Science.gov

Sample records for aircraft measurements obtained

  1. A comparison of vertical velocity in cirrus obtained from aircraft and lidar divergence measurements during FIRE. [First ISCCP Regional Experiment

    NASA Technical Reports Server (NTRS)

    Gultepe, Ismail; Heymsfield, A. J.; Lenschow, D. H.

    1990-01-01

    Techniques are presented to obtain vertical velocity in cirrus clouds from in situ aircraft lateral wind measurements and from ground-based remote Doppler lidar measurements. The approach used is to calculate w from the integral of the divergence of the horizontal velocity around a closed path. Divergence measurements from both aircraft and Doppler lidar are discussed. The principal errors in the calculation of w from aircraft lateral wind measurements are bias in the lateral wind, ground speed errors, and error due to vertical shear of the horizontal wind. For Doppler lidar measurements the principal errors are in the estimate of mean terminal velocity and the zeroth order coefficients of the Fourier series that is fitted to the data. The technique is applied to a cirrus cloud investigated during the FIRE (First International Satellite Cloud Climatology Regional Experiment) Cirrus Intensive Field Observation Program. The results indicate that the error in w is about + or - 14 cm/s from the aircraft technique; this can be reduced to about + or - 2 to 3 cm/s with technical improvements in both ground speed and lateral velocity measurements. The error in w from Doppler lidar measurements, which is about + or - 8 cm/s, can be reduced to about + or - 5 cm/s by improvements in the Doppler velocity measurements with technology that is currently available.

  2. Variability of cloud microphysical and optical parameters obtained from aircraft and satellite remote sensing measurements during RACE

    NASA Astrophysics Data System (ADS)

    Gultepe, I.; Isaac, G. A.; Strawbridge, K. B.

    2001-03-01

    Observations of low stratiform clouds made during the Radiation, Aerosol and Cloud Experiment (RACE) over the Bay of Fundy, Nova Scotia, on 15 August 1995, and central Ontario on 4 October 1995 were used in this study. Aircraft, LAND Resources SATellite System (LANDSAT) and the Center for Atmospheric Research Experiments (CARE) lidar observations are used to obtain effective radius (reff), droplet number concentration (Nd) and cloud optical thickness (). Radiation observations with 28.5 m resolution from the Thematic Mapper (TM) on LANDSAT were used. The 10.4-12.5 μm infrared channel with a field of view of 114 m was used for the blackbody temperature calculation. Comparisons are made between clouds over the Ontario region, representing clouds over the land and over the Bay of Fundy, representing clouds over the ocean. Results of the aircraft observations show that the leg averaged Nd, liquid water content (LWC) and reff over land were about 147+/-73 cm-3, 0.21+/-0.11 g m-3 and 7.7+/-1.7 μm, respectively. Corresponding parameters for the clouds over the ocean were approximately 61+/-34 cm-3, 0.12+/-0.07 g m-3 and 13.8+/-3 μm, respectively. The mean measured visible extinction coefficient (ext) was about 55+/-15 km-1 for all cases, and it was a strong function of both LWC and Nd. The horizontal variability in both aircraft and LANDSAT observations indicate the need to address inhomogeneity in the sub-grid scales of models.

  3. Noise measurements at Stockton Airport obtained during engineering evaluation of two-segment approaches in a 727-222 aircraft

    NASA Technical Reports Server (NTRS)

    Glass, R. E.; Tanner, C. S.

    1973-01-01

    The results of acoustic measurements made on a 727-222 aircraft during standard ILS and two-segment approaches are presented. The aircraft was equipped with a special purpose glide slope computer to provide the capability of making two-segment noise abatement approaches. For upper segment computations, the computer used barometric-corrected pressure altitude and the slant range to a DME transmitter which was colocated with the glide slope transmitter. The computer used the ILS glide slope deviation for lower segment computations. Additional measurements were made on 737 revenue aircraft using the Stockton Airport. The purpose of the acoustical portion of the test was to measure and identify the noise levels during the various approaches.

  4. A comparison of cloud radiation fields obtained by in-situ aircraft measurements and a numerical simulation of a tropical mesoscale convective system

    NASA Technical Reports Server (NTRS)

    Wong, Takmeng; Stackhouse, Paul; Stephens, Graeme; Valero, Francisco

    1990-01-01

    The radiation budget of a tropical mesoscale convective system (MCS) is investigated by comparing in situ aircraft measurements obtained in a tropical MCS during the Equatorial Mesoscale Experiment (EMEX), and coordinated aircraft radiation measurements, with radiation profiles calculated using cloud properties obtained from a cloud model simulation of a tropical MCS. Preliminary results indicate that the stratiform region of the tropical System B simulation represents the gross properties of the observed stratiform system between 4.5 to 15 km. The flux profiles predicted by the model are consistent with observed fluxes.

  5. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  6. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  7. INVESTIGATION OF RADM PERFORMANCE USING AIRCRAFT MEASUREMENTS

    EPA Science Inventory

    Measurements using specially instrumented aircraft were obtained during August and September, 1988 as an integral part of the ACID MODES (Model Operational and Diagnostic Evaluation Study) field study. pecialized flights, each designed to diagnose different aspects of the perform...

  8. High altitude aircraft water vapor measurements.

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1973-01-01

    A hygrometer for water vapor measurements from an aircraft was developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on the NASA Convair 990 and on a USAF B-57 aircraft. Water vapor measurements from the Convair 990 were conducted up to 40,000 ft with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 ft.

  9. Beamforming for aircraft noise measurements

    NASA Astrophysics Data System (ADS)

    Dougherty, Robert P.

    2003-10-01

    Phased array beamforming for aircraft noise source location has a long history, including early work on jet noise, wind tunnel measurements, and flyover testing. In the last 10 years, advancements in sparse 2-D and 3-D arrays, wind tunnel test techniques, and computer power have made phased array measurements almost common. Large aerospace companies and national research institutes have an advantage in access to major facilities and hundreds of measurement microphones, but universities and even consulting companies can perform tests with electret microphones and PC data acquisition systems. The type of testing remains a blend of science and art. A complex noise source is approximated by a mathematical model, and the microphones are deployed to evaluate the parameters of the model. For example, the simplest, but often the best, approach is to assume a distribution of mutually incoherent monopoles. This leads to an imaging process analogous to photography. Other models include coherent distributions of multipoles or duct modes. It is sometimes important to simulate the results that would have been obtained from single microphone measurements of part of the airplane in an ideal environment, had such measurements been feasible.

  10. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  11. Instrumentation of sampling aircraft for measurement of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

    1977-01-01

    An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

  12. Measurement of In-Flight Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.

    1995-01-01

    Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.

  13. Aircraft water vapor measurements utilizing an aluminum oxide hygrometer

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1973-01-01

    A hygrometer for water vapor measurements from an aircraft has been developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on NASA and USAF aircraft. Water vapor measurements were conducted up to 40,000 feet with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 feet.

  14. Aircraft water vapor measurements utilizing an aluminum oxide hygrometer

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    1974-01-01

    A hygrometer for water vapor measurements from an aircraft was developed. An aluminum oxide hygrometer mounted in an aircraft Rosemount air temperature scoop was flown on the NASA Convair 990 and on a USAF B-57 aircraft. Water vapor measurements from the Convair 990 were conducted up to 40,000 ft with penetration into the stratosphere. Good agreement was obtained with simultaneously flown remote sounders of water vapor. During transcontinental flights the hygrometer demonstrated adequate response to measure the natural variability of water vapor near the tropopause. Rapid response was demonstrated in pursuit of the jet wake of an F-104 at 35,000 ft.

  15. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  16. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  17. Instrument for Aircraft-Icing and Cloud-Physics Measurements

    NASA Technical Reports Server (NTRS)

    Lilie, Lyle; Bouley, Dan; Sivo, Chris

    2006-01-01

    The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on cloud physics. The quantities that are calculated from measurement data acquired by this system and that are used to quantify the severity of icing conditions include sizes of cloud water drops, cloud liquid water content (LWC), cloud ice water content (IWC), and cloud total water content (TWC). The sensor head is mounted on the outside of an aircraft, positioned and oriented to intercept the ambient airflow. The sensor head consists of an open housing that is heated in a controlled manner to keep it free of ice and that contains four hot-wire elements. The hot-wire sensing elements have different shapes and sizes and, therefore, exhibit different measurement efficiencies with respect to droplet size and water phase (liquid, frozen, or mixed). Three of the hot-wire sensing elements are oriented across the airflow so as to intercept incoming cloud water. For each of these elements, the LWC or TWC affects the power required to maintain a constant temperature in the presence of cloud water.

  18. Aircraft measurements and analysis of severe storms: 1975 field experiment

    NASA Technical Reports Server (NTRS)

    Sinclair, P. C.

    1976-01-01

    Three aircraft and instrumentation systems were acquired in support of the severe storm surveillance program. The data results indicate that the original concept of a highly mobile research aircraft capability for obtaining detailed measurements of wind, temperature, dew point, etc., near and within specifically designated severe storms is entirely feasible and has been demonstrated for the first time by this program. This program is unique in that it is designed to be highly mobile in order to move to and/or with the developing storm systems to obtain the necessary measurements. Previous programs have all been fixed to a particular location and therefore have had to wait for the storms to come within their network. The present research is designed around a highly mobile aircraft measurements group in order to maximize the storm cases during the field measurements program.

  19. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  20. Skin friction measuring device for aircraft

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Bellman, D. R. (Inventor)

    1980-01-01

    A skin friction measuring device for measuring the resistance of an aerodynamic surface to an airstream is described. It was adapted to be mounted on an aircraft and is characterized by a friction plate adapted to be disposed in a flush relationship with the external surface of the aircraft and be displaced in response to skin friction drag. As an airstream is caused to flow over the surface, a potentiometer connected to the plate for providing an electrical output indicates the magnitude of the drag.

  1. Aircraft measurements and analysis of severe storms: 1976 field experiment

    NASA Technical Reports Server (NTRS)

    Sinclair, P. C.

    1982-01-01

    Severe storm aircraft measurements are documented, as well as the instrumentation and operational features of aircraft mobility capabilities. The measurements and data analyses indicate that the concept of a highly mobile research aircraft capability for obtaining detailed measurements of wind, temperature, moisture, spherics, etc., near and within severe storm systems, forecast 48 hours in advance in a 1000 nm operating radius, is feasible, and was successfully demonstrated. The measurements and analyses reveal several severe storm features and insights with respect to storm air flow circulations and inflow-outflow orientation. Precipitation downdraft air is recirculated back into the updraft core below the scud cloud in both back and front feeder type storms. In a back feeder type storm, the downdraft outflow air ahead of the storm is also recirculated back into the updraft region near cloud base.

  2. A Comparison of Turbulence Measurements from Aircraft.

    NASA Astrophysics Data System (ADS)

    Lemone, Margaret A.; Pennell, William T.

    1980-12-01

    A performance analysis of the three turbulence-measuring aircraft which participated in the GATE is presented. These aircraft were a Lockheed C-130 operated by the Meteorological Research Flight Centre of the U.K. Meteorological Office, a Douglas DC-6 operated by the Research Flight Facility of the National Oceanographic and Atmospheric Administration, and a Lockheed L-188 operated by the Research Aviation Facility of the National Center for Atmospheric Research.The results are based on formal intercomparison flights and analysis of fair weather days on which two or more of the aircraft were flying. In the formal intercomparison flights, two or more of the aircraft flew side by side in the fair weather atmospheric mixed layer. In both cases, the aircraft flew L-shaped patterns, consisting of 30 km legs along and normal to the mixed layer wind direction.Quantities compared include the variances of three wind components, potential temperature, moisture, and the vertical fluxes of horizontal momentum, temperature, and moisture. The analysis shows that when all components of the gust probe system are working properly, interaircraft biases are less than the expected atmospheric variability. Quirks of the three data sets are pointed out for the benefit of future GATE data users.

  3. Measurement of surface scratches on aircraft structures

    NASA Astrophysics Data System (ADS)

    Sarr, Dennis P.

    1996-01-01

    In assuring the quality of aircraft, the skin quality must be free of surface imperfections. Surface imperfections such as scratches are unacceptable for cosmetic and structural reasons. Scratches beyond a certain depth are not repairable, resulting in costly replacement of an aircraft's part. Measurements of aircraft exterior surfaces require a ladder or cherry picker for positioning the inspector. Commercially-available computer vision systems are not portable, easy to use, or ergonomic. The machine vision system must be designed with these criteria in mind. The scratch measurement system (SMS) uses computer vision, digital signal processing, and automated inspection methods. The system is portable and battery powered. It is certified for measuring the depth and width of the anomaly. The SMS provides a comprehensive, analytical, and accurate reading. A hardcopy output provides a permanent record of the analysis. The graphical data shows the surface profile and provides substantial information of the surface anomaly. The factory and flight line use the SMS at different stages of aircraft production. Six systems have been built for use within Boeing. A patent was issued for the SMS in February 1994.

  4. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  5. Aircraft measurement of electric field - Self-calibration

    NASA Technical Reports Server (NTRS)

    Winn, W. P.

    1993-01-01

    Aircraft measurement of electric fields is difficult as the electrically conducting surface of the aircraft distorts the electric field. Calibration requires determining the relations between the undistorted electric field in the absence of the vehicle and the signals from electric field meters that sense the local distorted fields in their immediate vicinity. This paper describes a generalization of a calibration method which uses pitch and roll maneuvers. The technique determines both the calibration coefficients and the direction of the electric vector. The calibration of individual electric field meters and the elimination of the aircraft's self-charge are described. Linear combinations of field mill signals are examined and absolute calibration and error analysis are discussed. The calibration method was applied to data obtained during a flight near thunderstorms.

  6. Remote measurement of pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Reichle, H. G., Jr.

    1976-01-01

    This paper discusses the problem of the remote measurement of tropospheric air pollution from aircraft platforms. Following a discussion of the energy sources available for passive remote sensing and the location of the absorption bands of the gases, it describes the spectral resolution that would be required and the relative merits of the shorter and longer infrared wavelengths. It then traces the evolution of one instrument concept (the gas filter correlation radiometer) to its present state, and describes flight results that show the technique to be capable of measuring carbon monoxide over water. A new instrument is described that will allow the measurements to be extended to areas over land.

  7. Continuous measurement of aircraft wing icing

    NASA Technical Reports Server (NTRS)

    Yao, Stephen S. C.

    1994-01-01

    Ice formation on the wings of aircraft is a problem that has plagued air travel since its inception. Several recent incidents have been attributed to ice formation on the lifting surfaces of wings. This paper describes a SBIR Phase 1 research effort on the use of small flat dielectric sensors in detecting a layer of ice above the sensor. The sensors are very small, lightweight, and inexpensive. The electronics package that controls the sensor is also small, and could be even smaller using commonly available miniaturization technologies. Thus, several sensors could be placed on a surface such that a representative ice thickness profile could be measured. The benefits offered by developing this technology go beyond the safety improvements realized by monitoring ice formation on the wings of an aircraft. Continuous monitoring of anti-icing fluid concentrations on the ground would warn the pilot of impending fluid failure as well as allowing the stations to use less de-icing solution per aircraft. This in turn would increase the safety of takeoffs and reduce the overall discharge of de-icing solution into the environment, thus reducing the biohazard of the de-icing procedure.

  8. Stability and control derivative estimates obtained from flight data for the Beech 99 aircraft

    NASA Technical Reports Server (NTRS)

    Tanner, R. R.; Montgomery, T. D.

    1979-01-01

    Lateral-directional and longitudinal stability and control derivatives were determined from flight data by using a maximum likelihood estimator for the Beech 99 airplane. Data were obtained with the aircraft in the cruise configuration and with one-third flap deflection. The estimated derivatives show good agreement with the predictions of the manufacturer.

  9. Review of measurement and testing problems. [of aircraft emissions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Good instrumentation was required to obtain reliable and repeatable baseline data. Problems that were encountered in developing such a total system were: (1) accurate airflow measurement, (2) precise fuel flow measurement, and (3) the instrumentation used for pollutant measurement was susceptible to frequent malfunctions. Span gas quality had a significant effect on emissions test results. The Spindt method was used in the piston aircraft emissions program. The Spindt method provided a comparative computational procedure for fuel/air ratio based on measured emissions concentrations.

  10. Measurement of aircraft speed and altitude

    NASA Technical Reports Server (NTRS)

    Gracey, W.

    1980-01-01

    Problems involved in measuring speed and altitude with pressure-actuated instruments (altimeter, airspeed indicator, true-airspeed indicator, Machmeter, and vertical-speed indicator) are examined. Equations relating total pressure and static pressure to the five flight quantities are presented, and criteria for the design of total and static pressure tubes are given. Calibrations of typical static pressure installations (fuselage nose, wing tip, vertical fin, and fuselage vent) are presented, various methods for flight calibration of these installations are described, and the calibration of a particular installation by two of the methods is described in detail. Equations are given for estimating the effects of pressure lag and leaks. Test procedures for the laboratory calibration of the five instruments are described, and accuracies of mechanical and electrical instruments are presented. Operational use of the altimeter for terrain clearance and vertical separation of aircraft is discussed, along with flight technical errors and overall altitude errors of aircraft in cruise operations. Altitude-measuring techniques based on a variety of properties of the Earth and the atmosphere are included. Two appendixes present airspeed and altitude tables and sample calculations for determining the various flight parameters from measured total and static pressures.

  11. Longitudinal stability and control derivatives obtained from flight data of a PA-30 aircraft

    NASA Technical Reports Server (NTRS)

    Turley, D. R.; Sandlin, D. R.

    1981-01-01

    In order to obtain reliable and accurate values of the stability and control derivatives, the Dryden Fligh Research Center (DFRC) developed a technique for extracting the derivatives from flight data. This technique is implemented by a set of FORTRAN computer programs that is based on a modified maximum likelihood estimator that uses the Newton-Raphson algorithm to perform the required minimization of the derivatives. Data was obtained with a PA-30, light twin-engine general aviation aircraft in zero, half, and full flap configuration in level unaccelerated flight with the landing gear retracted. The derivatives were plotted as functions of angle of attack using various graphical arrangements to show variations of wind tunnel and flight determined values at zero flap settings. Also, data was displayed to show the effects of flap deflection and thrust variation on the longitudinal stability derivatives. The angle of attack and angle of sideslip were measured. The dynamic pressure, velocity, and altitude were calculated, using a FORTRAN computer program, from the static and dynamic pressures. The control deflections of the stabilator, ailerons, and rudder also were recorded along with left throttle position, engine rpm, and manifold pressure.

  12. Aircraft Remote Sensing Measurements of Arctic Methane

    NASA Astrophysics Data System (ADS)

    Illingworth, S. M.; Allen, G.; Gallagher, M. W.; Bower, K.; Muller, J.; O'Shea, S.; Bauguitte, S.; Vance, A.; Newman, S.; Kent, J.; Harlow, C.; Pyle, J. A.

    2013-12-01

    The importance of aircraft in-situ measurements of Arctic methane (CH4) concentrations is well understood, providing not only spatially resolved and accurate concentration data, but also essential validation for ground-based and satellite remote sensing instrumentation. The role of airborne remote sensing instruments is equally important in building up an accurate quantitative and process-driven understanding of atmospheric CH4, where the added benefit of a larger spatial coverage and potential for near surface measurements results in a better characterization of potential localized emission sources. As part of the Methane and other greenhouse gases in the Arctic - Measurements, process studies and Modelling (MAMM) campaign, the Manchester Airborne Retrieval Scheme (MARS) has been developed to produce well-characterized retrievals of atmospheric CH4 from spectra measured by the UK Met Office Airborne Research Interferometer Evaluation System (ARIES), a Fourier transform spectrometer that is mounted on the NERC Facility for Airborne Atmospheric Measurements (FAAM) aircraft. Data retrieved from ARIES spectra for methane (and other greenhouse gas) concentration profiles measured during MAMM will be presented, highlighting the utility of airborne nadir FTIR sensing for near-surface and partial-column mapping over local emission sources and in climatological sampling over wide areas. We shall demonstrate the validation of ARIES profile results against in-situ measurements, with error characterization suggesting that the retrieval bias is of the order of 1-2%. Because of the relative sensitivity to the surface when flying at low altitudes, these retrievals can be used to better characterize both the natural and industrial sources of Arctic CH4 and long-range inputs to the area, as well as being used to detect potential seabed CH4 seepage events.

  13. European measurements of aircraft crew exposure to cosmic radiation.

    PubMed

    Menzel, H G; O'Sullivan, D; Beck, P; Bartlett, D

    2000-11-01

    For more than 5 y, the European Commission has supported research into scientific and technical aspects of cosmic-ray dosimetry at flight altitudes in civil radiation. This has been in response to legislation to regard exposure of aircraft crew as occupational, following the recommendations of the International Commission on Radiological Protection in Publication 60. The response to increased public interest and concern, and in anticipation of European and national current work, within a total of three multi-national, multi-partner research contracts, is based on a comprehensive approach including measurements with dosimetric and spectrometric instruments during flights, at high-mountain altitudes, and in a high-energy radiation reference field at CERN, as well as cosmic-ray transport calculations. The work involves scientists in the fields of neutron physics, cosmic-ray physics, and general dosimetry. A detailed set of measurements has been obtained by employing a wide range of detectors on several routes, both on subsonic and supersonic aircraft. Many of the measurements were made simultaneously by several instruments allowing the intercomparison of results. This paper presents a brief overview of results obtained. It demonstrates that the knowledge about radiation fields and on exposure data has been substantially consolidated and that the available data provide an adequate basis for dose assessments of aircraft crew, which will be legally required in the European Union after 13 May 2000. PMID:11045531

  14. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  15. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  16. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  17. Analysis of the Cyclotron Facility Calibration and Aircraft Results Obtained by LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Dachev, T. P.; Stassinopoulos, E. G.; Tomov, B. T.; Dimitrov, P. G.; Matviichuk, Y. N.; Shurshakov, V. A.; Petrov, V. M.

    1998-01-01

    The LIULIN-3M instrument is a further development of the LIULIN dosimeter-radiometer, which has been used on the NffR space station in the 1988-1994 time period, The LIULIN-3M is designed for continuous monitoring of the radiation environment during the BION-12 satellite flight in 1999. A semiconductor detector with 1 mm thickness and 1 cm(exp 2) area is used in the instrument. Pulse high analysis technique is used for measurement of the energy losses in the detector. The final data sets from the instrument are the flux and the dose rate for the exposition time and 256 channels of LET spectra if a non-nal coincidence of the particles to the detector is considered. The LIULIN-3M instrument was calibrated by proton fluxes with different energies at the Indiana University Cyclotron Facility in June 1997 and was used for space radiation measurements during commercial aircraft flights. Obtained calibration and flight results are analyzed in the paper.

  18. Measuring human performance on NASA's microgravity aircraft

    NASA Technical Reports Server (NTRS)

    Morris, Randy B.; Whitmore, Mihriban

    1993-01-01

    Measuring human performance in a microgravity environment will aid in identifying the design requirements, human capabilities, safety, and productivity of future astronauts. The preliminary understanding of the microgravity effects on human performance can be achieved through evaluations conducted onboard NASA's KC-135 aircraft. These evaluations can be performed in relation to hardware performance, human-hardware interface, and hardware integration. Measuring human performance in the KC-135 simulated environment will contribute to the efforts of optimizing the human-machine interfaces for future and existing space vehicles. However, there are limitations, such as limited number of qualified subjects, unexpected hardware problems, and miscellaneous plane movements which must be taken into consideration. Examples for these evaluations, the results, and their implications are discussed in the paper.

  19. Combat aircraft noise reduction by technical measures

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Kennepohl, F.; Heinig, K.

    1992-04-01

    The noise of combat aircraft during low level flight is dominated by the jet. Technical noise reduction measures must therefore reduce the specific thrust of the engine. This can be achieved by altering the engine cycle or by using secondary air to increase the mass flow though the nozzle. In the first part the influence of nozzle area, bypass ratio and variable cycle features on the specific thrust of modern fighter engines is shown. The effects on noise, thrust and fuel consumption are discussed. In the second part ejector-mixer nozzles and the aft-fan are considered. Both reduce the jet velocity by entraining air through secondary inlets and expelling it together with the engine's exhaust flow through a common nozzle.

  20. Guide to measurement of winds with instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Paige, Terry S.; Nelius, Andrew E.

    1991-01-01

    Aircraft measurement techniques are reviewed. Review of past and present applications of instrument aircraft to atmospheric observations is presented. Questions to be answered relative to measuring mean wind profiles as contrasted to turbulence measurements are then addressed. Requirements of instrumentation and accuracy, data reduction, data acquisition, and theoretical and certainty analysis are considered.

  1. Boundaries of ERTS and aircraft data within which useful water quality information can be obtained

    NASA Technical Reports Server (NTRS)

    Egan, W. G.

    1974-01-01

    Calibration procedures have been devised and applied to ERTS-1, multispectral, true color, and false color imagery. The results indicate that the ERTS and multispectral imagery are correlated with optical in situ measurements of the harbor water. Correlation is extended to true and false color imagery through in situ optical measurements of the harbor water. The best photometric accuracy is achieved with multispectral aerial imagery and the use of bulk MSS tape. The aircraft green photographic and ERTS-1 MSS-4 bands have been found most suitable for monitoring the scattered light levels under the conditions of this investigation. The application of satellite or aircraft for optical remote sensing depends upon the physical scale and frequency of sensing since both sensor systems generally have sufficient photometric sensitivity. The chemical parameters of the harbor water were found to be correlated to the optical properties for two stations investigated in detail.

  2. Analysis of aircraft microwave measurements of the ocean surface

    NASA Technical Reports Server (NTRS)

    Willand, J. H.; Fowler, M. G.; Reifenstein, E. C., III; Chang, D. T.

    1973-01-01

    A data system was developed to process, from calibrated brightness temperature to computation of estimated parameters, the microwave measurements obtained by the NASA CV-990 aircraft during the 1972 Meteorological Expedition. A primary objective of the study was the implementation of an integrated software system at the computing facility of NASA/GSFC, and its application to the 1972 data. A single test case involving measurements away from and over a heavy rain cell was chosen to examine the effect of clouds upon the ability to infer ocean surface parameters. The results indicate substantial agreement with those of the theoretical study; namely, that the values obtained for the surface properties are consistent with available ground-truth information, and are reproducible except within the heaviest portions of the rain cell, at which nonlinear (or saturation) effects become apparent. Finally, it is seen that uncorrected instrumental effects introduce systematic errors which may limit the accuracy of the method.

  3. RF radiation from lightning correlated with aircraft measurements during storm hazards-82

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1983-01-01

    During the Storm Hazards Experiment 1982, the Goddard Space Flight Center monitored radiation from lightning from a site at the Wallops Flight Facility, Wallops Island, VA. Measurements were made while the NASA F106 penetrated thunderstorms to obtain data on lightning strikes to the aircraft. The objective of the ground-based measurements was to help determine if the events recorded by the F106 were part of lightning discharges. During the experiment, 53 cases were obtained in which events were recorded aboard the aircraft while reliable quality RF radiation was recorded on the ground. These cases came from 12 different storms occurring from June through August 1982. The data confirms that the aircraft was measuring events which were part of lightning and indicates that the events recorded on the aircraft tend to occur early in the flash.

  4. 41 CFR 102-37.230 - What must a letter of intent for obtaining surplus aircraft or vessels include?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Justifying Special Transfer Requests § 102-37.230 What must a letter of intent for obtaining surplus aircraft...) Any supplemental information (such as geographical area and population served, number of...

  5. 41 CFR 102-37.230 - What must a letter of intent for obtaining surplus aircraft or vessels include?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Justifying Special Transfer Requests § 102-37.230 What must a letter of intent for obtaining surplus aircraft...) Any supplemental information (such as geographical area and population served, number of...

  6. Measuring Wildfires From Aircraft And Satellites

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Meyers, J. S.

    1991-01-01

    Aircraft and satellite systems yield wide-area views, providing total coverage of affected areas. System developed for use aboard aircraft includes digital scanner that records data in 12 channels. Transmits data to ground station for immediate use in fighting fires. Enables researchers to estimate gaseous and particulate emissions from fires. Provides information on temperatures of flame fronts and soils, intensities and rate of spread of fires, characteristics of fuels and smoke plumes, energy-release rates, and concentrations and movements of trace gases. Data relates to heating and cooling of soils, loss of nutrients, and effects on atmospheric, terrestrial, and aquatic systems.

  7. Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.

    2002-01-01

    An ultrasonic method is presented for non-intrusively measuring hydraulic fluid level in aircraft struts in the field quickly and easily without modifying the strut or aircraft. The technique interrogates the strut with ultrasonic waves generated and received by a removable ultrasonic transducer hand-held on the outside of the strut in a fashion that is in the presence or absence of hydraulic fluid inside the strut. This technique was successfully demonstrated on an A-6 aircraft strut on the carriage at the Aircraft Landing Dynamics Research Facility at NASA Langley Research Center. Conventional practice upon detection of strut problem symptoms is to remove aircraft from service for extensive maintenance to determine fluid level. No practical technique like the method presented herein for locating strut hydraulic fluid level is currently known to be used.

  8. Calibration of infrared satellite images using high altitude aircraft measurements

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D.; Gore, Warren J. Y.; Valero, Francisco P. J.

    1989-01-01

    The use of infrared radiance measurements made from high altitude aircraft for satellite image validation is discussed. Selected examples are presented to illustrate the techniques and the potentials of such validation studies.

  9. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  10. Using an A-10 Aircraft for Airborne Measurements of TGFs

    NASA Astrophysics Data System (ADS)

    Fishman, G. J.; Christian, H. J.; Blakeslee, R. J.; Grove, J.; Chekhtman, A.; Jonsson, H.; Detwiler, A. G.

    2012-12-01

    Work is underway to modify an A-10 combat attack aircraft to become a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft will be terrestrial gamma-ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x- and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into the TGF production mechanism. The A-10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  11. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1990-01-01

    Results of tests to measure ice growth in natural (flight) and artificial (icing wind tunnel) icing conditions are presented. Ice thickness is measured using an ultrasonic pulse-echo technique. Two icing regimes, wet and dry ice growth, are identified and the unique ultrasonic signal characteristics associated with these different types of ice growth are described. Ultrasonic measurements of ice growth on cylinders and airfoils exposed to artificial and natural icing conditions are presented. An accuracy of plus or minus 0.5 mm is achieved for ice thickness measurement using the pulse-echo technique. The performance of two-probe type ice detectors is compared to the surface mounted ultrasonic system. The ultrasonically measured ice accretion rates and ice surface condition (wet or dry) are used to compare the heat transfer characteristics for flight and icing wind tunnel environments. In general the heat transfer coefficient is inferred to be higher in the wind tunnel environment, not likely due to higher freestream turbulence levels. Finally, preliminary results of tests to measure ice growth on airfoil using an array of ultrasonic transducers are described. Ice profiles obtained during flight in natural icing conditions are shown and compared with mechanical and stereo image measurements.

  12. In situ turbulence measurements from commercial aircraft

    NASA Astrophysics Data System (ADS)

    Sharman, Robert; Pearson, Julia; Meymaris, Greg; Cornman, Larry; Blackburn, Gary; Farrar, Tammy

    2013-04-01

    The statistical properties of turbulence at upper-levels in the atmosphere (upper troposphere and lower stratosphere or UTLS) are still not very well-known, partly because of the lack of adequate routine observations. This is in spite of the use that such observations would have in better quantifying dissipation rates in the atmosphere due to turbulence, but also for the practical value this information would have in alerting aircraft of potentially hazardous conditions, either in real-time or for climatological route planning. To address this, in the U.S. a program has been underway over the last few years to outfit commercial aircraft with a software package that automatically estimates and reports atmospheric turbulence intensity levels (as ɛ^1/3 where ɛ is the eddy dissipation rate) during each minute of flight. The reporting frequency is variable depending on the airline, but some reports are routinely made once per minute while others report only when the turbulence level exceeds some threshold or "trigger". The amount of turbulence data gathered is unprecedented - as of Jan 2013 there are ~ 200 aircraft outfitted with this system, contributing to well over 140 million archived records of ɛ^1/3 mostly at cruise levels of commercial aircraft, i.e., in the UTLS. In this talk the results of some statistical analyses of these ɛ^1/3 values will be presented, including vertical distributions, horizontal distributions, turbulence patch lengths and depths, and probability distribution functions (PDFs). These analyses are restricted to the U.S. for now, but as this program is expanded to international carriers, such data will begin to become available over other areas of the globe, including the North Atlantic and Europe.

  13. Aircraft measurement of organic aerosols over China.

    PubMed

    Wang, Gehui; Kawamura, Kimitaka; Hatakeyama, Shiro; Takami, Akinori; Li, Hong; Wang, Wei

    2007-05-01

    Lower to middle (0.5-3.0 km altitude) tropospheric aerosols (PM2.5) collected by aircraft over inland and east coastal China were, for the first time, characterized for organic molecular compositions to understand anthropogenic, natural, and photochemical contribution to the air quality. n-Alkanes, fatty acids, sugars, polyacids are detected as major compound classes, whereas lignin and resin products, sterols, polycyclic aromatic hydrocarbons, and phthalic acids are minor species. Average concentrations of all the identified compounds excluding malic acid correspond to 40-50% of those reported on the ground sites. Relative abundances of secondary organic aerosol (SOA) components such as malic acid are much higher in the aircraft samples, suggesting an enhanced photochemical production over China. Organic carbon (OC) concentrations in summer (average, 24.3 microg m(-3)) were equivalent to those reported on the ground sites. Higher OC/EC (elemental carbon) ratios in the summer aircraft samples also support a significant production of SOA over China. High loadings of organic aerosols in the Chinese troposphere may be responsible to an intercontinental transport of the pollutants and potential impact on the regional and global climate changes. PMID:17539513

  14. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao

    2016-06-01

    Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA). In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  15. Compatibility check of measured aircraft responses using kinematic equations and extended Kalman filter

    NASA Technical Reports Server (NTRS)

    Klein, V.; Schiess, J. R.

    1977-01-01

    An extended Kalman filter smoother and a fixed point smoother were used for estimation of the state variables in the six degree of freedom kinematic equations relating measured aircraft responses and for estimation of unknown constant bias and scale factor errors in measured data. The computing algorithm includes an analysis of residuals which can improve the filter performance and provide estimates of measurement noise characteristics for some aircraft output variables. The technique developed was demonstrated using simulated and real flight test data. Improved accuracy of measured data was obtained when the data were corrected for estimated bias errors.

  16. Aircraft flight simulation of spacelab experiment using an implanted telemetry system to obtain cardiovascular data from the monkey

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.

    1977-01-01

    The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.

  17. Water vapor in the lower stratosphere measured from aircraft flight

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Guenther, B.; Dunn, P.

    1977-01-01

    Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11-19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature were derived from the flight data and show mixing ratios predominantly between 2 and 4 microg/g with an extreme range of 1-8 microg/g. Measurement precision was estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy was estimated to be about + or - 40% at 19 km. A height-averaged latitudinal cross section of water vapor indicates symmetry of wet and dry zones. This cross section is compared with other aircraft measurements and relates to meridional circulation models.

  18. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  19. IAGOS : operational start of atmospheric measurements on commercial Airbus aircraft

    NASA Astrophysics Data System (ADS)

    Nedelec, P.

    2011-12-01

    AUTHORS : Philippe Nedelec 1, Jean-Pierre Cammas 1, Gilles Athier 1, Damien Boulanger 1, Jean-Marc Cousin 1., Andreas Volz-Thomas 2. 1. Laboratoire d' Aerologie, CNRS and University of Toulouse, Toulouse, France. 2. FZ Jülich, Jülich, Germany The MOZAIC program (http://mozaic.aero.obs-mip.fr) measures atmospheric parameters since August 1994, on board 5 commercial Airbus A340 aircraft operated by European airlines, with about 33 000 flights up to present. Three aircraft are still in operation and a new project has been sponsored by the European Community, and French and German national budgets. This project is called IAGOS for "In-service Aircraft for a Global Observing system" and can be considered as an update of Mozaic systems, increasing the performances and the measuring capacity. Plans are to equip 10-20 aircraft in the coming years to ensure a global coverage of the observations. Instrumentation has been developed by the participating partners and has been certified for installation on commercial passenger aircraft. The basic instrumentation includes O3, CO, H2O and clouds sensors, as well as the position and meteorological parameters acquired by the aircraft. One of the optional equipment can also be installed: NOx or NOy or CO2/CH4 or Aerosols. Data measured during flight are automatically transmitted after aircraft landing to CNRS reception centre in Toulouse, France, and made available to scientist some days later. The installation on a Lufthansa Airbus A340 has been finalised and certified by EASA (European Aviation Safety Agency) on July 7th, 2011 and operations started the following day, with data transmitted every landing to the CNRS centre. We will present technical details of the IAGOS aeronautic installation, measuring instruments of the basic system and some results of the first months of IAGOS operation.

  20. Optical measurements of degradation in aircraft boundary layers

    NASA Technical Reports Server (NTRS)

    Kelsall, D.

    1980-01-01

    Visible wavelength measurements of the degradation of optical beams when transmitted through the thin aerodynamic boundary layers around an aircraft are reviewed. The measured results indicated degradation levels for the KC-135 airplanes between 0.10 to 0.13 lambda increasing to 0.18 lambda (rms wavefront distortion). For the Lear Jet, degradation with a 25 mm diameter optics was roughly 0.07 lambda. The corresponding infinite aperture degradation levels are also calculated. The corresponding measured correlation lengths of roughly 12 mm for the KC-135 aircraft and 6 mm for the Lear Jet scale to roughly 20 and 25 mm, respectively, for infinite apertures. These boundary layer correlation lengths do not appear to reflect the different boundary layer thicknesses on the two different aircraft.

  1. Pilot Workload Measurement and Experience on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Rezek, T. W.

    1978-01-01

    Aircraft parameters and physiological parameters most indicative of crew workload were investigated. Recommendations were used to form the basis for a continuing study in which variations of the interval between heart beats are used as a measure of nonphysical workload. Preliminary results are presented and current efforts in further defining this physiological measure are outlined.

  2. Aircraft emission measurements by remote sensing methodologies at airports

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Jahn, Carsten; Sturm, Peter; Lechner, Bernhard; Bacher, Michael

    The emission indices of aircraft engine exhausts from measurements taken under operating conditions, to calculate precisely the emission inventories of airports, are not available up to now. To determine these data, measurement campaigns were performed on idling aircraft at major European airports using non-intrusive spectroscopic methods like Fourier transform infrared spectrometry and differential optical absorption spectroscopy. Emission indices for CO and NO x were calculated and compared to the values given in the International Civil Aviation Organisation (ICAO) database. The emission index for CO for 36 different aircraft engine types and for NO x (24 different engine types) were determined. It was shown that for idling aircraft, CO emissions are underestimated using the ICAO database. The emission indices for NO x determined in this work are lower than given in the ICAO database. In addition, a high variance of emission indices in each aircraft family and from engine to engine of the same engine type was found. During the same measurement campaigns, the emission indices for CO and NO of eight different types of auxilliary power units were investigated.

  3. Plasticity characteristics obtained through hardness measurement

    SciTech Connect

    Milman, Y.V.; Galanov, B.A.; Chugunova, S.I. )

    1993-09-01

    A characteristic of material plasticity [delta][sub H] is proposed. [delta][sub H] is determined as a part of plastic deformation in the total deformation during indentation. The following analytic expressions for the elastic deformation [epsilon][sub e] and for the total deformation [epsilon] on the contact area indenter-specimen in the direction of loading force are obtained, [epsilon][sub e] = 1.08(1 [minus] v [minus] 2v[sup 2])H[sub V/E], [epsilon] [approx] 0.076, where H[sub V] is the Vickers hardness, E is Young's modulus, v is the Poisson ratio, and [delta][sub H] = 1 [minus] ([epsilon][sub e]/[epsilon]). The [delta][sub H] value is calculated for various crystalline materials at different temperatures and in different structural states. [delta][sub H] is consistent with the concept of plasticity established before, and to characterize the influence of temperature, alloying and strain hardening on plasticity. The necessary condition for revealing ductility at tension and bending is [delta][sub H] [>=] 0.9. [delta][sub H] can be used as a plasticity characteristic of brittle materials.

  4. Analytical modeling of transport aircraft crash scenarios to obtain floor pulses

    NASA Technical Reports Server (NTRS)

    Wittlin, G.; Lackey, D.

    1983-01-01

    The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.

  5. Measurements of aircraft emissions indices at airports passive remote sensing

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Jahn, Carsten; Sturm, Peter J.; Lechner, Bernhard; Bacher, Michael

    2003-04-01

    The emission indices of aircraft engine exhausts to calculate precisely the emissions inventories of airports are not available up to now from measurements taken under operating conditions. To determine these data no installations nearby or behind the aircraft are possible at airports. That's why measurements by FTIR emission spectrometry were performed by the IMK-IFU with a spectrometer installed in a van and with total measurement time at one thrust level of about 1 minute to determine CO, NO and CO2. The FTIR instrument telescope was aligned to the engine nozzle exit of standing aircraft. A DOAS and a FTIR spectrometer with globar were used for simultaneous open-path measurements of NO, NO2, CO, CO2 and speciated hydrocarbons behind the aircraft by the TUG-VKMB. Measurement results at the airports Frankfurt/Main, London-Heathrow and Vienna are presented. The methods are evaluated by comparing CO emission indices from passive measurements with open-path data. The measured emission indices of CO show slightly higher values than the International Civil Aviation Organisation data sheets but less values for NOx emissions. A fruitful co-operation with the airlines AUA, BA and DLH as well as the airport authorities in Vienna and London-Heathrow supported this work which is financed from EC.

  6. In situ measurements of Arctic atmospheric trace constituents from an aircraft

    NASA Technical Reports Server (NTRS)

    Reck, G. M.; Briehl, D.; Nyland, T. W.

    1977-01-01

    In situ measurements of the ambient concentrations of several atmospheric trace constituents were obtained using instruments installed on board the NASA Convair 990 aircraft at altitudes up to 12.5 kilometers over Alaska and the Arctic Ocean. Concentration data on ozone, carbon monoxide, water vapor, and particles larger than 0.5 micrometer in diameter were acquired.

  7. Estimation of aircraft wake vortex parameters from data measured by a Stream Line lidar

    NASA Astrophysics Data System (ADS)

    Smalikho, I. N.; Banakh, V. A.

    2015-11-01

    A method for estimation of aircraft wake vortex parameters (coordinates of axis and circulation of vortices) from raw data measured by a pulsed coherent Doppler lidar "Stream Line" has been offered. By numerical simulation we found optimal measurement parameters, with which it is possible to obtain information about the wake vortices, despite the low level of echo signal inherent to this lidar. The method was tested in an experiment at the airfield of Tomsk airport. The results of the experimental data processing are consistent with theoretical calculations for the type of aircrafts involved in this experiment.

  8. Bistatic image processing for a 32 x 19 inch model aircraft using scattered fields obtained in the OSU-ESL compact range

    NASA Technical Reports Server (NTRS)

    Lee, T-H.; Burnside, W. D.

    1992-01-01

    Inverse Synthetic Aperture Radar (ISAR) images for a 32 in long and 19 in wide model aircraft are documented. Both backscattered and bistatic scattered fields of this model aircraft were measured in the OSU-ESL compact range to obtain these images. The scattered fields of the target were measured for frequencies from 2 to 18 GHz with a 10 MHz increment and for full 360 deg azimuth rotation angles with a 0.2 deg step. For the bistatic scattering measurement, the compact range was used as the transmitting antenna; while, a broad band AEL double ridge horn was used as the receiving antenna. Bistatic angles of 90 deg and 135 deg were measured. Due to the size of the chamber and target, the receiving antenna was in the near field of the target; nevertheless, the image processing algorithm was valid for this case.

  9. Atmospheric mercury measurements onboard the CARIBIC passenger aircraft

    NASA Astrophysics Data System (ADS)

    Slemr, Franz; Weigelt, Andreas; Ebinghaus, Ralf; Kock, Hans H.; Bödewadt, Jan; Brenninkmeijer, Carl A. M.; Rauthe-Schöch, Armin; Weber, Stefan; Hermann, Markus; Becker, Julia; Zahn, Andreas; Martinsson, Bengt

    2016-05-01

    Goal of the project CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrumented Container) is to carry out regular and detailed observations of atmospheric composition (particles and gases) at cruising altitudes of passenger aircraft, i.e. at 9-12 km. Mercury has been measured since May 2005 by a modified Tekran instrument (Tekran Model 2537 A analyser, Tekran Inc., Toronto, Canada) during monthly intercontinental flights between Europe and South and North America, Africa, and Asia. Here we describe the instrument modifications, the post-flight processing of the raw instrument signal, and the fractionation experiments.

  10. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  11. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  12. Identification of multiloop pilot describing functions obtained from simulated approaches to an aircraft carrier

    NASA Technical Reports Server (NTRS)

    Jewell, W. F.

    1981-01-01

    Predicted results of a simulation of the pilot's approach control strategy in the presence of pilot remnant are presented. The aircraft dynamics and the turbulence environment are representative of a trainer-type aircraft. The non-intrusive pilot identification program (NIPIP) was used to identify the pilot's control strategy required by this highly-coupled, multiloop control task. The results are presented in terms of frequency responses of the individual elements of the pilot's control strategy and indicate that NIPIP can identify the pilot's describing functions even in the presence of significant amounts of pilot remnant.

  13. Measurement, analysis, and prediction of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Williams, L. H.; Catherines, J. J.; Jha, S. K.

    1976-01-01

    Considerations of comfort of passengers and crew in light aircraft and helicopters indicate substantial benefits may be obtained by the reduction of interior noise levels. This paper discusses an ongoing research effort to reduce interior noise in such vehicles. Data from both field and laboratory studies for a light aircraft are presented. The laboratory data indicate that structural vibration is an efficient source of interior noise and should be considered in the reduction of interior noise. Flight data taken on a helicopter before and after installation of acoustic treatment demonstrate that over 30 dB of noise reduction can be obtained in certain portions of the spectra. However, subjective evaluations of the treated vehicle indicate that further reductions in interior noise are desirable. An existing interior noise prediction method which was developed for large jet transports was applied to study low-frequency noise in a light aircraft fuselage. The results indicate that improvements in the analytical model may be necessary for the prediction of interior noise of light aircraft.

  14. Measurement and analysis of aircraft and vehicle LRCS in outfield test

    NASA Astrophysics Data System (ADS)

    Cao, Chang-Qing; Zeng, Xiao-dong; Fan, Zhao-jin; Feng, Zhe-jun; Lai, Zhi

    2015-04-01

    The measurement of aircraft and vehicle Laser Radar Cross Section (LRCS) is of crucial importance for the detection system evaluation and the characteristic research of the laser scattering. A brief introduction of the measuring theory of the laser scattering from the full-scale aircraft and vehicle targets is presented in this paper. By analyzing the measuring condition in outfield test, the laser systems and test steps are designed for full-scale aircraft and vehicle LRCS and verified by the experiment in laboratory. The processing data error 7% below is obtained of the laser radar cross section by using Gaussian compensation and elimination of sky background for original test data. The study of measurement and analysis proves that the proposed method is effective and correct to get laser radar cross section data in outfield test. The objectives of this study were: (1) to develop structural concepts for different LRCS fuselage configurations constructed of conventional materials; (2) to compare these findings with those of aircrafts or vehicles; (3) to assess the application of advanced materials for each configuration; (4) to conduct an analytical investigation of the aerodynamic loads, vertical drag and mission performance of different LRCS configurations; and (5) to compare these findings with those of the aircrafts or vehicles.

  15. Airdata calibration of a high-performance aircraft for measuring atmospheric wind profiles

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    1990-01-01

    The research airdata system of an instrumented F-104 aircraft has been calibrated to measure winds aloft in support of the space shuttle wind measurement investigation at the National Aeronautics and Space Administration Ames Research Center Dryden Flight Research Facility. For this investigation, wind measurement accuracies comparable to those obtained from Jimsphere balloons were desired. This required an airdata calibration more accurate than needed for most aircraft research programs. The F-104 aircraft was equipped with a research pilot-static noseboom with integral angle-of-attack and flank angle-of-attack vanes and a ring-laser-gyro inertial reference unit. Tower fly-bys and radar acceleration-decelerations were used to calibrate Mach number and total temperature. Angle of attack and angle of sideslip were calibrated with a trajectory reconstruction technique using a multiple-state linear Kalman filter. The F-104 aircraft and instrumentation configuration, flight test maneuvers, data corrections, calibration techniques, and resulting calibrations and data repeatability are presented. Recommendations for future airdata systems on aircraft used to measure winds aloft are also given.

  16. TOMS Validation Based on Profiles of Aerosol Properties in the Lower Troposphere as Obtained with Light Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Prospero, Joseph M.; Maring, Hal; Savoie, Dennis

    2003-01-01

    The goal of the University of Miami Aerosol Group (UMAG) in this project was to make measurements of vertical profiles of aerosol properties and aerosol optical depth using a light aircraft. The UMAG developed a light aircraft aerosol package (LAAP) that was used in light aircraft (Cessna 172) during the Puerto Rico Dust Experiment (PRIDE). This field campaign took place on Puerto Rico during July 2000. Design details and results from the use of the LAAP were presented at TOMS Science team meetings on April 1998, April 1999, and May 2000. Results from the LAAP collected during the PRIDE Experiment were presented at the Fall Meeting of the American Geophysical Union, December 2000. Some of the results from the LAAP collected during the PRIDE Experiment have been accepted for publication in the Journal of Geophysical Research in a "topical section" made up of papers from the PRIDE Program.

  17. Comparison of NOAA-9 ERBE measurements with Cirrus IFO satellite and aircraft measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Chung, Hyosang; Cox, Stephen K.; Herman, Leroy; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Earth Radiation Budget Experiment (ERBE) measurements onboard the NOAA-9 are compared for consistency with satellite and aircraft measurements made during the Cirrus Intensive Field Observation (IFO) of October 1986. ERBE scene identification is compared with NOAA-9 TIROS Operational Vertical Sounder (TOVS) cloud retrievals; results from the ERBE spectral inversion algorithms are compared with High resolution Interferometer Sounder (HIS) measurements; and ERBE radiant existance measurements are compared with aircraft radiative flux measurements.

  18. Aircraft attitude measurement using a vector magnetometer

    NASA Technical Reports Server (NTRS)

    Peitila, R.; Dunn, W. R., Jr.

    1977-01-01

    The feasibility of a vector magnetometer system was investigated by developing a technique to determine attitude given magnetic field components. Sample calculations are then made using the earth's magnetic field data acquired during actual flight conditions. Results of these calculations are compared graphically with measured attitude data acquired simultaneously with the magnetic data. The role and possible implementation of various reference angles are discussed along with other pertinent considerations. Finally, it is concluded that the earth's magnetic field as measured by modern vector magnetometers can play a significant role in attitude control systems.

  19. Interpreting measurements obtained with the cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.

  20. Water vapor in the lower stratosphere measured from aircraft flight

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Guenther, B.; Dunn, P.

    1976-01-01

    Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11 km to 19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature are derived from the flight data and show mixing ratios predominantly between 2 and 4 micron gm/gm with an extreme range of 1 to 8 micron gm/gm. Measurement precision is estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy is estimated to be about + or - 40 percent at 19 km. A height-averaged latitudinal cross section of water vapor shows symmetry of wet and dry zones.

  1. Measurement of static pressure on aircraft

    NASA Technical Reports Server (NTRS)

    Gracey, William

    1958-01-01

    Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.

  2. Rapid measurement of emissions from military aircraft turbine engines by downstream extractive sampling of aircraft on the ground: Results for C-130 and F-15 aircraft

    NASA Astrophysics Data System (ADS)

    Spicer, Chester W.; Holdren, Michael W.; Cowen, Kenneth A.; Joseph, Darrell W.; Satola, Jan; Goodwin, Bradley; Mayfield, Howard; Laskin, Alexander; Lizabeth Alexander, M.; Ortega, John V.; Newburn, Matthew; Kagann, Robert; Hashmonay, Ram

    Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO 2, CO, NO, NO x, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.

  3. Instrumentation for measuring aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1976-01-01

    Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.

  4. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2012-10-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. NOAA has installed window-replacement inlet plates on two USCG C-130 aircraft and deploys a pallet with NOAA instrumentation on each ADA flight. Flights typically last 8 h and cover a very large area, traveling from Kodiak, AK in the south up to Barrow, AK in the north, and making altitude profiles near the coast as well as in the interior. NOAA instrumentation on each flight includes: a flask sampling system, a continuous CO2/CH4/CO/H2O analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. GPS time and location from the aircraft's navigation system are also collected. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. Instruments on this aircraft are designed and deployed to be able to collect air samples and data autonomously, so that NOAA personnel visit the site only for installation at the beginning of each season. We present an assessment of the cavity ring-down spectroscopy (CRDS) CO2/CH4/CO/H2O analyzer performance operating on an aircraft over a three-year period. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction. Short and long-term stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 5 ppb for CO2, CH4, CO respectively, considering differences of on-board reference tank measurements from a laboratory calibration performed prior to

  5. Comparison of precise ionising Radiation Dose Measurements on board Aircraft

    NASA Astrophysics Data System (ADS)

    Lindborg, L.; Beck, P.; Bottollier, J. F.; Roos, H.; Spurny, F.; Wissman, F.

    2003-04-01

    The cosmic radiation makes aircrew one of the most exposed occupational groups. The European Council has therefore in its Directive 96/29Euratom on basic safety standards for radiation protection a particular article (42) for the protection of aircrew. One of the measures to be taken is to assess the exposure of the crew. This is, however, not a trivial task. The radiation consists of many different types of radiation with energies that are hardly met on ground. The knowledge on the dose levels on board aircraft has improved gradually during the last decade as several groups around the world have performed measurements on board civil aircraft in cooperation with airlines. Only occasionally has more than one instrument been able to fly at the same time for practical reasons. The statistical uncertainty in a measurement of the dose equivalent rate is typically ±15 % (1 relative standard deviation) if determined during half an hour. Systematic uncertainties add to this. The dose rate depends on flight altitude, geographic coordinates of the flight, the phase of the solar cycle and the prevailing solar wind. For that reason the possibility to fly on the same flight will eliminate some of the systematic uncertainties that limits an evaluation of the measurement techniques. The proposal aims at measurements on board the aircraft on a geographically limited area for a few hours to decrease the statistical uncertainty of the measurements and thereby get an excellent opportunity to look for possible systematic differences between the different measurement systems. As the dose equivalent rate will be quite well established it will also be possible to compare the measured values with calculated ones. The dose rate increases towards the geomagnetic poles and decreases towards the equator. The composition of the radiation components varies also with altitude. For that reason measurements both at southern latitude and at northern latitude are planned.

  6. Comparisons of aircraft measurements of greenhouse gases with GOSAT data

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Yates, E. L.; Iraci, L. T.; Loewenstein, M.; Gore, W.; Tadic, J.; Lopez, J. P.; Shiomi, K.; Kawakami, S.; kuze, A.; Yokota, T.

    2013-12-01

    Vertical profiles of greenhouse gases (GHGs) and ozone were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX). Airborne instruments measuring GHGs (Picarro Inc. G2301-m) and ozone (2B Technologies Inc., model 205) are installed in a wing pod and operated from NASA Ames Research Center at Moffett Field, CA (37.415°N, 120.050°W). The in situ measurement instruments mounted on the aircraft yield precise and accurate vertical profiles of atmospheric GHGs and ozone. The purpose of this work is to validate GOSAT data and estimate from Alpha Jet measurements the contribution of GHGs from urban areas. We show the result of comparison of GOSAT and Alpha Jet measurements over Railroad Valley, NV and urban areas in Northern California. The Alpha Jet aircraft performs a measurement over the Railroad Valley (RRV) desert playa, Nevada (38.497°N, 115.691°W, 1437m above mean sea level) once a month for the comparison with Greenhouse gases Observing Satellite (GOSAT) measurements from 2011. The GOSAT was developed to measure concentrations of CO2 and CH4 from space and has been in operation from 2009. The instruments onboard GOSAT are the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) and the TANSO Cloud and Aerosol Imager (TANSO-CAI) (Kuze et al., 2009). The RRV playa is a flat, high altitude desert site and an area where local sources and sinks of carbon-species are expected to be minimal. The playa has virtually no vegetation and an overall size of 15 km× 15 km, which includes GOSAT's field of view. Reference Akihiko Kuze, Hiroshi Suto, Masakatsu Nakajima, and Takashi Hamazaki. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. App. Opt., 48, 6716-6733, 2009.

  7. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  8. Ozonesonde and aircraft measurements in the tropical West Pacific from the CAST field campaign

    NASA Astrophysics Data System (ADS)

    Newton, Richard; Vaughan, Geraint; Ricketts, Hugo

    2015-04-01

    The Coordinated Airborne Studies in the Tropics (CAST) campaign comprised of ozonesonde launches and an aircraft campaign in the West Pacific in January-March 2014. Previous field campaigns in this region have highlighted an area to the east of Papua New Guinea and near the Solomon Islands as sources of deep convection and anomalously low ozone in the tropical tropopause layer (TTL). The CAST campaign provides a unique dataset of ozonesonde launches from Manus Island, Papua New Guinea, close to the hypothesized source region. CAST was performed in coordination with two sister campaigns, CONTRAST and ATTREX, bringing the FAAM BAe 146, NCAR Gulfstream V and NASA Global Hawk aircraft respectively to Guam. The aircraft campaign allowed an unprecedented comparison between ozonesondes and aircraft, which was used to verify the ozonesonde measurements and support the choice of background correction; this correction is of paramount importance in the tropics as the background constitutes half of the measured signal. The data obtained from the CAST ozonesondes suggest that the lowest ozone concentrations, at ~15 ppb, found in the tropical tropopause layer were accompanied by easterly winds from an area of deep convection, suggesting the air was lifted quickly from the marine boundary layer. The evidence from the CAST campaign suggests that the anomalously low near-zero ozone measured during previous campaigns in the tropical West Pacific is an artefact of the ozonesonde behaviour at low pressures (high altitude) - the low-ozone measurements can be recreated with the CAST ozonesondes if the background is not properly treated.

  9. Water quality indicators obtainable from aircraft and Landsat images and their use in classifying lakes

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.; Van Domelen, J. F.

    1975-01-01

    Equations describing the interaction of sunlight and skylight with the surface of a lake, particles in the water to the depth where light is extinguished, and lake bottom are presented, and the use of aircraft and Landsat images to derive water quality indicators on the basis of these interactions is discussed. A very clear, deep lake with a backscatter signal similar to that of distilled water is used as a reference standard. The degree of turbidity of other target lakes is determined by comparing their residual radiance with the clear lake standard and with the residual radiance of a lake whose turbidity has been determined from water samples. The relative and absolute strengths of residual radiance are used to determine the type and concentration of suspended material, respectively. Oil slicks are characterized by an increased specular reflectance component, decreased signal from the underlying water, and added backscatter signal from the oil volume.

  10. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  11. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  12. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  13. Triple Oxygen Isotope Measurement of Nitrate to Analyze Impact of Aircraft Emissions

    NASA Astrophysics Data System (ADS)

    Chan, Sharleen

    With 4.9% of total anthropogenic radiative forcing attributed to aircraft emissions, jet engines combust copious amounts of fuel producing gases including: NOx (NO + NO2), SOx, VOC's and fine particles [IPCC (1999), IPCC (2007), Lee et al., 2009]. The tropospheric non-linear relationships between NOx, OH and O3 contribute uncertainties in the ozone budget amplified by poor understanding of the NOx cycle. In a polluted urban environment, interaction of gases and particles produce various new compounds that are difficult to measure with analytical tools available today [Thiemens, 2006]. Using oxygen triple isotopic measurement of NO3 to investigate gas to particle formation and chemical transformation in the ambient atmosphere, this study presents data obtained from aerosols sampled at NASA's Dryden Aircraft Operations Facility (DAOF) in Palmdale, CA during January and February, 2009 and Los Angeles International Airport (LAX) during Fall 2009, Winter 2010, and Spring 2010. The aerosols collected from jet aircraft exhaust in Palmdale exhibit an oxygen isotope anomaly (Delta17O =delta 17O -0.52 delta18O) increase with photochemical age of particles (-0.22 to 26.41‰) while NO3 concentration decreases from 53.76 - 5.35ppm with a radial distance from the jet dependency. Bulk aerosol samples from LAX exhibit seasonal variation with Delta17 O and NO3 concentration peaking in winter suggesting multiple sources and increased fossil fuel burning. Using oxygen triple isotopes of NO3, we are able to distinguish primary and secondary nitrate by aircraft emissions allowing new insight into a portion of the global nitrogen cycle. This represents a new and potentially important means to uniquely identify aircraft emissions on the basis of the unique isotopic composition of jet aircraft emissions.

  14. Simulator study of pilot-aircraft-display system response obtained with a three-dimensional-box pictorial display

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1983-01-01

    The effect of varying the two important display parameters of a pictorial display on pilot opinion performance, and pilot aircraft display system servomechanism response is examined. The display presents a picture of a three dimensional box that moves along the desired path ahead of the aircraft. The two display parameters examined are the field of view of the picture (from + or - 5 deg to + or - 45 deg) and the distance to the box (from 92 m (300 ft) to 6100 m (20 000 ft)). The results show that the pilots prefer a distance to the box of 915 m (3000 ft) and a field of view of + or - 30 deg. The best performance, both in the sense of quickness of error correction and lowest standard deviation, is obtained with a distance to the box of 92 m (300 ft) and a field of view of + or - 15 deg. A pilot model analysis is used to determine the gains used by the pilots and the servomechanism response characteristics of the pilot aircraft display system.

  15. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  16. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  17. The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Charlock, Thomas; Wielicki, Bruce; Kahn, Ralph; Martins, J. Vanderlei; Gatebe, Charles; Hobbs, Peter V.; Purgold, G. Carl; Redemann, Jens; Remer, Lorraine

    2004-01-01

    NASA has developed an Earth Observing System (EOS) consisting of a series of satellites designed to study global change from space. The EOS flagship is the EOS TERRA satellite, launched in December 1999, equipped with five unique sensors to monitor and study the Earth s heat budget and many of the key controlling variables governing the Earth's climate system. CLAMS, the Chesapeake Lighthouse and Aircraft Measurements for Satellites field campaign was conducted from NASA Wallops Flight Facility and successfully executed over the middle Atlantic eastern seaboard from July 10 August 2, 2001. CLAMS is primarily a shortwave closure experiment designed to validate and improve EOS TERRA satellite data products being derived from three sensors: CERES (Clouds and Earth's Radiant Energy System), MISR (Multi-angle Imaging Spectro-Radiometer) and MODIS (MODerate Resolution Imaging Spectroradiometer). CLAMS is jointly sponsored by the CERES, MISR and MODIS instrument teams and the NASA GEWEX Global Aerosol Climatology Project (GACP). CLAMS primary objectives are to validate satellite-based retrievals of aerosol properties and vertical profiles of radiative flux, temperature and water vapor. Central to CLAMS measurement strategy is the Chesapeake Lighthouse, a stable sea platform located in the Atlantic Ocean, 13 miles east of Virginia Beach near the mouth of the Chesapeake Bay and the site of an ongoing CERES Ocean Validation Experiment (COVE). Six research aircraft were deployed to make detailed measurements of the atmosphere and ocean surface in the vicinity of COVE, over the surrounding ocean, over nearby NOAA buoys and over a few land sites. The measurements are used to validate and provide ground truth for simultaneous products being derived from TERRA data, a key step toward an improved understanding and ability to predict changes in the Earth's climate. One of the two CERES instruments on-board TERRA was programmed for Rotating Azimuth Plane Scans (RAPS) during CLAMS

  18. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  19. 14 CFR 61.327 - How do I obtain privileges to operate a light-sport aircraft that has a VH greater than 87 knots...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... light-sport aircraft that has a VH greater than 87 knots CAS? 61.327 Section 61.327 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.327 How do I obtain privileges to operate a light-sport aircraft that has a VH greater than 87 knots CAS? If you hold a sport...

  20. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  1. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  2. 14 CFR 61.321 - How do I obtain privileges to operate an additional category or class of light-sport aircraft?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... additional category or class of light-sport aircraft? 61.321 Section 61.321 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.321 How do I obtain privileges to operate an additional category or class of light-sport aircraft? If you hold a sport pilot certificate and seek to operate...

  3. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  4. 14 CFR 61.321 - How do I obtain privileges to operate an additional category or class of light-sport aircraft?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... additional category or class of light-sport aircraft? 61.321 Section 61.321 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.321 How do I obtain privileges to operate an additional category or class of light-sport aircraft? If you hold a sport pilot certificate and seek to operate...

  5. 14 CFR 61.321 - How do I obtain privileges to operate an additional category or class of light-sport aircraft?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... additional category or class of light-sport aircraft? 61.321 Section 61.321 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.321 How do I obtain privileges to operate an additional category or class of light-sport aircraft? If you hold a sport pilot certificate and seek to operate...

  6. 14 CFR 61.321 - How do I obtain privileges to operate an additional category or class of light-sport aircraft?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... additional category or class of light-sport aircraft? 61.321 Section 61.321 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.321 How do I obtain privileges to operate an additional category or class of light-sport aircraft? If you hold a sport pilot certificate and seek to operate...

  7. 14 CFR 61.323 - How do I obtain privileges to operate a make and model of light-sport aircraft in the same...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... make and model of light-sport aircraft in the same category and class within a different set of... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.323 How do I obtain privileges to operate a make and model of light-sport aircraft in the...

  8. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  9. 14 CFR 61.321 - How do I obtain privileges to operate an additional category or class of light-sport aircraft?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... additional category or class of light-sport aircraft? 61.321 Section 61.321 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.321 How do I obtain privileges to operate an additional category or class of light-sport aircraft? If you hold a sport pilot certificate and seek to operate...

  10. Wind Tunnel Measurements and Calculations of Aerodynamic Interactions Between Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Derby, Michael R.; Wadcock, Alan J.

    2002-01-01

    Wind tunnel measurements and calculations of the aerodynamic interactions between two tiltrotor aircraft in helicopter mode are presented. The measured results include the roll moment and thrust change on the downwind aircraft, as a function of the upwind aircraft position (longitudinal, lateral, and vertical). Magnitudes and locations of the largest interactions are identified. The calculated interactions generally match the measurements, with discrepancies attributed to the unsteadiness of the wake and aerodynamic forces on the airframe. To interpret the interactions in terms of control and power changes on the aircraft, additional calculations are presented for trimmed aircraft with gimballed rotors.

  11. Comparative Optical Measurements of Airspeed and Aerosols on a DC-8 Aircraft

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney; McGann, Rick; Wagener, Thomas; Abbiss, John; Smart, Anthony

    1997-01-01

    NASA Dryden supported a cooperative flight test program on the NASA DC-8 aircraft in November 1993. This program evaluated optical airspeed and aerosol measurement techniques. Three brassboard optical systems were tested. Two were laser Doppler systems designed to measure free-stream-referenced airspeed. The third system was designed to characterize the natural aerosol statistics and airspeed. These systems relied on optical backscatter from natural aerosols for operation. The DC-8 aircraft carried instrumentation that provided real-time flight situation information and reference data on the aerosol environment. This test is believed to be the first to include multiple optical airspeed systems on the same carrier aircraft, so performance could be directly compared. During 23 hr of flight, a broad range of atmospheric conditions was encountered, including aerosol-rich layers, visible clouds, and unusually clean (aerosol-poor) regions. Substantial amounts of data were obtained. Important insights regarding the use of laser-based systems of this type in an aircraft environment were gained. This paper describes the sensors used and flight operations conducted to support the experiments. The paper also briefly describes the general results of the experiments.

  12. Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Fu, G.; Lin, H. X.; Heemink, A. W.; Segers, A. J.; Lu, S.; Palsson, T.

    2015-08-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash transport forecast in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be run with Eruption Source Parameters (ESP) such as plume height and mass eruption rate as input, and with data assimilation techniques to continuously improve the initial conditions of the forecast. Reliable and accurate ash measurements are crucial for providing a successful ash clouds advice. In this paper, simulated aircraft-based measurements, as one type of volcanic ash measurements, will be assimilated into a transport model to identify the potential benefit of this kind of observations in an assimilation system. The results show assimilating aircraft-based measurements can significantly improve the state of ash clouds, and further providing an improved forecast as aviation advice. We also show that for advice of aeroplane flying level, aircraft-based measurements should be preferably taken from this level to obtain the best performance on it. Furthermore it is shown that in order to make an acceptable advice for aviation decision makers, accurate knowledge about uncertainties of ESPs and measurements is of great importance.

  13. Balloon and aircraft measurement of stratospheric sulfate mixing ratio following the El Chichon eruption

    NASA Technical Reports Server (NTRS)

    Gandrud, B. W.; Lazrus, A. L.; Kritz, M. A.

    1983-01-01

    Profiles of sulfate mixing ratio versus altitude over the range 15-28 km were obtained from filter samples collected aboard balloons and U-2 aircraft. Observations were made in the summer, fall, and winter following the March-April 1982, El Chichon eruption. Observed sulfate mixing ratios were approximately two orders of magnitude greater than typical background (not volcanically augmented) mixing ratios. The sulfate mixing ratios obtained form the aircraft filter measurements were in good agreement with the results from a wire impactor and a particle counter flown simultaneously. Computations of the amount of sulfate contained in a vertical column of sq m were in agreement with similar calculations from airborne lidar, balloon-borne particle counters, and Solar Mesosphere Explorer satellite radiance retrievals.

  14. Balloon and aircraft measurement of stratospheric sulfate mixing ratio following the El Chichon eruption

    NASA Astrophysics Data System (ADS)

    Gandrud, B. W.; Lazrus, A. L.; Kritz, M. A.

    1983-11-01

    Profiles of sulfate mixing ratio versus altitude over the range 15-28 km were obtained from filter samples collected aboard balloons and U-2 aircraft. Observations were made in the summer, fall, and winter following the March-April 1982, El Chichon eruption. Observed sulfate mixing ratios were approximately two orders of magnitude greater than typical background (not volcanically augmented) mixing ratios. The sulfate mixing ratios obtained form the aircraft filter measurements were in good agreement with the results from a wire impactor and a particle counter flown simultaneously. Computations of the amount of sulfate contained in a vertical column of sq m were in agreement with similar calculations from airborne lidar, balloon-borne particle counters, and Solar Mesosphere Explorer satellite radiance retrievals.

  15. Aircraft exterior scratch measurement system using machine vision

    NASA Astrophysics Data System (ADS)

    Sarr, Dennis P.

    1991-08-01

    In assuring the quality of aircraft skin, it must be free of surface imperfections and structural defects. Manual inspection methods involve mechanical and optical technologies. Machine vision instrumentation can be automated for increasing the inspection rate and repeatability of measurement. As shown by previous industry experience, machine vision instrumentation methods are not calibrated and certified as easily as mechanical devices. The defect must be accurately measured and documented via a printout for engineering evaluation and disposition. In the actual usage of the instrument for inspection, the device must be portable for factory usage, on the flight line, or on an aircraft anywhere in the world. The instrumentation must be inexpensive and operable by a mechanic/technician level of training. The instrument design requirements are extensive, requiring a multidisciplinary approach for the research and development. This paper presents the image analysis results of microscopic structures laser images of scratches on various surfaces. Also discussed are the hardware and algorithms used for the microscopic structures laser images. Dedicated hardware and embedded software for implementing the image acquisition and analysis have been developed. The human interface, human vision is used for determining which image should be processed. Once the image is chosen for analysis, the final answer is a numerical value of the scratch depth. The result is an answer that is reliable and repeatable. The prototype has been built and demonstrated to Boeing Commercial Airplanes Group factory Quality Assurance and flight test management with favorable response.

  16. Measurements of Long-Lived Trace Gases from Commercial Aircraft Platforms: Development of Instrumentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The upper troposphere (6-12 km altitude) is a poorly understood and highly vulnerable region of the atmosphere. It is important because many trace species, including ozone, have their greatest impact as greenhouse (infrared-absorbing) gases in this region. The addition of relatively small amounts of anthropogenic chemicals, such as nitrogen oxides, can have a dramatic effect on the abundance of ozone. Some of these pollutants are deposited directly, e.g., by aircraft, while others are transported in. The primary goal of this project was to measure several chemical compounds in the upper troposphere that will help us to understand how air is to transported to that part of the atmosphere; that is, does it come down from the stratosphere, does it rise from the surface via convection, and so on. To obtain adequate sampling to accomplish this goal, we proposed to make measurements from revenue aircraft during normal flight operations.

  17. A Comprehensive Program for Measurement of Military Aircraft Emissions

    SciTech Connect

    Cheng, Mengdawn

    2009-11-01

    Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicate that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.

  18. A method for measuring aircraft height and velocity using dual television cameras

    NASA Technical Reports Server (NTRS)

    Young, W. R.

    1977-01-01

    A unique electronic optical technique, consisting of two closed circuit television cameras and timing electronics, was devised to measure an aircraft's horizontal velocity and height above ground without the need for airborne cooperative devices. The system is intended to be used where the aircraft has a predictable flight path and a height of less than 660 meters (2,000 feet) at or near the end of an air terminal runway, but is suitable for greater aircraft altitudes whenever the aircraft remains visible. Two television cameras, pointed at zenith, are placed in line with the expected path of travel of the aircraft. Velocity is determined by measuring the time it takes the aircraft to travel the measured distance between cameras. Height is determined by correlating this speed with the time required to cross the field of view of either camera. Preliminary tests with a breadboard version of the system and a small model aircraft indicate the technique is feasible.

  19. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2013-03-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. Flights typically last 8 h and cover a large area, traveling from Kodiak up to Barrow, Alaska, with altitude profiles near the coast and in the interior. NOAA instrumentation on each flight includes a flask sampling system, a continuous cavity ring-down spectroscopy (CRDS) carbon dioxide (CO2)/methane (CH4)/carbon monoxide (CO)/water vapor (H2O) analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction and present an assessment of analyzer performance over a three-year period. Overall analytical uncertainty of CRDS measurements in 2011 is estimated to be 0.15 ppm, 1.4 ppb, and 5 ppb for CO2, CH4, and CO, respectively, considering short-term precision, calibration uncertainties, and water vapor correction uncertainty. The stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 4 ppb for CO2, CH4, and CO, respectively, based on differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. We conclude that the uncertainty reported for our measurements would not be significantly affected if the measurements were made without in

  20. Calibration of strain-gage installations in aircraft structures for the measurement of flight loads

    NASA Technical Reports Server (NTRS)

    Skopinski, T H; Aiken, William S , Jr; Huston, Wilber B

    1954-01-01

    A general method has been developed for calibrating strain-gage installations in aircraft structures, which permits the measurement in flight of the shear or lift, the bending moment, and the torque or pitching moment on the principal lifting or control surfaces. Although the stress in structural members may not be a simple function of the three loads of interest, a straightforward procedure is given for numerically combining the outputs of several bridges in such a way that the loads may be obtained. Extensions of the basic procedure by means of electrical combination of the strain-gage bridges are described which permit compromises between strain-gage installation time, availability of recording instruments, and data reduction time. The basic principles of strain-gage calibration procedures are illustrated by reference to the data for two aircraft structures of typical construction, one a straight and the other a swept horizontal stabilizer.

  1. Sonic booms produced by US Air Force and US Navy aircraft: Measured data

    NASA Astrophysics Data System (ADS)

    Lee, R. A.; Downing, J. M.

    1991-01-01

    A sonic measurement program was conducted at Edwards Air Force Base. Sonic boom signatures, produced by F-4, F-14, F-15, F-16, F-18, F-111, SR-71, and T-38 aircraft, were obtained under the flight track and at various lateral sites which were located up to 18 miles off-track. Thirteen monitors developed by Det 1 AL/BBE were used to collect full sonic boom waveforms, and nine modified dosimeters were used to collect supplemental peak overpressures and the C-weighted Sound Exposure Levels (CSEL) for 43 near steady supersonic flights of the above United States Air Force and United States Navy aircraft. This report describes the measured database (BOOMFILE) that contains sonic boom signatures and overpressures, aircraft tracking, and local weather data. These measured data highlight the major influences on sonic boom propagation and generation. The data from this study show that a constant offset of 26 from the peak overpressure expressed in dB gives a good estimate of the CSEL of a sonic boom.

  2. Instrumentation for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1975-01-01

    A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.

  3. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    PubMed Central

    Salazar, Félix; Barrientos, Alberto

    2013-01-01

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488

  4. Surface roughness measurement on a wing aircraft by speckle correlation.

    PubMed

    Salazar, Félix; Barrientos, Alberto

    2013-01-01

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488

  5. Aircraft measurements of microwave emission from Arctic Sea ice

    USGS Publications Warehouse

    Wilheit, T.; Nordberg, W.; Blinn, J.; Campbell, W.; Edgerton, A.

    1971-01-01

    Measurements of the microwave emission from Arctic Sea ice were made with aircraft at 8 wavelengths ranging from 0.510 to 2.81 cm. The expected contrast in emissivities between ice and water was observed at all wavelengths. Distributions of sea ice and open water were mapped from altitudes up to 11 km in the presence of dense cloud cover. Different forms of ice also exhibited strong contrasts in emissivity. Emissivity differences of up to 0.2 were observed between two types of ice at the 0.811-cm wavelength. The higher emissivity ice type is tentatively identified as having been formed more recently than the lower emissivity ice. ?? 1971.

  6. Wide field of view laser beacon system for three dimensional aircraft range measurements

    NASA Technical Reports Server (NTRS)

    Wong, E. Y.

    1982-01-01

    A system that measures accurately the distance from an aircraft to a helicoper for rotor noise flight testing was developed. The system measures the range and angles between two aircraft using laser optics. This system can be applied in collision avoidance, robotics and other measurement critical tasks.

  7. Aircraft measurements of the atmospheric electrical global circuit during the period 1971-1984

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1985-01-01

    This report will update an investigation of the global circuit conducted over the last 14 years through aircraft measurements of the variation of ionospheric potential and associated parameters. The data base included electric field, conductivity, and air-earth current density profiles from the tropics (25 deg N) to the Arctic (79 deg N). Almost all of the data have been obtained over the ocean to reduce noise associated with local generators, aerosols, and convection. Recently, two aircraft have been utilized to obtain, for the first time, quasi-periodic sets of simultaneous ionospheric potential (VI) soundings at remote locations and extending over time spans sufficiently long so that the universal time diurnal variation (Carnegie curve) could be observed. In additon, these measurements provided the first detection of the modulation of electric fields in the troposphere caused by the double vortex ionospheric convection pattern. Besides summarizing these measurements and comparing them to similar data obtained by other groups, this report discusses meteorological sources of error and criteria for determining if the global circuit is being measured rather than variations caused by local meteorological processes.

  8. Far-infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radiance.

    PubMed

    Vanek, M D; Nolt, I G; Tappan, N D; Ade, P A; Gannaway, F C; Hamilton, P A; Lee, C; Davis, J E; Predko, S

    2001-05-01

    We describe an aircraft-based Fourier-transform spectrometer (FTS) designed to measure the Earth outgoing radiance spectrum in the far-infrared-submillimeter spectral range. The instrument features include a rapid-scan FTS to obtain high spatial resolution from a moving aircraft platform, a sensitive two-channel detector, and a CCD camera for recording the nadir cloud scene with each scan record. Such measurements demonstrate the sensitivity of Earth radiance to high clouds and provide spectral data for improving techniques for remote sensing and retrieval of atmospheric and cloud properties. PMID:18357224

  9. Fault detection of aircraft system with random forest algorithm and similarity measure.

    PubMed

    Lee, Sanghyuk; Park, Wookje; Jung, Sikhang

    2014-01-01

    Research on fault detection algorithm was developed with the similarity measure and random forest algorithm. The organized algorithm was applied to unmanned aircraft vehicle (UAV) that was readied by us. Similarity measure was designed by the help of distance information, and its usefulness was also verified by proof. Fault decision was carried out by calculation of weighted similarity measure. Twelve available coefficients among healthy and faulty status data group were used to determine the decision. Similarity measure weighting was done and obtained through random forest algorithm (RFA); RF provides data priority. In order to get a fast response of decision, a limited number of coefficients was also considered. Relation of detection rate and amount of feature data were analyzed and illustrated. By repeated trial of similarity calculation, useful data amount was obtained. PMID:25057508

  10. Large-scale variability in marine stratocumulus clouds defined from simultaneous aircraft and satellite measurements

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Barlow, Roy W.

    1990-01-01

    Satellite images often show significant variations in the structure of marine stratocumulus clouds on scales ranging from 10 to 1000 km. This is illustrated where a GOES West satellite image shows a well-defined variation in cloud structure near 32 N, 122 W on 30 June 1987. Aircraft measurements were made with the UK C-130 and the NCAR Electra on this day as part of the FIRE Marine Stratocumulus Intensive Field Observations (IFO). The mean, turbulent, and the microphysical structure of the clouds sampled in these two areas are compared an an attempt is made to explain the differences in cloud structure. In an attempt to identify any systematic differences between the measurements made with the two aircraft, data were analyzed that were collected on 14 July 1987 with the C-130 and the Electra flying in close formation at an altitude of 250 m. The microphysical and turbulence data are being compared in an attempt to explain the differences in the cloud liquid water content obtained with the two aircraft and the differences in cloud structure shown by the GOES image. In addition, data are being analyzed for three other days during the experiment when coordinated downstream flights were made with the Electra and the C-130.

  11. Holistic aerosol evaluation using synthesized aerosol aircraft measurements

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Reddington, Carly; Schutgens, Nick; Stier, Philip; Carslaw, Ken; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Despite ongoing efforts there are still large uncertainties in aerosol concentrations and loadings across many commonly used GCMs. This in turn leads to large uncertainties in the contributions of the direct and indirect aerosol forcing on climate. However, constraining these fields using earth observation data, although providing global coverage, is problematic for many reasons, including the large uncertainties in retrieving aerosol loadings. Additionally, the inability to retrieve aerosols in or around cloudy scenes leads to further sampling biases (Gryspeerdt 2015). Many in-situ studies have used regional datasets to attempt to evaluate the model uncertainties, but these are unable to provide an assessment of the models ability to represent aerosols properties on a global scale. Within the Global Aerosol Synthesis and Science Project (GASSP) we have assembled the largest collection of quality controlled, in-situ aircraft observations ever synthesized to a consistent format. This provides a global set of in-situ measurements of Cloud Condensation Nuclei (CCN) and Black Carbon (BC), amongst others. In particular, the large number of vertical profiles provided by this aircraft data allows us to investigate the vertical structure of aerosols across a wide range of regions and environments. These vertical distributions are particularly valuable when investigating the dominant processes above or below clouds where remote sensing data is not available. Here we present initial process-based assessments of the BC lifetimes and vertical distributions of CCN in the HadGEM-UKCA and ECHAM-HAM models using this data. We use point-by-point based comparisons to avoid the sampling issues associated with comparing spatio-temporal aggregations.

  12. Ground-based aircraft exhaust measurements of a Lufthansa Airbus A340 using FTIR emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Heland, Joerg

    1999-01-01

    The emission inventories of aircraft emissions are being set up using flight routing data and test rig measurements of the engine manufacturers for certification purposes which have to be extrapolated with respect to the actual parameters at cruise altitude. Precise data from in-service engines are not existing. FTIR-emission-spectroscopy as a remote sensing multi-component exhaust gas analysis method has been further developed to specify the traceable molecules in aircraft exhausts, to determine the detection limits, and to obtain reliable statements concerning its accuracy. The first measurement with the Airbus A340 engine CFM56-5C2 during run up tests at ground level showed the overall ability of the FTIR-emission system to analyze the exhausts of modern gas turbines with high bypass ratio and mixing of fan air into the exhausts before the nozzle exit. Good quality spectra were measured and analyzed with respect to the mixing rations of CO2, H2O, CO, NO, and N2O, and the emission indices of CO, NO, and N2O. Total measurement times at one thrust level should be about 15 minutes to obtain reliable result which can be compared to the ICAO data of this engine.

  13. Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft

    SciTech Connect

    Moore, D.G.; Jones, C.R.; Mihelic, J.E.; Barnes, J.D.

    1998-08-01

    This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration`s Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft`s right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in-flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft`s right main wheel fairing. Inspection results and techniques developed to verify the aircraft`s structural integrity are discussed.

  14. Retrieval of cirrus cloud properties from comparative analyses of aircraft and satellite measurements made during the 1986 FIRE IFO

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D.; Valero, Francisco P. J.; Kinne, Stefan; Hein, Paul F.

    1990-01-01

    Results are presented of a comparison of cirrus cloud properties obtained from aircraft measurements made during the FIRE Intensive Field Observations and Landsat 5 and NOAA-9 observations carried out during several near coincident overpasses by these satellites. Results of the analyses of these measurements and a comparison between measurements and model calculations were used to determine particle sizes within cirrus clouds and the IR optical depths.

  15. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  16. Perspectives on African Ozone from Sondes, Dobson and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Diab, R. D.; Thouret, V.; Sauvage, B.

    2004-01-01

    We have been studying variability in ozone over Africa using data from ozonesondes (vertical profiles from surface to stratosphere), aircraft (the MOZAIC dataset with cruise altitude and landing/takeoff profiles) and the ground (Dobson spectrophotometer total ozone column measurement). The following may give context for ozone investigations during AMMA: 1. Total ozone measurements since 1989 show considerable variability in mean value among the African stations in Algeria, Kenya, Egypt, South Africa, as well as in seasonal cycles and year-to-year. Trends are not evident. 2. The impacts of convection, stratospheric injection, biomass burning and lightning appear in ozone sounding profile data. Time-series analysis and case studies point to periodic influences of long-range interactions with the Atlantic ("ozone paradox," wave-one") and Indian Oceans. 3. Tropospheric ozone variations, observed in tropospheric profiles and integrated column amount, follow general seasonal patterns but short- term variability is so strong that simple averages are inadequate for describing "climatology" and statistical classification approaches may be required.

  17. 14 CFR Appendix A to Part 36 - Aircraft Noise Measurement and Evaluation Under § 36.101

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Aircraft Noise Measurement and Evaluation Under § 36.101 A Appendix A to Part 36 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App. A Appendix A to Part 36—Aircraft...

  18. 14 CFR Appendix A to Part 36 - Aircraft Noise Measurement and Evaluation Under § 36.101

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Aircraft Noise Measurement and Evaluation Under § 36.101 A Appendix A to Part 36 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App. A Appendix A to Part 36—Aircraft...

  19. First Results of Noy Measurements Made In Mozaic Aboard Commercial Aircraft

    NASA Astrophysics Data System (ADS)

    Volz-Thomas, A.; Paetz, H.-W.; Houben, N.; Petrick, W.; Heil, T.; Smit, H. G. J.; Kley, D.; Marenco, A.; Nedelec, P.

    The European MOZAIC Program comprises measurements of ozone and water va- por aboard five Airbus A340 aircraft operated by four European airlines. Since the beginning of the project in 1994, more than 130.000 hours of in flight data were col- lected. In the second phase of MOZAIC, a small, light-weight and fully automatic NOy instrument was developed at FZ-Jülich and certified by Lufthansa Technik. The NOy instrument, which is calibrated in-situ with zero air, NO and NO2, was installed aboard an aircraft of Lufthansa in Jan 2001 and is producing data since April 2001 (more than 200 successful flights so far). The instrument is exchanged and serviced at monthly intervals. The detection limit is 50 ppt at an integration time of 4s (principal time resolution 0.1 s). The NOy data obtained from flights between Europe, North America, Asia and Africa are discussed in terms of the correlation with the other trace gases (O3, H2O, and CO) which allow to identify the influence of stratospheric air and pollution plumes from the continental boundary layer. Recent aircraft emissions are detected as short spikes in the high resolution data.

  20. First Results of NOy Measurements Made in MOZAIC Aboard Commercial Aircraft

    NASA Astrophysics Data System (ADS)

    Volz-Thomas, A.; Paetz, H. W.; Houben, N.; Petrick, W.; Heil, T.; Smit, H. G.; Kley, D.; Marenco, A.; Nedelec, P.

    2001-12-01

    The European MOZAIC Program comprises measurements of ozone and water vapor aboard five Airbus A340 aircraft operated by four European airlines. Since the beginning of the project in 1994, more than 150.000 hours of in-flight data were collected. In the second phase of MOZAIC, a small, light-weight and fully automatic NOy instrument was developed at FZ-Jülich and certified by Lufthansa Technik. The NOy instrument, which is calibrated in-situ with zero air, NO and NO2, was installed aboard an aircraft of Lufthansa in Jan 2001 and is producing data since April 2001 (more than 100 successful flights so far). The instrument is exchanged and serviced at monthly intervals. The detection limit is 50 ppt at an integration time of 4s (principal time resolution 0.1 s). The NOy data obtained from flights between Europe, North America, Asia and Africa are discussed in conjunction with ozone and water vapor with respect to the influence of stratospheric air, pollution plumes from the continental boundary layer and aircraft emissions.

  1. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  2. Range difference multilateration for obtaining precision geodetic and trajectory measurements. [by radio interferometry

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Ong, K. M.; Von Roos, O. H.

    1975-01-01

    The theoretical aspects of a new multilateration technique suitable for precision geodesy and orbit determination applications are examined. The multilateration technique considered herein makes use of the differential time of arrival of signals at an ensemble of ground stations from a spacecraft or aircraft as the fundamental data type. It is demonstrated that simultaneous measurements give rise to a system of equations which upon solution permits the determination of the three-dimensional vehicle coordinates plus the three-dimensional coordinates of the station net relative to an arbitrarily adopted origin (which may be taken to be one of the stations). A solution to these equations can be obtained without any a priori knowledge of the locations of the stations and vehicle. The necessary conditions for obtaining all of these coordinates in the same solution are discussed, and it is indicated that at least five stations are required in the station ensemble.

  3. Measuring the turbulent wind vector with a weight-shift Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Neidl, F.; Butterbach-Bahl, K.; Schmid, H. P.; Beyrich, F.; Zheng, X. H.; Foken, T.

    2009-09-01

    The Small Environmental Research Aircraft (SERA) D-MIFUs initial fields of application are aerosol / cloud and radiation transfer research. Therefore a comparatively slow (True Airspeed, TAS ~25 ms-1) but highly mobile microlight aircraft was envisaged. To broaden the application area of D-MIFU we explore whether the microlight can also be used for Eddy Covariance (EC) flux measurement. To obtain useful data sets for airborne EC a reliable turbulent Wind Vector (WV) measurement is a key requirement. Here we present methodology and results to calibrate and express performance and uncertainty of microlight based WV measurement. Specific attention is given to the influence of the flexible-wing weight-shift geometry on the WV measurement. For the WV measurement we equipped D-MIFU with a 70 cm long noseboom supporting a classical 5 hole probe and a fast 50 μm diameter thermocouple. An Inertial Navigation System (INS) supplies high accuracy ground speeds (Ï?=0.05 ms-1) and attitude angles (Ï?=0.03° , 0.1° respectively for heading). Data are stored with 10 Hz yielding a horizontal resolution of 2.5 m. The INS also allows to analyze aircraft dynamics such as 3d rotation rates and acceleration of the nacelle body. Further estimates for 3d acceleration of airfoil and noseboom are obtained at 100 Hz. The noseboom calibration coefficients under laboratory conditions were obtained by wind tunnel- and thermal bath measurements. To transfer these characteristics for in-flight conditions we carried out a series of flights with D-MIFU above the Boundary Layer under calm conditions. On basis of level flights at different power settings we were able to determine dynamic pressure-, sideslip- and attack angle offsets. Additionally forced maneuvers, such as e.g. phugoids, have been performed. By means of multivariate analysis these data are used to assess and minimize the impact of microlight nacelle and airfoil rapidly varying motions (RVM) on the WV components. In the final

  4. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  5. Aircraft mass budgeting to measure CO2 emissions of Rome, Italy.

    PubMed

    Gioli, Beniamino; Carfora, Maria F; Magliulo, Vincenzo; Metallo, Maria C; Poli, Attilio A; Toscano, Piero; Miglietta, Franco

    2014-04-01

    Aircraft measurements were used to estimate the CO2 emission rates of the city of Rome, assessed against high-resolution inventorial data. Three experimental flights were made, composed of vertical soundings to measure Planetary Boundary Layer (PBL) properties, and circular horizontal transects at various altitudes around the city area. City level emissions and associated uncertainties were computed by means of mass budgeting techniques, obtaining a positive net CO2 flux of 14.7 ± 4.5, 2.5 ± 1.2, and 10.3 ± 1.2 μmol m(-2) s(-1) for the three flights. Inventorial CO2 fluxes at the time of flights were computed by means of spatial and temporal disaggregation of the gross emission inventory, at 10.9 ± 2.5, 9.6 ± 1.3, and 17.4 ± 9.6 μmol m(-2) s(-1). The largest differences between the two dataset are associated with a greater variability of wind speed and direction in the boundary layer during measurements. Uncertainty partitioned into components related to horizontal boundary flows and top surface flow, revealed that the latter dominates total uncertainty in the presence of a wide variability of CO2 concentration in the free troposphere (up to 7 ppm), while it is a minor term with uniform tropospheric concentrations in the study area (within 2 ppm). Overall, we demonstrate how small aircraft may provide city level emission measurements that may integrate and validate emission inventories. Optimal atmospheric conditions and measurement strategies for the deployment of aircraft experimental flights are finally discussed. PMID:24218113

  6. Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from Aircraft

    NASA Technical Reports Server (NTRS)

    Situ, Wen; DeYoung, Russel J.

    1998-01-01

    Laser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.

  7. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  8. Absorption of Solar Radiation by the Cloudy Atmosphere: Further Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.

    1998-01-01

    We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.

  9. Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Webster, C. R.; Farmer, C. B.; May, R. D.; Herman, R. L.; Weinstock, E. M.; Christensen, L. E.; Lait, L. R.; Newman, P. A.

    2004-11-01

    This paper provides an initial assessment of the accuracy of the Atmospheric Infrared Sounder (AIRS) water vapor retrievals from 500 to 100 mbar. AIRS satellite measurements are compared with accurate aircraft (NASA WB57) and balloon in situ water vapor measurements obtained during the NASA Pre-Aura Validation Experiment (Pre-AVE) in Costa Rica during Jan. 2004. AIRS retrieval (each pressure level of a single footprint) of water vapor amount agrees with the in situ measurements to ~25% or better if matched closely in time (1 hr) and space (50-100 km). Both AIRS and in situ measurements observe similar significant variation in moisture amount over a two-day period, associated with large-scale changes in weather patterns.

  10. Comparing turbulent parameters obtained from LITOS and radiosonde measurements

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Gerding, M.; Lübken, F.-J.

    2015-02-01

    Stratospheric turbulence is important for the mixing of trace species and the energy balance, but direct measurements are sparse due to the required resolution and accuracy. Recently, turbulence parameters such as the energy dissipation rate ɛ were inferred from standard radiosonde data by means of a Thorpe analysis. To this end, layers with vertically decreasing potential temperature are analysed, which is expected to indicate turbulence. Such an application assumes a proportionality between the Thorpe length LT and the Ozmidov scale LO. While this relation is accepted for the ocean, experimental evidence for such proportionality in the stratosphere is sparse. We have developed a high-resolution (8 kHz) turbulence measurement system called LITOS (Leibniz Institute Turbulence Observations in the Stratosphere), which for the first time resolves the inner scale of turbulence in the stratosphere. Therewith the energy dissipation rate ɛ can be determined by spectral analysis. This independent value for ɛ enables us to check the relation LO ∝ LT. In our measurements no such proportionality can be seen, although the mean of the ratio LO/LT is close to what is assumed in radiosonde analyses. Dissipation rates for individual layers obtained from radiosondes deviate up to a factor of ~3000 from those obtained by spectral analysis. Some turbulent layers measured by LITOS are not observed by the radiosonde at all, and vice versa. However, statements about the statistical mean seem to be possible by Thorpe analysis.

  11. An experimental measurement of galactic cosmic radiation dose in conventional aircraft between San Francisco and London compared to theoretical values for conventional and supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Wallace, R.; Boyer, M. F.

    1972-01-01

    These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.

  12. Methods to obtain the waveform profile from slope measurements

    NASA Astrophysics Data System (ADS)

    Moreno, Alfonso; Espínola, Manuel; Martínez, José; Campos, Juan

    2013-04-01

    There are many optical metrological techniques to determine the profile of a surface or a wave-front. A group of them are based on the measurements of the profile slopes, like deflectometry or wave-front sensors. In both sensors, the profile is then obtained by integrating the gradient information provided by the measurements. The used integration method influences the quality of the obtained results. In this work we compare the performance of different bi-dimensional integration methods to obtain the profile from the slopes, and we propose some new methods. The first kind of methods is based on a path integral, in which the profile in a given point (x,y) is obtained by a 1D integral from (0,0) to (x,0) followed by a 1D integral from (x,0) to (x,y). The second kind of methods is based on finite differences, where the profile in a point is related with the profile in the neighbor points and the slopes of those points. On these methods different interpolations can be used. Finally, the third kind of methods is based on Fourier domain integration. Several simulation results are obtained to study the influence of several parameters: spatial frequency of the signal, local slope errors, random noise, and edge effects. Fourier domain methods could be considered as the gold standard, they suffer from edge effects because the signals are not periodic. Moreover they can only be applied when regular Cartesian sampling is used. Path integral methods create artifacts along the integration paths, when local errors are present. Finite difference methods are more versatile, and their accuracy depends on the used interpolation methods.

  13. An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

    NASA Astrophysics Data System (ADS)

    Hermann, M.; Weigelt, A.; Assmann, D.; Pfeifer, S.; Müller, T.; Conrath, T.; Voigtländer, J.; Heintzenberg, J.; Wiedensohler, A.; Martinsson, B. G.; Deshler, T.; Brenninkmeijer, C. A. M.; Zahn, A.

    2015-11-01

    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new Optical Particle Size Spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region onboard a passenger aircraft (IAGOS-CARIBIC observatory (In-service Aircraft for a Global Observing System - Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container)). A modified "KS93 particle sensor" from RION Co., Ltd. together with a new airflow system and a dedicated data acquisition system are the key components of the CARIBIC OPSS. The instrument records individual particle pulses in the particle size range 130-1110 nm diameter (for a particle refractive index of 1.47-i0.006 for an upper tropospheric (UT) aerosol particle) and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instruments measurement performance shows no pressure dependency and no coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of two in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.

  14. An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

    NASA Astrophysics Data System (ADS)

    Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Muller, Thomas; Conrath, Thomas; Voigtlander, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A. M.; Zahn, Andreas

    2016-05-01

    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System - Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130-1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.

  15. In-situ Measurements of the Cosmic Radiation on the Aircraft Altitude over Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, I.; Lee, J.; Oh, S.; Kim, Y. C.

    2014-12-01

    This study presents the comparison between the measured and modeled cosmic radiation on aircraft altitude over Korean peninsula. We performed the measurement with a radiation spectrometer, Liulin-6K on board a Republic of Korea (ROK) Air Force aircraft accomplishing the high-altitude (above 9 km) flight over Korea, and the modeled data was obtained from the operational modeling program, CARI-6M developed by FAA. A number of measurements for the flight mission at high-altitude have been executed to evaluate the exposed dose of cosmic radiation. Both the measured and the calculated data show that the exposed radiation dose enhances dramatically as the altitude increases. The results reveal that the exposed dose rate of aircrews at high-altitude flight is 2-3 orders of magnitude (1-2 mSv/hour) higher than the exposure rate at sea level. It is inferred that the annual total dose of radiation for the aircrews at high-altitude could be higher than the annually public limit (1 mSv) recommended by ICRP. Finally, since neutrons are the dominant components reflecting among total cosmic radiation above 9 km, we try to analyze the relationship between the neutron count from the neutron monitor on the ground and the effective dose from the on board spectrometer. Based on these results, it is suggested that the annual criterion and the proper managing procedure of exposed dose for the flight aircrews of ROK Air Force should be regulated.

  16. Remote measurement of the plume shape of aircraft exhausts at airports by passive FTIR spectrometry

    NASA Astrophysics Data System (ADS)

    Schafer, Klaus; Jahn, Carsten; Utzig, Selina; Flores-Jardines, Edgar; Harig, Roland; Rusch, Peter

    2004-11-01

    Information about the interaction between the exhaust plume of an aircraft jet engine and ambient air is required for the application of small-scale chemistry-transport models to investigate airport air quality. This interaction is not well understood. In order to study the interaction, spatial information about the plume is required. FTIR emission spectroscopy may be applied to analyze the aircraft exhausts. In order to characterize the plumes spatially, a scanning imaging FTIR system (SIGIS) has been improved. SIGIS is comprised of an interferometer (Bruker OPAG), an azimuth-elevation-scanning mirror, a data acquisition and control system with digital signal processors (DSP), an infrared camera and a personal computer. With this instrumentation it is possible to visualise the plume and to obtain information about the temperature distribution within the plume. Measurements are performed at low spectral resolution, because the dynamic environment of these measurements limits the measurement time to about 2 minutes. Measurements of the plume shapes of an APU and of main engines were performed.

  17. 41 CFR 102-37.230 - What must a letter of intent for obtaining surplus aircraft or vessels include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturer, date of manufacture, model, and serial number. If the item is a vessel, it must include the type... enrolled in educational programs, etc.) supporting the donee's need for the aircraft or vessel....

  18. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  19. Comparative evaluation of twenty pilot workload assessment measure using a psychomotor task in a moving base aircraft simulator

    NASA Technical Reports Server (NTRS)

    Connor, S. A.; Wierwille, W. W.

    1983-01-01

    A comparison of the sensitivity and intrusion of twenty pilot workload assessment techniques was conducted using a psychomotor loading task in a three degree of freedom moving base aircraft simulator. The twenty techniques included opinion measures, spare mental capacity measures, physiological measures, eye behavior measures, and primary task performance measures. The primary task was an instrument landing system (ILS) approach and landing. All measures were recorded between the outer marker and the middle marker on the approach. Three levels (low, medium, and high) of psychomotor load were obtained by the combined manipulation of windgust disturbance level and simulated aircraft pitch stability. Six instrument rated pilots participated in four seasons lasting approximately three hours each.

  20. Comparisons between multiple in-situ aircraft turbulence measurements and radar in the troposphere

    NASA Astrophysics Data System (ADS)

    Dehghan, Armin; Hocking, Wayne K.; Srinivasan, Ramesh

    2014-10-01

    Networks of Windprofiler Radars have the capability to make significant contributions to severe weather forecasting (both on the ground and in the air) through the determination of real-time turbulence strengths, but the potential has still not been fully realized. In order to better understand the accuracy of profilers in determination of turbulence strengths, we have compared radar measurements made at the Harrow radar in Canada (located in Southwestern Ontario as part of the O-QNet radar network) with in-situ measurements made by multiple aircraft. These included measurements made both by commercial aircraft and dedicated research aircraft. Research aircraft (instrumented with accelerometers and GPS tracking devices) and radar data were analysed using structure function, spectral and spectral-width methods. Data were also recorded on-board commercial aircraft using accelerometer-based studies, and results were recorded for subsequent analyses. Over 92,000 commercial aircraft measurements, 4000 h of radar data, and 15 days of research-aircraft measurements were available for this study, although only a subset of the commercial aircraft data were useable. The radar-based spectral-width method occasionally produced anomalous negative values of the turbulence strength, usually associated with weak turbulence coupled with significant wind variability over scales of tens of kms, but the aircraft data also had limitations. For the commercial aircraft, frequent zeros were common, also associated with weak turbulence. With regard to the research aircraft measurements, it was found through both spectral and structure function analyses that spectral contaminants exist out to scales of many tens of metres (larger than often assumed), but proper allowance for these effects permitted good estimates of turbulence strength. Spatial and temporal variability was large, however, complicating comparisons with the radar. By comparing the in-situ data to the radar data, it has been

  1. Visualization of gust gradients and aircraft response as measured by the NASA B-57B aircraft

    NASA Technical Reports Server (NTRS)

    Camp, D.; Campbell, W.; Dow, C.; Phillips, M.; Gregory, R.; Frost, W.

    1984-01-01

    A program to obtain gust gradient measurements over the span of an airfoil is being conducted by NASA. Data have been collected from four areas of the United States (Denver, Colorado; Edwards, California; Huntsville, Alabama; and Norman, Oklahoma). The background program development data collection, and some data analysis efforts of the gust gradient effort have previously been presented (Houbolt, 1979; Camp, et al., 1983; Campbell, 1983; Campbell, et al., 1983; Frost, et al., 1983; and Painter and Camp, 1983). The purpose of this paper is to discuss briefly the animation of a gust gradient data set that was collected during the summer of 1982 at Denver, Colorado.

  2. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  3. Measurement of phase difference for micromachined gyros driven by rotating aircraft.

    PubMed

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-01-01

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%. PMID:23966195

  4. Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft

    PubMed Central

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-01-01

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%. PMID:23966195

  5. Relationship between satellite-derived vegetation indices and aircraft-based CO2 measurements

    SciTech Connect

    Cihlar, J.; Caramori, P.H.; Schuepp, P.H.; Desjardins, R.L.; Macpherson, J.I. McGill Univ., Montreal Agriculture Canada, Centre for Land and Biological Resources Research, Ottawa National Research Council of Canada, Inst. for Aerospace Research, Ottawa )

    1992-11-01

    The objective of this study was to analyze the relationship between satellite-derived vegetation indices and CO2 uptake, as an initial step in exploring the possibility of using a satellite-derived vegetation index as a measure of net photosynthesis. The study area included the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site located on the Konza prairie and adjacent area as well as a transect between Manhattan and Salina. One third of the transect exhibited vegetation and terrain characteristics similar to those on the FIFE site, whereas cultivated land predominated in the remaining portion of the 75-km-long flight line. In June, July, August, and October 1987, several CO2 data sets were obtained using the National Research Council of Canada's Twin Otter research aircraft. The normalized difference vegetation index (NDVI) and the simple ratio (SR) were computed from NOAA AVHRR data acquired as part of FIFE. Aircraft and satellite data were processed to obtain spatially coincident and locally representative flux values. Results show a linear relationship between NDVI and CO2 uptake during a single day; however, a nonlinear relationship emerged when all data sets were combined. The data from FIFE and the regional transect were consistent for one date but differed for other periods. Overall, about 60 percent of total variability in CO2 flux was accounted for by the NDVI and 74 percent by the SR. 14 refs.

  6. Counting Particles Emitted by Stratospheric Aircraft and Measuring Size of Particles Emitted by Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.

  7. Measures of pilot performance during V/TOL aircraft landings on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1977-01-01

    Simulation experiments to determine the feasibility of landing V/TOL aircraft on ships at sea were studied. The motion and attitude of the aircraft relative to the landing platform was known at the instant of touchdown. The success of these experiments depended on the ability of the experimenter to measure the pilot's performance during the landing maneuver. To facilitate these measurements, the equations describing the motion of the aircraft and its attitude relative to the landing platform are presented in a form which is suitable for simulation purposes.

  8. Hot-wire anemometry for in-flight measurement of aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.

    1977-01-01

    A development program has demonstrated that hot-wire anemometry can be used successfully on an aircraft in flight to make measurements of wake vortices produced by another aircraft. The probe, whose wires were made of platinum/rhodium, 10 microns in diameter, provides unambiguous results for inflow angles less than about 35 deg. off the probe axis. The high frequency response capability of the hot-wire system allows detailed measurement of the flow structure, and the study of aircraft hazards associated with wake turbulence.

  9. The LIULIN-3M Radiometer for Measuring Particle Doses in Space and on Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1999-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  10. Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1998-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  11. The LIULIN-3M Radiometer for Measuring Particle Doses in Space and on Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Tomov, B. T.; Dimitrov, P. G.; Brucker, G. J.; Obenschain, Art (Technical Monitor)

    2002-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  12. Comparison of wind tunnel and flyover noise measurements of the YOV-10A STOL aircraft

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1972-01-01

    The YOV-10A Research Aircraft was flown to obtain flyover noise data that could be compared to noise data measured in the 40- by 80- foot wind tunnel at NASA Ames Research Center. The flyover noise measurements were made during the early morning hours on runway 32L at Moffett Field, California. A number of passes were made at 50 ft altitude in level flight with an airplane configuration closely matching that tested in the wind tunnel. Two passes were selected as prime and were designated for full data reduction. The YOV-10A was flown over a microphone field geometrically similar to the microphone array set up in the wind tunnel. An acoustic center was chosen as a matching point for the data. Data from the wind tunnel and flyover were reduced and appropiate corrections were applied to compare the data. Results show that wind tunnel and flight test acoustic data agreed closely.

  13. Large-Eddy Simulations and Lidar Measurements of Vortex-Pair Breakup in Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Poole, L. R.; DeCoursey, R. J.; Hansen, G. M.; Hostetler, C. A.; Kent, G. S.

    1998-01-01

    Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.

  14. Comparison of Cirrus height and optical depth derived from satellite and aircraft measurements

    SciTech Connect

    Kastner, M.; Kriebel, K.T.; Meerkoetter, R.; Renger, W.; Ruppersberg, G.H.; Wendling, P. )

    1993-10-01

    During the International Cirrus Experiment (ICE'89) simultaneous measurements of cirrus cloud-top height and optical depth by satellite and aircraft have been taken. Data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA polar-orbiting meteorological satellite system have been used together with the algorithm package AVHRR processing scheme over clouds, land and ocean (APOLLO) to derive optical depth. NOAA High-Resolution Infrared Radiation Sounder (HIRS) data have been used together with a bispectral technique to derive cloud-top height. Also, the optical depth of some contrails could be estimated. Airborne measurements have been performed simultaneously by using the Airborne Lidar Experiment (ALEX), a backscatter lidar. Comparison of satellite data with airborne data showed agreement of the top heights to about 500 m and of the optical depths to about 30%. These uncertainties are within the limits obtained from error estimates. 34 refs., 8 figs.

  15. Aircraft measurements of trace gases and particles near the tropopause

    NASA Technical Reports Server (NTRS)

    Falconer, P.; Pratt, R.; Detwiler, A.; Chen, C. S.; Hogan, A.; Bernard, S.; Krebschull, K.; Winters, W.

    1983-01-01

    Research activities which were performed using atmospheric constituent data obtained by the NASA Global Atmospheric Sampling Program are described. The characteristics of the particle size spectrum in various meteorological settings from a special collection of GASP data are surveyed. The relationship between humidity and cloud particles is analyzed. Climatological and case studies of tropical ozone distributions measured on a large number of flights are reported. Particle counter calibrations are discussed as well as the comparison of GASP particle data in the upper troposphere with other measurements at lower altitudes over the Pacific Ocean.

  16. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  17. Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Jones, C. R.; Mihelic, J. E.; Barnes, J. D.

    1998-01-01

    This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft's right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in- flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft's right main wheel fairing. Inspection results and techniques developed to verify the aircraft's structural integrity are discussed.

  18. Radiation measurements aboard nasa ER-2 high altitude aircraft with the liulin-4J portable spectrometer

    NASA Astrophysics Data System (ADS)

    Uchihori, Y.; Benton, E.; Moeller, J.; Bendrick, G.

    The risks to aircrew health posed by prolonged exposure to low levels of ionizing radiation at aircraft altitudes have recently received renewed attention. Civil and military aircraft currently on the drawing board are expected to operate at higher altitudes (>12 km) and fly longer ranges than do existing aircraft, thereby exposing their crews to higher levels of ionizing radiation. for longer periods of time. We are currently carrying out dosimetric measurements of the ionizing radiation environment at ˜20 km altitude using portable Si detectors aboard NASA's two ER-2 high altitude research aircraft. The instruments, Liulin-4J, have been extensively calibrated at several particle accelerators. With these instruments, we can measure not only absorbed dose, but also variation of the absorbed dose as a function of time. We report radiation dose measurements as function of time, altitude, and latitude for several ER-2 missions.

  19. ERTS-1 Virgin Islands experiment 589: Determine boundaries of ERTS and aircraft data within which useful water quality information can be obtained. [water pollution in St. Thomas harbor, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Coulbourn, W. C.; Egan, W. G.; Olsen, D. A. (Principal Investigator); Heaslip, G. B.

    1973-01-01

    The author has identified the following significant results. The boundaries of application of ERTS-1 and aircraft data are established for St. Thomas harbor within which useful water quality information can be obtained. In situ physical, chemical, and biological water quality and benthic data were collected. Moored current meters were employed. Optical measurements of solar irradiance, color test panel radiance and water absorption were taken. Procedures for correlating in situ optical, biological, and chemical data with underflight aircraft I2S data and ERTS-1 MSS scanner data are presented. Comparison of bulk and precision CCT computer printout data for this application is made, and a simple method for geometrically locating bulk data individual pixels based on land-water interface is described. ERTS spacecraft data and I2S aircraft imagery are correlated with optical in situ measurements of the harbor water, with the aircraft green photographic and ERTS-1 MSS-4 bands being the most useful. The biological pigments correlate inversely with the optical data for inshore areas and directly further seaward. Automated computer data processing facilitated analysis.

  20. Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire

    NASA Technical Reports Server (NTRS)

    Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.

    1997-01-01

    Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.

  1. Measurement and prediction of noise from low-altitude military aircraft operations

    NASA Astrophysics Data System (ADS)

    Barry, Bernard F.; Payne, Richard C.; Harris, Anthony L.; Weston, Ralph J.

    1992-04-01

    In response to the rapid growth in demand for information on noise levels around military airfields in the UK, NPL developed AIRNOISE, a mathematical model for computing aircraft noise contours. Since its first applications in 1981, the model has been used to determine zones of eligibility within the MoD compensation scheme. The model has been subject to continuous development, e.g., the incorporation of Harrier V/STOL operations. We have now extended the model to include noise from high-speed, low-level operations. The model predicts not only maximum levels but the complete time-history, so that the time-onset rate can be estimated. To aid refinement and validation of the model, a special exercise has been conducted in which Tornado, Harrier, Jaguar, Hawk, F-15 and F-16 aircraft have flown straight and level at heights between about 100 and 400 feet, at various speeds and engine power settings over an array of microphones. This paper describes the trial and the results obtained. The prediction model is outlined and comparisons made between predictions and measurements.

  2. Comparison of ozone measurement techniques using aircraft, balloon, and ground-based measurements

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Reck, G. M.

    1977-01-01

    In order to verify the ultraviolet absorption technique used in the Global Atmospheric Sampling Program, two flight experiments were conducted employing several techniques, both in situ and remote, for measuring atmospheric ozone. The first experiment used the NASA CV-990 equipped with an ultraviolet absorption ozone monitor and an ultraviolet spectrophotometer, a balloon ozonesonde, and a Dobson station for determining and comparing the ozone concentration data. A second experiment compared ozone data from an automated sampling system aboard a B-747 with data from a manned system installed on the NASA CV-990 during a cross-country flight with both aircraft following the same flight path separated by 32 kilometers.

  3. Nordic Standards for measurement of aircraft noise immission in residential areas and noise reduction of dwellings

    NASA Astrophysics Data System (ADS)

    Svane, Christian; Plovsing, Birger

    Quantification by measurement of aircraft noise in residential areas and air traffic noise reduction of dwellings suffer from sensibility to the measurement technique used. Around the Copenhagen Airport (200.000 opr./year) 3.500 families have been granted from 50% to 90% of sound insulation costs by the Danish Government. Based on experience from evaluation measurements carried out by the Danish Acoustical Institute, the authors have proposed standardized measurement methods for the outdoor aircraft noise in residential areas and for the noise reduction of dwellings. In 1989 both noise measurement methods were accepted as Nordic Standards (NORDTEST ACOU 074 and 075) by Denmark, Finland, Iceland, Norway and Sweden.

  4. Cloud particle effects on laminar flow and instrumentation for their measurement aboard a NASA LFC aircraft

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Fischer, M. C.

    1983-01-01

    Fuel costs account now for approximately 60 percent of the direct operating costs of airlines and future commercial transport will utilize advanced technologies for saving fuel on the basis of drag reduction. Laminar flow control (LFC) represents such an advanced technology. A new laminar flow wing on a reconfigured WB-66 aircraft was tested in the X-21 flight program. The tests confirmed that extensive laminar flow could be achieved at subsonic transport cruise conditions. Factors affecting adversely the maintenance of laminar flow were found to be related to ice particles encountered during the penetration of cirrus clouds or haze. The present investigation is concerned with the effect of ice particles on LFC, taking into account the results obtained in the Leading Edge Flight Test (LEFT) being conducted by NASA. Attention is given to ice particle measurements in the LEFT program.

  5. Inefficiency of sanitation measures aboard commercial aircraft: environmental pollution and disease.

    PubMed

    Kikuchi, R

    1977-07-01

    Recent investigations at Tokyo International Airport have proven that environmental pollution resulting from the inefficient disposal of human excretion aboard aircraft is an important problem from the standpoint of quarantine. It is, therefore, recommended that the worldwide aviation industry take immediate measures to improve conditions and eliminate this problem, which has thus far been ignored by aircraft designers, airport administration, and CAB personnel. PMID:329830

  6. Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Baker, P. L.

    1985-01-01

    A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.

  7. Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Baker, P. L.

    1982-01-01

    A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.

  8. Using Integrated Cavity Output Spectroscopy (ICOS) for Aircraft Measurements of Methane Isotopologues

    NASA Astrophysics Data System (ADS)

    Wilkerson, J. P.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Dubey, M. K.; Anderson, J. G.

    2014-12-01

    Methane emissions in arctic regions have the potential to contribute a large positive radiative forcing to our climate structure. However, methane in the Arctic has multiple sources and sinks which can complicate source attribution and quantification attempts. In situ stable isotope measurements provide a way to help tease apart different methane sources since the two primary methane sources, thermogenic and biogenic, have distinct isotopic signatures. Ultimately, this knowledge about the ratio between 13CH4 and 12CH4 concentrations can help us understand the relative contribution from each source. The ICOS instrument developed in our lab is an ideal candidate to obtain this type of information. Unlike other measurement methods such as IRMS, our instrument has been tailored to fit in a small aircraft capable of flying below the boundary layer in the arctic region. We flew ICOS in Summer 2013 over the north slope of Alaska and obtained spatially (every 160 m) and temporally (every 2 s) resolved δ13CH4 measurements in real time. Future missions will entail a Stirling-cooled detector in the instrument to further enhance the precision and sensitivity of the measurements. These field missions will enhance our understanding of the routes by which methane is being produced in these regions. This improved knowledge can then lead to improved predictive ability regarding the characteristics of future methane flux and its effect on our climate.

  9. Wide field of view laser beacon system for three-dimensional aircraft position measurement

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.; Miles, R. B.; Webb, S. G.; Wong, E. Y.

    1981-01-01

    This paper presents a new wide field of view laser beacon system for measurement, in three dimensions, of aircraft or other remote objects. The system is developed for aircraft collision hazard warning independent of ground-based hardware, as well as for flight research, helicopter-assisted construction and rescue, and robotic manipulation applications. Accurate information describing the relative range, elevation, and azimuth of the aircraft are generated by the sweep of a low-power fan-shaped rotating laser beacon past an array of optical detectors. The system achieves a wide angle of acceptance of laser beacon light through use of compound parabolic concentrators, which collimate the light for spectral filtering to minimize solar interference. An on-board microprocessor system converts the pulse sequence to aircraft position in real time. System reliability and performance are enhanced through narrow pass filtering of the pulse signals, digital logic design to mask spurious signals, and adaptive modulation of trigger threshold levels.

  10. Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.; Korb, C. L.; Gentry, Bruce M.; Souilhac, Dominique

    1991-01-01

    The edge technique, a new method for measuring small frequency shifts, is described. The technique allows high-accuracy measurement of atmospheric winds (0.2-1 m/s) with a high vertical resolution (10 m) using currently available technology. With the edge technique, a lidar system can be used to obtain range resolved measurements of the wind in the atmosphere from the ground, aircraft, or spaceborne platforms. The edge technique can be used with different lasers over a broad range of wavelengths.

  11. Response properties of atmospheric turbulence measurement instruments using Russian research aircraft

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    Instruments that measure atmospheric turbulence for the estimation of turbulent fluxes of heat, water vapor, and carbon dioxide were tested in the laboratory and during in-flight conditions aboard a Russian research Ilyushin-18 aircraft. The response characteristics of the aircraft turbulence sensors were first tested to decrease measurement errors for turbulent heat transfer and fluxes, including water vapour flux, before being installed on the Ilyushin-18 aircraft that was used in joint Russian-Japanese atmospheric boundary-layer research. The results show that the atmospheric turbulence measured in a frequency range of 0.01 to 10 Hz yielded proper estimates of fluxes. Errors in measurements of the turbulence made from the aircraft were also analysed. Aerodynamic distortions linked to the aircraft's body and propellers were determined from flight test experiments. Time lags between vertical wind speed fluctuations and air temperature fluctuations measured by the aircraft thermometer, and those between vertical wind speed fluctuations and air humidity fluctuations measured by an ultraviolet hygrometer (open-path system) and an infrared hygrometer (closed-path system) were estimated. The vertical wind speed and air temperature sensor measurements showed no time lag, but a time lag of 0.6 s occurred between vertical wind speed and ultraviolet hygrometer measurements. The time lag between vertical wind speed and the infrared hygrometer measurements depended on flight conditions due to air pumping load, and had to be defined for each sampling leg. Accounting for the time lag was critical for water vapour flux measurements and helped to eliminate large systematic errors.

  12. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research. PMID:21303002

  13. Acoustic measurements of F-4E aircraft operating in hush house, NSN 4920-02-070-2721

    NASA Astrophysics Data System (ADS)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The primary purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-4E aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that sonic fatigue problems are anticipated with the F-4E aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-4E aircraft water cooled hush house at Hill AFB in the lower frequencies, but were increased over that measured during ground run up on some areas of the aircraft. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment. Recommendations were also made to increase the fatigue life of the aft fuselage.

  14. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. PMID:26257345

  15. NO and NOy in the upper troposphere: Nine years of CARIBIC measurements onboard a passenger aircraft

    NASA Astrophysics Data System (ADS)

    Stratmann, G.; Ziereis, H.; Stock, P.; Brenninkmeijer, C. A. M.; Zahn, A.; Rauthe-Schöch, A.; Velthoven, P. V.; Schlager, H.; Volz-Thomas, A.

    2016-05-01

    Nitrogen oxide (NO and NOy) measurements were performed onboard an in-service aircraft within the framework of CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). A total of 330 flights were completed from May 2005 through April 2013 between Frankfurt/Germany and destination airports in Canada, the USA, Brazil, Venezuela, Chile, Argentina, Colombia, South Africa, China, South Korea, Japan, India, Thailand, and the Philippines. Different regions show differing NO and NOy mixing ratios. In the mid-latitudes, observed NOy and NO generally shows clear seasonal cycles in the upper troposphere with a maximum in summer and a minimum in winter. Mean NOy mixing ratios vary between 1.36 nmol/mol in summer and 0.27 nmol/mol in winter. Mean NO mixing ratios range between 0.05 nmol/mol and 0.22 nmol/mol. Regions south of 40°N show no consistent seasonal dependence. Based on CO observations, low, median and high CO air masses were defined. According to this classification, more data was obtained in high CO air masses in the regions south of 40°N compared to the midlatitudes. This indicates that boundary layer emissions are more important in these regions. In general, NOy mixing ratios are highest when measured in high CO air masses. This dataset is one of the most comprehensive NO and NOy dataset available today for the upper troposphere and is therefore highly suitable for the validation of atmosphere-chemistry-models.

  16. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  17. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  18. Pose measurement base on machine vision for the aircraft model in wire-driven parallel suspension system

    NASA Astrophysics Data System (ADS)

    Chen, Yi-feng; Wu, Liao-ni; Yue, Sui-lu; Lin, Qi

    2013-03-01

    In wind tunnel tests, the pose of the aircraft model in wire-driven parallel suspension system (WDPSS) is determined by driving several wires. Pose measurement is very important for the study of WDPSS. Using machine vision technology, Monocular Vision Measurement System has been constructed to estimate the pose of the aircraft model by applying a camera calibration, by extracting corresponding control points for the aircraft model, and by applying several homogeneous transformations. This article describes the programs of the measurement system, measurement principle and data processing methods which is based on HALCON to achieve the Solution of the pose of aircraft model. Through experiments, practical feasibility of the system is validated.

  19. Measuring the 3-D wind vector with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-07-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. Therefore we draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14 %, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31 %) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's trim (53 %), as well as changes in the aircraft lift (16 %) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95 % confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square error) of ≈0.4 m s-1 for the horizontal and ≈0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable Eddy-Covariance flux measurements.

  20. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  1. Counting particles emitted by stratospheric aircraft and measuring size of particles emitted by stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    The ER-2 condensation nuclei counter (CNC) has been modified to reduce the diffusive losses of particles within the instrument. These changes have been successful in improving the counting efficiency of small particles at low pressures. Two techniques for measuring the size distributions of particles with diameters less than 0.17 micrometers have been evaluated. Both of these methods, the differential mobility analyzer (DMA) and the diffusion battery, have fundamental problems that limit their usefulness for stratospheric applications. We cannot recommend either for this application. Newly developed, alternative methods for measuring small particles include inertial separation with a low-loss critical orifice and thin-plate impactor device. This technique is now used to collect particles in the multisample aerosol collector housed in the ER-2 CNC-2, and shows some promise for particle size measurements when coupled with a CNC as a counting device. The modified focused-cavity aerosol spectrometer (FCAS) can determine the size distribution of particles with ambient diameters as small as about 0.07 micrometers. Data from this instrument indicates the presence of a nuclei mode when CNC-2 indicates high concentrations of particles, but cannot resolve important parameters of the distribution.

  2. Aerosol-Cloud Interactions Evaluated with Aircraft Measurements during the Marine Stratus Experiment (MASE)"

    NASA Astrophysics Data System (ADS)

    Conant, W. C.; Arnott, P.; Bucholtz, A.; Buzorius, G.; Chuang, P. Y.; Jonsson, H. H.; Murphy, S. M.; Rissman, T. A.; Small, J. D.; Sorooshian, A.; Varutbangkul, V.; Flagan, R. C.; Seinfeld, J. H.

    2005-12-01

    In this presentation we explore how aerosols influence the microphysical, dynamical, and radiative properties of marine stratocumulus clouds. We address these aerosol-cloud interactions using data collected by the CIRPAS Twin Otter aircraft during the MASE (Marine Stratus Experiment) campaign, which was conducted off the coast of northern California in July of this year. The otter was instrumented to measure aerosol number concentration, size distribution from 15 nm - 2500 nm, composition (TOF-AMS; PILS), and light absorption. Furthermore, an array of optical probes on the aircraft provided detailed information on the cloud microphysics, including droplet concentration, size distribution, liquid water content and precipitation size distribution. Pyranometers measuring upwelling and downwelling solar irradiance (0.3 μm - 3.5 μm) mounted on a stabilized radiometer platform were used to obtain cloud albedo immediately above the region that was being profiled. Localized (2-20 km wide) regions of high aerosol concentration in the marine boundary layer (MBL) were found and identified as "ship tracks", although no coincident features were immediately apparent in the visible satellite images. Vertical profiles were conducted by the Twin Otter within and on both sides of each ship track to obtain the contrast in aerosol and cloud properties. The ship emissions enhanced aerosol number concentration by factors ranging from 2 to more than 10. They contribute almost entirely to sulfate aerosol -- there was virtually no change in organic aerosol concentration measured by the Aerodyne TOF-AMS or light absorption measured by a photoacoustic instrument within the tracks. The ship emissions are found to have a significant impact on the cloud microphysics, including nearly a doubling of droplet concentration and a reduction in effective radius. The change in droplet dispersion is found to be important in understanding the indirect effect. Cloud albedo tended to be slightly enhanced

  3. Measurement results obtained from air quality monitoring system

    SciTech Connect

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  4. Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Humphreys, William M., Jr.

    2005-01-01

    Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.

  5. Short-term variation of cosmic radiation measured by aircraft under constant flight conditions

    NASA Astrophysics Data System (ADS)

    Lee, Jaejin; Nam, Uk-Won; Pyo, Jeonghyun; Kim, Sunghwan; Kwon, Yong-Jun; Lee, Jaewon; Park, Inchun; Kim, Myung-Hee Y.; Dachev, Tsventan P.

    2015-11-01

    The temporal variations in cosmic radiation on aircraft under constant flight conditions were measured by a Liulin detector. Rather than a commercial long-distance aircraft, we used a military reconnaissance aircraft performing a circular flight at a constant altitude over the Korean Peninsula. At 9144 m (30,000 ft), the mean and standard deviation of the radiation dose rate (among 35 measurements) was 2.3 and 0.17 μSv/h, respectively. The experiment yielded two observational results. First, the dose rate changed over a flight time of 5-7 h; second, no strong correlation was revealed between the cosmic rays observed from the ground-based neutron monitor and the radiation doses at aircraft altitude. These observations can provide insight into the short-term variation of cosmic radiation at aviation altitudes. When discarding various negligible factors, it is postulated that the changes in the geomagnetic field and the air density still could affect the variation of cosmic radiation at aircraft altitude. However, various factors are less known about the dependence on the cosmic radiation. Therefore, investigations of possible factors are also warranted at the monitoring points of space weather.

  6. Helium measurements of pore-fluids obtained from SAFOD drillcore

    SciTech Connect

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B.M.

    2010-04-15

    {sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 {+-} 0.4% (SD, n=4) and mudstones 3.1 {+-} 0.8% (SD, n=4).

  7. Mapping of sea ice and measurement of its drift using aircraft synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Bryan, M. L.; Elachi, C.; Farr, T.; Campbell, W.

    1979-01-01

    Side-looking radar images of Arctic sea ice were obtained as part of the Arctic Ice Dynamics Joint Experiment. Repetitive coverages of a test site in the Arctic were used to measure sea ice drift, employing single images and blocks of overlapping radar image strips; the images were used in conjunction with data from the aircraft inertial navigation and altimeter. Also, independently measured, accurate positions of a number of ground control points were available. Initial tests of the method were carried out with repeated coverages of a land area on the Alaska coast (Prudhoe). Absolute accuracies achieved were essentially limited by the accuracy of the inertial navigation data. Errors of drift measurements were found to be about + or - 2.5 km. Relative accuracy is higher; its limits are set by the radar image geometry and the definition of identical features in sequential images. The drift of adjacent ice features with respect to one another could be determined with errors of less than + or - 0.2 km.

  8. Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas

    2012-01-01

    In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.

  9. Summary of aircraft results for 1978 southeastern Virginia urban plume measurement study of ozone, nitrogen oxides, and methane

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Wornom, D. E.; Mathis, J. J., Jr.; Sebacher, D. I.

    1980-01-01

    Ozone production was determined from aircraft and surface in situ measurements, as well as from an airborne laser absorption spectrometer. Three aircraft and approximately 10 surface stations provided air-quality data. Extensive meteorological, mixing-layer-height, and ozone-precursor data were also measured. Approximately 50 hrs (9 flight days) of data from the aircraft equipped to monitor ozone, nitrogen oxides, dewpoint temperature, and temperature are presented. In addition, each experiment conducted is discussed.

  10. Measurement of dose equivalent distribution on-board commercial jet aircraft.

    PubMed

    Kubančák, J; Ambrožová, I; Ploc, O; Pachnerová Brabcová, K; Štěpán, V; Uchihori, Y

    2014-12-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21: (1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36: , 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108: (2), 91-105 (2004)], the ambient dose equivalent rate Ḣ*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate Ḣ*(10) on-board selected types of aircraft. The authors found that Ḣ*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations. PMID:24344348

  11. Vertical resolution of temperature profiles obtained from remote radiation measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1971-01-01

    The Backus-Gilbert theory, originally developed for analysis of inversion problems associated with the physics of the solid earth, was applied to the problem of the vertical sounding of the atmosphere by means of remote radiation measurements. An application was made to spectral intervals 2.8/cm wide in the 667/cm band CO2, and tradeoff curves are presented which quantitatively define the relationship between intrinsic vertical resolution and random error in temperature profile estimates. It is found that for a 1-2 K random error with state-of-the-art instrumentation, the intrinsic vertical resolution ranges from approximately 0.5 locale scale height (l.s.h.) in the lower troposphere to greater than 2 l.s.h. in the upper stratosphere with approximately 1 l.s.h. resolution in the vicinity of the tropopause. These values are somewhat smaller than the widths of the radioactive transfer kernels at similar levels. Increasing the number of spectral intervals from 7 to 16 is found to produce only a marginal improvement in vertical resolution.

  12. Vertical resolution of temperature profiles obtained from remote radiation measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1971-01-01

    The Backus-Gilbert theory is applied to the problem of the vertical sounding of the atmosphere by means of remote radiation measurements. An application is made to spectral intervals 2.8/cm wide in the 667/cm band of CO2, and tradeoff curves are presented which quantitatively define the relationship between intrinsic vertical resolution and random error in temperature profile estimates. It is found that for a 1-2K random error with state-of-the-art instrumentation, the intrinsic vertical resolution ranges from approximately 0.5 local scale height (l.s.h.) in the lower troposphere to 2 l.s.h. in the upper stratosphere with approximately 2 l.s.h. resolution in the vicinity of the tropopause. These values are somewhat smaller than the widths of the radiactive transfer kernels at similar levels. Increasing the number of spectral intervals from 7 to 16 is found to produce only a marginal improvement in vertical resolution.

  13. Analysis of Aircraft Clusters to Measure Sector-Independent Airspace Congestion

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2005-01-01

    The Distributed Air/Ground Traffic Management (DAG-TM) concept of operations* permits appropriately equipped aircraft to conduct Free Maneuvering operations. These independent aircraft have the freedom to optimize their trajectories in real time according to user preferences; however, they also take on the responsibility to separate themselves from other aircraft while conforming to any local Traffic Flow Management (TFM) constraints imposed by the air traffic service provider (ATSP). Examples of local-TFM constraints include temporal constraints such as a required time of arrival (RTA), as well as spatial constraints such as regions of convective weather, special use airspace, and congested airspace. Under current operations, congested airspace typically refers to a sector(s) that cannot accept additional aircraft due to controller workload limitations; hence Dynamic Density (a metric that is indicative of controller workload) can be used to quantify airspace congestion. However, for Free Maneuvering operations under DAG-TM, an additional metric is needed to quantify the airspace congestion problem from the perspective of independent aircraft. Such a metric would enable the ATSP to prevent independent aircraft from entering any local areas of congestion in which the flight deck based systems and procedures may not be able to ensure separation. This new metric, called Gaggle Density, offers the ATSP a mode of control to regulate normal operations and to ensure safety and stability during rare-normal or off-normal situations (e.g., system failures). It may be difficult to certify Free Maneuvering systems for unrestricted operations, but it may be easier to certify systems and procedures for specified levels of Gaggle Density that could be monitored by the ATSP, and maintained through relatively minor flow-rate (RTA type) restrictions. Since flight deck based separation assurance is airspace independent, the challenge is to measure congestion independent of sector

  14. Optical Measurements of Axial and Tangential Steady-State Blade Deflections Obtained Simultaneously

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    2000-01-01

    Case-mounted fiber-optic sensors have been used by aircraft engine manufacturers mainly to monitor blade vibration in fans and compressors. The simplest probe arrangement is a spot probe where, typically, a center fiber transmits laser light, and the outer fibers collect the reflected light from the blade tips and transmit it to a photodetector. Because the spot of incident light is fixed in space, whereas the blade deflects dynamically, the reflected light will originate from slightly different portions of the blade tip under different operating conditions. Unless corrections are developed to compensate for this effect, some error in vibratory tangential amplitude will occur. For monitoring vibrations, this error is usually not critical. However, when steady-state blade deflections are being measured, it is very important to fix the spot on the blade tip at a particular location because the operating speed blade deflections are evaluated against a low-speed reference run. The change in speed usually implies a significant change in the blade orientation and possibly its shape brought about by the aerodynamic and centrifugal loading. It is most convenient to select the blade s leading and trailing edges as the fixed points for which deflections will be evaluated. To capture the blade edges at various speeds, the light probe must be movable. This was achieved by mounting the probe in an eccentric hole in a bushing that fit the fan case in the region that overlapped the path of the blade edge. The probe was actuated to search for a blade edge while all the blades were viewed on an oscilloscope. The blade edge was considered to be captured when a pulse associated with a particular blade was significantly reduced in magnitude but was clearly distinguishable from the background noise level. By tracing the axial position of either blade edge, one could extend the deflection measurement to two dimensions: axial and tangential. These blade deflection measurements were

  15. Southern Hemispheric nitrous oxide measurements obtained during 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Podolske, J. R.; Loewenstein, M.; Strahan, S. E.; Chan, K. Roland

    1988-01-01

    The chemical lifetime of N2O is about 150 years, which makes it an excellent dynamical tracer of air motion on the time scale of the ozone depletion event. For these reasons it was chosen to help test whether dynamical theories of ozone loss over Antarctica were plausible, particularly the theory that upwelling ozone-poor air from the troposphere was replacing ozone-rich stratospheric air. The N2O measurements were made with the Airborne Tunable Laser Absorption Spectrometer (ATLAS) aboard the NASA ER-2 aircraft. The detection technique involves measuring the diffential absorption of the IR laser radiation as it is rapidly scanned over an N2O absorption feature. For the AAOE mission, the instrument was capable of making measurements with a 1 ppb sensitivity, 1 second response time, over an altitude range of 10 to 20 kilometers. The AAOE mission consisted of a series of 12 flights from Punta Arenas (53S) into the polar vortex (approximately 72S) at which time a vertical profile from 65 to 45 km and back was performed. Comparison of the observed profiles inside the vortex with N2O profiles obtained by balloon flights during the austral summer showed that an overall subsidence had occurred during the winter of about 5 to 6 km. Also, over the course of the mission (mid-August to late September), no trend in the N2O vertical profile, either upward or downward, was discernible, eliminating the possibility that upwelling was the cause of the observed ozone decrease.

  16. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Spicer, C.; Holdren, M.; Cowen, K.; Harris, B.; Shores, R.; Hashmonay, R.; Kaganan, R.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen local air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.

  17. Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Lezberg, E. A.

    1976-01-01

    Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.

  18. Oceanographic measurement capabilities of the NASA P-3 aircraft. [ERS-1 mission

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, Erik; Jackson, F. C.; Walsh, E. J.; Hoge, F.

    1986-01-01

    Instrumentation on NASA P3 aircraft available to provide ground truth for ERS-1 is described. The wave sensors include the 36 GHz Surface Contour Radar (SCR), the Ku-band Radar Ocean Wave Spectrometer (ROWS), and the Airborne Oceanographic Lidar. The other sensors include a C-band scatterometer, video camera, radiation thermometer, and AXRTs. The SCR and ROWS directional spectrum measurements are discussed. When planning for an underflight mission, the limited endurance of the aircraft (6 hr) and flight cost (2.7 K$/hr) must be considered. The advantage of the redundancy afforded by the several wave instruments is another important consideration.

  19. MISR Browse Images: Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS)

    Atmospheric Science Data Center

    2016-06-13

    MISR Browse Images: Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS)   These MISR Browse images provide a quick visual overview of the region observed during the ... is found at the  CLAMS home page . The MISR Browse images from the nadir camera include paths 13, 14, and 15 for July 10 to August ...

  20. Aircraft cabin ozone measurements on B747-100 and B747-SP aircraft: Correlations with atmospheric ozone and ozone encounter statistics

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Gauntner, D. J.

    1978-01-01

    Simultaneous measurements of atmospheric (outside) ozone concentration and ozone levels in the cabin of the B747-100 and B747-SP airliners were made by NASA to evaluate the aircraft cabin ozone contamination problem. Instrumentation on these aircraft measured ozone from an outside probe and at one point in the cabin. Average ozone in the cabin of the B747-100 was 39 percent of the outside. Ozone in the cabin of the B747-SP measured 82 percent of the outside, before corrective measures. Procedures to reduce the ozone in this aircraft included changes in the cabin air circulation system, use of the high-temperature 15th stage compressor bleed, and charcoal filters in the inlet cabin air ducting, which as separate actions reduced the ozone to 58, 19 and 5 percent, respectively. The potential for the NASA instrumented B747 aircraft to encounter high levels of cabin ozone was derived from atmospheric oxone measurements on these aircraft. Encounter frequencies for two B747-100's were comparable even though the route structures were different. The B747-SP encountered high ozone than did the B747-100's.

  1. Output tracking control for a velocity-sensorless VTOL aircraft with measurement delays

    NASA Astrophysics Data System (ADS)

    Su, Shanwei; Lin, Yan

    2015-04-01

    In this paper, we develop a non-linear controller to achieve output tracking for a velocity-sensorless vertical take-off and landing (VTOL) aircraft in the presence of measurement delays. By applying the Pade approximation technique, the original controlled system is transformed into an augmented dimension system without any time delay. After constructing full-order observers, error coordinate transformation, and system decomposition, the tracking problem of the newly transformed system is changed into the stabilisation problem of two non-minimum phase subsystems and one minimum phase subsystem. The resulting controller not only forces the VTOL aircraft to asymptotically track the desired trajectories, but also drives the unstable internal dynamics, which stands for the non-minimum property of VTOL aircraft, to follow the causal ideal internal dynamics (IID) solved via the stable system centre (SSC) method. Numerical simulation results illustrate the effectiveness of the proposed controller.

  2. Measuring the 3-D wind vector with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-02-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. Therefore we draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14%, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31%) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's aeroelastic wing (53%), as well as sudden changes in wing loading (16%) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95% confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square deviation) of ≈0.4 m s-1 for the horizontal and ≍0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable eddy-covariance flux measurements.

  3. Directional acoustic measurements by laser Doppler velocimeters. [for jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) were used as velocity microphones to measure sound pressure level in the range of 90-130 db, spectral components, and two-point cross correlation functions for acoustic noise source identification. Close agreement between LDV and microphone data is observed. It was concluded that directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet aircraft noise.

  4. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    NASA Astrophysics Data System (ADS)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  5. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  6. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-11-01

    Because of the high travel speed, the complex flow dynamics around an aircraft, and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore, these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realised with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 to 800 hPa, and a water vapour concentration range of more than 3 orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements shows an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2 and 5.1% during in-flight operation on the HALO airplane. Under

  7. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-05-01

    Because of the high travel speed, the complex flow dynamics around an aircraft and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realized with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 hPa to 800 hPa, and a water vapour concentration range of more than three orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements show an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2% and 5.1% during in flight operation on the HALO airplane

  8. Predictions of F-111 TACT aircraft buffet response and correlations of fluctuating pressures measured on aluminum and steel models and the aircraft

    NASA Technical Reports Server (NTRS)

    Coe, Charles F.; Cunningham, Atlee M., Jr.

    1987-01-01

    Results of buffet research that was conducted as part of the joint USAF/NASA F-111 TACT Research Program are presented. The correlation of wind tunnel and flight measurements of buffet excitation showed that there generally was good agreement between measurements of pressure fluctuations on the models and aircraft in regions of separated flow. At shock-wave boundaries of the separated flow, correlations of pressure fluctuations were not so good, due to Reynolds number and static elastic effects. The buffet prediction method, which applies a forcing function that is obtained by real-time integration of pressure time histories with the natural modes, is described. The generalized forces, including the effects of wing and tail, correlations of predicted and measured damping, and correlations of predicted and measured buffet response are presented. All presented data are for a Mach number of 0.8 with wing-sweep angles of 26 and 35 deg for a range of angles-of-attack that include buffet onset to high intensity buffeting. Generally, the buffet predictions were considered to be quite good particularly in light of past buffet-prediction experience.

  9. New technique for the direct measurement of core noise from aircraft engines

    NASA Astrophysics Data System (ADS)

    Krejsa, E. A.

    The core noise levels from gas turbine aircraft engines were measured using a technique which requires that fluctuating pressures be measured in the far field and at two locations within the engine core. The cross spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine vore. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an Avco Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  10. New technique for the direct measurement of core noise from aircraft engines. [YF 102 turbofan engine

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    The core noise levels from gas turbine aircraft engines were measured using a technique which requires that fluctuating pressures be measured in the far field and at two locations within the engine core. The cross spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine vore. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an Avco Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  11. Should helicopter noise be measured differently from other aircraft noise? A review of the psychoacoustic literature

    NASA Technical Reports Server (NTRS)

    Molino, J. A.

    1982-01-01

    A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.

  12. Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli

    2010-01-01

    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65,2.2,3.4 and 7.8 micron. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed

  13. Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Bradford, Deborah G.

    1999-01-01

    This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of

  14. A STUDY OF EXTRACTIVE AND REMOTE-SENSING SAMPLING AND MEASUREMENT OF EMISSIONS FROM MILITARY AIRCRAFT ENGINES

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.

    2010-01-01

    90%) from (typically lower than) those based on the extractive techniques. However, the ORS techniques were useful in providing non-intrusive real-time measurements of gaseous species in the exhaust plume, which warrants further development. The results obtained in this program validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR-6037.

  15. A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements

    EPA Science Inventory

    In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...

  16. Comparison of Pandora spectrometer NO2 measurements to aircraft, satellite, and ground measurements during the DISCOVER-AQ Texas campaign

    NASA Astrophysics Data System (ADS)

    Judd, L.; Lefer, B. L.; Herman, J. R.; Abuhassan, N.; Cede, A.; Cohen, R. C.; Janz, S. J.; Ren, X.; Luke, W. T.; Long, R.

    2014-12-01

    Pandora spectrometer measurements are compared to other remotely sensed and in-situ NO2 measurements in the Houston, TX region during the third deployment of the DISCOVER-AQ campaign in September 2013. The network of freeways, petrochemical facilities, and related industries contribute to an ongoing pollution problem in the Houston region with the direct emissions of NOx and VOCs producing secondary pollutants such as ozone and PM2.5. The goal of this work is to determine how the Pandora spectrometer column measurements of NO2 compare to in-situ derived and other remotely sensed columns, as well as with ground measurements during this deployment of DISCOVER-AQ. UC Berkeley's LIF measurements of NO2 aboard the NASA P-3B at each spiral site are used to create the aircraft derived profiles of NO2. The aircraft measured profiles include upwind, source, and receptor sites in the region, three times a day, at eight different locations. In addition, we investigate how the NO2 profile shape changes both spatially and temporally, with a focus on the difference between the boundary layer and free troposphere distributions. Pandora measurements are also compared to column measurements from the Ozone Monitoring Instrument and ACAM aboard the B200 aircraft. Where available, surface measurements are included to supplement aircraft profiles and are correlated to the Pandora column measurements to determine the relationship between the total NO2 column and ground concentrations. Understanding of how these measurements compare spatially and temporally will aid both future Pandora deployments and satellite retrievals.

  17. Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987-2011

    NASA Astrophysics Data System (ADS)

    Desjardins, Raymond L.; Worth, Devon E.; MacPherson, J. Ian; Bastian, Matthew; Srinivasan, Ramesh

    2016-03-01

    Over the past 30 years, the Canadian Twin Otter research group has operated an aircraft platform for the study of atmospheric greenhouse gas fluxes (carbon dioxide, ozone, nitrous oxide and methane) and energy exchange (latent and sensible heat) over a wide range of terrestrial ecosystems in North America. Some of the acquired data from these projects have now been archived at the Flight Research Laboratory and Agriculture and Agri-Food Canada. The dataset, which contains the measurements obtained in eight projects from 1987 to 2011 are now publicly available. All these projects were carried out in order to improve our understanding of the biophysical controls acting on land-surface atmosphere fluxes. Some of the projects also attempted to quantify the impacts of agroecosystems on the environment. To provide information on the data available, we briefly describe each project and some of the key findings by referring to previously published relevant work. As new flux analysis techniques are being developed, we are confident that much additional information can be extracted from this unique data set.

  18. Remote measurement of water color in coastal waters. [spectral radiance data used to obtain quantitative values for chlorophyll and turbidity

    NASA Technical Reports Server (NTRS)

    Weldon, J. W.

    1973-01-01

    An investigation was conducted to develop procedure to obtain quantitative values for chlorophyll and turbidity in coastal waters by observing the changes in spectral radiance of the backscattered spectrum. The technique under consideration consists of Examining Exotech model 20-D spectral radiometer data and determining which radiance ratios best correlated with chlorophyll and turbidity measurements as obtained from analyses of water samples and sechi visibility readings. Preliminary results indicate that there is a correlation between backscattered light and chlorophyll concentration and secchi visibility. The tests were conducted with the spectrometer mounted in a light aircraft over the Mississippi Sound at altitudes of 2.5K, 2.8K and 10K feet.

  19. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  20. Characterization and application of an externally mounted catalytic converter for aircraft measurements of NOy

    NASA Astrophysics Data System (ADS)

    Lange, L.; Fischer, H.; Parchatka, U.; Gurk, C.; Zenker, T.; Harris, G. W.

    2002-08-01

    A novel design for an airborne NOy converter was implemented, characterized in the laboratory, and used extensively for in situ tropospheric and stratospheric measurements of total reactive nitrogen (NOy). During field deployments, the converter is mounted outside the aircraft fuselage, avoiding the need for an inlet line. In flight, the converter can be calibrated by the addition of standard gases close to the sample inlet, compensating for any changes in the instrument sensitivity caused by changing operating conditions. The system has been used successfully during several Stratosphere Troposphere Experiments by Aircraft Measurements campaigns in the lowermost stratosphere and upper troposphere for the measurement of total reactive nitrogen. The detection limit of the system is approximately 100 pptv for 10 s integrated data (2σ). The precision, deduced from the reproducibility of the in-flight calibrations, is 7% and the accuracy is about 30%. Laboratory studies demonstrate that interference from HCN, NH3, and CH3CN is negligible for background conditions.

  1. A solid state converter for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1972-01-01

    The problems inherent in present systems of instrumentation for measuring aircraft noise and sonic boom include limited frequency response, expensive connecting cables, sensitivity to cable length and type, high sensitivity to environmental conditions, and additional limitations of individual system components. Furthermore, differing requirements have resulted in the use of two different systems for aircraft noise and sonic boom measurements respectively. To alleviate these difficulties a unified system of instrumentation suitable for both types of measurements was developed. The system features a new solid state converter connected to a zero drive amplifier. The system was found insensitive to cable length and type up to at least 1000 ft and requires no impedance matching networks. The converter itself has flat frequency response from dc to 28 kHz (- 3 db), dynamic range of 72 db, and noise floor of 50 db in the band 22.4 Hz to 22.4 kHz.

  2. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  3. Damage detection in aircraft structures using dynamically measured static flexibility matrices

    SciTech Connect

    Robinson, N.A.; Peterson, L.D.; James, G.H.; Doebling, S.W.

    1996-02-01

    Two methods for detecting the location of structural damage in an aircraft fuselage using modal test data are presented. Both methods use the dynamically measured static flexibility matrix, which is assembled from a combination of measured modal vectors, frequencies, and driving point residual flexibilities. As a consequence, neither method requires a mode-to-mode correlation, and both avoid tedious modal discrimination and selection. The first method detects damage as a softening in the point flexibility components, which are the diagonal entries in the flexibility matrix. The second method detects damage from the disassembled elemental stiffnesses as determined using a presumed connectivity. Vibration data from a laser vibrometer is used to measure the modal mechanics of a DC9 aircraft fuselage before and after induced weakening in a longitudinal stringer. Both methods are shown to detect the location of the damage, primarily because the normal stiffness of the reinforced shell of the fuselage is localized to a few square centimeters.

  4. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  5. Aircraft measurements of electrified clouds at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Jones, J. J.; Winn, W. P.; Hunyady, S. J.; Moore, C. B.; Bullock, J. W.

    1990-01-01

    The space-vehicle launch commit criteria for weather and atmospheric electrical conditions in us at Cape Canaveral Air Force Station and Kennedy Space Center (KSC) have been made restrictive because of the past difficulties that have arisen when space vehicles have triggered lightning discharge after their launch during cloudy weather. With the present ground-base instrumentation and our limited knowledge of cloud electrification process over this region of Florida, it has not been possible to provide a quantitative index of safe launching conditions. During the fall of 1988, a Schweizer 845 airplane equipped to measure electric field and other meteorological parameters flew over KSC in a program to study clouds defined in the existing launch restriction criteria. All aspects of this program are addressed including planning, method, and results. A case study on the November 4, 1988 flight is also presented.

  6. Aircraft Measurements of Saharan dust properties and impact of atmospheric transport during Fennec

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Highwood, Ellie; Rosenberg, Phil; Trembath, Jamie; Brooke, Jennifer; Bart, Mark; Dean, Angela; Dorsey, James; Crosier, Jonny; McQuaid, Jim; Brindley, Helen; Banks, James; Marsham, John; Sodemann, Harald; Washington, Richard

    2013-04-01

    Measurements of Saharan dust from recent airborne campaigns have found variations in size distributions and optical properties across Saharan and sub-Saharan Africa. These variations have an impact on radiation and thus weather and climate, and are important to characterise and understand, in particular, to understand how they vary with time after dust uplift, transport, and height in the atmosphere. New in-situ aircraft measurements from the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert and the Atlantic Ocean will be presented and compared to previous airborne measurements. Size distributions extending to 300 μm will be shown, representing measurements extending further into the coarse mode than previously published for Saharan dust. The dust sampled by the aircraft covered a wide variety of loadings, dust source regions (Mali, Mauritania and Algeria) and dust ages (from fresh uplift to several days old). A significant coarse mode was present in the size distribution measurements with effective diameter up to 23 μm, and the mean size distribution showed greater concentrations of coarse mode than previous aircraft measurements. Single scattering albedo (SSA) values at 550nm calculated from these size distributions revealed high absorption from 0.77 to 0.95, with a mean of 0.85. Directly measured SSA values were higher (0.91 to 0.99) but new instrumentation revealed that these direct measurements, behind Rosemount inlets, overestimate the SSA by 0.02 to 0.20 depending on the concentration of coarse particles present. This is caused by inlet inefficiencies and pipe losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. This has a significant impact on atmospheric heating rates. The largest dust particles were encountered closest to the ground, and were most abundant in cases where dust was freshly uplifted. Number concentration, mass loading and extinction coefficient showed inverse

  7. A high precision instrument to measure angular and binocular deviation introduced by aircraft windscreens by using a shadow casting technique

    SciTech Connect

    Shivananju, B. N.; Yamdagni, S.; Vasu, R. M.; Asokan, S.

    2012-12-15

    Objects viewed through transparent sheets with residual non-parallelism and irregularity appear shifted and distorted. This distortion is measured in terms of angular and binocular deviation of an object viewed through the transparent sheet. The angular and binocular deviations introduced are particularly important in the context of aircraft windscreens and canopies as they can interfere with decision making of pilots especially while landing, leading to accidents. In this work, we have developed an instrument to measure both the angular and binocular deviations introduced by transparent sheets. This instrument is especially useful in the qualification of aircraft windscreens and canopies. It measures the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by the distorted light beam from the transparent test specimen compared to the reference pattern. Accurate quantification of the shift in the pattern is obtained by cross-correlating the reference shadow pattern with the specimen shadow pattern and measuring the location of the correlation peak. The developed instrument is handy to use and computes both angular and binocular deviation with an accuracy of less than {+-}0.1 mrad ( Almost-Equal-To 0.036 mrad) and has an excellent repeatability with an error of less than 2%.

  8. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  9. Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin.

    PubMed

    Lavoie, Tegan N; Shepson, Paul B; Cambaliza, Maria O L; Stirm, Brian H; Karion, Anna; Sweeney, Colm; Yacovitch, Tara I; Herndon, Scott C; Lan, Xin; Lyon, David

    2015-07-01

    We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total. PMID:26148549

  10. Temperature-compensated strain measurement of full-scale small aircraft wing structure using low-cost FBG interrogator

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Lee, Y. G.; Park, Y.; Kim, C. G.

    2013-04-01

    Recently, health and usage monitoring systems (HUMS) are being studied to monitor the real-time condition of aircrafts during flight. HUMSs can prevent aircraft accidents and reduce inspection time and cost. Fiber Bragg grating (FBG) sensors are widely used for aircraft HUMSs with many advantages such as light weight, small size, easy-multiplexing, and EMI immunity. However, commercial FBG interrogators are too expensive to apply for small aircrafts. Generally the cost of conventional FBG interrogators is over 20,000. Therefore, cost-effective FBG interrogation systems need to be developed for small aircraft HUMSs. In this study, cost-effective low speed FBG interrogator was applied to full-scale small aircraft wing structure to examine the operational applicability of the low speed FBG interrogator to the monitoring of small aircrafts. The cost of the developed low speed FBG interrogator was about 10,000, which is an affordable price for a small aircraft. 10 FBG strain sensors and 1 FBG temperature sensor were installed on the surface of the full-scale wing structure. Load was applied to the tip of the wing structure, and the low speed interrogator detected the change in the center wavelength of the FBG sensors at the sampling rate of 10Hz. To assess the applicability of the low-cost FBG interrogator to full-scale small aircraft wing structure, a temperature-compensated strain measurement algorithm was verified experimentally under various loading conditions of the wing structure with temperature variations.

  11. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Beltz, Nobert; Bandy, Alan R.; Ferek, Ronald J.; Thornton, Donald C.

    1993-01-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of 'potential' uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  12. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  13. Aircraft wake vortex velocity measurements using a scanning CO2 laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Sonnenschein, C. M.; Jeffreys, H. B.

    1975-01-01

    A CO2 laser Doppler velocimeter was employed in the study of pairs of counterrotating vortices trailing aircraft in an airport air space. A laser positioned on an extended runway centerline scans a vertical plane perpendicular to the centerline. Vortex location, measurement of vortex transport, and measurement of the properties of aircraft wake vortex flow fields are achieved via spectral analysis of the data. Highest amplitude in the spectrum, the associated maximum velocity, the highest velocity above the amplitude threshold, and the total number of frequency (velocity) cells above thresholds are studied as parameters in analysis of the vortex-associated flow field. The profile of the radial variation of tangential velocity is studied, and two special problems are examined: location of the vortex center and error introduced by crosswind.

  14. Rocket- and aircraft-borne trace gas measurements in the winter polar stratosphere

    NASA Technical Reports Server (NTRS)

    Arnold, F.; Moehler, O.; Pfeilsticker, K.; Ziereis, H.

    1988-01-01

    In January and February 1987 stratospheric rocket- and aircraft-borne trace gas measurements were done in the North Polar region using ACIMS (Active Chemical Ionization Mass Spectrometry) and PACIMS (PAssive Chemical Ionization Mass Spectrometry) instruments. The rocket was launched at ESRANGE (European Sounding Rocket Launching Range) (68 N, 21 E, Northern Sweden) and the twin-jet research aircraft operated by the DFVLR (Deutsche Forschungs- und Versuchs-anstalt fuer Luft- und Raumfahrt), and equipped with a mass spectrometer laboratory was stationed at Kiruna airport. Various stratospheric trace gases were measured including nitric acid, sulfuric acid, non-methane hydrocarbons (acetone, hydrogen cyanide, acetonitrile, methanol etc.), and ambient cluster ions. The experimental data is presented and possible implications for polar stratospheric ozone discussed.

  15. A Low LET Radiation Spectrometer for Measuring Particle Doses in Space and Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Brucker, G. J.; Dachev, T. P.; Day, John H. (Technical Monitor)

    2002-01-01

    This paper presents experimental data that demonstrates the feasibility of fabricating a miniature nuclear particle dosimeter for monitoring doses in aircraft and satellites. The basic instrument is a Low Linear-Energy-Transfer (LET) Radiation Spectrometer (LoLRS) that is designed to measure the energy deposited by particles with low LET values. The heart of the instrument is a Silicon-Lithium Drifted Diode (SLDD). Test results show that the LoLRS can be used to monitor the radiation threat to personnel in flights of space- and aircraft and also to generate a comprehensive data base from aviation and satellite measurements that can contribute to the formulation of more accurate environmental radiation models for dose predictions with reduced uncertainty factors.

  16. The IAGOS Information System: From the aircraft measurements to the users.

    NASA Astrophysics Data System (ADS)

    Boulanger, Damien; Thouret, Valérie; Cammas, Jean-Pierre; Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Brenninkmeijer, Carl A. M.

    2013-04-01

    IAGOS (In-service Aircraft for a Global Observing System, http://www.iagos.org) aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of atmospheric chemical composition throughout the troposphere and in the UTLS. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation industry. IAGOS consists of two complementary building blocks proving a unique global observation system: IAGOS-CORE deploys newly developed instrumentation for regular in-situ measurements of atmospheric chemical species both reactive and greenhouse gases (O3, CO, NOx, NOy, H2O, CO2, CH4), aerosols and cloud particles. In IAGOS-CARIBIC a cargo container is deployed monthly as a flying laboratory aboard one aircraft. Involved airlines ensure global operation of the network. Today, 5 aircraft are flying with the MOZAIC (3) or IAGOS-CORE (2) instrumentation namely 3 aircraft from Lufthansa, 1 from Air Namibia, and 1 from China Airlines Taiwan. A main improvement and new aspect of the IAGOS-CORE instrumentation compared to MOZAIC is to deliver the raw data in near real time (i.e. as soon as the aircraft lands data are transmitted). After a first and quick validation of the O3 and CO measurements, preliminary data are made available in the central database for both the MACC project (Monitoring Atmospheric Composition and Climate) and scientific research groups. In addition to recorded measurements, the database also contains added-value products such as meteorological information (tropopause height, air mass backtrajectories) and lagrangian model outputs (FLEXPART). Data access is handled by open

  17. Transport In The Antarctic Lowermost Stratosphere Inferred From In-situ Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Werner, A.; Ivanova, E.; Riediger, O.; Schmidt, U.; Strunk, M.; Volk, M.

    During the APE-GAIA campaign in Ushuaia, Argentina (54 S) in September/October 1999 measurements of long-lived tracers were made on board the M55 Geophys- ica aircraft with the High Altitude Gas Analyser (HAGAR), an in-situ instrument designed and built at the Institute for Meteorology and Geophysics, University of Frankfurt. HAGAR consists of a two channel gas chromatograph (GC/ECD) com- bined with a non-dispersive IR analyser which together measure the species N2O, CFC11, CFC12, H1211, SF6, and CO2. Most of the data were obtained between 50S and 70S latitude outside and inside the Antarctic polar vortex up to altitudes of about 21 km. Good coverage of samples in the lowermost stratosphere is achieved during horizontal flight legs at potential temperatures < 380K as well as vertical profiles at various latitudes. To estimate transport into the lowermost stratosphere we will present simple mass- balance calculations based on a method by Ray et al. (JGR, Vol. 104, No.D21, p. 26565-26580, 1999). With the knowledge of mixing ratios of trace gases at the 380 K isentropic surface, the tropopause, and data within the lowermost stratosphere it is pos- sible to determine the portions of air coming from above 380 K and across the extrat- ropical tropopause. In order to investigate seasonal variations, comparisons are made with NASA-ER-2 data from the ASHOE/MAESA (1994) campaign. Hemispheric dif- ferences are discussed by comparing our results with the northern hemispheric results of Ray et al.

  18. Methane and Other Greenhouse Gas Measurements from Aircraft in Alaska: 2009 - 2011

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Patrick, L.; Newberger, T.; Chen, H.; Oltmans, S. J.; Bruhwiler, L.; Miller, C. E.; Dlugokencky, E. J.; Tans, P. P.

    2011-12-01

    Due to their huge potential impact on the Earth's warming, methane (CH4) emissions in the Arctic are currently widely-studied and debated in the carbon cycle community. Emissions from carbon stored in Arctic soil are projected to increase as the region warms and the permafrost thaws, creating a potent feedback mechanism for climate change. This year, NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) began multi-year aircraft measurements in Alaska, which, coupled with regional modeling of methane fluxes, will evaluate and quantify the effect of regional climate change on ecosystem CO2 and CH4 fluxes. A crucial component of such regional modeling is the choice of background mixing ratio for a given atmospheric sample. A recent addition to the NOAA/GMD aircraft program provides valuable information on background mixing ratios for the Alaskan interior and provides insight into the seasonal cycle and inter-annual variability as well as spatial and temporal context for the measurements being made during the CARVE campaigns. The NOAA/GMD aircraft program began new, ongoing greenhouse gas measurements in Alaska in 2009 (complementing existing ground stations at Barrow and Cold Bay, and a flask-only aircraft site outside of Fairbanks), through a collaboration with the U.S. Coast Guard. Bi-weekly Arctic Domain Awareness flights on C-130 aircraft generally begin in Kodiak, continue to Barrow, and return back to Kodiak after altitude profiles over Kivalina and Galena. On-board measurements include continuous CO2, CH4, CO, and ozone, as well as 24 flask samples analyzed at NOAA for CO2, CH4, CO, and 50 additional gases. In addition to spanning a large geographic region, the measurements also span the entire growing season, from late March to late November each year. We will present data from 2009 - 2011, with a focus on Arctic CH4. The measurements provide us with additional understanding of the various influences on the seasonal cycles of CH4 and CO2

  19. New off-line aircraft instrumentation for non-methane hydrocarbon measurements.

    PubMed

    Bechara, Joelle; Borbon, Agnès; Jambert, Corinne; Perros, Pascal E

    2008-11-01

    New off-line instrumentation was developed to implement measurements of non-methane hydrocarbons (NMHC) on (French) research aircraft. NMHC are collected on multisorbent tubes by AMOVOC (Airborne Measurements Of Volatile Organic Compounds), a new automatic sampler. AMOVOC is a versatile and portable sampler targeting a wide range of NMHC at high frequency (sampling time of 10 min). Multisorbent tubes are analyzed on the ground by short-path thermal desorption coupled with gas chromatography and mass spectrometry. The development and optimization of both NMHC sampling and analysis are reported here. On the one hand, the paper points out technical choices that were made according to aircraft constraints and avoiding sample loss or contamination. On the other hand, it describes analytical optimization, tube storage stability, and moisture removal. The method shows high selectivity, sensitivity (limit of detection less than 10 ppt) and precision (less than 24%). Finally, NMHC data collected on French aircraft during the African Monsoon Multidisciplinary Analysis campaign are reported for the first time. The results highlight instrumentation validity and protocol efficiency for NMHC measurements in the lower and upper troposphere. PMID:18751685

  20. Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, An overview

    NASA Astrophysics Data System (ADS)

    Marenco, Alain; Thouret, ValéRie; NéDéLec, Philippe; Smit, Herman; Helten, Manfred; Kley, Dieter; Karcher, Fernand; Simon, Pascal; Law, Kathy; Pyle, John; Poschmann, Georg; von Wrede, Rainer; Hume, Chris; Cook, Tim

    1998-10-01

    Tentative estimates, using three-dimensional chemistry and transport models, have suggested small ozone increases in the upper troposphere resulting from current aircraft emissions, but have also concluded to significant deficiencies in today's models and to the need to improve them through comparison with extended data sets. The Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program was initiated in 1993 by European scientists, aircraft manufacturers, and airlines to collect experimental data. Its goal is to help understand the atmosphere and how it is changing under the influence of human activity, with particular interest in the effects of aircraft. MOZAIC consists of automatic and regular measurements of ozone and water vapor by five long range passenger airliners flying all over the world. The aim is not to detect direct effects of aircraft emissions on the ozone budget inside the air traffic corridors but to build a large database of measurements to allow studies of chemical and physical processes in the atmosphere, and hence to validate global chemistry transport models. MOZAIC data provide, in particular, detailed ozone and water vapor climatologies at 9-12 km where subsonic aircraft emit most of their exhaust and which is a very critical domain (e.g., radiatively and stratosphere/troposphere exchanges) still imperfectly described in existing models. This will be valuable to improve knowledge about the processes occuring in the upper troposphere and the lowermost stratosphere, and the model treatment of near tropopause chemistry and transport. During MOZAIC I (January 1993-September 1996), fully automatic devices were developed, installed aboard five commercial Airbus A340s, and flown in normal airline service. A second phase, MOZAIC II, started in October 1996 with the aim of continuing the O3 and H2O measurements and doing a feasibility study of new airborne devices (CO, NOy). Between September 1994 and December 1997, 7500

  1. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements.

    PubMed

    Hugo, Ronald J; Nowlin, Scott R; Hahn, Ila L; Eaton, Frank D; McCrae, Kim A

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence. PMID:12558258

  2. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  3. Remote Sensing Measurements of Vertical and Horizontal Moisture Variations from Aircraft Instruments

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Guillory, Anthony R.; Jedlovec, Gary J.

    1998-01-01

    The research in this paper focuses on describing vertical and horizontal of water vapor variability using two remote sensing aircraft instruments. To achieve this goal we will compare precipitable water and upper level humidity estimates derived from the each of the instruments. The Multispectral Atmospheric Mapping Sensor (MAMS) is a visible and infrared radiometer with similar channels to that of the GOES imager. MAMS has flown aboard the NASA ER-2 numerous times. It has been used to validate features observed with the previous series of GOES satellites. MAMS data has been used to study precipitable water and upper level water vapor as well as other geophysical parameters. MAMS provides the opportunity to obtain water vapor Imagery at 6.7 mm. Upper tropospheric humidity can be computed using this channel in a similar fashion to that of Soden and Bretherton. In addition to the water vapor channel, MAMS records data In 3 other Infrared channels and 8 visible and near Infrared bands at high spatial resolution (I 00 Abstract: m). The 1 1 and 12 mm infrared channels allow for the application of a split technique to derive total precipitable water. The Udar Atmospheric Sensing Experiment (LASE) which uses the Differential Absorption Udar (DIAL) technique for obtaining simultaneous water vapor and aerosol profiles through the entire troposphere. LASE operates In the 81 5 nm wavelength region and uses a double pulsed Ti:sapphire laser that is locked onto a water vapor line. LASE has good horizontal (IO km) and excellent vertical (300 m) resolution. MAMS and LASE collected data simultaneously on several ER-2 flights in September 1995. LASE mixing ratio profiles will be Integrated for comparison with MAMS precipitable water estimates and the upper tropospheric humidity will be computed for the layer observed by the MAMS 6.7 mm channel for comparison for this time period. Results show a significant correlation between the measurements of the two Instruments. Regions of high

  4. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  5. Measurements of Flow Rate and Trajectory of Aircraft Tire-Generated Water Spray

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1987-01-01

    An experimental investigation was conducted at the NASA Langley Research Center to measure the flow rate and trajectory of water spray generated by an aircraft tire operating on a flooded runway. Tests were conducted in the Hydrodynamics Research Facility and made use of a partial airframe and a nose tire from a general aviation aircraft. Nose tires from a commercial transport aircraft were also used. The effects of forward speed, tire load, and water depth on water spray patterns were evaluated by measuring the amount and location of water captured by an array of tubes mounted behind the test tire. Water ejected from the side of the tire footprint had the most significant potential for ingestion into engine inlets. A lateral wake created on the water surface by the rolling tire can dominate the shape of the spray pattern as the distance aft of the tire is increased. Forward speed increased flow rates and moved the spray pattern inboard. Increased tire load caused the spray to become less dense. Near the tire, increased water depths caused flow rates to increase. Tests using a fuselage and partial wing along with the nose gear showed that for certain configurations, wing aerodynamics can cause a concentration of spray above the wing.

  6. PIV Measurements of Chevrons on F400 Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Frate, Franco

    2010-01-01

    Previous talks at this meeting have covered our collaborative work on high-energy jets such as present in tactical aircraft (those with supersonic plumes). The emphasis of this work is improving our understanding of flow physics and our prediction tools. In this presentation we will discuss recent flow diagnostics acquired using Particle Image Velocimetry (PIV) made on an underexpanded shocked jet plume from a tactical aircraft nozzle. In this presentation we show cross-sectional and streamwise cuts of both mean and turbulent velocities of an F404 engine nozzle with various chevron designs applied. The impact of chevron penetration, length, and width are documented. The impact of the parameters is generally nonlinear in measures considered here, a surprising result given the relatively smooth behavior of the noise to variations in these chevron parameters.

  7. Measurements of fuselage skin strains and displacements near a longitudinal lap joint in a pressurized aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.; Britt, Vicki O.

    1991-01-01

    Strains and displacements in a small area near a longitudinal lap joint in the fuselage skin of a B737 aircraft were measured during a pressurization cycle to a differential pressure of 6.2 psi while the aircraft was on the ground. It was found that hoop strains were higher than longitudinal strains at each location; membrane strains in the unreinforced skin were higher than in the joint; membrane strains in the hoop direction, as well as radial displacements, tended to be highest at the mid-bay location between skin reinforcements; significant bending in the hoop direction occurred in the joint and in the skin near the joint, and the bending was unsymmetrically distributed about the stringer at the middle of the joint; and radial displacements were unsymmetrically distributed across the lap joint. The interpretation of the strain gage data for locations on the bonded and riveted lap joint assumed that the joint did not contain disbonded areas.

  8. An observer for a velocity-sensorless VTOL aircraft with time-varying measurement delay

    NASA Astrophysics Data System (ADS)

    He, Qing; Liu, Jinkun

    2016-02-01

    This paper presents a kind of state observer for a velocity-sensorless vertical take-off and landing (VTOL) aircraft with bounded time-varying delay in its measurement outputs. The proposed observer predicts current state variables based on the delayed outputs, and the estimated state variables can be considered as the actual state variables for feedback control scheme design. Since the delay is time-varying, compared to the constant delay case, different analysis theory must be employed. Under the assumption that the delays are identical for different outputs and bounded input, the asymptotic convergence property of the estimation error based on Lyapunov-Razumikhin theorem is proved. A relative large time delay for the VTOL aircraft in the outputs has been tested in the numerical simulation, and the simulation results show the effectiveness of the proposed observer.

  9. Infrared aircraft measurements of stratospheric composition over Antarctica during September 1987

    NASA Technical Reports Server (NTRS)

    Toon, Goeff C.; Farmer, C. B.; Lowes, L. L.; Schaper, P. W.; Blavier, J.-F.; Norton, R. H.

    1988-01-01

    The JPL Mark IV interferometer recorded high resolution, infared solar spectra from the NASA DC-8 aircraft during flights over Antarctica in September 1987. The atmospheric absorption features in these spectra were analyzed to determine the overburdens of O3, NO, NO2, HNO3, ClONO2, HCl, HF, CH4, N2O, CO, H2O and CFC-12. The spectra were obtained at latitudes which ranged between 64 degrees S and 86 degrees S, allowing the composition in the interior of the polar vortex to be compared with that at the edge. The latitude dependence observed for NO, HO2, HNO3, ClONO2, HCl and HF are summerized. The values at 30 deg S were observed on the ferry flight from New Zealand to Hawaii. The dashed lines connecting the two were interpolated across the region for which there are no measurements. The chemically perturbed region is seen to consist of a collar of high HNO3 and ClONO2 surrounding a core in which the overburdens of these and of HCl and NO2 are very low. Clear increases in the overburdens of HF and HNO3 were observed during the course of September in the vortex core. HCl and NO2 exhibited smaller, less significant increases. The overburdens of the tropospheric source gases, N2O, CH4, CF2Cl2, and H2O were observed to much smaller over Antarctica than at mid-latitudes. This, together with the fact that HF over Antarctica was more that double its mid-latitude value, suggests that downwelling has occurred.

  10. Two-frequency microwave resonance measurements from an aircraft - A quantitative estimate of the directional ocean surface spectrum

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Weissman, D. E.

    1984-01-01

    The use of the two-frequency microwave-resonance technique for airborne measurements of ocean surface-wave spectral components is examined in a summary of experiments conducted with a coherent Ku-band radar flown on a P-3 aircraft in the 1979 MARSEN and 1980 ARSLOE projects. The 1D theoretical formulation used in the analysis of the MARSEN data by Johnson et al. (1982) is extended to the 2D case; the experimental conditions are described in detail; and typical data are presented graphically, analyzed, and compared with independent measurements obtained with a surface-contour radar. The 3.5-deg pencil-beam configuration used in ARSLOE is shown to produce spectra with good directional characteristics (strong resonances at angles of incidence 13-48 deg). It is found that the proper inversion of radar data to surface-elevation spectra requires surface-reflectivity-modulation sources in addition to the long-wave orbital velocity.

  11. Regional studies of potential carbon monoxide sources based on Space Shuttle and aircraft measurements

    NASA Technical Reports Server (NTRS)

    Newell, R. E.; Shipley, S. T.; Connors, V. S.; Reichle, H. G., Jr.

    1988-01-01

    Carbon monoxide measurements made from the space shuttle show maxima over South America, central Africa, the eastern Mediterranean, and China. The maxima appear to be associated with either concomitant or prior convection in the air masses which carries boundary layer air into the upper troposphere. Previous aircraft measurements of carbon monoxide and ozone over South America are shown to be consistent with this view. In the tropics the three regions of long-term mean rising motion, which form part of the Walker circulation, are associated with elevated carbon monoxide.

  12. Aircraft measurements, modelled stratospheric [NO2]/[NO] ratio and photochemical steady-state approach within the frame of ENVISAT satellite data validation

    NASA Astrophysics Data System (ADS)

    Kostadinov, Ivan; Bortoli, Daniele; Giovanelli, Giorgio; Heland, J.; Petritoli, Andrea; Ravegnani, Fabrizio; Schlager, H.; Ulanovsky, Aleksey; Yuzhkov, Vladimir

    2003-08-01

    The scientific payload aboard the stratospheric aircraft M55 Geophysica consists of both in-situ and remote sensing instruments deployed to validate the ENVISAT chemical payload - SCIAMACHY, MIPAS-E and GOMOS during dedicated field campaigns: July and October 2002, Forli (Italy) and February - March 2003, Kiruna (Sweden). Along with the precise measurements required for correct validation procedures, it is necessary to provide additional information related to certain relationships between the available geophysical parameters in order to allow us to better interpret retrieved results, both from the space and from the aircraft measurements. In this regard NO2/NO ratio is inferred/tested along the flight tracks and used to verify the existence of a steady state photochemical equilibrium, using the data obtained by GASCOD-A/4π, FOZAN and SIOUX instruments. The obtained experimental ratio is compared to that derived from model calculations. A short description of the instruments and flight conditions are described also.

  13. Comparison of remote sensing techniques for measurements of aircraft emissions indices at airports

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus P.; Jahn, Carsten; Sturm, Peter J.; Lechner, Bernhard; Bacher, Michael; Gostomczyk, Adam; Kabarowska, Barbara; Zalewski, Leszec; Dahl, Guenter

    2004-02-01

    The emission indices of aircraft engine exhausts were measured at airports non-intrusively by FTIR emission spectrometry at the engine nozzle exit as well as by FTIR absorption spectrometry and DOAS (Differential Optical Absorption Spectrometry) behind the aircraft. Two measurement campaigns were performed to compare these different measurement methods. A kerosene powered burner was operated in that way that the different methods were applied for the exhaust gas investigations during the same time and at nearly the same exhaust gas volume. The burner was built with a nozzle exit diameter of 37 cm and a power of about 150 kW. Fresh air was pumped into the burner tube by a fan. Calibration gases as pure CO and NO were added in different amounts to vary the concentration of these gases in the exhaust. The sampling probe of an intrusive measurement system was installed in the centre of the exhaust stream near the exhaust exit for measurements of these gases and CO2 as well as NO2, UHC, SO2 and O2. An APU (GTCP36-300) in a test bed was used in the same way. CO was mixed into the exhausts near the nozzle exit. The passive FTIR instrument was operated in the test bed using special noise and vibration isolation. The open-path instruments were installed at the chimney exit on the roof of the test bed building. The deviations between the different measurement methods were in the order of +/-10 up to +/-20 %.

  14. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U.

    2011-05-01

    Measurements of gaseous nitrogen and sulfur oxide emissions in young aircraft exhaust plumes give insight into chemical oxidation processes inside aircraft engines. Particularly, the OH-induced formation of nitrous acid (HONO) from nitrogen oxide (NO) and sulfuric acid (H2SO4) from sulfur dioxide (SO2) inside the turbine which is highly uncertain, need detailed analysis to address the climate impact of aviation. We report on airborne in situ measurements at cruise altitudes of HONO, NO, NOy, and SO2 in 9 wakes of 8 different types of modern jet airliners, including for the first time also an A380. Measurements of HONO and SO2 were made with an ITCIMS (Ion Trap Chemical Ionization Mass Spectrometer) using a new ion-reaction scheme involving SF5- reagent ions. The measured molar ratios HONO/NO and HONO/NOy with averages of 0.038 ± 0.010 and 0.027 ± 0.005 were found to decrease systematically with increasing NOx emission-index (EI NOx). We calculate an average EI HONO of 0.31 ± 0.12 g NO2 kg-1. Using reliable measurements of HONO and NOy, which are less adhesive than H2SO4 to the inlet walls, we derive the OH-induced conversion fraction of fuel sulfur to sulfuric acid $\\varepsilon$ with an average of 2.2 ± 0.5 %. $\\varepsilon$ also tends to decrease with increasing EI NOx, consistent with earlier model simulations. The lowest HONO/NO, HONO/NOy and $\\varepsilon$ was observed for the largest passenger aircraft A380.

  15. New technique for the direct measurement of core noise from aircraft engines

    NASA Astrophysics Data System (ADS)

    Krejsa, E. A.

    1981-07-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  16. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  17. Comparative study of mandibular linear measurements obtained by cone beam computed tomography and digital calipers

    PubMed Central

    Tarazona-Álvarez, Pablo; Romero-Millán, Javier; Peñarrocha-Oltra, David; Fuster-Torres, María Á.; Tarazona, Beatriz

    2014-01-01

    Objectives: Cone beam computed tomography (CBCT) is an innovative dental of imaging system characterized by rapid volumetric imaging with patient exposure to a single dose of radiation. The present study was carried out to compare the linear measurements obtained with CBCT and digital caliper in 20 mandibles from human cadavers. Study design: A total of 4800 linear measurements were measured between different mandibular anatomical points with CBCT and digital caliper. The real measurements were defined as those obtained with the digital caliper. Posteriorly, the mandibles were scanned to obtain the CBCT images, with software-based measurements of the distances. Results: The measurements obtained with the digital caliper were greater. The CBCT technique underestimated distances greater than 100 mm. Conclusions: CBCT allows to obtain linear mandibular anatomical measurements equivalent to those obtained with digital caliper. The differences existing between both methods were clinically acceptable. Key words:Computed tomography, cone beam CT, accuracy, reliability, digital caliper. PMID:25136429

  18. Airborne measurements performed by a light aircraft during Pegasos spring 2013 campaign

    NASA Astrophysics Data System (ADS)

    Väänänen, Riikka; Krejci, Radovan; Manninen, Hanna E.; Nieminen, Tuomo; Yli-Juuti, Taina; Kangasluoma, Juha; Pohja, Toivo; Aalto, Pasi P.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    To fully understand the chemical and physical processes in atmosphere, measuring only on-ground is not sufficient. To extend the measurements into the lower troposphere, the University of Helsinki has performed airborne campaigns since 2009. During spring 2013, a light aircraft was used to measure the aerosol size distribution over boreal forests as a part of the Pegasos 'Norhern Mission'. The aims of the measurements were to quantify the vertical profiles of aerosols up to the altitude of 3.5 km, to study the new particle formation in the lower troposphere, to measure the planetary boundary layer evolution, and to support the measurements performed by Zeppelin NT. We used a Cessna 172 light aircraft as a platform. An aerosol and gas inlet was mounted under the right wing and the sample air was conducted inside the cabin where most of the instruments were placed. The aerosol measurement instruments included a TSI 3776 condensation particle counter (CPC) with a cut-off size of 3 nm, a Scanning Mobility Particle Sizer (SMPS), with a size range of 10-350 nm, and a Particle Size Magnifier (PSM) connected with a TSI 3772 condensation particle counter. As the properties of the PSM measuring in airborne conditions were still under testing during the campaign, the setups of the PSM varied between the measurements. Other instruments on board included a Li-Cor Li-840 H2O/Co2-analyzer, a temperature sensor, a relative humidity sensor, and a GPS receiver. Total amount of 45 flights with 118 flight hours were performed between 24th April and 15th June 2013. The majority of the flights were flown around SMEAR II station located in Hyytiälä, and when possible, the flights were synchronized with the Zeppelin flights. Simultaneously, an extensive field campaign to measure aerosol and gas properties was performed on-ground at SMEAR II station. A time series of airborne aerosol data of around 1.5 months allows us to construct statistical vertical profiles of aerosol size

  19. Leading-Edge Votex-System Details Obtained on F-106B Aircraft Using a Rotating Vapor Screen and Surface Techniques

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Brandon, Jay; Stacy, Kathryn; Johnson, Thomas D., Jr.; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A flight research program to study the flow structure and separated-flow origins over an F-106B aircraft wing is described. The flight parameters presented include Mach numbers from 0.26 to 0.81, angles of attack from 8.5 deg to 22.5 deg, Reynolds numbers from 22.6 x 10(exp 6) to 57.3 x 10(exp 6) and load factors from 0.9 to 3.9 times the acceleration due to gravity. Techniques for vapor screens, image enhancement, photogrammetry, and computer graphics are integrated to analyze vortex-flow systems. Emphasis is placed on the development and application of the techniques. The spatial location of vortex cores and their tracks over the wing are derived from the analysis. Multiple vortices are observed and are likely attributed to small surface distortions in the wing leading-edge region. A major thrust is to correlate locations of reattachment lines obtained from the off-surface (vapor-screen) observations with those obtained from on-surface oil-flow patterns and pressure-port data. Applying vapor-screen image data to approximate reattachment lines is experimental, but depending on the angle of attack, the agreement with oil-flow results is generally good. Although surface pressure-port data are limited, the vapor-screen data indicate reattachment point occurrences consistent with the available data.

  20. Visible and near-infrared channel calibration of the GOES-6 VISSR using high-altitude aircraft measurements

    NASA Technical Reports Server (NTRS)

    Smith, Gilbert R.; Levin, Robert H.; Koyanagi, Robert S.; Wrigley, Robert C.

    1989-01-01

    Present and future visible and near-infrared wavelength sensors mounted on operational satellites do not have on-board absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurements of a bright, relatively uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. Aircraft data were recorded over White Sands, New Mexico, and the coincident aircraft and orbiting satellite data is compared for the visible and near-infrared wavelength channel of the GOES-6 Visible Infrared Spin-Scan Radiometer.

  1. Measurement of EM Field Inside a Cruising Aircraft: Potential Problems for the Use of Mobile Phones on Board

    NASA Astrophysics Data System (ADS)

    Kohmura, A.; Picard, J.; Yonemoto, N.; Yamamoto, K.

    Electromagnetic (EM) emissions from portable electronic devices (PEDs) carried onboard aircraft can interfere with avionic systems. Several onboard systems using EM waves have been planned, such as mobile communications and UWB (ultra-wideband) entertainment services distribution. Manufacturers of this system develop schemes to avoid electromagnetic interference by the transmissions (emissions) of mobile phones with avionic systems; some local-specific problems still remain. The purpose of this chapter is to investigate to what extent non-GSM transmissions from the ground base stations reach inside a cruising aircraft. The EM field at the base station frequency bands is measured in a cruising small aircraft.

  2. Noise measurements for a twin-engine commercial jet aircraft during 3 deg approaches and level flyovers

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Shanks, R. E.; Mueller, A. W.

    1976-01-01

    Noise measurements have been made with a twin-engine commercial jet aircraft making 3 deg approaches and level flyovers. The flight-test data showed that, in the standard 3 deg approach configuration with 40 deg flaps, effective perceived noise level (EPNL) had a value of 109.5 effective perceived noise decibels (EPNdB). This result was in agreement with unpublished data obtained with the same type of aircraft during noise certification tests; the 3 deg approaches made with 30 deg flaps and slightly reduced thrust reduced the EPNL value by 1 EPNdB. Extended center-line noise determined during the 3 deg approaches with 40 deg flaps showed that the maximum reference A-weighted sound pressure level (LA,max)ref varied from 100.0 A-weighted decibels 2.01 km (108 n. mi.) from the threshold to 87.4 db(A) at 6.12 km (3.30 n. mi.) from the threshold. These test values were about 3 db(A) higher than estimates used for comparison. The test data along the extended center line during approaches with 30 deg flaps were 1 db(A) lower than those for approaches with 40 deg flaps. Flight-test data correlating (LA,max)ref with thrust at altitudes of 122 m (400 ft) and 610 m (2000 ft) were in agreement with reference data used for comparison.

  3. Further analysis of long-term measurements on board of Czech airlines aircraft

    NASA Astrophysics Data System (ADS)

    Ploc, O.; Spurný, F.

    2007-09-01

    Aircraft crew exposure represents an important challenge of actual occupational exposure. The accumulation of new data on its level is therefore an important task of radiation dosimetry. There are few types of equipment able to characterize it. One of them is an Si-diode-based spectrodosemeter "Liulin". It is an active device which measures total energy depositions in the semiconductor unit and after appropriate calibration, is also able to provide a separate estimation for both radiation components (non-neutron and neutron-like) of the radiation field on board. The device was fixed on board couple times in 2001, 2002, 2005 and 2006 for long-term measurements (60 days of operational time). This contribution brings the analysis of the database generated from accumulated data measured with this device and calculated by means of codes CARI-6 and EPCARD v3.2. Reasonably good agreement of all data sets could be stated in ordinary solar conditions. More measurements on aircraft flights in areas with higher vertical cut-off rigidities should be accomplished to accumulate more data to reach better statistics of integral and spectral values.

  4. A Backward Modeling Study of Intercontinental Pollution Transport Using Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Eckhardt, S.; Huntrieser, H.; Heland, J.; Schlager, H.; Aufmhoff, H.; Arnold, F.; Cooper, O.

    2002-12-01

    In this paper we present simulations with a Lagrangian particle dispersion model to study the intercontinental transport of pollution from North America during an aircraft measurement campaign over Europe. The model was used for both the flight planning and a detailed source analysis after the campaign, which is described here with examples from two episodes. First, forward calculations of emission tracers from North America, Europe and Asia were made to understand the transport processes. Both episodes were preceded by stagnant conditions over North America, leading to the accumulation of pollutants in the North American boundary layer. This pollution was then exported by warm conveyor belts to the middle and upper troposphere, and transported rapidly to Europe. Concentrations of many chemical trace species (CO, NOy, CO2, acetone, and several VOCs; O3 in one case) measured aboard the research aircraft were clearly enhanced in the pollution plumes compared to the conditions outside the plumes. Backward simulations with the particle model were introduced as an indispensable tool for a more detailed analysis of the plume's source region. They make trajectory analyses, which to date were mainly used to interpret aircraft measurement data, obsolete for establishing source-receptor relationships. Using an emission inventory, we could decompose the tracer mixing ratios at the receptors (i.e., along the flight tracks) into contributions from every grid cell of the inventory. For both North America plumes, we found that emission sources contributing to the tracer concentrations over Europe were distributed over large areas in North America. In one case, the region around New York was clearly the largest contributor, but in the other case, sources in California, Texas, and Florida contributed almost equally. Smaller contributions were made by sources reaching from the Yucatan peninsula to Canada in this case.

  5. The measurement of linear and angular displacements in prototype aircraft - Instrumentation, calibration and operational accuracy

    NASA Astrophysics Data System (ADS)

    Storm van Leeuwen, Sam

    The design and development of angular displacement transducers for flight test instrumentation systems are considered. Calibration tools, developed to meet the accuracy requirements, allowed in situ calibration with short turn around times. The design of the control surface deflection measurement channels for the Fokker 100 prototype aircraft is discussed in detail. It is demonstrated that a bellows coupling provides accurate results, and that the levers and push-pull rod drive mechanisms perform well. The results suggest that a complex mechanical drive mechanism reduces the system accuracy.

  6. Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2014-12-01

    Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) are examined for the 12 year period from 2002-2013. Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities) point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbates the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  7. Aureole lidar: instrument design, data analysis, and comparison with aircraft spectrometer measurements.

    PubMed

    Hooper, W P

    1993-07-20

    A lidar system is developed to map extinction under the flight path of a P-3 aircraft. With a modified Cassegrainian telescope, signals from both wide and narrow fields of view are detected. The wide field-of-view detector senses the aureole signal generated by sea surface reflection and aerosol forward scattering. The narrow field-of-view detector senses the backscattering profile and the direct reflection off the sea surface. Optical depth and extinction profiles are derived from these signals. In comparisons made beween in situ aerosol-size spectrometer and lidar measurements, lidar profiles are smaller in magnitude but similar in shape to the spectrometer profiles. PMID:20830043

  8. Spatial and temporal variation in CO over Alberta using measurements from satellites, aircraft, and ground stations

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2015-04-01

    Alberta is Canada's largest oil producer, and its oil sands deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) is examined for the 12-year period from 2002 to 2013. The Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations in forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons: summer and spring. Distinct seasonal patterns of CO at the urban sites (Edmonton and Calgary) point to the strong influence of traffic. Meteorological parameters play an important role in the CO spatial distribution at various pressure levels. Northern Alberta shows a stronger upward lifting motion which leads to larger CO total column values, while the poor dispersion in central and southern Alberta exacerbates the surface CO pollution. Interannual variations in satellite data depict a slightly decreasing trend for both regions, while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  9. High-Altitude Aircraft-Based Electric-Field Measurements above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX- 3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements will be shown. Our new mills have an internal 16-bit A/D, with a resolution of 0.25 V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  10. High-Altitude Aircraft-Based Electric-Field Measurements Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX-3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements are shown: typical flight altitude is 20km. Our new mills have an internal 16-bit A/D, with a resolution of 0.25V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  11. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  12. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Heemink, Arnold; Lu, Sha; Segers, Arjo; Weber, Konradin; Lin, Hai-Xiang

    2016-07-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  13. Improving and Assessing Aircraft-based Greenhouse Gas Emission Rate Measurements at Indianapolis as part of the INFLUX project.

    NASA Astrophysics Data System (ADS)

    Heimburger, A. M. F.; Shepson, P. B.; Stirm, B. H.; Susdorf, C.; Cambaliza, M. O. L.

    2015-12-01

    Since the Copenhagen accord in 2009, several countries have affirmed their commitment to reduce their greenhouse gas emissions. The United States and Canada committed to reduce their emissions by 17% below 2005 levels, by 2020, Europe by 14% and China by ~40%. To achieve such targets, coherent and effective strategies in mitigating atmospheric carbon emissions must be implemented in the next decades. Whether such goals are actually achieved, they require that reductions are "measurable", "reportable", and "verifiable". Management of greenhouse gas emissions must focus on urban environments since ~74% of CO2 emissions worldwide will be from cities, while measurement approaches are highly uncertain (~50% to >100%). The Indianapolis Flux Experiment (INFLUX) was established to develop, assess and improve top-down and bottom-up quantifications of urban greenhouse gas emissions. Based on an aircraft mass balance approach, we performed a series of experiments focused on the improvement of CO2, CH4 and CO emission rates quantification from Indianapolis, our final objective being to drastically improve the method overall uncertainty from the previous estimate of 50%. In November-December 2014, we conducted nine methodologically identical mass balance experiments in a short period of time (24 days, one downwind distance) for assumed constant total emission rate conditions, as a means to obtain an improved standard deviation of the mean determination. By averaging the individual emission rate determinations, we were able to obtain a method precision of 17% and 16% for CO2 and CO, respectively, at the 95%C.L. CH4 emission rates are highly variable day to day, leading to precision of 60%. Our results show that repetitive sampling can enable improvement in precision of the aircraft top-down methods through averaging.

  14. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were

  15. DOAS measurements of NO2 from an ultralight aircraft during the Earth Challenge expedition

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; van Gent, J.; Fayt, C.; Maes, J.; Toledo, X.; Ronveaux, O.; de Mazière, M.

    2012-02-01

    We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 tropospheric columns above South Asia, Arabic peninsula, North Africa, and Italy in November and December 2009. The DOAS instrument was installed on an ultralight aircraft involved in the Earth Challenge project, an expedition of seven pilots flying on four ultralight aircraft between Australia and Belgium. The instrument recorded spectra in limb geometry with a large field-of-view, a set-up which provides a high sensitivity to the boundary layer NO2 while minimizing the uncertainties related to the attitude variations. We compare our measurements with OMI and GOME-2 tropospheric NO2 products when the latter are available. Above Rajasthan and the Po Valley, two areas where the NO2 field is homogeneous, data sets agree very well. Our measurements in this areas are respectively 0.1 ± 0.1 to 2.8 ± 1 × 1015 molec cm-2 and 2.5 ± 0.5 × 1016 molec cm-2. Flying downwind of Riyadh, our NO2 measurements show with a higher spatial resolution than OMI the structure of the megacities'exhaust plume. Moreover, our measurements indicate larger columns (up to 70%) than the one seen by satellites. We also derived tropopsheric columns when no satellite data was available, if it was possible to get information on the visibility from satellite measurements of aerosol optical thickness. The maximum column we measured was above Benghazi, with 5.7 ± 2 × 1016 molec cm-2. This experiment also provides a confirmation for the recent finding of a soil signature above desert.

  16. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  17. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  18. A new fast response instrument for measuring total water content from aircraft

    NASA Astrophysics Data System (ADS)

    Nicholls, S.; Leighton, J.; Barker, R.

    1990-10-01

    A device for measuring the total water content of a parcel of air from an aircraft has been developed. The total water of a parcel of air is a conserved quantity, independent of phase changes, provided there is no transport of water through the parcel boundaries. Current airborne hygrometers normally attempt to measure the water content in individual phases and the presence of other phases invariably influences the quality of the data. However, any liquid water or ice entering this new probe is efficiently evaporated and the resultant water vapor measured using a Lyman-alpha hygrometer. In airborne trials the device was calibrated against a cooled-mirror dewpoint device. Runs were conducted in warm stratocumulus tops, through small cumulus, in mixed-phase precipitation and cirrus cloud. In all cases the device was found to produce high quality, fast response data.

  19. Dual-parameter radar rainfall measurement from space - A test result from an aircraft experiment

    NASA Technical Reports Server (NTRS)

    Kozu, Toshiaki; Nakamura, Kenji; Meneghini, Robert; Boncyk, Wayne C.

    1991-01-01

    An aircraft experiment has been conducted with a dual-frequency (X/Ka-bands) radar to test various rainfall retrieval methods from space. The authors test a method to derive raindrop size distribution (DSD) parameters from the combination of a radar reflectivity profile and a path-integrated attenuation derived from surface return, which may be available from most spaceborne radars. The estimated DSD parameters are reasonable in that the values generally fall within the range of commonly measured ones and that shifts in DSD parameters appear to be correlated with changes in storm type. The validity of the estimation result is also demonstrated by a consistency check using the Ka-band reflectivity profile which is independent of the DSD estimation process. Although errors may occur in the cases of nonuniform beam filling, these test results indicate the feasibility of the dual-parameter radar measurement from space in achieving a better accuracy in quantitative rainfall remote measurements.

  20. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  1. Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft

    NASA Technical Reports Server (NTRS)

    Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.

    1986-01-01

    Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.

  2. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.; Jordan, J. L.; Schinstock, W. C.; Platz, S. J.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag.

  3. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degradation in lift and drag.

  4. DOAS measurements of NO2 from an ultralight aircraft during the Earth Challenge expedition

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; Van Roozendael, M.; van Gent, J.; Fayt, C.; Maes, J.; Toledo-Fuentes, X.; Ronveaux, O.; De Mazière, M.

    2012-08-01

    We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 tropospheric columns above South Asia, the Arabic peninsula, North Africa, and Italy in November and December 2009. The DOAS instrument was installed on an ultralight aircraft involved in the Earth Challenge project, an expedition of seven pilots flying on four ultralight aircraft between Australia and Belgium. The instrument recorded spectra in limb geometry with a large field of view, a set-up which provides a high sensitivity to the boundary layer NO2 while minimizing the uncertainties related to the attitude variations. We compare our measurements with OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone Monitoring Experiment 2) tropospheric NO2 products when the latter are available. Above Rajasthan and the Po Valley, two areas where the NO2 field is homogeneous, data sets agree very well. Our measurements in these areas are 0.1 ± 0.1 to 3 ± 1 × 1015 molec cm-2 and 2.6 ± 0.8 × 1016 molec cm-2, respectively. Flying downwind of Riyadh, our NO2 measurements show the structure of the megacity's exhaust plume with a higher spatial resolution than OMI. Moreover, our measurements are larger (up to 40%) than those seen by satellites. We also derived tropospheric columns when no satellite data were available if it was possible to get information on the visibility from satellite measurements of aerosol optical thickness. This experiment also provides a confirmation for the recent finding of a soil signature above desert.

  5. PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.; Frate, Franco C.

    2011-01-01

    Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.

  6. Long-term airborne black carbon measurements on a Lufthansa passenger aircraft

    NASA Astrophysics Data System (ADS)

    Ditas, Jeannine; Su, Hang; Scharffe, Dieter; Wang, Siwen; Zhang, Yuxuan; Brenninkmeijer, Carl; Pöschl, Ulrich; Cheng, Yafang

    2016-04-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO² the strongest component of current global warming (Bond, 2013). Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free and upper troposphere, and in the UTLS (upper troposphere and lower stratosphere). Many models underestimate the global atmospheric absorption attributable to black carbon by a factor of almost 3 (Bond, 2013). In August 2014, a single particle soot photometer was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 (with an interruption for 2002-2005) and carries out systematic observations at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The container has equipment for trace gas analyses and sampling and aerosol analyses and sampling and is connected to an inlet system that is part of the aircraft which contains a camera and DOAS remote sensing system. The integration of a single particle soot photometer (SP2) offers the possibility for the first long-term measurement of global distribution of black carbon and so far flights up to November 2015 have been conducted with more than 400 flight hours. So far the SP2 measurements have been analysed for flights over four continents from Munich to San Francisco, Sao Paulo, Tokyo, Beijing, Cape Town, Los Angeles and Hong Kong). The first measurements show promising results of black carbon measurements. Background concentrations in the UTLS

  7. Evaluating Source Area Contributions from Aircraft Flux Measurements Over Heterogeneous Land Using Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Kustas, William P.; Albertson, John D.

    2013-05-01

    The estimation of spatial patterns in surface fluxes from aircraft observations poses several challenges in the presence of heterogeneous land cover. In particular, the effects of turbulence on scalar transport and the different behaviour of passive (e.g. water vapour) versus active (e.g. temperature) scalars may lead to large uncertainties in the source area/flux-footprint estimation for sensible ( H) and latent ( LE) heat-flux fields. This study uses large-eddy simulation (LES) of the land-atmosphere interactions to investigate the atmospheric boundary-layer (ABL) processes that are likely to create differences in airborne-estimated H and LE footprints. We focus on 32~m altitude aircraft flux observations collected over a study site in central Oklahoma during the Southern Great Plains experiment in 1997 (SGP97). Comparison between the aircraft data and traditional model estimates provide evidence of a difference in source area for turbulent sensible and latent heat fluxes. The LES produces reasonable representations of the observed fluxes, and hence provides credible evidence and explanation of the observed differences in the H and LE footprints. Those differences can be quantified by analyzing the change in the sign of the spatial correlation of the H and LE fields provided by the LES model as a function of height. Dry patterns in relatively moist surroundings are able to generate strong, but localized, sensible heating. However, whereas H at the aircraft altitude is still in phase with the surface, LE presents a more complicated connection to the surface as the dry updrafts force a convergence of the surrounding moist air. Both the observational and LES model evidence support the concept that under strongly advective conditions, H and LE measured at the top of the surface layer (≈50 m) can be associated with very different upwind source areas, effectively contradicting surface-layer self-similarity theory for scalars. The results indicate that, under certain

  8. Imaging and quantitative measurement of corrosion in painted automotive and aircraft structures

    NASA Astrophysics Data System (ADS)

    Sun, G.; Wang, Xun; Feng, Z. J.; Jin, Huijia; Sui, Hua; Ouyang, Zhong; Han, Xiaoyan; Favro, L. D.; Thomas, R. L.; Bomback, J. L.

    2000-05-01

    Some of the authors have shown that it is possible to image and make rapid, quantitative measurements of metal thickness loss due to corrosion on the rear surface of a single layer structure, with an accuracy better than one percent. These measurements are complicated by the presence of thick and/or uneven layers of paint on either the front surface, the back surface, or both. We will discuss progress in overcoming these complications. Examples from both automotive and aircraft structures will be presented.—This material is based in part upon work performed at the FAA Center for Aviation Systems Reliability operated at Iowa State University and supported by the Federal Aviation Administration Technical Center, Atlantic City, New Jersey, under Grant number 95-G-025, and is also supported in part by the Institute for Manufacturing Research, Wayne State University, and by Ford Motor Company. Supported by a Grant from Ford Motor Company.

  9. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  10. GLITTER: new lidar technique for cloud-base altimetry. Description and initial aircraft measurements.

    PubMed

    Gelbwachs, Jerry A; Farley, Robert W

    2004-05-10

    Knowledge of cloud-base heights is important for climate studies, weather, and military operations. Conventional lidar methods monitor cloud depths by direct transmission of the beam through the cloud and sensing the backscattered returns. These techniques are limited by severe optical scattering by cloud particles to thickness <0.5 km. We have conceived of a novel lidar method measurement for thick-cloud-base altimetry from above that is not restricted by cloud scattering. The new method, known as GLITTER (an acronym for glimpses of the lidar images through the empty regions), relies on cloud porosity and diffuse reflection from land features to sense cloud bottoms. An aircraft GLITTER lidar measured cloud bases at 3.7- and 4.5-km altitudes. These initial results represent a proof-of-principle demonstration of the new lidar method. PMID:15143824

  11. The Influence of Aircraft Speed Variations on Sensible Heat-Flux Measurements by Different Airborne Systems

    NASA Astrophysics Data System (ADS)

    Martin, Sabrina; Bange, Jens

    2014-01-01

    Crawford et al. (Boundary-Layer Meteorol 66:237-245, 1993) showed that the time average is inappropriate for airborne eddy-covariance flux calculations. The aircraft's ground speed through a turbulent field is not constant. One reason can be a correlation with vertical air motion, so that some types of structures are sampled more densely than others. To avoid this, the time-sampled data are adjusted for the varying ground speed so that the modified estimates are equivalent to spatially-sampled data. A comparison of sensible heat-flux calculations using temporal and spatial averaging methods is presented and discussed. Data of the airborne measurement systems , Helipod and Dornier 128-6 are used for the analysis. These systems vary in size, weight and aerodynamic characteristics, since the is a small unmanned aerial vehicle (UAV), the Helipod a helicopter-borne turbulence probe and the Dornier 128-6 a manned research aircraft. The systematic bias anticipated in covariance computations due to speed variations was neither found when averaging over Dornier, Helipod nor UAV flight legs. However, the random differences between spatial and temporal averaging fluxes were found to be up to 30 % on the individual flight legs.

  12. Assimilating Aircraft-based measurements to improve the State of Distal Volcanic Ash Cloud

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Lin, Hai Xiang; Heemink, Arnold; Segers, Arjo; Lu, Sha; Palsson, Thorgeir

    2015-04-01

    The sudden eruption at the 1666 m high, ice-capped Eyjafjallajökull volcano, in south Iceland during 14 April to 23 May 2010, had caused an unprecedented closure of the European and North Atlantic airspace resulting in global economic losses of US5 billion. This has initiated a lot of research on how to improve aviation advice after eruption onset. Good estimation of both the state of volcanic ash cloud and the emission of volcano are crucial for providing a successful aviation advice. Currently most of the approaches, employing satellite-based and ground-based measurements, are in the focus of improving the definition of Eruption Source Parameters (ESPs) such as plume height and mass eruption rate, which are certainly very important for estimating volcano emission and state of volcanic ash cloud near to the volcano. However, for ash cloud state in a far field, these approaches can hardly make improvements. This is mainly because the influence of ESPs on the ash plume becomes weaker as the distance to the volcano is getting farther, thus for a distal plume the information of ESPs will have little influence. This study aims to find an efficient way to improve the state of distal volcanic ash cloud. We use real-life aircraft-based observations, measured along Dutch border between Borken and Twist during the 2010 Eyjafjallajökull eruption, in an data assimilation system combining with a transport model to identify the potential benefit of this kind of observations and the influence on the ash state around Dutch border. We show that assimilating aircraft-based measurements can significantly improve the state of distal ash clouds, and further provide an improved aviation advice on distal ash plume. We compare the performances of different sequential data assimilation methods. The results show standard Ensemble Kalman Filter (EnKF) works better than others, which is because of the strong nonlinearity of the dynamics and the EnKF's resampling Gaussianity nature

  13. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    NASA Astrophysics Data System (ADS)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  14. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  15. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  16. A backward modeling study of intercontinental pollution transport using aircraft measurements

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Eckhardt, S.; Spichtinger, N.; Huntrieser, H.; Heland, J.; Schlager, H.; Wilhelm, S.; Arnold, F.; Cooper, O.

    2003-06-01

    In this paper we present simulations with a Lagrangian particle dispersion model to study the intercontinental transport of pollution from North America during an aircraft measurement campaign over Europe. The model was used for both the flight planning and a detailed source analysis after the campaign, which is described here with examples from two episodes. Forward calculations of emission tracers from North America, Europe, and Asia were made in order to understand the transport processes. Both episodes were preceded by stagnant conditions over North America, leading to the accumulation of pollutants in the North American boundary layer. Both anthropogenic sources and, to a lesser extent, forest fire emissions contributed to this pollution, which was then exported by warm conveyor belts to the middle and upper troposphere, where it was transported rapidly to Europe. Concentrations of many trace gases (CO, NOy, CO2, acetone, and several volatile organic compounds; O3 in one case) and of ambient atmospheric ions measured aboard the research aircraft were clearly enhanced in the pollution plumes compared to the conditions outside the plumes. Backward simulations with the particle model were introduced as an indispensable tool for a more detailed analysis of the plume's source region. They make trajectory analyses (which, to date, were mainly used to interpret aircraft measurement data) obsolete. Using an emission inventory, we could decompose the tracer mixing ratios at the receptors (i.e., along the flight tracks) into contributions from every grid cell of the inventory. For both plumes we found that emission sources contributing to the tracer concentrations over Europe were distributed over large areas in North America. In one case, sources in California, Texas, and Florida contributed almost equally, and smaller contributions were also made by other sources located between the Yucatan Peninsula and Canada. In the other case, sources in eastern North America

  17. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  18. Loss rate of NO y from a power plant plume based on aircraft measurements

    NASA Astrophysics Data System (ADS)

    Gillani, N. V.; Luria, M.; Valente, R. J.; Tanner, R. L.; Imhoff, R. E.; Meagher, J. F.

    1998-09-01

    This study was motivated by the recent work of Buhr et al. [1996] which reported losses of NOy from large power plant plumes as high as 0.25 hour-1, much higher than generally accepted values. If true, conclusions pertaining to the efficiency of ozone and nitrate production in the lower troposphere would need major revisions. The results of Buhr et al. were based on aircraft measurements in four TVA (Tennessee Valley Authority) power plant plumes on July 7, 1995, as part of the Nashville/Middle Tennessee Ozone Study, a measurement program of the Southern Oxidants Study (SOS), whereas the results reported in this paper are also based on measurements made in the same SOS study aboard another instrumented aircraft (the TVA helicopter), in plumes of one of these power plants (the Cumberland Steam Plant in northwestern Tennessee) during five different days in 1994 and 1995. Between the 1994 and 1995 sampling periods, emissions of SO2 at the Cumberland plant were reduced by nearly 95% by installation of scrubbers. Our data from the one 1994 day show that the ratio of excess SO2 to NOy, in the plume core increased significantly with plume age, indicating a potentially high differential loss rate of NOy (excess loss of NOy relative to SO2) of about 0.12 hour-1. However, results based on the larger 1995 data set indicate a low differential NOy loss rate of only 0.00±0.03 hour-1, consistent with accepted low loss rates. Because the SOS-Nashville/Middle Tennessee Ozone Study was not specifically designed to explore the NOy loss issue, the question of NOy loss rates in plumes is not currently resolved and additional focused field studies are needed.

  19. Long-term Airborne Black Carbon Measurements on a Lufthansa Passenger Aircraft

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Su, H.; Ditas, J.; Scharffe, D.; Wang, S.; Zhang, Y.; McMeeking, G. R.; Brenninkmeijer, C. A. M.; Poeschl, U.

    2015-12-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO2 the strongest component of current global warming. Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free troposphere, and in the UTLS (upper troposphere and lower stratosphere). In August 2014, a single particle soot photometer (SP2) was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 and carries out systematic observations of trace gas and aerosol sampling and on-line analyses, as well as DOAS remote sensing system at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The integration of a SP2 offers the possibility for the first long-term measurement of global distribution of black carbon. Up to date the SP2 measurements have been analyzed for 392 flights hours over four continents (Fig. 1). The first measurements show promising results of black carbon including periods when background concentrations in the UTLS were encountered. Beside a general distribution of number and mass of black carbon particles, peak events were detected with up to 20 times higher concentrations compared to the background. Moreover, high concentration plumes have been observed continuously over a range of 10,000 km. Interestingly, our results show also a generally lower amount of black carbon mass in the tropics compared to the mid latitude northern hemisphere.

  20. A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Halogenated Gases

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Salawitch, R. J.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Rinsland, C. P.; Elkins, J. W.; Dutton, G. S.; Volk, C. M.; Webster, C. R.; May, R. D.; Fahey, D. W.; Gao, R.-S.; Loewenstein, M.

    1996-01-01

    We compare volume mixing ratio profiles of N2O, CFC-11, CFC-12, CCl4, SF6, and HCl in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov. 1994. Good agreement is found between ATMOS and in situ correlations of [CFC-11], [CFC-12], and [SF6] with [N2O]. ATMOS measurements of [CCl4] are 15% high compared to ER-2 data, but agree within the systematic uncertainties. ATMOS observations of [HCl] vs [N2O] are within approximately 10% of ER-2 data for [HCl] > 1 ppbv, but exceed in situ measurements by larger fractional amounts for smaller [HCl]. ATMOS measurements of [ClONO2] agree well with values inferred from in situ observations of [ClO], [NO], and [O3]. The sum of [HCl] and [ClONO2] observed by ATMOS, supplemented by a minor contribution from [ClO] estimated with a photochemical model, is consistent with the levels of inorganic chlorine inferred from in situ measurements of chlorine source gases.

  1. Calibration of 3-D wind measurements on a single-engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-08-01

    An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  2. Calibration of 3-D wind measurements on a single engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-02-01

    An innovative calibration method for the wind speed measurement using a boom mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high accuracy Inertial Reference System (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the 3-D wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  3. Polarimetric measurements of sea surface brightness temperatures using an aircraft K-band radiometer

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Li, Fuk K.; Nghiem, Son V.; Ricketts, William B.

    1995-01-01

    This paper presents the first experimental evidence that the polarimetric brightness temperatures of sea surfaces are sensitive to ocean wind direction in the incidence angle range of 30 to 50 degrees. Our experimental data were collected by a K-band (19.35 GHz) polarimetric wind radiometer (WINDRAD) mounted on the NASA DC-8 aircraft. A set of aircraft radiometer flights was successfully completed in November 1993. We performed circle flights over National Data Buoy Center (NDBC) moored buoys deployed off the northern California coast, which provided ocean wind measurements. The first WINDRAD flight was made on November 4, 1993. There was clear weather with a wind speed of 12 m/s at 330 degrees around the Pt. Arena buoy. We circled the buoy at three incidence angles, and all data when plotted as functions of azimuth angles show clear modulations of several Kelvin. At 40 degrees incidence angle, there is a 5 Kelvin peak-to-peak signal in the second Stokes parameter Q and the third Stokes parameter U. The Q data maximum is in the upwind direction and U has a 45 degrees phase shift in azimuth as predicted by theory. There is also an up/downwind asymmetry of 2 Kelvin in the Q data, and 1 Kelvin in the U data. At 50 degrees incidence angle, the collected data show very similar wind direction signatures to the SSM/I model function. Additional flights were made on other days under cloudy conditions. Data taken at a wind speed of 8 m/s show that at 40 degrees incidence Q and U have a smaller azimuthal modulation of 3 Kelvin, probably due to the lower wind speed. Additionally, the simultaneously recorded video images of sea surfaces suggested that Q and U data were less sensitive to unpolarized geophysical variations, such as clouds and whitecaps, while the T(v) and T(h) increased by a few Kelvin when the radiometer beam crossed over clouds, or there was a sudden increase of whitecaps in the radiometer footprint. The results of our aircraft flights indicate that passive

  4. Aircraft Measurements of Temperature and Liquid Water Content in Entrainment Interface Layer of Stratocumulus Clouds.

    NASA Astrophysics Data System (ADS)

    Haman, K. E.; Gerber, H.; Kumala, W.; Malinowski, S. P.

    2009-09-01

    Entrainment of dry, warm air from above the cloud and its mixing with the colder cloudy air is an important process in dynamics of inversion topped stratocumulus, leading to formation of a transition layer of complex structure - Entrainment Interface Layer (EIL). It consists of mutual filaments if cloudy and clear air of various thickness at different stages of stirring, mixing and homogenization. Borders between these filaments are often very sharp, with temperature jumps of few kelvins and liquid water content (LWC) jumps of up to 0.5 gmE-3 over distance of few centimeters, which cannot be resolved by means of standard aircraft instrumentation. This layer is an area of various specific dynamic and thermodynamic phenomena; in particular it is a source of downdrafts penetrating the cloud as the so called "cloud holes". Small scale structure of EIL has been investigated in 2001 during DYCOMS II campaign in marine stratocumulus over Eastern Pacific, by means of Ultrafast Aircraft Thermometer (UFT-F) from University of Warsaw and PVM-100A LWC-meter from Gerber Scientific, Inc. Some results of this research has been published in 2007 in Quarterly Journal of RMS. UFT-F has a thermoresistive sensing element protected against impact of cloud droplets and response time constant of order 10E-4s. PVM-100A is an optical instrument and has spatial resolution of order 10 cm. For recording a sampling rate of 1kHz has been typically applied with 10 kHz (for UFT-F only) on selected fragments of flights. Unfortunately, for some technical reasons, these two instruments, installed on the NCAR C-130 aircraft, were separated by about 6 meters what limited possibilities and precision of comparing their indications. There were also some failures during the flights due to which many potentially interesting measurements and observations have been lost. Opportunity to get improved observations of EIL appeared in 2008 at POST (Physics of Stratocumulus Top) Project. During POST a number of

  5. Measurements of ocean surface spectrum from an aircraft using the two-frequency microwave resonance technique

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Weissman, D. E.; Jones, W. L.

    1982-01-01

    The present investigation is concerned with the results of a two-frequency (Delta k) microwave radar experiment conducted from an aircraft and aimed primarily at the development of remote sensing techniques to measure ocean surface wave spectral characteristics. The experiment was conducted as part of the Maritime Remote Sensing (MARSEN) project in the North Sea during the autumn of 1979. The objective was to demonstrate the feasibility of and study the performance of the Delta k technique from a higher altitude platform, at shallower incidence angles, and at higher Doppler velocities than earlier stationary platform experiments allowed. A quantitative engineering evaluation of the results of two comprehensive flights is provided, and the qualitative significance of the results is discussed from a geophysical point of view in terms of the existing theory.

  6. Aircraft noise problems

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The problems related to aircraft noise were studied. Physical origin (sound), human reaction (noise), quantization of noise and sound sources of aircraft noise are discussed. Noise abatement at the source, technical, fleet-political and air traffic measures are explained. The measurements and future developments are also discussed. The position of Lufthansa as regards aircraft noise problems is depicted.

  7. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  8. Theory and Apparatus for Measurement of Emissivity for Radiative Cooling of Hypersonic Aircraft with Data for Inconel and Inconel X

    NASA Technical Reports Server (NTRS)

    O'Sullivan, William J , Jr; Wade, William R

    1957-01-01

    The importance of radiation as a means of cooling high-supersonic- and hypersonic-speed aircraft is discussed to show the need for measurements of the total hemispherical emissivity of surfaces. The theory underlying the measurement of the total hemispherical emissivity of surfaces is presented, readily duplicable apparatus for performing the measurements is described, and measurements for stably oxidized Inconel and Inconel X are given for the temperature range from 600 F to 2,000 F.

  9. Measuring subjective response to aircraft noise: the effects of survey context.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2013-01-01

    In applied research, noise annoyance is often used as indicator of subjective reaction to aircraft noise in residential areas. The present study aims to show that the meaning which respondents attach to the concept of aircraft noise annoyance is partly a function of survey context. To this purpose a survey is conducted among residents living near Schiphol Airport, the largest airport in the Netherlands. In line with the formulated hypotheses it is shown that different sets of preceding questionnaire items influence the response distribution of aircraft noise annoyance as well as the correlational patterns between aircraft noise annoyance and other relevant scales. PMID:23297898

  10. Aircraft measurements of nitrogen dioxide and peroxyacetyl nitrates using luminol chemiluminescence with fast capillary gas chromatography

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Steele, H.D.; Drayton, P.J.; Hubbe, J.M.

    1999-10-01

    Fast capillary gas chromatography with luminol detection has been used to make airborne measurements of nitrogen dioxide (NO{sub 2}) and peroxyacetyl nitrate (PAN). The analysis system allows for the simultaneous measurement of NO{sub 2} and peroxyacyl nitrates (PANs) with time resolution of less than 1 min, and improvement of a factor of 4--5 over previously reported methods using electron capture detection. Data presented were taken near Pasco, Washington, in August 1997, during a test flight onboard the US Department of Energy G-1 aircraft. The authors report measurements of NO{sub 2} in the boundary layer in a paper mill plume and a plume from a grass fire, in addition to analyses for free tropospheric NO{sub 2} and PAN. Ratios of PAN/NO{sub 2} were observed to increase with altitude (decreasing temperature) and to reach values of 2--4 above the boundary layer, consistent with the thermal equilibrium of the peroxyacetyl radical and NO{sub 2} and PAN. Estimates for the peroxyacetyl radical in the continental free troposphere, calculated from this equilibrium, were found to be in the range of 10{sup 4}--10{sup 5} molecules per cubic centimeter. These results demonstrate the application of this approach for airborne measurements of NO{sub 2} and PAN in a wide range of field study scenarios.

  11. Interpretation of data obtained with a high-resolution height-measuring corneal topographer

    NASA Astrophysics Data System (ADS)

    Jongsma, Franciscus H. M.; Stultiens, Bertho A. T.; Hendrikse, Fred

    1995-02-01

    Basically, other information becomes available when, instead of local slope, local height is measured. In contradistinction to the data obtained from Placido based systems, ambiguity can be avoided in the height data obtained from oblique projected grids on a diffusely reflecting surface, e.g., with an adapted set-up, discrimination between convex and concave surfaces is possible. We made a corneal topographer based on sodium-fluorescein installation in the precorneal tearfilm for obtaining a diffusely radiating surface. The local information available using a height measuring system, however, sometimes deviates from global information a.o. due to tearfilm breakup. This breakup may be controlled by applying artificial tear products. These products however, may influence the tearfilm thickness. With in vitro measurements we also obtained information about the thickness of a natural tearfilm that turned out to be at least several tens of micrometers s rather than 7 to 10 micrometers as is given in physiological handbooks. In this paper also a microslit-projection and observation method for direct tearlayer thickness measurements is described. The aim of this research is to investigate the maximum obtainable accuracy of measurements done in vivo and to optimize the sodium-fluorescein installation with respect to absorption of the excitation light and the fluorescent yield with minimum distortion of the natural corneal tearlayer.

  12. Effective density measurements of fresh particulate matter emitted by an aircraft engine

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Durdina, Lukas; Mensah, Amewu; Brem, Benjamin; Corbin, Joel; Rindlisbacher, Theo; Wang, Jing; Lohmann, Ulrike; Sierau, Berko

    2014-05-01

    organic aerosols. The soot masses/densities were determined using a DMA-CPMA system as described in the following. The freshly generated soot particles were first charge equilibrated to account for multiple charging and selected according to their mobility size (dm) by a DMA. The monodisperse flow then entered the CPMA which measured the corresponding mass. A condensation particle counter counted the particle number concentration. The effective density (ρeff) can be derived using the fractal relationship between mass and dm and the definition of the effective density. Additionally, we investigated four different laboratory-generated soot types at ETHZ. In detail, a Combustion Aerosol Standard burner ((1) fuel-rich and (2) fuel-lean), a (3) PALAS GFG aerosol generator and (4) carbon black (Cabot Regal Black) from an atomizer, were used. The corresponding results are compared to the aircraft engine exhaust measurements. Results The size, mass, effective density distributions, and the corresponding mobility based fractal dimensions (Dfm) from fresh soot particles emitted by a common aircraft engine and from four laboratory generated soot types were analysed. Dfm is used to describe aggregate particles. It relates the number of primary particles to dm. In general, the effective density decreases with increasing mobility diameter and depends on engine thrust.

  13. Aircraft Measurements for Calibration of the NIES TCCON FTSs and Comparison of the GOSAT Data Observed over Tsukuba and Rikubetsu in Japan

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Morino, I.; Uchino, O.; Nakamae, K.; Machida, T.; Katsumata, K.; Yokota, T.

    2014-12-01

    The Total Carbon Column Observing Network (TCCON) is a global network of ground-based high-resolution Fourier Transform Spectrometers (FTSs) that record direct solar spectra in the near-infrared. From these spectra, accurate and precise column-averaged dry-air mole fractions of atmospheric constituents including CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved. The National Institute for Environmental Studies (NIES) operates two TCCON FTSs at Tsukuba (36.05°N, 140.12°E) and Rikubetsu (43.46°N, 143.77°E) in Japan. We made the aircraft measurements over Tsukuba and Rikubetsu in January 2014 to calibrate the TCCON FTSs and to compare with XCO2 and XCH4 retrieved from the Short-Wavelength InfraRed (SWIR) spectra of Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT). In situ NDIR (CO2) and CRDS (CO2 and CH4) measurements and flask sampling (CO2, CH4, CO, N2O, and so on) were conducted onboard aircraft (Beechcraft King Air 200T) operated by Diamond Air Service Inc. from about 400 m to 9500 m. In addition, cloud observation by whole-sky camera and meteorological observation with radiosondes were performed from the ground in time with each flight. CO2 concentrations obtained from NDIR, CRDS, and flask sampling at respective heights generally agreed within 1 ppm. We calculated XCO2, XCH4, XCO, and XN2O from aircraft vertical profiles and XH2O from radiosonde measurements. Comparisons between them and TCCON data showed acceptable results on calibration for CO2, CH4, CO, N2O, and H2O of two TCCON FTSs. We also present comparisons between aircraft data and the GOSAT data.

  14. Aircraft measurements of the mean and turbulent structure of marine stratocumulus clouds during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Kloesel, Kevin A.; Moyer, Kerry A.; Nucciarone, Jefferey J.; Young, George

    1990-01-01

    The mean and turbulent structure of marine stratocumulus clouds is defined from data that were collected from 10 flights made with the National Center for Atmospheric Research (NCAR) Electra during the First ISCCP Regional Experiment (FIRE). The number of cases sampled is sufficiently large that researchers can compare the boundary layer structure obtained (1) for solid and broken cloud conditions, (2) for light and strong surface wind conditions, (3) for different sea-surface temperatures, and (4) on day and night flights. Researchers will describe the cloud and synoptic conditions present at the time of the Electra flights and show how those flights were coordinated with the operations of other aircraft and with satellite overpasses. Mean thermodynamic and wind profiles and the heat, moisture, and momentum fluxes obtained from data collected during these flights will be compared. Variations in the cloud-top structure will be quantified using LIDAR data collected during several of the Electra flights. The spatial structure of cloud-top height and the cloud-base height will be compared with the turbulent structure in the boundary layer as defined by spectra and cospectra of the wind, temperature, and moisture.

  15. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  16. Temperature and horizontal wind measurements on the ER-2 aircraft during the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Chan, K. Roland; Scott, Stan G.; Bui, T. Paul; Bowen, Stuart W.; Day, Jon

    1988-01-01

    The NASA ER-2 aircraft is equipped with special instrumentation to provide accurate in situ measurement of the atmospheric state variables during flight. The Meteorological Measurement System (MMS) on the ER-2 aircraft is described. Since the meteorological parameters (temperature, pressure, and wind vector) are extensively used by other ER-2 experimenters for data processing and interpretation, the accuracy and resolution of each of these parameters are assessed and discussed. During the 1987 Airborne Antarctic Ozone Experiment (AAOE) mission, the ER-2 aircraft was stationed at Punta Arenas, Chile (53 S, 72 W), and successfully flew over Antarctica on 12 occasions between August 17 and September 22, 1987. On each of the 12 flights, the ER-2 aircraft flight plan was to take off at approximately the same local time, fly southward at a near constant potential temperature surface, descend and ascend at the southernmost terminus at about 72 S over Antarctica and return northward at either the same or a different constant potential temperature surface. The measurements of the MMS experiment during the AAOE mission are presented. MMS data are organized to provide a composite view of the polar atmosphere, which is characterized by frigid temperatures and high zonal winds. Altitudinal variations of the temperature measurement (during takeoff/landing at Punta Arenas and during descent/ascent at the southern terminus) and latitudinal variations of the zonal wind (on near constant potential temperature surfaces) are emphasized and discussed.

  17. USE OF REMPI-TOFMS FOR REAL-TIME MEASUREMENT OF TRACE AROMATICS DURING OPERATION OF AIRCRAFT GROUND EQUIPMENT

    EPA Science Inventory

    Emissions of aromatic air toxics from aircraft ground equipment were measured with a resonance enhanced multiphoton ionization—time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. T...

  18. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide

    NASA Astrophysics Data System (ADS)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.

    1993-12-01

    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios <25 pptv and <10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio >25 pptv, the instruments agreed on average to about 15%. At mixing ratios <25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios <50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  19. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.

    1993-01-01

    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS) and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios less than 25 pptv and less than 10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio greater than 25 pptv, the instruments agreed on average to about 15%. At mixing ratios less than 25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios less than 50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  20. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance. Part 1: Capacitive ice detector development

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Khatkhate, Ateen A.; Gerardi, Joseph J.; Hickman, Gail A.

    1993-01-01

    A reliable way to detect and measure ice accretion during flight is required to reduce the hazards of icing currently threatening present day aircraft. Many of the sensors used for this purpose are invasive (probe) sensors which must be placed in areas of the airframe where ice does not naturally form. Due to the difference in capture efficiency of the exposed surface, difficulties result in correlating the ice accretion on the probe to what is happening on a number of vastly different airfoil sections. Most flush mounted sensors in use must be integrated into the aircraft surface by cutting or drilling the aircraft surface. An alternate type of ice detector which is based on a NASA patent is currently being investigated at Innovative Dynamics, Inc. (IDI). Results of the investigation into the performance of different capacitive type sensor designs, both rigid as well as elastic, are presented.

  1. Interior and exterior fuselage noise measured on NASA's C-8a augmentor wing jet-STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.

    1977-01-01

    Interior and exterior fuselage noise levels were measured on NASA's C-8A Augmentor Wing Jet-STOL Research Aircraft in order to provide design information for the Quiet Short-Haul Research Aircraft (QSRA), which will use a modified C-8A fuselage. The noise field was mapped by 11 microphones located internally and externally in three areas: mid-fuselage, aft fuselage, and on the flight deck. Noise levels were recorded at four power settings varying from takeoff to flight idle and were plotted in one-third octave band spectra. The overall sound pressure levels of the external noise field were compared to previous tests and found to correlate well with engine primary thrust levels. Fuselage values were 145 + or - 3 dB over the aircraft's normal STOL operating range.

  2. Comparison of aircraft noise measured in flight test and in the NASA Ames 40- by 80-foot wind tunnel.

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1973-01-01

    A method to determine free-field aircraft noise spectra from wind-tunnel measurements has been developed. The crux of the method is the correction for reverberations. Calibrated loud speakers are used to simulate model sound sources in the wind tunnel. Corrections based on the difference between the direct and reverberant field levels are applied to wind-tunnel data for a wide range of aircraft noise sources. To establish the validity of the correction method, two research aircraft - one propeller-driven (YOV-10A) and one turbojet-powered (XV-5B) - were flown in free field and then tested in the wind tunnel. Corrected noise spectra from the two environments agree closely.

  3. Aircraft measurements of ammonia and nitric acid in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Lebel, P. J.; Hoell, J. M.; Levine, J. S.; Vay, S. A.

    1985-06-01

    The first simultaneous measurements of ammonia and nitric acid in the troposphere have been made from an aircraft using a tungsten oxide denuder system. Vertical profiles of NH3 and HNO3 taken over coastal Virginia and Maryland in March and September, 1983, at altitudes from 150 m to 3000 m, show mixing ratios that decrease with altitude. Ammonia profiles show substantial seasonal variation, while nitric acid profiles do not. Using the measured profiles and a one-dimensional photochemical model, lifetimes due to heterogeneous loss of one day for HNO3 and ten days for NH3 are calculated. In contrast, NH3 profiles up to 5300 m over the North Atlantic Ocean during August 1982 show mixing ratios that increase slightly with altitude. These data represent the first ammonia profiles measured over the ocean. It is suggested that the increase in NH3 with altitude is a result of an ammonia-rich continental air mass advected over the ocean, followed by the dissolution of NH3 in the marine boundary layer on water-covered sea salt particles.

  4. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-01

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking. PMID:26730457

  5. Comparing modeled isoprene with aircraft-based measurements in the atmospheric boundary layer.

    SciTech Connect

    Doskey, P.; Gao, W.

    1997-12-12

    Nonmethane hydrocarbons (NMHCs) are involved in a complex series of reactions that regulate the levels of oxidants in the troposphere. Isoprene (C{sub 5}H{sub 8}), the primary NMHC emitted from deciduous trees, is one of the most important reactive hydrocarbons in the troposphere. The amount of isoprene entering the free troposphere is regulated by the compound's rate of emission from leaves and by chemical and physical processes in the forest canopy and the atmospheric boundary layer (ABL). This study uses a coupled canopy-ABL model to simulate these complex processes and compares calculated isoprene concentration profiles with those measured during aircraft flights above a forested region in the northeastern US. Land use information is coupled with satellite remote sensing data to describe spatial changes in canopy density during the field measurements. The high-resolution transport-chemistry model of Gao et al. (1993) for the ABL and the forest canopy layer is used to simulate vertical changes in isoprene concentration due to turbulent mixing and chemical reactions. The one-dimensional (1-D) ABL model includes detailed radiation transfer, turbulent diffusion, biogenic emissions, dry deposition, and chemical processes within the forest canopy and the ABL. The measured profiles are compared with the model simulations to investigate the biological, physical, and chemical processes that regulate the levels of isoprene within the ABL.

  6. Measurement of OH, H2SO4, MSA, and HNO3 Aboard the P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    2003-01-01

    This paper addresses the measurement of OH, H2SO4, MSA, and HNO3 aboard the P-3B aircraft under the following headings: 1) Performance Report; 2) Highlights of OH, H2SO4, and MSA Measurements Made Aboard the NASA P-3B During TRACE-P; 3) Development and characteristics of an airborne-based instrument used to measure nitric acid during the NASA TRACE-P field experiment.

  7. Comparison of Temperature Measurements in the Middle Atmosphere by Satellite with Profiles Obtained by Meteorological Rockets

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Schmidlin, Francis J.; Feofilov, Artem; Bedrick, M.; Rose, R. Lynn

    2012-01-01

    Measurements using the inflatable falling sphere technique have occasionally been used to obtain temperature results from density data and thereby provide comparison with temperature profiles obtained by satellite sounders in the mesosphere and stratosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within seconds of the nearly overhead satellite pass. Sphere measurements can be used to validate remotely measured temperatures but also have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres available (the manufacture of these systems has been discontinued), it may be time to consider whether the remote measurements are mature enough to stand alone. Three field studies are considered, one in 2003 from Northern Sweden, and two in 2010 from the vicinity of Kwajalein Atoll in the South Pacific and from Barking Sands, Hawaii. All three sites are used to compare temperature retrievals between satellite and in situ falling spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for detailed studies in space and time, compare sufficiently well to be highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less frequently. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to those obtained from the falling sphere, thereby providing a reliable measure of global temperature

  8. Comparison of Temperature Measurements in the Middle Atmosphere by Satellite with Profiles Obtained by Meteorological Rockets

    NASA Astrophysics Data System (ADS)

    Goldberg, R. A.; Schmidlin, F. J.; Feofilov, A. G.; Bedrick, M.; Rose, R. L.

    2012-04-01

    Measurements using the inflatable falling sphere technique have occasionally been used to obtain temperature results from density data and thereby provide comparison with temperature profiles obtained by satellite sounders in the mesosphere and stratosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within seconds of the nearly overhead satellite pass. Sphere measurements can be used to validate remotely measured temperatures but also have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres available (the manufacture of these systems has been discontinued), it may be time to consider whether the remote measurements are mature enough to stand alone. Three field studies are considered, one in 2003 from Northern Sweden, and two in 2010 from the vicinity of Kwajalein Atoll in the South Pacific and from Barking Sands, Hawaii. All three sites are used to compare temperature retrievals between satellite and in situ falling spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for detailed studies in space and time, compare sufficiently well to be highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less frequently. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to those obtained from the falling sphere, thereby providing a reliable measure of global temperature.

  9. Aircraft Dynamic Modeling in Turbulence

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  10. The Interpretation of Saturated Spectra as Obtained from Atmospheric Balloon Measurements.

    NASA Astrophysics Data System (ADS)

    Alexander, P.; de La Torre, A.

    1999-03-01

    Transformations that take into account the characteristics of balloon motion and wave propagation to infer the `real' vertical wavelengths from the `apparent' ones measured during soundings were derived in a first paper. These results are now used to estimate the deviation of the saturated spectra obtained with balloon measurements from the theoretically expected shape. It is found that data stemming from slowly ascending or descending balloons may lead to a significant distortion of spectra.

  11. SIERRA-Flux: measuring regional surface fluxes of carbon dioxide, methane, and water vapor from an unmanned aircraft system

    NASA Astrophysics Data System (ADS)

    Fladeland, M. M.; Yates, E. L.; Bui, T. P.; Dean-Day, J. M.; Kolyer, R.; Schiro, K.; Berthold, R.; Iraci, L. T.; Loewenstein, M.

    2011-12-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the more frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft. In a series of flights in June of 2011, the NASA SIERRA carried a payload consisting of the NASA Ames Meteorological Measurement System (MMS) and a fast response (10Hz) CO2, CH4, and H2O vapor analyzer in order to demonstrate the feasibility of measuring fluxes from unmanned aircraft and to characterize accuracy and precision based upon ground measurements. The flights were conducted in Railroad Valley, NV in order to provide a simple model for understanding biases and uncertainties. This paper describes the system specifications, provides preliminary data compared against coincident ground measurements, and discusses future applications of the system.

  12. Obtaining Heat Stress Measurements. Module 15. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on obtaining heat stress measurements. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming and describing the…

  13. Development of an aircraft based instrument to measure the isotopes of water in the lower stratosphere.

    NASA Astrophysics Data System (ADS)

    Hanisco, T. F.; Kroll, J. H.; Anderson, J. G.

    2002-12-01

    The relative abundance of the hydrogen isotopes of water, H2O and HDO, is a sensitive indicator of the condensation history of an airmass in the upper troposphere and lower stratosphere. We have developed a technique that has the sensitivity to measure the relative abundance of H2O and HDO in situ aboard an aircraft flying in the upper troposphere and lower stratosphere. The instrument combines a new water photolysis system with our pre-existing instrument for laser induced fluorescence detection of OH. Water is photolyzed with an excimer lamp source at 172 nm, producing ground state OH and OD radicals. The radicals are detected with state selective laser induced fluorescence at 287 nm. The experiment has two unique characteristics. The first is the high sensitivity afforded by laser induced fluorescence detection. At stratospheric mixing ratios of H2O (4 ppm at 50 mbar), the relative abundance of H2O and HDO can be measured with a S/N > 12 in a 16 s acquisition cycle. The second is a reduction in the exchange of water isotopes on surfaces within the instrument: the OH and OD radicals are removed with near unity efficiency after collisions with walls in the system and are not detected.

  14. Aircraft measurements of the stable carbon isotopic ratio of atmospheric methane over Siberia

    NASA Astrophysics Data System (ADS)

    Sugawara, Satoshi; Nakazawa, Takakiyo; Inoue, Gen; Machida, Toshinobu; Mukai, Hitoshi; Vinnichenko, Nikolay K.; Khattatov, Vyachaslav U.

    1996-06-01

    Air samples collected using aircraft during the Siberian Terrestrial Ecosystem-Atmosphere-Cryosphere Experiments (STEACE) in the summer of 1993 and 1994 were analyzed for the carbon isotopic ratio, δ13C, of atmospheric CH4 as well as for the CH4 concentration. The CH4 concentrations and δ13C values observed in the lower troposphere over wetlands in the West Siberian Lowland varied considerably, showing a clear negative correlation between the two components. From the relationships between measured values of the CH4 concentration and δ13C, values of δ13C of CH4 released from wetlands into the atmosphere were estimated to be -75 to -67‰. The results observed over oil wells and pipelines showed isotopic evidence for leakage of natural gas. Mean values of δ13C measured in the middle and upper troposphere over Siberia in the summer season were -47.9±0.3 and -47.8±0.2‰ for 1993 and 1994, respectively, which are quite similar to each other.

  15. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  16. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2014-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  17. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-09-01

    Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

  18. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-03-01

    Terrestrial CO2 flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the BEPS model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced. CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements have improved the inversion results.

  19. Comparison of in-situ, aircraft, and satellite based land surface temperature measurements

    NASA Astrophysics Data System (ADS)

    Baker, B.; Krishna, P.; Meyers, T. P.

    2013-12-01

    and surface temperature (LST) is a key variable used in surface energy budget studies, and in near-real time is assimilated into land surface models for short and medium range forecasts. Observations of LST over multiple years are also critical for climate trend assessment. However, accurate in-situ measurements of LST over continents are not yet available for the whole globe and are not routinely conducted at weather stations. Recently an effort has been underway to validate LST sensed remotely from satellites to the actual measured skin temperature using data from the United States Climate Reference Network (USCRN). The goal of this work is to quantify the spatial variability and the representativeness of the single-point skin temperature measurement already being made at USCRN sites. NOAA/ATDD is collaborating with the University of Tennessee Space Institute's (UTSI) Aviation Systems and Flight Research Department in Tullahoma, TN to utilize an instrumented aircraft to perform measurements of Earth's skin temperature over selected USCRN sites in the continental U.S. Airborne remote sensing is a powerful tool to assess the spatial variability of LST over a location with sufficient sampling density and has the operational flexibility depending on the study requirements. We will present the results from airborne campaigns made concurrently with satellite overpasses over a grassland site and a deciduous forest site, compare the relationship of surface temperature to air temperature at a number of CRN sites and show results of an intercomparison between the JPL reference skin temperature measurement and the CRN sensor.

  20. The 1981 direct strike lightning data. [utilizing the F-106 aircraft

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Thomas, M. E.

    1982-01-01

    Data waveforms obtained during the 1981 direct strike lightning tests, utilizing the NASA F-106B aircraft specially instrumented for lightning electromagnetic measurements are presented. The aircraft was operated in a thunderstorm environment to elicit strikes. Electromagnetic field data were recorded for both attached lightning and free field excitation of the aircraft.

  1. PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study

    NASA Astrophysics Data System (ADS)

    Lobo, Prem; Hagen, Donald E.; Whitefield, Philip D.; Raper, David

    2015-03-01

    This paper describes the results of the physical characterization of aircraft engine PM emission measurements conducted during the Delta-Atlanta Hartsfield Study at the Hartsfield-Jackson Atlanta International Airport. Engine exit plane PM emissions were sampled from on-wing engines on several in-service commercial transport aircraft from the fleet of Delta Airlines. The size distributions were lognormal in nature with a single mode. The geometric mean diameter was found to increase with increasing engine thrust, ranging from 15 nm at idle to 40 nm at takeoff. PM number- and mass-based emission indices were observed to be higher at the idle conditions (4% and 7%), lowest at 15%-30% thrust, and then increase with increasing thrust. Emissions measurements were also conducted during an advected plume study where over 300 exhaust plumes generated by a broad mix of commercial transports were sampled 100-350 m downwind from aircraft operational runways during normal airport operations. The range of values measured at take-off for the different engine types in terms of PM number-based emission index was between 7 × 1015-9 × 1017 particles/kg fuel burned, and that for PM mass-based emission index was 0.1-0.6 g/kg fuel burned. PM characteristics of aircraft engine specific exhaust were found to evolve over time as the exhaust plume expands, dilutes with ambient air, and cools. The data from these measurements will enhance the emissions inventory development for a subset of engines operating in the commercial fleet and improve/validate current environmental impact predictive tools with real world aircraft engine specific PM emissions inputs.

  2. Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: Implications for the sulfuric acid formation efficiency

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Arnold, F.; Schulte, P.

    2002-04-01

    Sulfuric acid concentrations were measured in the exhaust plume of a B737-300 aircraft in flight. The measurements were made onboard of the German research aircraft Falcon using the Volatile Aerosol Component Analyzer (VACA). The VACA measures total H2SO4, which is the sum of gaseous H2SO4 and aerosol H2SO4. Measurements took place at distances of 25-200 m behind the B737 corresponding to plume ages of about 0.1-1 seconds. The fuel sulfur content (FSC) of the fuel burned by the B737 engines was alternatively 2.6 and 56 mg sulfur per kilogram fuel (ppmm). H2SO4 concentrations measured in the plume for the 56 ppmm sulfur case were up to ~600 pptv. The average concentration of H2SO4 measured in the ambient atmosphere outside the aircraft plume was 88 pptv, the maximum ambient atmospheric H2SO4 was ~300 pptv. Average efficiencies ɛΔCO2 = 3.3 +/- 1.8% and ɛΔT = 2.9 +/- 1.6% for fuel sulfur conversion to sulfuric acid were inferred when relating the H2SO4 data to measurements of the plume tracers ΔCO2 and ΔT.

  3. 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar Mie scattering measurements.

    PubMed

    Xu, Wenjiang; Wickersham, A J; Wu, Yue; He, Fan; Ma, Lin

    2015-03-20

    This work reports the measurements of 3D flame topography using tomographic chemiluminescence and its validation by direct comparison against planar Mie scattering measurements. Tomographic measurements of the 3D topography of various well-controlled laboratory flames were performed using projections measured by seven cameras, and a simultaneous Mie scattering measurement was performed to measure a 2D cross section of the 3D flame topography. The tomographic measurements were based on chemiluminescence emissions from the flame, and the Mie scattering measurements were based on micrometer-size oil droplets seeded into the flow. The flame topography derived from the 3D tomographic and the Mie scattering measurement was then directly compared. The results show that the flame topography obtained from tomographic chemiluminescence and the Mie measurement agreed qualitatively (i.e., both methods yielded the same profile of the flame fronts), but a quantitative difference on the order of millimeters was observed between these two methods. These results are expected to be useful for understanding the capabilities and limitations of the 3D tomographic and Mie scattering techniques in combustion diagnostics. PMID:25968497

  4. Aircraft Measurements of Aerosol Partitioning and Aging during EUCAARI-LONGREX

    NASA Astrophysics Data System (ADS)

    Morgan, W. T.; Allan, J. D.; Bower, K. N.; Coe, H.; Highwood, E. J.; McMeeking, G. R.; Northway, M. J.; Osborne, S. R.; Trembath, J.; Williams, P. I.

    2009-04-01

    The chemical composition of the atmospheric aerosol burden has significant implications for its climate impacts. Specifically, it determines the scattering or absorbing nature of the aerosol and its affinity for water uptake. Measurements of aerosol chemical composition are presented here from the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft from May 2008. The BAe-146 operated out of Oberpfaffenhofen, Germany during the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI) LONG Range EXperiment (LONGREX). A primary goal of the study was to examine the effects of atmospheric aging on aerosol chemical, physical and optical properties. Science flights were conducted across Northern Europe, during a period of anticyclonic circulation in clear sky conditions. The aircraft employs a suite of aerosol instruments, which measure the chemical composition, microphysical, optical and hygroscopic properties of the in-situ aerosol population. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS) measured the mass of volatile and semi-volatile particulate chemical constituents, as a function of size. These components included organic matter, nitrate, sulphate and ammonium. The spatial distribution and chemical evolution of these components will be presented. The chemical nature of the organic aerosol component is examined via Positive Matrix Factorisation (PMF). The factor analysis of the organic aerosol component revealed the dominance of Oxygenated Organic Aerosol (OOA) over Hydrocarbon-like Organic Aerosol (HOA). OOA is analogous to Secondary Organic Aerosol (SOA), whilst HOA is strongly associated with Primary Organic Aerosol (POA) derived from fossil fuel combustion. Two components were commonly resolved for the OOA component; an aged, more oxidised factor (reflecting the regional organic aerosol background) and a fresher (less aged) component, which exhibited less oxidation than the

  5. Measurement of OH, H2SO4, MSA, NH3 and DMSO Aboard the NASA P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, Fred

    2001-01-01

    This project involved the installation of a downsized multichannel mass spectrometer instrument on the NASA P-3B aircraft and its subsequent use on the PEM-Tropics B mission. The new instrument performed well, measuring a number of difficult-to-measure compounds and providing much new photochemical and sulfur data as well as possibly uncovering a new nighttime DMSO source. The details of this effort are discussed.

  6. Aircraft-based measurements for the identification and quantification of sources and sinks in the carbon cycle

    NASA Astrophysics Data System (ADS)

    Caulton, Dana R.

    Improved quantification of carbon-cycle sources and sinks is an important requirement for determining mitigation strategies and modeling future climate interactions. Analytically robust measurements require high-precision instrumentation and thoughtful experimental design to produce rigorous and reproducible results despite complex and quickly changing meteorological and environmental conditions. Here, an aircraft platform equipped with a high-precision cavity ring-down spectrometer for CO2, CH4 and H2O quantification was used to acquire data from previously un-sampled sources. The aircraft mass-balance technique was used to quantify CH4 emissions from natural gas well pads in the drilling stage, which were 2-3 orders of magnitude higher than previous estimates of emissions from this stage. In addition, the first in-situ flare emission data was collected for natural gas flares in North Dakota, Pennsylvania and Texas. Flare efficiency was high for most flares, higher than assumed efficiency. However, a few flares sampled with lower efficiencies closer to the assumed flare efficiency suggest the need for characterization of operational conditions specific to operators and basins. Finally, eddy-covariance O2 and heat fluxes were measured over three east-coast forests at sites close to and far from surface eddy-covariance towers. Tower data is often used in models to represent a larger heterogeneous region. Aircraft and tower O2 and sensible heat flux agreed well, indicating that for these sites, tower data is a good approximation of the larger region, though significant variability was observed. Aircraft latent heat fluxes were routinely much larger that tower fluxes, most likely due to the influence of advection which is measured by the aircraft eddy-covariance technique, but not by towers.

  7. Comparison of in-situ, aircraft, and satellite based land surface temperature measurements over a mixed agricultural region

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Baker, B.; Kochendorfer, J.; Dumas, E.; Meyers, T. P.; Guillevic, P. C.; Corda, S.; Muratore, J. F.; Simmons, D.

    2013-12-01

    Land surface temperature (LST) is a key variable in the study of the exchange of energy and water between the land surface and the atmosphere, and it influences land surface physical processes at regional and global scales. With the objective of quantifying the spatial variability and overall representativeness of single-point surface temperature measurements and to improve the accuracy of satellite LST measurements, airborne campaigns were conducted over a mixed agricultural area near Bondville, Illinois during 2012 and 2013. During the campaigns, multiple measurements of surface temperature were made using infra-red temperature sensors at micrometeorological tower sites, which include NOAA's Climate Reference Network (CRN) and nearby flux tower sites, and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, daily LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite-based LST measurements were compared with the in situ, tower-based LST measurements. Observations indicate large spatial and temporal variability of land surface temperature over the Bondville area. Our results show good agreement between in situ, aircraft and satellite measurements. The agreement was better with the LST data from the flux tower than those from CRN tower.

  8. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    NASA Astrophysics Data System (ADS)

    Clerc, F.; Njiki-Menga, G.-H.; Witschger, O.

    2013-04-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  9. Comparison of methane emissions from wetlands measured from aircraft and towers

    NASA Astrophysics Data System (ADS)

    Conley, S. A.; Faloona, I. C.; Drexler, J. Z.; Anderson, F. E.; Baldocchi, D. D.; Sturtevant, C. S.; Verfaillie, J. G.; Knox, S. H.

    2013-12-01

    The ability to estimate surface fluxes from light, fixed-wing aircraft is investigated during two flights over Twitchell Island, a heavily managed peatland dominated by irrigated crops approximately 6 km x 3 km in the Sacramento Delta. Flux towers provide a continuous measurement at a single point, while airborne fluxes provide a snapshot of a large area at a given time. The ability to integrate the two methods would provide a means to estimate a continuous regional flux from tower measurements. The single engine airplane (Mooney TLS), provided by Scientific Aviation, was flown around the island while concurrent flux measurements (latent & sensible heat, CO2, CH4) were being made from 4 m towers at two locations on the surface. The flux estimate made with the airplane uses horizontal mean wind measured in real-time from the airplane and the methane mixing ratio measured onboard with a Picarro f2301 analyzer. During the flights there was clear periodicity in all scalars measured coincident with the flight time required to circle the island (~6 minutes), indicating a connection between the surface and the observed signal in the airplane. For methane, higher mixing ratios were observed on the downwind side of the island. An internal boundary layer was observed, which we believe resulted from the Montezuma Hills wind farms upwind of Twitchell Island. Scalars were well-mixed throughout the depth of that internal boundary layer (~500m), which is shown to be consistent with a theoretical estimate of the internal boundary layer given the transition from the wind farm to the island vegetation. Surface emissions were estimated using a mass-balance approach where each of the terms in the scalar budget equation are estimated using a least squares minimization of the data while the airplane was within 10 km of the center of the island and the altitude was below 300 meters. Surface emission of methane during the first flight was estimated at 36 × 13 nmol m-2 s-1. During the

  10. Verification of FLYSAFE Clear Air Turbulence (CAT) objects against aircraft turbulence measurements

    NASA Astrophysics Data System (ADS)

    Lunnon, R.; Gill, P.; Reid, L.; Mirza, A.

    2009-09-01

    Prediction of gridded CAT fields The main causes of CAT are (a) Vertical wind shear - low Richardson Number (b) Mountain waves (c) Convection. All three causes contribute roughly equally to CAT occurrences, globally Prediction of shear induced CAT The predictions of shear induced CAT has a longer history than either mountain-wave induced CAT or convectively induced CAT. Both Global Aviation Forecasting Centres are currently using the Ellrod TI1 algorithm (Ellrod and Knapp, 1992). This predictor is the scalar product of deformation [akm1]and vertical wind shear. More sophisticated algorithms can amplify errors in non-linear, differentiated quantities so it is very likely that Ellrod will out-perform other algorithms when verified globally. Prediction of mountain wave CAT The Global Aviation Forecasting Centre in the UK has been generating automated forecasts of mountain wave CAT since the late 1990s, based on the diagnosis of gravity wave drag. Generation of CAT objects In the FLYSAFE project it was decided at an early stage that short range forecasts of meteorological hazards, i.e. icing, Clear Air Turbulence, Cumulonimbus Clouds, should be represented as weather objects, that is, descriptions of individual hazardous volumes of airspace. For CAT, the forecast information on which the weather objects were based was gridded, that comprised a representation of a hazard level for all points in a pre-defined 3-D grid, for a range of forecast times. A "grid-to-objects" capability was generated. This is discussed further in Mirza and Drouin (this conference). Verification of CAT forecasts Verification was performed using digital accelerometer data from aircraft in the British Airways Boeing 747 fleet. A preliminary processing of the aircraft data were performed to generate a truth field on a scale similar to that used to provide gridded forecasts to airlines. This truth field was binary, i.e. each flight segment was characterised as being either "turbulent" or "benign". A

  11. Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Daniel; Woodley, William L.; Axisa, Duncan; Freud, Eyal; Hudson, James G.; Givati, Amir

    2008-08-01

    Recent publications suggest that anthropogenic aerosols suppress orographic precipitation in California and elsewhere. A field campaign (SUPRECIP: Suppression of Precipitation) was conducted to investigate this hypothesized aerosol effect. The campaign consisted of in situ aircraft measurements of the polluting aerosols, the composition of the clouds ingesting them, and the way the precipitation-forming processes are affected. SUPRECIP was conducted during February and March of 2005 and February and March of 2006. The flights documented the aerosols and orographic clouds flowing into the central Sierra Nevada from the upwind densely populated industrialized/urbanized areas and contrasted them with the aerosols and clouds downwind of the sparsely populated areas in the northern Sierra Nevada. SUPRECIP found that the aerosols transported from the coastal regions are augmented greatly by local sources in the Central Valley resulting in high concentrations of aerosols in the eastern parts of the Central Valley and the Sierra foothills. This pattern is consistent with the detected patterns of suppressed orographic precipitation, occurring primarily in the southern and central Sierra Nevada, but not in the north. The precipitation suppression occurs mainly in the orographic clouds that are triggered from the boundary layer over the foothills and propagate over the mountains. The elevated orographic clouds that form at the crest are minimally affected. The clouds are affected mainly during the second half of the day and the subsequent evening, when solar heating mixes the boundary layer up to cloud bases. Local, yet unidentified nonurban sources are suspected to play a major role.

  12. Aircraft measurements of trace gases between Japan and Singapore in October of 1993, 1996, and 1997

    NASA Astrophysics Data System (ADS)

    Matsueda, Hidekazu; Inoue, Hisayuki Y.

    Carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) mixing ratios were measured in discrete air samples from aircraft between Japan and Singapore in October. The mixing ratios of all trace gases at 9-12 km were enhanced over the South China Sea in 1997 compared with those in 1993 and 1996. Vertical distributions of all trace gases over Singapore in 1997 also showed largely elevated mixing ratios at all altitudes. These distributions indicate a wide outflow of trace gases from intense biomass burning in the southeast Asia regions in the very strong El Niño year. The enhanced trace gases showed a strong linear correlation between CH4 and CO, and between CO and CO2, with the regression slopes of 0.051 (ΔCH4 ppb/ΔCOppb) and 0.089 (ΔCOppb/ΔCO2ppb). The emission ratios are characteristic of fires with relatively lower combustion efficiency from the tropical rain forest and peat lands in Kalimantan and Sumatra of Indonesia.

  13. An overview of reactive chlorine measurements during the WINTER C-130 aircraft campaign

    NASA Astrophysics Data System (ADS)

    Thornton, J. A.; Lopez-Hilfiker, F.; Lee, B. H.; Jaegle, L.; Haskins, J.; Shah, V.; Brown, S. S.; Fibiger, D. L.; McDuffie, E. E.; Veres, P. R.; Dibb, J. E.; Sparks, T.; Ebben, C. J.; Cohen, R. C.; Sullivan, A.; Guo, H.; Weber, R. J.; Schroder, J. C.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Campos, T. L.; Weinheimer, A. J.; Apel, E. C.; Blake, N. J.

    2015-12-01

    As part of the Wintertime Investigation of Transport, Emissions, and Reactivity (WINTER) campaign, the University of Washington Iodide-adduct high resolution time of flight chemical ionization mass spectrometer (HRToF-CIMS) was deployed aboard the NSF/NCAR C-130 aircraft. Calibrated measurements of ClNO2, Cl2, HCl, N2O5, HNO3, HONO, among several other compounds, were made at 2Hz on all 13 research flights. ClNO2 and HCl were often the dominant forms of reactive gas-phase chlorine compounds, with ClNO2 routinely reaching >1.5 ppb in the polluted outflow of the eastern U.S. urban corridor. ClNO2 often becomes a substantial fraction (~30%) of NOz (NOz = NOy - NOx) in these plumes at night. Preliminary analyses suggests that ClNO2 production is most efficient in the polluted marine boundary layer, with yields approaching unity and the evolution of nighttime ClNO2 highly correlated with that of HNO3 and particulate nitrate. However, ClNO2 production was observed throughout the region and a significant source of reactive chlorine from coal-fired power plants was directly confirmed with measurements of HCl strongly correlated with SO2. In addition, there is some evidence that biomass or biofuel combustion is a source of reactive chlorine that can lead to ClNO2 production. Examples of the nocturnal and diel evolution of reactive chlorine species are given, and we show to our knowledge the first measurements of chlorine nitrate (ClONO2) in the polluted mid-latitude marine boundary layer.

  14. Evaluating and Constraining Ice Cloud Parameterizations in CAM5 using Aircraft Measurements from the SPARTICUS Campaign

    SciTech Connect

    Zhang, Kai; Liu, Xiaohong; Wang, Minghuai; Comstock, Jennifer M.; Mitchell, David; Mishra, Subhashree; Mace, Gerald G.

    2013-05-14

    This study uses aircraft measurements of relative humidity and ice crystal size distribution collected in synoptic cirrus during the SPARTICUS (Small PARTicles In CirrUS) field campaign to evaluate and constrain ice cloud parameterizations in the Community Atmosphere Model version 5. The probability density function (PDF) of ice crystal number concentration (Ni) derived from high frequency (1 Hz) measurements features a strong dependence on ambient temperature. As temperature decreases from -35°C to -62°C, the peak in the PDF shifts from 10-20 L-1 to 200-1000 L-1, while the ice crystal number concentration shows a factor of 6-7 increase. Model simulations are performed with two different insitu ice nucleation schemes. One of the schemes can reproduce a clear increase of Ni with decreasing temperature, by using either an observation based ice nuclei spectrum or a classical theory based spectrum with a relatively low (5%-10%) maximum freezing ratio for dust aerosols. The simulation with the other scheme, which assumes a high maximum freezing ratio (100%), shows much weaker temperature dependence of Ni. Simulations are also performed to test empirical parameters related to water vapor deposition and the auto-conversion of ice crystals to snow. Results show that a value between 0.05 and 0.1 for the water vapor deposition coefficient and 250 um for the critical ice crystal size can produce good agreements between model simulation and the SPARTICUS measurements in terms of ice crystal number concentration and effective radius. The climate impact of perturbing these parameters is also discussed.

  15. The effect of the duration of jet aircraft flyover sounds on judged annoyance. [noise predictions and noise measurements of jet aircrafts and human reactions to the noise intensity

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.

    1979-01-01

    The effect of the duration of jet aircraft flyover sounds on humans and the annoyance factor are examined. A nine point numerical category scaling technique is utilized for the study. Changes in the spectral characteristics of aircraft sounds caused by atmospheric attenuation are discussed. The effect of Doppler shifts using aircraft noises with minimal pure tone content is reported. The spectral content of sounds independent of duration and Doppler shift are examined by analysis of variance.

  16. An aircraft instrument design for in situ tropospheric OH measurements by laser induced fluorescence at low pressures

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Stevens, Philip S.; Mather, James H.

    1993-01-01

    The hydroxyl radical (OH) is important for many processes involved in tropospheric chemistry. For instance, it initiates the photochemical degradation of gases that cause global climate change, such as methane and the chlorofluorocarbon substitutes (HCFCs). Because of its reactivity, its abundances are less than 0.1 pptv. Thus, OH has been very difficult to measure accurately, despite its importance. Techniques have evolved, however, so that good measurements of tropospheric OH abundances are now possible. One of these techniques that is adaptable to aircraft measurements is the laser induced fluorescence detection of the OH radical in a detection chamber at low pressures. The current ground-based instrument, which can be readily adapted to aircraft, can detect OH abundances of 1.4 x 10 exp 5 OH molecules/cu cm with S/N = 2 in 30 sec, and 5 x 10 exp 4/cu cm in 5 min.

  17. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    NASA Astrophysics Data System (ADS)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  18. Description of a pressure measurement technique for obtaining surface static pressures of a radial turbine

    NASA Astrophysics Data System (ADS)

    Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet

    1992-07-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  19. Description of a pressure measurement technique for obtaining surface static pressures of a radial turbine

    NASA Astrophysics Data System (ADS)

    Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet

    1992-02-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  20. Description of a Pressure Measurement Technique for Obtaining Surface Static Pressures of a Radial Turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet

    1992-01-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  1. Description of a pressure measurement technique for obtaining surface static pressures of a radial turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet

    1992-01-01

    The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.

  2. Recent progress towards predicting aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed.

  3. Development of hybrid particle tracking algorithms and their applications in airflow measurement within an aircraft cabin mock-up

    NASA Astrophysics Data System (ADS)

    Yan, Wei

    Obtaining reliable experimental airflow data within an indoor environment is a challenging task and critical in studying and solving indoor air quality problems. The Hybrid Particle Tracking Velocimetry (HPTV) system is aimed at fulfilling this need. It was developed based on existing Particle Tracking Velocimety (PTV) and Volumetric Particle Tracking Velocimetry (VPTV) techniques. The HPTV system requires three charge-coupled device (CCD) cameras to view the illuminated flow field and capture the trajectories of the seeded particles. By adopting the hybrid spatial matching and object tracking algorithms, this system can acquire the 3-Dimensional velocity components within a large volume with relatively high spatial and temporal resolution. Synthetic images were employed to validate the performance of three components of the system: image processing, camera calibration and 3D velocity reconstruction. These three components are also the main error sources. The accuracy of the whole algorithm was analyzed and discussed through a back projection approach. The results showed that the algorithms performed effectively and accurately. The reconstructed 3D trajectories and streaks agreed well with the simulated streamline of the particles. As an overall testing and application of the system, HPTV was applied to measure the airflow pattern within a full-scale, five-row section of a Boeing 767-300 aircraft cabin mockup. A complete experimental procedure was developed and strictly followed throughout the experiment. Both global flow field at the whole cabin scale and the local flow field at the breathing zone of one passenger were studied. Each test case was also simulated numerically using a commercial computational fluid dynamic (CFD) package. Through comparison between the results from the numerical simulation and the experimental measurement, the potential model validation capability of the system was demonstrated. Possible reasons explaining the difference between

  4. A Remotely Piloted Aircraft (RPA) as a Measurement Tool for Wind-Energy Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Bange, Jens

    2014-05-01

    In wind energy meteorology, RPA have the clear advantage compared to manned aircraft that they allow to fly very close to the ground and even in between individual wind turbines in a wind farm. Compared to meteorological towers and lidar systems, the advantage is the flexibility of the system, which makes it possible to measure at the desired site on short notice and not only in main wind direction. At the Center of Applied Geoscience at the University of Tübingen, the research RPA MASC (Multi-purpose Airborne Sensor Carrier) was developed. RPA of type MASC have a wingspan of about 3 m and a maximum take-off weight of 7.5 kg, including payload. The standard meteorological payload includes instruments for temperature, humidity, barometric pressure and wind measurement. It is possible to resolve turbulence fluctuations of wind and temperature up to 20 Hz. The autopilot ROCS (Research Onboard Computer System), which is developed at the Institute of Flight Mechanics and Control, University of Stuttgart, makes it possible to automatically follow predefined waypoints at constant altitude and airspeed. At a cruising speed of 24 m/s and a battery life of approx. one hour, a range of 80 km is feasible. The project 'Lidar Complex', funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, is part of the research network 'WindForS', based in Southern Germany. The goal of the project is to establish lidar technology for wind energy plant site evaluation in complex terrain. Additional goals are the comparison of different measurement techniques and the validation of wind-field models in not IEC 61400 conform terrain. It is planned to design a turbulent wind-field generator, fed by real measurement data, which can be used to analyse WEC behaviour. Two test sites were defined for the 'Lidar Complex' project, one in IEC-conform terrain about 15 km from the Baltic Sea, the other in the Swabian Alb, only 2 km downstream of a 100 m steep

  5. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  6. Physical Processes Governing Atmospheric Trace Constituents Measured from an Aircraft on PEM-Tropics

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.; Hoell, James M., Jr. (Technical Monitor)

    2001-01-01

    Before the mission, the PI (principal investigator) was instrumental in securing real-time use of the new 51-level ECMWF (European Centre for Medium Range Weather Forecasts) meteorological data. During the mission, he provided flight planning and execution guidance as meteorologist for the P-3B. Mr. Yong Zhu computed and plotted meteorological forecast maps using the ECMWF data and transmitted them to the field from MIT (Massachusetts Institute of Technology). Dr. John Cho was in the field for the Christmas Island portion to extract data from the on-site NOAA (National Oceanic and Atmospheric Administration) radars for local wind profiles that were used at the flight planning meetings. When the power supply for the VHF radar failed, he assisted the NOAA engineer in its repair. After the mission, Mr. Zhu produced meteorological data memos, which were made available to the PEM (Pacific Exploratory Mission)-Tropics B science team on request. An undergraduate student, Ms. Danielle Morse, wrote memos annotating the cloud conditions seen on the aircraft external monitor video tapes. Dr. Cho and the PI circulated a memo regarding the status (and associated problems) of the meteorological measurement systems on the DC-8 and P-3B to the relevant people on the science team. Several papers by members of our project were completed and accepted by JGR (Journal of Geophysical Research) for the first special section on PEM-Tropics B. These papers included coverage of the following topics: 1) examination of boundary layer data; 2) water vapor transport; 3) tropospheric trace constituent layers; 4) summarizations of the meteorological background and events during PEM-Tropics B; 5) concomitant lidar measurements of ozone, water vapor, and aerosol.

  7. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max

  8. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  9. A comparison of systolic blood pressure measurement obtained using a pulse oximeter, and direct systolic pressure measurement in anesthetized sows.

    PubMed Central

    Caulkett, N A; Duke, T; Bailey, J V

    1994-01-01

    Systolic blood pressure measurement obtained with a pulse oximeter has been compared to values obtained by other indirect methods in man. Direct pressure measurement is subject to less error than indirect techniques. This study was designed to compare systolic pressure values obtained using a pulse oximeter, with values obtained by direct arterial pressure measurement. The pulse oximeter waveform was used as an indication of perfusion. A blood pressure cuff was applied proximal to the pulse oximeter probe. The cuff was inflated until the oximeter waveform disappeared, this value was recorded as the systolic pressure at the disappearance of the waveform (SPD). The cuff was inflated to a pressure > 200 mmHg, then gradually deflated until the waveform reappeared, this value was recorded as the systolic pressure at reappearance of the waveform (SPR). The average of the two values, SPD and SPR, was calculated and recorded as SPA. The study was performed in sows (n = 21) undergoing cesarean section under epidural anesthesia and IV sedation. A total of 280 measurements were made of SPD, SPR and SPA. Regression analysis of SPA and direct measurement revealed a correlation coefficient (r) of 0.81. Calculation of mean difference (bias) and standard deviation of the bias (precision) for direct pressure--SPA revealed a value of 1.3 +/- 12.1. When compared with direct measurement, the correlation of this technique was similar to that recorded for other indirect techniques used in small animals. This indicates that this technique would be useful for following systolic pressure trends.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004540

  10. Comparison of ozone profiles obtained with NIES DIAL and SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Nakane, Hideaki; Sasano, Yasuhiro; Hayashida-Amano, Sachiko; Sugimoto, Nobuo; Matsui, Ichiro; Minato, Atsushi; Mccormick, M. P.

    1993-01-01

    Ozone profiles obtained with the Differential Absorption Lidar (DIAL) system at the National Institute for Environmental Studies (NIES) (Tsukuba, Japan) were compared with data provided by the satellite sensor SAGE II. The SAGE II data were selected based on criteria of spatial and temporal differences between the DIAL and the SAGE II measurements: five degrees in latitude and 15 degrees in longitude, within a latitudinal band from 31 deg to 41 deg N, and within one, three and five days after or before the DIAL measurements. Results show very good agreement for the individual and the zonal-mean profiles. The average mean difference between the DIAL and the SAGE II measurements over the altitudes 15-50 km was about 10 percent.

  11. Comparison of precipitable water vapor measurements obtained by microwave radiometry and radiosondes at the Southern Great ...

    SciTech Connect

    Lesht, B.M.; Liljegren, J.C.

    1996-12-31

    Comparisons between the precipitable water vapor (PWV) estimated by passive microwave radiometers (MWRs) and that obtained by integrating the vertical profile of water vapor density measured by radiosondes (BBSS) have generally shown good agreement. These comparisons, however, have usually been done over rather short time periods and consequently within limited ranges of total PWV and with limited numbers of radiosondes. We have been making regular comparisons between MWR and BBSS estimates of PWV at the Southern Great Plains Cloud and Radiation Testbed (SGP/CART) site since late 1992 as part of an ongoing quality measurement experiment (QME). This suite of comparisons spans three annual cycles and a relatively wide range of total PWV amounts. Our findings show that although for the most part the agreement is excellent, differences between the two measurements occur. These differences may be related to the MWR retrieval of PWV and to calibration variations between radiosonde batches.

  12. Atmospheric Aerosol Sampling with Unmanned Aircraft Systems (UAS) in Alaska: Instrument Development, Payload Integration, and Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Barberie, S. R.; Saiet, E., II; Hatfield, M. C.; Cahill, C. F.

    2014-12-01

    Atmospheric aerosols remain one of biggest variables in understanding global climate. The number of feedback loops involved in aerosol processes lead to nonlinear behavior at the systems level, making confident modeling and prediction difficult. It is therefore important to ground-truth and supplement modeling efforts with rigorous empirical measurements. To this end, the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) at the University of Alaska Fairbanks has developed a new cascade DRUM-style impactor to be mounted aboard a variety of unmanned aircraft and work in tandem with an optical particle counter for the routine collection of atmospheric aerosols. These UAS-based aerosol samplers will be employed for measurement campaigns in traditionally hazardous conditions such as volcanic plumes and over forest fires. Here we report on the development and laboratory calibration of the new instrument, the integration with UAS, and the vertical profiling campaigns being undertaken.

  13. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; Pittman, J.; Atlas, E.; Kim, J.

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  14. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  15. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  16. Agreement of anti-neutrophil cytoplasmic antibody measurements obtained from serum and plasma

    PubMed Central

    Lee, A S; Finkielman, J D; Peikert, T; Hummel, A M; Viss, M A; Jacob, G L; Homburger, H A; Specks, U

    2006-01-01

    Serum and plasma are used interchangeably to measure anti-neutrophil cytoplasmic antibodies (ANCA), even though the release of ANCA target antigens during the preparation of serum could affect ANCA assays and cause discrepancies between the results obtained from serum and plasma. To what extent ANCA test results obtained from serum agree and correlate with results from plasma remains unknown. Therefore, a comprehensive comparison was performed using serum and plasma samples which were collected in 175 patients with active Wegener's granulomatosis at enrolment of a recent randomized trial. These paired serum and plasma samples were subjected to parallel ANCA testing by standard indirect immunofluoresence on ethanol-fixed neutrophils, a direct enzyme-linked immunoassay (ELISA) for proteinase 3 (PR3)-ANCA and myeloperoxidase (MPO)-ANCA, and two different capture ELISAs for PR3-ANCA. The concordance of categorical serum and plasma ANCA results was assessed using κ-coefficients. These were > 0·8 for all assays, indicating a very good concordance between positive and negative serum and plasma results. Spearman's correlation coefficients for serum and plasma PR3-ANCA values obtained by direct ELISA and both capture ELISAs were ≥ 0·95 (P < 0·0001). Our study shows that serum and plasma samples can be used interchangeably for measuring ANCA. PMID:16968393

  17. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Hunter, J. F.; Carrasquillo, A. J.; Franklin, J. P.; Herndon, S. C.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Kroll, J. H.

    2013-03-01

    A detailed understanding of the climate and air quality impacts of aviation requires detailed measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground, 143 m downwind of the engines and characterized as a function of engine power from ground idle (~4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine-idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10-20% of the total organic gas phase emissions at idle, and an increasing fraction of the total gas phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.

  18. A lidar instrument to measure H2O and aerosol profiles from the NASA ER-2 aircraft

    NASA Technical Reports Server (NTRS)

    Vaughan, W. R.; Browell, E. V.; Hall, W. M.; Averill, R. D.; Wells, J. G.; Hinton, D. E.; Goad, J. H.; Degnan, J. J.

    1986-01-01

    Plans to develop the Lidar Atmospheric Sensing Experiment (LASE) instrument to conduct scientific experiments aboard a NASA U-2 (ER-2) aircraft are described. The LASE measurement objectives are listed, and the design of the LASE instrument is discussed, including performance criteria for the laser transmitter, wavemeter, telescope, optical receiver, and associated electronics. The instrument function is depicted with a block diagram, and layouts of various components are presented.

  19. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Hunter, J. F.; Carrasquillo, A. J.; Franklin, J. P.; Herndon, S. C.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Kroll, J. H.

    2013-08-01

    A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10-20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.

  20. Ozone Contamination in Aircraft Cabins. Appendix B: Overview papers. In-flight measurements

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1979-01-01

    The NASA Global Atmospheric Sampling Program ozone measurements were obtained to establish to characteristics of the ambient ozone concentration during routine operations and to determine the attenuation of ambient concentrations of cabin air systems from simultaneous ambient and in cabin measurements. The characteristics of ambient ozone include: (1) maximum concentration; (2) duration of ozone encounters; (3) frequency of ozone during a flight; (4) variability of ozone during a flight; (5) in relation to routes, altitude, and meteorological conditions.

  1. Studies of thunderstorm transport processes with aircraft using tracer techniques

    SciTech Connect

    Detwiler, A.G.; Smith, P.L.; Stith, J.L.

    1996-10-01

    Instrumented aircraft can provide in situ measurements of winds and turbulence useful for studying transport and dispersion in clouds. Using inert artificial gases as tracers, and fast response analyzers on aircraft, time-resolved observations of transport and dispersion have been obtained. Examples are shown of these types of observations in and around cumulus and cumulonimbus clouds. 23 refs., 6 figs.

  2. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  3. Direct Detection Doppler Lidar Wind Measurements Obtained During the 2002 International H2O Project (IHOP)

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Li, Steven; Chen, Huai-Lin; Comer, Joseph; Mathur, Savyasachee; Bobler, Jeremy

    2005-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system that uses direct detection techniques for profiling winds in the troposphere and lower stratosphere. In May and June of 2002 GLOW was deployed to the Southern Great Plains of the US to participate in the International H2O Project (IHOP). GLOW was located at the Homestead profiling site in the Oklahoma panhandle about 15 km east of the SPOL radar. Several other Goddard lidars, the Scanning Raman Lidar (SRL) and HARLIE, as well as radars and passive instruments were permanently operated from the Homestead site during the IHOP campaign providing a unique cluster of observations. During the IHOP observation period (May 14, 2002 to June 25, 2002) over 240 hours of wind profile measurements were obtained with GLOW. In this paper we will describe the GLOW instrument as it was configured for the IHOP campaign and we will present examples of wind profiles obtained.

  4. Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements

    SciTech Connect

    Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato

    2011-09-15

    We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.

  5. Tropospheric Wind Measurements Obtained with the Goddard Lidar Observatory for Winds (GLOW): Validation and Performance

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. GLOW is intended to be used as a field deployable system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In September of 2000 GLOW participated in a three week intercomparison experiment at the GroundWinds facility in North Glen, NE. More than 50 hours of line-of-sight wind profile data was obtained in a wide variety of conditions including both day and night operation. Typical clear air lidar wind profiles extended to altitudes of 20 km with a 1 Ian vertical resolution and I minute averaging. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the Goddard system during the New Hampshire experiment.

  6. Tropospheric Wind Measurements Obtained with the Goddard Lidar Observatory for Winds (GLOW): Validation and Performance

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. GLOW is intended to be used as a field deployable system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In September of 2000 GLOW participated in a three week intercomparison experiment at the GroundWinds facility in North Glen, NH. More than 50 hours of line-of-sight wind profile data were obtained in a wide variety of conditions including both day and night operation. Typical clear air lidar wind profiles extended to altitudes of 20 kin with a 1 km vertical resolution and 1 minute averaging. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the Goddard system during the New Hampshire experiment.

  7. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    NASA Technical Reports Server (NTRS)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Chris

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  8. First gaseous Sulfur (VI) measurements in the simulated internal flow of an aircraft gas turbine engine during project PartEmis

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Wilhelm, S.; Arnold, F.; Wilson, C.

    2004-01-01

    Gaseous S(VI) (SO3 + H2SO4) has been measured by chemical ionization mass spectrometry (CIMS) in the simulated internal flow of an aircraft gas turbine in a test rig at ground level during the PartEmis 2002 campaign. Building on S(VI) and calculated total sulfur ST the abundance ratio ɛ = S(VI)/ST was determined. The measurements to be reported here were made at two sampling points, for two engine test conditions representative of old and modern aircraft cruise and for a fuel sulfur content FSC = 1270 ppm. For both cruise conditions the measured ɛ increased with increasing exhaust age from the high pressure to the low pressure stage. For each pressure stage ɛ was higher in the modern cruise condition. The maximum ɛ (2.3 +/- 1.2%) was obtained for modern cruise and the low pressure stage. Our present data suggest that modern engines have a somewhat higher conversion efficiencies than old engines.

  9. The use of palladium to obtain reproducible boundary conditions for permeability measurements using galvanostatic charging

    NASA Astrophysics Data System (ADS)

    Bowker, J.; Piercy, G. R.

    1985-05-01

    The diffusion current of hydrogen through palladium in an electrochemical cell initially rises linearly with the charging current, reaches a steady “plateau” value, and then rises again. The diffusivity of hydrogen in palladium was measured using standard transient techniques in the initial region of low current density. Combining this value with the measured value of diffusion current at the plateau level gave a concentration of hydrogen at the entrance surface of the palladium that was the same for three different palladium thicknesses, and was equal to the saturation value in α palladium. It is proposed that this can be used as a known and reproducible effective hydrogen pressure (0.019 atm) if palladium is plated onto other metals before measuring their permeability in an electrochemical cell. Experimental evidence for this was obtained from permeability measurements made on several thicknesses of iron. Permeation studies were also made on AISI 410 stainless steel and tin plated mild steel. The measured value for electrolytic tinplate was 107 times that expected from extrapolation of high temperature data. This could be attributed to grain boundaries or porosity covering 0.003 pct of the area. The permeability values of iron and stainless steel are 8.4 x 1012 and 2.8 x 1013 H atom/cm • s • √atm, respectively.

  10. Concordance among Measurements Obtained by Three Pulse Oximeters Currently Used by Health Professionals

    PubMed Central

    De La Rosa Hormiga, Milagros; MaríA Ramal LóPez, Josefa; DéNiz Rivero, Yasmina; Sandra Marrero Morales, MaríA

    2014-01-01

    Introduction: Oxygen saturation is considered as the 5th vital sign. Presently, there exist fixed and wireless pulse oximeters, being the latter most widely used in the last years. Some of them have no possibility of calibration. This situation leads the health staff to adopt therapeutic attitudes which can be wrong. Therefore, it is extremely important to know if these wireless oximeters show a right concordance as regards measurements, since it is of great interest in daily clinical practice. Objective: To evaluate concordance among measurements obtained by three different pulse oximeters currently used by health professionals. Materials and Methods: This is an observational, descriptive and cross-sectional study related to the concordance of the results obtained in measurements collected by three different pulse oximeters (one monitor and two wireless oximeters) which are available and in use in this hospital unit. The sample size calculation was performed for a concordance above 0.81 and an estimation error which did not exceed 0.20. The intraclass correlation index (ICI) was used to establish the concordance whereas the Landis-Koch criteria were used to interpret the results. Systematic errors were analyzed using the Bland-Altman plot. Results: The overall concordance among the three pulse oximeters analyzed resulted in 0.88, a value considered as “good” according to the Landis-Koch criteria. Conclusion: The results obtained show that in daily clinical practice both wireless pulse oximeters analyzed can be used with a certain reliability, taking into account the limitations of this research. PMID:25302228

  11. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  12. Reliability of body size measurements obtained at autopsy: impact on the pathologic assessment of the heart.

    PubMed

    McCormack, Carmen A; Lo Gullo, Roberto; Kalra, Mannudeep K; Louissaint, Abner; Stone, James R

    2016-06-01

    Purpose Assessment of body size at autopsy is important for interpreting organ weight measurements and in some cases body identification. The reliability of post-mortem body size measurements, the causes for perturbations in these measurements from their corresponding pre-mortem values, and the impact of such perturbations on heart weight interpretation have not been fully explored. Methods Autopsy body length and weight measurements and pre-mortem height and body weight measurements were compared in 132 autopsies. Clinical records were evaluated for peripheral edema and serum albumin levels. Causes of death, body cavity fluid collections, and heart weights were obtained from the autopsy reports. A subset of patients underwent quantitative post-mortem computed tomography assessment of anasarca. Results At autopsy, body weight differed from the pre-mortem value by 11 ± 1 %, compared with -0.2 ± 0.3 % for body length (P < 0.0001). The percent change in body weight at autopsy correlated with the presence of peripheral edema (14 ± 2 % vs. 7 ± 2 %, P = 0.01), serum albumin < 3.0 g/dL (16 ± 2 % vs. 7 ± 2 %, P = 0.001), and the degree of anasarca (P = 0.01). In 4 % of autopsies, heart weights were abnormal based on the pre-mortem body weight, but would be classified as normal based on the elevated post-mortem body weight. Conclusions At autopsy, body weight is a less reliable parameter than body length in correlating with the corresponding pre-mortem measurement. Autopsy body weights are elevated in part due to peripheral edema/anasarca. Alterations in body weight at autopsy can confound the interpretation of organ weight measurements. PMID:27020890

  13. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  14. Emissitivity spectra obtained from field and laboratory measurements using the temperature and emissivity separation algorithm.

    PubMed

    Jiménez-Muñoz, Juan C; Sobrino, José A

    2006-09-20

    Surface emissivities play an important role in thermal remote sensing, since knowledge of them is required to estimate land surface temperature with enough accuracy. They are also important in other environmental or geological studies. We show the results obtained for the emissivity spectra of different natural surfaces (water, green, and senescent vegetation) by applying the temperature and emissivity separation (TES) algorithm to ground-based measurements collected at the field with a multiband thermal radiometer. The results have been tested with data included in spectral libraries, and rms errors lower than 0.01 have been found, except for senescent vegetation. Two methods are also proposed to apply the TES algorithm to measurements achieved in the laboratory: (i) by heating the sample and (ii) using a box with reflective walls. PMID:16946789

  15. Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images.

    PubMed

    Stull, Kyra E; Tise, Meredith L; Ali, Zabiullah; Fowler, David R

    2014-05-01

    Forensic pathologists commonly use computed tomography (CT) images to assist in determining the cause and manner of death as well as for mass disaster operations. Even though the design of the CT machine does not inherently produce distortion, most techniques within anthropology rely on metric variables, thus concern exists regarding the accuracy of CT images reflecting an object's true dimensions. Numerous researchers have attempted to validate the use of CT images, however the comparisons have only been conducted on limited elements and/or comparisons were between measurements taken from a dry element and measurements taken from the 3D-CT image of the same dry element. A full-body CT scan was performed prior to autopsy at the Office of the Chief Medical Examiner for the State of Maryland. Following autopsy, the remains were processed to remove all soft tissues and the skeletal elements were subject to an additional CT scan. Percent differences and Bland-Altman plots were used to assess the accuracy between osteometric variables obtained from the dry skeletal elements and from CT images with and without soft tissues. An additional seven crania were scanned, measured by three observers, and the reliability was evaluated by technical error of measurement (TEM) and relative technical error of measurement (%TEM). Average percent differences between the measurements obtained from the three data sources ranged from 1.4% to 2.9%. Bland-Altman plots illustrated the two sets of measurements were generally within 2mm for each comparison between data sources. Intra-observer TEM and %TEM for three observers and all craniometric variables ranged between 0.46mm and 0.77mm and 0.56% and 1.06%, respectively. The three-way inter-observer TEM and %TEM for craniometric variables was 2.6mm and 2.26%, respectively. Variables that yielded high error rates were orbital height, orbital breadth, inter-orbital breadth and parietal chord. Overall, minimal differences were found among the

  16. Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)

    1999-01-01

    Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.

  17. A comparison of two independent measurements and analysis of jet aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.

    1977-01-01

    Flyover noise measurements were made simultaneously by two groups. The measurements were made close to one another for the same flyover conditions and with similar measurement procedures, but with different acoustic equipment and personnel. Each group also independently processed the data in accordance with FAR 36 procedures, indluding corrections to reference meteorological, performance, and flight-path conditions. Measured and corrected data, from 24 controlled flyovers processed by both groups, are compared and the differences in the results obtained by the two groups are discussed. It is observed that the average value of the difference between the groups' measured acoustic descriptors (PNL, PNLTM, and EPNL) was less than or = 0.8 db; the average difference for the corrected descriptors (PNL, PNLTM, and EPNL) was less than or = 1.5 db. Causes of the differences were found to be mainly related to different spectrum extrapolation and preemphasis techniques used by the two groups.

  18. Comparison of Satellite and Aircraft Measurements of Cloud Microphysical Properties in Icing Conditions During ATREC/AIRS-II

    NASA Technical Reports Server (NTRS)

    Nguyen, Louis; Minnis, Patrick; Spangenberg, Douglas A.; Nordeen, Michele L.; Palikonda, Rabindra; Khaiyer, Mandana M.; Gultepe, Ismail; Reehorst, Andrew L.

    2004-01-01

    Satellites are ideal for continuous monitoring of aircraft icing conditions in many situations over extensive areas. The satellite imager data are used to diagnose a number of cloud properties that can be used to develop icing intensity indices. Developing and validating these indices requires comparison with objective "cloud truth" data in addition to conventional pilot reports (PIREPS) of icing conditions. Minnis et al. examined the relationships between PIREPS icing and satellite-derived cloud properties. The Atlantic-THORPEX Regional Campaign (ATReC) and the second Alliance Icing Research Study (AIRS-II) field programs were conducted over the northeastern USA and southeastern Canada during late 2003 and early 2004. The aircraft and surface measurements are concerned primarily with the icing characteristics of clouds and, thus, are ideal for providing some validation information for the satellite remote sensing product. This paper starts the process of comparing cloud properties and icing indices derived from the Geostationary Operational Environmental Satellite (GOES) with the aircraft in situ measurements of several cloud properties during campaigns and some of the The comparisons include cloud phase, particle size, icing intensity, base and top altitudes, temperatures, and liquid water path. The results of this study are crucial for developing a more reliable and objective icing product from satellite data. This icing product, currently being derived from GOES data over the USA, is an important complement to more conventional products based on forecasts, and PIREPS.

  19. Measurements made aloft by a twin-engine aircraft to support the SCOS97-NARSTO study. Final report

    SciTech Connect

    Anderson, J.A.; Blumenthal, D.L.

    1999-05-01

    During the summer of 1997, the Southern California Ozone Study (SCOS97) was conducted to update aerometric and emissions databases and model applications for ozone episodes in southern California and to quantify the contributions of interbasin transport to exceedances of the ozone standards in neighboring air basins. One of six SCOS97 sampling aircraft was a Piper Aztec. The Aztec performed northern-boundary measurements of aloft air quality and meteorology in the southern Mojave Desert and northern Los Angeles basin. The aircraft also served as a backup for another SCOS97 aircraft that performed flights in the western part of the study domain. The Aztec data were reviewed to identify the occurrence and types of ozone layers aloft and to estimate the initial and boundary conditions in the Desert on the first day of Intensive Operational Periods (IOPs). Ozone carryover aloft was seen on all mornings in vertical spiral measurements in the Basin. Detached layers above the boundary layer were seen on about 20% of Basin morning and afternoon spirals. Offshore elevated ozone layers of up to 184 ppb were seen below 500 m. The morning ozone concentrations in the Desert ranged from 40 to 70 ppb and the Noy concentrations ranged from 2 to 4 ppb, indicating relatively clean, but not pristine boundary conditions.

  20. Total ozone derived from UV spectrophotometer measurements on the NASA CV-990 aircraft for the fall 1976 latitude survey flights

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.

    1977-01-01

    An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).

  1. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2015-10-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.

  2. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  3. Application of a cost/performance measurement system on a research aircraft project

    NASA Technical Reports Server (NTRS)

    Diehl, J. J.

    1978-01-01

    The fundamentals of the cost/performance management system used in the procurement of two tilt rotor aircraft for a joint NASA/Army research project are discussed. The contractor's reporting system and the GPO's analyses are examined. The use of this type of reporting system is assessed. Recommendations concerning the use of like systems on future projects are included.

  4. Measures to increase airfield capacity by changing aircraft runway occupancy characteristics

    NASA Technical Reports Server (NTRS)

    Gosling, G. D.; Kanafani, A.; Rockaday, S. L. M.

    1981-01-01

    Airfield capacity and aircraft runway occupancy characteristics were studied. Factors that caused runway congestion and airfield crowding were identified. Several innovations designed to alleviate the congestion are discussed. Integrated landing management, the concept that the operation of the final approach and runway should be considered in concert, was identified as underlying all of the innovations.

  5. Evaluating source area contributions from aircraft flux measurements over heterogeneous land cover by large eddy simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The estimation of spatial patterns in surface fluxes from aircraft observations poses several challenges in presence of heterogeneous land cover. In particular, the effects of turbulence on scalar transport and the different behavior of passive (e.g. moisture) versus active (e.g. temperature) scalar...

  6. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    DOE PAGESBeta

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; et al

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that

  7. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    NASA Technical Reports Server (NTRS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern

  8. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    NASA Technical Reports Server (NTRS)

    Zamora, Lauren; Kahn, R. A.; Cubison, M. C.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were 50 smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq))/ and various biomass burning tracers (BBt/ across the multi-campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACI, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be 0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/ cu m) and very high aerosol concentrations (2000-3000 cu m) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2 and 4 W/sq or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles

  9. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    NASA Astrophysics Data System (ADS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 % over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ˜ 40-60 % smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ˜ 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content ( ˜ 0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly explore evidence suggesting that numerous northern

  10. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    NASA Astrophysics Data System (ADS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2015-08-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 % over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~ 50 % smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACI, where ACI = (1/3) × d ln (Nliq) / d ln (BBt)) to be ~ 0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~ 0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2-4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles

  11. Clear Sky Column Closure Studies of Urban-Marine and Mineral-Dust Aerosols Using Aircraft, Ship, Satellite and Ground-Based Measurements in ACE-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Russell, Philip B.; Livingston, John M.; Gasso, Santiago; Hegg, Dean A.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Oestroem, Elisabeth; Noone, Kevin J.; Durkee, Philip A.; Jonsson, Haflidi H.; Welton, Ellsworth J.; Voss, Kenneth J.; Gordon, Howard R.; Formenti, Paola; Andreae, Meinrat O.; Kapustin, Vladimir N.; Bates, Timothy S.; Quinn, Patricia K.

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2), European urban-marine and African mineral-dust aerosols were measured aboard the Pelican aircraft, the Research Vessel Vodyanitskiy from the ground and from satellites.

  12. Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.

    2010-12-01

    Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for measurements of radiation fluxes, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to measure water vapor fluxes using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent flux system to incorporate high-frequency water vapor measurements. The driving aim of the water vapor flux system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a flux system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial Measurement Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. Measurements of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat fluxes (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the flux profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE measured by NOAA from a surface tower using standard flux techniques. The system performance during the Dryden test, as well as subsequent

  13. Sonic-boom measurements for SR-71 aircraft operating at Mach numbers to 3.0 and altitudes to 24384 meters

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Huckel, V.; Henderson, H. R.

    1972-01-01

    Sonic-boom pressure signatures produced by the SR-71 aircraft at altitudes from 10,668 to 24,384 meters and Mach numbers 1.35 to 3.0 were obtained as an adjunct to the sonic boom evaluation program relating to structural and subjective response which was conducted in 1966-1967 time period. Approximately 2000 sonic-boom signatures from 33 flights of the SR-71 vehicle and two flights of the F-12 vehicle were recorded. Measured ground-pressure signatures for both on-track and lateral measuring station locations are presented and the statistical variations of the overpressure, positive impulse, wave duration, and shock-wave rise time are illustrated.

  14. In flight measurement of steady and unsteady blade surface pressure of a single rotation large scale advanced prop-fan installed on the PTA aircraft

    NASA Technical Reports Server (NTRS)

    Parzych, D.; Boyd, L.; Meissner, W.; Wyrostek, A.

    1991-01-01

    An experiment was performed by Hamilton Standard, Division of United Technologies Corporation, under contract by LeRC, to measure the blade surface pressure of a large scale, 8 blade model prop-fan in flight. The test bed was the Gulfstream 2 Prop-Fan Test Assessment (PTA) aircraft. The objective of the test was to measure the steady and periodic blade surface pressure resulting from three different Prop-Fan air inflow angles at various takeoff and cruise conditions. The inflow angles were obtained by varying the nacelle tilt angles, which ranged from -3 to +2 degrees. A range of power loadings, tip speeds, and altitudes were tested at each nacelle tilt angle over the flight Mach number range of 0.30 to 0.80. Unsteady blade pressure data tabulated as Fourier coefficients for the first 35 harmonics of shaft rotational frequency and the steady (non-varying) pressure component are presented.

  15. Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation.

    PubMed

    Tancredi, Felipe B; Hoge, Richard D

    2013-07-01

    Stimulation of cerebral vasculature using hypercapnia has been widely used to study cerebral vascular reactivity (CVR), which can be expressed as the quantitative change in cerebral blood flow (CBF) per mm Hg change in end-tidal partial pressure of CO2 (PETCO2). We investigate whether different respiratory manipulations, with arterial spin labeling used to measure CBF, lead to consistent measures of CVR. The approaches included: (1) an automated system delivering variable concentrations of inspired CO2 for prospective targeting of PETCO2, (2) administration of a fixed concentration of CO2 leading to subject-dependent changes in PETCO2, (3) a breath-hold (BH) paradigm with physiologic modeling of CO2 accumulation, and (4) a maneuver combining breath-hold and hyperventilation. When CVR was expressed as the percent change in CBF per mm Hg change in PETCO2, methods 1 to 3 gave consistent results. The CVR values using method 4 were significantly lower. When CVR was expressed in terms of the absolute change in CBF (mL/100 g per minute per mm Hg), greater discrepancies became apparent: methods 2 and 3 gave lower absolute CVR values compared with method 1, and the value obtained with method 4 was dramatically lower. Our findings indicate that care must be taken to ensure that CVR is measured over the linear range of the CBF-CO2 dose-response curve, avoiding hypocapnic conditions. PMID:23571282

  16. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar.

    PubMed

    Smalikho, I N; Banakh, V A; Holzäpfel, F; Rahm, S

    2015-09-21

    The method of radial velocities (RV) is applied to estimate aircraft wake vortex parameters from measurements conducted with pulsed coherent Doppler lidar (PCDL). Operations of the Stream Line lidar and the 2-µm PCDL are simulated numerically to analyze the accuracy of the estimated wake vortex parameters with the RV method. The RV method is also used to estimate wake vortex trajectories and circulation from lidar measurements at Tomsk and Munich airports. The method of velocity envelopes and the RV method are compared employing data gathered with the 2-µm PCDL. The domain of applicability of the RV method is determined. PMID:26406749

  17. Residents' annoyance responses to aircraft noise events

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Stephens, D. G.; Fields, J. M.; Shepherd, K. P.

    1983-01-01

    In a study conducted in the vicinity of Salt Lake City International Airport, community residents reported their annoyance with individual aircraft flyovers during rating sessions conducted in their homes. Annoyance ratings were obtained at different times of the day. Aircraft noise levels were measured, and other characteristics of the aircraft were noted by trained observers. Metrics commonly used for assessing aircraft noise were compared, but none performed significantly better than A-weighted sound pressure level. A significant difference was found between the ratings of commercial jet aircraft and general aviation propeller aircraft, with the latter being judged less annoying. After the effects of noise level were accounted for, no significant differences were found between the ratings of landings and takeoffs. Aircraft noise annoyance reactions are stronger in lowered ambient noise conditions. This is consistent with the theory that reduced nighttime and evening ambient levels could create different reactions at different times of day. After controlling for ambient noise in a multiple regression analysis, no significant differences were found between the ratings of single events obtained during the three time periods: morning, afternoon, and evenings.

  18. Impact of lens distortions on strain measurements obtained with 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Lava, P.; Van Paepegem, W.; Coppieters, S.; De Baere, I.; Wang, Y.; Debruyne, D.

    2013-05-01

    The determination of strain fields based on displacements obtained via digital image correlation (DIC) at the micro-strain level (≤1000 μm/m) is still a cumbersome task. In particular when high-strain gradients are involved, e.g. in composite materials with multidirectional fibre reinforcement, uncertainties in the experimental setup and errors in the derivation of the displacement fields can substantially hamper the strain identification process. In this contribution, the aim is to investigate the impact of lens distortions on strain measurements. To this purpose, we first perform pure rigid body motion experiments, revealing the importance of precise correction of lens distortions. Next, a uni-axial tensile test on a textile composite with spatially varying high strain gradients is performed, resulting in very accurately determined strains along the fibers of the material.

  19. Wildfires in eastern Texas in August and September 2000: Emissions, aircraft measurements, and impact on photochemistry

    NASA Astrophysics Data System (ADS)

    Junquera, Victoria; Russell, Matthew M.; Vizuete, William; Kimura, Yosuke; Allen, David

    The accuracy of wildfire air pollutant emission estimates was assessed by comparing observations of carbon monoxide (CO) and particulate matter (PM) concentrations in wildfire plumes to predictions of CO and PM concentrations, based on emission estimates and air quality models. The comparisons were done for observations made in southeast Texas in August and September of 2000. The fire emissions were estimated from acreage burned, fuel loading information, and fuel emission factor models. A total of 389 km 2 (96,100 acres) burned in wildfires in the domain encompassing the Houston/Galveston-Beaumont/Port Arthur (HGBPA) area during August and September 2000. On the days of highest wildfire activity, the fires resulted in an estimated 3700 tons of CO emissions, 250 tons of volatile organic carbon (VOC) emissions, 340 tons of PM 2.5, and 50 tons of NO x emissions; estimated CO and VOC emissions from the fires exceeded light duty gasoline vehicle emissions in the Houston area on those days. When the appropriate aircraft data were available, aloft measurements of CO in the fire plumes were compared to concentrations of CO predicted using the emission estimates. Concentrations estimated based on emission predictions and air quality models were within a factor of 2 of the observed values. The estimated emissions from fires were used, together with a gridded photochemical model, to characterize the extent of dispersion of the fire emissions and the photochemistry associated with the fire emissions. Although the dispersion and photochemical impacts varied from fire to fire, for wildfires less than 10,000 acres, the greatest enhancements of CO and ozone concentrations due to the fire emissions were generally confined to regions within 10-100 km of the fire. Within 10 km of these fires, CO concentrations can exceed 2 ppm and ozone concentrations can be enhanced by 60 ppb. The extent of photo-oxidant formation in the plumes was limited by NO x availability and isoprene

  20. Rocketsonde repeatability of temperature and wind measurements as obtained from rocketsonde network systems

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1977-01-01

    Variability of temperature and wind data obtained close in time is of particular concern since questions exist on whether this variability is due to natural atmospheric variability or arises from instrumental causes. Previously conducted repeatability tests of the U.S. Loki Datasonde instrument indicated rms differences of 1C in temperature and 3 mps in wind. The newer Super Loki Datasonde instrument reaches apogee 20 km higher (about 82 km) than the older system and attains a higher initial fall velocity, thus the heat exchange effects on the measuring components are different. Data were obtained from routine rocketsonde launchings, available in pairs, with time differences of 12 to 120 minutes. Mean values calculated over the altitude range of 30 to 70 km indicate than an rms difference of 1-2 C in temperature and of 3-4 mps in the zonal and meridional components exist. Additional computations in 5-km altitude layers suggest that rms differences do not exceed 3 C and 7 mps at the highest altitudes.

  1. Bias corrections of GOSAT SWIR XCO2 and XCH4 with TCCON data and their evaluation using aircraft measurement data

    NASA Astrophysics Data System (ADS)

    Inoue, Makoto; Morino, Isamu; Uchino, Osamu; Nakatsuru, Takahiro; Yoshida, Yukio; Yokota, Tatsuya; Wunch, Debra; Wennberg, Paul O.; Roehl, Coleen M.; Griffith, David W. T.; Velazco, Voltaire A.; Deutscher, Nicholas M.; Warneke, Thorsten; Notholt, Justus; Robinson, John; Sherlock, Vanessa; Hase, Frank; Blumenstock, Thomas; Rettinger, Markus; Sussmann, Ralf; Kyrö, Esko; Kivi, Rigel; Shiomi, Kei; Kawakami, Shuji; De Mazière, Martine; Arnold, Sabrina G.; Feist, Dietrich G.; Barrow, Erica A.; Barney, James; Dubey, Manvendra; Schneider, Matthias; Iraci, Laura T.; Podolske, James R.; Hillyard, Patrick W.; Machida, Toshinobu; Sawa, Yousuke; Tsuboi, Kazuhiro; Matsueda, Hidekazu; Sweeney, Colm; Tans, Pieter P.; Andrews, Arlyn E.; Biraud, Sebastien C.; Fukuyama, Yukio; Pittman, Jasna V.; Kort, Eric A.; Tanaka, Tomoaki

    2016-08-01

    We describe a method for removing systematic biases of column-averaged dry air mole fractions of CO2 (XCO2) and CH4 (XCH4) derived from short-wavelength infrared (SWIR) spectra of the Greenhouse gases Observing SATellite (GOSAT). We conduct correlation analyses between the GOSAT biases and simultaneously retrieved auxiliary parameters. We use these correlations to bias correct the GOSAT data, removing these spurious correlations. Data from the Total Carbon Column Observing Network (TCCON) were used as reference values for this regression analysis. To evaluate the effectiveness of this correction method, the uncorrected/corrected GOSAT data were compared to independent XCO2 and XCH4 data derived from aircraft measurements taken for the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the Japan Meteorological Agency (JMA), the HIAPER Pole-to-Pole observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. These comparisons demonstrate that the empirically derived bias correction improves the agreement between GOSAT XCO2/XCH4 and the aircraft data. Finally, we present spatial distributions and temporal variations of the derived GOSAT biases.

  2. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  3. Investigation of a laser Doppler velocimeter system to measure the flow field of a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    An experimental research program for measuring the flow field around a 70 percent scale V/STOL aircraft model in ground effect is described. The velocity measurements were conducted with a ground-based laser Doppler velocimeter at an outdoor test pad. The remote sensing instrumentation, experimental tests, and results of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain, the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft heights above ground. The study shows that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  4. Remote sensing of potential aircraft icing areas

    NASA Astrophysics Data System (ADS)

    Zuev, Vladimir V.; Nakhtigalova, Daria P.; Shelekhov, Alexander P.; Shelekhova, Evgeniya A.; Baranov, Nikolay A.; Kizhner, Lubov I.

    2015-11-01

    Remote sensing technique of detection of potential aircraft icing areas based on temperature profile measurements, using meteorological temperature profiler, and the data of the Airfield Measuring and Information System (AMIS-RF), was proposed, theoretically described and experimentally validated during the field project in 2012 - 2013 in the Tomsk Bogashevo Airport. Spatial areas of potential aircraft icing were determined using the RAP algorithm and Godske formula. The equations for the reconstruction of profiles of relative humidity and dew point using data from AMIS-RF are given. Actual data on the aircraft icing for the Tomsk Bogashevo Airport on 11 October 2012 and 17 March 2013 are presented in this paper. The RAP algorithm and Godske formula show similar results for the location of spatial areas of potential icing. Though, the results obtained using the RAP algorithm are closer to the actual data on the icing known from aircraft crew reports.

  5. Tree architecture and forest canopy structure obtained from terrestrial LiDAR measurements

    NASA Astrophysics Data System (ADS)

    Hentschel, Reiner; Bittner, Sebastian; Ritter, Daniel; Priesack, Eckart

    2013-04-01

    The modelling of the water transfer in vegetation on a small scale is important when the interaction of single plants and the competition of species are in focus of interest. Explicit geometrical functional-structural models that simulate the water flow in the single plant components such as roots, stem, and branches have been developed recently. These models need an explicit geometrical model of the plant hydrology, more precisely the possible pathway of the xylem and phloem water flow. Roots, stem, and branches are represented by connected porous cylinder elements that are divided into the inner heartwood cylinders surrounded by xylem and phloem. Terrestrial laser scanning (TLS) has been successfully applied to assess the structure of the aboveground vegetation in situ in the last years. Based on the technique of light detection and ranging (LiDAR) this method provides a set of three dimensional points that are located on the surface of objects such as vegetation. A further data processing of this three dimensional point cloud (typically consistent of some million points) enables to obtain structural properties like the spatial leaf distribution or large scale characteristics such as the stand height or plant density. Whereas the resolution and detection rate of the laser scanners have increased in the last years, there is still a need for a data handling especially in the field of ecology. We present the results of a skeleton extraction algorithm that is able to obtain the position and size of branch and stem cylinder elements from a three-dimensional point cloud obtained by TLS field measurements. No manual data processing is necessary to apply the algorithm allowing the analysis of a high number of individual plants. The resulting hydraulic architecture determines the possible pathway of water through the stem and the branches. It can consist of several thousands of connected cylinders depending on the plants that are observed. Examples are given and discussed

  6. Integration and Processing System of Data Obtained from Open Source Servers for Interpretation of Deformation Measurements

    NASA Astrophysics Data System (ADS)

    Grzempowski, Piotr; Bac-Bronowicz, Joanna; Blachowski, Jan; Milczarek, Wojciech

    2014-05-01

    The increasing number of data made available on Open Source servers allows for interdisciplinary interpretations of deformation measurements at both the local and the continental scales. The openly available vector and raster models of topographic, geological, geophysical, geodetic, remote sensing data have different spatial and temporal resolutions and are of various quality. The reliability of deformation modelling results depend on the resolution and accuracy of the models describing factors and conditions, in which these deformations take place. The paper describes the structure of a system for integration and processing of data obtained from Open Source servers including topographic, geological, geophysical, seismic, geodetic, remote sensing and other data needed for interpretation of deformation measurements and development of statistical models. The system is based on GIS environment in the scope of data storage and fundamental spatial analyses and support of external expert software. In the paper the results of interpretations and statistical models in local and continental scale taking into account analysis of the data resolution and accuracy and their influence on the final result of the modelling have been presented. Example influence models taking into account quantitative and qualitative data have also been shown.

  7. In-Flight Lightning Measurements and Reconstruction on a Metallic and Composite Aircraft

    NASA Astrophysics Data System (ADS)

    Boiddin, J.-F.; Flourens, F.; De Boer, A.; Bardet, M.; Herve, A.; Perez, G.; Riccio, L.

    2012-05-01

    Based on the success of the In-flight Lightning Strike Damage Assessment System (ILDAS) project launched within the scope of the Sixth Framework Programme of the European Commission and completed in July 2009, the results described in this paper form part of the ILDAS2 project initiated by Airbus Operations SAS in partnership with EADS IW and NLR. The principle aim of ILDAS2 project is to develop a system installed aboard an aircraft in order to determine the level, the current waveform and the attachments points of a lightning strike during an aircraft flight. The expectations linked to ILDAS2, the functional architecture of the system, the status and the projection of this development will be presented.

  8. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

  9. Wind tunnel measurements of three-dimensional wakes of buildings. [for aircraft safety applications

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Lin, S. H.

    1982-01-01

    Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. A wind tunnel experiment was undertaken to determine the nature of the flow downstream from a gap between two transversely aligned, equal sized models of rectangular cross section. These building models were immersed in an equilibrium turbulent boundary layer which was developed on a smooth floor in a zero longitudinal pressure gradient. Measurements with an inclined (45 degree) hot-wire were made at key positions downstream of models arranged with a large, small, and no gap between them. Hot-wire theory is presented which enables computation of the three mean velocity components, U, V and W, as well as Reynolds stresses. These measurements permit understanding of the character of the wake downstream of laterally spaced buildings. Surface streamline patterns obtained by the oil film method were used to delineate the separation region to the rear of the buildings for a variety of spacings.

  10. Using aircraft eddy-covariance measurements to examine the spatial heterogeneity of CO2 exchange above three temperate forests

    NASA Astrophysics Data System (ADS)

    Caulton, D.; Shepson, P. B.; Hollinger, D. Y.; Munger, J. W.; Saatchi, S. S.; Moghaddam, M.; Moorcroft, P. R.; Metzger, S.; Stirm, B. H.

    2014-12-01

    Regional and global scale ecosystem models often rely on data from flux towers to simulate the surface-atmosphere exchange of CO2. Such data represent comparatively small source areas (~1 km2) and in many cases exhibit relatively homogeneous land use and surface characteristics. This approach assumes that the small-scale observations yield representative results for larger regions that can be more heterogeneous in terms of land cover, soil moisture, topography and climatology. To complement this data source, aircraft platforms can be used to provide snapshot views of land cover and meteorological properties. Moreover, aircraft provide access to essentially any environment including remote and heterogeneous regions. Here, we used an instrumented aircraft platform equipped with a 50 Hz wind probe, Global Navigation Satellite System/Inertial Measurement Unit and a 10 Hz Picarro CO2/H2O analyzer. Applying the eddy-covariance technique, this platform permits determining the surface-atmosphere exchange of heat and CO2 fluxes over larger (~101-102 km2) spatial scales. Specifically, thirty-eight flux measurement experiments were conducted as part of the Airborne Observatory of Subcanopy and Subsurface (AirMOSS) campaigns in July, 2012 and May-August, 2013. Each experiment targeted specific land cover types over and near Howland Forest, ME, Harvard Forest, MA and Duke Forest, NC. A footprint parameterization is used to determine the contribution of different surface sources to the flux measurements. The surface area contributing to the measured fluxes is typically on the order of 37 ± 17 km2, with 90% of the contributions being sourced from within an upwind distance of 1.9 ± 0.8 km. Combining the knowledge of these source areas with land cover and soil moisture data from the NASA G-III aircraft enables investigating the influence of surface heterogeneity on the measured fluxes. Lastly, the measured fluxes are compared to simulated CO2 fluxes from the Ecosystem Demography

  11. Tidal harmonics obtained from Dynasonde measurements in the bottom F-Layer

    NASA Astrophysics Data System (ADS)

    Negrea, C.; Bullett, T. W.; Zabotin, N. A.; Fuller-Rowell, T. J.

    2014-12-01

    It is now well accepted that atmospheric tidal waves have a dramatic influence on thermospheric and ionospheric structure and variability. Considerable effort goes into understanding the characteristics of tidal modes, their interactions with planetary and gravity waves and other tidal modes, as well as their influence on the background state of the thermosphere-ionosphere system. For the altitude interval between roughly 120 and 400 km, this effort is somewhat hindered by the lack of global observations. We propose a new method of determining tidal variability by making use of Dynasonde measurements. The NeXtYZ inversion procedure (a part of the Dynasonde software package) produces altitude profiles of the ionospheric parameters with a vertical resolution typically below 1 km. This, together with the 2 minute cadence of the instrument results in extensive datasets with wide temporal and altitude coverage. Because of the natural ionospheric variability, at any given altitude we have non-uniform sampling over extended time intervals. A Lomb-Scargle implementation is used to mitigate this issue, allowing us to obtain both amplitude and phase information in an equivalent manner at all altitudes and locations. In this poster, we provide altitude profiles of the first 3 diurnal harmonics derived from dynasonde measurements. The data analyzed include the truly vertical electron density profiles, the ionospheric X (East-West) "tilt" measurement and the derived zonal plasma density gradient. Both the tilt and the gradient can be shown to be sensitive tracers of atmospheric waves, in some cases more so than the raw electron density. We use data from Wallops Island, VA and San Juan, PR for May and September 2013, thus capturing seasonal, latitudinal and altitude variations of tidal amplitude and phase. This can be used for comparisons with existing theoretical work and also to test propagation of tidal waves in coupled ionosphere-thermosphere models.

  12. Reliability of measurements of hip abduction strength obtained with a hand-held dynamometer.

    PubMed

    Ieiri, Akira; Tushima, Eiki; Ishida, Kazuhiro; Inoue, Masahiro; Kanno, Taiki; Masuda, Takeshi

    2015-02-01

    This study aimed to evaluate intrarater and interrater reliability when measuring hip abductor strength in the supine position using a hand-held dynamometer (HHD) (Study 1), and to elucidate the relationships between measured values and examiners' physical characteristics (Study 2). Three healthy examiners (1 female, 24 y.o. and 2 males 23 and 27 y.o) and 12 subjects (6 females, 24.5 ± 2.8 years and 6 males, 27.7 ± 3.5 years) participated in Study 1, and 20 healthy examiners (7 females, 22.3 ± 1.3 years and 13 males, 29.4 ± 8.2 years) and 2 subjects (1 female, 24 y.o. and 1 male 27 y.o) participated in Study 2. All healthy examiners were hospital employees. Hip abductor strength was measured by HHD with hand fixation and with belt fixation, and examiner age, sex, height, weight, BMI, and dominant hand grip strength were evaluated. The intraclass correlation coefficient (ICC) (1,1), a measure of intrarater reliability, was 0.89-0.95 with hand fixation and 0.96-0.97 with belt fixation. ICC (2,1), a measure of interrater reliability, was 0.76-0.79 and 0.90-0.93, respectively. In subjects with high muscle strength (the examiner's hand was moved), the examiner's dominant hand grip strength affected muscle strength values with hand fixation (standardized partial regression coefficient = 0.78, determination coefficient R(2 )= 0.61, p < 0.01). In subjects with low muscle strength (the examiner's hand was not moved), no variables had effect. When the muscle strength of the subject is weak, both methods can be used. When the muscle strength of the subject is strong, it is necessary to adjust the value obtained by the examiner's dominant hand grip strength in the hand fixation method. PMID:25264015

  13. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Mcbride, Kathleen M.

    1995-01-01

    Among the hazards that must be negotiated by lunar-landing spacecraft are blocks on the surface of the Moon. Unfortunately, few data exist that can be used to evaluate the threat posed by such blocks to landing spacecraft. Perhaps the best information is that obtained from Surveyor photographs, but those data do not extend to the dimensions of the large blocks that would pose the greatest hazards. Block distributions in the vicinities of the Surveyor 1, 3, 6, and 7 sites have been determined from Lunar Orbiter photography and are presented here. Only large (i.e., greater than or equal to 2.5 m) blocks are measurable in these pictures, resulting in a size gap between the Surveyor and Lunar Orbiter distributions. Nevertheless, the orbital data are self-consistent, a claim supported by the similarity in behavior between the subsets of data from the Surveyor 1, 3, and 6 sites and by the good agreement in position (if not slopes) between the data obtained from the Surveyor 3 photography and those derived from the Lunar Orbiter photographs. Confidence in the results is also justified by the well-behaved distribution of large blocks at the surveyor site. Comparisons between the Surveyor distributions and those derived from the orbital photography permit these observations: (1) in all cases but that for Surveyor 3, the density of large blocks is overestimated by extrapolation of the Surveyor-derived trends; (2) the slopes of the Surveyor-derived distributions are consistently lower than those determined for the large blocks; and (3) these apparent disagreements could be mitigated if the overall shapes of the cumulative lunar block populations were nonlinear, allowing for different slopes over different size intervals. The relatively large gaps between the Surveyor-derived and Orbiter-derived data sets, however, do not permit a determination of those shapes.

  14. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  15. Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Fuqing; Wei, Junhong; Zhang, Meng; Bowman, K. P.; Pan, L. L.; Atlas, E.; Wofsy, S. C.

    2015-07-01

    This study analyzes in situ airborne measurements from the 2008 Stratosphere-Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS). The focus is on the second research flight (RF02), which took place on 21-22 April 2008. This was the first airborne mission dedicated to probing gravity waves associated with strong upper-tropospheric jet-front systems. Based on spectral and wavelet analyses of the in situ observations, along with a diagnosis of the polarization relationships, clear signals of mesoscale variations with wavelengths ~ 50-500 km are found in almost every segment of the 8 h flight, which took place mostly in the lower stratosphere. The aircraft sampled a wide range of background conditions including the region near the jet core, the jet exit and over the Rocky Mountains with clear evidence of vertically propagating gravity waves of along-track wavelength between 100 and 120 km. The power spectra of the horizontal velocity components and potential temperature for the scale approximately between ~ 8 and ~ 256 km display an approximate -5/3 power law in agreement with past studies on aircraft measurements, while the fluctuations roll over to a -3 power law for the scale approximately between ~ 0.5 and ~ 8 km (except when this part of the spectrum is activated, as recorded clearly by one of the flight segments). However, at least part of the high-frequency signals with sampled periods of ~ 20-~ 60 s and wavelengths of ~ 5-~ 15 km might be due to intrinsic observational errors in the aircraft measurements, even though the possibilities that these fluctuations may be due to other physical phenomena (e.g., nonlinear dynamics, shear instability and/or turbulence) cannot be completely ruled out.

  16. Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013

    NASA Astrophysics Data System (ADS)

    Warneke, Carsten; Trainer, Michael; de Gouw, Joost A.; Parrish, David D.; Fahey, David W.; Ravishankara, A. R.; Middlebrook, Ann M.; Brock, Charles A.; Roberts, James M.; Brown, Steven S.; Neuman, Jonathan A.; Lerner, Brian M.; Lack, Daniel; Law, Daniel; Hübler, Gerhard; Pollack, Iliana; Sjostedt, Steven; Ryerson, Thomas B.; Gilman, Jessica B.; Liao, Jin; Holloway, John; Peischl, Jeff; Nowak, John B.; Aikin, Kenneth C.; Min, Kyung-Eun; Washenfelder, Rebecca A.; Graus, Martin G.; Richardson, Mathew; Markovic, Milos Z.; Wagner, Nick L.; Welti, André; Veres, Patrick R.; Edwards, Peter; Schwarz, Joshua P.; Gordon, Timothy; Dube, William P.; McKeen, Stuart A.; Brioude, Jerome; Ahmadov, Ravan; Bougiatioti, Aikaterini; Lin, Jack J.; Nenes, Athanasios; Wolfe, Glenn M.; Hanisco, Thomas F.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Keutsch, Frank N.; Kaiser, Jennifer; Mao, Jingqiu; Hatch, Courtney D.

    2016-07-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  17. Comparison of aerodynamic coefficients obtained from theoretical calculations wind tunnel tests and flight tests data reduction for the alpha jet aircraft

    NASA Technical Reports Server (NTRS)

    Guiot, R.; Wunnenberg, H.

    1980-01-01

    The methods by which aerodynamic coefficients are determined and discussed. These include: calculations, wind tunnel experiments and experiments in flight for various prototypes of the Alpha Jet. A comparison of obtained results shows good correlation between expectations and in-flight test results.

  18. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 3: Special diagnostic studies

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsberg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  19. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 1: Workshop objectives and summary

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsburg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  20. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Mcbride, Kathleen M.

    1994-01-01

    Enlargements of Lunar-Orbiter photography were used in conjunction with a digitizing tablet to collect the locations and dimensions of blocks surrounding the Surveyor 1, 3, 6, and 7 landing sites. Data were reduced to the location and the major axis of the visible portion of each block. Shadows sometimes made it difficult to assess whether the visible major axis corresponded with the actual principal dimension. These data were then correlated with the locations of major craters in the study areas, thus subdividing the data set into blocks obviously associated with craters and those in intercrater areas. A block was arbitrarily defined to be associated with a crater when its location was within 1.1 crater radii of the crater's center. Since this study was commissioned for the ultimate purpose of determining hazards to landing spacecraft, such a definition was deemed appropriate in defining block-related hazards associated with craters. Size distributions of smaller fragments as determined from Surveyor photography were obtained as measurements from graphical data. Basic comparisons were performed through use of cumulative frequency distributions identical to those applied to studies of crater-count data.

  1. Measurements and analysis of electron transport coefficients obtained by a pulsed Townsend technique

    NASA Astrophysics Data System (ADS)

    Šašić, O.; de Urquijo, J.; Juárez, A. M.; Dupljanin, S.; Jovanović, J.; Hernández-Ávila, J. L.; Basurto, E.; Petrović, Z. Lj

    2010-06-01

    A review of a wide range of electron swarm studies in several pure gases and gas mixtures is given. These studies include the determination of the cross section set for electrons in C2H2F2 (R134a) based on recent measurements of transport data, the re-analysis of the cross sections for electrons in N2O and its mixtures with N2 and SF6 and, finally, the analysis of electron transport in N2-Ar and Xe-He mixtures. It was found that in the case of R134a further studies of the characteristic energy are needed for its mixtures with argon in pure gases in order to obtain a reliable set of cross sections. For N2O, a set has been developed that fits a wide range of data. However, some verification of significant changes in the shape of the attachment cross section should still be done. In two different sets of data for the mixtures of Xe and He and of Ar and N2, the existing cross sections do a very good job throughout most of the energy range, although some small adjustments may be sought at the higher end of the relevant energy range for xenon. In this paper we summarize the work already described in separate papers for each of the He-Xe and Ar-N2 mixtures, and we present here a number of transport coefficients and analyses that were not included in the original papers.

  2. A comparison of in-situ aircraft measurements of carbon dioxide to GOSAT data measured over Railroad Valley playa, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Tadić, J. M.; Loewenstein, M.; Frankenberg, C.; Iraci, L. T.; Yates, E. L.; Gore, W.; Kuze, A.

    2012-08-01

    In this paper we report vertical profiles of CO2 measured with a cavity ring-down spectrometer (CRDS, Picarro, Inc., 2301-m) on a research aircraft from near ground level to 8 km above mean sea level (a.m.s.l.). The airborne platform employed in this study is an Alpha Jet aircraft operated from NASA Ames Research Center. Flights were undertaken to Railroad Valley, Nevada, USA, to coincide with overpasses of the Greenhouse Gases Observing Satellite (GOSAT). Ground based CO2 was simultaneously measured using CRDS, also at the time and location of the airborne and satellite measurements. Results of three GOSAT coordinated aircraft profiles and ground based measurements in June 2011 are presented and discussed in this paper. The accuracy of the CO2 measurements has been determined based upon laboratory calibrations (WMO traceable standard) and pressure/temperature flight simulations in a test chamber. The 2-σ error bars for the CO2 data presented here are ± 0.4 ppm. Our column CO2 measurements, which include about 85% of the tropospheric mass, are extrapolated, using two different techniques, to include the remainder of the tropospheric and stratospheric CO2. The data are then analyzed using the ACOS (Atmospheric CO2 observations from space; JPL algorithm used to analyze XCO2 from GOSAT data) averaging kernels. ACOS version 2.9 is used to interpret the GOSAT data in a collaborative effort between JPL and the GOSAT team. Column averaged CO2, XCO2, measured by GOSAT and analyzed from our data ranged from 388.1 to 390.5 ppm. Values of XCO2 determined from our Alpha Jet measurements and from the GOSAT on three overflight days agree within 1 ppm or better (<0.3%).

  3. Recent Progress Towards Predicting Aircraft Ground Handling Performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    The significant progress which has been achieved in development of aircraft ground handling simulation capability is reviewed and additional improvements in software modeling identified. The problem associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior is discussed and efforts to improve this complex model, and hence simulator fidelity, are described. Aircraft braking performance data obtained on several wet runway surfaces is compared to ground vehicle friction measurements and, by use of empirically derived methods, good agreement between actual and estimated aircraft braking friction from ground vehilce data is shown. The performance of a relatively new friction measuring device, the friction tester, showed great promise in providing data applicable to aircraft friction performance. Additional research efforts to improve methods of predicting tire friction performance are discussed including use of an instrumented tire test vehicle to expand the tire friction data bank and a study of surface texture measurement techniques.

  4. Noise reduction studies of several aircraft to reduce their aural detection distances

    NASA Technical Reports Server (NTRS)

    Dingeldein, R. C.; Connor, A. B.; Hilton, D. A.

    1975-01-01

    A study was conducted to assess the extent to which practicable reductions of the external noise level of various aircraft could be achieved by different methods. The aircraft included in the study are the O-1, O-2, U-10, OV-1, and A-6. The noise signatures obtained from field measurements and the estimated aural detection distance of aircraft operating in low speed cruising flight are presented. The characteristics of each aircraft and the modifications made to reduce the aerodynamic noise are explained. Tables of data are included to show the effectiveness of the noise reduction modifications for each aircraft.

  5. Measurements of the response of transport aircraft ceiling panels to fuel pool fires

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1985-01-01

    Tests were performed to characterize the responses of various aircraft ceiling panel configurations to a simulated post-crash fire. Attention was given to one currently used and four new ceiling configurations exposed to a fuel pool fire in a circulated air enclosure. The tests were controlled to accurately represent conditions in a real fire. The panels were constructed of fiberglass-epoxy, graphite-phenolic resin, fiberglass-phenolic resin, Kevlar-epoxy, and Kevlar-phenolic resin materials. The phenolic resin-backed sheets performed the best under the circumstances, except when combined with Kevlar, which became porous when charred.

  6. Analysis of Satellite-Derived Arctic Tropospheric BrO Columns in Conjunction with Aircraft Measurements During ARCTAS and ARCPAC

    NASA Technical Reports Server (NTRS)

    Choi, S.; Wang, Y.; Salawitch, R. J.; Canty, T.; Joiner, J.; Zeng, T.; Kurosu, T. P.; Chance, K.; Richter, A.; Huey, L. G.; Liao, J.; Neuman, J. A.; Nowak, J. B.; Dibb, J. E.; Weinheimer, A. J.; Diskin, G.; Ryerson, T. B.; da Silva, A.; Curry, J.; Kinnison, D.; Tilmes, S.; Levelt, P. F.

    2012-01-01

    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations ofBrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo> 0.7), for solar zenith angle < 80 and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.

  7. Process modeling KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Instrumentation will be provided for KC-135 aircraft which will provide a quantitative measure of g-level variation during parabolic flights and its effect on experiments which demonstrate differences in results obtained with differences in convective flow. The flight apparatus will provide video recording of the effects of the g-level variations on varying fluid samples. The apparatus will be constructed to be available to fly on the KC-135 during most missions.

  8. Torsional vibration of aircraft engines

    NASA Technical Reports Server (NTRS)

    Lurenbaum, Karl

    1932-01-01

    Exhaustive torsional-vibration investigations are required to determine the reliability of aircraft engines. A general outline of the methods used for such investigations and of the theoretical and mechanical means now available for this purpose is given, illustrated by example. True vibration diagrams are usually obtained from vibration measurements on the completed engine. Two devices for this purpose and supplementing each other, the D.V.L. torsiograph and the D.V.L. torsion recorder, are described in this report.

  9. Drop size distributions and related properties of fog for five locations measured from aircraft

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen

    1994-01-01

    Fog drop size distributions were collected from aircraft as part of the Synthetic Vision Technology Demonstration Program. Three west coast marine advection fogs, one frontal fog, and a radiation fog were sampled from the top of the cloud to the bottom as the aircraft descended on a 3-degree glideslope. Drop size versus altitude versus concentration are shown in three dimensional plots for each 10-meter altitude interval from 1-minute samples. Also shown are median volume radius and liquid water content. Advection fogs contained the largest drops with median volume radius of 5-8 micrometers, although the drop sizes in the radiation fog were also large just above the runway surface. Liquid water content increased with height, and the total number of drops generally increased with time. Multimodal variations in number density and particle size were noted in most samples where there was a peak concentration of small drops (2-5 micrometers) at low altitudes, midaltitude peak of drops 5-11 micrometers, and high-altitude peak of the larger drops (11-15 micrometers and above). These observations are compared with others and corroborate previous results in fog gross properties, although there is considerable variation with time and altitude even in the same type of fog.

  10. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  11. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    NASA Astrophysics Data System (ADS)

    Augere, B.; Besson, B.; Fleury, D.; Goular, D.; Planchat, C.; Valla, M.

    2016-05-01

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms‑1, angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed.

  12. Aircraft measurements of electrified clouds at Kennedy Space Center. Part 2: Case study: 4 November 1988 (88309)

    NASA Technical Reports Server (NTRS)

    Jones, J. J.; Winn, W. P.; Hunyady, S. J.; Moore, C. B.; Bullock, J. W.

    1990-01-01

    During the fall of 1988, a Schweizer airplane equipped to measure electric field and other meteorological parameters flew over Kennedy Space Center (KSC) in a program to study clouds defined in the existing launch restriction criteria. A case study is presented of a single flight over KSC on November 4, 1988. This flight was chosen for two reasons: (1) the clouds were weakly electrified, and no lightning was reported during the flight; and (2) electric field mills in the surface array at KSC indicated field strengths greater than 3 kV/m, yet the aircraft flying directly over them at an altitude of 3.4 km above sea level measured field strengths of less than 1.6 kV/m. A weather summary, sounding description, record of cloud types, and an account of electric field measurements are included.

  13. Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements

    NASA Technical Reports Server (NTRS)

    Monaldo, Frank M.; Lyzenga, David R.

    1988-01-01

    During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.

  14. Measurement of OH, H2SO4, MSA, DMSO, DMSO2 on the NASA P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    1998-01-01

    This project involves the deployment of a variety of unique aircraft measurements for the PEM-Tropics program. These measurements were all to be accomplished on a near simultaneous basis using a two channel selected ion chemical ionization mass spectrometer instrument. The first year of this project consisted of four components; improve and perform additional testing of the OH, H2SO4, and MSA instrument which had only flown on one previous mission (ACE-I); develop and test the vacuum and electronic hardware and software which would allow two independent mass spectrometer systems to be operated from a single instrument (one vacuum/pumping system); construct an aircraft compatible DMSO/DMS02 ion source and calibration system; and operate the above system on the NASA P-3B during PEM-Tropics. The first two of the components were to be accomplished at NCAR. The third component was to be completed at Georgia Tech and the fourth was to be conducted by researchers from both institutions on the NASA P-3B.

  15. Effective L/D: A Theoretical Approach to the Measurement of Aero-Structural Efficiency in Aircraft Design

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2015-01-01

    There are many trade-offs in aircraft design that ultimately impact the overall performance and characteristics of the final design. One well recognized and well understood trade-off is that of wing weight and aerodynamic efficiency. Higher aerodynamic efficiency can be obtained by increasing wing span, usually at the expense of higher wing weight. The proper balance of these two competing factors depends on the objectives of the design. For example, aerodynamic efficiency is preeminent for sailplanes and long slender wings result. Although the wing weight-drag trade is universally recognized, aerodynamic efficiency and structural efficiency are not usually considered in combination. This paper discusses the concept of "aero-structural efficiency," which combines weight and drag characteristics. A metric to quantify aero-structural efficiency, termed effective L/D, is then derived and tested with various scenarios. Effective L/D is found to be a practical and robust means to simultaneously characterize aerodynamic and structural efficiency in the context of aircraft design. The primary value of the effective L/D metric is as a means to better communicate the combined system level impacts of drag and structural weight.

  16. Estimation of the geophysical properties of the ocean surface using aircraft microwave measurements

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Willand, J. H.; Chang, D. T.; Isaacs, R. G.

    1977-01-01

    An improved model of the effects of sea state on microwave signature has been developed which incorporates the different effects of whitecaps and streaks to define the response of microwave channels to wind speed. This model has been demonstrated to agree with recent measurements. An approximation model has also been incorporated to describe the effects of precipitation on microwave radiation through a computationally rapid routine. The use of these models and a new technique to allow the selection of the most climatologically appropriate D-matrix is demonstrated in the inversion of data collected over the bering Sea. Surface wind speed agrees very well with observations while good results are obtained for integrated water vapor, and liquid water.

  17. Aircraft Measurements of Heat Fluxes Over Wind-Driven Coastal Polynyas in the Bering Sea

    NASA Technical Reports Server (NTRS)

    Walter, Bernard; Cavalieri, Donald J.; Thornhill, K. Lee; Gasiewski, Albin J.

    2006-01-01

    The first estimates of the average bulk heat transfer coefficient for Arctic sea ice are presented as a function of mean ice thickness. Turbulent heat flux measurements made by the NASA P-3 over the St. Lawrence Island polynya (SLIP) and Kuskokwim Bay in the Bering Sea during AMSR-Ice03 were used to estimate the values of the heat transfer coefficient CH. Estimates of ice thickness were made from the algorithm of Perovich et al. using broadband albedos obtained from Moderate Resolution Imaging Spectroradiometer data. Plots of CH as a function of ice thickness showed a nearly linear relationship for ice thicknesses in the range of 0-14 cm in the polynyas. Previous estimates of CH for different cases over the SLIP were 1.2 x 10(exp -3), but no estimates of ice thickness were available. These results will allow more accurate estimates of heat fluxes from the thin-ice areas of polynyas using satellite retrievals.

  18. Process for using surface strain measurements to obtain operational loads for complex structures

    NASA Technical Reports Server (NTRS)

    Richards, William Lance (Inventor); Ko, William L. (Inventor)

    2010-01-01

    The invention is an improved process for using surface strain data to obtain real-time, operational loads data for complex structures that significantly reduces the time and cost versus current methods.

  19. Comparison of Measured and Block Structured Simulations for the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Boelens, O. J.; Badcock, K. J.; Elmilgui, A.; Abdol-Hamid, K. S.; Massey, S. J.

    2008-01-01

    This article presents a comparison of the predictions of three RANS codes for flight conditions of the F-16XL aircraft which feature vortical flow. The three codes, ENSOLV, PMB and PAB3D, solve on structured multi-block grids. Flight data for comparison was available in the form of surface pressures, skin friction, boundary layer data and photographs of tufts. The three codes provided predictions which were consistent with expectations based on the turbulence modelling used, which was k- , k- with vortex corrections and an Algebraic Stress Model. The agreement with flight data was good, with the exception of the outer wing primary vortex strength. The confidence in the application of the CFD codes to complex fighter configurations increased significantly through this study.

  20. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  1. Turbulence as observed by concurrent measurements made at NSSL using weather radar, Doppler radar, Doppler lidar and aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Jean T.

    1987-01-01

    As air traffic increases and aircraft capability increases in range and operating altitude, the exposure to weather hazards increases. Turbulence and wind shears are two of the most important of these hazards that must be taken into account if safe flight operations are to be accomplished. Beginning in the early 1960's, Project Rough Rider began thunderstorm investigations. Past and present efforts at the National Severe Storm Laboratory (NSSL) to measure these flight safety hazards and to describe the use of Doppler radar to detect and qualify these hazards are summarized. In particular, the evolution of the Doppler-measured radial velocity spectrum width and its applicability to the problem of safe flight is presented.

  2. Obtaining three-dimensional height profiles from a two-dimensional slope measuring instrument

    SciTech Connect

    Irick, S.C.; Kaza, R.K.; McKinney, W.R. )

    1995-02-01

    The long trace profiler (LTP) was developed in order to measure the mid- and long-period variations in optical components for beamlines of high-brightness synchrotron sources. The LTP is a slope measuring instrument, and the optic under test is typically measured along a single tangential line, giving a two-dimensional profile. If a three-dimensional height profile (surface map) is desired, it is necessary to combine the integrated slopes of several measurements. A series of LTP measurements and a data processing method used to combine standard LTP data into a three-dimensional height profile are described. The measurement of a synchrotron beamline mirror and its three-dimensional height profile are presented.

  3. Producing and measuring setup of the twin photons beams obtained by SPDC phenomenon

    NASA Astrophysics Data System (ADS)

    Rusu, Al.; Rusu, L.

    2012-08-01

    The quantum photon pairs, generated by spontaneous parametric down conversion phenomenon, promise a lot of applications. That's why, a setup including both producing and measuring instrumentation for quantum correlated photon pairs was designed and manufactured in Romania, too. Some significant solved technical challenges are presented. The described measurements and results prove the ability to generate and measure entangled photon pairs. The setup is ready for experimental research and technological development activities.

  4. Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO{sub 2} with HIPPO and SGP aircraft profile measurements

    SciTech Connect

    Kulawik, S. S.; Worden, J. R.; Wofsy, S. C.; Biraud, S. C.; Nassar, R.; Jones, D. B.A.; Olsen, E. T.; Osterman, G. B.

    2012-02-01

    Comparisons are made between mid-tropospheric Tropospheric Emission Spectrometer (TES) carbon dioxide (CO{sub 2}) satellite measurements and ocean profiles from three Hiaper Pole-to-Pole Observations (HIPPO) campaigns and land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site over a 4-yr period. These comparisons are used to characterize the bias in the TES CO{sub 2} estimates and to assess whether calculated and actual uncertainties and sensitivities are consistent. The HIPPO dataset is one of the few datasets spanning the altitude range where TES CO{sub 2} estimates are sensitive, which is especially important for characterization of biases. We find that TES CO{sub 2} estimates capture the seasonal and latitudinal gradients observed by HIPPO CO{sub 2} measurements; actual errors range from 0.8–1.2 ppm, depending on the campaign, and are approximately 1.4 times larger than the predicted errors. The bias of TES versus HIPPO is within 0.85 ppm for each of the 3 campaigns; however several of the sub-tropical TES CO{sub 2} estimates are lower than expected based on the calculated errors. Comparisons of aircraft flask profiles, which are measured from the surface to 5 km, to TES CO{sub 2} at the SGP ARM site show good agreement with an overall bias of 0.1 ppm and rms of 1.0 ppm. We also find that the predicted sensitivity of the TES CO{sub 2} estimates is too high, which results from using a multi-step retrieval for CO{sub 2} and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO{sub 2} product.

  5. Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Bowles, Roland L.; Korg, C. L.; Gentry, Bruce M.; Souilhac, Dominique J.

    1991-05-01

    National attention has focused on the critical problem of detecting and avoiding windshear since the crash on August 2, 1985, of a Lockheed L-1011 at Dallas/Fort Worth International Airport. As part of The NASA/FAA National Integrated Windshear Program, we have defined a measurable windshear hazard index that can be remotely sensed from an aircraft, to give the pilot information about the wind conditions he will experience at some later time if he continues along the present flight path. Our technology analysis and end-to-end performance simulation, which measured signal-to-noise ratios and resulting wind velocity errors for competing coherent lidar systems, showed that a Ho:YAG lidar at a wavelength of 2.1 μm and a CO2 lidar at 10.6 m can give the pilot information about the line-of-sight component of a windshear threat in a region extending from his present position to 2 to 4 km in front of the aircraft. This constitutes a warning time of 20 to 40 s, even under conditions of moderately heavy precipitation. Using these results, a Coherent Lidar Airborne Shear Sensor (CLASS), using a Q-switched CO2 laser at 10.6 μm, is being designed and developed for flight evaluation in early 1992. The edge technique is a powerful new method for the measurement of small frequency shifts which allows high accuracy measurement of atmospheric winds (0.2 to 1 m/sec) with high vertical resolution (10 meters) using currently available technology.

  6. Comparison of results obtained with various sensors used to measure fluctuating quantities in jets.

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Massier, P. F.; Cuffel, R. F.

    1973-01-01

    An experimental investigation has been conducted to compare the results obtained with six different instruments that sense fluctuating quantities in free jets. These sensors are typical of those that have recently been used by various investigators who are engaged in experimental studies of jet noise. Intensity distributions and two-point correlations with space separation and time delay were obtained. The static pressure, density, and velocity fluctuations are well correlated over the entire cross section of the jet and the cross-correlations persist for several jet diameters along the flow direction. The eddies appear to be flattened in the flow direction by a ratio of 0.4.

  7. Uncertainty limits for quantum metrology obtained from the statistics of weak measurements

    SciTech Connect

    Hofmann, Holger F.

    2011-02-15

    Quantum metrology uses small changes in the output probabilities of a quantum measurement to estimate the magnitude of a weak interaction with the system. The sensitivity of this procedure depends on the relation between the input state, the measurement results, and the generator observable describing the effect of the weak interaction on the system. This is similar to the situation in weak measurements, where the weak value of an observable exhibits a symmetric dependence on initial and final conditions. In this paper, it is shown that the phase sensitivity of a quantum measurement is in fact given by the variance of the imaginary parts of the weak values of the generator over the different measurement outcomes. It is then possible to include the limitations of a specific quantum measurement in the uncertainty bound for phase estimates by subtracting the variance of the real parts of the weak values from the initial generator uncertainty. This uncertainty relation can be interpreted as the time-symmetric formulation of the uncertainty limit of quantum metrology, where the real parts of the weak values represent the information about the generator observable in the final measurement result.

  8. A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    José Granados-Muñoz, María; Bravo-Aranda, Juan Antonio; Baumgardner, Darrel; Guerrero-Rascado, Juan Luis; Pérez-Ramírez, Daniel; Navas-Guzmán, Francisco; Veselovskii, Igor; Lyamani, Hassan; Valenzuela, Antonio; José Olmo, Francisco; Titos, Gloria; Andrey, Javier; Chaikovsky, Anatoli; Dubovik, Oleg; Gil-Ojeda, Manuel; Alados-Arboledas, Lucas

    2016-03-01

    In this work we present an analysis of aerosol microphysical properties during a mineral dust event taking advantage of the combination of different state-of-the-art retrieval techniques applied to active and passive remote sensing measurements and the evaluation of some of those techniques using independent data acquired from in situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak at the Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on 27 June 2011. Column-integrated properties are provided by sun- and star-photometry, which allows for a continuous evaluation of the mineral dust optical properties during both day and nighttime. Both the linear estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during nighttime. LIRIC retrievals reveal the presence of dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 µm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in situ measurements. This study presents for the first time a comparison of the total volume concentration retrieved with LIRIC with independent in situ measurements, obtaining agreement within

  9. Temperature Variability in the Stratosphere Obtained from 7 years of Vibrational-Raman- lidar Measurements

    NASA Astrophysics Data System (ADS)

    Iserhienrhien, B.; Sica, R. J.; Argall, P. S.

    2009-05-01

    The Purple Crow Lidar (PCL) is a large power-aperture product monostatic laser radar located at the Delaware Observatory (42° 52' N, 81° 23' W, 225 m elevation above sea level) near the campus of The University of Western Ontario. It is capable of measuring temperature and wave parameters from 10 to 110 km altitude, as well as water vapor in the troposphere and stratosphere. We use upper tropospheric and stratospheric vibrational Raman N2 backscatter-derived temperatures to form a climatology for the years 1999 to 2007 from 10 to 30 km altitude. The lidar temperatures are validated using coincident radiosondes measurements from Detroit and Buffalo. The measured temperatures show good agreement with the radiosonde soundings. An agreement of ±1 K is found during summer months and ±2.5 K during the winter months, validating the calibration of the lidar to within the geophysical variability of the measurements. Comparison between the PCL measurements and atmospheric models shows the PCL measurements are 5 K or less colder than CIRA-86 below 25 km and 2.5 K warmer above during the summer months. Below 16 km the PCL measurements are 5 K or less colder than the MSIS-90 model, while above this region, the PCL agrees to about ±3.5 K or less. The temperature differences between the PCL measurements and the models are consistent with the differences between the atmospheric models and the Detroit and Buffalo radiosonde measurements. The temperature differences compared to the models are consistent with previous comparisons between other radiosondes and satellite data sets, confirming that these differences with the models are real. We will highlight nights which show significant variations from the long-term averages, and when possible, the evolution of the variations.

  10. An empirical approach to the measurement of the cosmic radiation field at jet aircraft altitudes

    NASA Astrophysics Data System (ADS)

    Green, A. R.; Bennett, L. G. I.; Lewis, B. J.; Kitching, F.; McCall, M. J.; Desormeaux, M.; Butler, A.

    Researchers at the Royal Military College of Canada have accumulated extensive dose measurements performed at jet altitudes on over 160 flights and with a wide variety of detectors including a tissue equivalent proportional counter (TEPC), a smart wide energy neutron detection instrument (SWENDI), bubble detectors, thermoluminescent detectors (TLD) and an ion chamber. The summation of the individual low and high LET results from the latter equipment compared successfully to those from the TEPC on each flight. The data from these numerous worldwide flights have been encapsulated into a program that calculates the radiation dose for any flight in the world at any period in the solar cycle. This experimentally based program, Predictive Code for AIRcrew Exposure (PCAIRE) has been designed to be used by the airline industry to meet national dosimetry requirements. In Canada, for example, such a code can be used, supported by periodic measurements. With this latter requirement in mind and a desire to decrease equipment size, the silicon-based LIULIN-4N LET (linear energy transfer) spectrometer has been assessed to determine its suitability as a mixed field instrument and possible code verification tool. Data obtained from the LIULIN and TEPC in ground-based experiments at the CERN-EC Reference-field Facility (CERF) and on 42 jet-altitude flights have been compared. Analysis of these data has resulted in two different mathematical correlations which can be used to determine the ambient dose equivalent, H∗(10), from the LIULIN absorbed dose output. With either calibration factor, the LIULIN instrument could now be used as a simple, compact and portable detector for routine monitoring.

  11. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 2: Comparisons with global atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsberg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  12. Obtaining Reliable Predictions of Terrestrial Energy Coupling From Real-Time Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Weimer, Daniel R.

    2002-01-01

    Measurements of the interplanetary magnetic field (IMF) from the ACE (Advanced Composition Explorer), Wind, IMP-8 (Interplanetary Monitoring Platform), and Geotail spacecraft have revealed that the IMF variations are contained in phase planes that are tilted with respect to the propagation direction, resulting in continuously variable changes in propagation times between spacecraft, and therefore, to the Earth. Techniques for using 'minimum variance analysis' have been developed in order to be able to measure the phase front tilt angles, and better predict the actual propagation times from the L1 orbit to the Earth, using only the real-time IMF measurements from one spacecraft. The use of empirical models with the IMF measurements at L1 from ACE (or future satellites) for predicting 'space weather' effects has also been demonstrated.

  13. Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements.

    PubMed

    Kairn, T; Charles, P H; Cranmer-Sargison, G; Crowe, S B; Langton, C M; Thwaites, D I; Trapp, J V

    2015-06-01

    There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6 × 6 to 98 × 98 mm(2). Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26  %, for the "very small" fields smaller than 15 mm, and 0.18 % for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within uncertainties. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2 % to the very small field output factors. The overall uncertainties in the field output factors were 1.8 % for the very small fields and 1.1 % for the fields larger than 15 mm across. Recommended steps for acquiring small field output

  14. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    DOEpatents

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  15. Corrigendum to "Measuring the 3-D wind vector with a weight-shiftmicrolight aircraft" published in Atmos. Meas. Tech., 4, 1421-1444, 2011

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-07-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. We draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14 %, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31 %) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's trim (53 %), as well as changes in the aircraft lift (16 %) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95 % confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square error) of ≈0.4 m s-1 for the horizontal and ≈0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable Eddy-Covariance flux measurements.

  16. Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements

    NASA Astrophysics Data System (ADS)

    Petetin, H.; Beekmann, M.; Colomb, A.; Denier van der Gon, H. A. C.; Dupont, J.-C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A.; Sciare, J.; Wiedensohler, A.; Zhang, Q. J.

    2015-09-01

    High uncertainties affect black carbon (BC) emissions, and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris, France, plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows for several error sources (e.g., representativeness, chemistry, plume lateral dispersion) to be minimized in the model used. The procedure is applied with the CHIMERE chemistry-transport model to three inventories - the EMEP inventory and the so-called TNO and TNO-MP inventories - over the month of July 2009. Various systematic uncertainty sources both in the model (e.g., boundary layer height, vertical mixing, deposition) and in observations (e.g., BC nature) are discussed and quantified, notably through sensitivity tests. Large uncertainty values are determined in our results, which limits the usefulness of the method to rather strongly erroneous emission inventories. A statistically significant (but moderate) overestimation is obtained for the TNO BC emissions and the EMEP and TNO-MP NOx emissions, as well as for the BC / NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC / NOx ratio at a ground site in Paris, which additionally suggests a spatially heterogeneous error in BC emissions over the agglomeration.

  17. Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements

    NASA Astrophysics Data System (ADS)

    Petetin, H.; Beekmann, M.; Colomb, A.; Denier van der Gon, H. A. C.; Dupont, J.-C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A.; Sciare, J.; Wiedensohler, A.; Zhang, Q. J.

    2014-11-01

    High uncertainties affect black carbon (BC) emissions and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows minimizing several error sources in the model (e.g. representativeness, chemistry, plume lateral dispersion). The procedure is applied with the CHIMERE chemistry-transport model to three inventories - the EMEP inventory, and the so-called TNO and TNO-MP inventories - over the month of July 2009. Various systematic uncertainty sources both in the model (e.g. boundary layer height, vertical mixing, deposition) and in observations (e.g. BC nature) are discussed and quantified, notably though sensitivity tests. A statistically significant (but moderate) overestimation is obtained on the TNO BC emissions and on EMEP and TNO-MP NOx emissions, as well as on the BC/NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC/NOx ratio at a ground site in Paris, which additionally suggests potential error compensations in the BC emissions spatial distribution over the agglomeration.

  18. Present Status of Cosmic-Ray Spectrum and Composition Obtained by the Direct Measurements

    NASA Astrophysics Data System (ADS)

    Hareyama, Makoto; Shibata, Toru

    We report recent results on the cosmic-ray spectrum and the composition obtained by RUNJOB collaboration (RUssia-Nippon JOint Balloon collaboration). We present the preliminary spectra for individual elements from proton to iron as well as the all-particle and the average mass in the energy range 10 to ~ 1000 TeV/particle, using 95% of the total exposure, and compare them with other experimental data, particularly those recently reported by ATIC group.

  19. Photopic Negative Response Obtained Using a Handheld Electroretinogram Device: Determining the Optimal Measure and Repeatability

    PubMed Central

    Wu, Zhichao; Hadoux, Xavier; Hui, Flora; Sarossy, Marc G.; Crowston, Jonathan G.

    2016-01-01

    Purpose To determine the measure of the photopic negative response (PhNR) of the full-field electroretinogram (ERG) that exhibits the optimal level of test-retest repeatability, and examine its repeatability under different conditions using a handheld, nonmydriatic ERG system and self-adhering skin electrodes. Methods Multiple ERG recordings (using 200 sweeps each) were performed in both eyes of 20 normal participants at two different sessions to compare its coefficient of repeatability (CoR; where 95% of the test-retest difference is expected to lie) between different PhNR measures and under different testing conditions (within and between examiners, and between sessions). Results The ratio between the PhNR trough to b-wave peak and b-wave peak to a-wave trough amplitude (PhNR/B ratio) exhibited the lowest CoR relative to its effective dynamic range (30 ± 4%) when including three recordings. There were no significant changes in the PhNR/B ratio over seven measurements (4 right and 3 left eyes) at either session (P ≥ 0.100), or significant difference in its CoR between different testing conditions (P = 0.314). Conclusion The PhNR/B ratio was the measure that minimized variability, and its measurements using a novel handheld ERG system with self-adhering skin electrodes and the protocols described in this study were comparable under different testing conditions and over multiple recordings. Translational Relevance The PhNR can be measured for clinical and research purposes using a simple-to-implement technique that is consistent within and between visits, and also between examiners. PMID:27540494

  20. Magnetic meridional winds in the thermosphere obtained from Global Assimilation of Ionospheric Measurements (GAIM) model

    NASA Astrophysics Data System (ADS)

    Lomidze, Levan; Scherliess, Ludger; Schunk, Robert W.

    2015-09-01

    Thermospheric neutral winds play an important part in the dynamics of ionospheric plasma and represent one of the key inputs for ionospheric physics-based models. Yet wind measurements are scarce and generally lack global coverage and continuity. To help mitigate this shortcoming, a data assimilation model was used to estimate neutral winds in the low- and middle-latitude thermosphere. Seasonal global maps of NmF2 and hmF2 were generated from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation measurements for geomagnetically quiet and low solar flux conditions. The maps were assimilated into the Utah State University Global Assimilation of Ionospheric Measurements-Full Physics (GAIM-FP) model. GAIM-FP, which uses the physics-based ionosphere-plasmasphere model (IPM) and employs an ensemble Kalman filter technique, significantly improved the agreement between the modeled and measured NmF2 and hmF2 globally compared to the IPM. Global quiet time magnetic meridional winds were derived for December and June solstices and March equinox. The morphology of the derived winds was analyzed and validated by comparing with ground-based measurements and with wind values from the empirical horizontal wind model. GAIM-FP-estimated winds were shown to be in good agreement with the wind observations. Furthermore, the sensitivity of the derived winds to uncertain parameters, including the O+-O collision frequency, neutral composition, number of radio occultations, and data errors, was investigated. The uncertainties were found to have only small effects on the derived winds. The results of this work indicate that thermospheric wind estimation from GAIM-FP is a valuable tool for wind specification over regions where limited or no wind measurements exist.