Science.gov

Sample records for aircraft lap joints

  1. Measurements of fuselage skin strains and displacements near a longitudinal lap joint in a pressurized aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.; Britt, Vicki O.

    1991-01-01

    Strains and displacements in a small area near a longitudinal lap joint in the fuselage skin of a B737 aircraft were measured during a pressurization cycle to a differential pressure of 6.2 psi while the aircraft was on the ground. It was found that hoop strains were higher than longitudinal strains at each location; membrane strains in the unreinforced skin were higher than in the joint; membrane strains in the hoop direction, as well as radial displacements, tended to be highest at the mid-bay location between skin reinforcements; significant bending in the hoop direction occurred in the joint and in the skin near the joint, and the bending was unsymmetrically distributed about the stringer at the middle of the joint; and radial displacements were unsymmetrically distributed across the lap joint. The interpretation of the strain gage data for locations on the bonded and riveted lap joint assumed that the joint did not contain disbonded areas.

  2. Detection of Hidden Cracks on Aircraft LAP Joints with GMR Based Eddy Current Technology

    SciTech Connect

    Na, J. K.; Franklin, M. A.; Linn, J. R.

    2006-03-06

    Cracks occurring on commercial aircraft fuselage lap joints made of aluminum alloys often caused by scribe lines made during the removal of process of moisture sealing materials between two layers. These cracks on thinner bottom skin layers can be obscured by thicker top plates with paint. A portable GMR (Giant Magnetoresistive) sensor based eddy current system has been developed and tested on several simulated aircraft lap joints samples with EDM notches. Various thicknesses of layers are used to simulate the test as used on different combinations of lap joints. Length and depth of cracks are important factors for the safety of aircraft. Test results are used to come up with a portable nondestructive inspection system which is easy and fast with a high reliability of detecting cracks longer than a half inch in length and 0.010 inches in depth.

  3. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  4. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  5. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  6. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  7. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  8. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  9. Tubular lap joints for wind turbine applications

    SciTech Connect

    Reedy, E.D. Jr.; Guess, T.R.

    1990-01-01

    A combined analytical/experimental study of the strength of thick- walled, adhesively bonded PMMA-to-aluminum and E-glass/epoxy composite-to-aluminum tubular lap joints under axial load has been conducted. Test results include strength and failure mode data. Moreover, strain gages placed along the length of the outer tubular adherend characterize load transfer from one adherend to the other. The strain gage data indicate that load transfer is nonuniform and that the relatively compliant PMMA has the shorter load transfer length. Strains determined by a finite element analysis of the tested joints are in excellent agreement with those measured. Calculated bond stresses are highest in the region of observed failure, and extensive bond yielding is predicted in the E- glass/epoxy composite-to-aluminum joint prior to joint failure. 4 refs., 13 figs., 1 tab.

  10. Analysis of adhesively bonded composite lap joints

    SciTech Connect

    Tong, L.; Kuruppu, M.; Kelly, D.

    1994-12-31

    A new nonlinear formulation is developed for the governing equations for the shear and peel stresses in adhesively bonded composite double lap joints. The new formulation allows arbitrary nonlinear stress-strain characteristics in both shear and peel behavior. The equations are numerically integrated using a shooting technique and Newton-Raphson method behind a user friendly interface. The failure loads are predicted by utilizing the maximum stress criterion, interlaminar delamination and the energy density failure criteria. Numerical examples are presented to demonstrate the effect of the nonlinear adhesive behavior on the stress distribution and predict the failure load and the associated mode.

  11. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  12. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  13. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  14. Review on failure prediction techniques of composite single lap joint

    NASA Astrophysics Data System (ADS)

    Ab Ghani A., F.; Rivai, Ahmad

    2016-03-01

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  15. Effects of bearing surfaces on lap joint energy dissipation

    SciTech Connect

    Kess, H. R.; Rosnow, N. J.; Sidle, B. C.

    2001-01-01

    Energy is dissipated in mechanical systems in several forms. The major contributor to damping in bolted lap joints is friction, and the level of damping is a function of stress distribution in the bearing surfaces. This study examines the effects of bearing surface configuration on lap joint energy dissipation. The examination is carried out through the analysis of experimental results in a nonlinear framework. Then finite element models are constructed in a nonlinear framework to simulate the results. The experimental data were analyzed using piecewise linear log decrement. Phenomenological and non-phenomenological mathematical models were used to simulate joint behavior. Numerical results of experiments and analyses are presented.

  16. Identification of bolted lap joints parameters in assembled structures

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-02-01

    Bolted lap joints have significant influence on the dynamical behaviour of the assembled structures due to creation of strong local flexibility and damping. In modelling the dynamical behaviour of assembled structures the joint interface model must be represented accurately. A nonlinear model for bolted lap joints and interfaces is proposed capable of representing the dominant physics involved in the joint such as micro/macro-slip. The joint interface is modelled using a combination of linear and nonlinear springs and a damper to simulate the damping effects of the joint. An estimate of the response of the structure with a nonlinear model for the bolted joint under external excitations is obtained using the method of multiple scales. The parameters of the model, i.e. the spring constants and the damper coefficient, are functions of normal and tangential stresses at the joint interface and are identified by minimizing the difference between the model predictions and the experimentally measured data.

  17. Seam-Tracking for Friction Stir Welded Lap Joints

    NASA Astrophysics Data System (ADS)

    Fleming, Paul A.; Hendricks, Christopher E.; Cook, George E.; Wilkes, D. M.; Strauss, Alvin M.; Lammlein, David H.

    2010-11-01

    This article presents a method for automatic seam-tracking in friction stir welding (FSW) of lap joints. In this method, tracking is accomplished by weaving the FSW tool back-and-forth perpendicular to the direction of travel during welding and monitoring force and torque signals. Research demonstrates the ability of this method to automatically track weld seam positions. Additionally, tensile and S-bend test result comparisons demonstrate that weaving most likely does not reduce weld quality. Finally, benefits of this weave-based method to FSW of lap joints are discussed and methods for incorporating it into existing friction stir welding control algorithms (such as axial load control) are examined.

  18. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  19. Generic element formulation for modelling bolted lap joints

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-07-01

    Joints have significant effects on the dynamic response of the assembled structures due to existence of two non-linear mechanisms in their interface, namely slipping and slapping. These mechanisms affect the structural response by adding considerable damping into the structure and lowering the natural frequencies due to the stiffness softening. Neglecting these effects in modelling of joints produces errors in predictions of the structure responses. In this paper, a non-linear generic element formulation is developed for modelling bolted lap joints. The generic element is formed by satisfying all conditions that are known for a joint interface and hence providing a non-linear parametric formulation for the families of allowable joint models. Dynamic response of the developed model for the assembled structure including the generic joint interface element is obtained using the incremental harmonic balance (IHB) method. The generic parameters of the joint are identified by minimising the difference between the model response obtained from IHB method and the observed behaviour of the structure. The procedure is demonstrated by modelling an actual structure containing a single lap bolted joint in the middle. The frequency responses of the structure around the first two resonance frequencies are measured by exciting the structure using a sinusoidal force at each individual frequency. The measured responses are compared with the predictions of the model containing a parametric generic joint element. The parameters of the joint interface model are successfully identified by minimising the difference between the measured responses and the model predictions.

  20. Enhancing pulsed eddy current for inspection of P-3 Orion lap-joint structures

    NASA Astrophysics Data System (ADS)

    Butt, D. M.; Underhill, P. R.; Krause, T. W.

    2016-02-01

    During flight, aircraft are subjected to cyclic loading. In the Lockheed P-3 Orion airframe, this cyclic loading can lead to development of fatigue cracks at steel fastener locations in the top and second layers of aluminum wing skin lap-joints. An inspection method that is capable of detecting these cracks, without fastener removal, is desirable as this can minimize aircraft downtime, while subsequently reducing the risk of collateral damage. The ability to detect second layer cracks has been demonstrated using a Pulsed Eddy Current (PEC) probe design that utilizes the ferrous fastener as a flux conduit. This allows for deeper penetration of flux into the lap-joint second layer and consequently, sensitivity to the presence of cracks. Differential pick-up coil pairs are used to sense the eddy current response due to the presence of a crack. The differential signal obtained from pick-up coils on opposing sides of the fastener is analyzed using a Modified Principal Components Analysis (MPCA). This is followed by a cluster analysis of the resulting MPCA scores to separate fastener locations with cracks from those without. Probe design features, data acquisition system parameters and signal post-processing can each have a strong impact on crack detection. Physical probe configurations and signal analysis processes, used to enhance the PEC system for detection of cracks in P-3 Orion lap-joint structures, are investigated and an enhanced probe design is identified.

  1. CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS

    SciTech Connect

    C. MALONEY; D. PEAIRS; ET AL

    2000-08-01

    The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

  2. Testing composite-to-metal tubular lap joints

    NASA Astrophysics Data System (ADS)

    Guess, T. R.; Reedy, E. D., Jr.; Slavin, A. M.

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  3. Testing composite-to-metal tubular lap joints

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.; Slavin, A.M.

    1993-11-01

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  4. Residual Strength Analyses of Riveted Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    2000-01-01

    The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.

  5. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    SciTech Connect

    Okafor, A. C.; Natarajan, S.

    2007-03-21

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  6. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    NASA Astrophysics Data System (ADS)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  7. Optimal tubular adhesive-bonded lap joint of the carbon fiber epoxy composite shaft

    NASA Astrophysics Data System (ADS)

    Kim, Ki S.; Kim, Won T.; Lee, Dai G.; Jun, Eui J.

    The effects of the adhesive thickness and the adherend surface roughness on the fatigue strength of a tubular adhesive-bonded single lap joint were investigated using fatigue test specimens whose adherends were made of S45C carbon steel. Results of fatigue tests showed that the optimal arithmetic surface roughness of the adherends is about 2 microns and the optimal adhesive thickness is about 0.15 mm. Using these values, the prototype torsional adhesive joints were manufactured for power transmission shafts of an automotive vehicle or a small helicopter, and static tests under torque were performed on a single-lap joint, a single-lap joint with scarf, a double-lap joint, and a double-lap joint with scarf. It was found that the double-lap joint was superior among the joints, in terms of torque capacity and manufacturing cost.

  8. Experimental Investigations of an Inclined Lap-Type Bolted Joint

    SciTech Connect

    GREGORY, DANNY LYNN; RESOR, BRIAN R.; COLEMAN, RONALD G.; SMALLWOOD, DAVID ORA

    2003-04-01

    The dynamic response of critical aerospace components is often strongly dependent upon the dynamic behavior of bolted connections that attach the component to the surrounding structure. These bolted connections often provide the only structural load paths to the component. The bolted joint investigated in this report is an inclined lap-type joint with the interface inclined with respect to the line of action of the force acting on the joint. The accurate analytical modeling of these bolted connections is critical to the prediction of the response of the component to normal and high-level shock environmental loadings. In particular, it is necessary to understand and correctly model the energy dissipation (damping) of the bolted joint that is a nonlinear function of the forces acting on the joint. Experiments were designed and performed to isolate the dynamics of a single bolted connection of the component. Steady state sinusoidal and transient experiments were used to derive energy dissipation curves as a function of input force. Multiple assemblies of the bolted connection were also observed to evaluate the variability of the energy dissipation of the connection. These experiments provide insight into the complex behavior of this bolted joint to assist in the postulation and development of reduced order joint models to capture the important physics of the joint including stiffness and damping. The experiments are described and results presented that provide a basis for candidate joint model calibration and comparison.

  9. Evaluation of the fuselage lap joint fatigue and terminating action repair

    NASA Technical Reports Server (NTRS)

    Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.

    1994-01-01

    Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the

  10. Numerical solutions for heat flow in adhesive lap joints

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, William P.

    1992-01-01

    The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.

  11. Parameter studies on impact in a lap joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Amir M.; Ervin, Elizabeth K.

    2015-03-01

    To represent a loose lap joint, a beam impacting four springs with gaps is modeled. Modal analysis with base excitation is solved, and time histories of contact points are closely monitored. Using the impulse during steady state response, six influential parameters are studied: damping ratio, contact stiffness, intermediate contact position, gap, excitation amplitude and beam height. For all parameters, the system response is highly controlled by modes with two contacting springs. Each parameter's effect on system response is presented including unstable regions, unique trend behaviours result. Recommendations for structural designers are also noted.

  12. Fatigue strength of a single lap joint SPR-bonded

    SciTech Connect

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-05-04

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  13. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  14. Deformations and strains in a thick adherend lap joint

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J. D.; Joh, D.

    1988-01-01

    Displacement fields in a thick adherend lap joint were measured by high-sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherend surfaces. Loads ranged from a modest load to a near-failure load. Quantitative results are given for displacements and strains in the adhesive and along the adhesive/adherend boundary lines. The results show nearly constant shear strain in the adhesive, nonlinear strains as a function of load or average shear stress, and viscoelastic or time-dependent response. Longitudinal normal strains in the adhesive are nearly two orders of magnitude less than the shear strains. With its subwavelength displacement resolution and high spatial resolution, moire interferometry is especially well suited for deformation studies of adhesive joints.

  15. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  16. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    NASA Technical Reports Server (NTRS)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  17. Failure strength prediction for adhesively bonded single lap joints

    NASA Astrophysics Data System (ADS)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  18. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D. H.

    1981-01-01

    The stress distribution in two hole connectors in a double lap joint configuration was studied. The following steps are described: (1) fabrication of photoelastic models of double lap double hole joints designed to determine the stresses in the inner lap; (2) assessment of the effects of joint geometry on the stresses in the inner lap; and (3) quantification of differences in the stresses near the two holes. The two holes were on the centerline of the joint and the joints were loaded in tension, parallel to the centerline. Acrylic slip fit pins through the holes served as fasteners. Two dimensional transmission photoelastic models were fabricated by using transparent acrylic outer laps and a photoelastic model material for the inner laps. It is concluded that the photoelastic fringe patterns which are visible when the models are loaded are due almost entirely to stresses in the inner lap.

  19. The mechanics and tribology of fretting fatigue with application to riveted lap joints

    NASA Astrophysics Data System (ADS)

    Szolwinski, Matthew Paul

    Fretting is the synergistic combination of wear, corrosion, and fatigue damage mechanisms driven by the partial slip of contacting surfaces. The surface microslip and near-surface contact stresses associated with fretting can lead to severe reduction in service lifetimes of contacting components as diversified as bearings, turbine blades and mechanically-fastened joints, both structural and biological. This tribologically induced degradation has come under close scrutiny by those responsible for maintaining aging fleets of both commercial and military aircraft. Thus a critical need exists for predicting fretting crack nucleation in riveted aluminum. aircraft joints. Fulfilling this need requires characterizing both the near-surface mechanics and intimately-related tribology of fretting. To this end, a well characterized experimental setup has been developed to generate carefully controlled and monitored fretting contacts to investigate the nature of the near-surface conditions. Included in this investigation were in-situ observations of the fretting contact stress field via a non-invasive thermal imaging technique and a characterization of the evolution of friction under partial slip conditions. With specific qualitative and quantitative understanding of these near-surface conditions, a series of fretting fatigue experiments have been conducted to validate a mechanics-based model for predicting fretting fatigue crack nucleation. Finally, efforts have been directed toward extending this understanding of fretting crack nucleation to riveted aircraft structure through modeling of the riveting process and a related experimental program designed to link riveting process parameters and fretting damage in single-lap joint structures. This work focuses specifically on determination of the residual stresses induced during rivet installation and the morphological characterization of fretting fatigue damage in the riveted test specimens manufactured under controlled

  20. Experimental and analytical program to determine strains in 737 LAP splice joints subjected to normal fuselage pressurization loads

    SciTech Connect

    Roach, D.P.; Jeong, D.Y.

    1996-02-01

    The Federal Aviation Administration Technical Center (FAATC) has initiated several research projects to assess the structural integrity of the aging commercial aircraft fleet. One area of research involves the understanding of a phenomenon known as ``Widespread Fatigue Damage`` or WFD, which refers to a type of multiple element cracking that degrades the damage tolerance capability of an aircraft structure. Research on WFD has been performed both experimentally and analytically including finite element modeling of fuselage lap splice joints by the Volpe Center. Fuselage pressurization tests have also been conducted at the FAA`s Airworthiness Assurance NDI Validation Center (AANC) to obtain strain gage data from select locations on the FAA/AANC 737 Transport Aircraft Test Bed. One-hundred strain channels were used to monitor five different lap splice bays including the fuselage skin and substructure elements. These test results have been used to evaluate the accuracy of the analytical models and to support general aircraft analysis efforts. This paper documents the strain fields measured during the AANC tests and successfully correlates the results with analytical predictions.

  1. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  2. Experimental study of non-linear effects in a typical shear lap joint configuration

    NASA Astrophysics Data System (ADS)

    Hartwigsen, C. J.; Song, Y.; McFarland, D. M.; Bergman, L. A.; Vakakis, A. F.

    2004-10-01

    Although mechanical joints are integral parts of most practical structures, their modelling and their effects on structural dynamics are not yet fully understood. This represents a serious impediment to accurate modelling of the dynamics and to the development of reduced-order, finite element models capable of describing the effects of mechanical joints on the dynamics. In this work we provide an experimental study to quantify the non-linear effects of a typical shear lap joint on the dynamics of two structures: a beam with a bolted joint in its center; and a frame with a bolted joint in one of its members. Both structures are subjected to a variety of dynamical tests to determine the non-linear effects of the joints. The tests reveal several important influences on the effective stiffness and damping of the lap joints. The possibility of using Iwan models to represent the experimentally observed joint effects is discussed.

  3. Optical examination of load transfer in riveted lap joints using portable holographic interferometry

    NASA Astrophysics Data System (ADS)

    Shankar, Krishnakumar; Baird, John P.; Clark, Robert K.; Williamson, Hugh M.

    1997-03-01

    In mechanically fastened single lap joints, such as those employed on aircraft fuselage skin splices, there are two distinct mechanisms of load transfer. At low values of load the transfer occurs primarily through friction between the component sheets while at higher loads the load is transferred by friction as well as through bearing at the fasteners. The load level at which the bearing mode of load transfer comes into action significantly affects the fatigue life of the joint, since the fasteners are stressed only at loads above this threshold load value. The portable holographic interferometry testing system (PHITS) is a robust, portable and sensitive non-destructive inspection system which produces contours of relative out of plane displacement by the method of superposition. PHITS is applied here to monitor the load transfer mechanism and identify the threshold at which the bearing mode comes into effect. In the friction mode there is no relative displacement between the fasteners and the skin panels. In the bearing mode the fasteners are loaded, causing a distinct tipping of the rivets, which is readily observable in the fringe pattern of deflection contours recorded by the holographic system.

  4. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  5. Ultrasonic Guided Wave Inspection of Adhesive Joints: a Parametric Study for a Step-Lap Joint

    NASA Astrophysics Data System (ADS)

    Puthillath, Padma Kumar; Kannajosyula, Haraprasad; Lissenden, Cliff J.; Rose, Joseph L.

    2009-03-01

    Adhesively bonded joints are used to connect structural members in aircraft. When subject to loads and environmental conditions these joints undergo deterioration. Being load bearing members, it becomes critical to develop reliable and non-destructive methods for inspecting these adhesive joints. Ultrasonic guided waves, with their mode and frequency tuning possibilities, form an attractive tool for such inspections. Guided wave behavior as observed through dispersion phenomena is dependent on the waveguide dimensions. Since actual structural joints in aircraft involve adherends of different thicknesses and materials, and joints of varied overlap lengths, a robust inspection methodology needs to be tunable for all conditions. A parametric study showing the effect that some key joint parameters, that is the thickness of the adhesive, overlap length, and material parameters, have on the ultrasonic guided wave behavior is presented in this paper. In addition, the influence of defects like cohesive weakness, delamination and kissing bonds and their location on guided wave propagation is investigated. The transmission of ultrasonic guided wave energy is used as a guideline to select optimal conditions for joint inspection.

  6. EFFECT OF TOOL FEATURE ON THE JOINT STRENGTH OF DISSIMILAR FRICTION STIR LAP WELDS

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.; Mattlin, Karl F.

    2011-04-25

    Several variations of friction stir tools were used to investigate the effects on the joint strengths of dissimilar friction stir lap welds. In the present lap weld configuration the top sheet was a 2.32 mm thick Mg (AZ 31) alloy. The bottom sheet consisted of two different steels, a (i) 0.8 mm thick electro-galvanized (EG) mild steel, or a (ii) 1.5 mm thick hot dip galvanized (HDG) high strength low alloy (HSLA) steel. Initially the tool shape was modified to accommodate the material, at which point the tool geometry was fixed. With a fixed tool geometry an additional feature was added to the pin bottom on one of the tools by incorporating a short hard insert, which would act as a stronger bottom sheet cutter. The effects of such modification on the unguided lap shear strength, and associated microstructural changes are discussed in this study.

  7. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  8. A critical examination of stresses in an elastic single lap joint

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Sawyer, J. W.

    1979-01-01

    The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.

  9. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  10. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  11. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  12. An empirical relationship for extrapolating sparse experimental lap joint data.

    SciTech Connect

    Segalman, Daniel Joseph; Starr, Michael James

    2010-10-01

    Correctly incorporating the influence of mechanical joints in built-up mechanical systems is a critical element for model development for structural dynamics predictions. Quality experimental data are often difficult to obtain and is rarely sufficient to determine fully parameters for relevant mathematical models. On the other hand, fine-mesh finite element (FMFE) modeling facilitates innumerable numerical experiments at modest cost. Detailed FMFE analysis of built-up structures with frictional interfaces reproduces trends among problem parameters found experimentally, but there are qualitative differences. Those differences are currently ascribed to the very approximate nature of the friction model available in most finite element codes. Though numerical simulations are insufficient to produce qualitatively correct behavior of joints, some relations, developed here through observations of a multitude of numerical experiments, suggest interesting relationships among joint properties measured under different loading conditions. These relationships can be generalized into forms consistent with data from physical experiments. One such relationship, developed here, expresses the rate of energy dissipation per cycle within the joint under various combinations of extensional and clamping load in terms of dissipation under other load conditions. The use of this relationship-though not exact-is demonstrated for the purpose of extrapolating a representative set of experimental data to span the range of variability observed from real data.

  13. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    NASA Astrophysics Data System (ADS)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-06-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  14. An evaluation of the blind lap joint for the surface mount attachment of chip components

    NASA Astrophysics Data System (ADS)

    Vianco, P. T.; Dalporto, J. F.

    Blind lap solder joints were used to attach leadless ceramic chip resistors to polyimidequartz circuit boards. Hand soldering and vapor phase reflow techniques were evaluated. The solder was 62Sn-36Pb-2Ag (wt. percent). The integrity of the solder joints was assessed by microstructural examination and room temperature shear tests. These analyses were performed on as-fabricated circuit boards as well as an those samples exposed to thermal cycling (308 cycles; -55 to 125 C; 6 C/min ramps; 120 min hold periods;) or thermal shock (100 cycles, -55 C to 125 C; liquid-to-liquid transfer; 10 min hold periods). In all cases, microscopy revealed no cracks within the solder joints. The shear strengths of the joints were 13.4 lb (59 N), as-fabricated; 10.5 lb (47 N), 308 thermal cycles; and 14.0 lb (62 N), 100 thermal shock cycles. All values were well within acceptability limits for the particular application. Measurements of the intermetallic compound thicknesses at the copper land/solder interface indicated that the additional heating cycle of the hand soldering step decreased the layer thickness as compared to non-hand soldered joints. The successful implementation of the blind lap joint can provide increased device densities on circuit boards by reducing bonding pad extension beyond the ceramic chip foot print.

  15. Multitechnique monitoring of fatigue damage in adhesively bonded composite lap-joints

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Dib, Gerges; Haq, Mahmoodul; Udpa, Lalita

    2015-03-01

    The requirement for reduced structural weight has driven the development of adhesively bonded joints. However, a major issue preventing their full acceptance is the initiation of premature failure in the form of a disbond between adherends, mainly due to fatigue, manufacturing flaws or impact damage. This work presents the integrated approach for in-situ monitoring of degradation of the adhesive bond in the GFRP composite lap-joint using ultrasonic guided waves and dynamic measurements from strategically embedded FBG sensors. Guided waves are actuated with surface mounted piezoelectric elements and mode tuning is used to provide high sensitivity to the degradation of the adhesive layer parameters. Composite lap-joints are subjected to fatigue loading, and data from piezoceramic transducers are collected at regular intervals to evaluate the progression of damage. Results demonstrate that quasi-static loading affects guided wave measurements considerably, but FBG sensors can be used to monitor the applied load levels and residual strains in the adhesive bond. The proposed technique shows promise for determining the post-damage stiffness of adhesively bonded joints.

  16. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  17. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  18. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-04-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  19. Comparison of heating protocols for detection of disbonds in lap joints

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Crews, B. S.; Howell, P. A.

    1992-01-01

    A thermographic technique is presented which is shown to be effective for disbond detection in lap-joint samples. The study of various heating protocols shows that shorter heating times allow the greatest contrast in smaller disbonds; the optimum heating technique for this case is periodic heating. In order to compare the different heating protocols, contrast is defined as a function of the moments of the histograms for the bonded region and unbonded regions of the reduced thermal images. A comparison of the bonded-unbonded contrast for different heating times establishes the parameters which maximize disbond detection probability.

  20. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  1. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  2. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  3. Strength of Welded Aircraft Joints

    NASA Technical Reports Server (NTRS)

    Brueggeman, W C

    1937-01-01

    This investigation is a continuation of work started in 1928 and described in NACA-TR-348 which shows that the insertion of gusset plates was the most satisfactory way of strengthening a joint. Additional tests of the present series show that joints of this type could be improved by cutting out the portion of the plate between the intersecting tubes. T and lattice joints in thin-walled tubing 1 1/2 by 0.020 inch have somewhat lower strengths than joints in tubing of greater wall thickness because of failure by local buckling. In welding the thin-walled tubing, the recently developed "carburizing flux" process was found to be the only method capable of producing joints free from cracks. The "magnetic powder" inspection was used to detect cracks in the joints and flaws in the tubing.

  4. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and

  5. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  6. A two-dimensional stress analysis of single lap joints subjected to external bending moments

    SciTech Connect

    Sawa, Toshiyuki; Nakano, Katsuyuki; Toratani, Hiroshi

    1995-11-01

    The stress distribution of single lap adhesive joints subjected to external bending moments are analyzed as a three-body contact problem by using a two-dimensional theory of elasticity. In the analysis, two similar adherends and an adhesive are replaced by finite strips, respectively. In the numerical calculations, the effects of the ratio of Young;s modulus of adherends to that of adhesive and the adhesive thickness on the stress distribution at the interface are examined. As the results, it is seen that the stress singularity causes at the edges of the interfaces and the peel stress at the edges of the interface increases with a decrease of Young`s modulus of the adherends. In addition, photoelastic experiments are carried out. A fairly good agreement is seen between the analytical and the experimental results.

  7. Shear Strength of Single Lap Joint Aluminium-Thermoplastic Natural Rubber (Al-TPNR) Laminated Composite

    NASA Astrophysics Data System (ADS)

    Muzakkar, M. Z.; Ahmad, S.; Yarmo, M. A.; Jalar, A.; Bijarimi, M.

    2013-04-01

    In this work, we studied the effect of surface treatment on the aluminium surface and a coupling agent to improve adhesion between aluminium with organic polymer. Thermoplastic natural rubber (TPNR) matrix was prepared by melt blending of natural rubber (NR), liquid natural rubber (LNR) compatibilizer, linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH). The PEgMAH concentration used was varied from 0% - 25%. In addition, the aluminium surface was pre-treated with 3-glycidoxy propyl trimethoxy silane (3-GPS) to enhance the mechanical properties of laminated composite. It was found that the shear strength of single lap joint Al-TPNR laminated composite showing an increasing trend as a function of PE-g-MAH contents for the 3-GPS surface treated aluminium. Moreover, the scanning electron microscope (SEM) revealed that the strength improvement was associated with the chemical state of the compound involved.

  8. Quantitative strain and slope evaluation on a double lap joint tensile test using ESPSI

    NASA Astrophysics Data System (ADS)

    Molimard, J.; Bounda, D.; Vautrin, A.

    2006-08-01

    The present study is based on the use of electronical speckle pattern shearing interferometry (ESPSI) on a double lap joint, the joined parts being two steel blocks and two composite plates. ESPSI is used to investigate de strain maps close to the end of the bonding in the center part of the specimen. The ESPSI set-up allows to get the full field strain and slope maps of a given surface. Its architecture is based on optical fibres which gives a portable assembly that can be used in a civil/mechanical engineering laboratory. This presentation emphases the advantages of such a method and its performances. Last some results are given and compared to an analytical approach.

  9. A feasibility study for experimentally determining dynamic force distribution in a lap joint.

    SciTech Connect

    Mayes, Randall Lee

    2013-11-01

    Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.

  10. Propagation of ultrasonic guided waves in lap-shear adhesive joints

    NASA Astrophysics Data System (ADS)

    Lanza di Scalea, Francesco; Rizzo, Piervincenzo; Marzani, Alessandro

    2004-07-01

    This paper deals with the propagation of ultrasonic guided waves in adhesively-bonded lap-shear joints. The topic is relevant to ultrasonic bond inspection in aerospace components. Specifically, the propagation of the lowest-order, antisymmetric a0 mode through the joint is examined. This mode can be easily generated and detected in the field due to the predominant out-of-plane displacements at the surface of the test piece. An important aspect is the mode conversion at the boundaries between the single-plate adherends and the multilayer overlap. The a0 strength of transmission is studied for three different bond states in aluminum joints, namely a fully cured adhesive bond, a poorly cured adhesive bond, and a slip bond. Theoretical predictions based on the Global Matrix Method indicate that the dispersive behavior of the guided waves in the multilayer overlap is highly dependent on bond state. Experimental tests of the joints are conducted by a hybrid, broadband laser/air-coupled ultrasonic setup in a through-transmission configuration. This system does not require any wet coupling and it can be moved flexibly across the test piece. The Gabor Wavelet transform is employed to extract energy transmission coefficients in the 100 kHz - 1.4 MHz range for the three different bond states examined. The cross-sectional mode shapes of the guided waves are shown to have a substantial role in the energy transfer through the joint. A rationale for the selection of the a0 excitation frequencies highly sensitive to bond state will be given.

  11. Structural Health Monitoring of AN Aircraft Joint

    NASA Astrophysics Data System (ADS)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  12. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    NASA Astrophysics Data System (ADS)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone

  13. Critical joints in large composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  14. Analysis of the Vibration Damping of Bonded Beams with a Single-Lap-Joint and Partial Dampers

    NASA Astrophysics Data System (ADS)

    Choi, Nak-Sam; Park, Jeong-Il

    A theoretical analysis model for the lateral vibration of beams with a bonded single-lap-joint and partial layered dampers has been proposed in this paper. Both shear and normal forces acting along the interface between the elastic and viscoelastic layers were considered in the vibration analysis. The analytical results were comparable to those obtained by the modal strain energy method and the harmonic response analysis, which were based on a finite element model. The effects of the location and thickness of the partial dampers on the system loss factor ηs were studied. The characteristic variations of ηs, with changes of the modulus and loss factor of the viscoelastic layer in the lap joint part and partial dampers were also studied. Consequently, the geometrical and material conditions at maximizing ηs were suggested.

  15. Laser-assisted friction stir welding of aluminum alloy lap joints: microstructural and microhardness characterizations

    NASA Astrophysics Data System (ADS)

    Casalino, Giuseppe; Campanelli, Sabina L.; Contuzzi, Nicola; Angelastro, Andrea; Ludovico, Antonio D.

    2014-02-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. The laser Assisted Friction Stir Welding (LAFSW) combines a Friction Stir Welding machine and a laser system. Laser power is used to preheat and to plasticize the volume of the workpiece ahead of the rotating tool; the workpiece is then joined in the same way as in the conventional FSW process. In this work an Ytterbium fiber laser with maximum power of 4 kW and a commercial FSW machine were coupled. Both FSW and LAFSW tests were conducted on 3 mm thick 5754H111 aluminum alloy plates in lap joint configuration with a constant tool rotation rate and with different feed rates. The two processes were compared and evaluated in terms of differences in the microstructure and in the micro-hardness profile.

  16. Strength analysis of laser welded lap joint for ultra high strength steel

    NASA Astrophysics Data System (ADS)

    Jeong, Young Cheol; Kim, Cheol Hee; Cho, Young Tae; Jung, Yoon Gyo

    2013-12-01

    Several industries including the automotive industry have recently applied the process of welding high strength steel. High strength steel is steel that is harder than normal high strength steel, making it much stronger and stiffer. HSS can be formed in pieces that can be up to 10 to 15 percent thinner than normal steel without sacrificing strength, which enables weight reduction and improved fuel economy. Furthermore, HSS can be formed into complex shapes that can be welded into structural areas. This study is based on previous experiments and is aimed at establishing the stress distribution for laser welded high strength steel. Research on the stress distribution for laser welded high strength steel is conducted by using Solid Works, a program that analyzes the stress of a virtual model. In conclusion, we found that the stress distribution is changed depending on the shape of welded lap joint. In addition, the Influence of the stress distribution on welded high strength steel can be used to standard for high energy welding of high strength steel, and we can also predict the region in welded high strength steel that may cracked.

  17. An artifical corrosion protocol for lap-splices in aircraft skin

    NASA Technical Reports Server (NTRS)

    Shaw, Bevil J.

    1994-01-01

    This paper reviews the progress to date to formulate an artificial corrosion protocol for the Tinker AFB C/KC-135 Corrosion Fatigue Round Robin Test Program. The project has provided new test methods to faithfully reproduce the corrosion damage within a lap-splice by accelerated means, the rationale for a new laboratory test environment, and a means for corrosion damage quantification. The approach is pragmatic and the resulting artificial corrosion protocol lays the foundation for future research in the assessment of aerospace alloys. The general means for quantification of corrosion damage has been presented in a form which can be directly applied to structural integrity calculations.

  18. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  19. Lake Michigan and Lake Superior air quality: The 1994-2003 LADCO Aircraft Project (LAP)

    NASA Astrophysics Data System (ADS)

    Foley, T. A.; Betterton, E. A.; Jacko, R.; Hillery, J.

    2011-12-01

    The goal of the 1994 to 2003 LADCO Airplane Project (LAP) was to study ozone formation over Lake Michigan so that equitable regional control strategies could be devised. During the ten year LAP campaign, a total of 328 flights were flown on 81 days over Lake Michigan and its southern and western boundaries. LAP also monitored air quality over Lake Superior and other areas in the Midwestern and southern United States. From 2001 to 2003, 117 flights were conducted over Lake Superior, Isle Royale National Park, Painted Rocks National Lakeshore and the Seeney National Wildlife Refuge in Michigan. 63 flights were conducted over St. Louis and 58 flights over the Dolly Sods Wilderness Area in West Virginia. We are looking for collaborators to help us analyze this vast data archive. Our first paper (Atmospheric Environment 45 (2011) 3192-3202) documented the project and presented results of our ozone analysis. Our results support the hypothesis of Dye et al. (1995), who found that the atmosphere over Lake Michigan is stable in the summer due to the air water temperature difference, which creates an efficient reaction chamber for ozone formation. They also hypothesized that the southwest winds characteristic of ozone-conducive conditions transport ozone further north over the lake before it crosses the shoreline onto land. We found that below 200 m above the lake, ozone formation is VOC-limited in the morning and becomes NOx limited in the afternoon. Above 200 m, ozone formation is NOx-limited throughout the day. The onshore NOx and VOC diurnal cycles peak during the early morning rush hour and are clearly linked to traffic patterns. Over the lake, VOC and NOy concentrations peak during the mid-morning rather than the early morning, supporting the hypothesis that the land breeze transports VOC and NOy over the lake. The diurnal NOx pattern over Lake Michigan is less clearly defined than the VOC pattern possibly as a result of emissions from five coal-burning power plants

  20. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    NASA Astrophysics Data System (ADS)

    Yang, Shanglu

    In order to meet the industry demands for increased fuel efficiency and enhanced mechanical and structural performance of vehicles as well as provided excellent corrosion resistance, more and more galvanized advanced high-strength steels (AHSS) have been used to fabricate automobile parts such as panels, bumpers, and front rails. The automotive industry has shown tremendous interest in using laser welding to join galvanized dual phase steels because of lower heat input and higher welding speed. However, the laser welding process tends to become dramatically unstable in the presence of highly pressurized zinc vapor because of the low boiling point of zinc, around 906°C, compared to higher melting point of steel, over 1500°C. A large number of spatters are produced by expelling the liquid metal from the molten pool by the pressurized zinc vapor. Different weld defects such as blowholes and porosities appear in the welds. So far, limited information has been reported on welding of galvanized high strength dual-phase steels in a gap-free lap joint configuration. There is no open literature on the successful attainment of defect-free welds from the laser or hybrid welding of galvanized high-strength steels. To address the significant industry demand, in this study, different welding techniques and monitoring methods are used to study the features of the welding process of galvanized DP steels in a gap-free lap joint configuration. The current research covers: (i) a feasibility study on the welding of galvanized DP 980 steels in a lap joint configuration using gas tungsten arc welding (GTAW), laser welding, hybrid laser/arc welding with the common molten pool, laser welding with the assistance of GTAW preheating source and hybrid laser-variable polarity gas tungsten arc welding (Laser-VPGTAW) techniques (Chapter 2-4); (ii) a welding process monitoring of the welding techniques including the use of machine vision and acoustic emission technique (Chapter 5); (iii

  1. Ultrasonic inspection of multiple-rivet-hole lap joint cracks using global analysis with local finite element approach

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Yeasin; Shen, Yanfeng; Giurgiutiu, Victor

    2016-04-01

    Ultrasonic inspection of multiple-rivet-hole lap joint cracks has been introduced using combined analytical and finite element approach (CAFA). Finite element analyses have been performed on local damage area in spite of the whole large structure and transfer function based analytical model is used to analyze the full structure. "Scattered cube" of complex valued wave damage interaction coefficient (WDIC) that involves scattering and mode conversion of Lamb waves around the damage is used as coupling between analytical and FEM simulation. WDIC is captured for multiple angles of incident Lamb mode (S0 and A0) over the frequency domain to analyze the cracks of multiple-rivet-hole lap joint. By analyzing the scattered cube of WDICs over the frequency domain and azimuthal angles the optimum parameters can be determined for each angle of incidence and the most sensitive signals are obtained using WaveformRevealer2D (WFR2D). These sensitive signals confirm the detection of the butterfly cracks in rivet holes through the installment of the transmitting and sensing PWASs in the proper locations and selecting the right frequency of excitation.

  2. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  3. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  4. Nd:Yag laser irradiation of single lap joints made by polyethylene and polyethylene doped by carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Visco, A. M.; Brancato, V.; Cutroneo, M.; Torrisi, L.

    2014-04-01

    Thermoplastic polyethylene can be welded by the transmission laser welding technique (TTLW) that exhibits some process related benefits with respect other conventional joining methods. This justifies its large use in wide fields, from the automotive to medical or domestic appliances. In this research, we studied single lap joints made by polyethylene pure and filled with carbon nanomaterials (0.2% in weight) to make the polymer laser absorbent. The joints were irradiated by a Nd:YAG laser operating at 1064 nm (first harmonic) with an intensity of 107 W/cm2 and 1 ÷ 30Hz, a maximum pulse energy of 300mJ and a laser spot of ≈ 1 cm2 (no focusing lens were employed). The joints were characterized by morphological analysis, mechanical shear tests and calorimetric analysis. The results suggested that the laser exposition time must be opportunely balanced in order to avoid a poor adhesion between the polymer sheets and to realized efficient joints. In particular the mechanical test showed that the laser exposition time of 40 seconds is the best conditions to obtain the highest shear strength of the joints of 140 N. After too prolonged laser exposure times, degrading phenomena starts.

  5. Establishment of a model predicting tensile shear strength and fracture portion of laser-welded lap joints

    NASA Astrophysics Data System (ADS)

    Furusako, Seiji; Miyazaki, Yasunobu; Hashimoto, Koji; Kobayashi, Junichi

    2003-03-01

    This study was aimed at establishment of a model that can predict tensile shear strength and fracture portion laser-welded lap joints in the tensile test. To clear influence of the bead length and width on them, the joints employed steel sheets with a thickness in the range of 0.8 mm to 1.2 mm were evaluated. It was found that the tensile shear strength increased with the bead size, and the fracture occurred at base metal (BM), weld metal (WM) or portion between them with a curvature (referred to as portion R). Also to clarify rotational deformation process around WM during the tensile test, joint cross-sections were observed at some applied load levels in the test. This observation derived the relationship between the radius, Ri, at the inner plane of portion R and the rotational angle, θ, of the center of sheet thickness, and the relationship between Ri and applied load. A plastic analysis based on these functions and assumptions that the joint consists of BM, WM and R, which are under simplified stress mode respectively, could estimate the tensile shear strength and the fracture portion of the joints. This estimation made good accord with experimental results.

  6. Analysis of the Static and Fatigue Strenght of a Damage Tolerant 3D-Reinforced Joining Technology on Composite Single Lap Joints

    NASA Astrophysics Data System (ADS)

    Nogueira, A. C.; Drechsler, K.; Hombergsmeier, E.

    2012-07-01

    The increasing usage of carbon fiber reinforced plastics (CFRP) in aerospace together with the constant drive for fuel efficiency and lightweight design have imposed new challenges in next generation structural assemblies and load transfer efficient joining methods. To address this issue, an innovative technology, denominated Redundant High Efficiency Assembly (RHEA) joints, is introduced as a high-performance lightweight joint that combines efficient load transfer with good damage tolerance. A review of the ongoing research involving the RHEA joint technology, its through-thickness reinforcement concept and the results of quasi-static and fatigue tensile investigations of single lap shear specimens are exposed and discussed. Improvements in ultimate static load, maximum joint deformation, damage tolerance and fatigue life are encountered when comparing the performance of the RHEA lap shear joints to co-bonded reference specimens.

  7. Application of a simple and cost-effective method for detection of bolt self-loosening in single lap joints

    NASA Astrophysics Data System (ADS)

    Esmaeel, Ramadan A.; Taheri, Farid

    2013-09-01

    One of the major advantages of bolted joints (BJs) over welded, riveted and adhesively bonded joints is the disassembling option. This option facilitates the manufacturing and transportation of large-scale structures that are commonly formed as assemblage of various large structural components. However, this option is not always problem free, in that, during the life cycle of such structures, the bolts used to fasten the joints may become loosened. Although several techniques have been developed to mitigate bolt self-loosening (BSL), nonetheless, development of a methodology for detecting BSL has consumed considerable attention in recent years. As a result, several researchers have been seeking simple and reliable methods for detecting bolt-loosening in BJs, without compromising their stability. In this study, piezoelectric sensors are used to collect the vibration signals of a laboratory-scale single lap joint, joining two steel plates with three bolts. The acquired signals are then processed using the empirical mode decomposition method and the energies of the respective signals are calculated. A recently developed effective method is then employed to establish the so-called energy damage index, evaluated based on the energy stored in certain modes of the collected signal, in both the damaged and healthy states of the system. This method is found to be quite effective in detecting bolt loosening and the progression of self-loosening.

  8. Strength of Welded Joints in Tubular Members for Aircraft

    NASA Technical Reports Server (NTRS)

    Whittemore, H L; Brueggeman, W C

    1931-01-01

    The object of this investigation is to make available to the aircraft industry authoritative information on the strength, weight, and cost of a number of types of welded joints. This information will, also, assist the aeronautics branch in its work of licensing planes by providing data from which the strength of a given joint may be estimated. As very little material on the strength of aircraft welds has been published, it is believed that such tests made by a disinterested governmental laboratory should be of considerable value to the aircraft industry. Forty joints were welded under procedure specifications and tested to determine their strengths. The weight and time required to fabricate were also measured for each joint.

  9. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  10. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  11. Fatigue Behaviour of Magnesium to Steel Dissimilar Friction Stir Lap Joints

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri

    2012-02-01

    A short study has been conducted to assess the performance of friction stir welded Mg/steel joints under dynamic loads. The major mode of failure was found to be top Mg sheet fracture. Crack initiation is noted to have taken place at the Mg/steel interface. The fatigue life of the joints is found to be significantly different than the fatigue data of the Mg alloy obtained from the literature. The reasons behind such a difference have been examined in this work.

  12. Civil benefits of the JVX. [Joint Services Advanced Lift Aircraft

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1984-01-01

    The inherently high productivity, VTOL capability, and low noise and vibration features of a civil version of the Joint Services Advanced Vertical Lift Aircraft, or 'JVX', are recommended for commercial exploitation. This tilt-rotor vehicle can provide ground and air traffic congestion relief through direct, city center-to-city center service, economically transporting 30 passengers for distances of up to 600 miles. Additional commercial opportunities emerge in the JVX's servicing of offshore, remote and infrastructureless areas. It is noted that Alaska, more than any other American state, would benefit from the JVX's VTOL access to natural resources and otherwise isolated settlements. The civilian development of the JVX could lead to the development of commercial tilt rotor aircraft for other size classes.

  13. Joint USAF/NASA hypersonic research aircraft study

    NASA Technical Reports Server (NTRS)

    Kirkham, F. S.; Jones, R. A.; Buck, M. L.; Zima, W. P.

    1975-01-01

    A joint USAF/NASA study has developed a conceptual design for a new high-speed research airplane (X-24C) and identified candidate flight research experiments in the Mach 3 to 6 speed range. Four major categories of high priority research experiments are described as well as the X-24C design concept. The vehicle, a rocket-boosted, delta planform aircraft, is air launched from a B-52 and is capable of forty seconds of rocket cruise at Mach 6 with a research scramjet. Research provisions include a dedicated 10-foot long research experiments section, removable fins and strakes, and provisions for testing integrated airbreathing propulsion systems.

  14. Measurement of longitudinal strain and estimation of peel stress in adhesive-bonded single-lap joint of CFRP adherend using embedded FBG sensor

    NASA Astrophysics Data System (ADS)

    Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.

    2012-04-01

    In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.

  15. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG

    NASA Astrophysics Data System (ADS)

    Ning, Xiaoguang; Murayama, Hideaki; Kageyama, Kazuro; Wada, Daichi; Kanai, Makoto; Ohsawa, Isamu; Igawa, Hirotaka

    2014-10-01

    In this study, the dynamic strain distribution measurement of an adhesive-bonded single-lap joint was carried out in a cyclic load test using a fiber Bragg grating (FBG) sensor embedded into the adhesive/adherend interface along the overlap length direction. Unidirectional carbon fiber reinforced plastic (CFRP) substrates were bonded by epoxy resin to form the joint, and the FBG sensor was embedded into the surface of one substrate during its curing. The measurement was carried out with a sampling rate of 5 Hz by the sensing system, based on the optical frequency domain reflectometry (OFDR) throughout the test. A finite element analysis (FEA) was performed for the measurement evaluation using a three-dimensional model, which included the embedded FBG sensor. The crack detection method, based on the longitudinal strain distribution measurement, was introduced and performed to estimate the cracks that occurred at the adhesive/adherend interface in the test.

  16. A record of all marker bands found in the upper rivet rows of 2 adjacent bays from a fuselage lap splice joint

    NASA Technical Reports Server (NTRS)

    Willard, Scott A.

    1995-01-01

    A full scale fuselage test article was subjected to 60,000 load cycles (pressurizations) to study the effect of widespread fatigue damage in fuselage structures. Every 10,000 cycles coded marker block loading sequences were used to mark the fracture surfaces of the fatigue cracks propagating within the panel. The loading sequences consisted of series of underloads combined with a series of full pressurizations. The combination of loads and underloads marked the fracture surfaces with marker bands that could later be used to reconstruct the fatigue crack growth history of selected regions within the test article. Thirty rivet holes comprising the upper rivet rows from two adjacent bays (bays #3 and #4) from a fuselage lap splice joint were examined for the purpose of this study. Optical and scanning electron microscopy (SEM) were used to locate the marker bands.

  17. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  18. Influences of Friction Stir Welding Parameters on Microstructural and Mechanical Properties of AA5456 (AlMg5) at Different Lap Joint Thicknesses

    NASA Astrophysics Data System (ADS)

    Pishevar, M. R.; Mohandesi, J. Aghazadeh; Omidvar, H.; Safarkhanian, M. A.

    2015-10-01

    Friction stir welding is suitable for joining series 5000 alloys because no fusion welding problems arise for the alloys in this process. The present study examined the effects of double-pass welding and tool rotational and travel speeds for the second-pass welding on the mechanical and microstructural properties of friction stir lap welding of AA5456 (AlMg5)-H321 (5 mm thickness) and AA5456 (AlMg5)-O (2.5 mm thickness). The first pass of all specimens was performed at a rotational speed of 650 rpm and a travel speed of 50 mm/min. The second pass was performed at rotational speeds of 250, 450, and 650 rpm and travel speeds of 25, 50, and 75 mm/min. The results showed that the second pass changed the grain sizes in the center of the nugget zone compared with the first pass. It was observed that the size of the hooking defect of the double-pass-welded specimens was higher than that for the single-pass-welded specimen. The size of the hooking defect was found to be a function of the rotational and travel speeds. The optimal joint tensile shear properties were achieved at a rotational speed of 250 rpm and travel a speed of 75 mm/min.

  19. Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Anwar, Miftahul; Tarigan, Roy Aries P.; Rivai, Ahmad

    2016-02-01

    The objective of this study is to investigate the effect of adhesive thickness and surface treatment on the shear strength and failure type characteristic of single lap joint (SLJ) CFRP/Al using adhesive epoxy/Al-fine-powder. The CFRP was produced by using hand layup method for 30% of woven roving carbon fiber (w/w) and the resin used was bisphenolic. The adhesive was prepared using 12.5% of aluminum fine powder (w/w) in the epoxy adhesive. The powder was mixed by using a mixing machine at 60 rpm for 6 minutes, and then it was used to join the Al plate-2024 and CFRP. The start time to pressure for the joint process was 20 minutes after the application of adhesive on the both of adherends. The variables in this research are adhesive thickness (i.e. 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1 mm) and surface treatment of adherends (i.e. acetone, chromate sulphuric acid, caustic etch and tucker's reagent). Before shear testing, all specimens were post-cured at 100 °C for 15 minutes. The result shows that the SLJ has the highest shear strength for 0.4 mm of adhesive thickness. When the adhesive thickness is more than 0.4 mm (0.6-1 mm), the shear strength decreases significantly. It might be caused by the property change of adhesive from ductile to brittle. The acetone surface treatment produces the best bonding between the adhesive and adherends (CFRP and Al-plate 2024), and the highest shear strength is 9.31 MPa. The surface treatment give the humidification effect of adherend surfaces by adhesive. The failure characteristic shows that the mixed failure of light-fiber-tear-failure and cohesive-failure are occurred on the high shear strength of SLJ, and the low shear strength commonly has the adhesive-failure type.

  20. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  1. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud

    current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two

  2. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud

    current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two

  3. An overview of the joint FAA/NASA aircraft/ground runway friction program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    There is a need for information on runways which may become slippery due to various forms and types of contaminants. Experience has shown that since the beginning of all weather aircraft operations, there have been landing and aborted takeoff incidents and/or accidents each year where aircraft have either run off the end or veered off the shoulder of low friction runways. NASA Langley's Landing and Impact Dynamics Branch is involved in several research programs directed towards obtaining a better understanding of how different tire properties interact with varying pavement surface characteristics to produce acceptable performance for aircraft ground handling requirements. One such effort, which was jointly supported by not only NASA and the FAA but by several aviation industry groups including the Flight Safety Foundation, is described.

  4. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Spicer, C.; Holdren, M.; Cowen, K.; Harris, B.; Shores, R.; Hashmonay, R.; Kaganan, R.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen local air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.

  5. Effects of simulated lightning on composite and metallic joints

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Plumer, J. A.

    1982-01-01

    The effects of simulated lightning strikes and currents on aircraft bonded joints and access/inspection panels were investigated. Both metallic and composite specimens were tested. Tests on metal fuel feed through elbows in graphite/epoxy structures were evaluated. Sparking threshold and residual strength of single lap bonded joints and sparking threshold of access/inspection panels and metal fuel feed through elbows are reported.

  6. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  7. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  8. The effects of fretting on fatigue characteristics of a mechanically fastened aircraft joint

    NASA Astrophysics Data System (ADS)

    Shah, Akbar Hussain

    A research study to investigate the effects of fretting on fatigue characteristics of an aircraft joint was carried out. The selected joint for this study simulates the rotor head of an aircraft capable of taking off vertically. The primary function of this hub-spindle joint is to retain the main rotor blade against the centrifugal forces, both in-plane and out-of-plane bending moments and torsion caused due to the lift, drag and other aerodynamic forces imposed on the rotor blades while the aircraft is in forward flight. The primary objectives of this study were twofold; (a) Verify that the average lives of mechanically fastened joints with combined effects of fretting and fatigue will be lower compared to the average lives due to plain fatigue. (b) Discover whether fretting causes cracks to nucleate and fatigue causes those cracks to propagate. In order to verify the validity of the first hypothesis, seven test joints were tested to failure. Several S/N curves were generated against Mil-Handbook 5H data for comparable plain fatigue response of the same material. Out of the seven specimens that were tested, five were machined from Aluminum 7075-T6, and the other two were machined from Aluminum 7050-T7451. An average fretting fatigue life reduction factor Kff, of 21 was found for all these seven joints. In order to validate the second hypothesis, a detailed investigation under a scanning electron microscope of the fretted/failed surfaces was conducted. Severe fretting damage was observed in all test specimens. It was found that fretting-induced damage provided the crack nucleation sites in all test specimens that failed. These nucleation sites were in the form of fretting scars, pits and gouges providing several regions of stress concentration. Under the influence of high tensile stress fields, these sites allowed several small embryonic cracks to form, coalesce and link up to form primary and multiple cracks, which subsequently propagated under the applied cyclic

  9. Improvement of transformer core magnetic properties using the step-lap design

    NASA Astrophysics Data System (ADS)

    Valkovic, Z.; Rezic, A.

    1992-07-01

    Magnetic properties of the step-lap joints have been investigated experimentally on two three-phase three-leg transformer cores. Using the step-lap joint design, a reduction of the total core loss of 2 to 4.4% and of the exciting power of 31 to 37% has been obtained.

  10. Structural development of laminar flow control aircraft chordwise wing joint designs

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  11. Life determination of riveted aircraft structure by holographic NDE

    NASA Astrophysics Data System (ADS)

    Baird, John P.; Heslehurst, Rikard B.; Williamson, Hugh M.; Clark, Robert K.; Hollamby, Derek

    1996-11-01

    In a project funded by the Federal Aviation Administration's (FAA) Aging Aircraft Program, a Portable Holographic Inspection System (PHITS) has been further developed. The technique involves taking a double exposure white light reflection hologram of aircraft structures. Each exposure is taken at a slightly different load state, and the resulting interferogram shows the deformations that occur between the two load states. Results showed that the rivets in a simple lap joint, designed to simulate the longitudinal lap splice on a Boeing 737, behaved in two distinct and easily recognizable modes. The first mode occurred at low loads and was an indication that friction forces between the two sheets of the lap joint dominated the load transfer mechanism. Indications were that the second mode related to higher loads for which the friction forces played a much lesser role. The load at which the changeover begins to occur has been called the critical load. Preliminary experiments showed that structures with a high value of critical load had a fatigue life of order ten times that of a normally fastened splice. Critical load can be readily determined in the field using the PHITS system. Research designed to establish the relationship between fatigue life and critical load is continuing. An understanding of that relationship could lead to a technique capable of fatigue life determination in typical aircraft structures.

  12. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    SciTech Connect

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.; Simmons, Kevin L.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribe welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.

  13. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  14. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  15. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  16. Aircraft remote sensing of phytoplankton spatial patterns during the 1989 Joint Global Ocean Flux Study (JGOFS) North Atlantic bloom experiment

    NASA Technical Reports Server (NTRS)

    Yoder, James A.; Hoge, Frank E.

    1991-01-01

    Mesoscale phytoplankton chlorophyll variability near the Joint Global Ocean Flux study sites along the 20 W meridian at 34 N, 47 N, and 59 N is discussed. The NASA P-3 aircraft and the Airborne Oceanographic Lidar (AOL) system provides remote sensing support for the North Atlantic Bloom Experiment. The principal instrument of the AOL system is the blue-green laser that stimulates fluorescence from photoplankton chlorophyll, the principal photosynthetic pigment. Other instruments on the NASA P-3 aircraft include up- and down-looking spectrometers, PRT-5 for infrared measurements to determine sea surface temperature, and a system to deploy and record AXBTs to measure subsurface temperature structure.

  17. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  18. Bonded composite to metal scarf joint performance in an aircraft landing gear drag strut. [for Boeing 747 aircraft

    NASA Technical Reports Server (NTRS)

    Howell, W. E.

    1974-01-01

    The structural performance of a boron-epoxy reinforced titanium drag strut, which contains a bonded scarf joint and was designed to the criteria of the Boeing 747 transport, was evaluated. An experimental and analytical investigation was conducted. The strut was exposed to two lifetimes of spectrum loading and was statically loaded to the tensile and compressive design ultimate loads. Throughout the test program no evidence of any damage in the drag strut was detected by strain gage measurements, ultrasonic inspection, or visual observation. An analytical study of the bonded joint was made using the NASA structural analysis computer program NASTRAN. A comparison of the strains predicted by the NASTRAN computer program with the experimentally determined values shows excellent agreement. The NASTRAN computer program is a viable tool for studying, in detail, the stresses and strains induced in a bonded joint.

  19. Fatigue Strength and Related Characteristics of Aircraft Joints I : Comparison of Spot-Weld and Rivet Patterns in 24s-t Alclad and 75s-t Alclad

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report contains detailed results of a number of fatigue tests on spot-welded joints in aluminum alloys. The tests described include: (1) fatigue tests on spot-welded lap joints in sheets of unequal thickness of alclad 24s-t. These tests indicate that the fatigue strength of a spot-welded joint in sheets of two different gages is slightly higher than that of a similar joint in two sheets of the thinner gage but definitely lower than that of a similar joint in two sheets of the thicker gage. (2) Fatigue tests on spot-welded alclad 75s-t spot-welded lap-joint specimens of alclad 75s-t were not any stronger in fatigue than similar specimens of alclad 24s-t. (3) Fatigue tests on lap-joint specimens spot -welded after various surface preparations--these included ac welding wire-brushed surfaces, dc welding wire-brushed surfaces, and dc welding chemically cleaned surfaces. While the ac welds were strongest statically, the dc welds on wire-brushed surfaces were strongest in fatigue. Specimens prepared in this way were very nearly as strong as the best riveted specimens tested for comparison. (4) Fatigue tests on specimens spot-welded with varying voltage so as to include a wide range of static spot-weld strengths. The fatigue strengths were in the same order as the static strengths but showed less range. (author)

  20. Economics of technological change - A joint model for the aircraft and airline industries

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Taneja, N. K.

    1981-01-01

    The principal focus of this econometric model is on the process of technological change in the U.S. aircraft manufacturing and airline industries. The problem of predicting the rate of introduction of current technology aircraft into an airline's fleet during the period of research, development, and construction for new technology aircraft arises in planning aeronautical research investments. The approach in this model is a statistical one. It attempts to identify major factors that influence transport aircraft manufacturers and airlines, and to correlate them with the patterns of delivery of new aircraft to the domestic trunk carriers. The functional form of the model has been derived from several earlier econometric models on the economics of innovation, acquisition, and technological change.

  1. Structural FEM analysis of the strut-to-fuselage joint of a two-seat composite aircraft

    SciTech Connect

    Vargas-Rojas, Erik Camarena-Arellano, Diego Hernández-Moreno, Hilario

    2014-05-15

    An analysis of a strut-to-fuselage joint is realized in order to evaluate the zones with a high probability of failure by means of a safety factor. The whole section is analyzed using the Finite Element Method (FEM) so as to estimate static resistance behavior, therefore it is necessary a numerical mock-up of the section, the mechanical properties of the Carbon-Epoxy (C-Ep) material, and to evaluate the applied loads. Results of the analysis show that the zones with higher probability of failure are found around the wing strut and the fuselage joint, with a safety factor lower than expected in comparison with the average safety factor used on aircrafts built mostly with metals.

  2. Investigation into Interface Lifting Within FSW Lap Welds

    SciTech Connect

    K. S. Miller; C. R. Tolle; D. E. Clark; C. I. Nichol; T. R. McJunkin; H. B. Smartt

    2008-06-01

    Friction stir welding (FSW) is rapidly penetrating the welding market in many materials and applications, particularly in aluminum alloys for transportation applications. As this expansion outside the research laboratory continues, fitness for service issues will arise, and process control and NDE methods will become important determinants of continued growth. The present paper describes research into FSW weld nugget flaw detection within aluminum alloy lap welds. We present results for two types of FSW tool designs: a smooth pin tool and a threaded pin tool. We show that under certain process parameters (as monitored during welding with a rotating dynamometer that measures x, y, z, and torque forces) and tooling designs, FSW lap welds allow significant nonbonded interface lifting of the lap joint, while forming a metallurgical bond only within the pin region of the weld nugget. These lifted joints are often held very tightly together even though unbonded, and might be expected to pass cursory NDE while representing a substantial compromise in joint mechanical properties. The phenomenon is investigated here via radiographic and ultrasonic NDE techniques, with a copper foil marking insert (as described elsewhere) and by the tensile testing of joints. As one would expect, these results show that tool design and process parameters significantly affect plactic flow and this lifted interface. NDE and mechanical strength ramifications of this defect are discussed.

  3. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  4. The Second Joint NASA/FAA/DOD Conference on Aging Aircraft. Pt. 1

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community.

  5. The Second Joint NASA/FAA/DoD Conference on Aging Aircraft. Part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community. Appendix B contains the name and addresses of the 623 participants in the Conference.

  6. Quantitative thermal imaging of aircraft structures

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Howell, Patricia A.; Syed, Hazari I.

    1995-03-01

    Aircraft structural integrity is a major concern for airlines and airframe manufacturers. To remain economically competitive, airlines are looking at ways to retire older aircraft, not when some fixed number of flight hours or cycles has been reached, but when true structural need dictates. This philosophy is known as `retirement for cause.' The need to extend the life of commercial aircraft has increased the desire to develop nondestructive evaluation (NDE) techniques capable of detecting critical flaws such as disbonding and corrosion. These subsurface flaws are of major concern in bonded lap joints. Disbonding in such a joint can provide an avenue for moisture to enter the structure leading to corrosion. Significant material loss due to corrosion can substantially reduce the structural strength, load bearing capacity and ultimately reduce the life of the structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE system designed for application to disbonding and corrosion detection in aircraft skins. By injecting a small amount of heat into the front surface of an aircraft skin, and recording the time history of the resulting surface temperature variations using an infrared camera, quantitative images of both bond integrity and material loss due to corrosion can be produced. This paper presents a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. The analysis techniques presented represent a significant improvement in the information available over conventional thermal imaging due to the inclusion of data from both the heating and cooling portion of the thermal cycle. Results of laboratory experiments on fabricated disbond and material loss samples are presented to determine the limitations of the system. Additionally, the results of actual aircraft inspections are shown, which help to establish the field applicability for this

  7. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  8. How Tongue Size and Roughness Affect Lapping

    NASA Astrophysics Data System (ADS)

    Hubbard, M. J.; Hay, K. M.

    2012-10-01

    The biomechanics of domestic cat lapping (Felis catus) and domestic dog lapping (Canis familiaris) is currently under debate. Lapping mechanics in vertebrates with incomplete cheeks, such as cats and dogs, is a balance of inertia and the force of gravity likely optimized for ingestion and physical necessities. Physiology dictates vertebrate mass, which dictates vertebrate tongue size, which dictates lapping mechanics to achieve optimum liquid ingestion; with either touch lapping, scooping, or a hybrid lapping method. The physics of this optimized system then determines how high a column of liquid can be raised before it collapses due to gravity, and therefore, lapping frequency. Through tongue roughness model variation experiments it was found that pore-scale geometrical roughness does not appear to affect lapping or liquid uptake. Through tongue size model variation experiments it was found that there is a critical tongue radius in the range of 25 mm to 35 mm above which touch lapping is no longer an efficient way to uptake liquid. Vertebrates with incomplete cheeks may use a touch lapping method to ingest water if their tongue radius is less than this critical radius and use an alternative ingestion method if their tongue radius is larger.

  9. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  10. Loose abrasive slurries for optical glass lapping

    SciTech Connect

    Neauport, Jerome; Destribats, Julie; Maunier, Cedric; Ambard, Chrystel; Cormont, Philippe; Pintault, B.; Rondeau, Olivier

    2010-10-20

    Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.

  11. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  12. Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond

    2000-01-01

    The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.

  13. Multiplexed HTS rf SQUID magnetometer array for eddy current testing of aircraft rivet joints

    NASA Astrophysics Data System (ADS)

    Gärtner, S.; Krause, H.-J.; Wolters, N.; Lomparski, D.; Wolf, W.; Schubert, J.; Kreutzbruck, M. v.; Allweins, K.

    2002-05-01

    Using three rf SQUID magnetometers, a multiplexed SQUID array was implemented. The SQUIDs are positioned in line with 7 mm spacing and operated using one feedback electronics with sequential read out demodulation at different radio frequencies (rf). The cross-talk between SQUID channels was determined to be negligible. To show the performance of the SQUID array, eddy current (EC) measurements of aluminum aircraft samples in conjunction with a differential (double-D) EC excitation and lock-in readout were carried out. With computer-controlled continuous switching of the SQUIDs during the scan, three EC signal traces of the sample are obtained simultaneously. We performed measurements with an EC excitation frequency of 135 Hz to localize an artificial crack (sawcut flaw) of 20 mm length in an aluminum sheet with 0.6 mm thickness. The flaw was still detected when covered with aluminum of up to 10 mm thickness. In addition, measurements with varying angles between scanning direction and flaw orientation are presented.

  14. Dual-band infrared imaging applications: Locating buried minefields, mapping sea ice, and inspecting aging aircraft

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Perkins, D.E.

    1992-09-01

    We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: location buried surrogate mines, mapping sea ice thicknesses and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 {degrees}C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections.

  15. Quadruple Lap Shear Processing Evaluation

    NASA Technical Reports Server (NTRS)

    Thornton, Tony N.; McCool, A. (Technical Monitor)

    2000-01-01

    The Thiokol, Science and Engineering Huntsville Operations (SEHO) Laboratory has previously experienced significant levels of variation in testing Quadruple Lap Shear (QLS) specimens. The QLS test is used at Thiokol / Utah for the qualification of Reusable Solid Rocket Motor (RSRM) nozzle flex bearing materials. A test was conducted to verify that process changes instituted by SEHO personnel effectively reduced variability, even with normal processing variables introduced. A test matrix was designed to progress in a series of steps; the first establishing a baseline, then introducing additional solvents or other variables. Variables included normal test plan delay times, pre-bond solvent hand-wipes and contaminants. Each condition tested utilized standard QLS hardware bonded with natural rubber, two separate technicians and three replicates. This paper will report the results and conclusions of this investigation.

  16. The Effect of Alloying Elements on the Shear Strength of the Lap Joint of AZ31B Magnesium Alloy to Q235 Steel by Hybrid Laser-TIG Welding Technique

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Qi, Xiaodong; Zhang, Zhaodong

    2012-06-01

    Welding between AZ31B Mg alloy and Q235 mild steel was examined in this study. The effects of welding parameters were first investigated on the penetration depth into the steel and the shear strength of the joints. The optimum parameters and the maximum shear strength were obtained. Based on these parameters, alloying elements in the form of interlayers were added into the joints, and the shear strength was improved as high as 98 pct of the AZ31B Mg alloy. Microstructures of the joints were inspected with a scanning electron microscope and an electron probe micro-analyzer. Two bonding modes were proposed, and their effects on the joint shear strength were discussed. It is suggested that the bonding changed from nonmetallurgical to "semimetallurgical" mode with the addition of the interlayers, which contributed to the enhancement of the shear strength. Micro-hardness profiles were measured in the fusion zone of the joints, and their influence on the joint strength was also discussed. Intermediate phases that distributed uniformly in the fusion zone strengthened the microstructures, and thus, the shear strength was elevated. An empirical trend for Cu and Ni interlayer selection was proposed.

  17. Large-Scale Advanced Prop-Fan (LAP)

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel efficiency. Analytical studies and research with wind tunnel models have demonstrated that the high inherent efficiency of low speed turboprop propulsion systems may now be extended to the Mach .8 flight regime of today's commercial airliners. This can be accomplished with a propeller, employing a large number of thin highly swept blades. The term Prop-Fan has been coined to describe such a propulsion system. In 1983 the NASA-Lewis Research Center contracted with Hamilton Standard to design, build and test a near full scale Prop-Fan, designated the Large Scale Advanced Prop-Fan (LAP). This report provides a detailed description of the LAP program. The assumptions and analytical procedures used in the design of Prop-Fan system components are discussed in detail. The manufacturing techniques used in the fabrication of the Prop-Fan are presented. Each of the tests run during the course of the program are also discussed and the major conclusions derived from them stated.

  18. Strength and Efficiency during Lap Joining molding of GMT-Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Woo; Kim, Hyoung-Seok; Lee, Dong-Gi

    2010-06-01

    In order to substitute and recycle the existing automobile parts for GMT-Sheet, researches on the effects of GMT-Sheet on the establishment of precise joining strength, joining condition that are lap length of joining part, compression ratio, and closure speed must be carried out but until now, there is almost no case of systematic researches on joint of GMT-Sheet. Therefore, as there are many obstacles in joining of GMT-Sheet molding products or in production of stable molding products, the researches on these issues are required. Because of this, it is reality that GMT-Sheet is only applied to parts of newly developed automobiles instead of substituting the existing automobile parts. In this study, materials with each different fiber content ratio and fiber orientation state were used in the study for decision of molding condition of GMT-Sheet and the condition of lap joining. Clarify joining strength and lap joining efficiency during high temperature. Compression press lap joining molding of GMT-Sheet and research data regarding to the lap length of joining part was presented. Thus, the purpose of this study is to contribute to the substitution of existing products as well as usage development in non-automobile field and also to find out precise dynamic characteristics as designing data of structures.

  19. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  20. An examination of faying surface fretting in single lap splices

    NASA Astrophysics Data System (ADS)

    Brown, Adam

    While fretting damage in mechanically fastened joints is widely acknowledged as a common source of crack nucleation, little work is available in the open literature on the role that fretting damage plays in the fatigue life of a riveted joint. To expand on the limited knowledge available, a study was undertaken on fretting fatigue in thin-sheet riveted fuselage lap joints. In joints constructed out of 1 mm thick 2024-T3 aluminum sheet the rivet forming load was found to have a significant effect on the location of fretting damage and crack nucleation. This effect was observed for splices riveted with machine countersunk and with universal rivets. The shift in the location of peak fretting damage and crack nucleation with changing rivet forming loads was investigated through numerical and experimental methods. A predictive model based on the critical plane Smith-Watson-Topper strain life equation was applied to the complex geometry of the single lap splice and was shown to be effective in predicting the fretting fatigue life as well as the location of fretting-induced crack nucleation. Basing this model on an explicit finite element simulation allowed for the inclusion of compressive residual stresses generated during rivet forming. Key to the proper functionality of the predictive model was to have a validated finite element model from which results for the stress and strain field in the loaded component could be obtained. In addition to the predictive model, a series of splice coupon and simplified geometry fretting fatigue tests were performed. The tests showed that, at higher rivet forming loads, crack nucleation is on the faying surface away from the hole edge and that the type of surface condition is important to the fretting fatigue life of the splice. The discovery of this variation with surface treatment at high rivet forming loads is important as more research is showing the benefit of using load-controlled rivet forming and higher rivet forming loads in

  1. Three-Dimensional Geometric Nonlinear Contact Stress Analysis of Riveted Joints

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Ramanujapuram, Vivek

    1998-01-01

    The problems associated with fatigue were brought into the forefront of research by the explosive decompression and structural failure of the Aloha Airlines Flight 243 in 1988. The structural failure of this airplane has been attributed to debonding and multiple cracking along the longitudinal lap splice riveted joint in the fuselage. This crash created what may be termed as a minor "Structural Integrity Revolution" in the commercial transport industry. Major steps have been taken by the manufacturers, operators and authorities to improve the structural airworthiness of the aging fleet of airplanes. Notwithstanding, this considerable effort there are still outstanding issues and concerns related to the formulation of Widespread Fatigue Damage which is believed to have been a contributing factor in the probable cause of the Aloha accident. The lesson from this accident was that Multiple-Site Damage (MSD) in "aging" aircraft can lead to extensive aircraft damage. A strong candidate in which MSD is highly probable to occur is the riveted lap joint.

  2. Analysis and design of advanced composite bounded joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Advances in the analysis of adhesive-bonded joints are presented with particular emphasis on advanced composite structures. The joints analyzed are of double-lap, single-lap, scarf, stepped-lap and tapered-lap configurations. Tensile, compressive, and in-plane shear loads are covered. In addition to the usual geometric variables, the theory accounts for the strength increases attributable to adhesive plasticity (in terms of the elastic-plastic adhesive model) and the joint strength reductions imposed by imbalances between the adherends. The solutions are largely closed-form analytical results, employing iterative solutions on a digital computer for the more complicated joint configurations. In assessing the joint efficiency, three potential failure modes are considered. These are adherend failure outside the joint, adhesive failure in shear, and adherend interlaminar tension failure (or adhesive failure in peel). Each mode is governed by a distinct mathematical analysis and each prevails throughout different ranges of geometric sizes and proportions.

  3. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    SciTech Connect

    Patton, T.

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled data acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.

  4. A superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in aircraft aluminum structures

    NASA Astrophysics Data System (ADS)

    Abedi, A.; Fellenstein, J. J.; Lucas, A. J.; Wikswo, J. P.

    1999-12-01

    We have designed and built a magnetic imaging system for quantitative analysis of the rate of ongoing hidden corrosion of aircraft aluminum alloys in planar structures such as intact aircraft lap joints. The system utilizes a superconducting quantum interference device (SQUID) magnetometer that measures the magnetic field associated with corrosion currents. It consists of a three-axis (vector) SQUID differential magnetometer, magnetic, and rf shielding, a computer controlled x-y stage, sample registration, and positioning mechanisms, and data acquisition and analysis software. The system is capable of scanning planar samples with dimensions of up to 28 cm square, with a spatial resolution of 2 mm, and a sensitivity of 0.3 pT/Hz1/2 (at 10 Hz). In this article we report the design and technical issues related to this system, outline important data acquisition techniques and criteria for accurate measurements of the rate of corrosion, especially for weakly corroding samples, and present preliminary measurements.

  5. Pseudomonas putida Fis Binds to the lapF Promoter In Vitro and Represses the Expression of LapF

    PubMed Central

    Lahesaare, Andrio; Moor, Hanna; Kivisaar, Maia; Teras, Riho

    2014-01-01

    The biofilm matrix of the rhizospheric bacterium Pseudomonas putida consists mainly of a proteinaceous component. The two largest P. putida proteins, adhesins LapA and LapF, are involved in biofilm development but prevail in different developmental stages of the biofilm matrix. LapA is abundant in the initial stage of biofilm formation whereas LapF is found in the mature biofilm. Although the transcriptional regulation of the adhesins is not exhaustively studied, some factors that can be involved in their regulation have been described. For example, RpoS, the major stress response sigma factor, activates, and Fis represses LapF expression. This study focused on the LapF expression control by Fis. Indeed, using DNase I footprint analysis a Fis binding site Fis-F2 was located 150 bp upstream of the lapF gene coding sequence. The mapped 5′ end of the lapF mRNA localized the promoter to the same region, overlapping with the Fis binding site Fis-F2. Monitoring the lapF promoter activity by a β-galactosidase assay revealed that Fis overexpression causes a 4-fold decrease in the transcriptional activity. Furthermore, mutations that diminished Fis binding to the Fis-F2 site abolished the repression of the lapF promoter. Thus, these data suggest that Fis is involved in the biofilm regulation via repression of LapF expression. PMID:25545773

  6. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies.

    PubMed

    Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin

    2014-07-01

    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. PMID:24856141

  7. Advances in the analysis and design of adhesive-bonded joints in composite aerospace structures

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Several aspects of adhesive-bonded joint analysis and design are presented from the reference of size of structure or load intensity. This integrates the individual characterizations of double-lap, single-lap, stepped-lap, tapered-lap and scarf joints. The paper includes an overview of bonded joint selection from the standpoints of design, fabrication, and processing, each bearing in mind the influence of such considerations on the strength of the joint. A case study is presented of the optimization of a specific relatively thick titanium-to-graphite epoxy stepped-lap joint, using the digital computer analysis program A4EG. The factors accounted for are adhesive plasticity, adherend stiffness imbalance, adherend thermal mismatch, and change of material properties within the range of temperature environment and with load direction. The strength increases obtainable by refining the initial design are demonstrated.

  8. Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Carvalho, P.; Cutler, M. J.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turboprop propulsion systems may now be extended to today's higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which controls blade angle and propeller speed consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which directly changes blade angle (pitch) as scheduled by the control.

  9. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    NASA Astrophysics Data System (ADS)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  10. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica

    PubMed Central

    Ambrosis, Nicolás; Boyd, Chelsea D.; O´Toole, George A.; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica PMID:27380521

  11. A study on the diamond lapping direction determination

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Zong, WenJun; Li, ZengQiang; Sun, Tao

    2014-08-01

    The anisotropy of material removal rate for diamond gives a method to control the lapping rate of diamond specimen, i.e. changing the lapping direction. This requires comprehension on the relationship of the material removal rate and the lapping direction for diamond. This paper provides a method to figure out the diamond lapping direction. By preprocessing a straight edge formed by lapping a surface intersects with the required machining surface, the diamond lapping direction can be figured out under the Confocal Scanning Laser Microscope only if the crystal directions of the two surfaces are determined at first. The advantage of our method is that there is no need to consider the position and posture of the diamond specimen fixed on the holder.

  12. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  13. Systematic Construction of Real Lapped Tight Frame Transforms

    PubMed Central

    Sandryhaila, Aliaksei; Chebira, Amina; Milo, Christina; Kovčcević, Jelena; Püschel, Markus

    2010-01-01

    We present a constructive algorithm for the design of real lapped equal-norm tight frame transforms. These transforms can be efficiently implemented through filter banks and have recently been proposed as a redundant counterpart to lapped orthogonal transforms, as well as an infinite-dimensional counterpart to harmonic tight frames. The proposed construction consists of two parts: First, we design a large class of new real lapped orthogonal transforms derived from submatrices of the discrete Fourier transform. Then, we seed these to obtain real lapped tight frame transforms corresponding to tight, equal-norm frames. We identify those frames that are maximally robust to erasures, and show that our construction leads to a large class of new lapped orthogonal transforms as well as new lapped tight frame transforms. PMID:20607116

  14. Dogs lap using acceleration-driven open pumping.

    PubMed

    Gart, Sean; Socha, John J; Vlachos, Pavlos P; Jung, Sunghwan

    2015-12-29

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog's tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  15. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  16. Joining aluminum to titanium alloy by friction stir lap welding with cutting pin

    SciTech Connect

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid

    2012-09-15

    Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: Black-Right-Pointing-Pointer FSW with cutting pin was successfully employed to form Al/Ti lap joint. Black-Right-Pointing-Pointer Swirl-like structures formed due to mechanical mixing were found at the interface. Black-Right-Pointing-Pointer High-strength joints fractured at Al suffered thermal cycle were produced.

  17. Probing emissions of military cargo aircraft: description of a joint field measurement Strategic Environmental Research and Development Program.

    PubMed

    Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram

    2008-06-01

    To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well. PMID:18581808

  18. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  19. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  20. Bending behavior of lapped plastic ehv cables

    SciTech Connect

    Morgan, G H; Muller, A C

    1980-01-01

    One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.

  1. Modulated lapped transforms in image coding

    NASA Astrophysics Data System (ADS)

    de Queiroz, Ricardo L.; Rao, K. R.

    1994-05-01

    The class of modulated lapped transforms (MLT) with extended overlap is investigated in image coding. The finite-length-signals implementation using symmetric extensions is introduced and human visual sensitivity arrays are computed. Theoretical comparisons with other popular transforms are carried and simulations are made using intraframe coders. Emphasis is given in transmission over packet networks assuming high rate of data losses. The MLT with overlap factor 2 is shown to be superior in all our tests with bonus features such as greater robustness against block losses.

  2. Isolation and Characterization of the Neutral Leucine Aminopeptidase (LapN) of Tomato1

    PubMed Central

    Tu, Chao-Jung; Park, Sang-Youl; Walling, Linda L.

    2003-01-01

    Tomatoes (Lycopersicon esculentum) express two forms of leucine aminopeptidase (LAP-A and LAP-N) and two LAP-like proteins. The relatedness of LAP-N and LAP-A was determined using affinity-purified antibodies to four LAP-A protein domains. Antibodies to epitopes in the most N-terminal region were able to discriminate between LAP-A and LAP-N, whereas antibodies recognizing central and COOH-terminal regions recognized both LAP polypeptides. Two-dimensional immunoblots showed that LAP-N and the LAP-like proteins were detected in all vegetative (leaves, stems, roots, and cotyledons) and reproductive (pistils, sepals, petals, stamens, and floral buds) organs examined, whereas LAP-A exhibited a distinct expression program. LapN was a single-copy gene encoding a rare-class transcript. A full-length LapN cDNA clone was isolated, and the deduced sequence had 77% peptide sequence identity with the wound-induced LAP-A. Comparison of LAP-N with other plant LAPs identified 28 signature residues that classified LAP proteins as LAP-N or LAP-A like. Overexpression of a His6-LAP-N fusion protein in Escherichia coli demonstrated distinct differences in His6-LAP-N and His6-LAP-A activities. Similar to LapA, the LapN RNA encoded a precursor protein with a molecular mass of 60 kD. The 5-kD presequence had features similar to plastid transit peptides, and processing of the LAP-N presequence could generate the mature 55-kD LAP-N. Unlike LapA, the LapN transcript contained a second in-frame ATG, and utilization of this potential initiation codon would yield a 55-kD LAP-N protein. The localization of LAP-N could be controlled by the balance of translational initiation site utilization and LAP-N preprotein processing. PMID:12746529

  3. How dogs lap: open pumping driven by acceleration

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Socha, John; Vlachos, Pavlos; Jung, Sunghwan

    2015-11-01

    Dogs drink by lapping because they have incomplete cheeks and cannot suck fluids into the mouth. When lapping, a dog's tongue pulls a liquid column from a bath, which is then swallowed, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured the kinematics of lapping from nineteen dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments with an accelerating rod help to explain how dogs exploit the fluid dynamics of the generated column. The results suggest that effects of acceleration govern lapping frequency, and that dogs curl the tongue ventrally (backwards) and time their bite on the column to increase fluid intake per lap. Comparing lapping in dogs and cats reveals that though they both lap with the same frequency scaling with respect to body mass and have similar morphology, these carnivores lap in different physical regimes: a high-acceleration regime for dogs and a low-acceleration regime for cats.

  4. Learning Activity Package, Chemistry I, (LAP) Study 29.

    ERIC Educational Resources Information Center

    Jones, Naomi

    Presented is a Learning Activity Package (LAP) study concerned with carbon and its compounds. This LAP in chemistry includes a rationale for studying the chemical element of carbon, a list of student objectives (stated in behavioral terms), of activities (reading, laboratory experiments, model construction, etc.), a two-page worksheet, a…

  5. Design Document: KWIC Module; L.A.P. Version I.

    ERIC Educational Resources Information Center

    Porch, Ann

    The Language Analysis Package (LAP) was developed by the Southwest Regional Laboratory (SWRL) to assist researchers in the analysis of language usage. The function of the KWIC (Keyword-in Context or Concordance) Module of the LAP is to produce keyword listings from the input text being analyzed. Such listings will contain location information…

  6. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the

  7. Experimental study on lapping of micro groove with controlled force

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Wang, Bo; Li, Guo; Che, Lin; Mao, Xing

    2014-08-01

    Precision parts with complicated microstructures have been in increasing demand in the field of inertial navigation systems and structured molds. Micro milling is a direct operation to manufacture the micro structure but it will induce unexpected tool marks and deterioration layer. A novel lapping method based on controlled force is proposed as the final finishing process. The method offers efficient position determination strategy for the structure and is capable to monitor the lapping condition. In the paper, processing method and the developed lapping apparatus was firstly introduced. Then, the individual influence on finished surface of several processing parameters including abrasive size, amount of feed and lapping trajectory are investigated. Results show that the deterioration layer was successfully removed with different slurries without diminution of its original form accuracy. Lapping efficiency is also taken into account in the choosing of parameters. The formative mechanism of parallel scratches observed in experiments is analyzed and verified.

  8. Identification of a Novel Human LAP1 Isoform That Is Regulated by Protein Phosphorylation

    PubMed Central

    Santos, Mariana; Domingues, Sara C.; Costa, Patrícia; Muller, Thorsten; Galozzi, Sara; Marcus, Katrin; da Cruz e Silva, Edgar F.; da Cruz e Silva, Odete A.; Rebelo, Sandra

    2014-01-01

    Lamina associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that is ubiquitously expressed. LAP1 binds to lamins and chromatin, probably contributing to the maintenance of the nuclear envelope architecture. Moreover, LAP1 also interacts with torsinA and emerin, proteins involved in DYT1 dystonia and X-linked Emery-Dreifuss muscular dystrophy disorder, respectively. Given its relevance to human pathological conditions, it is important to better understand the functional diversity of LAP1 proteins. In rat, the LAP1 gene (TOR1AIP1) undergoes alternative splicing to originate three LAP1 isoforms (LAP1A, B and C). However, it remains unclear if the same occurs with the human TOR1AIP1 gene, since only the LAP1B isoform had thus far been identified in human cells. In silico analysis suggested that, across different species, potential new LAP1 isoforms could be generated by alternative splicing. Using shRNA to induce LAP1 knockdown and HPLC-mass spectrometry analysis the presence of two isoforms in human cells was described and validated: LAP1B and LAP1C; the latter is putatively N-terminal truncated. LAP1B and LAP1C expression profiles appear to be dependent on the specific tissues analyzed and in cultured cells LAP1C was the major isoform detected. Moreover, LAP1B and LAP1C expression increased during neuronal maturation, suggesting that LAP1 is relevant in this process. Both isoforms were found to be post-translationally modified by phosphorylation and methionine oxidation and two LAP1B/LAP1C residues were shown to be dephosphorylated by PP1. This study permitted the identification of the novel human LAP1C isoform and partially unraveled the molecular basis of LAP1 regulation. PMID:25461922

  9. Residual Stresses and Tensile Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy in Lap Configuration

    NASA Astrophysics Data System (ADS)

    Naik, Bhukya Srinivasa; Cao, Xinjin; Wanjara, Priti; Friedman, Jacob; Chen, Daolun

    2015-08-01

    AZ31B-H24 Mg alloy sheets with a thickness of 2 mm were friction stir welded in lap configuration using two tool rotational rates of 1000 and 1500 rpm and two welding speeds of 10 and 20 mm/s. The residual stresses in the longitudinal and transverse directions of the weldments were determined using X-ray diffraction. The shear tensile behavior of the lap joints was evaluated at low [233 K (-40 °C)], room [298 K (25 °C)], and elevated [453 K (180 °C)] temperatures. The failure load was highest for the lower heat input condition that was obtained at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s for all the test temperatures, due to the smaller hooking height, larger effective sheet thickness, and lower tensile residual stresses, as compared to the other two welding conditions that were conducted at a higher tool rotational rate or lower welding speed. The lap joints usually fractured on the advancing side of the top sheet near the interface between the thermo-mechanically affected zone and the stir zone. Elevated temperature testing of the weld assembled at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s led to the failure along the sheet interface in shear fracture mode due to the high integrity of the joint that exhibited large plastic deformation and higher total energy absorption.

  10. New mathematical model for error reduction of stressed lap

    NASA Astrophysics Data System (ADS)

    Zhao, Pu; Yang, Shuming; Sun, Lin; Shi, Xinyu; Liu, Tao; Jiang, Zhuangde

    2016-05-01

    Stressed lap, compared to traditional polishing methods, has high processing efficiency. However, this method has disadvantages in processing nonsymmetric surface errors. A basic-function method is proposed to calculate parameters for a stressed-lap polishing system. It aims to minimize residual errors and is based on a matrix and nonlinear optimization algorithm. The results show that residual root-mean-square could be >15% after one process for classical trefoil error. The surface period errors close to the lap diameter were removed efficiently, up to 50% material removal.

  11. Machine Shop I. Learning Activity Packets (LAPs). Section A--Orientation.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "orientation and safety" instructional area of a Machine Shop I course. The two LAPs cover the following topics: orientation and general shop safety. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning steps…

  12. Machine Shop I. Learning Activity Packets (LAPs). Section C--Hand and Bench Work.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "hand and bench work" instructional area of a Machine Shop I course. The two LAPs cover the following topics: hand and bench work and pedestal grinder. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning steps…

  13. Machine Shop I. Learning Activity Packets (LAPs). Section D--Power Saws and Drilling Machines.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "power saws and drilling machines" instructional area of a Machine Shop I course. The two LAPs cover the following topics: power saws and drill press. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning steps…

  14. A Diagram for Evaluating Delamination of GFRP/Stainless-steel Adhesive Joints by Using Stress Singularity Parameters

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    Static tests on double-lap and T-type adhesive joints were performed. We developed a device that applies contact pressure to glass-fiber reinforced plastics/stainless-steel double-lap adhesive joints. The device contains a bolt with which a strain gauge is bonded for controlling contact pressure. Using this device, we investigated the effect of contact pressure on the delamination strength of double-lap adhesive joints. We applied tensile shear loading to double-lap adhesive joints under contact pressure to their adhesive interfaces. We found that the delamination strength of the double-lap adhesive joints increased with increasing contact pressure. On the contrary, when we applied compressive shear stress to them, the delamination strength stayed constant. Therefore the delamination strength of double-lap adhesive joints is dominated by normal stress when contact pressure under tensile shear loading is applied. On the other hand, it was dominated by shear stress when contact pressure under compressive shear loading was applied. Then stress singularity parameters for double-lap and T-type adhesive joints were performed by the FEM. Stress distributions near the bonding edge could be expressed by the stress singularity parameters. Finally, a delamination evaluation diagram using stress singularity parameters was developed. This diagram enables us to evaluate the delamination strength of adhesive joints.

  15. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  16. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Summary

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1983-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116K (-250 F), 294K (70 F) and 561K (550 F). Joint parameters evaluated were lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Tests of advanced joint concepts were also conducted to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. Special tests were conducted to establish material properties of the high temperature adhesive, designated A7F, used for bonding. Most of the bonded joint tests resulted in interlaminar shear or peel failures of the composite. There were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  17. INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS PLACED ON ZONE III; ASPHALT ZONE IX) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  18. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    NASA Astrophysics Data System (ADS)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-03-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  19. Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation

    NASA Astrophysics Data System (ADS)

    Jana, S.; Hovanski, Y.; Grant, G. J.

    2010-12-01

    An initial study was made to evaluate the feasibility of joining magnesium alloy AZ31 sheet to galvanized steel sheet in a lap configuration using friction stir welding (FSW). Two different automotive sheet steels were used for comparative evaluation of the dissimilar joining potential: a 0.8 mm thick, electrogalvanized (EG) mild steel, and a 1.5 mm thick hot-dipped galvanized (HDG) high-strength, low-alloy (HSLA) steel. These steels were joined to 2.33 mm thick AZ31B magnesium sheet. A single FSW tool design was used for both dissimilar welds, and the process parameters were kept the same. The average peak load for the AZ31-1.5 mm steel weld joint in lap shear mode was found to be 6.3 ± 1.0 kN. For the AZ31-0.8 mm steel weld, joint strength was 5.1 ± 1.5 kN. Microstructural investigation indicates melting of the Zn coating present on the steel sheets, and subsequent alloying with the Mg sheet resulted in the formation of a solidified Zn-Mg alloy layer.

  20. Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.

    2010-12-01

    An initial study was made to evaluate the feasibility of joining Magnesium alloy AZ31 sheet to galvanized steel sheet in lap configuration using friction stir welding (FSW). Two different automotive sheet steels were used for comparative evaluation of the dissimilar joining potential; a 0.8mm thick, electro galvanized (EG) mild steel, and a 1.5mm thick hot dipped galvanized (HDG) high-strength, low-alloy steel (HSLA). These steels were joined to 2.33mm thick AZ31B magnesium sheet. A single FSW tool design was used for both dissimilar welds, and process parameters were kept the same. Average peak load for the AZ31-1.5 mm steel weld joint in lap shear mode was found to be 6.3 ± 1.0 kN. For the AZ31-0.8 mm steel weld, joint strength was 5.1 ± 1.5 kN. Microstructural investigation indicates melting of the Zn coating at the interface and subsequent alloying with the Mg sheet resulting in formation of solidified Zn-Mg alloy layer at AZ31/steel interface.

  1. Using the LAPS / WRF system to Analyze and Forecast Solar Radiation

    NASA Astrophysics Data System (ADS)

    Albers, S. C.; Xie, Y.; Jiang, H.; Toth, Z.

    2012-12-01

    The Local Analysis and Prediction System (LAPS) is being used to produce rapid update, high resolution analyses and forecasts of solar radiation (Global Horizontal Irradiance or GHI). LAPS is highly portable and can be run onsite, particularly when high-resolution and rapid updating is needed. This allows the user to assimilate their own observational data merged with centrally available observations and to set up the analysis/forecast configuration to their liking. The cloud analysis uses satellite (including IR and 1-km resolution visible imagery, updated every 15-min), METARs, radar, aircraft and model first guess information to produce an hourly 3-D field of cloud fraction, cloud liquid, and cloud ice. The cloud analysis and satellite data together are used to produce a gridded analysis of total solar radiation. This is verified against a dense network of real-time solar radiation measurements that are independent (not used in the analysis). We are focusing mainly on a two nested domains covering the Southern Plains states that encompass networks of pyranometers located in Oklahoma and Texas. The GHI forecast is being run on the outer domain, and is being initialized using the same cloud analysis package that drives the analysis fields mentioned above. The HWT domain initializes WRF every hour with 15-minute output. Real-time verification of the analyses (including images of the analysis), and forecasts can be seen on our website, and updated results will be explored in this presentation.

  2. Using the LAPS / WRF system to Analyze and Forecast Solar Radiation

    NASA Astrophysics Data System (ADS)

    Albers, S. C.; Jankov, I.

    2011-12-01

    The LAPS system is being used to produce rapid update, high resolution analyses and forecasts of solar radiation. The cloud analysis uses satellite, METARs, radar, aircraft and model first guess information to produce an hourly 3-D field of cloud fraction, cloud liquid, and cloud ice. The cloud analysis and satellite data together are used to produce a gridded analysis of total solar radiation. This is verified against solar radiation measurements that are independent (not used in the analysis). Two domains are being run and verified at present. The one with the most stations covers the Oklahoma mesonet with about 100 pyranometers. The total solar radiation forecast is being run on two domains, and is being initialized using the same cloud analysis package that drives the analysis fields mentioned above. The Colorado domain produces hourly forecasts, initialized every 6 hours. It is verified with about 20 Oklahoma mesonet stations. The HWT domain initializes WRF every 2 hours, with 15-minute output. Forecasts are being compared with the Oklahoma mesonet. Real-time verification of the analyses (including images of the analysis), and forecasts can be seen on our website 'laps.noaa.gov', and will be explored in this presentation.

  3. Rene 95 brazed joint metallurgical program

    NASA Technical Reports Server (NTRS)

    Gay, C.; Givens, J.; Mastrorroco, S.; Sterman, A.

    1972-01-01

    This metallurgical program was specifically conducted for the establishment of material properties required for the design of the LF460 fan. The LF460 lift fan is an advanced 18:1 high thrust to weight single stage design. It has a turbine attached to the outer flowpath of the fan blade tip which minimizes the axial depth of the fan. Advanced lightweight attachment designs are employed in this concept to achieve minimum mass polar moments of inertia which are required for good aircraft flight response control. The design features which are unique to this advanced LF460 lift fan are the 0.010 inch thin Udimet 700 alloy integral tip turbine design, minimum weight braze attachment of the turbine to the fan blade, and the high strength and elevated temperature capability of the Rene'95 alloy for the fan blade. The data presented in this report show that the LF460 fan rotor design is feasible and that the design stresses and margins of safety were more than adequate. Prior to any production application, however, additional stress rupture/shear lap joints should be run in order to establish a firm 1200 F stress rupture curve for the CM50 braze metal.

  4. A scan-angle correction for thermal infrared multispectral data using side lapping images

    USGS Publications Warehouse

    Watson, K.

    1996-01-01

    Thermal infrared multispectral scanner (TIMS) images, acquired with side lapping flight lines, provide dual angle observations of the same area on the ground and can thus be used to estimate variations in the atmospheric transmission with scan angle. The method was tested using TIMS aircraft data for six flight lines with about 30% sidelap for an area within Joshua Tree National Park, California. Generally the results correspond to predictions for the transmission scan-angle coefficient based on a standard atmospheric model although some differences were observed at the longer wavelength channels. A change was detected for the last pair of lines that may indicate either spatial or temporal atmospheric variation. The results demonstrate that the method provides information for correcting regional survey data (requiring multiple adjacent flight lines) that can be important in detecting subtle changes in lithology.

  5. The ASLOTS concept: An interactive, adaptive decision support concept for Final Approach Spacing of Aircraft (FASA). FAA-NASA Joint University Program

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1993-01-01

    This presentation outlines a concept for an adaptive, interactive decision support system to assist controllers at a busy airport in achieving efficient use of multiple runways. The concept is being implemented as a computer code called FASA (Final Approach Spacing for Aircraft), and will be tested and demonstrated in ATCSIM, a high fidelity simulation of terminal area airspace and airport surface operations. Objectives are: (1) to provide automated cues to assist controllers in the sequencing and spacing of landing and takeoff aircraft; (2) to provide the controller with a limited ability to modify the sequence and spacings between aircraft, and to insert takeoffs and missed approach aircraft in the landing flows; (3) to increase spacing accuracy using more complex and precise separation criteria while reducing controller workload; and (4) achieve higher operational takeoff and landing rates on multiple runways in poor visibility.

  6. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis.

    PubMed

    Dobritsa, Anna A; Lei, Zhentian; Nishikawa, Shuh-Ichi; Urbanczyk-Wochniak, Ewa; Huhman, David V; Preuss, Daphne; Sumner, Lloyd W

    2010-07-01

    Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production. PMID:20442277

  7. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  8. Time- and temperature-dependent failures of a bonded joint

    SciTech Connect

    Sihn, Sangwook; Miyano, Yasushi; Tsai, S.W.

    1997-07-01

    Time and temperature dependent properties of a tubular lap bonded joint are reported. The joint bonds a cast iron rod and a composite pipe together with an epoxy type of an adhesive material containing chopped glass fiber. A new fabrication method is proposed.

  9. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  10. Microstructure and Fatigue Properties of a Friction Stir Lap Welded Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Naik, B. S.; Chen, D. L.; Cao, X.; Wanjara, P.

    2013-08-01

    Friction stir welding (FSW), being an enabling solid-state joining technology, can be suitably applied for the assembly of lightweight magnesium (Mg) alloys. In this investigation, friction stir lap welded (FSLWed) joints of AZ31B-H24 Mg alloy were characterized in terms of the welding defects, microstructure, hardness, and fatigue properties at various combinations of tool rotational rates and welding speeds. It was observed that the hardness decreased from the base metal (BM) to the stir zone (SZ) across the heat-affected zone (HAZ) and thermomechanically affected zone (TMAZ). The lowest value of hardness appeared in the SZ. With increasing tool rotational rate or decreasing welding speed, the average hardness in the SZ decreased owing to increasing grain size, and a Hall-Petch-type relationship was established. Fatigue fracture of the lap welds always occurred at the interface between the SZ and TMAZ on the advancing side where a larger hooking defect was present (in comparison with the retreating side). The welding parameters had a significant influence on the hook height and the subsequent fatigue life. A relatively "cold" weld, conducted at a rotational rate of 1000 rpm and welding speed of 20 mm/s, gave rise to almost complete elimination of the hooking defect, thus considerably (over two orders of magnitude) improving the fatigue life. Fatigue crack propagation was basically characterized by the formation of fatigue striations concomitantly with secondary cracks.

  11. Lap time optimisation of a racing go-kart

    NASA Astrophysics Data System (ADS)

    Lot, Roberto; Dal Bianco, Nicola

    2016-02-01

    The minimum lap time optimal control problem has been solved for a go-kart model. The symbolic algebra software Maple has been used to derive equations of motion and an indirect method has been adopted to solve the optimal control problem. Simulation has been successfully performed on a full track lap with a multibody model endowed with seven degrees of freedom. Geometrical and mechanical characteristics of a real kart have been measured by a lab test to feed the mathematical model. Telemetry recorded in an entire lap by a professional driver has been compared to simulation results in order to validate the model. After the reliability of the optimal control model was proved, the simulation has been used to study the peculiar dynamics of go-karts and focus to tyre slippage dynamics, which is highly affected by the lack of differential.

  12. Novel virtual Lap-Band simulator could promote patient safety.

    PubMed

    De, Suvranu; Ahn, Woojin; Lee, Doo Yong; Jones, Daniel B

    2008-01-01

    This paper presents, for the first time, a physics-based modeling technique for the Lap-Band (Inamed Health) used in laparoscopic gastric banding (LAGB) operations for treating the morbidly obese. A virtual LAGB simulator can help train medical students as well as surgeons who embark at learning this relatively new operation. The Lap-Band has different thickness and curvature along the centerline, and therefore leads to different deformation behaviors. A hybrid modeling strategy is therefore adopted to successfully replicate its dynamics. A mass-spring model, used to model the less stiff part, is coupled to a quasi-static articulated link model for the more stiff and inextensible part. The virtual Lap-Band model has been implemented into a complete graphics-haptics-physics-based system with two PHANToM Omni devices (from Sensible Technologies) being used for real-time bimanual interaction with force feedback. PMID:18391265

  13. Characterization studies on the additives mixed L-arginine phosphate monohydrate (LAP) crystals

    NASA Astrophysics Data System (ADS)

    Haja Hameed, A. S.; Karthikeyan, C.; Ravi, G.; Rohani, S.

    2011-04-01

    L-arginine phosphate monohydrate (LAP), potassium thiocyanate (KSCN) mixed LAP (LAP:KSCN) and sodium sulfite (Na 2SO 3) mixed LAP (LAP:Na 2SO 3) single crystals were grown by slow cooling technique. The effect of microbial contamination and coloration on the growth solutions was studied. The crystalline powders of the grown crystals were examined by X-ray diffraction and the lattice parameters of the crystals were estimated. From the FTIR spectroscopic analysis, various functional group frequencies associated with the crystals were assigned. Vickers microhardness studies were done on {1 0 0} faces for pure and additives mixed LAP crystals. From the preliminary surface second harmonic generation (SHG) results, it was found that the SHG intensity at (1 0 0) face of LAP:KSCN crystal was much stronger than that of pure LAP.

  14. Shear fracture of jointed steel plates of bolted joints under impact load

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.

    2013-07-01

    The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.

  15. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect

    Movahedi, M.; Kokabi, A.H.; Seyed Reihani, S.M.; Najafi, H.; Farzadfar, S.A.; Cheng, W.J.; Wang, C.J.

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  16. Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet that…

  17. Auto Mechanics I. Learning Activity Packets (LAPs). Section B--Measuring.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains three learning activity packets (LAPs) that outline the study activities for the instructional area of measuring for an Auto Mechanics I course. The three LAPs cover the following topics: rules, the outside micrometer, and the inside micrometer. Each LAP contains a cover sheet that describes its purpose, an introduction, and…

  18. Auto Mechanics I. Learning Activity Packets (LAPs). Section D--Suspension.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains six learning activity packets (LAPs) that outline the study activities for the "suspension" instructional area for an Auto Mechanics I course. The six LAPs cover the following topics: wheel bearings, tires and wheels, wheel balancing, suspension system, steering system, and wheel alignment. Each LAP contains a cover sheet…

  19. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  20. Design Document: Content Module; L.A.P. Version I.

    ERIC Educational Resources Information Center

    Porch, Ann; Lang, Pat

    A series of computer programs and routines designed to assist researchers in the analysis of language usage was developed by the Southwest Regional Laboratory (SWRL). This document is one of a series that describes design specifications for the individual modules which comprise the Language Analysis Package (LAP). The Content Module functions as a…

  1. Learning Activity Package, Physical Science 92, LAPs 1-9.

    ERIC Educational Resources Information Center

    Williams, G. J.

    This set of nine teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in physical science covers the topics of scientific equipment and procedures; measure of time, length, area, and volume; water; oxygen and oxidation; atmospheric pressure; motion; machines; carbon; and light and sound. Each unit contains a rationale…

  2. Insights: A LAP on Moles: Teaching an Important Concept.

    ERIC Educational Resources Information Center

    Ihde, John

    1985-01-01

    Describes a learning activity packet (LAP) designed to help students understand the basic concept of the mole as a chemical unit; know relationships between the mole and atomic weights in the periodic table; and solve basic conversion problems involving moles, atoms, and molecules. (JN)

  3. Learning Activity Package, Algebra 124, LAPs 46-55.

    ERIC Educational Resources Information Center

    Holland, Bill

    A series of 10 teacher-prepared Learning Activity Packages (LAPs) in advanced algebra and trigonometry, these units cover absolute value, inequalities, exponents, radicals, and complex numbers; functions; higher degree equations and the derivative; the trigonometric functions; graphs and applications of the trigonometric functions; sequences and…

  4. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    SciTech Connect

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; Miles, Michael; Song, Guang-Ling; Wang, Yanli; Feng, Zhili

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly prepared joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.

  5. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  6. Nondestructive inspection of CFRP adhesively bonded joints using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Webb, S.; Shin, P.; Peters, K.; Selfridge, R.; Schultz, S.

    2013-05-01

    One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. In this work we demonstrate that dynamic, full spectral scanning of FBG sensors embedded in the adhesive bond can identify changes in bond quality through the measurement of non-linear dynamics of the joint. Eighteen lap joint specimens were fabricated with varying manufacturing quality. Ten samples also included fiber Bragg grating (FBG) sensors embedded in the adhesive bond for real-time inspection during a simulated flight condition of these single-lap joints. Prior to testing, pulse phase thermography imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. The lap joint specimens were then subjected to fatigue loading, with regular interrogation of the FBG sensors at selected load cycle intervals. The FBG data was collected during vibration loading of the lap joint to represent an in-flight environment. Changes in the lap joint dynamic response, including the transition to non-linear responses, were measured from both the full-spectral and peak wavelength FBG data. These changes were correlated to initial manufacturing defects and the progression of fatigue-induced damage independently measured with pulse phase imaging and visual inspections of the failure surfaces.

  7. Geometrically nonlinear analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.

    1982-01-01

    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.

  8. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1998-12-01

    Joints that exhibited tough fracture behavior were formed in a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure were proposed. Joints with a simple overlap geometry (only a few fingers) had to be very long in order to prevent brittle failure. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength, by changing the fiber coating, significantly increased matrix cracking and ultimate strength of the joints. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints should permit building of structures containing joints with only a minor reduction of design stresses.

  9. Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization

    PubMed Central

    Boyd, Chelsea D.; Smith, T. Jarrod; El-Kirat-Chatel, Sofiane; Newell, Peter D.; Dufrêne, Yves F.

    2014-01-01

    The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins. PMID:24837291

  10. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  11. The impact of lubricants on the precision lapping process.

    PubMed

    Jiang, Xionghua; Chen, Zhenxing; Wolfram, Joy; Wei, Zhongxian; Shen, Yuqiu; Yang, Zhizhou

    2014-12-01

    The impact of lubricants on pole-tip recession and surface morphology of hard disk drive heads in the precision lapping process was investigated with atomic force microscopy, scanning electron microscopy, and auger electron spectroscopy. In particular, the effects of deionized water, hydrocarbon oil, ethanediol, isopropanol, and ethanol lubricants were evaluated. The results reveal that proper selection of lubricant is critical for achieving optimal performance in the lapping process. A mixture of 68% hydrocarbon oil, 30% isopropanol, and 2% octadecenoic acid was found to yield the most favorable results, displaying a writer shield recession, first shield of reader recession, and surface roughness of 0.423, 0.581, and 0.242 nm, respectively. PMID:25387606

  12. Thin plate gap bridging study for Nd:YAG pulsed laser lap welds.

    SciTech Connect

    Roach, Robert Allen; Fuerschbach, Phillip William; Bernal, John E.; Norris, Jerome T.

    2006-01-01

    In an on going study of gap bridging for thin plate Nd:YAG laser lap welds, empirical data, high speed imaging, and computer modeling were utilized to better understand surface physics attributed to the formation and solidification of a weld pool. Experimental data indicates better gap bridging can be achieved through optimized laser parameters such as pulse length, duration, and energy. Long pulse durations at low energies generating low peak powers were found to create the highest percent of gap bridging ability. At constant peak power, gap-bridging ability was further improved by using a smaller spot diameter resulting in higher irradiances. Hence, welding in focus is preferable for bridging gaps. Gas shielding was also found to greatly impact gap-bridging ability. Gapped lap welds that could not be bridged with UHP Argon gas shielding, were easily bridged when left unshielded and exposed to only air. Incident weld angle and joint offset were also investigated for their ability to improve gap bridging. Optical filters and brightlight surface illumination enabled high-speed imaging to capture the fluid dynamics of a forming and solidifying weld pool. The effects of various laser parameters and the weld pool's interaction with the laser beam could also be observed utilizing the high-speed imaging. The work described is used to develop and validate a computer model with improved weld pool physics. Finite element models have been used to derive insight into the physics of gap bridging. The dynamics of the fluid motion within the weld pool in conjunction with the free surface physics have been the primary focus of the modeling efforts. Surface tension has been found to be a more significant factor in determining final weld pool shape than expected.

  13. Spectroscopic, energetic and metallographic investigations of the laser lap welding of AISI 304 using the response surface methodology

    NASA Astrophysics Data System (ADS)

    Rizzi, Domenico; Sibillano, Teresa; Pietro Calabrese, Paolo; Ancona, Antonio; Mario Lugarà, Pietro

    2011-07-01

    Spectroscopic signals originated by the laser-induced plasma optical emission have been simultaneously investigated together with energetic and metallographic analyses of CO 2 laser welded stainless steel lap joint, using the Response Surface Methodology. This statistical approach allowed us to study the influence of the laser beam power and the laser welding speed on the following response parameters: plasma plume electron temperature, joint penetration depth and melted area. A clear correlation has been found between all the investigated response parameters. The results have been shown to be consistent with quantitative considerations on the energy supplied to the workpiece as far as the laser power and travel speed were varied. The regression model obtained in this way could be a valuable starting point to develop a closed loop control of the weld penetration depth and the melted area in the investigated process window.

  14. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Skoumal, D. E.

    1980-01-01

    Bonded and bolted designs are presented for each of four major attachment types. Prepreg processing problems are discussed and quality control data are given for lots 2W4604, 2W4632 and 2W4643. Preliminary design allowables test results for tension tests and compression tests of laminates are included. The final small specimen test matrix is defined and the configuration of symmetric step-lap joint specimens are shown. Finite element modeling studies of a double lap joint were performed to evaluate the number of elements required through the adhesive thickness to assess effects of various joint parameters on stress distributions. Results of finite element analyses assessing the effect of an adhesive fillet on the stress distribution in a double lap joint are examined.

  15. The effects of inherent flaws on the time and rate dependent failure of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Padgilwar, S.

    1982-01-01

    Inherent flaws, as well as the effects of rate and time, are shown by tests on viscoelastic adhesive-bonded single lap joints to be as critical in joint failure as environmental and stress concentration effects, with random inherent flaws and loading rate changes resulting in an up to 40% reduction in joint strength. It is also found that the asymptotic creep stress, below which no delayed failure may occur, may under creep loading be as much as 45% less than maximum adhesive strength. Attention is given to test results for the case of titanium-LARC-3 adhesive single-lap specimens.

  16. Non-destructive evaluation of metal-to-metal adhesive joints using vibration analysis: experimental results

    NASA Astrophysics Data System (ADS)

    Pandurangan, Pradeep; Buckner, Gregory D.

    2006-03-01

    Vibration based non-destructive evaluation shows promise for damage detection in metal-to-metal adhesive joints. This research investigates an experimental technique to diagnose damage in single-lap adhesive joints subject to cyclical tensile loading. Vibration analysis reveals that damage can be correlated with changes in identified modal damping ratios. Constant amplitude forcing functions are employed to eliminate amplitude-dependent nonlinearities in the dynamic response profiles. Damping estimates obtained from time-domain analyses correlate well with damage magnitudes. Finite element modal analysis of the lap joints supports the experimental results.

  17. Guanidine-phosphate non-covalent interaction in LAP crystal growth solution evidenced from spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhang, G. H.; Wang, X. Q.; Zhu, L. Y.; Xu, D.

    2015-09-01

    The similar L-arginine molecule aggregation has been found in L-arginine (LA) and L-arginine phosphate monohydrate (LAP) aqueous solutions. The special fluorescence emission at 380 nm of LA aggregates in LAP solution has been found, compared with the emission of LA solution at 415 nm, which has an obvious blue shift. By comparing the fluorescence spectra of several solutions for L-arginine and L-lysine salts, the interaction between phosphate and guanidine in LAP solution was considered to be the cause of its special fluorescence emission. Meanwhile, when LAP molecule formed in solution, the fluorescence emission wavelength and the UV absorption intensity at 296 nm of L-arginine solutions have mutated. Therefore, the group interaction involved by guanidine has changed the fluorescence properties of L-arginine aggregates in LAP solution, indicating that the specific interaction between phosphate and guanidine exists in LAP molecule.

  18. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si{sub 3}N{sub 4}-coated fibers had a 0/90{degree} architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses.

  19. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  20. Aircraft Noise

    NASA Astrophysics Data System (ADS)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  1. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  2. Dual-band infrared (DBIR) imaging inspections of Boeing 737 and KC-135 aircraft panels

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-08-27

    We apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft, and several Boeing KC-135 aircraft panels. Our analyses are discussed in this report. After flash-heating the aircraft skin, we record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. We analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. We established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum reference panels. Based on this correlation, lap splice temperatures rise 1{degrees}C per 24 {plus_minus} 5 % material loss at 0.4 s after the heat flash. We show tables, charts and temperature maps of typical lap splice material losses for the riveted (and bonded) Boeing 737, and the riveted (but unbonded) Boeing KC-135. We map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterize shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur. Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  3. Double-sided fiber laser beam welding process of T-joints for aluminum aircraft fuselage panels: Filler wire melting behavior, process stability, and their effects on porosity defects

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Yang, Zhibin; Chen, Yanbin; Li, Liqun; Jiang, Zhenguo; Zhang, Yunlong

    2013-11-01

    Aluminum alloy T-joints for aircraft fuselage panels were fabricated by double-sided fiber laser beam welding with filler wire, and the influence of the wire feeding posture on the welding process stability was investigated. A CMOS high speed video system was used to observe the wire melting behavior and the weld pool dynamics in real time during the welding process by using a bandpass red laser with an emission wavelength of 808 nm as backlight source to illuminate the welding zone. The weld porosity defects were analyzed by X-ray radiography. The effects of wire feeding posture on the wire melting behavior, process stability, and porosity defects were investigated. The experimental results indicated that three distinct filler material transfer modes were identified under different wire feeding positions: liquid bridge transfer mode, droplet transfer mode, and spreading transfer mode. The liquid bridge transfer mode could guarantee a stable welding process, and result in the lowest porosity. Compared with wire feeding in the leading direction, the process was not stable and porosity increased when wire feeding in the trailing direction. Increased in the wire feeding angle was disadvantage for pores to escape from the weld molten pool, meanwhile, it made the welding process window smaller due to increasing the centering precision requirement for adjusting the filler wire.

  4. Aircraft Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successful commercialization of the AirCraft SYNThesis (ACSYNT) tool has resulted in the creation of Phoenix Integration, Inc. ACSYNT has been exclusively licensed to the company, an outcome of a seven year, $3 million effort to provide unique software technology to a focused design engineering market. Ames Research Center formulated ACSYNT and in working with the Virginia Polytechnic Institute CAD Laboratory, began to design and code a computer-aided design for ACSYNT. Using a Joint Sponsored Research Agreement, Ames formed an industry-government-university alliance to improve and foster research and development for the software. As a result of the ACSYNT Institute, the software is becoming a predominant tool for aircraft conceptual design. ACSYNT has been successfully applied to high- speed civil transport configuration, subsonic transports, and supersonic fighters.

  5. Machine Shop I. Learning Activity Packets (LAPs). Section B--Basic and Related Technology.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains eight learning activity packets (LAPs) for the "basic and related technology" instructional area of a Machine Shop I course. The eight LAPs cover the following topics: basic mathematics, blueprints, rules, micrometer measuring tools, Vernier measuring tools, dial indicators, gaging and inspection tools, and materials and…

  6. Learning Activity Package, Biology 102, (LAP) Studies 1, 3, and 4.

    ERIC Educational Resources Information Center

    Rhoden, Bruce

    Included are three Learning Activity Package (LAP) studies for use in high school biology: Everything has a Place (Grouping and the Diversity of Life), Energy Relations, and Reproduction. Each LAP contains a rationale for teaching the material included, student objectives (stated in behavioral terms), a list of related resources (books,…

  7. Auto Mechanics I. Learning Activity Packets (LAPs). Section A--Orientation and Safety.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains seven learning activity packets (LAPs) that outline the study activities for the orientation and safety instructional area for an Auto Mechanics I course. The seven LAPs cover the following topics: orientation, safety, hand tools, arc welding, oxyacetylene cutting, oxyacetylene fusion welding, and oxyacetylene braze welding.…

  8. Edge effect modeling and experiments on active lap processing.

    PubMed

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-01

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL. PMID:24921777

  9. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-01

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications. PMID:27028978

  10. The Teacher's Lap--A Site of Emotional Well-Being for the Younger Children in Day-Care Groups

    ERIC Educational Resources Information Center

    Hännikäinen, Maritta

    2015-01-01

    This study focuses on a particular relationship between teachers and one- to three-year-old children: the child in the teacher's lap. When, in what situations, does this happen? Who are the children in the teacher's lap? Why are they there? How do children express emotional well-being when in the teacher's lap? Relational, sociocultural and…

  11. Dechlorination of Chloral Hydrate Is Influenced by the Biofilm Adhesin Protein LapA in Pseudomonas putida LF54

    PubMed Central

    Zhang, Wanjun; Huhe; Pan, Yuanbai; Toyofuku, Masanori; Nomura, Nobuhiko; Nakajima, Toshiaki

    2013-01-01

    LapA is the largest surface adhesion protein of Pseudomonas putida that initiates biofilm formation. Here, by using transposon insertion mutagenesis and a conditional lapA mutant, we demonstrate for the first time that LapA influences chloral hydrate (CH) dechlorination in P. putida LF54. PMID:23603683

  12. Mechanical behaviour of a friction stir spot welding lap under static loading

    NASA Astrophysics Data System (ADS)

    Herbelot, C.; Hoang, T. Dang; Imad, A.; Benseddiq, N.

    2011-01-01

    Friction stir spot welding (FSSW) is a recent welding method which takes advantage of being performed in the solid state and presents many benefits such as a lower heat-input, a reduction of residual stresses and an elimination of the solidification defects for example. The present study investigates, for fixed process parameters and tool geometry, the fracture and damage of a single-lap friction stir spot welding joints formed from thin sheets of aluminum alloy 6082 T6. An experimental approach was carried out in order to analyze the sequence of damage mechanisms using acoustic emission (A.E.) and measurement of fields by digital image correlation (D.I.C.) techniques simultaneously. The A.E. technique allows the monitoring of the evolution of acoustic activities by taking into account energy of the events. The D.I.C. technique confirms the damage scenarios after the treatment of strain field at any point near the fastener and especially between the exit hole and the shoulder footprint. The coupling of those two techniques allows to identify characteristic points and a breakdown of the load displacement curve in phases.

  13. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  14. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  15. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    SciTech Connect

    Del Grande, N.K.

    1993-12-31

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. The authors mapped surface temperature differences of 0.2 to 0.6 C for 5 to 14 % thickness losses within corroded lap splices at 0.4 seconds after the heat flash. The procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). They established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels which had thickness losses from milled flat-bottom holes. The authors mapped the lap splice composite thermal inertia, (k{rho}c){sup 1/2}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where they observed ``pillowing`` from volume build-up of corrosion by-products.

  16. Dual-band infrared imaging for quantitative corrosion detection in aging aircraft

    SciTech Connect

    Del Grande, N.K.

    1993-11-01

    Aircraft skin thickness-loss from corrosion has been measured using dual-band infrared (DBIR) imaging on a flash-heated Boeing 737 fuselage structure. We mapped surface temperature differences of 0.2 to 0.6 {degrees}C for 5 to 14% thickness losses within corroded lap splices at 0.4 seconds after the heat flash. Our procedure mapped surface temperature differences at sites without surface-emissivity clutter (from dirt, dents, tape, markings, ink, sealants, uneven paint, paint stripper, exposed metal and roughness variations). We established the correlation of percent thickness loss with surface temperature rise using a partially corroded F-18 wing box and several aluminum panels which had thickness losses from milled flat-bottom holes. We mapped the lap splice composite thermal inertia, (kpc){sup {1/2}}, which characterized shallow skin defects within the lap splice at early times (<0.3 s) and deeper skin defects within the lap splice at late times (>0.4 s). Corrosion invaded the inside of the Boeing 737 lap splice, beneath the galley and the latrine, where we observed ``pillowing`` from volume build-up of corrosion by-products.

  17. Fatigue Strength and Related Characteristics of Joints in 24s-t Alclad Sheet

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report includes tension fatigue test results on the following types of samples of 0.040-inch alclad 24s-t: (1) monoblock sheet samples as received and after a post-aging heat treatment, (2) "sheet efficiency" samples (two equally stressed sheets joined by a single transverse row of spot welds) both as received and after post-aging, (3) spot-welded lap-joint samples as received and after post-aging, and (4) roll-welded lap-joint samples. (author)

  18. Debonding of Stitched Composite Joints: Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation ofthe debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  19. Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites

    NASA Astrophysics Data System (ADS)

    Zelenak, Steve; Radford, Donald W.; Dean, Michael W.

    1993-04-01

    The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.

  20. STOL Aircraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Michael E. Fisher, President of AeroVisions International, has introduced the Culex light twin engine aircraft which offers economy of operation of a single engine plane, the ability to fly well on one engine, plus the capability of flying from short, unimproved fields of takeoff and landing distances less than 35 feet. Key element of design is an airfoil developed by Langley. Culex was originally intended to be factory built aircraft for special utility markets. However, it is now offered as a build-it-yourself kit plane.

  1. Large-Scale Advanced Prop-Fan (LAP) blade design

    NASA Technical Reports Server (NTRS)

    Violette, John A.; Sullivan, William E.; Turnberg, Jay E.

    1984-01-01

    This report covers the design analysis of a very thin, highly swept, propeller blade to be used in the Large-Scale Advanced Prop-Fan (LAP) test program. The report includes: design requirements and goals, a description of the blade configuration which meets requirements, a description of the analytical methods utilized/developed to demonstrate compliance with the requirements, and the results of these analyses. The methods described include: finite element modeling, predicted aerodynamic loads and their application to the blade, steady state and vibratory response analyses, blade resonant frequencies and mode shapes, bird impact analysis, and predictions of stalled and unstalled flutter phenomena. Summarized results include deflections, retention loads, stress/strength comparisons, foreign object damage resistance, resonant frequencies and critical speed margins, resonant vibratory mode shapes, calculated boundaries of stalled and unstalled flutter, and aerodynamic and acoustic performance calculations.

  2. Lamina Associated Polypeptide 1 (LAP1) Interactome and Its Functional Features

    PubMed Central

    Serrano, Joana B.; da Cruz e Silva, Odete A. B.; Rebelo, Sandra

    2016-01-01

    Lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. To date, LAP1’s precise function has not been fully elucidated but analysis of its interacting proteins will permit unraveling putative associations to specific cellular pathways and cellular processes. By assessing public databases it was possible to identify the LAP1 interactome, and this was curated. In total, 41 interactions were identified. Several functionally relevant proteins, such as TRF2, TERF2IP, RIF1, ATM, MAD2L1 and MAD2L1BP were identified and these support the putative functions proposed for LAP1. Furthermore, by making use of the Ingenuity Pathways Analysis tool and submitting the LAP1 interactors, the top two canonical pathways were “Telomerase signalling” and “Telomere Extension by Telomerase” and the top functions “Cell Morphology”, “Cellular Assembly and Organization” and “DNA Replication, Recombination, and Repair”. Once again, putative LAP1 functions are reinforced but novel functions are emerging. PMID:26784240

  3. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  4. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  5. Monte Carlo simulation methodology for the reliabilty of aircraft structures under damage tolerance considerations

    NASA Astrophysics Data System (ADS)

    Rambalakos, Andreas

    Current federal aviation regulations in the United States and around the world mandate the need for aircraft structures to meet damage tolerance requirements through out the service life. These requirements imply that the damaged aircraft structure must maintain adequate residual strength in order to sustain its integrity that is accomplished by a continuous inspection program. The multifold objective of this research is to develop a methodology based on a direct Monte Carlo simulation process and to assess the reliability of aircraft structures. Initially, the structure is modeled as a parallel system with active redundancy comprised of elements with uncorrelated (statistically independent) strengths and subjected to an equal load distribution. Closed form expressions for the system capacity cumulative distribution function (CDF) are developed by expanding the current expression for the capacity CDF of a parallel system comprised by three elements to a parallel system comprised with up to six elements. These newly developed expressions will be used to check the accuracy of the implementation of a Monte Carlo simulation algorithm to determine the probability of failure of a parallel system comprised of an arbitrary number of statistically independent elements. The second objective of this work is to compute the probability of failure of a fuselage skin lap joint under static load conditions through a Monte Carlo simulation scheme by utilizing the residual strength of the fasteners subjected to various initial load distributions and then subjected to a new unequal load distribution resulting from subsequent fastener sequential failures. The final and main objective of this thesis is to present a methodology for computing the resulting gradual deterioration of the reliability of an aircraft structural component by employing a direct Monte Carlo simulation approach. The uncertainties associated with the time to crack initiation, the probability of crack detection, the

  6. The effect of diamond powder characteristics on lapping of sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Rosczyk, Benjamin; Burkam, Eric; Titov, Artem; Onyenemezu, Clement; Benea, Ion C.

    2015-10-01

    In Automotive applications, sintered Silicon Carbide has been used in applications such as seal pump faces. The surface of sintered SiC, when lapped or polished for sealing to another surface, must be free of blemishes and mechanical defects. Lapping and polishing processes therefore must be well defined and controlled assuring minimal variation and production scrap. In this study, we related the characteristics of different diamond powders (particle size distribution, particle shape and surface) to their performance in lapping of sintered silicon carbide material, expressed as removal rate and surface finish.

  7. Electromechanical behaviour of REBCO tape lap splices under transverse compressive loading

    NASA Astrophysics Data System (ADS)

    Grether, A.; Scheuerlein, C.; Ballarino, A.; Bottura, L.

    2016-07-01

    We have studied the influence of transverse compressive stress on the resistance and critical current (I c ) of soldered REBCO tape lap splices. Internal contact resistances dominate the overall REBCO lap splice resistances. Application of transverse compressive stress up to 250 MPa during the resistance measurements does not alter the resistance and I c of the soldered REBCO splices that were studied. The resistance of unsoldered REBCO tape lap splices depends strongly on the contact pressure. At a transverse compressive stress of 100 MPa, to which Roebel cables are typically exposed in high field magnets, the crossover splice contact resistance is comparable to the internal tape resistances.

  8. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, T.A.; Yetter, H.H.

    1985-01-30

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  9. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, Thomas A.; Yetter, Harold H.

    1986-01-01

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  10. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  11. Roles of Cyclic Di-GMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas putida Adhesins LapA and LapF

    PubMed Central

    Martínez-Gil, Marta; Ramos-González, María Isabel

    2014-01-01

    LapA and LapF are large extracellular proteins that play a relevant role in biofilm formation by Pseudomonas putida. Current evidence favors a sequential model in which LapA is first required for the initial adhesion of individual bacteria to a surface, while LapF participates in later stages of biofilm development. In agreement with this model, lapF transcription was previously shown to take place at late times of growth and to respond to the stationary-phase sigma factor RpoS. We have now analyzed the transcription pattern of lapA and other regulatory elements that influence expression of both genes. The lapA promoter shows a transient peak of activation early during growth, with a second increase in stationary phase that is independent of RpoS. The same pattern is observed in biofilms although expression is not uniform in the population. Both lapA and lapF are under the control of the two-component regulatory system GacS/GacA, and their transcription also responds to the intracellular levels of the second messenger cyclic diguanylate (c-di-GMP), although in surprisingly reverse ways. Whereas expression from the lapA promoter increases with high levels of c-di-GMP, the opposite is true for lapF. The transcriptional regulator FleQ is required for the modulation of lapA expression by c-di-GMP but has a minor influence on lapF. This work represents a further step in our understanding of the regulatory interactions controlling biofilm formation in P. putida. PMID:24488315

  12. Alteration of Sulphides in the Rumuruti Chondrite La Paz Icefield (LAP) 031275

    NASA Astrophysics Data System (ADS)

    Steer, E. D.; Treiman, A. H.

    2014-09-01

    Pyrrhotite in LAP 03175 (R5) has altered to a fine-grained mineral mixture. New data (optical, chemical, and Raman) suggest the mixture includes violarite and tochilinite, but not (as suggested earlier) graphite, hematite, and/or jarosite.

  13. Composition of matrix in the CR chondrite LAP 02342

    NASA Astrophysics Data System (ADS)

    Wasson, John T.; Rubin, Alan E.

    2009-03-01

    We report evidence of interchondrule matrix heterogeneity on a scale of ˜50 μm in the well-preserved CR2 chondrite LAP 02342. Despite minor effects resulting from asteroidal aqueous alteration, the matrix in this CR chondrite seems to preserve much of the compositional record of nebular fines. We carried out electron-microprobe studies using a 3-μm-diameter beam; we analyzed 10 elements in 36- or 49-point grids on 11 ca. 50 × 50-μm rectangular areas of matrix. Each grid area has a distinct composition, inconsistent with a simple model of matrix material having a uniform composition throughout the nebular formation region of the CR chondrites. On S-Fe, Mg-Si, K-Na and K-Al scatter diagrams, the grid areas (i.e., different matrix patches) are largely separated from each other; plots of means with 95% confidence limits demonstrate that the compositions are resolvable. Five matrix areas were analyzed again in duplicate runs; excellent agreement was observed between duplicate studies. LAP 02342 experienced two forms of mild aqueous alteration - as patchy enrichments in Ca (inferred to reflect CaCO 3) and as regions in which sulfide laths are embedded within phyllosilicates. Despite this evidence of aqueous transport, the effect on the composition of matrix is not resolvable. For example, matrix points that were adjacent to points with high CaCO 3 contents show elemental concentrations similar to those in regions having only one or two points with a Ca enrichment. It appears that secondary minerals are found in areas where there are suitable precursor phases and voids into which new phases could grow unimpeded. Calcium appears to be unique in forming a phase that greatly lowers the Ca ++ content of the aqueous medium, thus enhancing the rate of diffusion. Because chondrules vary widely in bulk composition, the formation of chondrules in small sets (100 or less) could generate "smoke" and mesostasis spray with compositions unique to each set. However, if these

  14. Crystal structure, spectroscopic and thermal properties of [Zn(Lap)2(DMF)(H2O)] and isomorphous [M(Lap)2]n (M: Cd, Mn) complexes

    NASA Astrophysics Data System (ADS)

    Farfán, R. A.; Espíndola, J. A.; Gomez, M. I.; de Jiménez, M. C. L.; Piro, O. E.; Castellano, E. E.; Martínez, M. A.

    2015-05-01

    The solid state structure of the lapacholate (Lap-) complexes with Zn(II), Cd(II) and Mn(II) were determined by X-ray diffraction methods. [Zn(Lap)2(DMF)(H2O)] crystallizes in the triclinic space group P 1 bar with a = 10.5051(4), b = 12.8020(4), c = 13.0394(4) Å, α = 60.418(2), β = 83.904(2), γ = 86.206(2)°, and Z = 2 molecules per unit cell. The isomorphous complexes [M(Lap)2]n (M: Cd, Mn) crystallize in the tetragonal space group P43212 with a = b = 13.5770(6) Å, c = 14.5730(6) Å (Cd), and a = b = 13.3539(4), c = 14.7148(4) Å (Mn), and Z = 4. In [Zn(Lap)2(DMF)(H2O)] the Zn(II) ion is in a distorted octahedral environment coordinated to two different and nearly perpendicular Lap- molecules acting as bidentate ligands through their adjacent carbonyl and phenol oxygen atoms. The remaining two cis-coordination sites are occupied by water and DMF molecules. [M(Lap)2]n (M: Cd, Mn) isomorphous complexes are also octahedral and present a supra-molecular arrangement in the lattice. There is only one independent Lap- molecule that coordinates the metal through all three ligand binding sites, giving rise to a 3-D structure of [M(Lap)2]n complexes that extends throughout the crystal lattice. The lapachol binding to metal is also revealed by the IR spectra. In fact, the carbonyl Cdbnd O stretching frequency is appreciable red-shifted in the complexes as compared to uncoordinated lapachol ligand. As expected, the IR and UV-Vis spectra of the isomorphous pair of complexes closely resemble to each other. Up to above 300 °C there are significant differences in the TGA of the Zn complex when compared with the isomorphous pair: while the former shows the loss of the secondary ligands (water and DMF), the latter exhibits a plateau signaling the lesser labile character of the lapacholate ligand.

  15. Fabrication of superconducting joints for Ag-clad BSCCO conductors

    SciTech Connect

    Iyer, A.N.; Huang, J.Y.; Jammy, R.

    1995-07-01

    Potential applications of high-T{sub c} superconductors include motors, generators, transmission cables, magnets, etc. At present, resistive connections are used to connect various high-T{sub c} components for such applications. However, to improve efficiency, it is imperative that the resistive connection be replaced by a true superconducting joint. Using a novel etching technique, we have fabricated superconducting lap and butt joints between Ag-clad BSCCO conductors. The Ag sheath from one side of the tape was selectively etched to expose the underlying superconductor core. Joints were formed by bringing the two tapes together and heat treating them. Detailed microstructural analysis and current transport measurements of the joints have been performed. Critical current (I{sub c}) through a monofilament lap- and butt-joint were 10 and 23 A, respectively. I{sub c} within the joint for mono- and multifilament conductors were 37 and 21 A, respectively. Additionally, effects of various joint configurations, processing techniques, and strain on the transport property of the joint are also being studied.

  16. Optimized bolted joint

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.; Bunin, B. L.; Watts, D. J. (Inventor)

    1986-01-01

    A method is disclosed for joining segments of the skin of an aircraft. The ends of the skin are positioned in close proximity or abutt each other. The skin is of constant thickness throughout the joint and is sandwiched between splice plates, which taper in thickness from the last to the first bolt rows in order to reduce the stiffness of the splice plate and thereby reduce the load transfer at the location where bypass loads are the highest.

  17. Study of joint designing on composite structures

    NASA Astrophysics Data System (ADS)

    Kazushi, Haruna

    In this paper, strength design techniques of CFRP mechanical joints and adhesively bonded joints were examined. Remarkable stress concentration generates at the mechanical hole edge and the adhesive edge, therefore an unskillful design of joints often causes a reduction in the strength of composite structures. In mechanical joints, a study on predicting the joint strength has been performed, but bearing failure that is most important failure mode for designing joints can not be predicted. So in this paper, the strength prediction method in consideration with bearing failure was examined. On the other hand, the criterion using the intensity of stress singularity was suggested in adhesive joints, but it was clarified in this paper, that this method can not be applied the prediction of the final failure strength. So the critical stress distribution of single-lap adhesive bonded carbon/epoxy joints was examined to obtain the failure criterion of the final failure. Moreover the simulation method for an internal stress generated by cure shrinkage of adhesive was also examined. In the proposed method for mechanical joint, 2-parameter criterion, that is combined the characteristic length with the Yamada-Sun criterion, was applied and the characteristic length for compression was determined from "bearing failure test" that was newly conceived to take bearing failure into consideration. In case of adhesive joints, it was thought that 2-parameter criterion was effective. So the prediction method using 2-parameter criterion was applied to other adhesive joints. Good agreement was obtained between predicted and experimental results in both mechanical and adhesive joints. And it was cleared that an internal stress could be simulated by the proposed method. Moreover, in mechanical joints, the most suitable stacking sequence, the reduction technique of interlaminar stress, and the elevation of joint strength by application of high toughness matrix were also shown. Consequently

  18. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  19. Aircraft radial-belted tire evaluation

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Davis, Pamela A.

    1990-01-01

    An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.

  20. LAPS Lidar Measurements at the ARM Alaska Northslope Site (Support to FIRE Project)

    NASA Technical Reports Server (NTRS)

    Philbrick, C. Russell; Lysak, Daniel B., Jr.; Petach, Tomas M.; Esposito, Steven T.; Mulik, Karoline R.

    1998-01-01

    This report consists of data summaries of the results obtained during the May 1998 measurement period at Barrow Alaska. This report does not contain any data interpretation or analysis of the results which will follow this activity. This report is forwarded with a data set on magnetic media which contains the reduced data from the LAPS lidar in 15 minute intervals. The data was obtained during the period 15-30 May 1998. The measurement period overlapped with several aircraft flights conducted by NASA as part of the FIRE project. The report contains a summary list of the data obtained plus figures that have been prepared to help visualize the measurement periods. The order of the presentation is as follows: Section 1. A copy of the Statement of Work for the planned activity of the second measurement period at the ARM Northslope site is provided. Section 2. A list of the data collection periods shows the number of one minute data records stored during each hour of operation and the corresponding size (Mbytes) of the one hour data folders. The folder and file names are composed from the year, month, day, hour and minute. The date/time information is given in UTC for easier comparison with other data sets. Section 3. A set of 4 comparisons between the LAPS lidar results and the sondes released by the ARM scientists from a location nearby the lidar. The lidar results show the +/- 1 sigma statistical error on each of the independent 75 m altitude bins of the data. This set of 4 comparisons was used to set and validate the calibration value which was then used for the complete data set. Section 4. A set of false color figures with up to 10 hours of specific humidity measurements are shown in each graph. Two days of measurements are shown on each page. These plots are crude representations of the data and permit a survey which indicates when the clouds were very low or where interesting events may occur in the results. These plots are prepared using the real time sequence

  1. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  2. SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 2. Appendix A: Design study for a SLEEC actuation system

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1986-01-01

    The results are presented of a design feasibility study of a self-contained (powered) actuation system for a Shingle Lap Extendible Exit Cone (SLEEC) for Transportation System (STS). The evolution of the SLEEC actuation system design is reviewed, the final design concept is summarized, and the results of the detailed study of the final concept of the actuation system are treated. A conservative design using proven mechanical components was established as a major program priority. The final mechanical design has a very low development risk since the components, which consist of ballscrews, gearing, flexible shaft drives, and aircraft cables, have extensive aerospace applications and a history of proven reliability. The mathematical model studies have shown that little or no power is required to deploy the SLEEC actuation system because acceleration forces and internal pressure from the rocket plume provide the required energies. A speed control brake is incorporated in the design in order to control the rate of deployment.

  3. LAP degradation product reflects plasma kallikrein-dependent TGF-β activation in patients with hepatic fibrosis.

    PubMed

    Hara, Mitsuko; Kirita, Akiko; Kondo, Wakako; Matsuura, Tomokazu; Nagatsuma, Keisuke; Dohmae, Naoshi; Ogawa, Shinji; Imajoh-Ohmi, Shinobu; Friedman, Scott L; Rifkin, Daniel B; Kojima, Soichi

    2014-01-01

    Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients. Here, we report that PLK cleaves LAP between R(58) and L(59) residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients. The N-terminal side LAP-DP ending at R(58) (R(58) LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L(59) (L(59) LAP-DP) was not detectable. The R(58) LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells. These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients. PMID:24877031

  4. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  5. Nondestructive inspection in adhesive-bonded joint CFRP using pulsed phase thermography

    NASA Astrophysics Data System (ADS)

    Shin, P. H.; Webb, S. C.; Peters, K. J.

    2013-05-01

    Many forms of damages in fiber reinforcement polymer (FRP) composites are difficult to detect because they occurs in subsurface layers of the composites. One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. This paper investigates pulsed phase thermography (PPT) imaging of fatigue damage in these adhesively bonded joints. Simulated defects were created to calibrate parameters for fatigue loading conditions, PPT imaging parameters, and a damage sizing algorithm for carbon fiber reinforced polymer (CFRP) single lap joints. Afterwards, lap joint specimens were fabricated with varying quality of manufacturing. PPT imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. Next, fatigue testing was performed and acquired PPT imaging data identified fatigue induced damage prior to final failure cycles. After failure of each sample, those images were confirmed by visual inspections of failure surface.

  6. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  7. Light Absorbing Particle (LAP) Measurements in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Baumgardner, D.; Raga, G. B.; Anderson, B.; Diskin, G.; Sachse, G.; Kok, G.

    2003-01-01

    This viewgraph presentation covers the capabilities and design of the Single Particle Soot Photometer (SP-2), and reviews its role on the Sage III Ozone Loss Validation Experiment (SOLVE II) field campaign during 2003. On SOLVE II the SP-2 was carried into the Arctic onboard a DC-8 aircraft, in order to determine the size distribution of light-absorbing and non light-absorbing particles in the stratosphere. Graphs and tables relate some of the results from SOLVE II.

  8. Reducing corrosion in aluminum-steel joints

    SciTech Connect

    Not Available

    1994-01-01

    This article examines how galvanic corrosion in aluminum-intensive steel structures can be controlled, without losing performance, by using transition materials. The topics of the article include the transition material concept, corrosion resistance, experimental conditions, and the results of the experiment including mass loss of lap joints, strength retention, joining methods. The results show how use of steel-clad aluminum transition material in joining aluminum and steel deals successfully addresses the problems of joining and durability associated with increasing use of aluminum on automobiles.

  9. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  10. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1980-01-01

    An adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads, namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  11. Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.

    1988-01-01

    High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.

  12. The Nuclear Envelope Protein, LAP1B, Is a Novel Protein Phosphatase 1 Substrate

    PubMed Central

    Santos, Mariana; Rebelo, Sandra; Van Kleeff, Paula J. M.; Kim, Connie E.; Dauer, William T.; Fardilha, Margarida; da Cruz e Silva, Odete A.; da Cruz e Silva, Edgar F.

    2013-01-01

    Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases. PMID:24116158

  13. The analysis of adhesively bonded advanced composite joints using joint finite elements

    NASA Astrophysics Data System (ADS)

    Stapleton, Scott E.

    joint configurations, including double cantilever beam and single lap joints.

  14. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    joint configurations, including double cantilever beam and single lap joints.

  15. Three-Dimensional Visualization of the Crack-Growth Behavior of Nano-Silver Joints During Shear Creep

    NASA Astrophysics Data System (ADS)

    Tan, Yansong; Li, Xin; Chen, Gang; Mei, Yunhui; Chen, Xu

    2015-02-01

    Evolution of creep damage in nano-silver sintered lap shear joints was investigated at 325°C. Non-destructive x-ray three-dimensional (3D) visualization clearly revealed the crack-growth behavior of the joint; this could be divided into three stages. In the initial stage, little development of cracks occurred. In the second stage, cracks propagated at a consistent rate. In the final stage, rapid extension of the cracks led directly to fracture of the joint. Three-dimensional volume-rendered images and fractographic analysis showed that the growth of macroscopic initial cracks at the interfaces dominated the creep fracture process. Initial failure of nano-silver sintered lap shear joints often occurred at interfacial nano-silver paste layers. Both the size and position of the initial interfacial cracks had significant effects on the final creep failure of the joints, and higher stresses led to greater porosity and earlier failure.

  16. Intrauterine infusion of latency-associated peptide (LAP) during early porcine pregnancy affects conceptus elongation and placental size.

    PubMed

    Massuto, Dana A; Hooper, R Neil; Kneese, Eric C; Johnson, Greg A; Ing, Nancy H; Weeks, Bradley R; Jaeger, Laurie A

    2010-03-01

    In the pig, transforming growth factor beta (TGFB), TGFB receptors (TGFBRs), and integrins are present during the peri-implantation period. Latency-associated peptide (LAP), a part of latent TGFB, can bind to integrin heterodimers via its Arg-Gly-Asp (RGD) sequence; therefore, ligand-receptor interactions between TGFB and TGFBRs, along with LAP and integrin heterodimers, may be functional in mediating events supporting conceptus elongation and attachment. With the use of surgically implantable osmotic pumps, we were able to maintain pregnancy with the aim of mechanistically altering in vivo receptor-ligand interactions involving TGFB with TGFBRs and LAP with integrins during porcine pregnancy. Day 9 pregnant gilts received intrauterine infusions of LAP-RGD, a recombinant mutant of LAP (LAP-RGE), or vehicle control and were ovariohysterectomized on Day 13 or 24 of pregnancy. We hypothesized that intrauterine infusion of LAP-RGD would decrease downstream signaling of TGFB while increasing LAP-integrin interactions and that net effect would enhance conceptus survival and attachment early in the peri-implantation period but possibly increase the chance of abnormal placentation later in pregnancy. Additionally, we hypothesized that infusion of LAP-RGE would disrupt TGFB signals but not alter integrin signaling, and thus the net result would be decreased conceptus survival and abnormal development. Unexpectedly, LAP-RGD intrauterine infusions resulted in a reduction of conceptus elongation, whereas infusions of LAP-RGE permitted implantation and placentation but resulted in larger fetal weight, allantois length, and allantoic fluid volume. Results suggest TGFB and integrins are contributing factors in the regulation of conceptus elongation and placental and fetal size. PMID:19906685

  17. Age of Lunar Meteorite LAP02205 and Implications for Impact-Sampling of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Bogard, D. D.

    2005-01-01

    We have measured the age of lunar meteorite LAP02205 by the Rb-Sr and Ar-Ar methods. Sm-Nd analyses are in progress. The Rb-Sr and Ar-Ar ages indicate a crystallization age of approx. 3 Ga. Comparing the ages of LAP02205 and other lunar mare basaltic meteorites to mare surface ages based on the density of impact craters shows no significant bias in impact- sampling of lunar mare surfaces. Comparing the isotopic and geochemical data for LAP02205 to those for other lunar mare basalts suggests that it is a younger variant of the type of volcanism that produced the Apollo 12 basalts. Representative impact-sampling of the lunar surface

  18. Large-scale Advanced Prop-fan (LAP) technology assessment report

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    The technologically significant findings and accomplishments of the Large Scale Advanced Prop-Fan (LAP) program in the areas of aerodynamics, aeroelasticity, acoustics and materials and fabrication are described. The extent to which the program goals related to these disciplines were achieved is discussed, and recommendations for additional research are presented. The LAP program consisted of the design, manufacture and testing of a near full-scale Prop-Fan or advanced turboprop capable of operating efficiently at speeds to Mach .8. An aeroelastically scaled model of the LAP was also designed and fabricated. The goal of the program was to acquire data on Prop-Fan performance that would indicate the technology readiness of Prop-Fans for practical applications in commercial and military aviation.

  19. Lapped orthogonal transform coding by amplitude and group partitioning

    NASA Astrophysics Data System (ADS)

    Zou, Xiangyu; Pearlman, William A.

    1999-10-01

    Transform coding has been the focus of the research for image compression. In previous research, the Amplitude and Group Partitioning (AGP) coding scheme is proved to be a low complexity algorithm with higher performance, clearly one of the state-of-art transform coding techniques. However, the previous AGP is used along with the Discrete Cosine Transform (DCT) and the discrete wavelet transform. In this paper, a different transform, the Lapped Orthogonal Transform (LOT), replaces the DCT in conjunction with the AGP. This is the first time LOT and AGP have been combined in a coding method. The definition and design of the LOT are discussed. An objective metric to measure the performance of transform, coding gain, is calculated for both the DCT and the LOT. The LOT has slightly higher coding gain than the DCT. The principles of the LOT based AGP image codec (LOT-AGP) are presented and a complete codec, encoder and decoder, is implemented in software. The performance of the LOT-AGP is compared with other block transform coding schemes: the baseline JPEG codec and the DCT based AGP image codec (DCT- AGP) by both objective evaluation and subjective evaluation. The Peak Signal to Noise Ratio (PSNR) is calculated for these three coding schemes. The two AGP codecs are much better than the JPEG codec on PSNR, from about 1.7 dB to 3 dB depending on bit rate. The two AGP schemes have PSNR differences only to a small degree. Visually, the LOT-AGP has the best-reconstructed images among these three at all bit rates. In addition, the coding results of two other state-of-art progressive image codecs are cited for further comparison. One is the Set Partitioning in Hierarchical Trees (SPIHT) algorithm with a dyadic wavelet transform, and the other is Tran and Nguyen's method with the generalized LOT transform. The AGP coding and the adaptive Huffman entropy coding of LOT-AGP are less complex and the memory usage is smaller than in these two progressive codecs. Comparing these

  20. Effect of Surface Preparation on CLAM/CLAM Hot Isostatic Pressing diffusion bonding joints

    NASA Astrophysics Data System (ADS)

    Li, C.; Huang, Q.; Zhang, P.

    2009-04-01

    Surface preparation is essential for the Hot Isostatic Pressing (HIP) diffusion bonding of RAFM steels. Hot Isostatic Pressing (HIP) diffusion bonding experiments on China Low Activation Martensitic (CLAM) steel was performed to study the effect of surface preparation. A few approaches such as hand lapping, dry-milling and grinding etc., were used to prepare the faying surfaces of the HIP joints. Different sealing techniques were used as well. The HIP parameters were 150 MPa/3 h/1150 °C. After post HIP heat treatment (PHHT), the tensile and Charpy impact tests were carried out. The results showed that hand lapping was not suitable to prepare the faying surfaces of HIP diffusion bonding specimens although the surface roughness by hand lapping was very low.

  1. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  2. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  3. Co-cured composite joint strength investigation based on behavior characterization of the [0/ (+/-)theta/90]s family

    NASA Astrophysics Data System (ADS)

    Tan, Xinyuan

    Joints provide a path for transfer of load and are important components in an assembly of structures, particularly in translating joint strength improvements directly to significant cost savings. These cost savings are more evident in composite joints since manufacturing of more complex single piece components results in a reduction of both part count and labor. An improvement in joint strength for co-cured composite joints through minimized free-edge delamination was investigated for a quasi-isotropic [0/ +/- 45/90]s lay-up based on the quantitative assessments of the quasi-static and fatigue strength and qualitative understanding of the fatigue damage initiation and propagation for the [0/ +/- theta/90]s family of co-cured composite joints. A previously proposed co-cured joint concept, the Single Nested Overlap (SNO) joint, was compared against a Straight Laminate (SL) and a single lap joint. The SL represents a "perfect" joint and serves as an upper bound whereas the single lap joint represents the simplest generic joint and is the base design for the SNO joint concept. Three categorized failure types, which represent the predominant failure modes in the SL, single lap, and SNO joints, along with two different fatigue strength indicators were used for quasi-static and fatigue strength comparison. With fatigue run-out defined at 1x106 cycles, the fatigue damage initiation and propagation at high loadings was monitored with an Infrared Thermoelastic Stress Analysis (IR-TSA) technique, while a damage type comparison was used at low loadings. Quasi-static Acoustic Emission (AE) counts were observed to be Fatigue Limit (FL) indicators for [0/ +/- theta/90] s SL and SNO joints. The validity of these FL indicators was also assessed in the comparison of damage types.

  4. Design and development testing of the bonded joint between a typical launch vehicle attachment ring and CFRP thrust cone

    NASA Astrophysics Data System (ADS)

    Sharkey, J. T.; Nayler, G. H. F.; Reynolds, J.

    1986-02-01

    The development of the principal structural joint of a Shuttle payload is described. The joint is subjected to large tension and compression loads due to the spacecraft being cantilevered perpendicular to the direction of flight of the launch vehicle. Finite element modeling was included in the investigation of joint designs. A bonded and bolted double lap shear configuration was chosen. Manufacturing and inspection methods were developed and testing of joint samples was undertaken including static, thermal and fatigue loading. The static test results were used to determine the design allowable strength of the joint.

  5. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    PubMed Central

    Islas-Vazquez, Lorenzo; Prado-Garcia, Heriberto; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells. PMID:26582240

  6. Fatigue life until small cracks in aircraft structures: Durability and damage tolerance

    NASA Technical Reports Server (NTRS)

    Schijve, J.

    1994-01-01

    Crack initiation in notched elements occurs very early in the fatigue life. This is also true for riveted lap joints, an important fatigue critical element of a pressurized fuselage structure. Crack nucleation in a riveted lap joint can occur at different locations, depending on the riveting operation. It can occur at the edge of the rivet hole, at a small distance away from the hole, but still with subsequent crack growth through the hole, and ahead of the hole with a crack no longer passing through the hole. Moreover, crack nucleation can occur in the top row at the countersunk holes (outer sheet) or in the bottom row at the non-countersunk holes. Fractographic evidence is shown. The initial growth of the small cracks occurs as an (invisible) part through crack. As a consequence, predictions on the crack initiation life are problematic. After a though crack is present, the major part of the fatigue life has been consumed. There is still an apparent lack of empirical data on crack growth and residual strength of riveted lap joints, five years after the Aloha accident. Such data are very much necessary for further developments of prediction models. Some test results are presented.

  7. Improving Critical Thinking Skills Using Learning Model Logan Avenue Problem Solving (LAPS)-Heuristic

    ERIC Educational Resources Information Center

    Anggrianto, Desi; Churiyah, Madziatul; Arief, Mohammad

    2016-01-01

    This research was conducted in order to know the effect of Logan Avenue Problem Solving (LAPS)-Heuristic learning model towards critical thinking skills of students of class X Office Administration (APK) in SMK Negeri 1 Ngawi, East Java, Indonesia on material curve and equilibrium of demand and supply, subject Introduction to Economics and…

  8. Learning Activity Package, Physical Science. LAP Numbers 5, 6, and 7.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These three units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover the physical and chemical properties of water, dehydration of crystals, solutions, acidity, strong and weak bases, neutral properties of salts, amorphous forms of carbon, hydrocarbons, and petroleum products. Each unit contains a…

  9. The Introduction of Crystallographic Concepts Using Lap-Dissolve Slide Techniques.

    ERIC Educational Resources Information Center

    Bodner, George M.; And Others

    1980-01-01

    Describes a method using lap-dissolve slide techniques with two or more slide projectors focused on a single screen for presenting visual effects that show structural features in extended arrays of atoms, or ions involving up to several hundred atoms. Presents an outline of an introduction to the structures of crystalline solids. (CS)

  10. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria.

    PubMed

    Chojnowski, Alexandre; Ong, Peh Fern; Wong, Esther S M; Lim, John S Y; Mutalif, Rafidah A; Navasankari, Raju; Dutta, Bamaprasad; Yang, Henry; Liow, Yi Y; Sze, Siu K; Boudier, Thomas; Wright, Graham D; Colman, Alan; Burke, Brian; Stewart, Colin L; Dreesen, Oliver

    2015-01-01

    Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization. PMID:26312502

  11. Correlates of Mood and RPE During Multi-Lap Off-Road Cycling.

    PubMed

    Viana, Bruno Ferreira; Pires, Flávio Oliveira; Inoue, Allan; Micklewright, Dominic; Santos, Tony Meireles

    2016-03-01

    This study examined the relationship between mood and rating of perceived exertion (RPE) during a simulated multiple-lap time trial (MLTT). Nineteen male cyclists performed a MLTT consisting of four 9.9 km laps, each lap with a gradient ranging from 0 to 10 %. Mood as measured by the Profile of Mood States Questionnaire (POMS) and perceived exertion as measured by the Borg CR100 scale (RPE) were obtained at the end of each lap. A categorical multiple regressive model, having median of POMS subscales as independent variables, was obtained to explain the variance in median RPE responses. Increases in POMS fatigue scores and decreases in POMS vigour scores were observed throughout the MLTT (P < 0.001). A linear increase in RPE during the MLTT was also observed (P < 0.001). POMS fatigue subscale scores accounted for 88 % of the variance in RPE during the MLTT (R(2) = 0.88, P = 0.002), and no other POMS subscale improved the final predictive model. With the exception of fatigue these results suggest that most aspects of mood do not have a discernable effect on RPE during a MLTT. The rate of increase in RPE can predict the MLTT endpoint. PMID:26242877

  12. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  13. Learning Activity Package, American Civics 92, LAPs 1 Through 3 and 5 Through 9.

    ERIC Educational Resources Information Center

    Calhoun, B. C.

    This self paced program in American Civics is for the ninth grade student who needs help on basic skills and who plans to enroll in vocational or business courses. Instructional materials, written at 9th grade level, consist of eight Learning Activity Packages (LAPs) on the following topics: Citizenship and Our Democracy; The Constitution of the…

  14. The impact of layer thickness on the performance of additively manufactured lapping tools

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2015-10-01

    Lower cost additive manufacturing (AM) machines which have emerged in recent years are capable of producing tools, jigs, and fixtures that are useful in optical fabrication. In particular, AM tooling has been shown to be useful in lapping glass workpieces. Various AM machines are distinguished by the processes, materials, build times, and build resolution they provide. This research investigates the impact of varied build resolution (specifically layer resolution) on the lapping performance of tools built using the stereolithographic assembly (SLA) process in 50 μm and 100 μm layer thicknesses with a methacrylate photopolymer resin on a high resolution desktop printer. As with previous work, the lapping tools were shown to remove workpiece material during the lapping process, but the tools themselves also experienced significant wear on the order of 2-3 times the mass loss of the glass workpieces. The tool wear rates for the 100 μm and 50 μm layer tools were comparable, but the 50 μm layer tool was 74% more effective at removing material from the glass workpiece, which is attributed to some abrasive particles being trapped in the coarser surface of the 100 um layer tooling and not being available to interact with the glass workpiece. Considering the tool wear, these additively manufactured tools are most appropriate for prototype tooling where the low cost (<$45) and quick turnaround make them attractive when compared to a machined tool.

  15. Learning Activity Package, Chemistry I. LAP Numbers 22, 23, 24, 25, 26, 27, and 28.

    ERIC Educational Resources Information Center

    Jones, Naomi

    As a set of seven Learning Activity Packages (LAPs) for individualized instruction in chemistry, the units cover the unit system, matter, energy, atomic structures, chemical formulas, physical states of matter, solutions and suspensions, ionization, acids, bases, and salts. Each unit contains a rationale for the material; a list of behavioral…

  16. 77 FR 27746 - Notice of Submission for OMB Review; Federal Student Aid; Lender Application Process (LAP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Notice of Submission for OMB Review; Federal Student Aid; Lender Application Process (LAP) SUMMARY: The Lender's Application Process is submitted by lenders who are eligible for reimbursement of interest and special allowance, as well as Federal Insured Student Loan claims payment, under the Federal...

  17. Determination of Arsenic Poisoning and Metabolism in Hair by Synchrotron Radiation: The Case of Phar Lap

    SciTech Connect

    Kempson, Ivan M.; Henry, Dermot A.

    2010-08-26

    Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.

  18. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.

    2009-01-01

    This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.

  19. Learning Activity Package, Algebra 103-104, LAPs 23-33.

    ERIC Educational Resources Information Center

    Evans, Diane

    This set of 11 teacher-prepared Learning Activity Packages (LAPs) in intermediate algebra covers number systems; exponents and radicals; polynomials and factoring; rational expressions; coordinate geometry; relations, functions, and inequalities; quadratic equations and inequalities; Quadratic functions; systems of equations and inequalities;…

  20. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria

    PubMed Central

    Chojnowski, Alexandre; Ong, Peh Fern; Wong, Esther SM; Lim, John SY; Mutalif, Rafidah A; Navasankari, Raju; Dutta, Bamaprasad; Yang, Henry; Liow, Yi Y; Sze, Siu K; Boudier, Thomas; Wright, Graham D; Colman, Alan; Burke, Brian; Stewart, Colin L; Dreesen, Oliver

    2015-01-01

    Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization. DOI: http://dx.doi.org/10.7554/eLife.07759.001 PMID:26312502

  1. Learning Activity Package, Algebra 93-94, LAPs 12-22.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of 11 teacher-prepared Learning Activity Packages (LAPs) in beginning algebra, these units cover sets, properties of operations, operations over real numbers, open expressions, solution sets of equations and inequalities, equations and inequalities with two variables, solution sets of equations with two variables, exponents, factoring and…

  2. Learning Activity Package, Physical Science. LAP Numbers 8, 9, 10, and 11.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover nuclear reactions, alpha and beta particles, atomic radiation, medical use of nuclear energy, fission, fusion, simple machines, Newton's laws of motion, electricity, currents, electromagnetism, Oersted's experiment, sound, light,…

  3. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  4. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    DOE PAGESBeta

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; Miles, Michael; Song, Guang-Ling; Wang, Yanli; Feng, Zhili

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly preparedmore » joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.« less

  5. Hypermobile joints

    MedlinePlus

    ... too far. In children with hypermobility syndrome, those ligaments are loose or weak. This may lead to: Arthritis, which may develop over time Dislocated joints, which is a separation of two bones where they meet at a joint Sprains and strains Children with hypermobile joints also often have flat ...

  6. Joint Disorders

    MedlinePlus

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  7. Transfer of skills on LapSim virtual reality laparoscopic simulator into the operating room in urology

    PubMed Central

    Alwaal, Amjad; Al-Qaoud, Talal M.; Haddad, Richard L.; Alzahrani, Tarek M.; Delisle, Josee; Anidjar, Maurice

    2015-01-01

    Objective: Assessing the predictive validity of the LapSim simulator within a urology residency program. Materials and Methods: Twelve urology residents at McGill University were enrolled in the study between June 2008 and December 2011. The residents had weekly training on the LapSim that consisted of 3 tasks (cutting, clip-applying, and lifting and grasping). They underwent monthly assessment of their LapSim performance using total time, tissue damage and path length among other parameters as surrogates for their economy of movement and respect for tissue. The last residents’ LapSim performance was compared with their first performance of radical nephrectomy on anesthetized porcine models in their 4th year of training. Two independent urologic surgeons rated the resident performance on the porcine models, and kappa test with standardized weight function was used to assess for inter-observer bias. Nonparametric spearman correlation test was used to compare each rater's cumulative score with the cumulative score obtained on the porcine models in order to test the predictive validity of the LapSim simulator. Results: The kappa results demonstrated acceptable agreement between the two observers among all domains of the rating scale of performance except for confidence of movement and efficiency. In addition, poor predictive validity of the LapSim simulator was demonstrated. Conclusions: Predictive validity was not demonstrated for the LapSim simulator in the context of a urology residency training program. PMID:25838162

  8. AIRCRAFT DEPAINTING TECHNOLOGY

    EPA Science Inventory

    Chemical paint strippers historically used for aircraft contained toxic and hazardous components; aircraft depainting operations are a major source of hazardous waste generation in DOD. Federal and state agencies have begun to restrict using these hazardous materials and Governme...

  9. Petrography of Lunar Meteorite LAP 02205, a New Low-Ti Basalt Possibly Launch Paired with NWA 032

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Zeigler, R. A.; Korotev, R. L.

    2004-01-01

    Lunar meteorite LAP 02205 is a 1.23 kg basalt collected during the 2002 field season in the La- Paz ice field, Antarctica [1]. We present a petrographic description including mineral modes and compositions, and the major-element composition of the bulk meteorite. LAP 02205 is an Fe-rich, moderately low-Ti mare basalt that is similar in composition, mineralogy, and mineral chemistry to the NWA 032 basaltic lunar meteorite. LAP 02205 is yet another of the moderately low- Ti basaltic meteorites that are underrepresented among Apollo and Luna samples but that appear from remote sensing to be the most common basalt type on the Moon.

  10. Aircraft noise problems

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The problems related to aircraft noise were studied. Physical origin (sound), human reaction (noise), quantization of noise and sound sources of aircraft noise are discussed. Noise abatement at the source, technical, fleet-political and air traffic measures are explained. The measurements and future developments are also discussed. The position of Lufthansa as regards aircraft noise problems is depicted.

  11. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  12. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  13. Simulation of aircraft crash and its validation

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Hayduk, R. J.; Thomson, R. G.; Vaughan, V. L., Jr.

    1975-01-01

    A joint FAA/NASA program is discussed which is aimed at developing a reliable technology for the design of crashworthy light aircraft. This program encompasses the development of analytical methods, the definition of a survivable crash envelope, and the design of improved seat and restraint systems. A facility for full-scale crash-simulation testing is described along with the test method and results of five full-scale crash tests of twin-engine light aircraft. The major goals of the analytical portion of the program are outlined, including the development and validation of the analytical technique using simplified structural specimens that approximate aircraft components, as well as the mathematical modeling of the complete airframe and its subsequent dynamic analysis by substructuring and matrix reduction techniques.

  14. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  15. Calcium Causes Multimerization of the Large Adhesin LapF and Modulates Biofilm Formation by Pseudomonas putida

    PubMed Central

    Martínez-Gil, Marta; Romero, Diego; Kolter, Roberto

    2012-01-01

    LapF is a large secreted protein involved in microcolony formation and biofilm maturation in Pseudomonas putida. Its C-terminal domain shows the characteristics of proteins secreted through a type I secretion system and includes a predicted calcium binding motif. We provide experimental evidence of specific binding of Ca2+ to the purified C-terminal domain of LapF (CLapF). Calcium promotes the formation of large aggregates, which disappear in the presence of the calcium chelator EGTA. Immunolocalization of LapF also shows the tendency of this protein to accumulate in vivo in certain extracellular regions. These findings, along with results showing that calcium influences biofilm formation, lead us to propose a model in which P. putida cells interact with each other via LapF in a calcium-dependent manner during the development of biofilms. PMID:23042991

  16. Identification of QTLs influencing alcohol preference in the High Alcohol Preferring (HAP) and Low Alcohol Preferring (LAP) mouse lines.

    PubMed

    Bice, Paula J; Foroud, Tatiana; Carr, Lucinda G; Zhang, Lili; Liu, Lixiang; Grahame, Nicholas J; Lumeng, Lawrence; Li, Ting-Kai; Belknap, John K

    2006-03-01

    The High- and Low-Alcohol Preferring (HAP1/LAP1 and HAP2/LAP2) mouse lines were developed by selective breeding for differences in alcohol preference. They represent the only extant selectively bred mouse lines developed for this alcohol phenotype. Therefore, they provide a unique resource for QTL detection and mapping. Importantly, neither of the replicate lines is inbred and therefore, novel study designs can be employed to detect loci contributing to alcohol preference. Two independent studies, with very different approaches, were conducted in the HAP and LAP replicate lines. In Study 1, microsatellite markers were genotyped in the replicate HAP1/LAP1 and HAP2/LAP2 mice in QTL regions nominated by other mouse RI and F2 studies in order to detect divergence of allele frequencies in the two oppositely selected lines. Significant differences in allele frequencies were observed in the HAP1/LAP1 mice with markers on chromosome 9 (p<0.01). In the HAP2/LAP2 mice, significant differences in allele frequencies were identified on chromosomes 2 and 9 (p<0.01). In Study 2, a genome-wide screen was performed in a sample of 432 HAP1xLAP1 F2 animals and a QTL on chromosome 9 (LOD=5.04) was found which met criteria for genome wide significance (p<0.001). Gender specific analyses supported a greater effect of the QTL among female mice (LOD=5.19; p<0.0008) than male mice (LOD=1.19). This study provides additional evidence and confirmation that specific regions on chromosomes 9 and perhaps 2 are important for alcohol preference. PMID:16482403

  17. Material characterization of structural adhesives in the lap shear mode. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schenck, S. C.; Sancaktar, E.

    1983-01-01

    A general method for characterizing structural adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semi-empirical and theoretical approaches are used. The semi-empirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Three different model adhesives are used in the simple lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  18. Investigation of defect rate of lap laser welding of stainless steel railway vehicles car body

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao

    2015-02-01

    In order to resolve the disadvantages such as poor appearance quality, poor tightness, low efficiency of resistance spot welding of stainless steel rail vehicles, partial penetration lap laser welding process was investigated widely. But due to the limitation of processing technology, there will be local incomplete fusion in the lap laser welding seam. Defect rate is the ratio of the local incomplete fusion length to the weld seam length. The tensile shear strength under different defect rate and its effect on the car body static strength are not clear. It is necessary to find the biggest defect rate by numerical analysis of effects of different defect rates on the laser welding stainless steel rail vehicle body structure strength ,and tests of laser welding shear tensile strength.

  19. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    NASA Technical Reports Server (NTRS)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  20. Early evolution of comet 67P studied with the RPC-LAP onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Miloch, Wojciech; Edberg, Niklas J. T.; Eriksson, Anders I.; Yang, Lei; Paulsson, Joakim J. P.; Wedlund, Cyril Simon; Odelstad, Elias

    2016-07-01

    The Rosetta mission provides the in-situ measurements of a comet that are closest to a comet's aphelion ever made. The Rosetta Plasma Consortium (RPC) is a set of five instruments on board the spacecraft that specialise in the measurements of the plasma environment of comet 67P. One of the instruments is RPC-LAP, which consists of two Langmuir Probes and can measure the density, temperature, and flow speed of the plasma in the vicinity of the comet. At the early stage of the Rosetta mission, when the spacecraft is far from the nucleus of comet 67P, the ion part of the current-voltage characteristics of RPC-LAP1 is dominated by the photoemission current which surpasses the currents from the dilute solar wind plasma. As Rosetta starts orbiting around the nucleus in September 2014, LAP1 picks up signatures of local plasma density enhancements corresponding to variations of water-group ions observed in the vicinity of the comet. With the help of current-voltage characteristics and the spacecraft potential, we identify and characterise in space and time the entering of this coma-dominated plasma. In particular we determine the transition for entering the ion dominated region characterised by the 6-hour variations in the local plasma density due to the comet rotation. This transition manifests as a steep gradient in the density with respect to the distance to the comet nucleus. We discuss these RPC-LAP results together with the corresponding measurements by other instruments to provide a comprehensive picture of the transition.

  1. Spatial distribution of low energy plasma at comet 67P from Rosetta RPC-LAP measurements

    NASA Astrophysics Data System (ADS)

    Edberg, Niklas J. T.; Eriksson, Anders I.; Odelstad, Elias; Vigren, Erik; Henri, Pierre; Lebreton, Jean-Pierre; Mandt, Kathleen; Nilsson, Hans; Carr, Chris; Cupido, Emanuele; Vallat, Claire; Altwegg, Kathrin

    2015-04-01

    We present in situ measurements of the low energy plasma environment around comet 67P from the two Langmuir probes (LAP) on the Rosetta spacecraft, which form part of the Rosetta plasma consortium (RPC). RPC-LAP has operated almost continuously as Rosetta has orbited the comet at close distance (10-30 km) at low velocity (about 1 m/s) since August 2014. Using the RPC-LAP measurements we have produced global maps of the low energy plasma in the vicinity of 67P. Initial estimates indicate that the plasma density has reached values of several 100 cm^-3 and that the electron temperature has typically been in the range 5-10 eV, when the comet was beyond 2.5 AU from the sun. Photoionisation is the dominating process for producing the plasma around the comet while charge-exchange and impact ionisation may also contribute. The plasma environment has been found to be strongly coupled to the local neutral gas density, which in turn is coupled to which area on the comet is facing the sun. The northern summer neck-area of the comet outgasses more than other areas and above this region are the highest densities observed. In the southern winter and above the two main lobes of the comet body, the plasma density is lower. The plasma density is hence not determined by the solar wind, but by the outgassing from the comet. The 12.4-hour rotation period of the comet together with the varying latitude of the slow-moving Rosetta provide strong modulation of the RPC-LAP measurements. Besides orbiting the comet, Rosetta will also perform flybys of the comet in early 2015 when Rosetta will move to distances of several hundred kilometres from the nucleus. These flybys provide a cut-through view of the near-comet plasma environment, which will possibly give some insight to the solar-wind interaction with the cometary coma.

  2. Aircraft vulnerability analysis by modeling and simulation

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    Infrared missiles pose a significant threat to civilian and military aviation. ManPADS missiles are especially dangerous in the hands of rogue and undisciplined forces. Yet, not all the launched missiles hit their targets; the miss being either attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft-missile engagement is a complex series of events, many of which are only partially understood. Aircraft and missile designers focus on the optimal design and performance of their respective systems, often testing only in a limited set of scenarios. Most missiles react to the contrast intensity, but the variability of the background is rarely considered. Finally, the vulnerability of the aircraft depends jointly on the missile's performance and the doctrine governing the missile's launch. These factors are considered in a holistic investigation. The view direction, altitude, time of day, sun position, latitude/longitude and terrain determine the background against which the aircraft is observed. Especially high gradients in sky radiance occur around the sun and on the horizon. This paper considers uncluttered background scenes (uniform terrain and clear sky) and presents examples of background radiance at all view angles across a sphere around the sensor. A detailed geometrical and spatially distributed radiometric model is used to model the aircraft. This model provides the signature at all possible view angles across the sphere around the aircraft. The signature is determined in absolute terms (no background) and in contrast terms (with background). It is shown that the background significantly affects the contrast signature as observed by the missile sensor. A simplified missile model is constructed by defining the thrust and mass profiles, maximum seeker tracking rate, maximum

  3. Large-scale Advanced Prop-fan (LAP) static rotor test report

    NASA Technical Reports Server (NTRS)

    Degeorge, Charles L.; Turnberg, Jay E.; Wainauski, Harry S.

    1987-01-01

    Discussed is Static Rotor Testing of the SR-7L Large Scale Advanced Prop-Fan (LAP). The LAP is an advanced 9 foot diameter, 8 bladed propeller designed and built by Hamilton Standard under contract to the NASA Lewis Research Center. The Prop-Fan employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Static Testing was conducted on a 10,000 HP whirl rig at Wright Patterson Air Force Base. The test objectives were to investigate the Prop-Fan static aerodynamic and structural dynamic performance, determine the blade steady state stressers and deflections and to measure steady and unsteady pressures on the SR-7L blade surface. The measured performance of the LAP correlated well with analytical predictions at blade pitch angles below 30 deg. A stall buffet phenomenon was observed at blade pitch angles above 30 deg. This phenomenon manifested itself by elevated blade vibratory stress levels and lower than expected thrust produced and power absorbed by the Prop-Fan for a given speed and blade angle.

  4. Behavior Of A Confined Tension Lap Splice In High-Strength Reinforced Concrete Beams

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, Ahmed H.; Abousafa, Hala; El-Hadidi, Omaia S.

    2015-09-01

    The results of an experimental program conducted on seventeen simply supported concrete beams to study the effect of transverse reinforcement on the behavior of the lap splice of a steel reinforcement in tension zones in high-strength concrete beams are presented. The parameters included in the experimental program were the concrete compressive strength, the lap splice length, the amount of transverse reinforcement provided within the splice region, and the shape of the transverse reinforcement around the spliced bars. The experimental results showed that the displacement ductility increased and the mode of failure changed from a splitting bond failure to a flexural failure when the amount of the transverse reinforcement in the splice region increased, and the compressive strength increased up to 100 MPa. The presence of the transverse reinforcement around the spliced bars had a pronounced effect on increasing the ultimate load, the ultimate deflection, and the displacement ductility. The prediction of maximum steel stresses for spliced bars using the ACI 318-05 building code was compared with the experimental results. The comparison showed that the effect of the transverse reinforcement around spliced bars has to be considered into the design equations for lap splice length in high-strength concrete beams.

  5. Conventional box model training improves laparoscopic skills during salpingectomy on LapSim: a randomized trial

    PubMed Central

    Akdemir, Ali; Ergenoğlu, Ahmet Mete; Yeniel, Ahmet Özgür; Şendağ, Fatih

    2013-01-01

    Objective Box model trainers have been used for many years to facilitate the improvement of laparoscopic skills. However, there are limited data available on box trainers and their impact on skill acquisition, assessed by virtual reality systems. Material and Methods Twenty-two Postgraduate Year 1 gynecology residents with no laparoscopic experience were randomly divided into one group that received structured box model training and a control group. All residents performed a salpingectomy on LapSim before and after the training. Performances before and after the training were assessed using LapSim and were recorded using objective parameters, registered by a computer system (time, damage, and economy of motion scores). Results There were initially no differences between the two groups. The box trainer group showed significantly greater improvement in time (p=0.01) and economy of motion scores (p=0.001) compared with the control group post-training. Conclusion The present study confirmed the positive effect of low cost box model training on laparoscopic skill acquisition as assessed using LapSim. Novice surgeons should obtain practice on box trainers and teaching centers should make efforts to establish training laboratories. PMID:24592096

  6. Probabilistic seismic performance assessment of lap-spliced RC columns retrofitted by steel wrapping jackets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Youn, Heejung; Cho, Baik-Soon

    2016-06-01

    In this study, the seismic fragility curves of two reinforced concrete (RC) columns that were lap-spliced at the bottom and retrofitted with steel wrapping jackets were generated. Their seismic performance was probabilistically assessed in comparison to that of lap-spliced or continuous reinforcement RC columns. This study used two types of steel wrapping jackets, a full jacket and a split jacket. Analytical models of the four types of columns were developed based on the experimental results of the columns using OpenSEES, which is effective in conducting nonlinear time history analyses. A suite of ten artificial ground motions, modified from recorded ground motions, was used to perform nonlinear time history analyses of the analytical models with scaling of the peak ground acceleration from 0.1 g to 1.0 g in increments of 0.1 g. The steel wrapping jackets did not increase the medians for yield (slight damage state) of the lap-spiced column and did not exceed the corresponding median of the continuous reinforcement column. However, the two steel jackets increased the medians for failure by 1.872 and 2.017 times, respectively, and exceeded the corresponding median of the continuous reinforcement column by 11.8% and 20.5%, respectively.

  7. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints

    NASA Astrophysics Data System (ADS)

    Rakow, Alexi Schroder

    Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the

  8. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  9. Measurement of adhesive joint fracture properties as a function of environmental degradation

    SciTech Connect

    Wylde, J.W.; Spelt, J.K.

    1996-12-31

    The increased use of structural adhesives in industry would benefit from a comprehensive failure load prediction tool to ensure competent design. The work of Fernlund and Spelt has proposed a fracture envelope that relates the critical strain energy release rate to the nominal phase angle of loading. The work of Plasinus and Spelt extended this work to incorporate the viscoelastic effect of the adhesive. The objective of the present research is to incorporate the effects of temperature and water absorption into the prediction of adhesive joint fracture. Ample evidence exists to demonstrate the notion that absorbed water has an effect predominantly detrimental, on the strength of an adhesive joint. Past work was concentrated on degrading typical, in service joints such as the Single Lap Shear (SLS) joint or the Cracked Lap Shear (CLS) joint. Since water is absorbed through the exposed edges, typically small in area compared to the volume of the joint, degradation times are usually long and the water concentration varies both with time and spatially throughout the joint. In this research, a novel method of degrading adhesive fracture specimens to a spatially constant degradation condition is being used to incorporate environmental effects into the fracture load prediction tool of Spelt et al.

  10. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  11. Lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  12. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  13. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  14. Temporomandibular Joint, Closed

    MedlinePlus

    ... Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...

  15. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6

    DOE PAGESBeta

    Squires, Lile; Lim, Yong Chae; Miles, Michael; Feng, Zhili

    2015-03-18

    In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its highermore » alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.« less

  16. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6

    SciTech Connect

    Squires, Lile; Lim, Yong Chae; Miles, Michael; Feng, Zhili

    2015-03-18

    In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its higher alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.

  17. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Li, Jie; Zhang, Gang; Huang, Jiankang; Gu, Yufen

    2016-05-01

    Dissimilar metals of 1060 aluminum and galvanized steel were joined with a lap joint by pulsed double-electrode gas metal arc weld brazing with aluminum-magnesium and aluminum-silicon filler metals. The corrosion behavior of the weld joints was investigated with immersion corrosion and electrochemical corrosion tests, and the corrosion morphology of the joints was analyzed with scanning electron microscopy (SEM). Galvanic corrosion was found to occur when the samples were immersed in corrosive media, and the corrosion rate of joints was increased with increased heat input of the workpiece. Comparison of the corrosion properties of weld joints with different filler wires indicated that the corrosion rate of weld joints with aluminum-silicon filler wire was larger than that of weld joints with aluminum-magnesium filler wire. Results also showed that the zinc-rich zone of weld joints was prone to corrosion. The corrosion behavior of zinc-rich zone was analyzed with SEM equipped with an energy-dispersive x-ray spectroscopy analysis system based on the test results.

  18. Review of the FOCSI (Fiber Optic Control System Integration) program. [applications in aircraft flight control

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert

    1991-01-01

    A joint NASA/NAVY program, called FOCSI, is reviewed which is aimed at designing optical sensor systems to fit the installation and environmentally test passive optical sensors and electrooptic architectures. These optical sensor systems will be flown on an F18 aircraft to collect data on the operability and maintainability of these systems in a flight environment. The NASA F-18 aircraft will be equipped with a 1773 optical databus to transfer the optical sensor information to the aircraft data collection location.

  19. Human Factors In Aircraft Automation

    NASA Technical Reports Server (NTRS)

    Billings, Charles

    1995-01-01

    Report presents survey of state of art in human factors in automation of aircraft operation. Presents examination of aircraft automation and effects on flight crews in relation to human error and aircraft accidents.

  20. Joint Problems

    MedlinePlus

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  1. Joint pain

    MedlinePlus

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: gout (especially ...

  2. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  3. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana.

    PubMed

    Kim, Sung Soo; Grienenberger, Etienne; Lallemand, Benjamin; Colpitts, Che C; Kim, Sun Young; Souza, Clarice de Azevedo; Geoffroy, Pierrette; Heintz, Dimitri; Krahn, Daniel; Kaiser, Markus; Kombrink, Erich; Heitz, Thierry; Suh, Dae-Yeon; Legrand, Michel; Douglas, Carl J

    2010-12-01

    Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpression analysis, we identified two Arabidopsis PKS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB (also known as LAP6 and LAP5, respectively) that are tightly coexpressed with ACOS5. Recombinant PKSA and PKSB proteins generated tri-and tetraketide α-pyrone compounds in vitro from a broad range of potential ACOS5-generated fatty acyl-CoA starter substrates by condensation with malonyl-CoA. Furthermore, substrate preference profile and kinetic analyses strongly suggested that in planta substrates for both enzymes are midchain- and ω-hydroxylated fatty acyl-CoAs (e.g., 12-hydroxyoctadecanoyl-CoA and 16-hydroxyhexadecanoyl-CoA), which are the products of sequential actions of anther-specific fatty acid hydroxylases and acyl-CoA synthetase. PKSA and PKSB are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the PKS genes displayed pollen exine layer defects, and a double pksa pksb mutant was completely male sterile, with no apparent exine. These results show that hydroxylated α-pyrone polyketide compounds generated by the sequential action of ACOS5 and PKSA/B are potential and previously unknown sporopollenin precursors. PMID:21193570

  4. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  5. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  6. Lightning protection of aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1977-01-01

    The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.

  7. Civil aircraft accident investigation.

    PubMed

    Haines, Daniel

    2013-01-01

    This talk reviews some historic aircraft accidents and some more recent. It reflects on the division of accident causes, considering mechanical failures and aircrew failures, and on aircrew training. Investigation results may lead to improved aircraft design, and to appropriate crew training. PMID:24057309

  8. Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Lundgren, Eric

    2006-01-01

    A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending.

  9. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  10. Why aircraft disinsection?

    PubMed Central

    Gratz, N. G.; Steffen, R.; Cocksedge, W.

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described. PMID:10994283

  11. Hypersonic reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Bulk, Tim; Chiarini, David; Hill, Kevin; Kunszt, Bob; Odgen, Chris; Truong, Bon

    1992-01-01

    A conceptual design of a hypersonic reconnaissance aircraft for the U.S. Navy is discussed. After eighteen weeks of work, a waverider design powered by two augmented turbofans was chosen. The aircraft was designed to be based on an aircraft carrier and to cruise 6,000 nautical miles at Mach 4;80,000 feet and above. As a result the size of the aircraft was only allowed to have a length of eighty feet, fifty-two feet in wingspan, and roughly 2,300 square feet in planform area. Since this is a mainly cruise aircraft, sixty percent of its 100,000 pound take-off weight is JP fuel. At cruise, the highest temperature that it will encounter is roughly 1,100 F, which can be handled through the use of a passive cooling system.

  12. Solder Joint Health Monitoring Testbed System

    NASA Technical Reports Server (NTRS)

    Delaney, Michael M.

    2009-01-01

    The density and pin count for Field Programmable Gate Arrays (FPGAs) has been increasing, and has exceeded current methods of solder joint inspection, making early detection of failures more problematic. These failures are a concern for both flight safety and maintenance in commercial aviation. Ridgetop Group, Inc. has developed a method for detecting solder joint failures in real time. The NASA Dryden Flight Research Center is developing a set of boards to test this method in ground environmental and accelerated testing as well as flight test on a Dryden F-15 or F-18 research aircraft. In addition to detecting intermittent and total solder joint failures, environmental data on the boards, such as temperature and vibration, will be collected and time-correlated to aircraft state data. This paper details the technical approach involved in the detection process, and describes the design process and products to date for Dryden s FPGA failure detection boards.

  13. Using quantum dots to tag subsurface damage in lapped and polished glass samples

    SciTech Connect

    Williams, Wesley B.; Mullany, Brigid A.; Parker, Wesley C.; Moyer, Patrick J.; Randles, Mark H.

    2009-09-20

    Grinding, lapping, and polishing are finishing processes used to achieve critical surface parameters in a variety of precision optical and electronic components. As these processes remove material from the surface through mechanical and chemical interactions, they may induce a damaged layer of cracks, voids, and stressed material below the surface. This subsurface damage (SSD) can degrade the performance of a final product by creating optical aberrations due to diffraction, premature failure in oscillating components, and a reduction in the laser induced damage threshold of high energy optics. As these defects lie beneath the surface, they are difficult to detect, and while many methods are available to detect SSD, they can have notable limitations regarding sample size and type, preparation time, or can be destructive in nature. The authors tested a nondestructive method for assessing SSD that consisted of tagging the abrasive slurries used in lapping and polishing with quantum dots (nano-sized fluorescent particles). Subsequent detection of fluorescence on the processed surface is hypothesized to indicate SSD. Quantum dots that were introduced to glass surfaces during the lapping process were retained through subsequent polishing and cleaning processes. The quantum dots were successfully imaged by both wide field and confocal fluorescence microscopy techniques. The detected fluorescence highlighted features that were not observable with optical or interferometric microscopy. Atomic force microscopy and additional confocal microscope analysis indicate that the dots are firmly embedded in the surface but do not appear to travel deep into fractures beneath the surface. Etching of the samples exhibiting fluorescence confirmed that SSD existed. SSD-free samples exposed to quantum dots did not retain the dots in their surfaces, even when polished in the presence of quantum dots.

  14. TRMM and GPM: Radar Observations and Simulations with the Local Analysis and Prediction System (LAPS)

    NASA Astrophysics Data System (ADS)

    Albers, S. C.; Holub, K.; Xie, Y.

    2015-12-01

    The Local Analysis and Prediction System (LAPS), developed at NOAAs Earth System Research Laboratory is used for data assimilation, nowcasting, and model initialization/post-processing.It is a portable system and typically runs with a high resolution and rapid updateBlends a wide variety of in-situ and remotely sensed data sets (e.g. METARs, mesonets, radar, satellite)‏Here we test the assimilation of PMM radar data, using reflectivity obtained from the TRMM satellite, as a preparation for GPM. A case study for July 26 2013 with a small region of convection occurring over Florida. The 3-D LAPS domain is on a 1km grid and is producing analyses and forecasts.TRMM radar data was remapped to mimic the appearance of reflectivity in a ground-based radar over Florida.Three assimilation experiments are being performed using non-radar observations plus: TRMM radar, ground-based radar, and neither source of radar. We are comparing both analyses (initial condition) and forecasts where the WRF modelis initialized with the LAPS analysis. When evaluating the results we consider some big picture aspects in thatthe GPM Core Observatory radar coverage is limited in space and time and potentially less operational model benefit.To address this 4DVAR can help increase impact (particularly in a global model), since it spreads observations in time and space.The spreading in time also helps compensate for latency of the real-time data stream.We can also use GPM (core satellite) radar paired with microwave imager data to calibrate microwave data from other GPM constellation satellites. We thus can leverage more frequent satellite microwave passes compared with radar to assess hydrometeor climatological covariance between various species, fill in ice phase information.These relationships, leveraged from related climate research, help to provide constraints for our planned variational analysis improvements.

  15. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Wang, Yi; Chaban, Galina M.

    2010-11-01

    The hydroxy acid suites extracted from the Murchison (MN), GRA 95229 (GRA) and LAP 02342 (LAP) meteorites have been investigated for their molecular, chiral and isotopic composition. Substantial amounts of the compounds have been detected in all three meteorites, with a total abundance that is lower than that of the amino acids in the same stones. Overall, their molecular distributions mirror closely that of the corresponding amino acids and most evidently so for the LAP meteorite. A surprising L-lactic acid enantiomeric excess was found present in all three stones, which cannot be easily accounted by terrestrial contamination; all other compounds of the three hydroxy acid suites were found racemic. The branched-chain five carbon and the diastereomer six-carbon hydroxy acids were also studied vis-a-vis the corresponding amino acids and calculated ab initio thermodynamic data, with the comparison allowing the suggestion that meteoritic hydroxyacid at these chain lengths formed under thermodynamic control and, possibly, at a later stage than the corresponding amino acids. 13C and D isotopic enrichments were detected for many of the meteoritic hydroxy acids and found to vary between molecular species with trends that also appear to correlate to those of amino acids; the highest δD value (+3450‰) was displayed by GRA 2-OH-2-methylbutyric acid. The data suggest that, while the amino- and hydroxy acids likely relate to common presolar precursor, their final distribution in meteorites was determined to large extent by the overall composition of the environments that saw their formation, with ammonia being the determining factor in their final abundance ratios.

  16. Affordable MMW aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    Almsted, Larry D.; Becker, Robert C.; Zelenka, Richard E.

    1997-06-01

    Collision avoidance is of concern to all aircraft, requiring the detection and identification of hazardous terrain or obstacles in sufficient time for clearance maneuvers. The collision avoidance requirement is even more demanding for helicopters, as their unique capabilities result in extensive operations at low-altitude, near to terrain and other hazardous obstacles. TO augment the pilot's visual collision avoidance abilities, some aircraft are equipped with 'enhanced-vision' systems or terrain collision warning systems. Enhanced-vision systems are typically very large and costly systems that are not very covert and are also difficult to install in a helicopter. The display is typically raw images from infrared or radar sensors, and can require a high degree of pilot interpretation and attention. Terrain collision warning system that rely on stored terrain maps are often of low resolution and accuracy and do not represent hazards to the aircraft placed after map sampling. Such hazards could include aircraft parked on runway, man- made towers or buildings and hills. In this paper, a low cost dual-function scanning pencil-beam, millimeter-wave radar forward sensor is used to determine whether an aircraft's flight path is clear of obstructions. Due to the limited space and weight budget in helicopters, the system is a dual function system that is substituted in place of the existing radar altimeter. The system combines a 35 GHz forward looking obstacle avoidance radar and a 4.3 GHz radar altimeter. The forward looking 35 GHz 3D radar's returns are used to construct a terrain and obstruction database surrounding an aircraft, which is presented to the pilot as a synthetic perspective display. The 35 GHz forward looking radar and the associated display was evaluated in a joint NASA Honeywell flight test program in 1996. The tests were conducted on a NASA/Army test helicopter. The test program clearly demonstrated the systems potential usefulness for collision avoidance.

  17. On the determination of diffusion lengths by means of angle-lapped p-n junctions

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1979-01-01

    A standard procedure for determining the minority carrier diffusion length by means of SEM consists of scanning an angle-lapped surface of a p-n junction and measuring the resulting short circuit current as a function of beam position. The present paper points out that the usual expression linking the short circuit current induced by the electron beam to the angle between the semiconductor surface and the junction plane is incorrect. The correct expression is discussed and it is noted that, for angles less than 10 deg, the new and the old expression are practically indistinguishable.

  18. Traumatic disruption of the abdominal wall: lap-belt injuries in children.

    PubMed

    Moremen, Jacob R; Nakayama, Don K; Ashley, Dennis W; Astin, Matthew; Nolan, Tracy L

    2013-04-01

    Traumatic abdominal wall hernia (TAWH) from high speed mechanism is a unique finding in adult trauma, and exceedingly rare in pediatrics. The majority of reports are of low-speed "handlebar" hernias associated with direct injury by bicycle handlebars. We report a series of three pediatric patients in motor vehicle collisions (MVC) who experienced TAWH by lap-belt and associated intra-abdominal injuries necessitating immediate operative intervention. Different operative approaches were used in each case to manage the varying types of disruptions. This adds to the pediatric literature the largest series of its kind. PMID:23583160

  19. A study of joint damping in metal plates

    NASA Astrophysics Data System (ADS)

    Walker, Scott J. I.; Aglietti, Guglielmo S.; Cunningham, Paul

    2009-07-01

    For satellite applications the determination of the correct dynamic behaviour and in particular the structural damping is important to assess the vibration environment for the spacecraft subsystems and ultimately their capability to withstand the launch vibration environment. Therefore, the object of this investigation is to experimentally analyse a range of aluminium panel configurations to study the effect of joints on the damping of the complete structure. The paper begins with a full description of the experimental method used to accurately determine the modal loss factors for each of the panel configurations analysed. Nine different panels were used in the experimental tests, six of which incorporate lap joints variations. The joint parameters investigated include fastener type, bolt torque, fastener spacing, overlap distance and the effect of stiffeners. The damping results of ten different joint variants are presented for each of the first twelve modes of vibration. This data is directly compared to the damping factors of an equivalent monolithic panel. Various specific conclusions are made with respect to each of the joint parameters investigated. However, the primary conclusion is that the mode shape combined with the joint stiffness and joint location can be suggestive as to the likely magnitude increase of the modal loss factor.

  20. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM. PART II: STRENGTH AND DURABILITY OF LAP JOINTS

    EPA Science Inventory

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 A in thickness) were deposited onto 6111-T4 aluminum substrates in radio frequency and microwave powered reactors and used as primers for structural adhesive bonding. Processing variables such as substrate pre-treatment,...

  1. Role of lymphocyte activation products (LAP) in cell-mediated immunity. II. Effects of lymphocyte activation products on lymph node architecture and evidence for peripheral release of LAP following antigenic stimulation

    PubMed Central

    Kelly, R. H.; Wolstencroft, R. A.; Dumonde, D. C.; Balfour, Brigid M.

    1972-01-01

    The experiments reported here were concerned with determining the effects of lymphocyte activation products (LAP) on lymph node architecture, and with assaying afferent lymph for evidence of the peripheral release of LAP during the induction of an immune response. Intralymphatic inoculation of purified homologous LAP into guinea-pigs resulted in increased weight and cellular content of the draining node. Histologically these nodes showed paracortical distension and dense aggregations of lymphoid cells or `cellular plugs' in the paracortical sinuses. It was suggested that one effect of LAP may be to cause cellular retention in the paracortex of lymph nodes by regulating the rate of cell exit via the sinuses of the node. The peripheral lymph of rabbits was assayed for its ability to inhibit macrophage migration and to accelerate lymphocyte DNA synthesis after stimulation with three different antigens. The antigens were chosen to give a spectrum which ranged from a primarily humoral response (erythrocyte stimulation) through a mixed humoral and cell-mediated response (diphtheria toxoid stimulation) to a predominantly cell-mediated type of response (skin contact sensitization to fluorodinitrobenzene–FDNB). Paracortical distension with lymphoid cell sinus plugging, similar to that observed in the guinea-pig nodes following intralymphatic injection of LAP, were common features of both the diphtheria toxoid and FDNB responses. It was concluded that the development of this type of sinus plugging and paracortical distension might be related to multiple activities of LAP generated and released either at the peripheral antigen depot or within the draining node. ImagesFig. 5Fig. 2Fig. 3Fig. 4 PMID:4111695

  2. Aircraft and Ground Vehicle Winter Runway Friction Assessment

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1999-01-01

    Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). Participants recently completed the fourth winter season of testing. The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI) will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag and the effectiveness of various runway and aircraft de-icing chemical types and application rates. New equipment and techniques to measure surface frictional properties are also described. The status of an international friction index calibration device for use in ensuring accuracy of ground vehicle friction measurements will also be discussed. NASA considers the success of this joint program critical in terms of ensuring adequate ground handling capability in adverse weather conditions for future aircraft being designed and developed as well as improving the safety of current aircraft ground operations.

  3. Dynamic measurement of inside strain distributions in adhesively bonded joints by embedded fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Murayama, Hideaki; Ning, Xiaoguang; Kageyama, Kazuro; Wada, Daichi; Igawa, Hirotaka

    2014-05-01

    Long-length fiber Bragg grating (FBG) with the length of about 100 mm was embedded onto the surface of a carbon fiber reinforced plastics (CFRP) substrate and two CFRP adherends were joined by adhesive to form an adhesive bonded single-lap joint. The joint was subjected to 0.5 Hz cyclic tensile load and longitudinal strain distributions along FBG were measured at 5 Hz by the fiber-optic distributed sensing system based on optical frequency domain reflectometry (OFDR). We could successfully monitor the strain distributions accurately with high spatial resolution of around 1 mm.

  4. Probabilistic and Possibilistic Analyses of the Strength of a Bonded Joint

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Krishnamurthy, T.; Smith, Steven A.

    2001-01-01

    The effects of uncertainties on the strength of a single lap shear joint are explained. Probabilistic and possibilistic methods are used to account for uncertainties. Linear and geometrically nonlinear finite element analyses are used in the studies. To evaluate the strength of the joint, fracture in the adhesive and material strength failure in the strap are considered. The study shows that linear analyses yield conservative predictions for failure loads. The possibilistic approach for treating uncertainties appears to be viable for preliminary design, but with several qualifications.

  5. Predicting visibility of aircraft.

    PubMed

    Watson, Andrew; Ramirez, Cesar V; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  6. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  7. Endovascular management of lap belt-related abdominal aortic injury in a 9-year-old child.

    PubMed

    Papazoglou, Konstantinos O; Karkos, Christos D; Kalogirou, Thomas E; Giagtzidis, Ioakeim T

    2015-02-01

    Blunt abdominal aortic trauma is a rare occurrence in children with only a few patients having been reported in the literature. Most such cases have been described in the context of lap belt injuries. We report a 9-year-old boy who suffered lap belt trauma to the abdomen during a high-speed road traffic accident resulting to the well-recognized pattern of blunt abdominal injury, that is, the triad of intestinal perforation, fractures of the lumbar spine, and abdominal aortic injury. The latter presented with lower limb ischemia due to dissection of the infrarenal aorta and right common iliac artery. Revascularization was achieved by endovascular means using 2 self-expanding stents in the infrarenal aorta and the right common iliac artery. This case is one of the few reports of lap belt-related acute traumatic abdominal aortic dissection in a young child and highlights the feasibility of endovascular management in the pediatric population. PMID:25463338

  8. Automation tools for flexible aircraft maintenance.

    SciTech Connect

    Prentice, William J.; Drotning, William D.; Watterberg, Peter A.; Loucks, Clifford S.; Kozlowski, David M.

    2003-11-01

    This report summarizes the accomplishments of the Laboratory Directed Research and Development (LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four DoD depots that support extensive aircraft maintenance in order to understand critical needs for automation, and to identify maintenance processes for potential automation or integration opportunities. From the visits, the team identified technology needs and application issues, as well as non-technical drivers that influence the application of automation in depot maintenance of aircraft. Software tools for automation facility design analysis were developed, improved, extended, and integrated to encompass greater breadth for eventual application as a generalized design tool. The design tools for automated path planning and path generation have been enhanced to incorporate those complex robot systems with redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance facility. A prototype force-controlled actively compliant end-effector was designed and developed based on a parallel kinematic mechanism design. This device was developed for demonstration of surface finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector tool was positioned along the workpiece by a robot manipulator, programmed for operation by the automated planning tools integrated for this project. Together, the hardware and software tools demonstrate many of the technologies required for flexible automation in a maintenance facility.

  9. Tactical aircraft optical cable plant program plan

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Murdock, John K.; Ide, James R.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to tactical aircraft. The technology offers many potential benefits, including increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability from redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. The application of fiber optics to tactical aircraft presents challenges to physical components which can only be met by a methodical attention to what is required, what are the conditions of use, and how will the components be produced in the broad context of a fiber optics using economy. For this purpose, the FLASH program has outlined a plan, and developed a team to evaluate requirements, delineate environmental and use conditions, and design practical, low cost components for tactical aircraft fiber optic cable plants including cables, connectors, splices, backplanes, manufacturing and installation methods, and test and maintenance methods.

  10. Loftin Collection - Boeing Aircraft

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Either a F2B-1 or F3B-1, both aircraft were built by Boeing and both were powered by Pratt and Whitney Wasp engines. These fighters were intended for Navy shipboard use. Boeing F3B-1: While most Boeing F3B-1s served the U. S. Navy aircraft carriers the Lexington and the Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was the next to last F3B-1 build in November 1928.

  11. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  12. Some fighter aircraft trends

    NASA Technical Reports Server (NTRS)

    Spearman, L.

    1985-01-01

    Some basic trends in fighters are traced from the post World II era. Beginning with the first operational jet fighter, the P-80, the characteristics of subsequent fighter aircraft are examined for performance, mission capability, effectiveness, and cost. Characteristics presented include: power loading, wing loading, maximum speed, rate of climb, turn rate, weight and weight distribution, cost and cost distribution. The characteristics of some USSR aircraft are included for comparison. The trends indicate some of the rationale for certain fighter designs and some likely characteristics to be sought in future fighter aircraft designs.

  13. Tropospheric sampling with aircraft

    SciTech Connect

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  14. Aircraft compass characteristics

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Smith, Clyde W

    1937-01-01

    A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing.

  15. Microwave imaging of aircraft

    NASA Astrophysics Data System (ADS)

    Steinberg, Bernard D.

    1988-12-01

    Three methods of imaging aircraft from the ground with microwave radar with quality suitable for aircraft target recognition are described. The imaging methods are based on a self-calibration procedure called adaptive beamforming that compensates for the severe geometric distortion inherent in any imaging system that is large enough to achieve the high angular resolution necessary for two-dimensional target imaging. The signal processing algorithm is described and X-band (3-cm)-wavelength experiments demonstrate its success on commercial aircraft flying into Philadelphia International Airport.

  16. Combining FoxP3 and Helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients

    PubMed Central

    Khaled, Yazan S.; Ammori, Basil J.; Elkord, Eyad

    2016-01-01

    Regulatory T cells (Tregs) comprise numerous heterogeneous subsets with distinct phenotypic and functional features. Identifying Treg markers is critical to investigate the role and clinical impact of various Treg subsets in pathological settings, and also for developing more effective immunotherapies. We have recently shown that non-activated FoxP3−Helios+ and activated FoxP3+/–Helios+ CD4+ T cells express GARP/LAP immunosuppressive markers in healthy donors. In this study we report similar observations in the peripheral blood of patients with pancreatic cancer (PC) and liver metastases from colorectal cancer (LICRC). Comparing levels of different Treg subpopulations in cancer patients and controls, we report that in PC patients, and unlike LICRC patients, there was no increase in Treg levels as defined by FoxP3 and Helios. However, defining Tregs based on GARP/LAP expression showed that FoxP3−LAP+ Tregs in non-activated and activated settings, and FoxP3+Helios+GARP+LAP+ activated Tregs were significantly increased in both groups of patients, compared with controls. This work implies that a combination of Treg-specific markers could be used to more accurately determine expanded Treg subsets and to understand their contribution in cancer settings. Additionally, GARP−/+LAP+ CD4+ T cells made IL-10, and not IFN-γ, and levels of IL-10-secreting CD4+ T cells were elevated in LICRC patients, especially with higher tumor staging. Taken together, our results indicate that investigations of Treg levels in different cancers should consider diverse Treg-related markers such as GARP, LAP, Helios, and others and not only FoxP3 as a sole Treg-specific marker. PMID:26885615

  17. Direct measurement of the effective pressure law: Deformation of joints subject to pore and confining pressures

    SciTech Connect

    Boitnott, G.N.; Scholz, C.H. )

    1990-11-10

    When describing the deformation of poro-elastic materials subject to pore pressure (P{sub p}) and confining pressure (P{sub c}), the concept of effective pressure is commonly used. In such a description the deformation is described in terms of a single stress parameter, the effective stress (P{sub e}). Experimental studies which attempt to describe the effective pressure law are troubled by the fact that deformation of geologic materials invariably exhibits loading path dependence (hysteresis). Here the authors develop an experimental technique for measuring the effective pressure law which is useful for many properties of interest, including those that are highly nonlinear and exhibit common types of hysteresis. They experimentally derive an effective pressure law which describes the values of pore and confining pressure consistent with a given joint closure for a law which describes the values of pore and confining pressure consistent with a given joint closure for a loading path of constant closure. The study can be viewed as an attempt to include both pore and confining pressure in a single constitutive law for joint closure. The constant closure loading path is such that the measurement is not affected by hysteresis caused by joint closure. The results provide insight into the microgeometrical and micromechanical properties of joints. The data are not consistent with a simple extension of commonly used linear elastic constitutive models for joint deformation which have compared favorably with experiments in the absence of pore pressure. For smooth lapped glass joints, the effective pressure relation is found to be dependent on the local joint stiffness, with the relationship between the effective pressure law and the local joint stiffness being insensitive to the measured surface topography. Similar measurements on lapped and fractured rock provide some constraints on the effective pressure behavior of jointed rock.

  18. Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens

    PubMed Central

    Ivanov, Ivan E.; Boyd, Chelsea D.; Newell, Peter D.; Schwartz, Mary E.; Turnbull, Lynne; Johnson, Michael S.; Whitchurch, Cynthia B.; O’Toole, George A.; Camesano, Terri A.

    2012-01-01

    Pseudomonas fluorescence Pf0-1 requires the large repeat protein LapA for stable surface attachment. This study presents direct evidence that LapA is a cell-surface-localized adhesin. Atomic force microscopy (AFM) revealed a significant twofold reduction in adhesion force for mutants lacking the LapA protein on the cell surface compared to the wild-type strain. Deletion of lapG, a gene encoding a periplasmic cysteine protease that functions to release LapA from the cell surface, resulted in a twofold increase in the force of adhesion. Three-dimensional structured illumination microscopy (3D-SIM) revealed the presence of the LapA protein on the cell surface, consistent with its role as an adhesin. The protein is only visualized in the cytoplasm for a mutant of the ABC transporter responsible for translocating LapA to the cell surface. Together, these data highlight the power of combining the use of AFM and 3D-SIM with genetic studies to demonstrate that LapA, a member of a large group of RTX-like repeat proteins, is a cell-surface adhesin. PMID:23064158

  19. Contributions of kinematics and viscoelastic lap deformation on the suface figure during full aperture polishing of fused silica

    SciTech Connect

    Suratwala, T I; Steele, R A; Feit, M D

    2007-10-09

    A typical optical fabrication process involves a series of basic process steps including: (1) shaping, (2) grinding, (3) polishing, and sometimes (4) sub-aperture tool finishing. With significant innovation and development over the years in both the front end (shaping using CNC machines) and the back end (sup-aperture tool polishing), these processes have become much more deterministic. However, the intermediate stages (full aperture grinding/polishing) in the process, which can be very time consuming, still have much reliance on the optician's insight to get to the desired surface figure. Such processes are not presently very deterministic (i.e. require multiple iterations to get desired figure). The ability to deterministically finish an optical surface using a full aperture grinding/polishing will aid optical glass fabricators to achieve desired figure in a more repeatable, less iterative, and more economical manner. Developing a scientific understanding of the material removal rate is a critical step in accomplishing this. In the present study, the surface figure and material removal rate of a fused silica workpiece is measured as a function of polishing time using Ceria based slurry on a polyurethane pad or pitch lap under a variety of kinematic conditions (motion of the workpiece and lap) and loading configurations. The measured results have been applied to expand the Preston model of material removal (utilizing chemical, mechanical and tribological effects). The results show that under uniform loading, the surface figure is dominated by kinematics which can be predicted by calculating the relative velocity (between the workpiece and the lap) with time and position on the workpiece. However, in the case where the kinematics predict a time-averaged removal function over the workpiece that is uniform, we find experimentally that the surface deviates significantly from uniform removal. We show that this non-uniform removal is caused by the non-uniform stress

  20. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Astrophysics Data System (ADS)

    Ennix, Kimberly A.

    1994-02-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  1. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1993-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  2. Aircraft and Ground Vehicle Winter Runway Friction Assessment

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1999-01-01

    Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.

  3. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1994-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  4. On the separation of internal and boundary damage in slender bars using longitudinal vibration frequencies and equivalent linearization of damaged bolted joint response

    NASA Astrophysics Data System (ADS)

    Argatov, Ivan; Butcher, Eric A.

    2011-06-01

    The problem of detecting localized large-scale internal damage in structures with imperfect bolted joints is considered. The proposed damage detection strategy utilizes the structural damping and an equivalent linearization of the bolted lap joint response to separate the combined boundary damage from localized large-scale internal damage. The frequencies are found approximately using asymptotic analysis and a perturbation technique. The proposed approach is illustrated on an example of longitudinal vibrations in a slender elastic bar with both ends clamped by bolted lap joints with different levels of damage. It is found that while the proposed method allows for the estimation of internal damage severity once the crack location is known, it gives multiple possible crack locations so that other methods (e.g., mode shapes) are required to obtain a unique crack location.

  5. Using LAPS/STMAS as a real time surface analysis tool

    NASA Astrophysics Data System (ADS)

    Moré, Jordi; Farguell, Àngel; Altava, Vicent

    2016-04-01

    A data assimilation system based on the LAPS/STMAS software is tested for a full year (2012) to provide hourly surface analyses at high resolution (3 km) in a complex terrain area centered over Catalonia. In particular, surface observations of more than 150 automatic weather stations (AWS) of the Meteorological Service of Catalonia (SMC) are combined with the operational outputs of WRF-ARW model at 3 km available at SMC. The hourly analyses obtained are verified against independent observations in order to evaluate the system as a real time tool in a small meteorological office. Additionally, an special study is carried out focusing on temperature at 2 m by means of introducing some code modifications in the LAPS/STMAS software. These tests are compared together with a simple multiregression technique exclusively based on observational data (AWS). The comparison shows that the best results are obtained for STMAS when introducing an error weight that depends on the station topography representativeness, instead of just considering a common instrumental error for all the stations. Nevertheless, the multiregression technique still provides more accurate results on temperature and reveals that additional work has to be done in order to improve the system.

  6. The development of laser-plasma interaction program LAP3D on thousands of processors

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Hao, Liang; Liu, Zhanjun; Zheng, Chunyang; Li, Bin; Guo, Hong

    2015-08-01

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  7. The development of laser-plasma interaction program LAP3D on thousands of processors

    SciTech Connect

    Hu, Xiaoyan Hao, Liang; Liu, Zhanjun; Zheng, Chunyang; Li, Bin Guo, Hong

    2015-08-15

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  8. (40)Ar/(39)Ar Age of Hornblende-Bearing R Chondrite LAP 04840

    NASA Technical Reports Server (NTRS)

    Righter, K.; Cosca, M.

    2015-01-01

    Chondrites have a complex chronology due to several variables affecting and operating on chondritic parent bodies such as radiogenic heating, pressure and temperature variation with depth, aqueous alteration, and shock or impact heating. Unbrecciated chondrites can record ages from 4.56 to 4.4 Ga that represent cooling in small parent bodies. Some brecciated chondrites exhibit younger ages (much less than 4 to 4.4 Ga) that may reflect the age of brecciation, disturbance, or shock and impact events (much less than 4 Ga). A unique R chondrite was recently found in the LaPaz Icefield of Antarctica - LAP 04840. This chondrite contains approximately 15% hornblende and trace amounts of biotite, making it the first of its kind. Studies have revealed an equigranular texture, mineral equilibria yielding equilibration near 650-700 C and 250-500 bars, hornblende that is dominantly OH-bearing (very little Cl or F), and high D/H ratios. To help gain a better understanding of the origin of this unique sample, we have measured the (40)Ar/(39)Ar age (LAP 04840 split 39).

  9. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  10. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  11. Analysis of bonded joints. [shear stress and stress-strain diagrams

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1975-01-01

    A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.

  12. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  13. Predicting Aircraft Noise Levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1983-01-01

    Computer program developed for predicting aircraft noise levels either in flight or in ground tests. Noise sources include fan inlet and exhaust jet flap (for powered lift), core (combustor), turbine and airframe. Program written in FORTRAN IV.

  14. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  15. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  16. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  17. Aircraft Safety Improvement

    NASA Technical Reports Server (NTRS)

    Kao, G.

    1985-01-01

    Fabrication and testing of honeycomb sandwich aircraft panels are discussed. Also described is the use of the following instruments: thermogravimetric analyzer, differential scanning calorimeter, limiting oxygen index, and infrared spectrometer.

  18. Aircraft electromagnetic compatibility

    NASA Astrophysics Data System (ADS)

    Clarke, Clifton A.; Larsen, William E.

    1987-06-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  19. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  20. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  1. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  2. Aircraft of the future

    NASA Technical Reports Server (NTRS)

    Yeger, S.

    1985-01-01

    Some basic problems connected with attempts to increase the size and capacity of transport aircraft are discussed. According to the square-cubic law, the increase in structural weight is proportional to the third power of the increase in the linear dimensions of the aircraft when geomettric similarity is maintained, while the surface area of the aircraft increases according to the second power. A consequence is that the fraction of useful weight will decrease as aircraft increase in size. However, in flying-wing designs in which the whole load on the wing is proportional to the distribution of lifting forces, the total bending moment on the wing will be sharply reduced, enabling lighter construction. Flying wings may have an ultimate capacity of 3000 passengers.

  3. Depreciation of aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  4. Joint lubrication.

    PubMed

    McCutchen, C W

    1983-01-01

    The fine-pored, easily compressed articular cartilage provides animal joints with self-pressurized hydrostatic (weeping) lubrication. The solid skeletons of the cartilages press against each other, but so lightly that their rubbing is lubricated successfully by synovial fluid--a boundary lubricant too weak to lubricate ordinary bearings. PMID:6317095

  5. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  6. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  7. In vivo anti-LAP mAb enhances IL-17/IFN-γ responses and abrogates anti-CD3-induced oral tolerance

    PubMed Central

    da Cunha, Andre P.; Wu, Henry Y.; Rezende, Rafael M.; Vandeventer, Tyler

    2015-01-01

    Regulatory T cells (Tregs) play a critical role in the maintenance of immunological tolerance. The best-characterized Tregs are those expressing the transcription factor Foxp3 and in vivo modulation of Foxp3 Tregs has been employed to study their role in immune homeostasis. Latency-associated peptide (LAP) is a membrane-bound TGF-β complex that has also been shown to play a role in Treg function and oral tolerance. We developed a novel anti-mouse LAP mAb that allowed us to investigate the effect of targeting LAP in vivo on immune function and on anti-CD3-induced oral tolerance. We found that in vivo anti-LAP mAb administration led to a decrease in the number of CD4+LAP+ Tregs in spleen and lymph nodes without affecting CD4+Foxp3+ Tregs. Spleen cells from anti-LAP-injected mice proliferated more in vitro and produced increased amounts of IL-2, IL-17 and IFN-γ. Moreover, injection of anti-LAP antibody abrogated the protective effect of oral anti-CD3 on experimental autoimmune encephalomyelitis (EAE). Finally, in vivo anti-LAP administration prior to myelin oligodendrocyte glycoprotein immunization resulted in severe EAE in the absence of pertussis toxin, which is used for EAE induction. Our findings demonstrate the importance of CD4+LAP+ T cells in the control of immune homeostasis and autoimmunity and provides a new tool for the in vivo investigation of murine LAP+ Tregs on immune function. PMID:25194146

  8. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  9. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  10. The Amphibole-Bearing Chondrite Meteorite LAP04840: Metamorphism and `Tectonics' in a Hydrous Asteroid

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.; McCanta, M. C.; Essene, E. J.

    2006-12-01

    LAP04840 is an R-chondrite found in Antarctica, and is unique among meteorites in containing abundant amphibole and biotite. Its chondrules (>500 μm diam) sit in a granoblastic matrix of grains ~20 μm across. Amphibole and biotite grains are anhedral to subhedral, to ~100 μm, and concentrated in chondrules. Commonly, they fit among the olivine and opx grains in regions that would (in anhydrous chondrules) have been occupied by cpx, mesostasis, or glass. Minerals are unzoned, and have constant compositions: olivine Fo62Fa38, Opx En60Wo01, plagioclase An07Ab90, magnesio-hornblende, (Ca1.52Na0.81K0.44) (Mg3.60Fe1.27Mn0.01Ti0.04Cr0.08) (Si6.95Al1.02Fe0.03) O22 (OH1.94?F0.05Cl0.01), sodian phlogopite (low Ti, F, Cl), magnetite (Mt63Chr28Sp05Usp04) and Fe-Ni sulfides. This assemblage is consistent with amphibolite facies equilibrium. Amph-plg thermometry (Holland &Blundy, 1994) gives 675°C, which is consistent with limits of ~600LAP are dry and contain strongly metamorphosed clasts (but no melt rocks). Depending on bulk composition, heating can continue to and beyond the basalt solidus, with core formation and widespread melting and differentiation. An asteroid in the outer belt would accrete abundant ice, which would dilute ^{26}Al and sink much of its heat in melting and vaporization even cores of large asteroids (100+ km radius) would barely reach 675

  11. The poxviral scrapin MV-LAP requires a myxoma viral infection context to efficiently downregulate MHC-I molecules.

    PubMed

    Collin, Nicolas; Guérin, Jean-Luc; Drexler, Ingo; Blanié, Sophie; Gelfi, Jacqueline; Boullier, Séverine; Foucras, Gilles; Sutter, Gerd; Messud-Petit, Frédérique

    2005-12-20

    Downregulation of MHC class I molecules is a strategy developed by some viruses to escape cellular immune responses. Myxoma virus (MV), a poxvirus causing rabbit myxomatosis, encodes MV-LAP that is known to increase MHC-I endocytosis and degradation through a C(4)HC(3) motif critical for an E3 ubiquitin ligase activity. Here, we performed a functional mapping of MV-LAP and showed that not only the C(4)HC(3) motif is necessary for a marked downregulation of MHC-I but also a conserved region in the C-terminal part of the protein. We also showed that the putative transmembrane domains are responsible for a specific subcellular localization of the protein: they retain MV-LAP in the ER in transfected cells and in the endolysosomal compartments in infected cells. We observed that a specific MV infection context is necessary for a fully efficient downregulation of MHC-I. Our data suggest that the functionality of viral LAP factors, inherited by herpes- and poxviruses from mammalian cells, is more complex than anticipated. PMID:16185739

  12. The First Use of the Learning Accomplishment Profile (LAP) in Prekindergarten Head Start 1976-1977. Report Number 77137.

    ERIC Educational Resources Information Center

    Silbermann, David J.

    Prekindergarten Head Start teachers were trained to administer the Learning Accomplishment Profile (LAP), an objective check list of development in seven areas: gross motor, fine motor manipulation and writing, social, self help, cognitive, and language skills. Data were collected from separate groups of 3, 4, and 5-year old children to ascertain…

  13. Research on the design of surface acquisition system of active lap based on FPGA and FX2LP

    NASA Astrophysics Data System (ADS)

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2014-08-01

    In order to research the dynamic surface shape changes of active lap during the processing, this paper introduces a dynamic surface shape acquisition system of active lap using FPGA and USB communication. This system consists of high-precision micro-displacement sensor array, acquisition board, PC computer composition, and acquisition circuit board includes six sub-boards based on FPGA, a hub-board based on FPGA and USB communication. A sub-board is responsible for a number of independent channel sensors' data acquisition; hub-board is responsible for creating encoder simulation tools to active lap deformation control system with location information, sending synchronization information to latch the sensor data in all of the sub-boards for a time, while addressing the sub-boards to gather the sensor data in each sub-board one by one and transmitting all the sensor data together with location information via the USB chip FX2LP to the host computer. Experimental results show that the system is capable of fixing the location and speed of active lap, meanwhile the control of surface transforming and dynamic surface data acquisition at a certain location in the processing is implemented.

  14. Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease.

    PubMed

    Gesson, Kevin; Vidak, Sandra; Foisner, Roland

    2014-05-01

    A-type lamins are components of the lamina network at the nuclear envelope, which mediates nuclear stiffness and anchors chromatin to the nuclear periphery. However, A-type lamins are also found in the nuclear interior. Here we review the roles of the chromatin-associated, nucleoplasmic LEM protein, lamina-associated polypeptide 2α (LAP2α) in the regulation of A-type lamins in the nuclear interior. The lamin A/C-LAP2α complex may be involved in the regulation of the retinoblastoma protein-mediated pathway and other signaling pathways balancing proliferation and differentiation, and in the stabilization of higher-order chromatin organization throughout the nucleus. Loss of LAP2α in mice leads to selective depletion of the nucleoplasmic A-type lamin pool, promotes the proliferative stem cell phenotype of tissue progenitor cells, and delays stem cell differentiation. These findings support the hypothesis that LAP2α and nucleoplasmic lamins are regulators of adult stem cell function and tissue homeostasis. Finally, we discuss potential implications of this concept for defining the molecular disease mechanisms of lamin-linked diseases such as muscular dystrophy and premature aging syndromes. PMID:24374133

  15. Design and analysis on the kinematics of the lap-polisher for optical fiber end face based on tribological theory

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Shan; Wang, Jun; Shu, Qi-Lin; Sun, Jun; Zheng, Xiao-Jiao

    2010-10-01

    In order to obtain the effects of the kinematical state to the profile precision of the fiber optic end surface in the process of lapping and polishing, a kinematical equation of the lap- polisher with the slider-crank movement is developed, and based on these equations and the tribological model of CMP, the dimensionless distribution of the material removal volume (DDMRV) and the trajectory of abrasive grains cutting on the lap-polisher are numerically simulated with the way of stochastic abrasive grains, then the effects of the parameters of the lap-polisher on the uniformity of the DDMRV and the trajectory on the fiber optical end surface are discussed, and the results are that the DDMRV and the trajectory of abrasive grains have rather better value when the crank length E is chosen in a advisable parameter region and the rotational speed n1 of the crank is increased and the rotation speed n0 of the guide plate is decreased.

  16. Pathfinder Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long- duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar- powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  17. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  18. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  19. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  20. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  1. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  2. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  3. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  4. Damage tolerance for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Lincoln, John W.

    1992-01-01

    The damage tolerance experience in the United States Air Force with military aircraft and in the commercial world with large transport category aircraft indicates that a similar success could be achieved in commuter aircraft. The damage tolerance process is described for the purpose of defining the approach that could be used for these aircraft to ensure structural integrity. Results of some of the damage tolerance assessments for this class of aircraft are examined to illustrate the benefits derived from this approach. Recommendations are given for future damage tolerance assessment of existing commuter aircraft and on the incorporation of damage tolerance capability in new designs.

  5. Creep, thermal-cyclic and tensile properties of Nb1Zr to stainless steel transition joints

    NASA Astrophysics Data System (ADS)

    Chen, S.; Yu, W.; Zee, R. H.; Chin, B. A.

    1994-09-01

    Joining of Nb1Zr to austenitic type 316 stainless steel (SS) was investigated. Gas tungsten arc welding was conducted on sheet metals and tubing by lap welding 316 SS over Nb1Zr. Sound welds were produced by controlling heat input and through careful surface preparation. Satisfactory strength and ductility of the welded joints were found in the tensile tests at room temperature and 1000 K. Investigation of thermocycling effects showed that there was a small degradation in the mechanical properties of the joint after 100 thermal cycles between 300 and 1000 K under vacuum. Creep tests were performed on welded tubing joints at a temperature of 1000 K with internal pressures up to 6.9 MPa. Creep test results show that the welded joint has higher creep resistance than stainless steel. Furthermore, to improve the toughness of the Nb1Zr to 316 SS weld, the use of a vanadium interlayer was investigated.

  6. Performance assessment and optimization of the ITER toroidal field coil joints

    NASA Astrophysics Data System (ADS)

    Rolando, G.; Foussat, A.; Knaster, J.; Ilin, Y.; Nijhuis, A.

    2013-08-01

    The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the conductor with the feeder and inter-coil U-shaped bus bars. The feasibility of operating plasma scenarios depends on the ability of the magnets to retain sufficient temperature and current margins. In this respect, the joints represent a possible critical region due to the combination of steady state Joule heating in the resistance of the joint and coupling losses and currents in ramped operation. The temperature and current margins of both DP and terminal joints are analysed during the 15 and 17 MA plasma scenarios. The effect on the joint performance of feasible optimization solutions, such as rotation of the terminal joints and sole RRR increase, is explored. The characterization of the TF coil joints is completed by the estimation of the coupling loss time constant for different inter-strand and strand-to-joint resistance values. The study is carried out with the code JackPot-ACDC, allowing the analysis of lap-type joints with a strand-level detail.

  7. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  8. Lipid accumulation product (LAP) as a criterion for the identification of the healthy obesity phenotype in postmenopausal women.

    PubMed

    Lwow, Felicja; Jedrzejuk, Diana; Milewicz, Andrzej; Szmigiero, Leszek

    2016-09-01

    Obesity and its complications constitute a major health problem in postmenopausal women. The identification of the obesity phenotype, especially that of metabolically healthy obese (MHO) patients, is a necessary part of obesity treatment protocols. There are several methods to define MHO, but unfortunately, all of them are arbitrary and inconsistent. The aim of this work was to determine whether lipid accumulation product (LAP) could be used as a marker of the MHO phenotype in postmenopausal women. A sample of 345 Polish postmenopausal women aged 50-60years old participated in the study. Participants were classified as obese when their BMI was >27. Receiver operating characteristic curve analysis was performed to estimate the best cutoff for the LAP index value to identify postmenopausal women without metabolic syndrome components. We found that the best cutoff value was LAP ≤29.9, and this value was used to define MHO individuals. With this definition, the identification of MHO individuals could be made when both of the following criteria were met: LAP index ≤29.9 and no arterial hypertension (SBP<130mmHg, DBP<85mmHg). The anthropometric and body fat distribution measurements, as well as the metabolic characteristics of MHO women identified according to the above definition, were compared with those of MHO women identified by two other methods in the literature. These methods and our definition identified similar proportions of MHO women ranging from 11.6% to 16.9%. We found that MHO women identified by all of the definitions used in this study possessed a similar metabolic status, and they did not differ in anthropometric indices or body fat distribution measurements. We concluded that the combination of LAP estimation and arterial blood pressure measurement appear to constitute a useful method for identifying the MHO phenotype in postmenopausal women. PMID:27329927

  9. Ground truth report 1975 Phoenix microwave experiment. [Joint Soil Moisture Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Direct measurements of soil moisture obtained in conjunction with aircraft data flights near Phoenix, Arizona in March, 1975 are summarized. The data were collected for the Joint Soil Moisture Experiment.

  10. SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 1

    NASA Technical Reports Server (NTRS)

    Baker, William H., Jr.

    1986-01-01

    A preliminary design and analysis was completed for a SLEEC (Shingle Lap Extendible Exit Cone) which could be incorporated on the Space Transportation System (STS) Solid Rocket Booster (SRB). Studies were completed which predicted weights and performance increases and development plans were prepared for the full-scale bench and static test of SLEEC. In conjunction with the design studies, a series of supporting analyses were performed to assure the validity and feasibility of performance, fabrication, cost, and reliability for the selected design. The feasibility and required amounts of bench, static firing, and flight tests considered necessary for the successful incorporation of SLEEC on the Shuttle SRBs were determined. Preliminary plans were completed which define both a follow on study effort and a development program.

  11. FRACTURE MECHANICS APPROACH TO ESTIMATE FATIGUE LIVES OF WELDED LAP-SHEAR SPECIMENS

    SciTech Connect

    Lam, P.; Michigan, J.

    2014-04-25

    A full range of stress intensity factor solutions for a kinked crack is developed as a function of weld width and the sheet thickness. When used with the associated main crack solutions (global stress intensity factors) in terms of the applied load and specimen geometry, the fatigue lives can be estimated for the laser-welded lap-shear specimens. The estimations are in good agreement with the experimental data. A classical solution for an infinitesimal kink is also employed in the approach. However, the life predictions tend to overestimate the actual fatigue lives. The traditional life estimations with the structural stress along with the experimental stress-fatigue life data (S-N curve) are also provided. In this case, the estimations only agree with the experimental data under higher load conditions.

  12. The lap-counting and zeta functions of the tent map

    NASA Astrophysics Data System (ADS)

    Flatto, Leopold; Lagarias, Jeffrey C.

    2000-07-01

    The tent map tβ:[0,1]→[0,1] with parameter 1 < β≤2 is defined by t_{\\beta }(x) = \\cases{\\beta x & $0 \\leq x \\leq \\case{1}{2}$\\\\ \\beta (1- x) & $\\case{1}{2} \\leq x \\leq 1$. } This paper derives formulae for its dynamical zeta and <span class=lap-counting functions which exhibit the renormalization structure of such maps. It relates these functions to the centrally symmetric linear mod 1 transformation f_ {\\beta }(x) = \\beta x + 1- \\case{1}{2} \\beta\\quad (\\mathop{\\rm mod} 1). The singularities of these functions on the circle |z| = 1/β are determined explicitly.

  13. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  14. Aircraft icing instrumentation: Unfilled needs. [rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Kitchens, P. F.

    1980-01-01

    A list of icing instrumentation requirements are presented. Because of the Army's helicopter orientation, many of the suggestions are specific to rotary wing aircraft; however, some of the instrumentation are also suitable for general aviation aircraft.

  15. Emissions from queuing aircraft

    SciTech Connect

    Segal, H.

    1980-01-01

    The ability of the FAA (U.S. Federal Aviation Administration) Simplex mathematical model, which employs a simple point-source algorithm with provisions for selecting a particular plume height and initial box size for each aircraft being analyzed, to predict air quality through modeling emissions released from queuing aircraft was verified by measurements of carbon monoxide emissions from such aircraft during a five-day period at Los Angeles International Airport. The model predicted carbon monoxide concentrations of 4 ppm (National Ambient Air Quality Standard limit value is 35 ppm) at expected populated locations during the highest activity hour monitored. This study should also apply to other engine exhaust gases such as NO/sub x/.

  16. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  17. Scaling aircraft noise perception.

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1973-01-01

    Following a brief review of the background to the study, an extensive experiment is described which was undertaken to assess the practical differences between numerous alternative methods for calculating the perceived levels of individual aircraft flyover wounds. One hundred and twenty recorded sounds, including jets, turboprops, piston aircraft and helicopters were rated by a panel of subjects in a pair comparison test. The results were analyzed to evaluate a number of noise rating procedures, in terms of their ability to accurately estimate both relative and absolute perceived noise levels over a wider dynamic range (84-115 dB SPL) than had generally been used in previous experiments. Performances of the different scales were examined in detail for different aircraft categories, and the merits of different band level summation procedures, frequency weighting functions, duration and tone corrections were investigated.

  18. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  19. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  20. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The unique Pathfinder solar-powered flying wing, is shown during a checkout flight from the Dryden Flight Research Center, Edwards, California. This two-hour low-altitude flight over Rogers Dry Lake, Nov. 19, 1996, served to test aircraft systems and functional procedures, according to officials of AeroVironment, Inc., Pathfinder's developer and operator. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  1. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  2. Analysis of the stress-strain state in single overlap joints using piezo-ceramic actuators

    NASA Astrophysics Data System (ADS)

    Pǎltânea, Veronica; Pǎltânea, Gheorghe; Popovici, Dorina; Jiga, Gabriel; Papanicolaou, George

    2014-05-01

    In this paper is presented a 2D approach to finite element modeling and an analytical calculus of a single lap bonded joint. As adherent material were selected a sheet of wood, aluminum and titanium. For adhesive part were selected Bison Super Wood D3 in case of the wood single lap joint and an epoxy resin type DGEBA-TETA for gluing together aluminum and titanium parts. In the article is described a combined method, which consists in the placement of the piezoelectric actuator inside of the adhesive part, in order to determine the tensile stress in the overlap joint. A comparison between the analytical and numerical results has been achieved through a multiphysics modeling - electrical and mechanical coupled problem. The technique used to calculate the mechanical parameters (First Principal Stress, displacements) was the three-point bending test, where different forces were applied in the mid-span of the structure, in order to maintain a constant displacement rate. The length of the overlap joint was modified from 20 to 50 mm.

  3. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  4. Aircraft Flutter Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.

  5. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  6. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  7. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  8. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  9. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Viewed in this 1955 photograph is the NACA High Speed Flight Station D-558-2 #2 (144) Skyrocket, an all-rocket powered vehicle. The Skyrocket is parked on Rogers Dry Lakebed at Edwards Air Force Base. This aircraft, NACA 144/Navy 37974, was the first to reach Mach 2 (see project description). The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and

  10. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  11. Description of the Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Folkman, Steven L.; Redd, Frank J.

    1992-01-01

    The overall objective is to develop a small-scale shuttle flight experiment which allows researchers to: (1) characterize the influence of gravity and joint gaps on a small-scale truss model, and (2) evaluate the applicability of low-g aircraft test results for predicting on-orbit behavior. The experiment consists of a three-bay truss and associated hardware for truss excitation and measurement of oscillations. Other aspects of the investigation are presented in viewgraph form.

  12. Commercial Aircraft Integrated Vehicle Health Management Study

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  13. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Atwal, M.; David, J.; Heitman, K.; Crocker, M. J.

    1983-01-01

    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented.

  14. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  15. The variable density aircraft concept

    NASA Technical Reports Server (NTRS)

    Davenport, A. C.

    1975-01-01

    In the variable density aircraft concept the aircraft's density is varied by varying its volume. This is accomplished by combining a variable volume hull, which is called the dynapod, with intrinsic means for the controlled variation of a mass of working fluid or substance within the aircraft. The dynapod is a hinged structure and follows the volumetric variations of the working fluid. The result is a variable density hull, which with the attachment of power plants, etc., becomes a variable density aircraft.

  16. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  17. Aircraft noise prediction

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  18. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  19. Counterrotating aircraft propulsor blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1993-01-01

    A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.

  20. Counterrotating aircraft propulsor blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1988-01-01

    A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.

  1. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  2. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  3. Ozone and aircraft operations

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1981-01-01

    The cabin ozone problem is discussed. Cabin ozone in terms of health effects, the characteristics of ozone encounters by aircraft, a brief history of studies to define the problem, corrective actions taken, and possible future courses of action are examined. It is suggested that such actions include avoiding high ozone concentrations by applying ozone forecasting in flight planning procedures.

  4. Aircraft modifications: Assessing the current state of Air Force aircraft modifications and the implications for future military capability

    NASA Astrophysics Data System (ADS)

    Hill, Owen Jacob

    How prepared is the U.S. Air Force to modify its aircraft fleet in upcoming years? Aircraft modernization is a complex interaction of new and legacy aircraft, organizational structure, and planning policy. This research will take one component of modernization: aircraft modification, and apply a new method of analysis in order to help formulate policy to promote modernization. Departing from previous small-sample studies dependent upon weight as a chief explanatory variable, this dissertation incorporates a comprehensive dataset that was constructed for this research of all aircraft modifications from 1996 through 2005. With over 700 modification programs, this dataset is used to examine changes to the current modification policy using policy-response regression models. These changes include separating a codependent procurement and installation schedule, reducing the documentation requirements for safety modifications, and budgeting for aging aircraft modifications. The research then concludes with predictive models for the F-15 and F-16 along with their replacements: the F-22 and F-35 Joint Strike Fighter.

  5. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1954-01-01

    Viewed in this 1954 photograph is the NACA High Speed Flight Research Station's D-558-2 #2 (144), an all rocket powered Skyrocket. Like the X-1, the D-558-2 had a fuselage shaped like a .50 caliber bullet. Unlike both the X-1 and the D-558-1, it had swept wings. To accommodate them required a completely different design than that used for the earlier straight-wing D-558-1. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft

  6. Analysis of jointed concrete pavements to moving aircraft loads

    NASA Astrophysics Data System (ADS)

    Alvappillai, A.; Zaman, M.

    Three complementary approaches are used to obtain a fundamental understanding of solid rocket propellant impact ignition. Results from instrumented critical energy drop weight experiments are discussed. An analytic model of sample deformation is presented which includes effects of friction, impact velocity, sample thickness, and material strength. Finally, preliminary results of a finite element simulation of sample deformation are outlined.

  7. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  8. Advanced ATC - An aircraft perspective

    NASA Technical Reports Server (NTRS)

    Credeur, L.; Williams, D. H.; Howell, W. E.; Spitzer, C. R.

    1986-01-01

    The principal operational improvements desired by commercial aircraft operators in the United States are efficient aircraft operations and delay reductions at the major terminals. This paper describes efforts underway within the Advanced Transport Operating Systems Program at the Langley Research Center to provide a technology basis for reducing delay while improving aircraft efficiency. The principal thrust is the development of time-based traffic control concepts which could be used within the framework of the upgraded National Airspace System and which would allow conventionally equipped aircraft to operate in a manner compatible with advanced aircraft.

  9. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  10. Advanced ATC: An aircraft perspective

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Williams, David H.; Howell, William E.; Spitzer, Cary R.

    1986-01-01

    The principal operational improvements desired by commercial aircraft operators in the United States are efficient aircraft operations and delay reductions at the major terminals. Efforts underway within the Advanced Transport Operating Systems Program at the Langley Research Center to provide a technology basis for reducing delay while improving aircraft efficiency are discussed. The principal thrust is the development of time-based traffic control concepts which could be used within the framework of the upgraded National Airspace System and which would allow conventionally equipped aircraft to operate in a manner compatible with advanced aircraft.

  11. Measurement of damping of graphite epoxy composite materials and structural joints

    NASA Technical Reports Server (NTRS)

    Crocker, Malcolm J.; Rao, Mohan D.; Raju, P. K.; Yan, Xinche

    1989-01-01

    The damping capacity of graphite epoxy materials and structural joints was evaluated. The damping ratio of different composite specimens and bonded joints were systematically evaluated under normal atmospheric conditions and in a vacuum environment. Free and forced vibration test methods were employed for measuring the damping ratios. The effect of edge support conditions on the damping value of a composite tube specimen was studied by using a series of experiments performed on the specimen with different edge supports. It was found that simulating a free-free boundary conditions by having no constraints at the ends gives the lowest value of the material damping of the composite. The accuracy of the estimation of the damping ratio value was improved by using a curve-fitting technique on the response data obtained through measurement. The effect of outgassing (moisture desorption) on the damping capacity was determined by measuring the damping ratio of the tube specimen in a vacuum environment before and after outgassing had occurred. The effects of high and low temperatures on the damping was also investigated by using a series of experiments on tube and beam specimens. An analytical model to study the vibrations of a bonded lap joint system was formulated. Numerical results were generated for different overlap ratios of the system. These were compared with experimental results. In order to determine the influence of bonded joints on the material damping capacity, experiments were conducted on bonded lap-jointed and double-butt-jointed specimens. These experimental results were compared with simple beam specimens with no joints.

  12. Effect of Viscosity on Fuel Leakage Between Lapped Plungers and Sleeves and on the Discharge from a Pump-Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1935-01-01

    Test data and analysis show that the rate of fuel leakage between a lapped plunger and sleeve varies directly with the density of the fuel, the diameter of the plunger, the pressure producing the leakage, and the cube of the mean clearance between the plunger and sleeve. The rate varies inversely as the length of the lapped fit and the viscosity of the fuel. With a mean clearance between the plunger and sleeve of 0.0001 inch the leakage amounts to approximately 0.2 percent of the fuel injected with gasoline and as low as 0.01 percent with diesel fuel oils. With this mean clearance an effective seal is obtained when the length of the lap is three times the diameter of the lap. The deformation of the sleeve and plunger under pressure is sufficient to change the rate of leakage appreciably from that which would be obtained if the clearance was constant under pressure.

  13. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  14. Evaluation of high temperature structural adhesives for extended service. [supersonic cruise aircraft research

    NASA Technical Reports Server (NTRS)

    Hill, S. G.

    1981-01-01

    Eight different Ti-6Al-4V surface treatments were investigated for each of 10 candidate resins. Primers (two for each resin) were studied for appropriate cure and thickness and initial evaluation of bond joints began using various combinations of the adhesive resins and surface treatments. Surface failure areas of bonded titanium coupons were analyzed by electron microscopy and surface chemical analysis techniques. Results of surface characterization and failure analysis are described for lap shear bond joints occurring with adhesive systems consisting of: (1) LARC-13 adhesive, Pasa jell surface treatment; (2) LARC-13 adhesive, 10 volt CAA treatment; (3) PPQ adhesive, 10 volt CAA treatment; and (4) PPQ adhesive, 5 volt CAA treatment. The failure analysis concentrated on the 10,000 hr 505K (450 F) exposed specimens which exhibited adhesive failure. Environmental exposure data being generated on the PPQ-10 volt CAA and the LARC-TPI-10 volt CAA adhesive systems is included.

  15. Behavior and design of reinforced concrete column-type lapped splices subjected to high-intensity cyclic loading

    NASA Astrophysics Data System (ADS)

    Sivakumar, B.; White, R. N.; Gergely, P.

    1982-10-01

    The behavior and design of lapped splices in reinforced concrete column type specimens under high intensity flexural cyclic loads was studied. Special attention is focused on the transverse steel requirements of specimens with more than two splices in a layer; the use of offsets in spliced bars; the effect of concrete strength on splice strength and behavior; and the strength of epoxy-repaired splices. Procedures are provided for the design of reinforced lapped splices to sustain at least twenty reversing load cycles beyond yield and a maximum rebar strain at the splice of at least 2.5 times the yield strain. The key aspect of the design is the provision of closely spaced uniformly distributed stirrup ties in the splice region. Equations are developed for the spacing of stirrups and the minimum splice length requirement.

  16. The Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Folkman, Steven L.; Bingham, Jeff G.; Crookston, Jess R.; Dutson, Joseph D.; Ferney, Brook D.; Ferney, Greg D.; Rowsell, Edwin A.

    1997-01-01

    The Joint Damping Experiment (JDX), flown on the Shuttle STS-69 Mission, is designed to measure the influence of gravity on the structural damping of a high precision three bay truss. Principal objectives are: (1) Measure vibration damping of a small-scale, pinjointed truss to determine how pin gaps give rise to gravity-dependent damping rates; (2) Evaluate the applicability of ground and low-g aircraft tests for predicting on-orbit behavior; and (3) Evaluate the ability of current nonlinear finite element codes to model the dynamic behavior of the truss. Damping of the truss was inferred from 'Twang' tests that involve plucking the truss structure and recording the decay of the oscillations. Results are summarized as follows. (1) Damping, rates can change by a factor of 3 to 8 through changing the truss orientation; (2) The addition of a few pinned joints to a truss structure can increase the damping by a factor as high as 30; (3) Damping is amplitude dependent; (4) As gravity induced preloads become large (truss long axis perpendicular to gravity vector) the damping is similar to non-pinjointed truss; (5) Impacting in joints drives higher modes in structure; (6) The torsion mode disappears if gravity induced preloads are low.

  17. Gastric lap-band infection due to Mycobacterium abscessus presenting as new-onset ascites in a cirrhotic patient.

    PubMed

    Kahn, Allon; Agrwal, Neera; Carey, Elizabeth J; Madura, James A; Hewitt, Winston R; Lambert, Karen L; Grys, Thomas E; Vikram, Holenarasipur R

    2016-08-01

    Nontuberculous mycobacteria are ubiquitous environmental organisms that are infrequently implicated as pathogens. Peritoneal infection with nontuberculous mycobacteria is rare and published reports are most commonly associated with peritoneal dialysis. This study describes a case of a 41-year-old woman with cirrhosis who had Mycobacterium abscessus peritonitis and an abdominal abscess resulting from infection of a remotely placed gastric band (Lap-Band; Apollo Endosurgery, Inc). PMID:27222118

  18. Design of a micro lapping system based on double-feedback control algorithm for manufacturing optical micro components

    NASA Astrophysics Data System (ADS)

    Che, Lin; Li, Guo; Wang, Bo; Ding, Fei; Mao, Xing; Dong, Wenxia

    2014-08-01

    This paper presents a micro lapping machine tool, which is dedicated for manufacturing the high-precision optical micro components with 3-D micro structures. And it can remove the damaged surface layer efficiently.In order to control machining process precisely, a double-feedback control system strategy is proposed and implemented. Lapping force signal from the clamp feeds back at the same time with position signal from grating scale close-looped devices. With the function of position keeping , a dual-stage drive micro-displacement servo system is used to provide the desired performance in the vertical feeding direction. Random lapping trace is formed with combinations of two mutually-perpendicular horizontal liner motion. A clamp with the function of micro force detection is designed to monitor the machining process and control the lapping force. Based on force feedback, a tool auto-checking strategy is conducted to realize the tool checking in limited tiny space. Corresponding experiments are undertaken to test the properties of the machine tool.And, the optical micro components are manufactured successfully. The optical components are measured and analysised before and after processing. The experimental results show that the position-keeping accuracy of the dual-stage feed drive system can reach to ±0.02μm, the resolution of motion control can reach to 20nm.The Sa value of the processed component can reach 0.0882um. Surface quality can be improved obviously and the damaged surface layer is removed efficiently.The theoretical and experimental results show the validity of the machine tool and the control algorithm.

  19. Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins

    PubMed Central

    Vidak, Sandra; Kubben, Nard; Dechat, Thomas; Foisner, Roland

    2015-01-01

    Lamina-associated polypeptide 2α (LAP2α) localizes throughout the nucleoplasm and interacts with the fraction of lamins A/C that is not associated with the peripheral nuclear lamina. The LAP2α–lamin A/C complex negatively affects cell proliferation. Lamins A/C are encoded by LMNA, a single heterozygous mutation of which causes Hutchinson-Gilford progeria syndrome (HGPS). This mutation generates the lamin A variant progerin, which we show here leads to loss of LAP2α and nucleoplasmic lamins A/C, impaired proliferation, and down-regulation of extracellular matrix components. Surprisingly, contrary to wild-type cells, ectopic expression of LAP2α in cells expressing progerin restores proliferation and extracellular matrix expression but not the levels of nucleoplasmic lamins A/C. We conclude that, in addition to its cell cycle-inhibiting function with lamins A/C, LAP2α can also regulate extracellular matrix components independently of lamins A/C, which may help explain the proliferation-promoting function of LAP2α in cells expressing progerin. PMID:26443848

  20. Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins.

    PubMed

    Vidak, Sandra; Kubben, Nard; Dechat, Thomas; Foisner, Roland

    2015-10-01

    Lamina-associated polypeptide 2α (LAP2α) localizes throughout the nucleoplasm and interacts with the fraction of lamins A/C that is not associated with the peripheral nuclear lamina. The LAP2α-lamin A/C complex negatively affects cell proliferation. Lamins A/C are encoded by LMNA, a single heterozygous mutation of which causes Hutchinson-Gilford progeria syndrome (HGPS). This mutation generates the lamin A variant progerin, which we show here leads to loss of LAP2α and nucleoplasmic lamins A/C, impaired proliferation, and down-regulation of extracellular matrix components. Surprisingly, contrary to wild-type cells, ectopic expression of LAP2α in cells expressing progerin restores proliferation and extracellular matrix expression but not the levels of nucleoplasmic lamins A/C. We conclude that, in addition to its cell cycle-inhibiting function with lamins A/C, LAP2α can also regulate extracellular matrix components independently of lamins A/C, which may help explain the proliferation-promoting function of LAP2α in cells expressing progerin. PMID:26443848

  1. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  2. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  3. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  4. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  5. Project report: Aircraft

    SciTech Connect

    Wuebbles, D.J.; Baughcum, S.; Metwally, M.; Seals, R.

    1994-04-01

    Analyses of scenarios of past and possible future emissions are an important aspect of assessing the potential environmental effects from aircraft, including the proposed high speed civil transport (HSCT). The development of a detailed three-dimensional database that accurately represents the integration of all aircraft emissions along realistic flight paths for such scenarios requires complex computational modeling capabilities. Such a detailed data set is required for the scenarios evaluated in this interim assessment. Within the NASA High-Speed Research Program, the Emissions Scenarios Committee provides a forum for identifying the required scenarios and evaluating the resulting database being developed with the advanced emissions modeling capabilities at the Boeing Company and McDonnell Douglas Corporation.

  6. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  7. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  8. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  9. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  10. Electrical Thermometers for Aircraft

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Womack, S H J

    1937-01-01

    Electrical thermometers commonly used on aircraft are the thermoelectric type for measuring engine-cylinder temperatures, the resistance type for measuring air temperatures, and the superheat meters of thermoelectric and resistance types for use on airships. These instruments are described and their advantages and disadvantages enumerated. Methods of testing these instruments and the performance to be expected from each are discussed. The field testing of engine-cylinder thermometers is treated in detail.

  11. Slotted Aircraft Wing

    NASA Technical Reports Server (NTRS)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  12. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  13. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  14. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  15. Joint strength in high speed friction stir spot welded DP 980 steel

    SciTech Connect

    Saunders, Nathan; Miles, Michael; Hartman, Trent; Hovanski, Yuri; Hong, Sung Tae; Steel, Russell

    2014-05-01

    High speed friction stir spot welding was applied to 1.2 mm thick DP 980 steel sheets under different welding conditions, using PCBN tools. The range of vertical feed rates used during welding was 2.5 mm – 102 mm per minute, while the range of spindle speeds was 2500 – 6000 rpm. Extended testing was carried out for five different sets of welding conditions, until tool failure. These welding conditions resulted in vertical welding loads of 3.6 – 8.2 kN and lap shear tension failure loads of 8.9 – 11.1 kN. PCBN tools were shown, in the best case, to provide lap shear tension fracture loads at or above 9 kN for 900 spot welds, after which tool failure caused a rapid drop in joint strength. Joint strength was shown to be strongly correlated to bond area, which was measured from weld cross sections. Failure modes of the tested joints were a function of bond area and softening that occurred in the heat-affected zone.

  16. Evaluation of Margins of Safety in Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Len; Powell, Mollie M.; Soffa, Matthew A.; Rommel, Monica L.

    2009-01-01

    One of the essential steps in assuring reliable performance of high cost critical brazed structures is the assessment of the Margin of Safety (MS) of the brazed joints. In many cases the experimental determination of the failure loads by destructive testing of the brazed assembly is not practical and cost prohibitive. In such cases the evaluation of the MS is performed analytically by comparing the maximum design loads with the allowable ones and incorporating various safety or knock down factors imposed by the customer. Unfortunately, an industry standard methodology for the design and analysis of brazed joints has not been developed. This paper provides an example of an approach that was used to analyze an AlBeMet 162 (38%Be-62%Al) structure brazed with the AWS BAlSi-4 (Al-12%Si) filler metal. A practical and conservative interaction equation combining shear and tensile allowables was developed and validated to evaluate an acceptable (safe) combination of tensile and shear stresses acting in the brazed joint. These allowables are obtained from testing of standard tensile and lap shear brazed specimens. The proposed equation enables the assessment of the load carrying capability of complex brazed joints subjected to multi-axial loading.

  17. Impact of tool wear on joint strength in friction stir spot welding of DP 980 steel

    SciTech Connect

    Miles, Michael; Ridges, Chris; Hovanski, Yuri; Peterson, Jeremy; Santella, M. L.; Steel, Russel

    2011-09-14

    Friction stir spot welding has been shown to be a viable method of joining ultra high strength steel (UHSS), both in terms of joint strength and process cycle time. However, the cost of tooling must be reasonable in order for this method to be adopted as an industrial process. Recently a new tool alloy has been developed, using a blend of PCBN and tungsten rhenium (W-Re) in order to improve the toughness of the tool. Wear testing results are presented for two of these alloys: one with a composition of 60% PCBN and 40% W-Re, and one with 70% PCBN and 30% W-Re. The sheet material used for all wear testing was 1.4 mm DP 980. Lap shear testing was used to show the relationship between tool wear and joint strength. The Q70 tool provided the best combination of wear resistance and joint strength.

  18. Large-scale Advanced Prop-fan (LAP) hub/blade retention design report

    NASA Technical Reports Server (NTRS)

    Soule, Matthew

    1986-01-01

    The Large-scale Advanced Prop-fan (LAP) hub assembly forms a semi-rigid link between the blades, which provide the thrust, and the engine shaft, which provides the torque. The hub and tailshaft is a one piece partially forged part which is carburized, heat treated and machined. A single row ball bearing restrains each of the eight blades in the hub, while the tailshaft secures the propeller to the engine shaft with two cone seats that are preloaded against each other by the Prop-fan retaining nut. The hub also forms the support for the pitch change actuator system, the control and the spinner. The retention transmits the loads from the blades to the hub while allowing the changes in blade pitch. The single row ball bearing retention provides ease of maintenance by allowing individual blade replacement without dissassembly of the hub. It has a through hardened inner race which seats against the aluminum blade shank and an outer race which is integral with the barrel. The outer race area is carburized to achieve the hardness necessary to support the ball loads. The balls are kept from contact with each other by a separator. The rotational speed of the propeller keeps the retention submerged in the oil which is contained in the hub by a seal. Stress and strain analysis, material hardness requirements, weight predictions, and stiffness characteristics are discussed.

  19. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    The future X-ray observatory missions, such as International X-ray Observatory, require grazing incidence replicated optics of extremely large collecting area (3 m2) in combination with angular resolution of less than 5 arcsec half-power diameter. The resolution of a mirror shell depends ultimately on the quality of the cylindrical mandrels from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation studies have been performed to optimize the operational parameters as well as the polishing lap configuration. Furthermore, depending upon the surface error profile, a model for localized polishing based on dwell time approach is developed. Using the inputs from the mathematical model, a mandrel, having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. We report our first experimental results and discuss plans for further improvements in the polishing process.

  20. Assessment Ground Safety Using Time Lap Vertical Gravity Gradient At The Subsidence Area

    NASA Astrophysics Data System (ADS)

    Rim, H. B.; Park, Y.; Lim, M.; Koo, S. B.; Kwon, B. D.

    2007-05-01

    We have carried out time-lap vertical gravity gradient (VGG) survey in order to assess the ground safety before and after grouting. The target area is new pavement through the rice field, and the area has subsidence problems because of excessive pumping for agricultural irrigation. Therefore, it has been reinforced with cement grouting avoiding subsidence. In this paper, we examined the change of subsurface density distribution due to cement grouting by means of VGG survey. VGG method is more sensitive to detect the change of near surface than gravity survey itself because VGG enhanced small variation of gravity anomaly. We gathered one line gravity data about 270m long at every 2m. VGG survey consisted of observations between the ground bottom and the top separated vertically about 1.5m with help of the ladder specially designed. According to result, VGG anomaly made the response of man-made waterway clearer than Bouguer anomaly in the middle part of the line. And VGG result showed changes of subsurface density distribution after grouting.