albedo in the ultraviolet region is more or less independent of the wavelength on a long-term basis. Interestingly, in the visible and near-infrared spectra the water albedo obeys an almost constant power-law relationship with wavelength. In the case of sand surfaces it was found that the sand albedo is a quadratic function of wavelength, which becomes more accurate if the ultraviolet wavelengths are neglected. Finally, it was found that the spectral dependence of snow albedo behaves similarly to that of water, i.e. both decrease from the ultraviolet to the near-infrared wavelengths by 20-50%, despite the fact that their values differ by one order of magnitude (water albedo being lower). In addition, the snow albedo vs. ultraviolet wavelength is almost constant, while in the visible near-infrared spectrum the best simulation is achieved by a second-order polynomial, as in the case of sand, but with opposite slopes.

  11. Recommendations for ground effects research for V/STOL and STOL aircraft and associated equipment for large scale testing

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.

    1986-01-01

    The current understanding of the effects of ground proximity on V/STOL and STOL aircraft is reviewd. Areas covered include (1) single jet suckdown in hover, (2) fountain effects on multijet configurations, (3) STOL ground effects including the effect of the ground vortex flow field, (4) downwash at the tail, and (5) hot gas ingestion in both hover and STOL operation. The equipment needed for large scale testing to extend the state of the art is reviewed and developments in three areas are recommended as follows: (1) improve methods for simulating the engine exhaust and inlet flows; (2) develop a model support system that can simulate realistic rates of climb and descent as well as steady height operation; and (3) develop a blowing BLC ground board as an alternative to a moving belt ground board to properly simulate the flow on the ground.

  12. Habituation of Arctic ground squirrels (Urocitellus parryii) to handling and movement during torpor to prevent artificial arousal.

    PubMed

    Christian, Sherri L; Rasley, Brian T; Roe, Tanna; Moore, Jeanette T; Harris, Michael B; Drew, Kelly L

    2014-01-01

    Hibernation is a unique physiological adaptation characterized by periods of torpor that consist of repeated, reversible, and dramatic reductions of body temperature, metabolism, and blood flow. External and internal triggers can induce arousal from torpor in the hibernator. Studies of hibernating animals often require that animals be handled or moved prior to sampling or euthanasia but this movement can induce changes in the hibernation status of the animal. In fact, it has been demonstrated that movement of animals while they are hibernating is sufficient to induce an artificial arousal, which can detrimentally alter experimental findings obtained from animals assumed to be torpid. Therefore, we assessed a method to induce habituation of torpid hibernators to handling and movement to reduce inadvertent arousals. A platform rocker was used to mimic motion experienced during transfer of an animal and changes in respiratory rate (RR) were used to assess responsiveness of torpid Arctic ground squirrels (AGS, Urocitellus parryii). We found that movement alone did not induce a change in RR, however, exposure to handling induced an increase in RR in almost all AGS. This change in RR was markedly reduced with increased exposures, and all AGS exhibited a change in RR ≤ 1 by the end of the study. AGS habituated faster mid-season compared to early in the season, which mirrors other assessments of seasonal variation of torpor depth. However, AGS regained responsiveness when they were not exposed to daily handling. While AGS continued to undergo natural arousals during the study, occurrence of a full arousal was neither necessary for becoming habituated nor detrimental to the time required for habituation. These data suggest that even when torpid, AGS are able to undergo mechanosensory habituation, one of the simplest forms of learning, and provides a reliable way to reduce the sensitivity of torpid animals to handling. PMID:24847278

  13. Views of Growing Methane Emissions near Oil and Natural Gas Activity: Satellite, Aircraft, and Ground

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.; Diskin, G. S.; Hannigan, J. W.; Nussbaumer, E.

    2015-12-01

    To better understand the discrepancies between current top-down and bottom-up estimates, additional methane (CH4) measurements are necessary for regions surrounding growing oil and natural gas (ONG) development. We have evaluated satellite measurements of CH4 in US regions with ONG operations for their application as "top-down" constraints (part of the NASA Air Quality Applied Sciences Team (AQAST) project). For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed ground and aircraft measurements in Maryland (2011), California and Texas (2013), and Colorado (2014). The largest CH4 signals were observed in the Greater Green River and Powder River Basins using Tropospheric Emission Spectrometer (TES) Representative Tropospheric Volume Mixing Ratio (RTVMR) measurements. A long-term comparison between a ground remote-sensing Fourier Transform Spectrometer (FTS) at Boulder and TES for 2010-2013 shows good correlation and differences ranging 2.5-5% for their yearly distribution of total column CH4. To determine any correlation between lower/mid-tropospheric CH4 (where a thermal IR sensor, such as TES, is most sensitive) and near-surface/boundary CH4 (where sources emit), we analyze the variability of DISCOVER-AQ aircraft profiles using principal component analysis and assess the correlation between near-surface (0-2 km) and mid-tropospheric (>2 km) CH4 concentrations. Using these relationships, we estimate near-surface CH4 using mid-tropospheric satellite measurements based on the partial column amounts within vertical layers with a linear regression. From this analysis, we will demonstrate whether the uncertainties of satellite-estimated near-surface CH4 are comparable to observed variability near ONG activity. These results will assist validation of satellite instrument

  14. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  15. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  16. The use of an aircraft test stand for VTOL handling qualities studies. [pilot evaluation of flight controllability

    NASA Technical Reports Server (NTRS)

    Pauli, F. A.; Corliss, L. D.; Selan, S. D.; Gerdes, R. M.; Gossett, T. D.

    1974-01-01

    The VTOL flight tests stand for testing control concepts on the X-14B VSS aircraft in hover, is described. This stand permits realistic and safe piloted evaluation and checkout of various control systems and of parameter variations within each system to determine acceptability to the pilot. Pilots can use it as a practical training tool to practice procedures and flying techniques and become familiar with the aircraft characteristics. Some examples of test experience are given. The test stand allows the X14B to maneuver in hover from centered position + or - 9.7 deg in roll and + or - 9.3 deg in pitch, about + or - 6 deg in yaw, and + or - 15 cm in vertical translation. The unique vertical free flight freedom enables study of liftoffs and landings with power conditions duplicated. The response on the stand agrees well with that measured in free hovering flight, and pilot comments confirm this.

  17. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... The definition of “in the open” may be modified to include “hush houses,” test hangars, comparable... clause, assumes the risk of damage to, or loss or destruction of, aircraft in the open, during operation... the aircraft and property are covered by a separate bailment agreement. (2) “In the open”...

  18. Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations

    NASA Astrophysics Data System (ADS)

    Safieddine, Sarah; Boynard, Anne; Hao, Nan; Huang, Fuxiang; Wang, Lili; Ji, Dongsheng; Barret, Brice; Ghude, Sachin D.; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy

    2016-08-01

    Satellite measurements from the thermal Infrared Atmospheric Sounding Interferometer (IASI), aircraft data from the MOZAIC/IAGOS project, as well as observations from ground-based stations, are used to assess the tropospheric ozone (O3) variability during the East Asian Summer Monsoon (EASM). Six years 2008-2013 of IASI data analysis reveals the ability of the instrument to detect the onset and the progression of the monsoon seen by a decrease in the tropospheric 0-6 km O3 column due to the EASM, and to reproduce this decrease from one year to the other. The year-to-year variability is found to be mainly dependent on meteorology. Focusing on the period of May-August 2011, taken as an example year, IASI data show clear inverse relationship between tropospheric 0-6 km O3 on one hand and meteorological parameters such as cloud cover, relative humidity and wind speed, on the other hand. Aircraft data from the MOZAIC/IAGOS project for the EASM of 2008-2013 are used to validate the IASI data and to assess the effect of the monsoon on the vertical distribution of the tropospheric O3 at different locations. Results show good agreement with a correlation coefficient of 0.73 (12 %) between the 0-6 km O3 column derived from IASI and aircraft data. IASI captures very well the inter-annual variation of tropospheric O3 observed by the aircraft data over the studied domain. Analysis of vertical profiles of the aircraft data shows a decrease in the tropospheric O3 that is more important in the free troposphere than in the boundary layer and at 10-20° N than elsewhere. Ground station data at different locations in India and China show a spatiotemporal dependence on meteorology during the monsoon, with a decrease up to 22 ppbv in Hyderabad, and up to 5 ppbv in the North China Plain.

  19. Investigation of a laser Doppler velocimeter system to measure the flow field of a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    An experimental research program for measuring the flow field around a 70 percent scale V/STOL aircraft model in ground effect is described. The velocity measurements were conducted with a ground-based laser Doppler velocimeter at an outdoor test pad. The remote sensing instrumentation, experimental tests, and results of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain, the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft heights above ground. The study shows that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  20. Clear Sky Column Closure Studies of Urban-Marine and Mineral-Dust Aerosols Using Aircraft, Ship, Satellite and Ground-Based Measurements in ACE-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Russell, Philip B.; Livingston, John M.; Gasso, Santiago; Hegg, Dean A.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Oestroem, Elisabeth; Noone, Kevin J.; Durkee, Philip A.; Jonsson, Haflidi H.; Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Formenti, Paola; Andreae, Meinrat O.; Kapustin, Vladimir N.; Bates, Timothy S.; Quinn, Patricia K.

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2), European urban-marine and African mineral-dust aerosols were measured aboard the Pelican aircraft, the Research Vessel Vodyanitskiy from the ground and from satellites.

  1. Estimating dynamic external hand forces during manual materials handling based on ground reaction forces and body segment accelerations.

    PubMed

    Faber, Gert S; Chang, Chien-Chi; Kingma, Idsart; Dennerlein, Jack T

    2013-10-18

    Direct measurement of hand forces during assessment of manual materials handling is infeasible in most field studies and some laboratory studies (e.g., during patient handling). Therefore, this study proposed and evaluated the performance of a novel hand force estimation method based on ground reaction forces (GRFs) and body segment accelerations. Ten male subjects performed a manual lifting/carrying task while an optoelectronic motion tracking system measured 3D full body kinematics, a force plate measured 3D GRFs and an instrumented box measured 3D hand forces. The estimated 3D hand forces were calculated by taking the measured GRF vector and subtracting the force vectors due to weight and acceleration of all body segments. Root-mean-square difference (RMSD) between estimated and measured hand forces ranged from 11 to 27N. When ignoring the segment accelerations (just subtracting body weight from the GRFs), the hand force estimation errors were much higher, with RMSDs ranging from 21 to 101N. Future studies should verify the performance of the proposed hand force estimation method when using an ambulatory field measurement system.

  2. Level 1 on-ground telemetry handling in Planck-LFI

    NASA Astrophysics Data System (ADS)

    Zacchei, A.; Frailis, M.; Maris, M.; Morisset, N.; Rohlfs, R.; Meharga, M.; Binko, P.; Türler, M.; Galeotta, S.; Gasparo, F.; Franceschi, E.; Butler, R. C.; Cuttaia, F.; D'Arcangelo, O.; Fogliani, S.; Gregorio, A.; Leonardi, R.; Lowe, S. R.; Maino, D.; Maggio, G.; Malaspina, M.; Mandolesi, N.; Manzato, P.; Meinhold, P.; Mendes, L.; Mennella, A.; Morgante, G.; Pasian, F.; Perrotta, F.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Tomasi, M.; Zonca, A.

    2009-12-01

    The Planck Low Frequency Instrument (LFI) will observe the Cosmic Microwave Background (CMB) by covering the frequency range 30-70 GHz in three bands. The primary instrument data source are the temperature samples acquired by the 22 radiometers mounted on the Planck focal plane. Such samples represent the scientific data of LFI. In addition, the LFI instrument generates the so called housekeeping data by sampling regularly the on-board sensors and registers. The housekeeping data provides information on the overall health status of the instrument and on the scientific data quality. The scientific and housekeeping data are collected on-board into telemetry packets compliant with the ESA Packet Telemetry standards. They represent the primary input to the first processing level of the LFI Data Processing Centre. In this work we show the software systems which build the LFI Level 1. A real-time assessment system, based on the ESA SCOS 2000 generic mission control system, has the main purpose of monitoring the housekeeping parameters of LFI and detect possible anomalies. A telemetry handler system processes the housekeeping and scientific telemetry of LFI, generating timelines for each acquisition chain and each housekeeping parameter. Such timelines represent the main input to the subsequent processing levels of the LFI DPC. A telemetry quick-look system allows the real-time visualization of the LFI scientific and housekeeping data, by also calculating quick statistical functions and fast Fourier transforms. The LFI Level 1 has been designed to support all the mission phases, from the instrument ground tests and calibration to the flight operations, and developed according to the ESA engineering standards.

  3. Pickup of visual information by the pilot during a ground control approach in a fighter aircraft simulator.

    PubMed

    Papin, J P; Naureils, P; Santucci, G

    1980-05-01

    Before providing the new single-seat fighter aircraft with selective visual information display systems, it is necessary to conduct new studies of the visual behavior of pilots flying these aircraft in order to determine the nature of information to be displayed. The authors describe a modified NAC Eye Mark recorder which can be used in tight spaces without any interfering light source and given an example of its use in an experiment conducted in a Mirage III R training simulator. The reported experiment was designed to analyse the visual behavior of 12 pilots of four different qualification levels who flew a ground control approach (GCA) test each day for five consecutive days. The results show that the pilot's visual behavior is stable, both on an intra- and inter-individual basis. In addition, it is possible to classify the control panel instruments as a function of the number of times and length of time they are checked.

  4. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  5. Comparison of Pandora spectrometer NO2 measurements to aircraft, satellite, and ground measurements during the DISCOVER-AQ Texas campaign

    NASA Astrophysics Data System (ADS)

    Judd, L.; Lefer, B. L.; Herman, J. R.; Abuhassan, N.; Cede, A.; Cohen, R. C.; Janz, S. J.; Ren, X.; Luke, W. T.; Long, R.

    2014-12-01

    Pandora spectrometer measurements are compared to other remotely sensed and in-situ NO2 measurements in the Houston, TX region during the third deployment of the DISCOVER-AQ campaign in September 2013. The network of freeways, petrochemical facilities, and related industries contribute to an ongoing pollution problem in the Houston region with the direct emissions of NOx and VOCs producing secondary pollutants such as ozone and PM2.5. The goal of this work is to determine how the Pandora spectrometer column measurements of NO2 compare to in-situ derived and other remotely sensed columns, as well as with ground measurements during this deployment of DISCOVER-AQ. UC Berkeley's LIF measurements of NO2 aboard the NASA P-3B at each spiral site are used to create the aircraft derived profiles of NO2. The aircraft measured profiles include upwind, source, and receptor sites in the region, three times a day, at eight different locations. In addition, we investigate how the NO2 profile shape changes both spatially and temporally, with a focus on the difference between the boundary layer and free troposphere distributions. Pandora measurements are also compared to column measurements from the Ozone Monitoring Instrument and ACAM aboard the B200 aircraft. Where available, surface measurements are included to supplement aircraft profiles and are correlated to the Pandora column measurements to determine the relationship between the total NO2 column and ground concentrations. Understanding of how these measurements compare spatially and temporally will aid both future Pandora deployments and satellite retrievals.

  6. Fine tuning the heavy fermion ground state: A new handle on cerium cobalt indium

    NASA Astrophysics Data System (ADS)

    Pham, Long D.

    A Two Fluid Description of the Kondo Lattice CeCoIn5 has been extended to include additional entropy terms that were not considered in the original work by S. Nakatsuji et al. [1]. The use of a Matlab computer code was successful at iteratively solving for f, the fraction of itinerant interacting heavy quasiparticles, and showed that it converges to a temperature dependent function invariant under successive iterations. The linear specific heat coefficient, gamma, was extracted from transport consideration in conjunction with f(T) and the Kadowacki-Woods ratio to be 204mJ/mole-K2, in good agreement from heat capacity measurements of 290mJ/mole-K2 for CeCoIn 5 [32]. Antiferromagnetism has been induced in CeCoIn5 as well as its two isostructural, isovalent sister compounds CeRhIn5 and CeIrIn 5. Cadmium-doping the heavy-fermion superconductor CeCoIn5 at the percent level acts as an electronic tuning agent, sensitively shifting the balance between superconductivity and antiferromagnetism and opening new ambient-pressure phase space in the study of heavy-fermion ground states. At nominal concentrations of x>0.070, CeCo(In1-xCd x)5 displays a two phase region of antiferromagnetism coexisting with superconductivity up to x<0.15, above which no trace of superconductivity persists in specific heat. Similar results was seen in CeIr(In1-xCd x)5 where a quantum critical point (QCP) was observed, separating superconductivity from antiferromagnetism at a nominal critical concentration of x≈0.0475, while CeRh(In1-xCdx)5 goes through an incommensurate to commensurate antiferromagnetic transition nominally at x≈0.10. Amazingly, pressure completely recovers Tc in CeCo(In1-x Cdx)5 measured at nominal concentrations of x=0.10, and 0.15. Phase diagrams were constructed from specific heat and confirmed with resistivity and magnetization. An introduction to strongly correlated physics, relevant to the 115 family, will be worked out followed by a description of general techniques of

  7. Improved aircraft dynamic response and fatigue life during ground operations using an active control landing gear system

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Carden, H. D.; Edson, R.

    1978-01-01

    A three-degree-of-freedom aircraft landing analysis incorporating a series-hydraulic active control main landing gear has been developed and verified using preliminary experimental data from drop tests of a modified main landing gear from a 2722 kg (6000 lbm) class of airplane. The verified analysis was also employed to predict the landing dynamics of a supersonic research airplane with an active control main landing gear system. The results of this investigation have shown that this type of active gear is feasible and indicate a potential for improving airplane dynamic response and reducing structural fatigue damage during ground operations by approximately 90% relative to that incurred with the passive gear.

  8. Practises to identify and prevent adverse aircraft-and-rotorcraft-pilot couplings-A ground simulator perspective

    NASA Astrophysics Data System (ADS)

    Pavel, Marilena D.; Jump, Michael; Masarati, Pierangelo; Zaichik, Larisa; Dang-Vu, Binh; Smaili, Hafid; Quaranta, Giuseppe; Stroosma, Olaf; Yilmaz, Deniz; Johnes, Michael; Gennaretti, Massimmo; Ionita, Achim

    2015-08-01

    The aviation community relies heavily on flight simulators as a fundamental tool for research, pilot training and development of any new aircraft design. The goal of the present paper is to provide a review on how effective ground simulation is as an assessment tool for unmasking adverse Aircraft-and-Rotorcraft Pilot Couplings (APC/RPC). Although it is generally believed that simulators are not reliable in revealing the existence of A/RPC tendencies, the paper demonstrates that a proper selection of high-gain tasks combined with appropriate motion and visual cueing can reveal negative features of a particular aircraft that may lead to A/RPC. The paper discusses new methods for real-time A/RPC detection that can be used as a tool for unmasking adverse A/RPC. Although flight simulators will not achieve the level of reality of in-flight testing, exposing A/RPC tendencies in the simulator may be the only convenient safe place to evaluate the wide range of conditions that could produce hazardous A/RPC events.

  9. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  10. Self diagnostic accelerometer ground testing on a C-17 aircraft engine

    NASA Astrophysics Data System (ADS)

    Tokars, Roger P.; Lekki, John D.

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  11. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2011-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  12. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  13. Comparison of ozone measurement techniques using aircraft, balloon, and ground-based measurements

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Reck, G. M.

    1977-01-01

    In order to verify the ultraviolet absorption technique used in the Global Atmospheric Sampling Program, two flight experiments were conducted employing several techniques, both in situ and remote, for measuring atmospheric ozone. The first experiment used the NASA CV-990 equipped with an ultraviolet absorption ozone monitor and an ultraviolet spectrophotometer, a balloon ozonesonde, and a Dobson station for determining and comparing the ozone concentration data. A second experiment compared ozone data from an automated sampling system aboard a B-747 with data from a manned system installed on the NASA CV-990 during a cross-country flight with both aircraft following the same flight path separated by 32 kilometers.

  14. Flight investigation of the use of a nose gear jump strut to reduce takeoff ground roll distance of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Hardy, Gordon; Martin, James L.

    1994-01-01

    A series of flight tests was conducted to evaluate the reduction of takeoff ground roll distance obtainable from a rapid extension of the nose gear strut. The NASA Quiet Short-haul Research Aircraft (QSRA) used for this investigation is a transport-size short takeoff and landing (STOL) research vehicle with a slightly swept wing that employs the upper surface blowing (USB) concept to attain the high lift levels required for its low speed, short-field performance. Minor modifications to the conventional nose gear assembly and the addition of a high pressure pneumatic system and a control system provided the extendible nose gear, or 'jump strut,' capability. The limited flight test program explored the effects of thrust-to-weight ratio, storage tank initial pressure, and control valve open time duration on the ground roll distance. The data show that the predicted reduction of takeoff ground roll on the order of 10 percent was achieved with the use of the jump strut. Takeoff performance with the jump strut was also found to be essentially independent of the pneumatic supply pressure and was only slightly affected by control valve open time within the range of the parameters examined.

  15. Lewis icing research tunnel test of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

    NASA Technical Reports Server (NTRS)

    Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.

    1992-01-01

    A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.

  16. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    NASA Technical Reports Server (NTRS)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  17. Assessment of ground effects on the propagation of aircraft noise: The T-38A flight experiment

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.

    1980-01-01

    A flight experiment was conducted to investigate air to ground propagation of sound at gazing angles of incidence. A turbojet powered airplane was flown at altitudes ranging from 10 to 160 m over a 20-microphone array positioned over grass and concrete. The dependence of ground effects on frequency, incidence angle, and slant range was determined using two analysis methods. In one method, a microphone close to the flight path is compared to down range microphones. In the other method, comparisons are made between two microphones which were equidistant from the flight path but positioned over the two surfaces. In both methods, source directivity angle was the criterion by which portions of the microphone signals were compared. The ground effects were largest in the frequency range of 200 to 400 Hz and were found to be dependent on incidence angle and slant range. Ground effects measured for angles of incidence greater than 10 deg to 15 deg were near zero. Measured attenuation increased with increasing slant range for slant ranges less than 750 m. Theoretical predictions were found to be in good agreement with the major details of the measured results.

  18. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    NASA Technical Reports Server (NTRS)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  19. Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site

    SciTech Connect

    Knobelspiesse, Kirk D.; Cairns, Brian; Schmid, Beat; Roman, Miguel O.; Schaaf, Crystal B.

    2008-10-21

    The surface spectral albedo is an important component of climate models since it determines the amount of incident solar radiation that is absorbed by the ground. The albedo can be highly heterogeneous, both in space and time, and thus adequate measurement and modeling is challenging. One source of measurements that constrain the surface albedo are satellite instruments that observe the Earth, such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellites estimate the surface bidirectional reflectance distribution function (BRDF) by correcting top of the atmosphere (TOA) radiances for atmospheric effects and accumulating observations at a variety of viewing geometries. The BRDF can then be used to determine the albedo that is required in climate modeling. Other measurements that provide a more direct constraint on surface albedo are those made by upward and downward looking radiometers at the ground. One product in particular, the Best Estimate Radiation Flux (BEFLUX) value added product of the Department of Energy’s Atmospheric Radiation Measurement (ARM) Program at the Southern Great Plains Central Facility (SGP CF) in central Oklahoma, has been used to evaluate the quality of the albedo products derived from MODIS BRDF estimates. These comparisons have highlighted discrepancies between the energy absorbed at the surface that is calculated from the BEFLUX products and that is predicted from the MODIS BRDF product. This paper attempts to investigate these discrepancies by using data from an airborne scanning radiometer, the Research Scanning Polarimeter (RSP) that was flown at low altitude in the vicinity of the SGP CF site during the Aerosol Lidar Validation Experiment (ALIVE) in September of 2005. The RSP is a polarimeter that scans in the direction of the aircraft ground track, and can thus estimate the BRDF in a period of seconds, rather than the days required by MODIS to accumulate enough viewing angles. Atmospheric correction is aided by the

  20. Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests

    NASA Technical Reports Server (NTRS)

    Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.

    1976-01-01

    Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.

  1. Historical overview of V/STOL aircraft technology

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.

    1981-01-01

    The requirements for satisfactory characteristics in several key technology areas are discussed and a review is made of various V/STOL aircraft for the purpose of assessing the success or failure of each design in meeting design requirements. Special operating techniques were developed to help circumvent deficiencies. For the most part performance and handling qualities limitations restricted operational evaluations. Flight operations emphasized the need for good STOL performance, good handling qualities, and stability and control augmentation. The majority of aircraft suffered adverse ground effects.

  2. Coordinated observations of chemical releases from the ground and from aircraft at high latitudes

    NASA Technical Reports Server (NTRS)

    Romick, G. J.

    1973-01-01

    The ground observations of the Na-Li trail released from a Nike-Apache rocket obtained by the Geophysical Institute are discussed. By using the nominal trajectory for a 60 pound payload and the particular rocket, a best fit trajectory was determined based on the Ester Dome photographic data, launch time and earth-sun geometrical shadow height. From these calculations, the height of obvious features along the trail were determined and their velocity estimated. A clockwise rotation of the velocity vector with increasing height was observed. Velocities deduced at various altitudes were then compared to meter radar data also obtained during this period. The comparisons of these two neutral wind measurements techniques are satisfactory.

  3. Use of REMPI-TOFMS for real-time measurement of trace aromatics during operation of aircraft ground equipment

    NASA Astrophysics Data System (ADS)

    Gullett, Brian; Touati, Abderrahmane; Oudejans, Lukas

    Emissions of aromatic air toxics from aircraft ground equipment (AGE) were measured with a resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. This instrument was capable of characterizing turbine emissions and the effect of varying load operations on pollutant production. REMPI-TOFMS is capable of high selectivity and low detection limits (part per trillion to part per billion) in real time (1 s resolution). Hazardous air pollutants and criteria pollutants were measured during startups and idle and full load operations. Measurements of compounds such as benzene, toluene, ethylbenzene, xylenes, styrene, and polycyclic aromatic hydrocarbons compared well with standard methods. Startup emissions from the AGE data showed persistent concentrations of pollutants, unlike those from a diesel generator, where a sharp spike in emissions rapidly declined to steady state levels. The time-resolved responses of air toxics concentrations varied significantly by source, complicating efforts to minimize these emissions with common operating prescriptions. The time-resolved measurements showed that pollutant concentrations decline (up to 5×) in a species-specific manner over the course of multiple hours of operation, complicating determination of accurate and precise emission factors via standard extractive sampling. Correlations of air toxic concentrations with more commonly measured pollutants such as CO or PM were poor due to the relatively greater changes in the measured toxics' concentrations.

  4. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  5. Lightning protection of aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1977-01-01

    The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.

  6. A comparison of ground-based and aircraft-based methane emission flux estimates in a western oil and natural gas production basin

    NASA Astrophysics Data System (ADS)

    Snare, Dustin A.

    Recent increases in oil and gas production from unconventional reservoirs has brought with it an increase of methane emissions. Estimating methane emissions from oil and gas production is complex due to differences in equipment designs, maintenance, and variable product composition. Site access to oil and gas production equipment can be difficult and time consuming, making remote assessment of emissions vital to understanding local point source emissions. This work presents measurements of methane leakage made from a new ground-based mobile laboratory and a research aircraft around oil and gas fields in the Upper Green River Basin (UGRB) of Wyoming in 2014. It was recently shown that the application of the Point Source Gaussian (PSG) method, utilizing atmospheric dispersion tables developed by US EPA (Appendix B), is an effective way to accurately measure methane flux from a ground-based location downwind of a source without the use of a tracer (Brantley et al., 2014). Aircraft measurements of methane enhancement regions downwind of oil and natural gas production and Planetary Boundary Layer observations are utilized to obtain a flux for the entire UGRB. Methane emissions are compared to volumes of natural gas produced to derive a leakage rate from production operations for individual production sites and basin-wide production. Ground-based flux estimates derive a leakage rate of 0.14 - 0.78 % (95 % confidence interval) per site with a mass-weighted average (MWA) of 0.20 % for all sites. Aircraft-based flux estimates derive a MWA leakage rate of 0.54 - 0.91 % for the UGRB.

  7. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    NASA Technical Reports Server (NTRS)

    Commo, Sean A. (Inventor); Lynn, Keith C. (Inventor); Landman, Drew (Inventor); Acheson, Michael J. (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  8. Behavior of aircraft antiskid breaking systems on dry and wet runway surfaces: A slip-ratio-controlled system with ground speed reference from unbraked nose wheel

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.

    1977-01-01

    An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads.

  9. The use of hydrogen for aircraft propulsion in view of the fuel crisis.

    NASA Technical Reports Server (NTRS)

    Weiss, S.

    1973-01-01

    In view of projected decreases in available petroleum fuels, interest has been generated in exploiting the potential of liquid hydrogen (LH2) as an aircraft fuel. Cost studies of LH2 production show it to be more expensive than presently used fuels. Regardless of cost considerations, LH2 is viewed as an attractive aircraft fuel because of the potential performance benefits it offers. Accompanying these benefits, however, are many new problems associated with aircraft design and operations; for example, problems related to fuel system design and the handling of LH2 during ground servicing. Some of the factors influencing LH2 fuel tank design, pumping, heat exchange, and flow regulation are discussed.

  10. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  11. Adaptation of an In Situ Ground-Based Tropospheric OH/HO2 Instrument for Aircraft Use

    NASA Technical Reports Server (NTRS)

    Brune, William H.

    1997-01-01

    In-situ HO(x) (OH and HO2) measurements are an essential part of understanding the photochemistry of aircraft exhaust in the atmosphere. HO(x) affects the partitioning of nitrogen species in the NO(y) family. Its reactions are important sources and sinks for tropospheric ozone, thus providing a link between the NO(x) in aircraft exhaust and tropospheric ozone. OH mixing ratios are enhanced in aircraft wakes due to the photolysis of the HONO that is made close to the engine. Measurements of HO(x) in aircraft wakes, along with NO(x) measurements, thus provides a constraint on chemical models of the engine combustion and exhaust. The development of the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) is reported. We designed, developed, and successfully flew this instrument. It was part of the instrument complement on board the NASA DC-8 during SUCCESS, which took place in Kansas in April and May, 1996. ATHOS has a limit-of-detection for OH (S/N = 2) of 10(exp 5) OH molecules cm(exp -3) in less than 150 seconds. While this sensitivity is about 2-3 times less than the initial projections in the proposal, it is more than adequate for good measurements of OH and HO2 from the planetary boundary layer to the stratosphere. Our participation in SUCCESS was to be engineering test flights for ATHOS; however, the high-quality measurements we obtained are being used to study HO(x) photochemistry in contrails, clouds, and the clear air.

  12. Regional Variations in U.S. Diurnal Temperature Range for the 11 14 September 2001 Aircraft Groundings: Evidence of Jet Contrail Influence on Climate.

    NASA Astrophysics Data System (ADS)

    Travis, David J.; Carleton, Andrew M.; Lauritsen, Ryan G.

    2004-03-01

    The grounding of all commercial aircraft within U.S. airspace for the 3-day period following the 11 September 2001 terrorist attacks provides a unique opportunity to study the potential role of jet aircraft contrails in climate. Contrails are most similar to natural cirrus clouds due to their high altitude and strong ability to efficiently reduce outgoing infrared radiation. However, they typically have a higher albedo than cirrus; thus, they are better at reducing the surface receipt of incoming solar radiation. These contrail characteristics potentially suppress the diurnal temperature range (DTR) when contrail coverage is both widespread and relatively long lasting over a specific region. During the 11 14 September 2001 grounding period natural clouds and contrails were noticeably absent on high-resolution satellite imagery across the regions that typically receive abundant contrail coverage. A previous analysis of temperature data for the grounding period reported an anomalous increase in the U.S.-averaged, 3-day DTR value. Here, the spatial variation of the DTR anomalies as well as the separate contributions from the maximum and minimum temperature departures are analyzed. These analyses are undertaken to better evaluate the role of jet contrail absence and synoptic weather patterns during the grounding period on the DTR anomalies.It is shown that the largest DTR increases occurred in regions where contrail coverage is typically most prevalent during the fall season (from satellite-based contrail observations for the 1977 79 and 2000 01 periods). These DTR increases occurred even in those areas reporting positive departures of tropospheric humidity, which may reduce DTR, during the grounding period. Also, there was an asymmetric departure from the normal maximum and minimum temperatures suggesting that daytime temperatures responded more to contrail absence than did nighttime temperatures, which responded more to synoptic conditions. The application of a

  13. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  14. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  15. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  16. Thermal surveillance of Cascade Range volcanoes using ERTS-1 multispectral scanner, aircraft imaging systems, and ground-based data communication platforms

    NASA Technical Reports Server (NTRS)

    Friedman, J. D.; Frank, D. G.; Preble, D.; Painter, J. E.

    1973-01-01

    A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley.

  17. Analytical study of STOL Aircraft in ground effect. Part 1: Nonplanar, nonlinear wing/jet lifting surface method

    NASA Technical Reports Server (NTRS)

    Shollenberger, C. A.; Smyth, D. N.

    1978-01-01

    A nonlinear, nonplanar three dimensional jet flap analysis, applicable to the ground effect problem, is presented. Lifting surface methodology is developed for a wing with arbitrary planform operating in an inviscid and incompressible fluid. The classical, infintely thin jet flap model is employed to simulate power induced effects. An iterative solution procedure is applied within the analysis to successively approximate the jet shape until a converged solution is obtained which closely satisfies jet and wing boundary conditions. Solution characteristics of the method are discussed and example results are presented for unpowered, basic powered and complex powered configurations. Comparisons between predictions of the present method and experimental measurements indicate that the improvement of the jet with the ground plane is important in the analyses of powered lift systems operating in ground proximity. Further development of the method is suggested in the areas of improved solution convergence, more realistic modeling of jet impingement and calculation efficiency enhancements.

  18. Methodologies for reproducing in-flight loads of aircraft wings on the ground and predicting their response to battle-induced damage

    NASA Astrophysics Data System (ADS)

    Bou-Mosleh, Charbel Fouad

    Survivability of an aircraft in combat is achieved by not getting hit or by withstanding the effects of some suffered hits. Combat damage is described by the removal of one or more portions of the wing or any other flight control surface. To determine whether a wing will survive a specific damage, the structural and aerodynamic response of the wing should be predicted and tested. The response of wings to battle-induced damage is currently addressed through live-fire testing on the ground. The loading methodology used in these live-fire tests does not reproduce the loads encountered during flight, and does not account for the changes in structural stiffness and mass of the wing after damage infliction. In addition, current live-fire tests fail to address the changes in the aerodynamic performance of the wing caused by the battle-induced damage. To better address the structural response of aircraft wings to combat damage, this thesis investigates a concept for an alternative loading methodology that exploits recent advances in nonlinear aeroelastic simulations and smart material actuators. The main idea behind this concept is to accurately predict the stress states of the wing before, during, and after sustaining a hit, for a given flight condition, and reproduce them on the ground by loading the spars and ribs of the wings with programmable actuators and/or a few external tethers. Mathematically, this entails solving an optimization problem to determine the locations and gains of the actuators. Two different types of actuators are investigated: 1D actuators or actuators with tension/compression capability and bimorph bender actuators. The potential of the investigated loading methodology is evaluated for "slender" wings (ARW-2 wing) and for "delta" wings (HSCT and F-16 wing) at a transonic flight condition. The obtained numerical results suggest that the investigated loading methodology can reproduce a desired stress state fairly accurately using external tethers

  19. Ground and flight test methods for determining limit cycle and structural resonance characteristics of aircraft stability augmentation systems

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Sitterle, G. J.

    1972-01-01

    Performance criteria and test techniques are applied to stability augmentation systems (SAS) during ground testing to predict objectionable limit cycles and preclude structural resonance during flight. Factors that give rise to these problems, means of suppressing their effects, trade-offs to be considered, and ground test methods that have been developed are discussed. SAS performance predicted on the basis of these tests is compared with flight data obtained from three lifting body vehicles and the X-15 research airplane. Limit cycle and structural resonance test criteria, based upon ground and flight experience and data, were successfully applied to these vehicles. The criteria used were: The limit cycle amplitude (SAS gain multiplied by peak-to-peak angular rate) shall not exceed 0.5 deg for the highest product of control power and SAS gain that will be used in flight; the maximum in-flight SAS gain should never exceed 50 percent of the value at which a structural resonance can be sustained during ground test.

  20. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.

    PubMed

    Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy

    2013-12-16

    Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications

  1. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.

    PubMed

    Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy

    2013-12-16

    Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.

  2. A Comparison of Aircraft and Ground-Based Measurements at Mauna Loa Observatory, Hawaii, During GTE PEM-West and MLOPEX 2

    NASA Technical Reports Server (NTRS)

    Atlas, E.; Ridley, B.; Walega, J.; Greenberg, J.; Kok, G.; Staffelbach, T.; Schauffler, S.; Lind, J.; Huebler, G.; Norton, R.

    1996-01-01

    During October 19-20, 1991, one flight of the NASA Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM-West A) mission was conducted near Hawaii as an intercomparison with ground-based measurements of the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2) and the NOAA Climate Modeling and Diagnostics Laboratory (CMDL). Ozone, reactive nitrogen species, peroxides, hydrocarbons, and halogenated hydrocarbons were measured by investigators aboard the DC-8 aircraft and at the ground site. Lidar cross sections of ozone revealed a complex air mass structure near the island of Hawaii which was evidenced by large variation in some trace gas mixing ratios. This variation limited the time and spatial scales for direct measurement intercomparisons. Where differences occurred between measurements in the same air masses, the intercomparison suggested that biases for some trace gases was due to different calibration scales or, in some cases, instrumental or sampling biases. Relatively large uncertainties were associated with those trace gases present in the low parts per trillion by volume range. Trace gas correlations were used to expand the scope of the intercomparison to identify consistent trends between the different data sets.

  3. Carbon Dioxide and Methane Column Abundances Retrieved from Ground-Based Near-Infrared Solar Spectra and Comparison with In Situ Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Toon, G. C.; Blavier, J.; Wennberg, P. O.; Yang, Z.; Vay, S. A.; Sachse, G. W.; Blake, D. R.; Matross, D. M.; Gerbig, C.

    2004-12-01

    We have developed an automated observatory for measuring ground-based column abundances of CO2, CH4, CO, N2O, O2, H2O, and HF. Near-infrared spectra of the direct sun are measured between 3,900 - 15,600 cm-1 (0.67 - 2.56 μ m) by a Bruker 125HR Fourier Transform Spectrometer. This is the first laboratory in a proposed network of ground-based solar observatories that will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The laboratory was assembled in Pasadena, California and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 14 km east of Park Falls, Wisconsin. This site was chosen because NOAA CMDL and other groups conduct intensive measurements in the area, including continuous monitoring of CO2 at six heights on the 447-m tall tower. CO2 and CH4 column abundances for May - November 2004 demonstrate ˜0.1% precision. The seasonal drawdown of CO2 is recognizable within the late-May column abundances. As part of the INTEX and COBRA campaigns, the DC-8 or King Air recorded in situ measurements during profiles over the WLEF site during five dates in July and August 2004. We will compare the column abundances of CO2, CH4, and CO with these in situ aircraft measurements.

  4. Hypersonic reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Bulk, Tim; Chiarini, David; Hill, Kevin; Kunszt, Bob; Odgen, Chris; Truong, Bon

    1992-01-01

    A conceptual design of a hypersonic reconnaissance aircraft for the U.S. Navy is discussed. After eighteen weeks of work, a waverider design powered by two augmented turbofans was chosen. The aircraft was designed to be based on an aircraft carrier and to cruise 6,000 nautical miles at Mach 4;80,000 feet and above. As a result the size of the aircraft was only allowed to have a length of eighty feet, fifty-two feet in wingspan, and roughly 2,300 square feet in planform area. Since this is a mainly cruise aircraft, sixty percent of its 100,000 pound take-off weight is JP fuel. At cruise, the highest temperature that it will encounter is roughly 1,100 F, which can be handled through the use of a passive cooling system.

  5. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  6. Practical applications of cosmic ray science: Spacecraft, aircraft, ground based computation and control systems, and human health and safety

    NASA Astrophysics Data System (ADS)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2013-02-01

    In this paper we review cosmic ray effects on the performance and reliability of microelectronic systems and human health as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based, atmospheric flight, and space flight environments. Ground based test methods applied to microelectronic components and systems are used in combination with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport codes are an important tool for evaluating possible human health effects of cosmic ray. Finally, the limitations on human space operations beyond low-Earth orbit imposed by long term exposure to galactic cosmic rays are discussed.

  7. Relationship between structures of sprite streamers and inhomogeneity of preceding halos captured by high-speed camera during a combined aircraft and ground-based campaign

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, M.; Kudo, T.; Shima, Y.; Kobayashi, N.; Inoue, T.; Stenbaek-Nielsen, H. C.; McHarg, M. G.; Haaland, R. K.; Kammae, T.; Yair, Y.; Lyons, W. A.; Cummer, S. A.; Ahrns, J.; Yukman, P.; Warner, T. A.; Sonnenfeld, R. G.; Li, J.; Lu, G.

    2011-12-01

    The relationship between diffuse glows such as elves and sprite halos and subsequent discrete structure of sprite streamers is considered to be one of the keys to solve the mechanism causing a large variation of sprite structures. However, it's not easy to image at high frame rate both the diffuse and discrete structures simultaneously, since it requires high sensitivity, high spatial resolution and high signal-to-noise ratio. To capture the real spatial structure of TLEs without influence of atmospheric absorption, spacecraft would be the best solution. However, since the imaging observation from space is mostly made for TLEs appeared near the horizon, the range from spacecraft to TLEs becomes large, such as few thousand km, resulting in low spatial resolution. The aircraft can approach thunderstorm up to a few hundred km or less and can carry heavy high-speed cameras with huge size data memories. In the period of June 27 - July 10, 2011, a combined aircraft and ground-based campaign, in support of NHK Cosmic Shore project, was carried with two jet airplanes under collaboration between NHK (Japan Broadcasting Corporation) and universities. On 8 nights out of 16 standing-by, the jets took off from the airport near Denver, Colorado, and an airborne high speed camera captured over 40 TLE events at a frame rate of 8300 /sec. Here we introduce the time development of sprite streamers and the both large and fine structures of preceding halos showing inhomogeneity, suggesting a mechanism to cause the large variation of sprite types, such as crown like sprites.

  8. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    NASA Technical Reports Server (NTRS)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  9. Wet runways. [aircraft landing and directional control

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1975-01-01

    Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed.

  10. V/STOL aircraft and fluid dynamic

    NASA Astrophysics Data System (ADS)

    Roberts, L.; Anderson, S. B.

    1982-01-01

    The impact of military applications on rotorcraft and V/STOL aircraft design with respect to fixed wing aircraft is discussed. The influence of the mission needs on the configurational design of V/STOL aircraft, the implications regarding some problems in fluid dynamics relating to propulsive flows, and their interaction with the aircraft and the ground plane, are summarized.

  11. Aircraft ground test and subscale model results of axial thrust loss caused by thrust vectoring using turning vanes

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1992-01-01

    The NASA-Dryden F/A-18 high alpha research vehicle was modified to incorporate three independently controlled turning vanes located aft of the primary nozzle of each engine to vector thrust for pitch and yaw control. Ground measured axial thrust losses were compared with the results from a 14.25 pct. cold jet model for single and dual vanes inserted up to 25 degs into the engine exhaust. Data are presented for nozzle pressure ratios of 2.0 and 3.0 and nozzle exit areas of 253 and 348 sq in. The results indicate that subscale nozzle test results properly predict trends but underpredict the full scale results by approx. 1 to 4.5 pct. in thrust loss.

  12. Evaluation of gravimetric ground truth soil moisture data collected for the agricultural soil moisture experiment, 1978 Colby, Kansas, aircraft mission

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Phinney, D. E. (Principal Investigator)

    1980-01-01

    Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.

  13. Program on ground test of modified quiet, clean, JT3D and JT8D turbofan engines in their respective nacelles. [modification of Boeing 707, 727, and 737 aircraft for aircraft noise reduction

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.

  14. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfecting of aircraft... INSPECTION AND HANDLING OF LIVESTOCK FOR EXPORTATION Cleaning and Disinfecting of Aircraft § 91.41 Cleaning and disinfecting of aircraft. Prior to loading of animals, the stowage area of aircraft to be used...

  15. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Cleaning and disinfecting of aircraft... INSPECTION AND HANDLING OF LIVESTOCK FOR EXPORTATION Cleaning and Disinfecting of Aircraft § 91.41 Cleaning and disinfecting of aircraft. Prior to loading of animals, the stowage area of aircraft to be used...

  16. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Cleaning and disinfecting of aircraft... INSPECTION AND HANDLING OF LIVESTOCK FOR EXPORTATION Cleaning and Disinfecting of Aircraft § 91.41 Cleaning and disinfecting of aircraft. Prior to loading of animals, the stowage area of aircraft to be used...

  17. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  18. Handling target obscuration through Markov chain observations

    NASA Astrophysics Data System (ADS)

    Kouritzin, Michael A.; Wu, Biao

    2008-04-01

    Target Obscuration, including foliage or building obscuration of ground targets and landscape or horizon obscuration of airborne targets, plagues many real world filtering problems. In particular, ground moving target identification Doppler radar, mounted on a surveillance aircraft or unattended airborne vehicle, is used to detect motion consistent with targets of interest. However, these targets try to obscure themselves (at least partially) by, for example, traveling along the edge of a forest or around buildings. This has the effect of creating random blockages in the Doppler radar image that move dynamically and somewhat randomly through this image. Herein, we address tracking problems with target obscuration by building memory into the observations, eschewing the usual corrupted, distorted partial measurement assumptions of filtering in favor of dynamic Markov chain assumptions. In particular, we assume the observations are a Markov chain whose transition probabilities depend upon the signal. The state of the observation Markov chain attempts to depict the current obscuration and the Markov chain dynamics are used to handle the evolution of the partially obscured radar image. Modifications of the classical filtering equations that allow observation memory (in the form of a Markov chain) are given. We use particle filters to estimate the position of the moving targets. Moreover, positive proof-of-concept simulations are included.

  19. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  20. 47 CFR 32.6113 - Aircraft expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aircraft expense. 32.6113 Section 32.6113... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6113 Aircraft expense. (a) This account shall include such costs as aircraft fuel, flight crews, mechanics and ground...

  1. 47 CFR 32.6113 - Aircraft expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Aircraft expense. 32.6113 Section 32.6113... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6113 Aircraft expense. (a) This account shall include such costs as aircraft fuel, flight crews, mechanics and ground...

  2. 47 CFR 32.6113 - Aircraft expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aircraft expense. 32.6113 Section 32.6113... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6113 Aircraft expense. (a) This account shall include such costs as aircraft fuel, flight crews, mechanics and ground...

  3. 47 CFR 32.6113 - Aircraft expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aircraft expense. 32.6113 Section 32.6113... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6113 Aircraft expense. (a) This account shall include such costs as aircraft fuel, flight crews, mechanics and ground...

  4. 47 CFR 32.6113 - Aircraft expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aircraft expense. 32.6113 Section 32.6113... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6113 Aircraft expense. (a) This account shall include such costs as aircraft fuel, flight crews, mechanics and ground...

  5. Information Handling is the Problem

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2001-01-01

    This slide presentation reviews the concerns surrounding the automation of information handling. There are two types of decision support software that supports most Space Station Flight Controllers. one is very simple, and the other is very complex. A middle ground is sought. This is the reason for the Human Centered Autonomous and Assistant Systems Testbed (HCAAST) Project. The aim is to study flight controllers at work, and in the bigger picture, with particular attention to how they handle information and how coordination of multiple teams is performed. The focus of the project is on intelligent assistants to assist in handling information for the flight controllers.

  6. Aircraft Contrails

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Captured in this scene is a series of aircraft contrails in a high traffic region over the northern Gulf of Mexico (27.0N, 85.5W). Contrails are caused by the hot engine exhaust of high flying aircraft interacting with moisture in the cold upper atmosphere and are common occurrances of high flying aircraft.

  7. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  8. The use of hydrogen for aircraft propulsion in view of the fuel crisis

    NASA Technical Reports Server (NTRS)

    Weiss, S.

    1973-01-01

    Some factors influencing the technical feasibility of operating a liquid hydrogen-fueled airplane are discussed in light of the projected decrease of fossil fuels. Other sources of energy, such as wind, tidal, solar, and geothermal, are briefly mentioned. In view of projected decreases in available petroleum fuels, interest has been generated in exploiting the potential of liquid hydrogen (LH2) as an aircraft fuel. Cost studies of LH2 production show it to be more expensive than presently used fuels. Regardless of cost considerations, LH2 is viewed as an attractive aircraft fuel because of the potential performance benefits it offers. Accompanying these benefits, however, are many new problems associated with aircraft design and operations; for example, problems related to fuel system design and the handling of LH2 during ground servicing. Some of the factors influencing LH2 fuel tank design, pumping, heat exchange, and flow regulation are discussed.

  9. Ground and flight test experience with a triple redundant digital fly by wire control system. [installed in F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Jarvis, C. R.; Szalai, K. J.

    1981-01-01

    A triplex digital fly by wire flight control system was developed and installed in an F-8C aircraft to provide fail operative, full authority control. Hardware and software redundancy management techniques were designed to detect and identify failures in the system. Control functions typical of those projected for future actively controlled vehicles were implemented.

  10. Handling qualities effects of display latency

    NASA Technical Reports Server (NTRS)

    King, David W.

    1993-01-01

    Display latency is the time delay between aircraft response and the corresponding response of the cockpit displays. Currently, there is no explicit specification for allowable display lags to ensure acceptable aircraft handling qualities in instrument flight conditions. This paper examines the handling qualities effects of display latency between 70 and 400 milliseconds for precision instrument flight tasks of the V-22 Tiltrotor aircraft. Display delay effects on the pilot control loop are analytically predicted through a second order pilot crossover model of the V-22 lateral axis, and handling qualities trends are evaluated through a series of fixed-base piloted simulation tests. The results show that the effects of display latency for flight path tracking tasks are driven by the stability characteristics of the attitude control loop. The data indicate that the loss of control damping due to latency can be simply predicted from knowledge of the aircraft's stability margins, control system lags, and required control bandwidths. Based on the relationship between attitude control damping and handling qualities ratings, latency design guidelines are presented. In addition, this paper presents a design philosophy, supported by simulation data, for using flight director display augmentation to suppress the effects of display latency for delays up to 300 milliseconds.

  11. Program to compute the positions of the aircraft and of the aircraft sensor footprints

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1982-01-01

    The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.

  12. Handling Qualities Implications for Crewed Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Arthur, J. J.

    2012-01-01

    Abstract Handling qualities embody those qualities or characteristics of an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in support of an aircraft role. These same qualities are as critical, if not more so, in the operation of spacecraft. A research, development, test, and evaluation process was put into effect to identify, understand, and interpret the engineering and human factors principles which govern the pilot-vehicle dynamic system as they pertain to space exploration missions and tasks. Toward this objective, piloted simulations were conducted at the NASA Langley Research Center and Ames Research Center for earth-orbit proximity operations and docking and lunar landing. These works provide broad guidelines for the design of spacecraft to exhibit excellent handling characteristics. In particular, this work demonstrates how handling qualities include much more than just stability and control characteristics of a spacecraft or aircraft. Handling qualities are affected by all aspects of the pilot-vehicle dynamic system, including the motion, visual and aural cues of the vehicle response as the pilot performs the required operation or task. A holistic approach to spacecraft design, including the use of manual control, automatic control, and pilot intervention/supervision is described. The handling qualities implications of design decisions are demonstrated using these pilot-in-the-loop evaluations of docking operations and lunar landings.

  13. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  14. Aircraft recognition and tracking device

    NASA Astrophysics Data System (ADS)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  15. Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

    1987-01-01

    The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  16. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  17. Analytical study of STOL Aircraft in ground effect. Part 2: Nonplanar, nonlinear method applicable to three dimensional jets of finite thickness

    NASA Technical Reports Server (NTRS)

    Shollenberger, C. A.

    1978-01-01

    The ability of the potential flow analysis (POTFAN) to predict the influence of ground proximity on lift systems is examined. A two dimensional study employing vortex lattice methodology provides confidence that ground effect phenomenon can be predicted using discrete singularity representation. Two dimensional quasi-steady ascent and descent behavior determined provides guidance in interpreting three dimensional results. Steady and quasi-steady ground effect aerodynamic characteristics predicted by POTFAN are presented for several basic unpowered configurations. POTFAN results are compared with experimental data and results of other analytical methods. Modification of POTFAN to incorporate multienergy flow analysis is discussed. General aspects of thick jet models are examined to provide a basic for extending POTFAN's scope to include analysis of propulsive lift interactions.

  18. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  19. Innovative Concept for a Heavy-Load Aircraft Utilizing a Two-Dimensional Wing

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2007-01-01

    Heavy-load aircraft of conventional wing-body-tail design have become very large. Excessive size of such aircraft may present problems in the manufacturing process. In addition, large wing spans may cause some difficulties in ground handling. Increasing lift loads on large span cantilever wings will also increase the strength of the wing tip vortex. The concept presented herein proposes a means for substantially increasing the lift load capability of an aircraft without increasing the overall length and span of the configuration. The concept has a rectangular wing with a relatively low span and a large chord to provide the area required for high lift. Large fuselages are attached at each wing tip to provide the volume required for heavy loading. The fuselages serve as endplates for the wing and should preclude tip flow so that two-dimensional flow might be established on the wing. Elimination of the wing tip flow should prevent the formation of a tip vortex and eliminate the tip vortex hazard to trailing aircraft. Exploratory wind tunnel tests of such an aircraft concept have been conducted. Lessons learned from these tests are discussed herein in an effort to determine the validity of the concept.

  20. The effects of aircraft design on STOL ride quality

    NASA Technical Reports Server (NTRS)

    Jones, C. R.; Jacobson, I. D.

    1975-01-01

    Effects of aircraft dynamic characteristics on passenger ride quality are investigated to determine ride-quality isocontours similar to aircraft handling-qualities contours. Measurements are made on a moving-base simulator while varying the aircraft short-period and Dutch Roll frequencies and dampings. Both pilot ratings and subjective ride-quality ratings are obtained during flight. Ride and handling qualities were found to be complementary for the Dutch Roll mode, but not for the short-period mode. Regions of optimal ride and handling qualities are defined for the short-period mode, and the effects of turbulence levels studied.

  1. Functional design for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J. (Principal Investigator); Bradford, L. H.; Hutson, D. E.; Jugle, D. R.

    1972-01-01

    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum.

  2. Measurement of In-Flight Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.

    1995-01-01

    Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.

  3. NASA Langley's Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.

    1993-01-01

    The Aircraft Landing Dynamics Facility (ALDF) is a unique facility with the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A brief historical overview of the original Landing Loads Track (LLT) is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  4. Handling Qualities Flight Testing of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Technical Reports Server (NTRS)

    Glaser, Scott T.; Strovers, Brian K.

    2011-01-01

    Airborne infrared astronomy has a long successful history, albeit relatively unknown outside of the astronomy community. A major problem with ground based infrared astronomy is the absorption and scatter of infrared energy by water in the atmosphere. Observing the universe from above 40,000 ft puts the observation platform above 99% of the water vapor in the atmosphere, thereby addressing this problem at a fraction of the cost of space based systems. The Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft is the most ambitious foray into the field of airborne infrared astronomy in history. Using a 747SP (The Boeing Company, Chicago, Illinois) aircraft modified with a 2.5m telescope located in the aft section of the fuselage, the SOFIA endeavors to provide views of the universe never before possible and at a fraction of the cost of space based systems. The modification to the airplane includes moveable doors and aperture that expose the telescope assembly. The telescope assembly is aimed and stabilized using a multitude of on board systems. This modification has the potential to cause aerodynamic anomalies that could induce undesired forces either at the cavity itself or indirectly due to interference with the empennage, both of which could cause handling qualities issues. As a result, an extensive analysis and flight test program was conducted from December 2009 through March 2011. Several methods, including a Lower Order Equivalent Systems analysis and pilot assessment, were used to ascertain the effects of the modification. The SOFIA modification was found to cause no adverse handling qualities effects and the aircraft was cleared for operational use. This paper discusses the history and modification to the aircraft, development of test procedures and analysis, results of testing and analysis, lessons learned for future projects and justification for operational certification.

  5. A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    José Granados-Muñoz, María; Bravo-Aranda, Juan Antonio; Baumgardner, Darrel; Guerrero-Rascado, Juan Luis; Pérez-Ramírez, Daniel; Navas-Guzmán, Francisco; Veselovskii, Igor; Lyamani, Hassan; Valenzuela, Antonio; José Olmo, Francisco; Titos, Gloria; Andrey, Javier; Chaikovsky, Anatoli; Dubovik, Oleg; Gil-Ojeda, Manuel; Alados-Arboledas, Lucas

    2016-03-01

    In this work we present an analysis of aerosol microphysical properties during a mineral dust event taking advantage of the combination of different state-of-the-art retrieval techniques applied to active and passive remote sensing measurements and the evaluation of some of those techniques using independent data acquired from in situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak at the Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on 27 June 2011. Column-integrated properties are provided by sun- and star-photometry, which allows for a continuous evaluation of the mineral dust optical properties during both day and nighttime. Both the linear estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during nighttime. LIRIC retrievals reveal the presence of dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 µm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in situ measurements. This study presents for the first time a comparison of the total volume concentration retrieved with LIRIC with independent in situ measurements, obtaining agreement within

  6. Transportation and handling loads

    NASA Technical Reports Server (NTRS)

    Ostrem, F. E.

    1971-01-01

    Criteria and recommended practices are presented for the prediction and verification of transportation and handling loads for the space vehicle structure and for monitoring these loads during transportation and handling of the vehicle or major vehicle segments. Elements of the transportation and handling systems, and the forcing functions and associated loads are described. The forcing functions for common carriers and typical handling devices are assessed, and emphasis is given to the assessment of loads at the points where the space vehicle is supported during transportation and handling. Factors which must be considered when predicting the loads include the transportation and handling medium; type of handling fixture; transport vehicle speed; types of terrain; weather (changes in pressure of temperature, wind, etc.); and dynamics of the transportation modes or handling devices (acceleration, deceleration, and rotations of the transporter or handling device).

  7. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  8. Wind tunnel and ground static investigation of a large scale model of a lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An investigation was conducted in a 40 foot by 80 foot wind tunnel to determine the aerodynamic/propulsion characteristics of a large scale powered model of a lift/cruise fan V/STOL aircraft. The model was equipped with three 36 inch diameter turbotip X376B fans powered by three T58 gas generators. The lift fan was located forward of the cockpit area and the two lift/cruise fans were located on top of the wing adjacent to the fuselage. The three fans with associated thrust vectoring systems were used to provide vertical, and short, takeoff and landing capability. For conventional cruise mode operation, only the lift/cruise fans were utilized. The data that were obtained include lift, drag, longitudinal and lateral-directional stability characteristics, and control effectiveness. Data were obtained up to speeds of 120 knots at one model height of 20 feet for the conventional aerodynamic lift configuration and at several thrust vector angles for the powered lift configuration.

  9. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  10. Cooper-Harper Experience Report for Spacecraft Handling Qualities Applications

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Bilimoria, Karl D.; Mueller, Eric R.; Frost, Chad R.; Alderete, Thomas S.

    2009-01-01

    A synopsis of experience from the fixed-wing and rotary-wing aircraft communities in handling qualities development and the use of the Cooper-Harper pilot rating scale is presented as background for spacecraft handling qualities research, development, test, and evaluation (RDT&E). In addition, handling qualities experiences and lessons-learned from previous United States (US) spacecraft developments are reviewed. This report is intended to provide a central location for references, best practices, and lessons-learned to guide current and future spacecraft handling qualities RDT&E.

  11. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations

  12. A Portable Ground-Based Atmospheric Monitoring System (PGAMS) for the Calibration and Validation of Atmospheric Correction Algorithms Applied to Aircraft and Satellite Images

    NASA Technical Reports Server (NTRS)

    Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements

  13. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  14. World commercial aircraft accidents. Second edition, 1946--1992

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  15. Research needs in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.

    1975-01-01

    Progress needed in understanding the mechanisms of aircraft noise generation and propagation is outlined using the focus provided by the need to predict accurately the noise produced and received at the ground by an aircraft operating in the vicinity of an airport. The components of internal engine noise generation, jet exhaust, airframe noise and shielding and configuration effects, and the roles of atmospheric propagation and ground noise attenuation are presented and related to the prediction problem. The role of NASA in providing the focus and direction for needed advances is discussed, and possible contributions of the academic community in helping to fulfill the needs for accurate aircraft noise prediction methods are suggested.

  16. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in situ aircraft, ground-level, and satellite measurements from the DISCOVER-AQ Colorado campaign

    NASA Astrophysics Data System (ADS)

    Battye, William H.; Bray, Casey D.; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua

    2016-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is responsible for forecasting elevated levels of air pollution within the National Air Quality Forecast Capability (NAQFC). The current research uses measurements gathered in the DISCOVER-AQ Colorado field campaign and the concurrent Front Range Air Pollution and Photochemistry Experiment (FRAPPE) to test performance of the NAQFC CMAQ modeling framework for predicting NH3. The DISCOVER-AQ and FRAPPE field campaigns were carried out in July and August 2014 in Northeast Colorado. Model predictions are compared with measurements of NH3 gas concentrations and the NH4+ component of fine particulate matter concentrations measured directly by the aircraft in flight. We also compare CMAQ predictions with NH3 measurements from ground-based monitors within the DISCOVER-AQ Colorado geographic domain, and from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. In situ aircraft measurements carried out in July and August of 2014 suggest that the NAQFC CMAQ model underestimated the NH3 concentration in Northeastern Colorado by a factor of ∼2.7 (NMB = -63%). Ground-level monitors also produced a similar result. Average satellite-retrieved NH3 levels also exceeded model predictions by a factor of 1.5-4.2 (NMB = -33 to -76%). The underestimation of NH3 was not accompanied by an underestimation of particulate NH4+, which is further controlled by factors including acid availability, removal rate, and gas-particle partition. The average measured concentration of NH4+ was close to the average predication (NMB = +18%). Seasonal patterns measured at an AMoN site in the region suggest that the underestimation of NH3 is not due to the seasonal allocation of emissions, but to the overall annual emissions estimate. The underestimation of NH3 varied across the study domain, with the largest differences occurring in a region of intensive agriculture near Greeley, Colorado, and in the vicinity of Denver. The

  17. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  18. Sprag Handle Wrenches

    NASA Technical Reports Server (NTRS)

    Vranishm, John M.

    2010-01-01

    Sprag handle wrenches have been proposed for general applications in which conventional pawl-and-ratchet wrenches and sprag and cam "clickless" wrenches are now used. Sprag handle wrenches are so named because they would include components that would function both as parts of handles and as sprags (roller locking/unlocking components). In comparison with all of the aforementioned conventional wrenches, properly designed sprag handle wrenches could operate with much less backlash; in comparison with the conventional clickless wrenches, sprag handle wrenches could be stronger and less expensive (because the sprags would be larger and more easily controllable than are conventional sprags and cams).

  19. Handling Trajectory Uncertainties for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  20. Flight-path and airspeed control during landing approach for powered-lift aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1974-01-01

    Manual control of flight path and airspeed during landing approach has been investigated for powered-lift transport aircraft. An analysis was conducted to identify the behavior of the aircraft which would be potentially significant to the pilot controlling flight path and airspeed during the approach. The response characteristics found to describe the aircraft behavior were (1) the initial flight-path response and flight-path overshoot for a step change in thrust, (2) the steady-state coupling of flight path and airspeed for a step change in thrust, and (3) the sensitivity of airspeed to changes in pitch attitude. The significance of these response characteristics was evaluated by pilots on a large-motion, ground-based simulator at Ames Research Center. Coupling between flight path and airspeed was considered by the pilot to be the dominant influence on handling qualities for the approach task. Results are compared with data obtained from flight tests of three existing powered-lift V/STOL aircraft.

  1. Handling sharps and needles

    MedlinePlus

    ... at: www.cdc.gov/sharpssafety/pdf/sharpsworkbook_2008.pdf . Accessed October 27, 2015. Occupational Safety and Health Administration. OSHA fact sheet: protecting yourself when handling contaminated ...

  2. Control of Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  3. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  4. Grain Handling and Storage.

    ERIC Educational Resources Information Center

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  5. Data Handling and Citizenship

    ERIC Educational Resources Information Center

    Tresidder, Gwen

    2006-01-01

    When marking GCSE data handling coursework, the author was repeatedly reminded just how poor the level of statistical understanding is among students. In response to a feeling that the teaching of handling data topics was limited, the author and her colleague designed a project with Y8 students to try to teach statistics for a deeper…

  6. Flight simulator for hypersonic vehicle and a study of NASP handling qualities

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.

    1992-01-01

    The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.

  7. Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US

    NASA Astrophysics Data System (ADS)

    Fisher, Jenny A.; Jacob, Daniel J.; Travis, Katherine R.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher Chan; Yu, Karen; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Mao, Jingqiu; Wennberg, Paul O.; Crounse, John D.; Teng, Alex P.; Nguyen, Tran B.; St. Clair, Jason M.; Cohen, Ronald C.; Romer, Paul; Nault, Benjamin A.; Wooldridge, Paul J.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Shepson, Paul B.; Xiong, Fulizi; Blake, Donald R.; Goldstein, Allen H.; Misztal, Pawel K.; Hanisco, Thomas F.; Wolfe, Glenn M.; Ryerson, Thomas B.; Wisthaler, Armin; Mikoviny, Tomas

    2016-05-01

    Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ~ 25 x 25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50 % of observed RONO2 in surface air, and we find that another 10 % is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 % of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60 % of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20 % by photolysis to recycle NOx and 15 % by dry deposition. RONO2 production accounts for 20 % of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline.

  8. Eclipse program QF-106 aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows two QF-106 aircraft that were used for the Eclipse project, both parked at the Mojave Airport in Mojave, California. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  9. Directional monitoring terminal for aircraft noise

    NASA Astrophysics Data System (ADS)

    Genescà, M.

    2016-07-01

    This paper presents a concept of an aircraft noise monitoring terminal (NMT) that reduces background noise and the influence of ground reflection, in comparison with a single microphone. Also, it automatically identifies aircraft sound events based on the direction of arrival of the sound rather than on the sound pressure level (or radar data). And moreover, it provides an indicator of the quality of the sound pressure level measurement, i.e. if it is possibly disturbed by extraneous sources. The performance of this NMT is experimentally tested under real conditions in a measurement site close to Zurich airport. The results show that the NMT unambiguously identifies the noise events generated by the target aircraft, correctly detects those aircraft noise events that may be disturbed by the presence of other sources, and offers a substantial reduction in background and ground reflected sound.

  10. A Look at Handling Qualities of Canard Configurations

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.

    1986-01-01

    The first human-powered flight was achieved by a canard-configured aircraft (Wright Brothers). Although other canard concepts were flown with varying degrees of success over the years, the tail-aft configuration has dominated the aircraft market for both military and civil use. Reviewed are the development of several canard aircraft with emphasis on stability and control, handling qualities, and operating problems. The results show that early canard concepts suffered adversely in flight behavior because of a lack of understanding of the sensitivities of these concepts to basic stability and control principles. Modern canard designs have been made competitive with tail-aft configurations by using appropriate handling qualities design criteria.

  11. Trends in transport aircraft avionics

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1973-01-01

    A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.

  12. Review of factors affecting aircraft wet runway performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  13. Design and evaluation of an advanced air-ground data-link system for air traffic control

    NASA Technical Reports Server (NTRS)

    Denbraven, Wim

    1992-01-01

    The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages.

  14. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  15. Handling Pyrophoric Reagents

    SciTech Connect

    Alnajjar, Mikhail S.; Haynie, Todd O.

    2009-08-14

    Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

  16. Altus aircraft on runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.

  17. Aircraft landing using GPS

    NASA Astrophysics Data System (ADS)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  18. Helicopter Handling Qualities

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Helicopters are used by the military and civilian communities for a variety of tasks and must be capable of operating in poor weather conditions and at night. Accompanying extended helicopter operations is a significant increase in pilot workload and a need for better handling qualities. An overview of the status and problems in the development and specification of helicopter handling-qualities criteria is presented. Topics for future research efforts by government and industry are highlighted.

  19. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  20. Ride quality sensitivity to SAS control law and to handling quality variations

    NASA Technical Reports Server (NTRS)

    Roberts, P. A.; Schmidt, D. K.; Swaim, R. L.

    1976-01-01

    The RQ trends which large flexible aircraft exhibit under various parameterizations of control laws and handling qualities are discussed. A summary of the assumptions and solution technique, a control law parameterization review, a discussion of ride sensitivity to handling qualities, and the RQ effects generated by implementing relaxed static stability configurations are included.

  1. 49 CFR 172.317 - KEEP AWAY FROM HEAT handling mark.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false KEEP AWAY FROM HEAT handling mark. 172.317 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.317 KEEP AWAY FROM HEAT handling mark. (a) General. For transportation by aircraft, each package containing self-reactive substances of Division 4.1 or organic...

  2. 49 CFR 172.317 - KEEP AWAY FROM HEAT handling mark.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false KEEP AWAY FROM HEAT handling mark. 172.317 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.317 KEEP AWAY FROM HEAT handling mark. (a) General. For transportation by aircraft, each package containing self-reactive substances of Division 4.1 or organic...

  3. Vision assisted aircraft lateral navigation

    NASA Astrophysics Data System (ADS)

    Mohideen, Mohamed Ibrahim; Ramegowda, Dinesh; Seiler, Peter

    2013-05-01

    Surface operation is currently one of the least technologically equipped phases of aircraft operation. The increased air traffic congestion necessitates more aircraft operations in degraded weather and at night. The traditional surface procedures worked well in most cases as airport surfaces have not been congested and airport layouts were less complex. Despite the best efforts of FAA and other safety agencies, runway incursions continue to occur frequently due to incorrect surface operation. Several studies conducted by FAA suggest that pilot induced error contributes significantly to runway incursions. Further, the report attributes pilot's lack of situational awareness - local (e.g., minimizing lateral deviation), global (e.g., traffic in the vicinity) and route (e.g., distance to next turn) - to the problem. An Enhanced Vision System (EVS) is one concept that is being considered to resolve these issues. These systems use on-board sensors to provide situational awareness under poor visibility conditions. In this paper, we propose the use of an Image processing based system to estimate the aircraft position and orientation relative to taxiway markings to use as lateral guidance aid. We estimate aircraft yaw angle and lateral offset from slope of the taxiway centerline and horizontal position of vanishing line. Unlike automotive applications, several cues such as aircraft maneuvers along assigned route with minimal deviations, clear ground markings, even taxiway surface, limited aircraft speed are available and enable us to implement significant algorithm optimizations. We present experimental results to show high precision navigation accuracy with sensitivity analysis with respect to camera mount, optics, and image processing error.

  4. An aircraft noise pollution model for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Barkana, A.; Cook, G.

    1976-01-01

    A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.

  5. Rotor systems research aircraft airplane configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Erickson, R. E.

    1984-01-01

    The Rotor Systems Research Aircraft (RSRA) has been undergoing ground and flight tests by Ames Research Center since late 1979, primarily as a compound aircraft. The purpose was to train pilots and to check out and develop the design flight envelope established by the Sikorsky Aircraft Company. This paper reviews the preparation and flight test of the RSRA in the airplane, or fixed-wing, configuration and discusses the results of that test.

  6. The Buffalo/Spey jet-STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Whittley, D. C.

    1973-01-01

    The program to design and build a Buffalo/Spey Augmentor-Wing research aircraft is presented. The development of an internally blown flap system for the generation of powered lift is discussed. Modification, development, and testing of the Rolls-Royce Spey engine are reported. The ground tests and first flights of the aircraft are described and the application of the internally blown flap concept for short takeoff military transport aircraft is proposed.

  7. Initial results from flight testing a large, remotely piloted airplane model. [flight tests of remotely controlled scale model of F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Holleman, E. C. (Compiler)

    1974-01-01

    The first four flights of a remotely piloted airplane model showed that a flight envelope can be expanded rapidly and that hazardous flight tests can be conducted safely with good results. The flights also showed that aerodynamic data can be obtained quickly and effectively over a wide range of flight conditions, clear and useful impressions of handling and controllability of configurations can be obtained, and present computer and electronic technology provide the capability to close flight control loops on the ground, thus providing a new method of design and flight test for advanced aircraft.

  8. Effects of cockpit lateral stick characteristics on handling qualities and pilot dynamics

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Aponso, Bimal L.; Klyde, David H.

    1992-01-01

    This report presents the results of analysis of cockpit lateral control feel-system studies. Variations in feel-system natural frequency, damping, and command sensing reference (force and position) were investigated, in combination with variations in the aircraft response characteristics. The primary data for the report were obtained from a flight investigation conducted with a variable-stability airplane, with additional information taken from other flight experiments and ground-based simulations for both airplanes and helicopters . The study consisted of analysis of handling qualities ratings and extraction of open-loop, pilot-vehicle describing functions from sum-of-sines tracking data, including, for a limited subset of these data, the development of pilot models. The study confirms the findings of other investigators that the effects on pilot opinion of cockpit feel-system dynamics are not equivalent to a comparable level of added time delay, and until a more comprehensive set of criteria are developed, it is recommended that feel-system dynamics be considered a delay-inducing element in the aircraft response. The best correlation with time-delay requirements was found when the feel-system dynamics were included in the delay measurements, regardless of the command reference. This is a radical departure from past approaches.

  9. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  10. Rotor systems research aircraft airplane configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Erickson, R. E.

    1984-01-01

    The rotor systems research aircraft (RSRA) has undergone ground and flight tests, primarily as a compound aircraft. The purpose was to train pilots and to check out and develop the design flight envelope. The preparation and flight test of the RSRA in the airplane, or fixed-wind, configuration are reviewed and the test results are discussed.

  11. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft flight risks. 1852.228-71 Section 1852.228-71 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... the aircraft has returned to the ground and rotors are disengaged. (iv) With respect to vertical...

  12. SLUG HANDLING DEVICES

    DOEpatents

    Gentry, J.R.

    1958-09-16

    A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

  13. Safe Handling Practices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    In 1977 Compugraphic Corporation was experiencing an unacceptable failure rate on microelectronic chips. Company engineers suspected that static electricity was causing the trouble because some electronic components are highly susceptible to damage by electrostatic charge. From a NASA Tech Brief, they learned that Rockwell International had prepared a report on safe handling practices for electronic components. NASA provided a Technical Support Package detailing 50 safe handling procedures affecting workers, work areas, equipment and packaging materials. Where poor practices were discovered, re-education of employees and other corrective measures were undertaken.

  14. Weather data dissemination to aircraft

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.; Parker, Craig B.

    1990-01-01

    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels.

  15. Annoyance caused by aircraft en route noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1992-01-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  16. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  17. Grain Grading and Handling.

    ERIC Educational Resources Information Center

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  18. Steering Aircraft Clear of Choppy Air

    NASA Technical Reports Server (NTRS)

    2006-01-01

    AeroTech Research (U.S.A.), Inc., a leader in turbulence-detection and warning systems, has been involved with NASA Aviation Safety research since 1998. AeroTech served as a contractor for the TPAWS government/industry development project, and was funded by NASA to develop the E-Turb Mode Radar algorithms and the TAPS software. (Other contributors to this project include the National Center for Atmospheric Research, the FAA, North Carolina State University, and the Research Triangle Institute.) The radar algorithms combine an aircraft's turbulenceresponse characteristics with radar measurements to determine the predicted turbulence loads the aircraft will experience, and present this information to the pilot. The TAPS software monitors and processes onboard aircraft sensor data; generates automatic reports when an aircraft encounters turbulence and a set turbulence threshold is exceeded; and then displays the reports and underlying information to ground personnel to improve situational awareness of the location and the severity of the turbulence encounter.

  19. The microburst - Hazard to aircraft

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  20. Laser Powered Aircraft Takes Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

  1. Aircraft Safety and Operating Problems. [conference

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of NASA research in the field of aircraft safety and operating problems are discussed. Topics include: (1) terminal area operations, (2) flight dynamics and control; (3) ground operations; (4) atmospheric environment; (5) structures and materials; (6) powerplants; (7) noise; and (8) human factors engineering.

  2. The personal aircraft: Status and issues

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Asbury, Scott C.; Brentner, Kenneth S.; Bushnell, Dennis M.; Glass, Christopher E.; Hodges, William T.; Morris, Shelby J., Jr.; Scott, Michael A.

    1994-01-01

    Paper summarizes the status of personal air transportation with emphasis upon VTOL and converticar capability. The former obviates the need for airport operations for personal aircraft whereas the latter provides both ground and air capability in the same vehicle. Fully automatic operation, ATC and navigation is stressed along with consideration of acoustic, environmental and cost issues.

  3. Flying-qualities criteria for wings-level-turn maneuvering during an air-to-ground weapon delivery task

    NASA Technical Reports Server (NTRS)

    Sammonds, R. I.; Bunnell, J. W., Jr.

    1980-01-01

    A moving-base simulator experiment conducted at Ames Research Center demonstrated that a wings-level-turn control mode improved flying qualities for air-to-ground weapons delivery compared with those of a conventional aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well on the basis of equivalent time constant of the initial response. Ranges of this time constant, as well as digital-system transport delays and lateral-acceleration control authorities that encompassed Level I through Level III handling qualities, were determined.

  4. Flying-qualities criteria for wings-level-turn maneuvering during an air-to-ground weapon delivery task

    NASA Technical Reports Server (NTRS)

    Sammonds, R. I.; Bunnell, J. W.

    1981-01-01

    A moving base simulator experiment demonstrated that a wings-level-turn control mode improved flying qualities for air to ground weapon delivery compared with those of a conventionally controlled aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well on the basis of equivalent time constant of the initial response. Ranges of this time constant, as well as digital system transport delays and lateral acceleration control authorities that encompassed level 1 through 3 handling qualities, were determined.

  5. Takeoff predictions for powered-lift aircraft. Thesis

    NASA Technical Reports Server (NTRS)

    Wardwell, Douglas A.; Sandlin, Doral R.

    1988-01-01

    Takeoff predictions for powered-lift short takeoff (STO) and conventional takeoff (CTO) aircraft have been added to NASA Ames Research Center's Aircraft Synthesis (ACSYNT) code. The new computer code predicts the aircraft engine and nozzle settings required to achieve the minimum takeoff roll. As a test case, the code predicted takeoff ground rolls and nozzle settings for the YAV-8B Harrier that compared well with measured values. Brief analysis of takeoff performance for an Ejector, Remote Augmented Lift, Hybrid-Tandem Fan, and Vectored Thrust STO aircraft using the new routine will be presented.

  6. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  7. KC-135 materials handling robotics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  8. KC-135 materials handling robotics

    NASA Astrophysics Data System (ADS)

    Workman, Gary L.

    1991-04-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  9. A PARENTAL HANDLING QUESTIONNAIRE

    PubMed Central

    Malhotra, Savita

    1990-01-01

    SUMMMARY Parental Care and Control, which are two major parental handling, variables are significantly related to psychological morbidity in children where high care-low control is associated with healthy development and low care-high control is related to psychiatric disorder. Parents by & large do not differ in their patterns of handling with regard to age and sex of the child, rural-urban living and SES except that younger children are given more care and those from high SES exercise less control among normal children. However, low care for younger children, high control for older children; low care and high control for males, rural background and higher SES families was associated with psychiatric morbidity in children. PMID:21927469

  10. Plutonium Immobilization Puck Handling

    SciTech Connect

    Kriikku, E.

    1999-01-26

    The Plutonium Immobilization Project (PIP) will immobilize excess plutonium and store the plutonium in a high level waste radiation field. To accomplish these goals, the PIP will process various forms of plutonium into plutonium oxide, mix the oxide powder with ceramic precursors, press the mixture into pucks, sinter the pucks into a ceramic puck, load the pucks into metal cans, seal the cans, load the cans into magazines, and load the magazines into a Defense Waste Processing Facility (DPWF) canister. These canisters will be sent to the DWPF, an existing Savannah River Site (SRS) facility, where molten high level waste glass will be poured into the canisters encapsulating the ceramic pucks. Due to the plutonium radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the early design stages and the facility will begin operation in 2005. This paper will discuss the Plutonium Immobilization puck handling conceptual design and the puck handling equipment testing.

  11. A methodology for designing aircraft to low sonic boom constraints

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Needleman, Kathy E.

    1991-01-01

    A method for designing conceptual supersonic cruise aircraft to meet low sonic boom requirements is outlined and described. The aircraft design is guided through a systematic evolution from initial three view drawing to a final numerical model description, while the designer using the method controls the integration of low sonic boom, high supersonic aerodynamic efficiency, adequate low speed handling, and reasonable structure and materials technologies. Some experience in preliminary aircraft design and in the use of various analytical and numerical codes is required for integrating the volume and lift requirements throughout the design process.

  12. Application of active controls technology to aircraft bide smoothing systems

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Jacobson, I. D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade offs involving sensor types, choice of feedback loops, human comfort, and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL aircraft and an executive transport are considered. Theoretically predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  13. Application of Active Controls Technology to Aircraft Ride Smoothing Systems

    NASA Technical Reports Server (NTRS)

    Lapins, Maris; Jacobson, Ira D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade-offs involving sensor types, choice of feedback loops, human comfort and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL-class aircraft and an executive transport are considered. Theoretically-predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  14. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  15. A Risk Management Architecture for Emergency Integrated Aircraft Control

    NASA Technical Reports Server (NTRS)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  16. Subsonic Wing Optimization for Handling Qualities Using ACSYNT

    NASA Technical Reports Server (NTRS)

    Soban, Danielle Suzanne

    1996-01-01

    The capability to accurately and rapidly predict aircraft stability derivatives using one comprehensive analysis tool has been created. The PREDAVOR tool has the following capabilities: rapid estimation of stability derivatives using a vortex lattice method, calculation of a longitudinal handling qualities metric, and inherent methodology to optimize a given aircraft configuration for longitudinal handling qualities, including an intuitive graphical interface. The PREDAVOR tool may be applied to both subsonic and supersonic designs, as well as conventional and unconventional, symmetric and asymmetric configurations. The workstation-based tool uses as its model a three-dimensional model of the configuration generated using a computer aided design (CAD) package. The PREDAVOR tool was applied to a Lear Jet Model 23 and the North American XB-70 Valkyrie.

  17. Cyclone: A close air support aircraft for tomorrow

    NASA Technical Reports Server (NTRS)

    Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric

    1991-01-01

    To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.

  18. Puck Handling Glovebox

    SciTech Connect

    Fiscus, J.B.

    2001-01-03

    The Plutonium Immobilization Project (PIP) is a joint venture between the Savannah River Site (SRS) and Lawrence Livermore National Laboratory (LLNL). This project will disposition excess weapons grade plutonium in a solid ceramic form. The plutonium, in oxide powder form, will be mixed with uranium oxide powder, ceramic precursors and binders. The combined powder mixture will be milled and possibly granulated; this processed powder will then be dispensed to a (dual action) cold press where it will be formed into green (unsintered) compacts. The compact will have the shape of a puck measuring approximately 3 1/2'' in diameter and 1 3/8'' thick. The green puck, once ejected from the press die, will be picked up by a robot and transferred into the Puck Handling Glovebox. Here the green puck will be inspected and then palletized onto furnace trays. The loaded furnace trays will be stacked/assembled and transported to the furnace where sintering operations will be performed. Finally the sintered pucks will be off loaded, inspected and transferred onto Transfer Trays which will carry the pucks from the Puck Handling Glovebox downstream to subsequent Bagless Transfer Can (BTC) operations. Due to contamination potential and high radiation rates, all Puck Handling Glovebox operations will be performed remotely using robots and specialized automation.

  19. Uranium hexafluoride handling. Proceedings

    SciTech Connect

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  20. Ideas for a three-aircraft planetary observing fleet

    NASA Astrophysics Data System (ADS)

    Carlson, David J.; Schumann, Ulrich

    2003-04-01

    A new generation of research aircraft, based on modern mid-sized business jets, will provide access to upper regions of the atmosphere and remote regions of the planet not reachable by the current research aircraft. Equipped with extensive research modifications, modern instruments, and advanced air-to-ground communication systems, these new aircraft will allow investigators to attack key questions in global atmospheric dynamics, global cycles of water and carbon, global energy budgets, and regional and global air quality and chemical transport. A three-aircraft fleet of these aircraft could provide unprecedented coordinated intercalibrated coverage of the planetary atmosphere and surfaces in a manner that greatly enhances the total ground, ocean, and satellite observing system.

  1. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  2. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  3. A review on bicycle and motorcycle rider control with a perspective on handling qualities

    NASA Astrophysics Data System (ADS)

    Kooijman, J. D. G.; Schwab, A. L.

    2013-11-01

    This paper is a review study on handling and control of bicycles and motorcycles, the so-called single-track vehicles. The first part gives a brief overview on the modelling of the dynamics of single-track vehicles and the experimental validation. The second part focusses on a review of modelling and measuring human rider control. The third part deals with the concepts of handling and manoeuvrability and their experimental validation. Parallels are drawn with the literature on aircraft handling and pilot models. The paper concludes with the open ends and promising directions for future work in the field of handling and control of single-track vehicles.

  4. Survival analysis of aging aircraft

    NASA Astrophysics Data System (ADS)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  5. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  6. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  7. Pilotless Aircraft Research Division

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Technician William Ferguson adjusts coupling on typical NACA D4 automatic control research missile with double Deacon booster, August 18, 1950. Joseph Shortal noted that a new research authorization (RA 1525) was issued on September 29, 1948 'to study various automatic stabilization systems for pilotless aircraft.' Earlier research had revealed aerodynamic control problems at speeds beyond Mach 1. The first two development missiles in this research program were launched in April 1949; the first stabilized missile on May 24, 1949. That flight was successful and 'verified the wing-tip aileron control system, the adaptation of the gyro-actuated control to supersonic flight, and a method for calculating rolling response.' 'A typical D4 missile is shown on the launcher.... This particular missile was launched August 1950, by which time the booster had been changed to a double-Deacon System to obtain higher speeds. The D4 missile configuration was also found to be a desirable one from pitch and yaw considerations in later flights. Its general configuration was followed later in the design of the Navy-Martin Bullpup air-to-ground guided missile.' Excerpts from Joseph Shortal's history of Wallops Station.

  8. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  9. Students' Strategies for Exception Handling

    ERIC Educational Resources Information Center

    Rashkovits, Rami; Lavy, Ilana

    2011-01-01

    This study discusses and presents various strategies employed by novice programmers concerning exception handling. The main contributions of this paper are as follows: we provide an analysis tool to measure the level of assimilation of exception handling mechanism; we present and analyse strategies to handle exceptions; we present and analyse…

  10. Measuring Wildfires From Aircraft And Satellites

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Meyers, J. S.

    1991-01-01

    Aircraft and satellite systems yield wide-area views, providing total coverage of affected areas. System developed for use aboard aircraft includes digital scanner that records data in 12 channels. Transmits data to ground station for immediate use in fighting fires. Enables researchers to estimate gaseous and particulate emissions from fires. Provides information on temperatures of flame fronts and soils, intensities and rate of spread of fires, characteristics of fuels and smoke plumes, energy-release rates, and concentrations and movements of trace gases. Data relates to heating and cooling of soils, loss of nutrients, and effects on atmospheric, terrestrial, and aquatic systems.

  11. Aircraft monitoring of surface carbon dioxide exchange

    SciTech Connect

    Desjardins, R.L.; Alvo, P.; Schuepp, P.H.

    1982-05-01

    Aircraft-mounted sensors were used to measure the exchange of carbon dioxide above a cornfield, a forest, and a lake under midday conditions. Mean absorption values of 3400, 1200, and 100 milligrams of carbon dioxide per square meter per hour, respectively, are consistent with reported ground-based observations of carbon dioxide flux. Such information, gathered by aircraft, could be used to provide a quantitative evaluation of source and sink distributions of carbon dioxide in the biosphere, to establish a correlation between satellite data and near-surface measurements, and to monitor crop performance.

  12. An aircraft Earth station for general aviation

    NASA Technical Reports Server (NTRS)

    Matyas, R.; Boughton, J.; Lyons, R.; Spenler, S.; Rigley, J.

    1990-01-01

    While the focus has been international commercial air traffic, an opportunity exists to provide satellite communications to smaller aircraft. For these users equipment cost and weight critically impact the decision to install satellite communications equipment. Less apparent to the operator is the need for a system infrastructure that will be supported both regionally and internationally and that is compatible with the ground segment being installed for commercial aeronautical satellite communications. A system concept is described as well as a low cost terminal that are intended to satisfy the small aircraft market.

  13. Sectional device handling tool

    DOEpatents

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  14. Flight Safety Aircraft Risk: A Growing Problem

    NASA Astrophysics Data System (ADS)

    Haber, J. M.

    2012-01-01

    In recent years there has been a growing awareness of the need to have appropriate criteria for protection of aircraft from debris resulting from the flight termination of a malfunctioning space booster. There have been several sequences of events that have interacted to bring us to the current risk management problem. With the advent of the US initiative to have common flight safety analysis processes and criteria, it was recognized that the traditional aircraft protection approach was inadequate. It did not consider the added public concern for catastrophic events. While the probability may have been small for downing a large commercial passenger plane, the public outrage if it happened would not be adequately measured by the individual risk to passengers nor the collective (societal risk) presented by a single airplane. Over a period of a number of years the US has developed and evolved a criterion to address catastrophic risk protection. Beginning in the same time period, it was recognized the assertion that all debris with masses greater than one gram were lethal to aircraft was unduly conservative. Over this same period initiatives have been developed to refine aircraft vulnerability models. There were, however, two significant unconservative assumptions that were made in the early years. It was presumed that significant risk to aircraft could only occur in the launch area. In addition, aircraft risk assessments, when they were made were based on debris lists designed to protect people on the ground (typically debris with an impact kinetic energy greater than 11 ft-lb). Good debris lists for aircraft protection do not yet exist. However, it has become increasingly clear that even with partial breakup lists large regions were required from which aircraft flight would be restricted using the normal exclusion approaches. We provide a review of these events and an indication of the way forward.

  15. Design and physical characteristics of the Transonic Aircraft Technology (TACT) research aircraft

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Caw, L. J.

    1978-01-01

    The Transonic Aircraft Technology (TACT) research program provided data necessary to verify aerodynamic concepts, such as the supercritical wing, and to gain the confidence required for the application of such technology to advanced high performance aircraft. An F-111A aircraft was employed as the flight test bed to provide full scale data. The data were correlated extensively with predictions based on data obtained from wind tunnel tests. An assessment of the improvement afforded at transonic speeds in drag divergence, maneuvering performance, and airplane handling qualities by the use of the supercritical wing was included in the program. Transonic flight and wind tunnel testing techniques were investigated, and specific research technologies evaluated were also summarized.

  16. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  17. 49 CFR 1560.109 - Aircraft Operator Implementation Plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operator's security program as described in 49 CFR part 1544, subpart B, or 49 CFR part 1546, subpart B, as...) and must be handled and protected in accordance with 49 CFR part 1520. ... 49 Transportation 9 2010-10-01 2010-10-01 false Aircraft Operator Implementation Plan....

  18. 49 CFR 1560.109 - Aircraft Operator Implementation Plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operator's security program as described in 49 CFR part 1544, subpart B, or 49 CFR part 1546, subpart B, as...) and must be handled and protected in accordance with 49 CFR part 1520. ... 49 Transportation 9 2014-10-01 2014-10-01 false Aircraft Operator Implementation Plan....

  19. 49 CFR 1560.109 - Aircraft Operator Implementation Plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operator's security program as described in 49 CFR part 1544, subpart B, or 49 CFR part 1546, subpart B, as...) and must be handled and protected in accordance with 49 CFR part 1520. ... 49 Transportation 9 2012-10-01 2012-10-01 false Aircraft Operator Implementation Plan....

  20. 49 CFR 1560.109 - Aircraft Operator Implementation Plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operator's security program as described in 49 CFR part 1544, subpart B, or 49 CFR part 1546, subpart B, as...) and must be handled and protected in accordance with 49 CFR part 1520. ... 49 Transportation 9 2011-10-01 2011-10-01 false Aircraft Operator Implementation Plan....

  1. 49 CFR 1560.109 - Aircraft Operator Implementation Plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operator's security program as described in 49 CFR part 1544, subpart B, or 49 CFR part 1546, subpart B, as...) and must be handled and protected in accordance with 49 CFR part 1520. ... 49 Transportation 9 2013-10-01 2013-10-01 false Aircraft Operator Implementation Plan....

  2. A guide to forest seed handling

    SciTech Connect

    Willan, R.L.

    1986-01-01

    This guide to forest seed handling focuses on seed quality, i.e., the physiological viability and vigor of the seeds. Seed and fruit development, germination, and dormancy and the fundamentals of planning seed collections are covered. The guide includes discussions on seed collection of fallen fruits or seeds from the forest floor from the crowns of felled trees, and from standing trees with access from the ground and with other means of access. Also considered are precautions to be followed during fruit and seed handling between collection and processing. The different stages in seed processing are detailed, including extraction, depulping, drying, tumbling and threshing, dewinging, cleaning, grading, and mixing. Factors affecting seed longevity in storage and the choice of storage methods are reviewed. Different forms of seed pretreatment and seed testing methods are described.

  3. Lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  4. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    During test and verification planning for the Altair lunar lander project, a National Aeronautics and Space Administration (NASA) study team identified several ground transportation and test issues related to the large payload diameter. Although the entire Constellation Program-including Altair-has since been canceled, issues identified by the Altair project serve as important lessons learned for payloads greater than 7 m diameter being considered for NASA's new Space Launch System (SLS). A transportation feasibility study found that Altair's 8.97 m diameter Descent Module would not fit inside available aircraft. Although the Ascent Module cabin was only 2.35 m diameter, the long reaction control system booms extended nearly to the Descent Module diameter, making it equally unsuitable for air transportation without removing the booms and invalidating assembly workmanship screens or acceptance testing that had already been performed. Ground transportation of very large payloads over extended distances is not generally permitted by most states, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 66 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA's Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  5. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  6. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  7. Experimental investigation of active loads control for aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Dreher, R. C.

    1982-01-01

    Aircraft dynamic loads and vibrations resulting from landing impact and from runway and taxiway unevenness are recognized as significant in causing fatigue damage, dynamic stress on the airframe, crew and passenger discomfort, and reduction of the pilot's ability to control the aircraft during ground operations. One potential method for improving operational characteistics of aircraft on the ground is the application of active control technology to the landing gears to reduce ground loads applied to the airframe. An experimental investigation was conducted which simulated the landing dynamics of a light airplane to determine the feasibility and potential of a series hydraulic active control main landing gear. The experiments involved a passive gear and an active control gear. Results of this investigation show that a series hydraulically controlled gear is feasible and that such a gear is very effective in reducing the loads transmitted by the gear to the airframe during ground operations.

  8. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  9. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  10. Alternate aircraft fuels: Prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  11. Recommendations for field measurements of aircraft noise

    NASA Astrophysics Data System (ADS)

    Marsh, A. H.

    1982-04-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  12. Integrated digital/electric aircraft concepts study

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.; Hays, A. P.; Green, F. B.; Radovcich, N. A.; Helsley, C. W.; Rutchik, W. L.

    1985-01-01

    The integrated digital/electrical aircraft (IDEA) is an aircraft concept which employs all electric secondary power systems and advanced digital flight control systems. After trade analysis, preferred systems were applied to the baseline configuration. An additional configuration, the alternate IDEA, was also considered. For this concept the design ground rules were relaxed in order to quantify additional synergistic benefits. It was proposed that an IDEA configuration and technical risks associated with the IDEA systems concepts be defined and the research and development required activities to reduce these risks be identified. The selected subsystems include: power generation, power distribution, actuators, environmental control system and flight controls systems. When the aircraft was resized, block fuel was predicted to decrease by 11.3 percent, with 7.9 percent decrease in direct operating cost. The alternate IDEA shows a further 3.4 percent reduction in block fuel and 3.1 percent reduction in direct operating cost.

  13. Human Factors In Aircraft Automation

    NASA Technical Reports Server (NTRS)

    Billings, Charles

    1995-01-01

    Report presents survey of state of art in human factors in automation of aircraft operation. Presents examination of aircraft automation and effects on flight crews in relation to human error and aircraft accidents.

  14. Offsite radiological consequence analysis for the bounding aircraft crash accident

    SciTech Connect

    OBERG, B.D.

    2003-03-22

    The purpose of this calculation note is to quantitatively analyze a bounding aircraft crash accident for comparison to the DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', Appendix A, Evaluation Guideline of 25 rem. The potential of aircraft impacting a facility was evaluated using the approach given in DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities''. The following aircraft crash frequencies were determined for the Tank Farms in RPP-11736, ''Assessment Of Aircraft Crash Frequency For The Hanford Site 200 Area Tank Farms'': (1) The total aircraft crash frequency is ''extremely unlikely.'' (2) The general aviation crash frequency is ''extremely unlikely.'' (3) The helicopter crash frequency is ''beyond extremely unlikely.'' (4) For the Hanford Site 200 Areas, other aircraft type, commercial or military, each above ground facility, and any other type of underground facility is ''beyond extremely unlikely.'' As the potential of aircraft crash into the 200 Area tank farms is more frequent than ''beyond extremely unlikely,'' consequence analysis of the aircraft crash is required.

  15. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  16. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  17. Civil aircraft accident investigation.

    PubMed

    Haines, Daniel

    2013-01-01

    This talk reviews some historic aircraft accidents and some more recent. It reflects on the division of accident causes, considering mechanical failures and aircrew failures, and on aircrew training. Investigation results may lead to improved aircraft design, and to appropriate crew training. PMID:24057309

  18. Unvented Drum Handling Plan

    SciTech Connect

    MCDONALD, K.M.

    2000-08-01

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The

  19. Why aircraft disinsection?

    PubMed Central

    Gratz, N. G.; Steffen, R.; Cocksedge, W.

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described. PMID:10994283

  20. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  1. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. The project used a QF-106 interceptor aircraft to simulate a future orbiter, which would be towed to a high altitude and released to fire its own engines and carry a payload into space. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  2. Predicted aircraft effects on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Wofsy, Steve; Kley, Dieter; Zhadin, Evgeny A.; Johnson, Colin; Weisenstein, Debra; Prather, Michael J.; Wuebbles, Donald J.

    1991-01-01

    The possibility that the current fleet of subsonic aircraft may already have caused detectable changes in both the troposphere and stratosphere has raised concerns about the impact of such operations on stratospheric ozone and climate. Recent interest in the operation of supersonic aircraft in the lower stratosphere has heightened such concerns. Previous assessments of impacts from proposed supersonic aircraft were based mostly on one-dimensional model results although a limited number of multidimensional models were used. In the past 15 years, our understanding of the processes that control the atmospheric concentrations of trace gases has changed dramatically. This better understanding was achieved through accumulation of kinetic data and field observations as well as development of new models. It would be beneficial to start examining the impact of subsonic aircraft to identify opportunities to study and validate the mechanisms that were proposed to explain the ozone responses. The two major concerns are the potential for a decrease in the column abundance of ozone leading to an increase in ultraviolet radiation at the ground, and redistribution of ozone in the lower stratosphere and upper troposphere leading to changes in the Earth's climate. Two-dimensional models were used extensively for ozone assessment studies, with a focus on responses to chlorine perturbations. There are problems specific to the aircraft issues that are not adequately addressed by the current models. This chapter reviews the current status of the research on aircraft impact on ozone with emphasis on immediate model improvements necessary for extending our understanding. The discussion will be limited to current and projected commercial aircraft that are equipped with air-breathing engines using conventional jet fuel. The impacts are discussed in terms of the anticipated fuel use at cruise altitude.

  3. Nonclassical Flight Control for Unhealthy Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.

  4. Sampling scheme for pyrethroids on multiple surfaces on commercial aircrafts.

    PubMed

    Mohan, Krishnan R; Weisel, Clifford P

    2010-06-01

    A wipe sampler for the collection of permethrin from soft and hard surfaces has been developed for use in aircraft. "Disinsection" or application of pesticides, predominantly pyrethrods, inside commercial aircraft is routinely required by some countries and is done on an as-needed basis by airlines resulting in potential pesticide dermal and inhalation exposures to the crew and passengers. A wipe method using filter paper and water was evaluated for both soft and hard aircraft surfaces. Permethrin was analyzed by GC/MS after its ultrasonication extraction from the sampling medium into hexane and volume reduction. Recoveries, based on spraying known levels of permethrin, were 80-100% from table trays, seat handles and rugs; and 40-50% from seat cushions. The wipe sampler is easy to use, requires minimum training, is compatible with the regulations on what can be brought through security for use on commercial aircraft, and readily adaptable for use in residential and other settings.

  5. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.

  6. Remote handling and accelerators

    NASA Astrophysics Data System (ADS)

    Wilson, M. T.

    The high-current levels of contemporary and proposed accelerator facilities induce radiation levels into components, requiring consideration be given to maintenance techniques that reduce personnel exposure. Typical components involved include beamstops, targets, collimators, windows, and instrumentation that intercepts the direct beam. Also included are beam extraction, injection, splitting, and kicking regions, as well as purposeful spill areas where beam tails are trimmed and neutral particles are deposited. Scattered beam and secondary particles activate components all along a beamline such as vacuum pipes, magnets, and shielding. Maintenance techniques vary from hands-on to TV-viewed operation using state-of-the-art servomanipulators. Bottom- or side-entry casks are used with thimble-type target and diagnostic assemblies. Long-handled tools are operated from behind shadow shields. Swinging shield doors, unstacking block, and horizontally rolling shield roofs are all used to provide access. Common to all techniques is the need to make operations simple and to provide a means of seeing and reaching the area.

  7. REMOTE HANDLING ARRANGEMENTS

    DOEpatents

    Ginns, D.W.

    1958-04-01

    A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

  8. IC handling robot

    SciTech Connect

    Law, D.O.

    1986-09-01

    Allied Corporation, Bendix Kansas City Division uses many integrated circuits (ICs) which are 100% tested by receiving inspection prior to installation into the next assemblies. Testing includes functional testing followed by a burn-in cycle then additional functional testing. Before an IC can be functionally tested, it must be inserted into a custom plastic carrier which is placed into a metal magazine that fits the functional tester. The ICs are removed from both tester magazines and carriers prior to being placed into connectors mounted on a printed wiring board for burn-in. Then they are removed from the burn-in board and re-inserted into carriers and magazines for additional functional testing. Each device is handled manually a minimum of 12 times before it is accepted. This project established a robotic workcell which automatically prepares a dual in-line packaged (DIP) integrated circuit for several types of inspection operations performed by Receiving Inspection. Specific activities required to accomplish this goal included definition of the work cell, preparation of the robot and other equipment specifications, installation planning, establishment of programming routines and logic, design of operator safeguards, and development of the work cell concept into an operational unit capable of supporting production.

  9. Analysis of direct and nearby lightning strike data for aircraft

    NASA Technical Reports Server (NTRS)

    Giri, D. V.; Noss, R. S.; Phuoc, D. B.; Tesche, F. M.

    1983-01-01

    A method for interpreting direct strike and nearby strike lightning data on aircraft is discussed. The theoretical basis for the interpretation involves a transmission line model for the aircraft, and is discussed. Results of applying this model to the F-106 aircraft are presented and in the natural resonances are computed for several different electrical representations of the aircraft. The signal processing techniques useful for extracting pole (resonance) information from experimental data are discussed, and the use of these techniques on the measured lightning data is illustrated. Finally, the results of a related ground-based lightning experiment are discussed and data are presented. The purpose of this test was to gain additional understanding of the resonance properties of the F-106 aircraft.

  10. Investigation of incidents of terrorism involving commercial aircraft.

    PubMed

    Clark, M A; Wagner, G N; Wright, D G; Ruehle, C J; McDonnell, E W

    1989-07-01

    Deaths resulting from terrorism involving aircraft have occurred incident to hijackings as well as bombings. Passengers or groups of passengers have been chosen by terrorists as the recipients of violence based on citizenship, religion, and political beliefs. They have usually been segregated from other passengers and subsequently mistreated and/or murdered. Thorough documentation of the injuries of victims is essential to the investigation of such atrocities; a medicolegal autopsy correlated with a scene investigation is of paramount importance. Aircraft bombings can create extremely sensitive political situations and public demands for quick resolution. The autopsy of victims in such circumstances, if properly conducted, can yield invaluable trace evidence leading to the identification of the explosive device. The examination of any surviving victims as well as the aircraft is also critical in reconstructing the event. Deaths occurring as the result of in-flight aircraft bombings can produce injuries by five different mechanisms, viz. blast, shrapnel, decompression, impact with the aircraft, and ground impact.

  11. Proteus aircraft over Las Cruces International Airport in New Mexico.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  12. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  13. Modeling Programs Increase Aircraft Design Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  14. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-12-31

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  15. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-01-01

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  16. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  17. Review of evolving trends in blended wing body aircraft design

    NASA Astrophysics Data System (ADS)

    Okonkwo, Paul; Smith, Howard

    2016-04-01

    The desire to produce environmentally friendly aircraft that is aerodynamically efficient and capable of conveying large number of passengers over long ranges at reduced direct operating cost led aircraft designers to develop the Blended Wing Body (BWB) aircraft concept. The BWB aircraft represents a paradigm shift in the design of aircraft. The design provides aerodynamics and environmental benefits and is suitable for the integration of advanced systems and concepts like laminar flow technology, jet flaps and distributed propulsion. However, despite these benefits, the BWB is yet to be developed for commercial air transport due to several challenges. This paper reviews emerging trends in BWB aircraft design highlighting design challenges that have hindered the development of a BWB passenger transport aircraft. The study finds that in order to harness the advantages and reduce the deficiencies of a tightly coupled configuration like the BWB, a multidisciplinary design synthesis optimisation should be conducted with good handling and ride quality as objective functions within acceptable direct operating cost and noise bounds.

  18. Study of dynamics of X-14B VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Loscutoff, W. V.; Mitchiner, J. L.; Roesener, R. A.; Seevers, J. A.

    1973-01-01

    Research was initiated to investigate certain facets of modern control theory and their integration with a digital computer to provide a tractable flight control system for a VTOL aircraft. Since the hover mode is the most demanding phase in the operation of a VTOL aircraft, the research efforts were concentrated in this mode of aircraft operation. Research work on three different aspects of the operation of the X-14B VTOL aircraft is discussed. A general theory for optimal, prespecified, closed-loop control is developed. The ultimate goal was optimal decoupling of the modes of the VTOL aircraft to simplify the pilot's task of handling the aircraft. Modern control theory is used to design deterministic state estimators which provide state variables not measured directly, but which are needed for state variable feedback control. The effect of atmospheric turbulence on the X-14B is investigated. A maximum magnitude gust envelope within which the aircraft could operate stably with the available control power is determined.

  19. Ground truth versus no ground truth

    NASA Technical Reports Server (NTRS)

    Torbert, G. B.

    1970-01-01

    The area of study was the southeastern Arizona test site and three areas within the site were studied in detail: Safford, Point of Pines, and Fort Apache-White River. These areas have terrain contrast ranging from flat arid regions to high alpine mountains. Data were obtained from the Apollo 9 photographic missions, high altitude aerial photography, and simulated ERTS-A data from high altitude aircraft. Various monoscopic and steroscopic devices were used to analyze the features, and film density variations were studied. No ground-based data were permitted. Thematic maps were prepared for geology, geomorphology, vegetation, hydrology, and soils. Interpreted boundaries were delineated, with no collaborative data used in the interpretation. Ground-based data were gathered during the overflight of high altitude aerial photography. A further study was made using the ground truth, and the data gathered on the ground were compared with original mapping. 80% to 85% of the interpretations in the areas checked were correct. It was proved that it is possible to monitor gross features of the vigor of crop lands and vegetative cover, to type soils and classify geologic features, and to determine hydrologic conditions.

  20. Predicting visibility of aircraft.

    PubMed

    Watson, Andrew; Ramirez, Cesar V; Salud, Ellen

    2009-05-20

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  1. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  2. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  3. Ground influence on airfoils

    NASA Technical Reports Server (NTRS)

    Raymond, Arthur E

    1921-01-01

    The question of ground influence on airplanes has recently attracted some attention in view of the claims made by certain designers that the landing speed of their airplanes is much decreased by an increase in lift coefficient due to the proximity of the ground in landing. The results of wind tunnel tests indicate that ground effect is not entirely beneficial. It decreases the landing speed and cushions the landing shock somewhat. However, it does so at the expense of an increased length of preliminary skimming over the ground. By decreasing the drag and increasing the lift, it lengthens the distance necessary for the airplane to travel before losing enough speed to land. On the other hand, its influence is helpful in taking off, especially in the case of flying boats with their low-lying wings. In the conventional tractor airplane, the height of the wings above the ground is determined largely by propeller clearance. However, a small low-speed airplane like the Pischoff and large low-speed commercial aircraft with engines between wings can utilize ground influence to good advantage.

  4. A strategic planning methodology for aircraft redesign

    NASA Astrophysics Data System (ADS)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and

  5. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  6. Fluid handling equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Devices and techniques used in fluid-handling and vacuum systems are described. Section 1 presents several articles on fluid lines and tubing. Section 2 describes a number of components such as valves, filters, and regulators. The last section contains descriptions of a number of innovative fluid-handling systems.

  7. A five states survivability model for missions with ground-to-air threats

    NASA Astrophysics Data System (ADS)

    Erlandsson, Tina; Niklasson, Lars

    2013-05-01

    Fighter pilots are exposed to the risk of getting hit by enemy fire when flying missions with ground-to-air threats. A tactical support system including a survivability model could aid the pilot to assess and handle this risk. The survivability model presented here is a Markov model with five states; Undetected, Detected, Tracked, Engaged and Hit. The output from the model is the probabilities that the aircraft is in these states during the mission. The enemy's threat systems are represented with sensor and weapon areas and the transitions between the states depend on whether or not the aircraft is within any of these areas. Contrary to previous work, the model can capture the behaviors that the enemy's sensor systems communicate and that the risk of getting hit depends on the enemy's knowledge regarding the aircraft's kinematics. The paper includes a discussion regarding the interpretation of the states and the factors that influence the transitions between the states. Further developments are also identified for using the model to aid fighter pilots and operators of unmanned aerial vehicles with planning and evaluating missions as well as analyzing the situation during flight.

  8. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  9. Aircraft compass characteristics

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Smith, Clyde W

    1937-01-01

    A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing.

  10. Loftin Collection - Boeing Aircraft

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Either a F2B-1 or F3B-1, both aircraft were built by Boeing and both were powered by Pratt and Whitney Wasp engines. These fighters were intended for Navy shipboard use. Boeing F3B-1: While most Boeing F3B-1s served the U. S. Navy aircraft carriers the Lexington and the Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was the next to last F3B-1 build in November 1928.

  11. Some fighter aircraft trends

    NASA Technical Reports Server (NTRS)

    Spearman, L.

    1985-01-01

    Some basic trends in fighters are traced from the post World II era. Beginning with the first operational jet fighter, the P-80, the characteristics of subsequent fighter aircraft are examined for performance, mission capability, effectiveness, and cost. Characteristics presented include: power loading, wing loading, maximum speed, rate of climb, turn rate, weight and weight distribution, cost and cost distribution. The characteristics of some USSR aircraft are included for comparison. The trends indicate some of the rationale for certain fighter designs and some likely characteristics to be sought in future fighter aircraft designs.

  12. Lightning hazards to aircraft

    NASA Technical Reports Server (NTRS)

    Corn, P. B.

    1978-01-01

    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.

  13. Tropospheric sampling with aircraft

    SciTech Connect

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  14. Aircraft wake-vortex minimization by use of flaps

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Dunham, R. E., Jr.

    1977-01-01

    A survey was made of research on the alleviation of the trailing vortex hazard by altering span loading with flaps on the generator airplane. Flap configurations of the generator that shed multiple vortices were found to have wakes that dispersed by vortex merging and sinusoidal instability. Reductions of approximately 50 percent in both the wake rolling moment imposed on a following aircraft and the aircraft separation requirement were achieved in the ground based and flight test experiments by deflecting the trailing edge flaps more inboard than outboard. Significantly, this configuration did not increase the drag or vibration on the generating aircraft compared to the conventional landing configuration. Ground based results of rolling moment measurement and flow visualization are shown, using a water tow facility, an air tow facility, and a wind tunnel. Flight test results are also shown, using a full scale B-747 airplane. General agreement was found among the results of the various ground based facilities and the flight tests.

  15. Aircraft Landing Dynamics Facility (ALDF)

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Original Test Carriage: A carriage catapulted by a hydraulic jet at speeds up to 150 mph for studies of ground loads on high-speed aircraft is in operation at the Langley Research Center of the National Aeronautics and Space Administration. A drop test rig is installed on the carriage, which is catapulted 400 feet in 3.5 seconds. The carriage travels along a track and special instruments record loads data as an aircraft landing gear or other test specimen is dropped on a concrete strip. Five cables attached to a battery of 20 Navy Mark IV arresting gears, stretched across the 2,200-foot track, bring the carriage to a halt after the test run. The carriage, when loaded to its capacity of 20,000 pounds, represents a 50-ton load. The hydraulic catapult consists of a single water jet, which roars from a nozzle at the front end of the L-shaped pressure vessel (center) and is forced into a specially-shaped bucket on the carriage. The water jet, traveling at 660 feet per second, undergoes a 180 degree change of direction and floods out of another opening in the bucket below the incoming jet stream. The momentum change produces a thrust on the carriage of 400,00 pounds.

  16. The Sonic Altimeter for Aircraft

    NASA Technical Reports Server (NTRS)

    Draper, C S

    1937-01-01

    Discussed here are results already achieved with sonic altimeters in light of the theoretical possibilities of such instruments. From the information gained in this investigation, a procedure is outlined to determine whether or not a further development program is justified by the value of the sonic altimeter as an aircraft instrument. The information available in the literature is reviewed and condensed into a summary of sonic altimeter developments. Various methods of receiving the echo and timing the interval between the signal and the echo are considered. A theoretical discussion is given of sonic altimeter errors due to uncertainties in timing, variations in sound velocity, aircraft speed, location of the sending and receiving units, and inclinations of the flight path with respect to the ground surface. Plots are included which summarize the results in each case. An analysis is given of the effect of an inclined flight path on the frequency of the echo. A brief study of the acoustical phases of the sonic altimeter problem is carried through. The results of this analysis are used to predict approximately the maximum operating altitudes of a reasonably designed sonic altimeter under very good and very bad conditions. A final comparison is made between the estimated and experimental maximum operating altitudes which shows good agreement where quantitative information is available.

  17. 14 CFR 61.319 - Can I operate a make and model of aircraft other than the make and model aircraft for which I...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.319 Can I operate a make and... you hold a sport pilot certificate you may operate any make and model of light-sport aircraft in...

  18. Antecedents and analogues - Experimental aircraft

    NASA Technical Reports Server (NTRS)

    Smith, R. H.

    1978-01-01

    The paper reviews the development of experimental aircraft from 1953 to the present. Consideration is given to the X-series experimental aircraft, to X-15 (the first aerospace plane), to the transition of experimental aircraft to high-speed flight, to XB-70 research, to lifting body research aircraft, and to current high-speed flight research.

  19. Differences in Characteristics of Aviation Accidents During 1993-2012 Based on Aircraft Type

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2015-01-01

    Civilian aircraft are available in a variety of sizes, engine types, construction materials and instrumentation complexity. For the analysis reported here, eleven aircraft categories were developed based mostly on aircraft size and engine type, and these categories were applied to twenty consecutive years of civil aviation accidents. Differences in various factors were examined among these aircraft types, including accident severity, pilot characteristics and accident occurrence categories. In general, regional jets and very light sport aircraft had the lowest rates of adverse outcomes (injuries, fatal accidents, aircraft destruction, major accidents), while aircraft with twin (piston) engines or with a single (piston) engine and retractable landing gear carried the highest incidence of adverse outcomes. The accident categories of abnormal runway contact, runway excursions and non-powerplant system/component failures occur frequently within all but two or three aircraft types. In contrast, ground collisions, loss of control - on ground/water and powerplant system/component failure occur frequently within only one or two aircraft types. Although accidents in larger aircraft tend to have less severe outcomes, adverse outcome rates also differ among accident categories. It may be that the type of accident has as much or more influence on the outcome as the type of aircraft.

  20. Computational fire modeling for aircraft fire research

    SciTech Connect

    Nicolette, V.F.

    1996-11-01

    This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

  1. Depreciation of aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  2. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  3. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  4. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  5. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  6. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  7. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  8. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  9. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  10. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  11. AD-1 oblique wing research aircraft pilot evaluation program

    NASA Technical Reports Server (NTRS)

    Painter, W. D.

    1983-01-01

    A flight test program of a low cost, low speed, manned, oblique wing research airplane was conducted at the NASA Dryden Flight Research Facility in cooperation with NASA Ames Research Center between 1979 and 1982. When the principal purpose of the test program was completed, which was to demonstrate the flight and handling characteristics of the configuration, particularly in wing-sweep-angle ranges from 45 to 60 deg, a pilot evaluation program was conducted to obtain a qualification evaluation of the flying qualities of an oblique wing aircraft. These results were documented for use in future studies of such aircraft.

  12. Altus I aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft climbs away after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the

  13. View of QF-106 aircraft cockpit

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of the cockpit and instrument panel of the QF-106 airplane used in the Eclipse project. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  14. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  15. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wind loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  16. HAND TRUCK FOR HANDLING EQUIPMENT

    DOEpatents

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  17. Effects of dynamic aeroelasticity on handling qualities and pilot rating

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.; Yen, W.-Y.

    1978-01-01

    Pilot performance parameters, such as pilot ratings, tracking errors, and pilot comments, were recorded and analyzed for a longitudinal pitch tracking task on a large, flexible aircraft. The tracking task was programmed on a fixed-base simulator with a CRT attitude director display of pitch angle command, pitch angle, and pitch angle error. Parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes were made to induce varying degrees of rigid body and elastic mode interaction. The results indicate that such mode interaction can drastically affect the handling qualities and pilot ratings of the task.

  18. 75 FR 32642 - Defense Federal Acquisition Regulation Supplement; Ground and Flight Risk Clause (DFARS Case 2007...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... appears to require the Ground and Flight Risk clause for all aircraft, including unmanned aerial vehicles... airships, unmanned aerial vehicles, or other nonconventional aircraft. The modified definition should... landing aircraft, lighter-than-air airships, unmanned aerial vehicles, or other nonconventional...

  19. RTJ-303: Variable geometry, oblique wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Antaran, Albert; Belete, Hailu; Dryzmkowski, Mark; Higgins, James; Klenk, Alan; Rienecker, Lisa

    1992-01-01

    This document is a preliminary design of a High Speed Civil Transport (HSCT) named the RTJ-303. It is a 300 passenger, Mach 1.6 transport with a range of 5000 nautical miles. It features four mixed-flow turbofan engines, variable geometry oblique wing, with conventional tail-aft control surfaces. The preliminary cost analysis for a production of 300 aircraft shows that flyaway cost would be 183 million dollars (1992) per aircraft. The aircraft uses standard jet fuel and requires no special materials to handle aerodynamic heating in flight because the stagnation temperatures are approximately 130 degrees Fahrenheit in the supersonic cruise condition. It should be stressed that this aircraft could be built with today's technology and does not rely on vague and uncertain assumptions of technology advances. Included in this report are sections discussing the details of the preliminary design sequence including the mission to be performed, operational and performance constraints, the aircraft configuration and the tradeoffs of the final choice, wing design, a detailed fuselage design, empennage design, sizing of tail geometry, and selection of control surfaces, a discussion on propulsion system/inlet choice and their position on the aircraft, landing gear design including a look at tire selection, tip-over criterion, pavement loading, and retraction kinematics, structures design including load determination, and materials selection, aircraft performance, a look at stability and handling qualities, systems layout including location of key components, operations requirements maintenance characteristics, a preliminary cost analysis, and conclusions made regarding the design, and recommendations for further study.

  20. Handling Qualities of Model Reference Adaptive Controllers with Varying Complexity for Pitch-Roll Coupled Failures

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Hanson, Curt; Johnson, Marcus A.; Nguyen, Nhan

    2011-01-01

    Three model reference adaptive controllers (MRAC) with varying levels of complexity were evaluated on a high performance jet aircraft and compared along with a baseline nonlinear dynamic inversion controller. The handling qualities and performance of the controllers were examined during failure conditions that induce coupling between the pitch and roll axes. Results from flight tests showed with a roll to pitch input coupling failure, the handling qualities went from Level 2 with the baseline controller to Level 1 with the most complex MRAC tested. A failure scenario with the left stabilator frozen also showed improvement with the MRAC. Improvement in performance and handling qualities was generally seen as complexity was incrementally added; however, added complexity usually corresponds to increased verification and validation effort required for certification. The tradeoff between complexity and performance is thus important to a controls system designer when implementing an adaptive controller on an aircraft. This paper investigates this relation through flight testing of several controllers of vary complexity.

  1. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  2. Handling Qualities of Large Rotorcraft in Hover and Low Speed

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Theodore, Colin R.; Lawrence , Ben; Blanken, Chris L.

    2015-01-01

    According to a number of system studies, large capacity advanced rotorcraft with a capability of high cruise speeds (approx.350 mph) as well as vertical and/or short take-off and landing (V/STOL) flight could alleviate anticipated air transportation capacity issues by making use of non-primary runways, taxiways, and aprons. These advanced aircraft pose a number of design challenges, as well as unknown issues in the flight control and handling qualities domains. A series of piloted simulation experiments have been conducted on the NASA Ames Research Center Vertical Motion Simulator (VMS) in recent years to systematically investigate the fundamental flight control and handling qualities issues associated with the characteristics of large rotorcraft, including tiltrotors, in hover and low-speed maneuvering.

  3. Ergonomic material-handling device

    DOEpatents

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  4. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  5. Intelligent Control Approaches for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; KrishnaKumar, K.; Soloway, Don; Kaneshige, John; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This paper presents an overview of various intelligent control technologies currently being developed and studied under the Intelligent Flight Control (IFC) program at the NASA Ames Research Center. The main objective of the intelligent flight control program is to develop the next generation of flight controllers for the purpose of automatically compensating for a broad spectrum of damaged or malfunctioning aircraft components and to reduce control law development cost and time. The approaches being examined include: (a) direct adaptive dynamic inverse controller and (b) an adaptive critic-based dynamic inverse controller. These approaches can utilize, but do not require, fault detection and isolation information. Piloted simulation studies are performed to examine if the intelligent flight control techniques adequately: 1) Match flying qualities of modern fly-by-wire flight controllers under nominal conditions; 2) Improve performance under failure conditions when sufficient control authority is available; and 3) Achieve consistent handling qualities across the flight envelope and for different aircraft configurations. Results obtained so far demonstrate the potential for improving handling qualities and significantly increasing survivability rates under various simulated failure conditions.

  6. Emergency Landing Planning for Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Plaunt, Christian John; Smith, David E.

    2008-01-01

    Considerable progress has been made over the last 15 years on building adaptive control systems to assist pilots in flying damaged aircraft. Once a pilot has regained control of a damaged aircraft, the next problem is to determine the best site for an emergency landing. In general, the decision depends on many factors including the actual control envelope of the aircraft, distance to the site, weather en route, characteristics of the approach path, characteristics of the runway or landing site, and emergency facilities at the site. All of these influence the risk to the aircraft, to the passengers and crew, and to people and property on the ground. We describe an ongoing project to build and demonstrate an emergency landing planner that takes these various factors into consideration and proposes possible routes and landing sites to the pilot, ordering them according to estimated risk. We give an overview of the system architecture and input data, describe our preliminary modeling of risk, and describe how we search the space of landing sites and routes.

  7. Operational Concepts for Uninhabited Tactical Aircraft

    NASA Technical Reports Server (NTRS)

    Deets, Dwain A.; Purifoy, Dana

    1998-01-01

    This paper describes experiences with five remotely piloted flight research vehicle projects in the developmental flight test phase. These projects include the Pathfinder, Perseus B, Altus, and X-36 aircraft and the Highly Maneuverable Aircraft Technology (HiMAT). Each of these flight projects was flown at the NASA Dryden Flight Research Center. With the exception of the HiMAT, these projects are a part of the Flight Research Base Research and Technology (R&T) Program of the NASA Aeronautics and Space Transportation Technology Enterprise. Particularly with respect to operational interfaces between the ground-based pilot or operator, this paper draws from those experiences, then provides some rationale for extending the lessons learned during developmental flight research to the possible situations involved in the developmental flights proceeding deployed uninhabited tactical aircraft (UTA) operations. Two types of UTA control approaches are considered: autonomous and remotely piloted. In each of these cases, some level of human operator or pilot control blending is recommended. Additionally, "best practices" acquired over years of piloted aircraft experience are drawn from and presented as they apply to operational UTA.

  8. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... small passenger-carrying aircraft operated entirely within the State of Alaska or into a remote area, in... the ground. (6) Before each flight, the pilot-in-command: (i) Prohibits smoking, lighting matches, the... aircraft is being operated by a holder of a certificate issued under 14 CFR part 121 or part...

  9. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... small passenger-carrying aircraft operated entirely within the State of Alaska or into a remote area, in... the ground. (6) Before each flight, the pilot-in-command: (i) Prohibits smoking, lighting matches, the... aircraft is being operated by a holder of a certificate issued under 14 CFR part 121 or part...

  10. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... small passenger-carrying aircraft operated entirely within the State of Alaska or into a remote area, in... the ground. (6) Before each flight, the pilot-in-command: (i) Prohibits smoking, lighting matches, the... aircraft is being operated by a holder of a certificate issued under 14 CFR part 121 or part...

  11. Portable device to assess dynamic accuracy of global positioning systems (GPS) receivers used in agricultural aircraft

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...

  12. Assessing Aircraft Susceptibility to Nonlinear Aircraft-Pilot Coupling/Pilot-Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Hess, R.A.; Stout, P. W.

    1997-01-01

    A unified approach for assessing aircraft susceptibility to aircraft-pilot coupling (or pilot-induced oscillations) which was previously reported in the literature and applied to linear systems is extended to nonlinear systems, with emphasis upon vehicles with actuator rate saturation. The linear methodology provided a tool for predicting: (1) handling qualities levels, (2) pilot-induced oscillation rating levels and (3) a frequency range in which pilot-induced oscillations are likely to occur. The extension to nonlinear systems provides a methodology for predicting the latter two quantities. Eight examples are presented to illustrate the use of the technique. The dearth of experimental flight-test data involving systematic variation and assessment of the effects of actuator rate limits presently prevents a more thorough evaluation of the methodology.

  13. Eagle RTS: A design for a regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk

    1992-01-01

    This university design project concerns the Eagle RTS (Regional Transport System), a 66 passenger, twin turboprop aircraft with a range of 836 nautical miles. It will operate with a crew of two pilots and two flight attendents. This aircraft will employ the use of aluminum alloys and composite materials to reduce the aircraft weight and increase aerodynamic efficiency. The Eagle RTS will use narrow body aerodynamics with a canard configuration to improve performance. Leading edge technology will be used in the cockpit to improve flight handling and safety. The Eagle RTS propulsion system will consist of two turboprop engines with a total thrust of approximately 6300 pounds, 3150 pounds thrust per engine, for the cruise configuration. The engines will be mounted on the aft section of the aircraft to increase passenger safety in the event of a propeller failure. Aft mounted engines will also increase the overall efficiency of the aircraft by reducing the aircraft's drag. The Eagle RTS is projected to have a takeoff distance of approximately 4700 feet and a landing distance of 6100 feet. These distances will allow the Eagle RTS to land at the relatively short runways of regional airports.

  14. A Simple Two Aircraft Conflict Resolution Algorithm

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    1999-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in the cockpit, dispatchers in operation control centers and air traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control imctions.This paper describes a conflict detection and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection and resolution method.

  15. A Simple Two Aircraft Conflict Resolution Algorithm

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    2006-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.

  16. BepiColombo MPO Data Handling and Archiving Operations Strategy

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, Fernando; Martinez, Santa; de la Fuente, Sara; Lefort, Jayne; Casale, Mauro

    2013-08-01

    This paper describes the BepiColombo MPO Data Handling and Archiving (DHA) Operations Strategy including the justification and the main advantages. This strategy was presented to the MPO Instrument Teams during the BepiColombo Data Handling and Archiving Working Group Meeting #1 held at ESAC in November 2012 and will be implemented by the BepiColombo Science Ground Segment (SGS) in coordination with the MPO Instrument Teams. The paper covers the following topics: BepiColombo Mission Overview, SGS Roles and Interfaces, DHA Strategy Drivers, DHA Strategy Workflow and Conclusions.

  17. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  18. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  19. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  20. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  1. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  2. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  3. 14 CFR 27.663 - Ground resonance prevention means.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.663 Ground... either by analysis and tests, or reliable service experience, or by showing through analysis or...

  4. 14 CFR 27.663 - Ground resonance prevention means.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.663 Ground... either by analysis and tests, or reliable service experience, or by showing through analysis or...

  5. Demonstrated delivery/employment systems for unattended ground sensors

    NASA Astrophysics Data System (ADS)

    Taylor, Robert R.; Bendowski, Michael A.; McFeaters, Ryan C.

    1997-07-01

    This paper describes the payload delivery system developed and proven to deploy an electronic warfare device to specific, predetermined locations on the battlefield. Initially called the Artillery Delivered Expendable Jammer (AD/EXJAM), it is now designated the Air Delivered-Ground (Deployed) Expendable Jammer (AD-G/EXJAM). The initial units were demonstrated from 155 MM artillery; the later units, from UAV's, helicopters and slow moving, fixed wing aircraft. While these two delivery systems were originally designed specifically for the EXJAM system, the concept is directly applicable to unattended ground sensors that require unmanned remote emplacement. Keys to the success of the jammer included design, development and field testing of power supplies, antennas, deployment systems and packaging to allow payloads to withstand high-g impact and other severe environments typically encountered. The artillery deployed systems were designed to be `wooden' rounds needing no special handling and storing. These systems treat the payload as independent elements which are self-ejected from a fired M483A1 or M864 round and are completely automatic upon hitting the ground. The more recent payloads can be delivered from UAV's and include remote control capabilities, increased operating life and increased power output. The present payload is packaged into a cylindrical shape, approximately six inches in diameter and 6.5 inches long and are contained within a carrier, attached to an Unmanned Air Vehicle (UAV) or any other air vehicle. Upon reaching the dispensing point, the release command can be issue by either the UAV or a separate ground control unit in RF contact with the carrier. The carrier then begins a timed dispensing sequence that has been selected for optimum payload emplacement in the target area. New developments include a design and subsystem demonstration of a tactical munitions dispenser variant of the deployment system. Operational characteristics of any specific

  6. The LIULIN-3M Radiometer for Measuring Particle Doses in Space and on Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Tomov, B. T.; Dimitrov, P. G.; Brucker, G. J.; Obenschain, Art (Technical Monitor)

    2002-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  7. Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1998-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  8. The LIULIN-3M Radiometer for Measuring Particle Doses in Space and on Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1999-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  9. Aircraft icing instrumentation: Unfilled needs. [rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Kitchens, P. F.

    1980-01-01

    A list of icing instrumentation requirements are presented. Because of the Army's helicopter orientation, many of the suggestions are specific to rotary wing aircraft; however, some of the instrumentation are also suitable for general aviation aircraft.

  10. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  11. Interior noise considerations for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Barton, C. K.

    1975-01-01

    Powered-lift configurations which are currently under development for future use on STOL aircraft involve impingement of the jet engine exhaust onto wing and flap surfaces. Previous studies have suggested that the impinging jet produces higher noise levels at lower frequencies than does the jet alone. These higher levels, together with the close proximity of the engine and flap noise sources to the fuselage sidewall, suggest that the noise levels in these aircraft may be high enough to interfere with passenger comfort. To investigate this possibility, interior noise levels were estimated for both an upper surface blown (USB) and an externally blown flap (EBF) configuration. This paper describes the procedure used to estimate the interior noise levels and compares these levels with levels on existing jet aircraft and on ground transportation vehicles. These estimates indicate high levels in the STOL aircraft; therefore, areas of possible improvements in technology for control of STOL interior noise are also discussed.

  12. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  13. A review of the analytical simulation of aircraft crash dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.

    1990-01-01

    A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.

  14. Aircraft operability methods applied to space launch vehicles

    SciTech Connect

    Young, D.

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The {open_quotes}building in{close_quotes} of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program. {copyright} {ital 1997 American Institute of Physics.}

  15. Scaling aircraft noise perception.

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1973-01-01

    Following a brief review of the background to the study, an extensive experiment is described which was undertaken to assess the practical differences between numerous alternative methods for calculating the perceived levels of individual aircraft flyover wounds. One hundred and twenty recorded sounds, including jets, turboprops, piston aircraft and helicopters were rated by a panel of subjects in a pair comparison test. The results were analyzed to evaluate a number of noise rating procedures, in terms of their ability to accurately estimate both relative and absolute perceived noise levels over a wider dynamic range (84-115 dB SPL) than had generally been used in previous experiments. Performances of the different scales were examined in detail for different aircraft categories, and the merits of different band level summation procedures, frequency weighting functions, duration and tone corrections were investigated.

  16. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  17. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  18. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's solar cell arrays are prominently displayed as it touches down on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, following a test flight. The solar arrays covered more than 75 percent of Pathfinder's upper wing surface, and provided electricity to power its six electric motors, flight controls, communications links and a host of scientific sensors. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  19. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The unique Pathfinder solar-powered flying wing, is shown during a checkout flight from the Dryden Flight Research Center, Edwards, California. This two-hour low-altitude flight over Rogers Dry Lake, Nov. 19, 1996, served to test aircraft systems and functional procedures, according to officials of AeroVironment, Inc., Pathfinder's developer and operator. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  20. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft heads for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  1. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft is silhouetted against a clear blue sky as it soars aloft during a checkout flight from the Dryden Flight Research Center, Edwards, California, November, 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  2. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  3. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  4. Propane gas: Handle with care

    SciTech Connect

    Fernald, D.

    1996-04-01

    Because of its chemical composition and combustion properties, this liquefied petroleum (LP) gas can be mixed with air and used as a direct replacement for natural gas with no burner or process equipment modifications. One major and growing use of propane is as a vehicle fuel. Growing industrial use of propane also has prompted the National Fire Protection Association (NFPA) to issue new codes. NFPA standard 58-95, Storing and Handling of Liquefied Petroleum Gases, stresses the need to adhere to safe work and handling practices whenever propane is involved. All employees directly handling the gas should be formally trained and certified, and recertified annually. Although the code applies only to those directly handling propane or operating propane equipment such as portable cylinder filling stations, all employees working around or with propane or other LP gases should understand the characteristics of LP gas and be aware of basic safe handling practices. The paper discusses what LP gas is, special safety concerns, the care required in refilling cylinders, and cylinder inspection.

  5. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  6. Ground vortex formation for uniform and nonuniform jets impinging on a ground plane

    NASA Astrophysics Data System (ADS)

    Kuhlman, John M.; Cavage, William M.

    1992-08-01

    An experimental investigation of the impingement of a single circular jet on a ground plane in a cross flow is presented. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Variation of observed ground vortex size with cross flow-to-jet velocity ratio is consistent with previous observations.

  7. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  8. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  9. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  10. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  11. Solar powered aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. H. (Inventor)

    1983-01-01

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the Sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  12. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  13. Progress Towards the Remote Sensing of Aircraft Icing Hazards

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David; Politovich, Marcia; Serke, David; Ryerson, Charles; Pazmany, Andrew; Solheim, Fredrick

    2009-01-01

    NASA has teamed with the FAA, DoD, industry, and academia for research into the remote detection and measurement of atmospheric conditions leading to aircraft icing hazards. The ultimate goal of this effort is to provide pilots, controllers, and dispatchers sufficient information to allow aircraft to avoid or minimize their exposure to the hazards of in-flight icing. Since the hazard of in-flight icing is the outcome of aircraft flight through clouds containing supercooled liquid water and strongly influenced by the aircraft s speed and configuration and by the length of exposure, the hazard cannot be directly detected, but must be inferred based upon the measurement of conducive atmospheric conditions. Therefore, icing hazard detection is accomplished through the detection and measurement of liquid water in regions of measured sub-freezing air temperatures. The icing environment is currently remotely measured from the ground with a system fusing radar, lidar, and multifrequency microwave radiometer sensors. Based upon expected ice accretion severity for the measured environment, a resultant aircraft hazard is then calculated. Because of the power, size, weight, and view angle constraints of airborne platforms, the current ground-based solution is not applicable for flight. Two current airborne concepts are based upon the use of either multifrequency radiometers or multifrequency radar. Both ground-based and airborne solutions are required for the future since groundbased systems can provide hazard detection for all aircraft in airport terminal regions while airborne systems will be needed to provide equipped aircraft with flight path coverage between terminal regions.

  14. NASA balloon: Aircraft ranging, data and voice experiment

    NASA Technical Reports Server (NTRS)

    Wishna, S.; Hamby, C.; Reed, D.

    1972-01-01

    A series of tests to evaluate, at L-band, the ranging, voice, and data communications concepts proposed for the air traffic control experiment of the Applications Technology Satellite-F are described. The ground station facilities, balloon platforms and the aircraft were supplied by the European Space Research Organization. One ground simulation and two aircraft flights at low elevation angles were conducted. Even under high interference conditions good performance was obtained for both voice communications and side tone ranging. High bit errors occurred in the data channels resulting in false commands. As a result of the experience gained in operating the equipment in an aircraft environment several recommendations were made for improving the equipment performance.

  15. Interior noise levels of two propeller-driven light aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Mayes, W. H.

    1975-01-01

    The relationships between aircraft operating conditions and interior noise and the degree to which ground testing can be used in lieu of flight testing for performing interior noise research were studied. The results show that the noise inside light aircraft is strongly influenced by the rotational speed of the engine and propeller. Both the overall noise and low frequency spectra levels were observed to decrease with increasing high speed rpm operations during flight. This phenomenon and its significance is not presently understood. Comparison of spectra obtained in flight with spectra obtained on the ground suggests that identification of frequency components and relative amplitude of propeller and engine noise sources may be evaluated on stationary aircraft.

  16. On the far wake and induced drag of aircraft

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.

    A set of matched asymptotic expansions is proposed for the flow far behind an aircraft, with the primary purpose of identifying lift, thrust and drag, particularly induced drag, in a unified manner in integral statements of the momentum equation. The fluid in the far wake is inviscid and incompressible, and variations of total pressure are allowed, as are vortex sheets. A notable feature is that the Trefftz-plane approximation is not invoked; instead the wake is taken as fully rolled-up, and the analysis proceeds without the assumption of light loading. Attention is paid to the absolute convergence of integrals over infinite domains and handling of discontinuities. The expansion includes a sink term, which appears new, so that the mass flux through a transverse plane is non-zero, as is the flux of mechanical energy. The lift can be formally attributed to the velocity induced by the bound vortex of the wing, which is at odds with some treatments, although consistent with Prandtl's analysis over a ground plane. The drag contains the integral of u2)/2, as in many treatments of the subject, u being the perturbation velocity along the wake. The negative sign for u2 appears paradoxical on two counts, one of which is resolved here. First, its very presence instead of the + sign, which would lead to the perturbation kinetic energy and therefore a compelling explanation of induced drag, is explained by the longitudinal energy flux. This energy, the integral of ρu2, is continuously provided by the unsteady starting-vortex system and was deposited earlier by the aircraft. Second, it appears that negative drag could be predicted by this equation. This is shown to be impossible, because of inequalities between the integrals of (v2 + w2) and of u2, but the proof is valid only if the vorticity is of only one sign on each side. A general proof of positivity has not been derived, because of nonlinearities, but neither has a counter-example.

  17. Safe handling of large animals.

    PubMed

    Grandin, T

    1999-01-01

    The major causes of accidents with cattle, horses, and other grazing animals are: panic due to fear, male dominance aggression, or the maternal aggression of a mother protecting her newborn. Danger is inherent when handling large animals. Understanding their behavior patterns improves safety, but working with animals will never be completely safe. Calm, quiet handling and non-slip flooring are beneficial. Rough handling and excessive use of electric prods increase chances of injury to both people and animals, because fearful animals may jump, kick, or rear. Training animals to voluntarily cooperate with veterinary procedures reduces stress and improves safety. Grazing animals have a herd instinct, and a lone, isolated animal can become agitated. Providing a companion animal helps keep an animal calm. PMID:10329901

  18. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... the wave shape results in a softer sound that is quieter than the Concord sonic boom by a factor of 10... supersonic aircraft such as the Concorde in cruise produces a traditional jagged ``N-wave'' sonic boom pressure wave, resulting in a loud, jarring double boom on the ground as it passes by....

  19. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Atwal, M.; David, J.; Heitman, K.; Crocker, M. J.

    1983-01-01

    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented.

  20. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  1. Sound propagation elements in evaluation of en route noise of advanced turbofan aircraft

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Wesler, John

    1990-01-01

    Cruise noise from an advanced turboprop aircraft is reviewed on the basis of available wind tunnel data to estimate the aircraft noise signature at the source. Available analytical models are used to evaluate the sound levels at the ground. The analysis allows reasonable estimates to be made of the community noise levels that might be generated during cruise by such aircraft, provides the basis for preliminary comparisons with available data on noise of existing aircraft during climb and helps to identify the dominant elements of the sound propagation models applicable to this situation.

  2. Sound propagation elements in evaluation of en route noise of advanced turbofan aircraft

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Wesler, John

    1990-04-01

    Cruise noise from an advanced turboprop aircraft is reviewed on the basis of available wind tunnel data to estimate the aircraft noise signature at the source. Available analytical models are used to evaluate the sound levels at the ground. The analysis allows reasonable estimates to be made of the community noise levels that might be generated during cruise by such aircraft, provides the basis for preliminary comparisons with available data on noise of existing aircraft during climb and helps to identify the dominant elements of the sound propagation models applicable to this situation.

  3. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  4. Grounded theory.

    PubMed

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  5. Commercial aircraft wake vortices

    NASA Astrophysics Data System (ADS)

    Gerz, Thomas; Holzäpfel, Frank; Darracq, Denis

    2002-04-01

    This paper discusses the problem of wake vortices shed by commercial aircraft. It presents a consolidated European view on the current status of knowledge of the nature and characteristics of aircraft wakes and of technical and operational procedures of minimizing and predicting the vortex strength and avoiding wake encounters. Methodological aspects of data evaluation and interpretation, like the description of wake ages, the characterization of wake vortices, and the proper evaluation of wake data from measurement and simulation, are addressed in the first part. In the second part an inventory of our knowledge is given on vortex characterization and control, prediction and monitoring of vortex decay, vortex detection and warning, vortex encounter models, and wake-vortex safety assessment. Each section is concluded by a list of questions and required actions which may help to guide further research activities. The primary objective of the joint international efforts in wake-vortex research is to avoid potentially hazardous wake encounters for aircraft. Shortened aircraft separations under appropriate meteorological conditions, whilst keeping or even increasing the safety level, is the ultimate goal. Reduced time delays on the tactical side and increased airport capacities on the strategic side will be the benefits of these ambitious ventures for the air transportation industry and services.

  6. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  7. Aircraft to Medicine

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video discusses how the technology of computer modeling can improve the design and durability of artificial joints for human joint replacement surgery. Also, ultrasound, originally used to detect structural flaws in aircraft, can also be used to quickly assess the severity of a burn patient's injuries, thus aiding the healing process.

  8. Aircraft mission analysis

    NASA Technical Reports Server (NTRS)

    Hauge, D. S.; Rosendaal, H. L.

    1979-01-01

    Aircraft missions, from low to hypersonic speeds, are analyzed rapidly using the FORTRAN IV program NSEG. Program employs approximate equations of motion that vary in form with type of flight segment. Takeoffs, accelerations, climbs, cruises, descents, decelerations, and landings are considered.

  9. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  10. Development of control laws for a flight test maneuver autopilot for an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Alag, G. S.; Duke, E. L.

    1985-01-01

    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver.

  11. Piloting considerations for terminal area operations of civil tiltwing and tiltrotor aircraft

    NASA Technical Reports Server (NTRS)

    Hindson, William S.; Hardy, Gordon H.; Tucker, George E.; Decker, William A.

    1993-01-01

    The existing body of research to investigate airworthiness, performance, handling, and operational requirements for STOL and V/STOL aircraft was reviewed for its applicability to the tiltrotor and tiltwing design concepts. The objective of this study was to help determine the needs for developing civil certification criteria for these aircraft concepts. Piloting tasks that were considered included configuration and thrust vector management, glidepath control, deceleration to hover, and engine failure procedures. Flight control and cockpit display systems that have been found necessary to exploit the low-speed operating characteristics of these aircraft are described, and beneficial future developments are proposed.

  12. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test airspeed calibrations and to research longitudinal and lateral stability and control

  13. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  14. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  15. Non-contact handling device

    SciTech Connect

    Reece, Mark; Knorovsky, Gerald A.; MacCallum, Danny O.

    2007-05-15

    A pressurized fluid handling nozzle has a body with a first end and a second end, a fluid conduit and a recess at the second end. The first end is configured for connection to a pressurized fluid source. The fluid conduit has an inlet at the first end and an outlet at the recess. The nozzle uses the Bernoulli effect for lifting a part.

  16. Resistor pulse-handling capability

    SciTech Connect

    Horner, L.E.

    1981-04-01

    Methods for calculating pulse-handling capabilities of various resistor types are described. The work represents a compilation of studies derived from various sources, as indicated in the bibliography. The results indicate that resistors may be subjected to short-duration pulses exceeding their rated powers without sustaining permanent damage.

  17. Expert Systems and Document Handling.

    ERIC Educational Resources Information Center

    Edmonds, Ernest

    1987-01-01

    Describes significant attributes of expert systems, contrasts them to conventional computer systems, and provides an overview of the R1 expert system used by Digital Equipment Corporation (DEC) to put together operational systems that meet customers' requirements. Document handling, particularly pictures and images in documents, is also briefly…

  18. An optical technique for examining aircraft shock wave structures in flight

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1994-01-01

    The detailed properties of sonic booms have to be better understood before commercial, next generation, supersonic and hypersonic aircraft can be properly developed. Experimental tests and measurements are needed to help sort the physical details of the flows at realistic test conditions. Some of these tests can be made in wind tunnels, but the need for full flight conditions simulation, the problem of tunnel wall interference, and the short distance the shocks can be examined from the aircraft, limit the usefulness of wind tunnel tests. Previous measurement techniques for examining the flow field of aircraft in flight have included pressure measurements on the aircraft, ground based pressure measurements, and flow field measurements made with chase aircraft. Obtaining data with chase planes is a slow and difficult process, and is limited in how close it can be obtained to the test aircraft. A need clearly existed for a better technique to examine the shock structure from the plane to large distances from the plane. A new technique has been recently developed to obtain schlieren photographs of aircraft in flight (SAF). Preliminary results have been obtained, and the technique holds promise as a tool to study the shape and approximate strength of the shock wave structure around the test aircraft, and examine shock wave details all the way from the aircraft to near the ground. The current paper describes this approach, and gives some preliminary test results.

  19. Time scheduling of a mix of 4D equipped and unequipped aircraft

    NASA Technical Reports Server (NTRS)

    Tobias, L.

    1983-01-01

    In planning for a future automated air traffic system, it is necessary to confront the transition situation in which some percentage of the traffic must be handled by conventional means. A safe, efficient transition system is needed since initially not all aircraft will be able to respond to a more automated system. The specific problem addressed was that of time scheduling a mix of 4D-equipped aircraft (aircraft that can accurately meet a controller specified time schedule at selected way points in the terminal area) when operating in conjunction with unequipped aircraft (aircraft that require air traffic handling by means of standard vectoring techniques). First, a relationship between time separation and system capacity was developed. The time separations were incorporated into a set of scheduling algorithms which contain the required elements of flexibility needed for terminal-area operation, such as delaying aircraft and changing time separations. The problem of reducing the size of time separations allotted for vectored aircraft by means of computer assists to the controller was also addressed.

  20. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  1. Braking performance of aircraft tires

    NASA Astrophysics Data System (ADS)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  2. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  3. Environmental effects on composites for aircraft

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    A number of ongoing, long-term environmental effects programs for composite materials are evaluated. The flight service experience was evaluated for 142 composite aircraft components after more than 5 years and 1 million successful component flight hours. Ground-based outdoor exposures of composite material coupons after 3 years of exposure at 5 sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation was observed in residual strength for either stressed or unstressed specimens, or for exposures to aviation fuels and fluids.

  4. Environmental effects on composites for aircraft

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    The influence of the operational environment on the behavior of composite materials and aircraft components fabricated with these composite materials was considered. Structural weight savings, manufacturing cost savings, and long-term environmental durability are among the factors examined. The flight service experience to date of composite components is evaluated. In addition, the influence of a number of worldwide, ground based outdoor exposures on the physical and mechanical properties of six composite materials is discussed. In particular, the current extent of the ultraviolet surface degradation and the moisture gained by diffusion is shown.

  5. Aeronautic Instruments. Section III : Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Hunt, Franklin L; Stearns, H O

    1923-01-01

    Part 1 contains a discussion and description of the various types of air speed measuring instruments. The authors then give general specifications and performance requirements with the results of tests on air speed indicators at the Bureau of Standards. Part 2 reports methods and laboratory apparatus used at the Bureau of Standards to make static tests. Methods are also given of combining wind tunnel tests with static tests. Consideration is also given to free flight tests. Part 3 discusses the problem of finding suitable methods for the purpose of measuring the speed of aircraft relative to the ground.

  6. Tomato handling practices in restaurants.

    PubMed

    Kirkland, Elizabeth; Green, Laura R; Stone, Carmily; Reimann, Dave; Nicholas, Dave; Mason, Ryan; Frick, Roberta; Coleman, Sandra; Bushnell, Lisa; Blade, Henry; Radke, Vincent; Selman, Carol

    2009-08-01

    In recent years, multiple outbreaks of Salmonella infection have been associated with fresh tomatoes. Investigations have indicated that tomato contamination likely occurred early in the farm-to-consumer chain, although tomato consumption occurred mostly in restaurants. Researchers have hypothesized that tomato handling practices in restaurants may contribute to these outbreaks. However, few empirical data exist on how restaurant workers handle tomatoes. This study was conducted to examine tomato handling practices in restaurants. Members of the Environmental Health Specialists Network (EHS-Net) observed tomato handling practices in 449 restaurants. The data indicated that handling tomatoes appropriately posed a challenge to many restaurants. Produce-only cutting boards were not used on 49% of tomato cutting observations, and gloves were not worn in 36% of tomato cutting observations. Although tomatoes were washed under running water as recommended in most (82%) of the washing observations, tomatoes were soaked in standing water, a practice not recommended by the U.S. Food and Drug Administration (FDA), in 18% of observations, and the temperature differential between the wash water and tomatoes did not meet FDA guidelines in 21% of observations. About half of all batches of cut tomatoes in holding areas were above 41 degrees F (5 degrees C), the temperature recommended by the FDA. The maximum holding time for most (73%) of the cut tomatoes held above 41 degrees F exceeded the FDA recommended holding time of 4 h for unrefrigerated tomatoes (i.e., tomatoes held above 41 degrees F). The information provided by this study can be used to inform efforts to develop interventions and thus prevent tomato-associated illness outbreaks.

  7. Proceedings of the 1985 NASA Ames Research Center's Ground-Effects Workshop

    NASA Technical Reports Server (NTRS)

    Mitchell, Kerry (Editor)

    1987-01-01

    The purpose of the workshop was to discuss the current technology base for aerodynamic ground effects and to establish directions for further research of advanced, high performance aircraft designs, particularly those concepts utilizing powered lift systems; e.g., V/STOL, ASTOVL, and STOL aircraft. Fourteen papers were presented in the following areas: suckdown and fountain effects in hover; STOL ground vortex and hot gas ingestion; and vortex lift and jet flaps in ground effect. These subject areas were chosen with regard to current activities in the field of aircraft ground effects research.

  8. Control of food handling by cutaneous receptor input in squirrels.

    PubMed

    Brenowitz, G L

    1980-01-01

    In a complementary neuroanatomical study by Brenowitz in 1980, it was shown that tree squirrels (Sciurus niger) have a higher relative density of mechanoreceptors in their glabrous forepaw skin than do ground squirrels (Spermophilus tridecemlineatus). The main purpose of this sudy was to test the prediction that tree squirrels would depend upon somatic sensory (cutaneous) input from their forepaws to a greater extent than would ground squirrels in food handling behavior. In addition, a series of more general questions about the sensory control of food handling was examined. First, using different sized food items, it was shown that food handling (rate of manipulation) is subject to sensory control, in general. Secondly, comparision of sham-operated groups with groups receiving median nerve (innervating the palmar surface) lesions showed that cutaneous input from the volar surface of the forepaw contributes to the sensory control in both species of squirrels. Thirdly, comparison of lesion effects in the two species showed that, as predicted, tree squirrels depend upon cutaneous input from their volar forepaw to a greater extent than do ground squirrels. Fourthly, by reanalyzing the above data it was shown that there is continued sensory feedback from food items rather than only an initial evaluation of them. PMID:7437901

  9. X-30 ground support system requirements

    NASA Astrophysics Data System (ADS)

    Carter, Percy B.

    1992-12-01

    A summary is presented of the Ground Systems Associate Contractor's (GSAC) responsibility for all stationary facilities and systems that support final assembly of the X-30 aircraft and the follow on flight test program. This includes process systems, building structures and infrastructure. The GSAC is also responsible for coordination of all ground support systems necessary for the flight test program exclusive of purely electronic systems.

  10. The application of high spectral and spatial resolution imaging spectrometers for locating downed aircraft

    NASA Technical Reports Server (NTRS)

    Gatlin, James A.; Middleton, Elizabeth M.; Irons, James R.; Robinson, Jon W.

    1991-01-01

    The utility of high-resolution imaging spectrometer data is examined as an aid in locating downed aircraft by using a unique spectral signature while not requiring the extremely high spatial resolution needed to identify an aircraft by shape. Ground spectral measurements of several airplane wings, overflight spectral measurements of aircraft scenes, and the rationale for the chosen spectral signature are presented. It is concluded that imaging spectrometers which can detect and spatially locate a narrow-band spectral signature filling only a few pixels appear to have a utility for search and rescue aircraft or satellite systems as a aid in locating small downed aircraft. This spectral feature would have to be added to the surface coatings applied to aircraft. Proposed for use as such a spectral signature is a significant negative reflectance slope, in the 520 to 580 nm interval.

  11. Transonic and supersonic ground effect aerodynamics

    NASA Astrophysics Data System (ADS)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  12. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1954-01-01

    gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft's behavior in the transonic region (roughly 0.7 to 1.3 times the speed of sound). In correlation with data from other early transonic research aircraft such as the XF-92A, this information contributed to solutions to the pitch-up problem in swept-wing aircraft. The three airplanes flew a total of 313 times--123 by the number one aircraft (Bureau No. 37973--NACA 143), 103 by the second Skyrocket (Bureau No. 37974--NACA 144), and 87 by airplane number three (Bureau No. 37975--NACA 145). Skyrocket 143 flew all but one of its missions as part of the Douglas contractor program to test the airplane's performance. NACA aircraft 143 was initially powered by a Westinghouse J-34-40 turbojet engine configured only for ground take-offs, but in 1954-55 the contractor modified it to an all-rocket air-launch capability featuring an LR8-RM-6, 4-chamber Reaction Motors engine rated at 6,000 pounds of thrust at sea level (the Navy designation for the Air Force's LR-11 used in the X-1). In this configuration, NACA research pilot John McKay flew the airplane only once for familiarization on September 17, 1956. The 123 flights of NACA 143 served to validate wind-tunnel predictions of the airplane's performance, except for the fact that the airplane experienced less drag above Mach 0.85 than the wind tunnels had indicated. NACA 144 also began its flight program with a turbojet powerplant. NACA pilots Robert A. Champine and John H. Griffith flew 21 times in this configuration to test

  13. Grounded cognition.

    PubMed

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  14. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, Daniel J.; Bielawski, William J.

    1991-01-01

    A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.

  15. Continuous measurement of aircraft wing icing

    NASA Technical Reports Server (NTRS)

    Yao, Stephen S. C.

    1994-01-01

    Ice formation on the wings of aircraft is a problem that has plagued air travel since its inception. Several recent incidents have been attributed to ice formation on the lifting surfaces of wings. This paper describes a SBIR Phase 1 research effort on the use of small flat dielectric sensors in detecting a layer of ice above the sensor. The sensors are very small, lightweight, and inexpensive. The electronics package that controls the sensor is also small, and could be even smaller using commonly available miniaturization technologies. Thus, several sensors could be placed on a surface such that a representative ice thickness profile could be measured. The benefits offered by developing this technology go beyond the safety improvements realized by monitoring ice formation on the wings of an aircraft. Continuous monitoring of anti-icing fluid concentrations on the ground would warn the pilot of impending fluid failure as well as allowing the stations to use less de-icing solution per aircraft. This in turn would increase the safety of takeoffs and reduce the overall discharge of de-icing solution into the environment, thus reducing the biohazard of the de-icing procedure.

  16. Detecting aircraft with a low-resolution infrared sensor.

    PubMed

    Jakubowicz, Jérémie; Lefebvre, Sidonie; Maire, Florian; Moulines, Eric

    2012-06-01

    Existing computer simulations of aircraft infrared signature (IRS) do not account for dispersion induced by uncertainty on input data, such as aircraft aspect angles and meteorological conditions. As a result, they are of little use to estimate the detection performance of IR optronic systems; in this case, the scenario encompasses a lot of possible situations that must be indeed addressed, but cannot be singly simulated. In this paper, we focus on low-resolution infrared sensors and we propose a methodological approach for predicting simulated IRS dispersion of poorly known aircraft and performing aircraft detection on the resulting set of low-resolution infrared images. It is based on a sensitivity analysis, which identifies inputs that have negligible influence on the computed IRS and can be set at a constant value, on a quasi-Monte Carlo survey of the code output dispersion, and on a new detection test taking advantage of level sets estimation. This method is illustrated in a typical scenario, i.e., a daylight air-to-ground full-frontal attack by a generic combat aircraft flying at low altitude, over a database of 90,000 simulated aircraft images. Assuming a white noise or a fractional Brownian background model, detection performances are very promising.

  17. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  18. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  19. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  20. Project report: Aircraft

    SciTech Connect

    Wuebbles, D.J.; Baughcum, S.; Metwally, M.; Seals, R.

    1994-04-01

    Analyses of scenarios of past and possible future emissions are an important aspect of assessing the potential environmental effects from aircraft, including the proposed high speed civil transport (HSCT). The development of a detailed three-dimensional database that accurately represents the integration of all aircraft emissions along realistic flight paths for such scenarios requires complex computational modeling capabilities. Such a detailed data set is required for the scenarios evaluated in this interim assessment. Within the NASA High-Speed Research Program, the Emissions Scenarios Committee provides a forum for identifying the required scenarios and evaluating the resulting database being developed with the advanced emissions modeling capabilities at the Boeing Company and McDonnell Douglas Corporation.

  1. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  2. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  3. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  4. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  5. High altitude aircraft flight tests

    NASA Astrophysics Data System (ADS)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  6. Electrical Thermometers for Aircraft

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Womack, S H J

    1937-01-01

    Electrical thermometers commonly used on aircraft are the thermoelectric type for measuring engine-cylinder temperatures, the resistance type for measuring air temperatures, and the superheat meters of thermoelectric and resistance types for use on airships. These instruments are described and their advantages and disadvantages enumerated. Methods of testing these instruments and the performance to be expected from each are discussed. The field testing of engine-cylinder thermometers is treated in detail.

  7. Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy.

    PubMed

    Heland, J; Schäfer, K

    1997-07-20

    Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO(2) hot band at approximately 2400 cm(-1). Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within +/-20% for the CO and NO(x) results. The overall accuracy of the system was found to be +/-30%. The detection limits of the system for a typical engine plume (380 degrees C, ? = 50 cm) are below 0.1% for CO(2), ~0.7% for H(2)O, ~20 ppmv (parts per million by volume) for CO, and ~90 ppmv for NO.

  8. Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy.

    PubMed

    Heland, J; Schäfer, K

    1997-07-20

    Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO(2) hot band at approximately 2400 cm(-1). Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within +/-20% for the CO and NO(x) results. The overall accuracy of the system was found to be +/-30%. The detection limits of the system for a typical engine plume (380 degrees C, ? = 50 cm) are below 0.1% for CO(2), ~0.7% for H(2)O, ~20 ppmv (parts per million by volume) for CO, and ~90 ppmv for NO. PMID:18259296

  9. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1992-01-01

    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.

  10. Nonlinear programming in design of control systems with specified handling qualities.

    NASA Technical Reports Server (NTRS)

    Schy, A. A.

    1972-01-01

    A method is described for using nonlinear programing in the computer-aided design of aircraft control systems. It is assumed that the quality of such systems depends on many criteria. These criteria are included in the constraints vector, and the design proceeds through a sequence of nonlinear programing solutions in which the designer varies the specification of sets of requirements levels. The method is applied to design of a lateral stability augmentation system (SAS) for a fighter aircraft, in which the requirements vector is chosen from the official handling-qualities specifications. Results are shown for several simple SAS configurations designed to obtain desirable handling qualities over all design flight conditions with minimum feedback gains.

  11. Solar radiation monitoring for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1981-01-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  12. Solar radiation monitoring for high altitude aircraft

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.

    1981-10-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  13. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  14. Air Ground Integration Study

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal

    2002-01-01

    A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.

  15. Eclipse program QF-106 aircraft in flight, view from tanker

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of QF-106 airplane from a KC-135 tanker aircraft. The Eclipse aircraft was not refueling but simply flying below and behind the tanker for purposes of shooting the photograph from the air. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  16. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  17. Prediction of anthropometric accommodation in aircraft cockpits

    NASA Astrophysics Data System (ADS)

    Zehner, Gregory Franklin

    Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.

  18. Orion Entry Handling Qualities Assessments

    NASA Technical Reports Server (NTRS)

    Bihari, B.; Tiggers, M.; Strahan, A.; Gonzalez, R.; Sullivan, K.; Stephens, J. P.; Hart, J.; Law, H., III; Bilimoria, K.; Bailey, R.

    2011-01-01

    The Orion Command Module (CM) is a capsule designed to bring crew back from the International Space Station (ISS), the moon and beyond. The atmospheric entry portion of the flight is deigned to be flown in autopilot mode for nominal situations. However, there exists the possibility for the crew to take over manual control in off-nominal situations. In these instances, the spacecraft must meet specific handling qualities criteria. To address these criteria two separate assessments of the Orion CM s entry Handling Qualities (HQ) were conducted at NASA s Johnson Space Center (JSC) using the Cooper-Harper scale (Cooper & Harper, 1969). These assessments were conducted in the summers of 2008 and 2010 using the Advanced NASA Technology Architecture for Exploration Studies (ANTARES) six degree of freedom, high fidelity Guidance, Navigation, and Control (GN&C) simulation. This paper will address the specifics of the handling qualities criteria, the vehicle configuration, the scenarios flown, the simulation background and setup, crew interfaces and displays, piloting techniques, ratings and crew comments, pre- and post-fight briefings, lessons learned and changes made to improve the overall system performance. The data collection tools, methods, data reduction and output reports will also be discussed. The objective of the 2008 entry HQ assessment was to evaluate the handling qualities of the CM during a lunar skip return. A lunar skip entry case was selected because it was considered the most demanding of all bank control scenarios. Even though skip entry is not planned to be flown manually, it was hypothesized that if a pilot could fly the harder skip entry case, then they could also fly a simpler loads managed or ballistic (constant bank rate command) entry scenario. In addition, with the evaluation set-up of multiple tasks within the entry case, handling qualities ratings collected in the evaluation could be used to assess other scenarios such as the constant bank angle

  19. Reduction in size and unsteadiness of a VTOL ground vortex by ground fences

    NASA Technical Reports Server (NTRS)

    Cimbala, John M.; Billet, Michael L.; Harman, Todd B.

    1993-01-01

    A ground vortex, produced when a jet impinges on the ground in the presence of cross flow, is encountered by V/STOL aircraft hovering near the ground and is known to be hazardous to the aircraft. The objective of this research was to identify a ground-based technique by which both the mean size and fluctuation in size of the ground vortex could be reduced. A simple passive method was identified and examined in the laboratory. Specifically, one or two fine wire mesh screens (ground fences) bent in a horseshoe shape and located on the ground in front of the jet impingement point proved to be very effective. The ground fences work by decreasing the momentum of the upstream-traveling wall jet, effectively causing a higher freestream-to-jet velocity ratio (V(sub infinity)/V(sub j)) and thus, a ground vortex smaller in size and unsteadiness. At(V(sub infinity)/V(sub j)) = 0.15, the addition of a single ground fence resulted in a 70 percent reduction in mean size of the ground vortex. With two ground fences, the mean size decreased by about 85 percent. Fluctuations in size decreased nearly in proportion to the mean size, for both the single and double fence configurations. These results were consistent over a wide range of jet Reynolds number (10(exp 4) less than Re(sub jet) less than 10(exp 5)); further development and full-scale Reynolds number testing are required, however, to determine if this technique can be made practical for the case of actual VTOL aircraft.

  20. Developing a workstation-based, real-time simulation for rapid handling qualities evaluations during design

    NASA Technical Reports Server (NTRS)

    Anderson, Frederick; Biezad, Daniel J.

    1994-01-01

    This paper describes the Rapid Aircraft DynamIcs AssessmeNt (RADIAN) project - an integration of the Aircraft SYNThesis (ACSTNT) design code with the USAD DATCOM code that estimates stability derivatives. Both of these codes are available to universities. These programs are then linked to flight simulation and flight controller synthesis tools and resulting design is evaluated on a graphics workstation. The entire process reduces the preliminary design time by an order of magnitude and provides an initial handling qualities evaluation of the design coupled to a control law. The integrated design process is applicable to both conventional aircraft taken from current textbooks and to unconventional designs emphasizing agility and propulsive control of attitude. The interactive and concurrent nature of the design process has been well received by industry and by design engineers at NASA. The process is being implemented into the design curriculum and is being used by students who view it as a significant advance over prior methods.

  1. Mission management aircraft operations manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.

  2. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground load dynamic tests. 23.726 Section 23.726 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Landing Gear § 23.726 Ground load...

  3. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  4. ERAST Program Proteus Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  5. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  6. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... be met within the specified time without creating a hazard to aircraft safety....

  7. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  8. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  9. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... be met within the specified time without creating a hazard to aircraft safety....

  10. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  11. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  12. Effects of simulator motion and visual characteristics on rotorcraft handling qualities evaluations

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hart, Daniel C.

    1993-01-01

    The pilot's perceptions of aircraft handling qualities are influenced by a combination of the aircraft dynamics, the task, and the environment under which the evaluation is performed. When the evaluation is performed in a groundbased simulator, the characteristics of the simulation facility also come into play. Two studies were conducted on NASA Ames Research Center's Vertical Motion Simulator to determine the effects of simulator characteristics on perceived handling qualities. Most evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual time delays and motion command washout filters. Differences in pilot opinion were found as the visual and motion parameters were changed, reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. The results indicate a need for tailoring the motion washout dynamics to suit the task. Visual-delay data are inconclusive but suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.

  13. Aircraft cockpit vision: Math model

    NASA Technical Reports Server (NTRS)

    Bashir, J.; Singh, R. P.

    1975-01-01

    A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.

  14. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot

  15. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  16. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  17. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  18. Scheduling of an aircraft fleet

    NASA Technical Reports Server (NTRS)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  19. 14 CFR 61.417 - Will my flight instructor certificate with a sport pilot rating list aircraft category and class...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a sport pilot rating list aircraft category and class ratings? 61.417 Section 61.417 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.417 Will my flight instructor certificate with a sport pilot rating list aircraft category and...

  20. 14 CFR 61.317 - Is my sport pilot certificate issued with aircraft category and class ratings?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Is my sport pilot certificate issued with... GROUND INSTRUCTORS Sport Pilots § 61.317 Is my sport pilot certificate issued with aircraft category and class ratings? Your sport pilot certificate does not list aircraft category and class ratings. When...