Science.gov

Sample records for aircraft nox emissions

  1. CO2, NOx, and particle emissions from aircraft and support activities at a regional airport.

    PubMed

    Klapmeyer, Michael E; Marr, Linsey C

    2012-10-16

    The goal of this research was to quantify emissions of carbon dioxide (CO(2)), nitrogen oxides (NO(x)), particle number, and black carbon (BC) from in-use aircraft and related activity at a regional airport. Pollutant concentrations were measured adjacent to the airfield and passenger terminal at the Roanoke Regional Airport in Virginia. Observed NO(x) emission indices (EIs) for jet-powered, commuter aircraft were generally lower than those contained in the International Civil Aviation Organization databank for both taxi (same as idle) and takeoff engine settings. NO(x) EIs ranged from 1.9 to 3.7 g (kg fuel)(-1) across five types of aircraft during taxiing, whereas EIs were consistently higher, 8.8-20.6 g (kg fuel)(-1), during takeoff. Particle number EIs ranged from 1.4 × 10(16) to 7.1 × 10(16) (kg fuel)(-1) and were slightly higher in taxi mode than in takeoff mode for four of the five types of aircraft. Diurnal patterns in CO(2) and NO(x) concentrations were influenced mainly by atmospheric conditions, while patterns in particle number concentrations were attributable mainly to patterns in aircraft activity. CO(2) and NO(x) fluxes measured by eddy covariance were higher at the terminal than at the airfield and were lower than found in urban areas.

  2. Advanced combustion techniques for controlling NO/x/ emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments have been and continue to be sponsored and conducted by NASA to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere. Of particular concern are the oxides of nitrogen (NO/x/) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NO/x/ emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  3. Asian emissions of CO and NOx: Constraints from aircraft and Chinese station data

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan X.; McElroy, Michael B.; Wang, Tao; Palmer, Paul I.

    2004-12-01

    Observations of CO and NOy from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission over the northwest Pacific and from two Chinese ground stations (Hong Kong and Lin An) during spring 2001 are used in conjunction with an optimal estimation inverse model to constrain estimates of Asian emissions of CO and NOx. A priori emissions are based on a detailed bottom-up inventory for the observation period. The inversion analysis requires 43% and 47% increases in Chinese emissions of CO and NOx, respectively, distributed heterogeneously, with the largest adjustments required for central China. A posteriori estimates of emissions from biomass burning in Southeast Asia are much lower than a priori values. Inversion results for NOx emissions are consistent with CO emissions in terms of the sense of the adjustments. Inclusion of the station data in the inversion analysis significantly improves estimates for emissions from central and south China. A large increase in NOx emissions inferred for central China (a factor of 3) is attributed to decomposition of organic wastes associated with the human-animal food chain and extensive applications of chemical fertilizer. An analysis of emission ratios for CO relative to NOx for different sectors indicates that emissions attributed to industry and transportation may be underestimated in the bottom-up inventory for central China, while emissions from the domestic sector may be underestimated for south China. An increase in emission factors could help reconcile results from the inversion analysis with the "bottom-up" approach. Detailed analysis of the surface observations using a posteriori emissions indicates the importance of meteorological phenomena, notably cold fronts in March and small-scale high- and low-pressure systems in April in modulating concentrations of CO, with the latter most evident in the data from Lin An.

  4. Effect of Steam Addition on the Flow Field and NOx Emissions for Jet-A in an Aircraft Combustor

    NASA Astrophysics Data System (ADS)

    Xue, Rui; Hu, Chunbo; Nikolaidis, Theoklis; Pilidis, Pericle

    2016-12-01

    The steam injection technology for aircraft engines is gaining rising importance because of the strong limitations imposed by the legislation for NOx reduction in airports. In order to investigate the impact of steam addition on combustion and NOx emissions, an integrated performance-CFD-chemical reactor network (CRN) methodology was developed. The CFD results showed steam addition reduced the high temperature size and the radical pool moved downstream. Then different post-processing techniques are employed and CRN is generated to predict NOx emissions. This network consists of 14 chemical reactor elements and the results were in close agreement with the ICAO databank. The established CRN model was then used for steam addition study and the results showed under air/steam mixture atmosphere, high steam content could push the NOx formation region to the post-flame zone and a large amount of the NOx emission could be reduced when the steam mass fraction is quite high.

  5. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport

    NASA Astrophysics Data System (ADS)

    Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias

    2015-01-01

    This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a

  6. Impact of aircraft NOx emissions on the atmosphere - tradeoffs to reduce the impact

    NASA Astrophysics Data System (ADS)

    Gauss, M.; Isaksen, I. S. A.; Lee, D. S.; Søvde, O. A.

    2006-05-01

    Within the EU-project TRADEOFF, the impact of NOx (=NO+NO2) emissions from subsonic aviation upon the chemical composition of the atmosphere has been calculated with focus on changes in reactive nitrogen and ozone. We apply a 3-D chemical transport model that includes comprehensive chemistry for both the troposphere and the stratosphere and uses various aircraft emission scenarios developed during TRADEOFF for the year 2000. The environmental effects of enhanced air traffic along polar routes and of possible changes in cruising altitude are investigated, taking into account effects of flight route changes on fuel consumption and emissions.

    In a reference case including both civil and military aircraft the model predicts aircraft-induced maximum increases of zonal-mean NOy (=total reactive nitrogen) between 156 pptv (August) and 322 pptv (May) in the tropopause region of the Northern Hemisphere. Resulting maximum increases in zonal-mean ozone vary between 3.1 ppbv in September and 7.7 ppbv in June.

    Enhanced use of polar routes implies substantially larger zonal-mean ozone increases in high Northern latitudes during summer, while the effect is negligible in winter.

    Lowering the flight altitude leads to smaller ozone increases in the lower stratosphere and upper troposphere, and to larger ozone increases at altitudes below. Regarding total ozone change, the degree of cancellation between these two effects depends on latitude and season, but annually and globally averaged the contribution from higher altitudes dominates, mainly due to washout of NOy in the troposphere, which weakens the tropospheric increase.

    Raising flight altitudes increases the ozone burden both in the troposphere and the lower stratosphere, primarily due to a more efficient accumulation of pollutants in the stratosphere.

  7. Impact of aircraft NOx emissions on tropospheric ozone calculated with a chemistry-general circulation model: Sensitivity to higher hydrocarbon chemistry

    NASA Astrophysics Data System (ADS)

    Kentarchos, A. S.; Roelofs, G. J.

    2002-07-01

    A three-dimensional chemistry-general circulation model has been employed to estimate the impact of current aircraft NOx emissions on tropospheric ozone. The model contains a representation of higher hydrocarbon chemistry, implemented by means of the Carbon Bond Mechanism 4 (CBM4), in order to investigate the potential effect of higher hydrocarbons on aircraft-induced ozone changes. Aircraft NOx emissions increase background NOX (= NO + NO2 + NO3 + 2N2O5 + HNO4) concentrations by 50-70 pptv in the upper troposphere over the Northern Hemisphere, and contribute up to 3 ppbv to upper tropospheric background ozone levels. When higher hydrocarbon chemistry is considered in the simulation, the aircraft-induced ozone perturbations are higher by ~12% during summer and the aircraft-induced ozone production efficiency per NOx molecule increases by ~20%, when compared to a simulation without higher hydrocarbon chemistry.

  8. NO(x) reduction additives for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc

    1993-01-01

    The reduction of oxides of nitrogen (NO(x)) emissions from aircraft gas turbine engines is a vital part of the NASA High Speed Research Program. Emissions reductions are critical to the feasibility of future High Speed Civil Transports which operate at supersonic speeds in the stratosphere. It is believed that large fleets of such aircraft using conventional gas turbine engines would emit levels of NO(x) that would be harmful to the stratospheric ozone layer. Previous studies have shown that NO(x) emissions can be reduced from stationary powerplant exhausts by the addition of additives such as ammonia to the exhaust gases. Since the exhaust residence times, pressures and temperatures may be different for aircraft gas turbines, a study has been made of additive effectiveness for high speed, high altitude flight.

  9. Combining active and passive remote sensing from research aircraft with atmospheric models to evaluate NOx emission fluxes and O3 formation in the Los Angeles Megacity

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer

    2013-04-01

    Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.

  10. Commercial Aircraft Emission Scenario for 2020: Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutkus, Donald J., Jr.; Baughcum, Steven L.; DuBois, Douglas P.; Wey, Chowen C. (Technical Monitor)

    2003-01-01

    This report describes the development of a three-dimensional database of aircraft fuel use and emissions (NO(x), CO, and hydrocarbons) for the commercial aircraft fleet projected to 2020. Global totals of emissions and fuel burn for 2020 are compared to global totals from previous aircraft emission scenario calculations.

  11. Controlling NOx emission from industrial sources

    SciTech Connect

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  12. NASA Glenn High Pressure Low NOx Emissions Research

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Wey, Changlie

    2008-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  13. Variation of radiative forcings and global warming potentials from regional aviation NOx emissions

    NASA Astrophysics Data System (ADS)

    Skowron, Agnieszka; Lee, David S.; De León, Ruben R.

    2015-03-01

    The response to hemispherical and regional aircraft NOx emissions is explored by using two climate metrics: radiative forcing (RF) and Global Warming Potential (GWP). The global chemistry transport model, MOZART-3 CTM, is applied in this study for a series of incremental aircraft NOx emission integrations to different regions. It was found that the sensitivity of chemical responses per unit emission rate from regional aircraft NOx emissions varies with size of aircraft NOx emission rate and that climate metric values decrease with increasing aircraft NOx emission rates, except for Southeast Asia. Previous work has recognized that aircraft NOx GWPs may vary regionally. However, the way in which these regional GWPs are calculated are critical. Previous studies have added a fixed amount of NOx to different regions. This approach can heavily bias the results of a regional GWP because of the well-established sensitivity of O3 production to background NOx whereby the Ozone Production Efficiency (OPE) is greater at small background NOx. Thus, even a small addition of NOx in a clean-air area can produce a large O3 response. Using this 'fixed addition' method of 0.035 Tg(N) yr-1, results in the greatest effect observed for North Atlantic and Brazil, ∼10.0 mW m-2/Tg(N) yr-1. An alternative 'proportional approach' is also taken that preserves the subtle balance of local NOx-O3-CH4 systems with the existing emission patterns of aircraft and background NOx, whereby a proportional amount of aircraft NOx, 5% (N) yr-1, is added to each region in order to determine the response. This results in the greatest effect observed for North Pacific that with its net NOx RF of 23.7 mW m-2/Tg(N) yr-1 is in contrast with the 'fixed addition' method. For determining regional NOx GWPs, it is argued that the 'proportional' approach gives more representative results. However, a constraint of both approaches is that the regional GWP determined is dependent on the relative global emission pattern

  14. Correlating Engine NOx Emission with Biodiesel Composition

    NASA Astrophysics Data System (ADS)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2016-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  15. LOW-CONCENTRATION NOX EMISSIONS MEASUREMENT

    EPA Science Inventory

    The paper gives results of a recent series of low-concentration nitrogen oxides (NOx) emission measurements, made by Midwest Research Institute (MRI) during U.S. EPA-sponsored Environmental Technology Verification (ETV) test of a NOx control system called Xonon (TM) Cool Combust...

  16. Advanced Low NOx Combustors for Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  17. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  18. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  19. The impact of global aviation NOx emissions on tropospheric composition changes from 2005 to 2011

    NASA Astrophysics Data System (ADS)

    Wasiuk, D. K.; Khan, M. A. H.; Shallcross, D. E.; Lowenberg, M. H.

    2016-09-01

    The impact of aviation NOx emissions from 2005 to 2011 on the chemical composition of the atmosphere has been investigated on the basis of integrations of the 3-D global chemical and transport model, STOCHEM-CRI with the novel CRIv2-R5 chemistry scheme. A base case simulation without aircraft NOx emissions and integrations with NOx emissions from aircraft are inter-compared. The sensitivity of the global atmosphere to varying the quantity and the geographical distribution of the global annual aviation NOx emissions is assessed by performing, for the first time, a series of integrations based on changing the total mass and distribution of aircraft NOx emissions derived from air traffic movements recorded between 2005 and 2011. The emissions of NOx from the global fleet based on actual records of air traffic movements between 2005 and 2011 increased the global tropospheric annual mean burden of O3 by 1.0 Tg and decreased the global tropospheric annual mean burden of CH4 by 2.5 Tg. The net NOy and O3 production increases by 0.5% and 1%, respectively between 2005 and 2011 in total. At cruise altitude, the absolute increase in the modelled O3 mixing ratios is found to be up to 0.7 ppb between 2005 and 2011 at 25°N-50°N.

  20. NOx emissions in China: historical trends and future perspectives

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, S. X.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.

    2013-06-01

    Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4, 34.0, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64 and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector and more than half is distributed equally between industry and transportation sectors. Selective Catalytic Reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020, and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to

  1. NOx emissions in China: historical trends and future perspectives

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, S. X.; Liu, H.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.

    2013-10-01

    Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to

  2. Simulating the global transport of nitrogen oxides emissions from aircraft

    NASA Astrophysics Data System (ADS)

    Sausen, R.; Köhler, I.

    1994-05-01

    With the atmosphere general circulation model ECHAM the passive transport of NOx emitted from global subsonic air traffic and the NOx concentration change due to these emissions are investigated. The source of NOx is prescribed according to an aircraft emission data base. The sink of NOx is parameterized as an exponential decay process with globally constant lifetime. Simulations in perpetual January and July modes are performed. Both the resulting mean and the standard deviation of the NOx mass mixing ratio are analysed. In January horizontal dispersion is more pronounced and vertical mixing is smaller than in July. In both cases the resulting quasi-stationary fields of the mass mixing ratio display a pronounced zonal asymmetry. The variability accounts up to 30% of the mean field.

  3. Verification of NOx emission inventories over North Korea.

    PubMed

    Kim, Na Kyung; Kim, Yong Pyo; Morino, Yu; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2014-12-01

    In this study, the top-down NOx emissions estimated from satellite observations of NO2 vertical column densities over North Korea from 1996 to 2009 were analyzed. Also, a bottom-up NOx emission inventory from REAS 1.1 from 1980 to 2005 was analyzed with several statistics. REAS 1.1 was in good agreement with the top-down approach for both trend and amount. The characteristics of NOx emissions in North Korea were quite different from other developed countries including South Korea. In North Korea, emissions from industry sector was the highest followed by transportation sector in the 1980s. However, after 1990, the NOx emissions from other sector, mainly agriculture, became the 2nd highest. Also, no emission centers such as urban areas or industrial areas were distinctively observed. Finally, the monthly NOx emissions were high during the warm season.

  4. Wide range operation of advanced low NOx aircraft gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  5. Satellite measurements of daily variations in soil NOx emissions

    NASA Astrophysics Data System (ADS)

    Bertram, Timothy H.; Heckel, Andreas; Richter, Andreas; Burrows, John P.; Cohen, Ronald C.

    2005-12-01

    Soil NOx emission from agricultural regions in the western United States has been investigated using satellite observations of NO2 from the SCIAMACHY instrument. We show that the SCIAMACHY observations over a 2 million hectare agricultural region in Montana capture the short intense NOx pulses following fertilizer application and subsequent precipitation and we demonstrate that these variations can be reproduced by tuning the mechanistic parameters in an existing model of soil NOx emissions.

  6. High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie

    2007-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  7. 40 CFR 96.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Tracking System § 96.154 Compliance with CAIR NOX emissions...

  8. 40 CFR 96.154 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Tracking System § 96.154 Compliance with CAIR NOX emissions...

  9. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  10. Assessing the photochemical impact of snow NOx emissions over Antarctica during ANTCI 2003

    NASA Astrophysics Data System (ADS)

    Wang, Yuhang; Choi, Yunsoo; Zeng, Tao; Davis, Douglas; Buhr, Martin; Gregory Huey, L.; Neff, William

    Surface and aircraft measurements show large amounts of reactive nitrogen over the Antarctic plateau during the ANTCI 2003 experiment. We make use of 1-D and 3-D chemical transport model simulations to analyze these measurements and assess the photochemical impact of snow NOx emissions. Boundary layer heights measured by SODAR at the South Pole were simulated reasonably well by the polar version of MM5 after a modification of ETA turbulence scheme. The average of model-derived snow NOx emissions (3.2-4.2×108moleccm-2s-1) at the South Pole is similar to the measured flux of 3.9×108moleccm-2s-1 during ISCAT 2000. Daytime snow NOx emission is parameterized as a function of temperature and wind speed. Surface measurements of NO, HNO3 and HNO4, and balloon measurements of NO at the South Pole are reasonably simulated by 1-D and 3-D models. Compared to Twin Otter measurements of NO over plateau regions, 3-D model simulated NO concentrations are at the low end of the observations, suggesting either that the parameterization based on surface measurements at the South Pole underestimates emissions at higher-elevation plateau regions or that the limited aircraft database may not be totally representative for the season of the year sampled. However, the spatial variability of near-surface NO measured by the aircraft is captured by the model to a large extent, indicating that snow NOx emissions are through a common mechanism. An average emission flux of 0.25kgNkm-2month-1 is calculated for December 2003 over the plateau (elevation above 2.5 km). About 50% of reactive nitrogen is lost by deposition and the other 50% by transport. The 3-D model results indicate a shallow but highly photochemically active oxidizing "canopy" enshrouding the entire Antarctic plateau due to snow NOx emissions.

  11. Spatially Resolved Emissions of NOx and VOCs and Comparison to Inventories.

    NASA Astrophysics Data System (ADS)

    Vaughan, A. R.; Lee, J. D.; Lewis, A. C.; Shaw, M.; Purvis, R.; Carslaw, D.; Hewitt, C. N.; Misztal, P. K.; Metzger, S.; Beevers, S.; Goldstein, A. H.; Karl, T.; Davison, B.

    2015-12-01

    Recent trends in ambient concentrations of NOx in the UK (and other European countries) have shown a general decrease over the period 1990 to 2002, followed by largely static concentrations from 2004 - present. This is not in line with the decreases predicted based on bottom up emission inventories and has lead to widespread non-compliance with EU Air Quality Directives. We present a method to quantify the geographic variability of emission of NOx and selected VOCs at a city scale (London) using an aircraft platform. High frequency observations of NOx and VOCs (10 Hz and 2 Hz, respectively) were made using low altitude flights across London and combined with 20 Hz micro-meteorological data to provide an emission flux using the aircraft eddy covariance technique. A continuous wavelet transformation was used to produce instantaneous fluxes along the flight transect and a parameterisation of a backward Lagrangian model used to calculate the flux footprint, attributing emission rates to specific areas in Greater London (see figure). The observed flux was compared to the UK National Atmospheric Emission Inventory (NAEI), which takes a "bottom up" approach to calculating emissions, involving estimates from different source sectors to produce yearly emission estimates. These were then modified using factors specific to each source to reflect the actual month, day and time of the flight, to provide a more meaningful comparison to the observation. A significant underestimation in the inventory NOx was observed ranging from 150-200% in outer London, to 300% in the central area. Potential reasons for this are discussed, including the poor treatment of real world emissions of NOx from diesel vehicles in the inventory. We also compare measurements to the London Atmospheric Emissions Inventory (LAEI), which provides a more explicit treatment of the traffic emissions specific to London and which shows better agreement with the measurements.

  12. Water Misting and Injection of Commercial Aircraft Engines to Reduce Airport NOx

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C. (Technical Monitor)

    2004-01-01

    This report provides the first high level look at system design, airplane performance, maintenance, and cost implications of using water misting and water injection technology in aircraft engines for takeoff and climb-out NOx emissions reduction. With an engine compressor inlet water misting rate of 2.2 percent water-to-air ratio, a 47 percent NOx reduction was calculated. Combustor water injection could achieve greater reductions of about 85 percent, but with some performance penalties. For the water misting system on days above 59 F, a fuel efficiency benefit of about 3.5 percent would be experienced. Reductions of up to 436 F in turbine inlet temperature were also estimated, which could lead to increased hot section life. A 0.61 db noise reduction will occur. A nominal airplane weight penalty of less than 360 lb (no water) was estimated for a 305 passenger airplane. The airplane system cost is initially estimated at $40.92 per takeoff giving an attractive NOx emissions reduction cost/benefit ratio of about $1,663/ton.

  13. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Optional SO2, NOX, and CO2 emissions... § 75.19 Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. (a... input, NOX, SO2, and CO2 mass emissions, and NOX emission rate under this part. If the owner or...

  14. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Optional SO2, NOX, and CO2 emissions... § 75.19 Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. (a... input, NOX, SO2, and CO2 mass emissions, and NOX emission rate under this part. If the owner or...

  15. Aircraft NO(x) had no Unique Fingerprint on Sonex; Lightning Dominated Fresh NO(x) Sources

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Sparling, L.; Kondo, Y.; Anderson, B.; Gregory, G.; Sachse, G.

    1999-01-01

    Key questions to which SONEX was directed were the following: Can aircraft corridors be detected? Is there a unique tracer for aircraft NO(x)? Can a "background" NO(x) (or NO(y) be defined? What fraction of NO(x) measured during SONEX was from aircraft? How representative was SONEX of the North Atlantic in 1997 and how typical of other years? We attempt to answer these questions through species-species correlations, probability distribution functions (PDFs), and meteorological history. There is not a unique aircraft tracer, largely due to the high variability of air mass origins and tracer ratios, which render "average" quantities meaningless. The greatest NO and NO(y) signals were associated with lightning and convective NO sources. Well-defined background CO, NO(y) and NO(y)/ozone ratio appear in subsets of two cross-track flights with subtropical origins and five flights with predominantly mid-latitude air. Forty percent of the observations on these 7 flights showed NO(y)/ozone to be above background, evidently due to unreacted NO(x). This NO(x) is a combination of aircraft, lightning and surface pollution injected by convection. The strongly subtropical signatures in SONEX observations, confirmed by pv (potential vorticity) values along flight tracks, argues for most of the unreacted NO(x) originating from lightning. Potential vorticity statistics along SONEX flight tracks in 1992-1998, and for the North Atlantic as a whole, show the SONEX meteorological environment to be representative of the North Atlantic flight corridor in the October-November period.

  16. NOx Emissions from Diesel Passenger Cars Worsen with Age

    SciTech Connect

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  17. NOx emissions from diesel passenger cars worsen with age

    DOE PAGES

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-02-17

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting formore » the observed deterioration, depending on the country and its share of diesel cars. Finally, we suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.« less

  18. Megacity NOx emissions and lifetimes probed from space

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Boersma, K. F.; Platt, U.; Lawrence, M.; Wagner, T.

    2012-04-01

    Megacity emission inventories, based on bottom-up estimates, are still highly uncertain, in particular in developing countries. Satellite observations have been demonstrated to allow regional and global top-down emission estimates of nitrogen oxides (NOx=NO+NO2), but require poorly quantified a-priori information on the lifetime of NOx.Here we present a new method for the determination of megacity NOx emissions and lifetimes from satellite measurements. Mean patterns of NO2 tropospheric columns are analyzed separately for a set of different wind direction sectors. From the combined use of the observed total burden and the downwind evolution of NO2, mean NOx photochemical lifetimes and total emissions are derived simultaneously. Typical daytime lifetimes of about 4 hours are found for several megacities at low and mid- latitudes, corresponding to mean OH concentrations of ~6e6 molec/cm3 around noon. The derived emissions are generally in good agreement with bottom-up inventories, but are significantly higher in e.g. the case of Riyadh (Saudi Arabia).The presented method works best for isolated "hot spots" of NOx emissions. For megacities in the vicinity (in terms of some hundred km) of other strong sources, like e.g. Paris, modified approaches are necessary. We will present different approaches, and the estimated emissions+uncertainties will be discussed in perspective of existing, bottom-up emission inventories.

  19. Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories.

    PubMed

    Vaughan, Adam R; Lee, James D; Misztal, Pawel K; Metzger, Stefan; Shaw, Marvin D; Lewis, Alastair C; Purvis, Ruth M; Carslaw, David C; Goldstein, Allen H; Hewitt, C Nicholas; Davison, Brian; Beevers, Sean D; Karl, Thomas G

    2016-07-18

    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory.

  20. Characterization of NOx, SO2, ethene, and propene from industrial emission sources in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Trainer, M.; Frost, G. J.; Ryerson, T. B.; Atlas, E. L.; de Gouw, J. A.; Flocke, F. M.; Fried, A.; Holloway, J. S.; Parrish, D. D.; Peischl, J.; Richter, D.; Schauffler, S. M.; Walega, J. G.; Warneke, C.; Weibring, P.; Zheng, W.

    2010-08-01

    The Houston-Galveston-Brazoria urban area contains industrial petrochemical sources that emit volatile organic compounds and nitrogen oxides, resulting in rapid and efficient ozone production downwind. During September to October 2006, the NOAA WP-3D aircraft conducted research flights as part of the second Texas Air Quality Study (TexAQS II). We use measurements of NOx, SO2, and speciated hydrocarbons from industrial sources in Houston to derive source emission ratios and compare these to emission inventories and the first Texas Air Quality Study (TexAQS) in 2000. Between 2000 and 2006, NOx/CO2 emission ratios changed by an average of -29% ± 20%, while a significant trend in SO2/CO2 emission ratios was not observed. We find that high hydrocarbon emissions are routine for the isolated petrochemical facilities. Ethene (C2H4) and propene (C3H6) are the major contributors to ozone formation based on calculations of OH reactivity for organic species including C2-C10 alkanes, C2-C5 alkenes, ethyne, and C2-C5 aldehydes and ketones. Measured ratios of C2H4/NOx and C3H6/NOx exceed emission inventory values by factors of 1.4-20 and 1-24, respectively. We examine trends in C2H4/NOx and C3H6/NOx ratios between 2000 and 2006 for the isolated petrochemical sources and estimate a change of -30% ± 30%, with significant day-to-day and within-plume variability. Median ambient mixing ratios of ethene and propene in Houston show decreases of -52% and -48%, respectively, between 2000 and 2006. The formaldehyde, acetaldehyde, and peroxyacetyl nitrate products produced by alkene oxidation are observed downwind, and their time evolution is consistent with the rapid photochemistry that also produces ozone.

  1. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  2. Advanced low NO/x/ combustors for supersonic high-altitude aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Shekleton, J. R.; White, D. J.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO(x), of two advanced aircraft combustor concepts at a simulated, high-altitude cruise condition. The two combustor designs, both members of the lean-reaction, pre-mixed family, are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.127-m size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO(x) level of 1.1 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa, 833 K inlet pressure and temperature, respectively and 1778 K outlet temperature on Jet-A1 fuel. In addition, emissions data were obtained at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.

  3. NOx emission trends in megacities derived from satellite measurements

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor; Beekmann, Matthias; Richter, Andreas

    2010-05-01

    The effects of air pollutant emissions on both local air quality in megacities and composition of the atmosphere on regional and global scales are currently an important issue of atmospheric researches. In order to properly evaluate these effects, atmospheric models should be provided with accurate information on emissions of major air pollutants. However, such information is frequently very uncertain, as it is documented in literature. The quantification of emissions and related effects is an especially difficult task in the case of developing countries. Recently, it has been demonstrated that satellite measurements of nitrogen dioxide (NO2) can be used as a source of independent information on NOx emissions. In particular, the satellite measurements were used in our earlier studies to improve spatial allocation of NOx emissions, to estimate multi-annual changes of NOx emissions on regional scales and to validate data of traditional emission inventories (see Ref. 1, 2). The goals of the present study are (1) developing an efficient method for estimation of NOx emissions trend in megacity regions by using satellite measurements and an inverse modeling technique and (2) obtaining independent estimates of NOx emission trends in several megacities in Europe and the Middle East in the period from 1996 to 2008. The study is based on the synergetic use of the data for tropospheric NO2 column amounts derived from the long-term GOME and SCIAMACHY measurements and simulations performed by the CHIMERE chemistry transport model. We performed the analysis involving methods of different complexity ranging from estimation of linear trends in the tropospheric NO2 columns retrieved from satellite measurements to evaluation of nonlinear trends in NOx emission estimates obtained with the inverse modeling approach, which, in the given case, involves only very simple and transparent formulations. The most challenging part of the study is the nonlinear trend estimation, which is

  4. Removal of NOx and NOy in Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Koike, M.; Chen, G.; Machida, T.; Watai, T.; Blake, D. R.; Streets, D. G.; Woo, J.-H.; Carmichael, G. R.; Kita, K.; Miyazaki, Y.; Shirai, T.; Liley, J. B.; Ogawa, T.

    2004-12-01

    The Pacific Exploration of Asian Continental Emission Phase A (PEACE-A) aircraft measurement campaign was conducted over the western Pacific in January 2002. Correlations of carbon monoxide (CO) with carbon dioxide (CO2) and back trajectories are used to identify plumes strongly affected by Asian continental emissions. ΔCO/ΔCO2 ratios (i.e., linear regression slopes of CO-CO2) in the plumes generally fall within the variability range of the CO/CO2 emission ratios estimated from an emission inventory for east Asia, demonstrating the consistency between the aircraft measurements and the emission characterization. Removal rates of reactive nitrogen (NOx and NOy) for the study region (altitude <4 km, 124°-140°E, 25°-45°N) are estimated using the correlation with CO2, the photochemical age of the plumes, and the NOx/CO2 emission ratio derived from the emission inventory. The plume age is estimated from the rates of hydrocarbon decay and hydroxyl radical (OH) concentration calculated using a constrained photochemical box model. The average lifetime of NOx is estimated to be 1.2 ± 0.4 days. Possible processes controlling the NOx lifetime are discussed in conjunction with results from earlier studies. The average lifetime of NOy is estimated to be 1.7 ± 0.5 days, which is comparable to the NOy lifetime of 1.7-1.8 days that has been previously reported for outflow from the United States. This similarity suggests the importance of chemical processing near the source regions in determining the NOy abundance.

  5. Nox Emission Reduction in Commercial Jets Through Water Injection

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Ossello, Chris; Snyder, Chris

    2002-01-01

    This paper discusses a method of the nitrogen oxides (NOx) emission reduction through the injection of water in commercial turbofan engines during the takeoff and climbout cycles. In addition to emission reduction, this method can significantly reduce turbine temperature during the most demanding operational modes (takeoff and climbout) and increase engine reliability and life.

  6. NOx Sensor for Direct Injection Emission Control

    SciTech Connect

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the

  7. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    SciTech Connect

    Woo, L Y; Glass, R S

    2008-11-14

    % NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  8. Cost-effective reduction of NOx emissions from electricity generation

    SciTech Connect

    Burtraw, D.; Palmer, K.; Bharvirkar, R.; Paul, A.

    2001-07-15

    This paper analyzes the benefits and costs of policies to reduce NOx emissions from electricity generation in the United States. Because emissions of NOx contribute to the high concentration of atmospheric ozone in the eastern states associated with health hazards, the US Environmental Protection Agency (EPA) has called on eastern states to formulate state implementation plans (SIPs) for reducing NOx emissions. The analysis considers three NOx reduction scenarios: a summer seasonal cap in the eastern states covered by EPA's NOx SIP call, an annual cap in the same SIP Call region, and a national annual cap. All scenarios allow for emissions trading. Although EPA's current policy is to implement a seasonal cap in the SIP Call region, this analysis indicates that an annual cap in the SIP Call region would yield about 400 million dollars more in net benefits (benefits less costs) than would a seasonal policy, based on particulate-related health effects only. An annual cap in the SIP Call region is also the policy that is most likely to achieve benefits in excess of costs. Consideration of omissions from this accounting, including the potential benefits from reductions in ozone concentrations, strengthens the finding that an annual program offers greater net benefits than does a seasonal program. 22 refs., 1 fig., 10 tabs.

  9. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX emissions limitation. (a) Allowance transfer deadline. The CAIR NOX Ozone Season allowances are available to be deducted for compliance with a source's CAIR NOX Ozone Season emissions limitation for a control period...

  10. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX emissions limitation. (a) Allowance transfer deadline. The CAIR NOX Ozone Season allowances are available to be deducted for compliance with a source's CAIR NOX Ozone Season emissions limitation for a control period...

  11. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX emissions limitation. (a) Allowance transfer deadline. The CAIR NOX Ozone Season allowances are available to be deducted for compliance with a source's CAIR NOX Ozone Season emissions limitation for a control period...

  12. 40 CFR 96.354 - Compliance with CAIR NOX emissions limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.354 Compliance with CAIR NOX emissions limitation. (a) Allowance transfer deadline. The CAIR NOX Ozone Season allowances are available to be deducted for compliance with a source's CAIR NOX Ozone Season emissions limitation for a control period...

  13. Scheduled civil aircraft emission inventories for 1992: Database development and analysis

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Tritz, Terrance G.; Henderson, Stephen C.; Pickett, David C.

    1996-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from scheduled commercial aircraft for each month of 1992. The seasonal variation in aircraft emissions was calculated for selected regions (global, North America, Europe, North Atlantic, and North Pacific). A series of parametric calculations were done to quantify the possible errors introduced from making approximations necessary to calculate the global emission inventory. The effects of wind, temperature, load factor, payload, and fuel tankering on fuel burn were evaluated to identify how they might affect the accuracy of aircraft emission inventories. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as N02), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  14. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  15. Technology for controlling emissions of oxides of nitrogen from supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Reck, G. M.; Rudey, R. A.

    1976-01-01

    Various experiments are sponsored and conducted by NASA to explore the potential of advanced combustion techniques for controlling aircraft engine emissions into the upper atmosphere. Of particular concern are the oxide of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  16. NOx Emissions from Oil and Gas Production in the North Sea

    NASA Astrophysics Data System (ADS)

    Lee, J. D.; Foulds, A.; Purvis, R.; Vaughan, A. R.; Carslaw, D.; Lewis, A. C.

    2015-12-01

    North Sea oil is a mixture of hydrocarbons, comprising liquid petroleum and natural gas, produced from petroleum reservoirs beneath the North Sea. As of January 2015, the North Sea is the world's most active offshore drilling region with 173 rigs drilling. During the summer of 2015, a series of survey flights took place on the UKs FAAM BAe 146 research aircraft with the primary aim to assess background methane (and other hydrocarbons) levels in the drilling areas of the North Sea. Also measured were Nitrogen Oxides (NO and NO2), which are emitted from almost all combustion processes and are a key air pollutant, both directly and as a precursor to ozone (O3). The oil and gas platforms in the North Sea are often manned and require significant power generation and support vessels for their continued operation, processes that potentially emit significant amounts of NOx into an otherwise relative clean environment. During these flights we were able to measure the NO­­­x (and any subsequently produced O3) emitted from specific rigs, as well as the NOx levels in the wider North Sea oil and gas production region (see figure for example). NOx mixing ratios of <10 ppbv were frequently observed in plumes, with significant perturbation to the wider North Sea background levels. NOx emissions from the rigs are point sources within the UKs National Atmospheric Emission Inventory (NAEI) and the measurements taken in plumes from individual rigs are used to assess the accuracy of these estimates.

  17. The effect of incomplete fuel-air mixing on the lean blowout limit, lean stability limit and NO(x) emissions in lean premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Shih, W.-P.; Lee, J. G.; Santavicca, D. A.

    1994-01-01

    Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors.

  18. Reconciling NOx emissions reductions and ozone trends in ...

    EPA Pesticide Factsheets

    Dynamic evaluation seeks to assess the ability of photochemical models to replicate changes in air quality as emissions and other conditions change. When a model fails to replicate an observed change, a key challenge is to discern whether the discrepancy is caused by errors in meteorological simulations, errors in emission magnitudes and changes, or inaccurate responses of simulated pollutant concentrations to emission changes. In this study, the Community Multiscale Air Quality (CMAQ) model is applied to simulate the ozone (O3) change after the NOx SIP Call and mobile emission controls substantially reduced nitrogen oxides (NOx) emissions in the eastern U.S. from 2002 to 2006. For both modeled and observed O3, changes in episode average daily maximal 8-h O3 were highly correlated (R2 = 0.89) with changes in the 95th percentile, although the magnitudes of reductions increased nonlinearly at high percentile O3 concentrations. Observed downward changes in mean NOx (−11.6 to −2.5 ppb) and 8-h O3 (−10.4 to −4.7 ppb) concentrations in metropolitan areas in the NOx SIP Call region were under-predicted by 31%–64% and 26%–66%, respectively. The under-predicted O3 improvements in the NOx SIP Call region could not be explained by adjusting for temperature biases in the meteorological input, or by considering uncertainties in the chemical reaction rate constants. However, the under-prediction in O3 improvements could be alleviated by 5%–31% by constraining NO

  19. Study of Lean NOx Technology for Diesel Emission Control

    SciTech Connect

    Mital, R.

    2000-08-20

    Diesel engines because of their reliability and efficiency are a popular mobile source. The diesel engine operates at higher compression ratios and with leaner fuel mixtures and produces lower carbon monoxide and hydrocarbon emissions. The oxygen-rich environment leads to higher nitrogen oxides in the form of NO. Catalysts selectively promoting the reduction of NOx by HCs in a lean environment have been termed lean NOx catalyst ''LNC''. The two groups that have shown most promise are, Copper exchanged zeolite Cu/ZSM5, and Platinum on alumina Pt/Al2O3.

  20. Measurement of In-Flight Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.

    1995-01-01

    Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.

  1. MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  2. 40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to...

  3. 40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to...

  4. 40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to...

  5. Avco Lycoming/NASA contract status. [on reduction of emissions from aircraft piston engines

    NASA Technical Reports Server (NTRS)

    Duke, L. C.

    1976-01-01

    The standards promulgated by the Environmental Protection Agency (EPA) for carbon monoxide (CO), unburned hydrocarbon (HC), and oxides-of-nitrogen (NOx) emissions were the basis in a study of ways to reduce emissions from aircraft piston engines. A variable valve timing system, ultrasonic fuel atomization, and ignition system changes were postulated.

  6. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    NASA Astrophysics Data System (ADS)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  7. NOx Emissions from a Lobed Fuel Injector/Burner

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, L. L.; Karagozian, A. R.; Smith, O. I.

    1996-01-01

    The present experimental study examines the performance of a novel fuel injector/burner configuration with respect to reduction in nitrogen oxide NOx emissions. The lobed injector/burner is a device in which very rapid initial mixing of reactants can occur through strong streamwise vorticity generation, producing high fluid mechanical strain rates which can delay ignition and thus prevent the formation of stoichiometric diffusion flames. Further downstream of the rapid mixing region. this flowfield produces a reduced effective strain rate, thus allowing ignition to occur in a premixed mode, where it is possible for combustion to take place under locally lean conditions. potentially reducing NOx emissions from the burner. The present experiments compare NO/NO2/NOx emissions from a lobed fuel injector configuration with emissions from a straight fuel injector to determine the net effect of streamwise vorticity generation. Preliminary results show that the lobed injector geometry can produce lean premixed flame structures. while for comparable flow conditions, a straight fuel injector geometry produces much longer. sooting diffusion flames or slightly rich pre-mixed flames. NO measurements show that emissions from a lobed fuel injector/burner can be made significantly lower than from a straight fuel injector under comparable flow conditions.

  8. Measurements of aircraft emissions indices at airports passive remote sensing

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Jahn, Carsten; Sturm, Peter J.; Lechner, Bernhard; Bacher, Michael

    2003-04-01

    The emission indices of aircraft engine exhausts to calculate precisely the emissions inventories of airports are not available up to now from measurements taken under operating conditions. To determine these data no installations nearby or behind the aircraft are possible at airports. That's why measurements by FTIR emission spectrometry were performed by the IMK-IFU with a spectrometer installed in a van and with total measurement time at one thrust level of about 1 minute to determine CO, NO and CO2. The FTIR instrument telescope was aligned to the engine nozzle exit of standing aircraft. A DOAS and a FTIR spectrometer with globar were used for simultaneous open-path measurements of NO, NO2, CO, CO2 and speciated hydrocarbons behind the aircraft by the TUG-VKMB. Measurement results at the airports Frankfurt/Main, London-Heathrow and Vienna are presented. The methods are evaluated by comparing CO emission indices from passive measurements with open-path data. The measured emission indices of CO show slightly higher values than the International Civil Aviation Organisation data sheets but less values for NOx emissions. A fruitful co-operation with the airlines AUA, BA and DLH as well as the airport authorities in Vienna and London-Heathrow supported this work which is financed from EC.

  9. In-flight measurements of cruise altitude nitric oxide emission indices of commercial jet aircraft

    NASA Astrophysics Data System (ADS)

    Schulte, P.; Schlager, H.

    Simultaneous in-situ NO and CO2 measurements on board the DLR Falcon research aircraft in the exhaust plumes of commercial short to medium range jet aircraft are used to determine lower limits for the NOx emission indices EI(NOx) for cruising conditions. Concentration enhancements for NO and CO2 of 9 to 33 ppbv and 4 to 14 ppmv, respectively, relative to ambient background concentrations were observed in the exhaust trails 40 s to 130 s after emission. The derived EI(NOx)-limits range between 6.4 to 11.7 g/kg. Though the NO2 fraction in the exhaust plumes has not been measured during these pilot investigations, arguments are given that the derived lower limits represent a close approximation to the EI(NOx) values. Within the present uncertainties they are in agreement with predictions based on ground-based engine test data.

  10. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  11. Latitudinal variation of the effect of aviation NOx emissions on atmospheric ozone and methane and related climate metrics

    NASA Astrophysics Data System (ADS)

    Köhler, M. O.; Rädel, G.; Shine, K. P.; Rogers, H. L.; Pyle, J. A.

    2013-01-01

    We evaluate the response to regional and latitudinal changes in aircraft NOx emissions using several climate metrics (radiative forcing (RF), Global Warming Potential (GWP), Global Temperature change Potential (GTP)). Global chemistry transport model integrations were performed with sustained perturbations in regional aircraft and aircraft-like NOx emissions. The RF due to the resulting ozone and methane changes is then calculated. We investigate the impact of emission changes for specific geographical regions (approximating to USA, Europe, India and China) and cruise altitude emission changes in discrete latitude bands covering both hemispheres. We find that lower latitude emission changes (per Tg N) cause ozone and methane RFs that are about a factor of 6 larger than those from higher latitude emission changes. The net RF is positive for all experiments. The meridional extent of the RF is larger for low latitude emissions. GWPs for all emission changes are positive, with tropical emissions having the largest values; the sign of the GTP depends on the choice of time horizon.

  12. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this...

  13. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this...

  14. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this...

  15. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this...

  16. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this...

  17. Satellite observations of NOx and VOC emissions from fires

    NASA Astrophysics Data System (ADS)

    Zoogman, P.; Chance, K.; Huang, G.; Gonzalez Abad, G.; Miller, C. E.; Nowlan, C. R.; Liu, X.

    2015-12-01

    We present estimates of NOx, formaldehyde, and glyoxal emissions from biomass burning events derived from enhancements measured by OMI (Ozone Monitoring Instrument). Emissions from biomass burning can vary greatly both regionally and from event to event, but previous work has been unable to fully explain this variability. Satellite observations from OMI offer a powerful tool to observe biomass burning events by providing observations globally over a range of environmental conditions that effect emissions of NOx, formaldehyde, and glyoxal. We will expand on previous studies by using OMI measurements to investigate not only the dependence of the emissions of each of these species on fire intensity but also the dependence of the ratios of these species. Fire intensity is quantified by using fire radiative power quantified by the MODIS (Moderate-Resolution Imaging Spectrometer) satellite instrument. We also account for variation of emissions and their ratios due to available fuel loading and fire types, which are affected by regional (e.g. biome type) and meteorological (e.g. wind, temperature, rainfall) factors. Furthermore, in individual case studies we will constrain how the chemical processing of primary fire emissions effects the secondary formation of VOCs and ozone by exploiting the temporal and spatial evolution of these interspecies relationships.

  18. Summary of NOx Emissions Reduction from Biomass Cofiring

    SciTech Connect

    Dayton, D.

    2002-05-01

    NOx emissions from commercial- and pilot-scale biomass/coal cofiring demonstrations are reduced as the percentage of energy supplied to the boiler by the biomass fuel is increased. This report attempts to provide a summary of the NO{sub x} emissions measured during recent biomass/coal cofiring demonstrations. These demonstrations were carried out at the commercial and pilot-scales. Commercial-scale tests were conducted in a variety of pulverized fuel boiler types including wall-fired, T-fired, and cyclone furnaces. Biomass input ranged up to 20% on a mass basis and 10% on an energy basis.

  19. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  20. NOx Emission Reduction by Oscillating combustion

    SciTech Connect

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  1. Methodology for Airborne Quantification of NOx fluxes over Central London and Comparison to Emission Inventories

    NASA Astrophysics Data System (ADS)

    Vaughan, A. R.; Lee, J. D.; Lewis, A. C.; Purvis, R.; Carslaw, D.; Misztal, P. K.; Metzger, S.; Beevers, S.; Goldstein, A. H.; Hewitt, C. N.; Shaw, M.; Karl, T.; Davison, B.

    2015-12-01

    The emission of pollutants is a major problem in today's cities. Emission inventories are a key tool for air quality management, with the United Kingdom's National and London Atmospheric Emission Inventories (NAEI & LAEI) being good examples. Assessing the validity of such inventoried is important. Here we report on the technical methodology of matching flux measurements of NOx over a city to inventory estimates. We used an eddy covariance technique to directly measure NOx fluxes from central London on an aircraft flown at low altitude. NOx mixing ratios were measured at 10 Hz time resolution using chemiluminescence (to measure NO) and highly specific photolytic conversion of NO2 to NO (to measure NO2). Wavelet transformation was used to calculate instantaneous fluxes along the flight track for each flight leg. The transformation allows for both frequency and time information to be extracted from a signal, where we quantify the covariance between the de-trended vertical wind and concentration to derive a flux. Comparison between the calculated fluxes and emission inventory data was achieved using a footprint model, which accounts for contributing source. Using both a backwards lagrangian model and cross-wind dispersion function, we find the footprint extent ranges from 5 to 11 Km in distance from the sample point. We then calculate a relative weighting matrix for each emission inventory within the calculated footprint. The inventories are split into their contributing source sectors with each scaled using up to date emission factors, giving a month; day and hourly scaled estimate which is then compared to the measurement.

  2. Inverse Modeling of Texas NOx Emissions Using Space-Based and Ground-Based NO2 Observations

    NASA Technical Reports Server (NTRS)

    Tang, Wei; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-01-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellitebased top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  3. Scheduled Civil Aircraft Emission Inventories for 1976 and 1984: Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.; Tritz, Terrance G.

    1996-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from scheduled commercial aircraft for four months (February, May, August, and November) of 1976 and 1984. Combining this data with earlier published data for 1990 and 1992, trend analyses for fuel burned, NOx, carbon monoxide, and hydrocarbons were calculated for selected regions (global, North America, Europe, North Atlantic, and North Pacific). These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  4. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  5. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  6. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wild, Robert J.; Dubé, William P.; Aikin, Kenneth C.; Eilerman, Scott J.; Neuman, J. Andrew; Peischl, Jeff; Ryerson, Thomas B.; Brown, Steven S.

    2017-01-01

    Nitrogen oxides (NOx = NO + NO2) emitted by on-road combustion engines are important contributors to tropospheric ozone production. The NOx fraction emitted as nitrogen dioxide (NO2) is usually presumed to be small but can affect ozone production and distribution, and this fraction is generally not reported in emissions inventories. We have developed an accurate method for determination of this primary NO2 emission and demonstrated it during measurement of on-road vehicle emission plumes from a mobile laboratory during July and August 2014 in the region between Denver and Greeley in Colorado. During a total of approximately 90 h of sampling from an instrumented mobile laboratory, we identified 1867 vehicle emission plumes, which were extracted using an algorithm that looks for rapid and large increases in measured NOx. We find a distribution of NO2/NOx emissions similar to a log-normal profile, with an average emission ratio of 0.053 ± 0.002 per sampled NOx plume. The average is not weighted by the total NOx emissions from sampled vehicles, which is not measured here, and so may not represent the NO2/NOx ratio of the total NOx emission if this ratio is a function of NOx itself. Although our current data set does not distinguish between different engine types (e.g., gasoline, light duty diesel and heavy duty diesel), the ratio is on the low end of recent reports of vehicle fleet NO2 to NOx emission ratios in Europe.

  7. Environmental protection agency aircraft emissions standards

    NASA Technical Reports Server (NTRS)

    Kittredge, G. D.

    1977-01-01

    Emissions of air pollutants from aircraft were investigated in order to determine: (1) the extent to which such emissions affect air quality in air quality control regions throughout the United States; and (2) the technological feasibility of controlling such emissions. The basic information supporting the need for aircraft emissions standards is summarized. The EPA ambient air quality standards are presented. Only the primary (health related) standards are shown. Of the six pollutants, only the first three, carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides, are influenced significantly by aircraft.

  8. High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study.

    PubMed

    He, Chao; Li, Jiaqiang; Ma, Zhilei; Tan, Jianwei; Zhao, Longqing

    2015-09-01

    Diesel vehicles are responsible for most of the traffic-related nitrogen oxide (NOx) emissions, including nitric oxide (NO) and nitrogen dioxide (NO2). The use of after-treatment devices increases the risk of high NO2/NOx emissions from diesel engines. In order to investigate the factors influencing NO2/NOx emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter (CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NOx ratios downstream of the CDPF range around 20%-83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NOx emissions. The maximum NO2/NOx emission appears at the exhaust temperature of 350°C. The space velocity, engine-out PM/NOx ratio (mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NOx emissions decreased with increasing space velocity and engine-out PM/NOx ratio. When the CO conversion ratios range from 80% to 90%, the NO2/NOx emissions remain at a high level.

  9. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  10. Particle and gaseous emissions from commercial aircraft at each stage of the landing and takeoff cycle.

    PubMed

    Mazaheri, M; Johnson, G R; Morawska, L

    2009-01-15

    A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2 and NOx, were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependent on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16 x 10(15)-5.42 x 10(16) kg(-1), 0.03-0.72 g.kg(-1), and 3.25-37.94 g.kg(-1), respectively, for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4-100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) (Environmental Protection, Annex 16, Vol. II, Aircraft Engine Emissions, 2nd ed.; ICAO--International Civil Aviation Organization: Montreal, 1993).

  11. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  12. 40 CFR 76.6 - NOX emission limitations for Group 2 boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.6 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2,...

  13. 40 CFR 76.6 - NOX emission limitations for Group 2 boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.6 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2,...

  14. 40 CFR 76.6 - NOX emission limitations for Group 2 boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.6 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2,...

  15. 40 CFR 76.6 - NOX emission limitations for Group 2 boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.6 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2,...

  16. 40 CFR 76.6 - NOX emission limitations for Group 2 boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.6 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2,...

  17. Observations and Modeling of US Power Plant NOx Emission Reductions and Their Impact on Air Quality

    NASA Astrophysics Data System (ADS)

    Frost, G. J.; Kim, S.; McKeen, S.; Hsie, E.; Trainer, M.; Heckel, A.; Richter, A.; Burrows, J.

    2007-12-01

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O3). One of the largest US sources, electric power generation, represented about 25% of US anthropogenic NOx emissions prior to the recent implementation of pollution controls by utility companies. Continuous emission monitoring data demonstrate that overall US power plant NOx emissions decreased about 50% during the summer ozone season since the late 1990's. Space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to these emission reductions. Satellite-retrieved summertime nitrogen dioxide (NO2) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast US urban corridor. Model simulations predict lower O3 across much of the eastern US in response to these emission reductions.

  18. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  19. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...) of this section, calculate hourly NOX mass emissions from the hourly NOX concentration (in ppm) and... NOX-diluent continuous emissions monitoring system or NOX concentration monitoring system, the...

  20. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...) of this section, calculate hourly NOX mass emissions from the hourly NOX concentration (in ppm) and... NOX-diluent continuous emissions monitoring system or NOX concentration monitoring system, the...

  1. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...) of this section, calculate hourly NOX mass emissions from the hourly NOX concentration (in ppm) and... NOX-diluent continuous emissions monitoring system or NOX concentration monitoring system, the...

  2. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...) of this section, calculate hourly NOX mass emissions from the hourly NOX concentration (in ppm) and... NOX-diluent continuous emissions monitoring system or NOX concentration monitoring system, the...

  3. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...) of this section, calculate hourly NOX mass emissions from the hourly NOX concentration (in ppm) and... NOX-diluent continuous emissions monitoring system or NOX concentration monitoring system, the...

  4. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  5. Aircraft emissions, plume chemistry, and alternative fuels: results from the APEX, AAFEX, and MDW-2009 campaigns

    NASA Astrophysics Data System (ADS)

    Wood, E. C.; Herndon, S. C.; Timko, M.; Yu, Z.; Miake-Lye, R. C.; Lee, B. H.; Santoni, G.; Munger, J. W.; Wofsy, S.; Anderson, B.; Knighton, W. B.

    2009-12-01

    We describe observations of aircraft emissions from the APEX, JETS-APEX2, APEX3, MDW-2009 and AAFEX campaigns. Direct emissions of HOx precursors are important for understanding exhaust plume chemistry due to their role in determining HOx concentrations. Nitrous acid (HONO) and formaldehyde are crucial HOx precursors and thus drivers of plume chemistry. At idle power, aircraft engine exhaust is unique among fossil fuel combustion sources due to the speciation of both NOx and VOCs. The impacts of emissions of HOx precursors on plume chemistry at low power are demonstrated with empirical observations of rapid NO to NO2 conversion, indicative of rapid HOx chemistry. The impacts of alternative fuels (derived from biomass, coal, and natural gas) on emissions of NOx, CO, and speciated VOCs are discussed.

  6. Spatio-temporal variability in isotopic signatures of atmospheric NOx emissions from vehicles

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Wojtal, P.; O'Connor, M.; Clark, S.; Hastings, M. G.

    2015-12-01

    Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry and radiative forcing. Their oxidation products, nitric acid or nitrate, have significant contributions to nitrogen (N) deposition, with implications for ecosystem health. On-road vehicle NOx sources currently dominate U.S. anthropogenic emission budgets, yet vehicle NOx emissions contributions to local and regional N deposition patterns are highly uncertain. NOx isotopic signatures offer a potentially valuable observational tool to trace source contributions to N deposition. We characterize the spatio-temporal variability of vehicle NOx emission isotopic signatures with a field and laboratory-verified technique for actively capturing NOx in solution to quantify the nitrogen isotopic composition (δ15N-NOx) to within ±1.5‰ (1σ) precision. We present a novel combination of on-road mobile and stationary urban δ15N-NOx measurements at minutes to hourly resolution along with NOx and CO2 concentration measurements. We evaluate spatial gradients of δ15N-NOx on U.S. Northeast and Midwest highways, including six urban metropolitan areas and rural interstate highways during summer and autumn. We also assess on-road diurnal δ15N-NOx variations over ~800 km driving distance in Providence, RI by targeting the upwind footprint of urban background measurements to distinguish background and source NOx. We observe on-road δ15N-NOx signatures range from -3 to -10‰ under different traffic conditions in the U.S. Northeast and Midwest. On-road δ15N-NOx daytime variations from -3 to -6‰ agree well with simultaneous urban background sampling in Providence, RI, suggesting that vehicles dominate NOx emissions in this region. We use these datasets to estimate the range of representative δ15N-NOx source signatures for U.S. vehicle fleet-integrated emission plumes. Our novel approach suggests that previously reported isotopic signatures for vehicle NOx are not necessarily representative. These

  7. An Evaluation of Aircraft Emissions Inventory Methodology by Comparisons with Reported Airline Data

    NASA Technical Reports Server (NTRS)

    Daggett, D. L.; Sutkus, D. J.; DuBois, D. P.; Baughcum, S. L.

    1999-01-01

    This report provides results of work done to evaluate the calculation methodology used in generating aircraft emissions inventories. Results from the inventory calculation methodology are compared to actual fuel consumption data. Results are also presented that show the sensitivity of calculated emissions to aircraft payload factors. Comparisons of departures made, ground track miles flown and total fuel consumed by selected air carriers were made between U.S. Dept. of Transportation (DOT) Form 41 data reported for 1992 and results of simplified aircraft emissions inventory calculations. These comparisons provide an indication of the magnitude of error that may be present in aircraft emissions inventories. To determine some of the factors responsible for the errors quantified in the DOT Form 41 analysis, a comparative study of in-flight fuel flow data for a specific operator's 747-400 fleet was conducted. Fuel consumption differences between the studied aircraft and the inventory calculation results may be attributable to several factors. Among these are longer flight times, greater actual aircraft weight and performance deterioration effects for the in-service aircraft. Results of a parametric study on the variation in fuel use and NOx emissions as a function of aircraft payload for different aircraft types are also presented.

  8. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles....

  9. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles....

  10. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles....

  11. Control of NOx Emissions from Stationary Combustion Sources

    EPA Science Inventory

    In general, NOx control technologies are categorized as being either primary control technologies or secondary control technologies. Primary control technologies reduce the formation of NOx in the primary combustion zone. In contrast, secondary control technologies destroy the NO...

  12. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, F.; van der Werf, G.

    2013-12-01

    Biomass burning is an important contributor to global total emissions of NOx (NO+NO2). Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome specific emission factors, defined in units of grams of NO per kilogram of dry matter consumed. Emission factors are a significant source of uncertainty in bottom-up fire emissions modeling because relatively few observations are available to characterize the large spatial and temporal variability of burning conditions. In this paper we use NO2 tropospheric column observations from the Ozone Monitoring Instrument (OMI) from the year 2005 over South America to calculate monthly NOx emission factors for four fire types: deforestation, savanna/grassland, woodland, and agricultural waste burning. In general, the spatial trends in NOx emission factors calculated in this work are consistent with emission factors derived from in situ measurements from the region, but are more variable than published biome specific global average emission factors widely used in bottom up fire emissions inventories such as the Global Fire Emissions Database (GFED) v3. Satellite based NOx emission factors also indicate substantial temporal variability in burning conditions. Overall, we found that deforestation fires have the lowest NOx emission factors, on average 30% lower than the emission factors used in GFED v3. Agricultural fire NOx emission factors were the highest, on average 80% higher than GFED v3 values. For savanna, woodland, and deforestation fires early dry season NOx emission factors were a factor of ~1.5-2.0 higher than late dry season emission factors. A minimum in the NOx emission factor seasonal cycle for deforestation fires occurred in August, the time period of severe drought in South America in 2005. Our results support the hypothesis that prolonged dry spells may lead to an increase in the contribution of smoldering combustion from large diameter fuels to total

  13. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; van der Werf, G. R.

    2013-08-01

    Biomass burning is an important contributor to global total emissions of NOx (NO + NO2). Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome specific emission factors, defined in units of grams of NO per kilogram of dry matter consumed. Emission factors are a significant source of uncertainty in bottom-up fire emissions modeling because relatively few observations are available to characterize the large spatial and temporal variability of burning conditions. In this paper we use NO2 tropospheric column observations from the Ozone Monitoring Instrument (OMI) from the year 2005 over South America to calculate monthly NOx emission factors for four fire types: deforestation, savanna/grassland, woodland, and agricultural waste burning. In general, the spatial trends in NOx emission factors calculated in this work are consistent with emission factors derived from in situ measurements from the region, but are more variable than published biome specific global average emission factors widely used in bottom up fire emissions inventories such as the Global Fire Emissions Database (GFED) v3. Satellite based NOx emission factors also indicate substantial temporal variability in burning conditions. Overall, we found that deforestation fires have the lowest NOx emission factors, on average 30 % lower than the emission factors used in GFED v3. Agricultural fire NOx emission factors were the highest, on average a factor of 2 higher than GFED v3 values. For savanna, woodland, and deforestation fires early dry season NOx emission factors were a factor of ~1.5-2.0 higher than late dry season emission factors. A minimum in the NOx emission factor seasonal cycle for deforestation fires occurred in August, the time period of severe drought in South America in 2005. Our results support the hypothesis that prolonged dry spells may lead to an increase in the contribution of smoldering combustion from large diameter

  14. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2014-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  15. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  16. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui Joe; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions.This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio(theta) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  17. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2014-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (phi) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  18. Primary VOC emissions from Commercial Aircraft Jet Engines

    NASA Astrophysics Data System (ADS)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  19. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SIP revisions relating to budgets for SO2 and NOX emissions. 51.125 Section 51.125 Protection of... SIP revisions relating to budgets for SO2 and NOX emissions. (a) For its transport SIP revision under... projections contained in its approved SIP submission. (1) Every-year reporting cycle. As applicable,...

  20. REDUCTION OF NOx EMISSION FROM COAL COMBUSTION THROUGH OXYGEN ENRICHMENT

    SciTech Connect

    Western Research Institute

    2006-07-01

    BOC Process Gas Solutions and Western Research Institute (WRI) conducted a pilot-scale test program to evaluate the impact of oxygen enrichment on the emissions characteristics of pulverized coal. The combustion test facility (CTF) at WRI was used to assess the viability of the technique and determine the quantities of oxygen required for NOx reduction from coal fired boiler. In addition to the experimental work, a series of Computational Fluid Dynamics (CFD) simulations were made of the CTF under comparable conditions. A series of oxygen enrichment test was performed using the CTF. In these tests, oxygen was injected into one of the following streams: (1) the primary air (PA), (2) the secondary air (SA), and (3) the combined primary and secondary air. Emission data were collected from all tests, and compared with the corresponding data from the baseline cases. A key test parameter was the burner stoichiometry ratio. A series of CFD simulation models were devised to mimic the initial experiments in which secondary air was enriched with oxygen. The results from these models were compared against the experimental data. Experimental evidence indicated that oxygen enrichment does appear to be able to reduce NOx levels from coal combustion, especially when operated at low over fire air (OFA) levels. The reductions observed however are significantly smaller than that reported by others (7-8% vs. 25-50%), questioning the economic viability of the technique. This technique may find favor with fuels that are difficult to burn or stabilize at high OFA and produce excessive LOI. While CFD simulation appears to predict NO amounts in the correct order of magnitude and the correct trend with staging, it is sensitive to thermal conditions and an accurate thermal prediction is essential. Furthermore, without development, Fluent's fuel-NO model cannot account for a solution sensitive fuel-N distribution between volatiles and char and thus cannot predict the trends seen in the

  1. Inverse modelling of NOx emissions over eastern China: uncertainties due to chemical non-linearity

    NASA Astrophysics Data System (ADS)

    Gu, Dasa; Wang, Yuhang; Yin, Ran; Zhang, Yuzhong; Smeltzer, Charles

    2016-10-01

    Satellite observations of nitrogen dioxide (NO2) have often been used to derive nitrogen oxides (NOx = NO + NO2) emissions. A widely used inversion method was developed by Martin et al. (2003). Refinements of this method were subsequently developed. In the context of this inversion method, we show that the local derivative (of a first-order Taylor expansion) is more appropriate than the "bulk ratio" (ratio of emission to column) used in the original formulation for polluted regions. Using the bulk ratio can lead to biases in regions of high NOx emissions such as eastern China due to chemical non-linearity. Inverse modelling using the local derivative method is applied to both GOME-2 and OMI satellite measurements to estimate anthropogenic NOx emissions over eastern China. Compared with the traditional method using bulk ratio, the local derivative method produces more consistent NOx emission estimates between the inversion results using GOME-2 and OMI measurements. The results also show significant changes in the spatial distribution of NOx emissions, especially over high emission regions of eastern China. We further discuss a potential pitfall of using the difference of two satellite measurements to derive NOx emissions. Our analysis suggests that chemical non-linearity needs to be accounted for and that a careful bias analysis is required in order to use the satellite differential method in inverse modelling of NOx emissions.

  2. Scheduled Civil Aircraft Emission Inventories for 1999: Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutkus, Donald J., Jr.; Baughcum, Steven L.; DuBois, Douglas P.

    2001-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (NO(x), CO, and hydrocarbons) for the scheduled commercial aircraft fleet for each month of 1999. Global totals of emissions and fuel burn for 1999 are compared to global totals from 1992 and 2015 databases. 1999 fuel burn, departure and distance totals for selected airlines are compared to data reported on DOT Form 41 to evaluate the accuracy of the calculations. DOT Form T-100 data were used to determine typical payloads for freighter aircraft and this information was used to model freighter aircraft more accurately by using more realistic payloads. Differences in the calculation methodology used to create the 1999 fuel burn and emissions database from the methodology used in previous work are described and evaluated.

  3. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    SciTech Connect

    John S. Nordin; Norman W. Merriam

    1997-04-01

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  4. Nitrogen oxide emissions and their control from uninstalled aircraft engines in enclosed test cells: Joint report to congress on the Environmental Protection Agency - Department of Transportation Study. Final report

    SciTech Connect

    1994-10-01

    The report was submitted to the Congress under mandate of Section 233 of the Clean Air Act Amendments of 1990. The report provides a characterization of aircraft engine test cells and their emissions. Various NOx control technologies that have been applied to combustion sources other than test cells are examined in the report for their applicability to test cells. Effects of NOx controls on the aircraft engine and aircraft engine test are also addressed. Finally, annual emissions from test cells are estimated and compared to total NOx emissions in the applicable ozone non-attainment areas.

  5. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; van der Werf, G. R.

    2014-04-01

    Biomass burning is an important contributor to global total emissions of NOx (NO+NO2). Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome-specific emission factors, defined in units of grams of NO per kilogram of dry matter consumed. Emission factors are a significant source of uncertainty in bottom-up fire emissions modeling because relatively few observations are available to characterize the large spatial and temporal variability of burning conditions. In this paper we use NO2 tropospheric column observations from the Ozone Monitoring Instrument (OMI) from the year 2005 over South America to calculate monthly NOx emission factors for four fire types: deforestation, savanna/grassland, woodland, and agricultural waste burning. In general, the spatial patterns in NOx emission factors calculated in this work are consistent with emission factors derived from in situ measurements from the region but are more variable than published biome-specific global average emission factors widely used in bottom-up fire emissions inventories such as the Global Fire Emissions Database (GFED). Satellite-based NOx emission factors also indicate substantial temporal variability in burning conditions. Overall, we found that deforestation fires have the lowest NOx emission factors, on average 30% lower than the emission factors used in GFED v3. Agricultural fire NOx emission factors were the highest, on average a factor of 1.8 higher than GFED v3 values. For savanna, woodland, and deforestation fires, early dry season NOx emission factors were a factor of ~1.5-2 higher than late dry season emission factors. A minimum in the NOx emission factor seasonal cycle for deforestation fires occurred in August, the time period of severe drought in South America in 2005, supporting the hypothesis that prolonged dry spells may lead to an increase in the contribution of smoldering combustion from large-diameter fuels

  6. Wide range operation of advanced low NOx combustors for supersonic high-altitude aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.

    1977-01-01

    An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.

  7. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-10-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV

  8. Satellite-Observed US Power Plant NOx Emission Reductions and Their Impact on Air Quality

    NASA Astrophysics Data System (ADS)

    Kim, S.; Heckel, A.; McKeen, S.; Frost, G.; Hsie, E.; Trainer, M.; Richter, A.; Burrows, J.; Peckham, S.; Grell, G.

    2005-05-01

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O3). O3 exceedances in the northeast US have been associated with NOx emissions from point sources, especially coal-burning power plants. As a result, numerous programs to control point source NOx emissions in the eastern US have been implemented over the past decade. Here we assess the change of regional NOx emissions in the eastern US by comparing nitrogen dioxide (NO2) columns derived from the satellite instruments with three-dimensional regional scale chemical transport model results that include the estimated NOx emission changes. SCIAMACHY measurements are used in comparisons with WRF-Chem model simulations for 2004 because of their availability and similar horizontal resolution to the model simulations. However, to get the long term evolution of NO2 columns between 1997 and 2005, both GOME and SCIAMACHY data are utilized. Satellite observations clearly detect both year-to-year and summertime NO2 column decreases in regions impacted by power plants that have implemented NOx controls over the past decade. In the Ohio River Valley, where power plants dominate NOx emission, satellite-retrieved summertime NO2 columns and bottom-up emission estimates show larger decreases than in the northeast US urban corridor.

  9. Satellite-Observed US Power Plant NOx Emission Reductions and Their Impact on Air Quality

    NASA Astrophysics Data System (ADS)

    Kim, S.; Heckel, A.; McKeen, S.; Frost, G.; Hsie, E.; Trainer, M.; Richter, A.; Burrows, J.; Peckham, S.; Grell, G.

    2006-12-01

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O3). O3 exceedances in the northeast US have been associated with NOx emissions from point sources, especially coal-burning power plants. As a result, numerous programs to control point source NOx emissions in the eastern US have been implemented over the past decade. Here we assess the change of regional NOx emissions in the eastern US by comparing nitrogen dioxide (NO2) columns derived from the satellite instruments with three-dimensional regional scale chemical transport model results that include the estimated NOx emission changes. SCIAMACHY measurements are used in comparisons with WRF-Chem model simulations for 2004 because of their availability and similar horizontal resolution to the model simulations. However, to get the long term evolution of NO2 columns between 1997 and 2005, both GOME and SCIAMACHY data are utilized. Satellite observations clearly detect both year-to-year and summertime NO2 column decreases in regions impacted by power plants that have implemented NOx controls over the past decade. In the Ohio River Valley, where power plants dominate NOx emission, satellite-retrieved summertime NO2 columns and bottom-up emission estimates show larger decreases than in the northeast US urban corridor.

  10. Space-based NOx emission estimates over remote regions improved in DECSO

    NASA Astrophysics Data System (ADS)

    Ding, Jieying; van der A, Ronald Johannes; Mijling, Bas; Felicitas Levelt, Pieternel

    2017-03-01

    We improve the emission estimate algorithm DECSO (Daily Emission estimates Constrained by Satellite Observations) to better detect NOx emissions over remote areas. The new version is referred to as DECSO v5. The error covariance of the sensitivity of NO2 column observations to gridded NOx emissions has been better characterized. This reduces the background noise of emission estimates by a factor of 10. An emission update constraint has been added to avoid unrealistic day-to-day fluctuations of emissions. We estimate total NOx emissions, which include biogenic emissions that often drive the seasonal cycle of the NOx emissions. We demonstrate the improvements implemented in DECSO v5 for the domain of East Asia in the year 2012 and 2013. The emissions derived by DECSO v5 are in good agreement with other inventories like MIX. In addition, the improved algorithm is able to better capture the seasonality of NOx emissions and for the first time it reveals ship tracks near the Chinese coasts that are otherwise hidden by the outflow of NO2 from the Chinese mainland. The precision of monthly emissions derived by DECSO v5 for each grid cell is about 20 %.

  11. Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in China in 2010

    NASA Astrophysics Data System (ADS)

    Fan, Weiyi; Sun, Yifei; Zhu, Tianle; Wen, Yi

    2012-09-01

    Civil aviation in China has developed rapidly in recent years, and the effects of civil aviation emissions on the atmospheric environment should not be neglected. The establishment of emission inventories of atmospheric pollutants from civil aviation contributes to related policy formation and pollution control. According to the 2010's China flight schedules, aircraft/engine combination information and revised emission indices from the International Civil Aviation Organization emission data bank based on meteorological data, the fuel consumption and HC, CO, NOx, CO2, SO2 emissions from domestic flights of civil aviation in China (excluding Taiwan Province) in 2010 are estimated in this paper. The results show that fuel consumption in 2010 on domestic flights in China is 12.12 million tons (metric tons), HC, CO, NOx, CO2 and SO2 emissions are 4600 tons, 39,700 tons, 154,100 tons, 38.21 million tons and 9700 tons, respectively. The fuel consumption and pollutant emissions of China Southern Airline are responsible for the largest national proportion of each, accounting for 27% and 25-28%, respectively.

  12. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  13. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-07-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet

  14. Characterization of NOx emission in the suburbs of Tokyo based on simultaneous and real-time observations of atmospheric Ox and NOx

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.

    2013-12-01

    Nitrogen oxides, NOx (NO, NO2), and volatile organic compounds, VOCs, are important as precursors of photochemical oxidants (tropospheric ozone, O3). To predict and control photochemical oxidants, NOx emission should be captured precisely. In addition, the ratio of NO2/NOx in the exhaust gas is also important as the initial balance between NO and NO2 in the atmosphere. Monitoring the NO2/NOx ratio in the exhaust gases is essential. Especially, the influence of the NOx emission on the real atmosphere should be explored. However, conversion reactions among NO, NO2 and O3 are typically in the time scale of minutes. The NO2/NOx ratio can change rapidly just after emission. Real-time observations of these compounds in the second time scale are essential. In view of photochemical oxidant, near emission sources of NO, ozone concentration can be easily perturbed by reaction with locally emitted NO. As an index of oxidant, the sum of O3 and NO2 (Ox = O3 + NO2) is useful. In this study, a simultaneous and real-time analyzer of atmospheric Ox and NOx has been developed utilizing the dual NO2 detectors based on laser-induced fluorescence technique (LIF), and characterization of NOx emission was explored through the observations of Ox and NOx in the suburbs of Tokyo. The dual LIF detectors consisted of one laser head, two LIF cells, and one common vacuum pump. As the Ox monitor, the excess NO was added to the sample and O3 was converted to NO2, and then the sum of O3 and NO2 in the sample was quantified at the 1st LIF cell. As the NOx monitor, the excess O3 was added to the sample and NO was converted to NO2, and then the sum of NO and NO2 in the sample was quantified at the 2nd LIF cell. Both the ';Ox' and ';NOx' channels in the dual LIF analyzer were simultaneously monitoring Ox and NOx in the sample air, respectively. The temporal resolution of observed data was 1 s. Typical conversion efficiencies of O3 and NO to NO2 were more than 0.98. The lower detection limits were 0

  15. Collection of NO and NO2 for isotopic analysis of NO(x) emissions.

    PubMed

    Fibiger, Dorothy L; Hastings, Meredith G; Lew, Audrey F; Peltier, Richard E

    2014-12-16

    There have been several measurements made of the nitrogen isotopic composition of gaseous NOx (NOx = NO + NO2) from various emission sources, utilizing a wide variety of methods to collect the NOx in solution as nitrate or nitrite. However, previous collection techniques have not been verified for complete or efficient capture of NOx such that the isotopic composition of NOx remains unaltered during collection. Here, we present a method of collecting NOx (NO + NO2) in solution as nitrate to evaluate the nitrogen isotopic composition of the NOx (δ(15)N-NOx). Using a 0.25 M KMnO4 and 0.5 M NaOH solution, quantitative NOx collection was achieved under a variety of conditions in laboratory and field settings, allowing for isotopic analysis without correcting for fractionations. The uncertainty across the entire analytic procedure is ±1.5‰ (1σ). With this method, a more robust inventory of NOx source isotopic composition is possible, which has implications for studies of air quality and acid deposition.

  16. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    PubMed

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-07

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device.

  17. 40 CFR 76.5 - NOX emission limitations for Group 1 boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.5 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2, the... 404(d) of the Act, the date the unit is required to meet Acid Rain emissions reduction...

  18. 40 CFR 76.5 - NOX emission limitations for Group 1 boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.5 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2, the... 404(d) of the Act, the date the unit is required to meet Acid Rain emissions reduction...

  19. 40 CFR 76.5 - NOX emission limitations for Group 1 boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.5 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2, the... 404(d) of the Act, the date the unit is required to meet Acid Rain emissions reduction...

  20. 40 CFR 76.5 - NOX emission limitations for Group 1 boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.5 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2, the... subject to section 404(d) of the Act, the date the unit is required to meet Acid Rain emissions...

  1. 40 CFR 76.5 - NOX emission limitations for Group 1 boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.5 NOX emission limitations..., the date on which the unit is required to meet Acid Rain emission reduction requirements for SO2, the... 404(d) of the Act, the date the unit is required to meet Acid Rain emissions reduction...

  2. Estimation of NOx emissions from NO2 hotspots in polluted background using satellite observations

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; Wagner, Thomas

    2015-04-01

    Satellite observations have been widely used to study NOx emissions from power plants and cities, which are major NOx sources with large impacts on human health and climate. The quantification of NOx emissions from measured column densities of NO2 requires information on the NOx lifetime, which is typically gained from atmospheric chemistry models. But some recent studies determined the NOx lifetime from the satellite observations as well by analyzing the downwind plume evolution; however, this approach was so far only applied for strong isolated 'point sources' located in clean background, like Riyadh in Saudi Arabia. Here we present a modified method for the quantification of NOx emissions and corresponding atmospheric lifetimes based on OMI observations of NO2, together with ECMWF wind fields, but without further model input, for hot spots located in polluted background. We use the observed NO2 patterns under calm wind conditions as proxy for the spatial patterns of NOx emissions; by this approach, even complex source distributions can be treated realistically. From the change of the spatial patterns of NO2 at larger wind speeds (separately for different wind directions), the effective atmospheric lifetime is fitted. Emissions are derived from integrated NO2 columns above background by division by the corresponding lifetime. NOx lifetimes and emissions are estimated for 19 power plants and 50 cities across China and the US. The derived lifetimes are 3.3 ± 1.2 hours on average with extreme values of 0.9 to 7.7 hours. The resulting very short lifetimes for mountainous sites have been found to be uncertain due to the potentially inaccurate ECMWF wind data in mountainous regions. The derived NOx emissions show overall good agreement with bottom-up inventories.

  3. Nitrogen isotopic composition of coal-fired power plant NOx: influence of emission controls and implications for global emission inventories.

    PubMed

    Felix, J David; Elliott, Emily M; Shaw, Stephanie L

    2012-03-20

    Despite the potential use of δ(15)N as a tracer of NO(x) source contributions, prior documentation of δ(15)N of various NO(x) emission sources is exceedingly limited. This manuscript presents the first measurements of the nitrogen isotopic composition of NO(x) (δ(15)N-NO(x)) emitted from coal-fired power plants in the U.S. at typical operating conditions with and without the presence of selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR) technology. To accomplish this, a novel method for collection and isotopic analysis of coal-fired stack NO(x) emission samples was developed based on modifications of a historic U.S. EPA stack sampling method. At the power plants included in this study, large differences exist in the isotopic composition of NO(x) emitted with and without SCRs and SNCRs; further the isotopic composition of power plant NO(x) is higher than that of other measured NO(x) emission sources confirming its use as an environmental tracer. These findings indicate that gradual implementation of SCRs at power plants will result in an industry-wide increase in δ(15)N values of NO(x) and NO(y) oxidation products from this emission source.

  4. 40 CFR 51.10 - How does my state report emissions that are required by the NOX SIP Call?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are required by the NOX SIP Call? 51.10 Section 51.10 Protection of Environment ENVIRONMENTAL... does my state report emissions that are required by the NOX SIP Call? The District of Columbia and states that are subject to the NOX SIP Call § 51.121) are subject to the emissions reporting...

  5. 40 CFR 51.10 - How does my state report emissions that are required by the NOX SIP Call?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are required by the NOX SIP Call? 51.10 Section 51.10 Protection of Environment ENVIRONMENTAL... does my state report emissions that are required by the NOX SIP Call? The District of Columbia and states that are subject to the NOX SIP Call § 51.121) are subject to the emissions reporting...

  6. 40 CFR 51.10 - How does my state report emissions that are required by the NOX SIP Call?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are required by the NOX SIP Call? 51.10 Section 51.10 Protection of Environment ENVIRONMENTAL... does my state report emissions that are required by the NOX SIP Call? The District of Columbia and states that are subject to the NOX SIP Call § 51.121) are subject to the emissions reporting...

  7. 40 CFR 51.10 - How does my state report emissions that are required by the NOX SIP Call?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are required by the NOX SIP Call? 51.10 Section 51.10 Protection of Environment ENVIRONMENTAL... does my state report emissions that are required by the NOX SIP Call? The District of Columbia and states that are subject to the NOX SIP Call § 51.121) are subject to the emissions reporting...

  8. 40 CFR 51.10 - How does my state report emissions that are required by the NOX SIP Call?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are required by the NOX SIP Call? 51.10 Section 51.10 Protection of Environment ENVIRONMENTAL... does my state report emissions that are required by the NOX SIP Call? The District of Columbia and states that are subject to the NOX SIP Call § 51.121) are subject to the emissions reporting...

  9. Origin of Ozone NO(x) in the Tropical Troposphere: A Photochemical Analysis of Aircraft Observations Over the South Atlantic Basin

    NASA Technical Reports Server (NTRS)

    Jacob, D. J.; Heikes, B. G.; Fan, S.-M.; Logan, J. A.; Mauzerall, D. L.; Bradshaw, J. D.; Singh, H. B.; Gregory, G. L.; Talbot, R. W.; Blake, D. R.; Sachse, G. W.

    1996-01-01

    The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics.

  10. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  11. Observations of a seasonal cycle in NOx emissions from fires in the African savanna

    NASA Astrophysics Data System (ADS)

    Mebust, A. K.; Cohen, R. C.

    2012-12-01

    Nitrogen oxide (NOx) emissions from wildfires account for ~15% of the global total, inducing large fluctuations in the chemical production and loss rates of O3 and CH4 and thereby affecting Earth's radiative balance. NOx emissions from fires depend on fuel N content, combustion stage, and total biomass burned; sparse observations limit current understanding of the variability in these factors across biomes. Here we use satellite-based measurements to study emission coefficients (ECs), a value proportional to emission factors i.e. NOx emitted per unit of biomass burned, from fires in African savannas. NOx ECs decrease steadily across the fire season, rather than remaining constant as is currently assumed. We speculate that this is due to reallocation of nutrients, including N, to plant roots after the growing season. We account for the observed cycle in the GEOS-Chem chemical transport model to show the impacts on monthly tropospheric ozone.

  12. DOE/NETL's advanced NOx emissions control technology R & D program

    SciTech Connect

    Lani, B.W.; Feeley, T.J. III; Miller, C.E.; Carney, B.A.; Murphy, J.T.

    2006-11-15

    Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. Several recently completed DOE/NETL R & D projects were successful in achieving the short-term goal of controlling NOx emissions at 0.15 lb/MMBtu using in-furnace technologies. In anticipation of CAIR and possible congressional multi-pollutant legislation, DOE/NETL issued a solicitation in 2004 to continue R & D efforts to meet the 2007 goal and to initiate R & D targeting the 2010 goal of achieving 0.10 lb/MMBtu using in-furnace technologies in lieu of SCR. As a result, four new NOx R & D projects are currently underway and will be completed over the next three years. The article outlines: ALSTOM's Project on developing an enhanced combustion, low NOx burner for tangentially-fired boilers; Babcock and Wilcox's demonstration of an advanced NOx control technology to achieve an emission rate of 0.10 lb/MMBtu while burning bituminous coal for both wall- and cyclone-fired boilers; Reaction Engineering International's (REI) full-scale field testing of advanced layered technology application (ALTA) NOx control for cyclone fired boilers; and pilot-scale testing of ALTA NOx control of coal-fired boilers also by REI. DOE/NETL has begun an R & D effort to optimize performance of SCR controls to achieve the long term goal of 0.01 lb/MMBtu NOx emission rate by 2020. 1 fig.

  13. Evaluating Texas NOx emissions using satellite-based observations and model simulations

    NASA Astrophysics Data System (ADS)

    Frost, G. J.; Kim, S.; McKeen, S.; Cooper, O.; Hsie, E.; Trainer, M.; Heckel, A.; Richter, A.; Burrows, J.; Gleason, J.

    2008-12-01

    Anthropogenic NOx is produced primarily from fossil fuel combustion by motor vehicles, power generation, and industrial processes. Satellite-based measurements have been used to assess NOx emission trends on regional to global spatial scales and daily to annual temporal scales. The small horizontal footprints of current satellite-borne instruments, including SCIAMACHY and OMI, can be used to detect NO2 resulting from NOx emitted by isolated point sources and metropolitan areas in the western US. In this study we examine NOx emissions in the state of Texas by comparing NO2 vertical columns retrieved from these satellite instruments to those predicted by a regional chemical-transport model. Comparisons of satellite-derived and model- calculated NO2 columns over US power plants, where in-stack emission monitoring is carried out, enables a critical evaluation of the key parameters leading to uncertainties in the satellite and model data products. By using the satellite retrieval algorithms and model configurations that produce the best agreement in NO2 columns over power plants in northeastern Texas and elsewhere in the western US, satellite-model comparisons of NO2 columns over Texas cities in turn allow urban NOx emission inventories to be assessed. This work focuses on two large Texas metropolitan areas: Dallas/Fort Worth, where NOx is emitted predominantly by mobile and area-wide sources; and Houston, which, like Dallas, has typical urban sources, but also contains large industrial point sources emitting significant amounts of NOx. Year-to-year and day-of- week changes in the satellite data are used to infer NOx emission trends from point and mobile sources and to evaluate the effectiveness of NOx controls on some of these sources.

  14. The National Emissions Inventory Significantly Overestimates NOx Emissions: Analysis of CMAQ and in situ observations from DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Anderson, D. C.; Dickerson, R. R.; Loughner, C.

    2013-12-01

    NOx and CO not only adversely impact human health, but they, along with associated VOCs, are also important precursors for O3 formation. While ambient NOx and CO concentrations have decreased dramatically over the past 10-20 years, O3 has remained a more recalcitrant problem, particularly in the Baltimore/Washington region. Reduction of O3 production requires that emissions inventories, such as the National Emissions Inventory (NEI), accurately capture total emissions of CO and NOx while also correctly apportioning them among different sectors. Previous evaluations of the NEI paint different pictures of its accuracy, with assertions that it overestimates either one or both of CO and NOx from anywhere between 25 percent to a factor of 2. These conflicting claims warrant further investigation. In this study, measurements of NOx and CO taken aboard the NOAA P3B airplane during the 2011 DISCOVER-AQ field campaign were used to determine the NOx/CO emissions ratio at 6 locations in the Washington/Baltimore region. An average molar emissions ratio of 12.8 × 1.2 CO/NOx was found by calculating the change in CO over the change in NOx from vertical concentration profiles in the planetary boundary layer. Ratios showed little variation with location. Observed values were approximately a factor of 1.35 - 1.75 times greater than that predicted by the annual, countywide emissions ratio from the 2008 NEI. When compared to a temporalized, gridded version of the inventory processed by SMOKE, ratio observations were greater than that predicted by inventories by up to a factor of 2. Comparison of the in situ measurements and remotely sensed observations from MOPITT of CO to the Community Multiscale Air Quality (CMAQ) model agree within 10-35 percent, with the model higher on average. Measurements of NOy by two separate analytical techniques, on the other hand, show that CMAQ consistently and significantly overestimates NOy concentrations. Combined with the CO observations, this

  15. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  16. Aircraft Particle Emissions eXperiment (APEX)

    NASA Technical Reports Server (NTRS)

    Wey, C. C.; Anderson, B. E.; Hudgins, C.; Wey, C.; Li-Jones, X.; Winstead, E.; Thornhill, L. K.; Lobo, P.; Hagen, D.; Whitefield, P.

    2006-01-01

    APEX systematically investigated the gas-phase and particle emissions from a CFM56-2C1 engine on NASA's DC-8 aircraft as functions of engine power, fuel composition, and exhaust plumage. Emissions parameters were measured at 11 engine power, settings, ranging from idle to maximum thrust, in samples collected at 1, 10, and 30 m downstream of the exhaust plane as the aircraft burned three fuels to stress relevant chemistry. Gas-phase emission indices measured at 1 m were in good agreement with the ICAO data and predictions provided by GEAE empirical modeling tools. Soot particles emitted by the engine exhibited a log-normal size distribution peaked between 15 and 40 nm, depending on engine power. Samples collected 30 m downstream of the engine exhaust plane exhibited a prominent nucleation mode.

  17. NOx emission trading in a European context: discussion of the economic, legal, and cultural aspects.

    PubMed

    Dekkers, C P

    2001-10-25

    Emission trading is a new instrument in environmental policy. It is an alien notion in most European countries and it is often viewed with hesitation. The paper discusses the economic, legal, and perhaps more importantly, the cultural aspects to consider when one tries to explore the prospects for trading emissions of NOx and other substances in Europe. Issues to be addressed are the present legal framework in Europe in relation to the national emission ceilings on NOx and other substances on the basis of relevant EU directives and UNECE protocols. The paper will discuss the extent to which the legal framework within the EU imposes constraints on the design of a national emission trading scheme, and what options are available to fit emission trading into that legislative structure. The NOx emission trading programme developed in the Netherlands will be used to demonstrate the various aspects in a European context.

  18. Investigating the impacts of aviation NOX, SO2 and black carbon emissions on ozone, aerosol and climate.

    NASA Astrophysics Data System (ADS)

    Kapadia, Zarashpe; Borman, Duncan; Spracklen, Dominick; Arnold, Stephen; Mann, Graham; Williams, Paul

    2013-04-01

    Aviation is currently responsible for 3% of global anthropogenic CO2 emissions, but 2-14% of anthropogenic induced warming due to the co-emission of NOX, SO2 and black carbon and formation of contrails. The impact of aviation emissions on ozone and aerosol is uncertain with recent research demonstrating the need to include atmospheric nitrate chemistry. The inclusion of nitrate chemistry may lead to a 20% reduction in aviation induced ozone forcing estimates due to the competition for atmospheric oxidants such as OH . Compounding this, uncertainties relating to the effects of NOx on ozone and methane illustrate the need for refining the understanding of aviation induced impacts. Furthermore the role of aerosol microphysics in controlling the climate impacts of aviation has not yet been explored. Here we use the TOMCAT 3-D chemical transport model coupled to the GLOMAP-mode aerosol microphysics model to quantify the impacts of aviation NOX, SO2 and BC emissions on ozone, aerosol and climate. GLOMAP-mode treats size resolved aerosol using a two-moment modal approach. We evaluate the effects of nitrate processing on the diagnosed impacts of aviation emissions on atmospheric composition including the first assessment of the impact on the global concentrations of cloud condensation nuclei. We investigate interactions between gas-phase oxidant photochemistry and aerosol microphysics in regions influenced by aircraft emissions, using fully-coupled tropospheric chemistry and multi-component aerosol treatment (BC, sulphate, nitrate). Finally, we use a 3-D radiative transfer model to quantify the ozone and aerosol direct and indirect radiative effects of aviation emissions. The work presented here is part of a wider research project which will be the first study to combine aviation NOX, SO2 and black carbon emission in a global size-resolved model which considers atmospheric nitrate chemistry, which will aim to add to the science surrounding present day aviation impacts by

  19. Improving NO(x) cap-and-trade system with adjoint-based emission exchange rates.

    PubMed

    Mesbah, S Morteza; Hakami, Amir; Schott, Stephan

    2012-11-06

    Cap-and-trade programs have proven to be effective instruments for achieving environmental goals while incurring minimum cost. The nature of the pollutant, however, affects the design of these programs. NO(x), an ozone precursor, is a nonuniformly mixed pollutant with a short atmospheric lifetime. NO(x) cap-and-trade programs in the U.S. are successful in reducing total NO(x) emissions but may result in suboptimal environmental performance because location-specific ozone formation potentials are neglected. In this paper, the current NO(x) cap-and-trade system is contrasted to a hypothetical NO(x) trading policy with sensitivity-based exchange rates. Location-specific exchange rates, calculated through adjoint sensitivity analysis, are combined with constrained optimization for prediction of NO(x) emissions trading behavior and post-trade ozone concentrations. The current and proposed policies are examined in a case study for 218 coal-fired power plants that participated in the NO(x) Budget Trading Program in 2007. We find that better environmental performance at negligibly higher system-wide abatement cost can be achieved through inclusion of emission exchange rates. Exposure-based exchange rates result in better environmental performance than those based on concentrations.

  20. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  1. Modeling and optimization of coal and coal-water slurry reburning for NOx emissions reduction

    SciTech Connect

    Zarnescu, V.; Pisupati, S.V.

    1999-07-01

    The performance of coal and coal-water slurry as reburn fuels in a pilot scale 0.5 MM Btu/hr Down-fired combustor (DFC) was predicted using numerical simulations and compared with measurements. Previous low NOx level burner modeling results have been used together with the whole-furnace design approach. Flow and combustion parameters, fuels and firing configurations and reburning parameters are studied and optimized for maximum NOx reduction performance. Comparisons are made between coal and coal-water slurry and biomass as reburn fuels. A sensitivity analysis was conducted in order to analyze the variation of predictions with respect to model parameters. Modeling results show that improved mixing, burner aerodynamics and flame attachment can contribute significantly to lowering the primary zone NOx levels. This fact, coupled with optimized reburning parameters can result in important NOx emissions reduction. Different scenarios are discussed and recommendations are made for maximum NOx reduction efficiency.

  2. Impact of aircraft emissions within the boundary layer on the regional ozone concentration in South Korea using high resolution numerical models

    NASA Astrophysics Data System (ADS)

    Song, S.; Shon, Z.; Kang, Y.; Kim, Y.; Yoo, S.

    2013-12-01

    Abstract The influence of aircraft emissions within the boundary layer near the international airports in South Korea on the regional ozone (O3) concentrations were evaluated using a high resolution numerical modeling approach during summer season (August). This analysis was performed by two sets of simulation experiments: (1) with aircraft emissions (i.e. TOTAL case) and (2) without aircraft emissions (i.e. BASE case). In this study, the NOx to VOC emission ratio (NOx/VOC ratio) estimated from the aircraft ranged from approximately 4 to 11.6, which was significantly more than the ratio (approximately 1.3) of domain-wide emissions. Therefore, changes in the O3 concentration in and around the study area are likely to be primarily influenced by significantly high NOx emissions. The model study suggests the possibility that aircraft emissions near the airports can have a direct impact on the O3 concentrations in the source regions as well as their surrounding/downwind regions, depending on the sensitivity of O3 to its precursors (e.g. NOx and VOCs) and/or meteorological conditions. The contributions of physical and chemical processes to the production or loss of O3 are also assessed using a process analysis (PA) method. Acknowledgments This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013-0789).

  3. Aircraft hydrocarbon emissions at Oakland International Airport.

    PubMed

    Herndon, Scott C; Wood, Ezra C; Northway, Megan J; Miake-Lye, Richard; Thornhill, Lee; Beyersdorf, Andreas; Anderson, Bruce E; Dowlin, Renee; Dodds, Willard; Knighton, W Berk

    2009-03-15

    To help airports improve emission inventory data, speciated hydrocarbon emission indices have been measured from in-use commercial, airfreight, and general aviation aircraft at Oakland International Airport. The compounds reported here include formaldehyde, acetaldehyde, ethene, propene, and benzene. At idle, the magnitude of hydrocarbon emission indices was variable and reflected differences in engine technology, actual throttle setting, and ambient temperature. Scaling the measured emission indices to the simultaneously measured formaldehyde (HCHO) emission index eliminated most of the observed variability. This result supports a uniform hydrocarbon emissions profile across engine types when the engine is operating near idle, which can greatly simplify how speciated hydrocarbons are handled in emission inventories. The magnitude of the measured hydrocarbon emission index observed in these measurements (ambient temperature range 12-22 degrees C) is a factor of 1.5-2.2 times larger than the certification benchmarks. Using estimates of operational fuel flow rates at idle, this analysis suggests that current emission inventories at the temperatures encountered at this airport underestimate hydrocarbon emissions from the idle phase of operation by 16-45%.

  4. A simplified reaction mechanism for prediction of NO(x) emissions in the combustion of hydrocarbons

    NASA Technical Reports Server (NTRS)

    Kundu, K. P.; Deur, J. M.

    1992-01-01

    A simplified reaction mechanism is developed for the prediction of NO(x) in hydrocarbon combustion. The mechanism uses fewer reacting species and reaction steps than the detailed mechanisms available in the literature and therefore takes less computer time when used in CFD calculations. The mechanism has been used to calculate NO(x) emissions in the combustion of propane. With slight modifications, the same mechanism can be used to calculate NO(x) in the combustion of other hydrocarbons. Results obtained with the simplified reaction are compared with experimental results and results obtained with a detailed kinetic mechanism.

  5. The climate impact of ship NOx emissions: uncertainties due to plume chemistry

    NASA Astrophysics Data System (ADS)

    Holmes, C. D.; Prather, M. J.; Vinken, G. C.

    2013-12-01

    Ships are an important source of reactive trace gases in the marine atmosphere, comprising about 17% of total anthropogenic NOx emissions. In the marine environment, ship NOx emissions generate ozone (O3) and hydroxyl radicals (OH) more efficiently than in continental air. Global atmospheric chemistry and transport models (CTMs) have found that ship NOx cools Earth's climate because reductions in methane radiative forcing (RF) due to the OH enhancements more than compensate for warming caused by ship-induced ozone. These past model studies, however, all assumed that the concentrated plumes of ship exhaust are instantly diluted into a grid cell spanning hundreds of kilometers. This expedient but inaccurate model assumption overestimates ozone and OH production, because the affected models bypass the early stages of plume evolution when high NOx concentrations intensify NOx chemical losses. We provide here the first estimate of RF from ship NOx that accounts for sub-grid-scale ship plume chemistry. First, we improve the plume-in-grid representation of exhaust gas chemistry, which is derived from a plume dispersion model, in the GEOS-Chem global CTM. The CTM now calculates methane oxidation within exhaust plumes for the first time, where OH concentrations are 2-3 times greater than background air. We also account for the effect of wind speed on ozone production and losses of NOx and methane in young plumes. We evaluate the CTM against airborne measurements of NOx and ozone over the ocean. The global ship-induced perturbations to ozone and methane concentrations in the improved model are smaller than suggested by the ensemble of past global modeling studies. If we assume instant dilution of ship NOx emissions in our CTM, we can reproduce the past model results, but ozone production is overestimated by 20% and the resulting ozone column enhancements and RF by 40%. Thus, the ozone and methane RF components from ship NOx are likely much smaller than suggested by past

  6. Aircraft Emission Inventories Projected in Year 2015 for a High Speed Civil Transport (HSCT) Universal Airline Network

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1995-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT's) on a universal airline network.Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT's. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.

  7. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion.

    PubMed

    Fang, Tiegang; Lin, Yuan-Chung; Foong, Tien Mun; Lee, Chia-Fon

    2008-12-01

    Biodiesel is popularly discussed in many countries due to increased environmental awareness and the limited supply of petroleum. One of the main factors impacting general replacement of diesel by biodiesel is NOx (nitrogen oxides) emissions. Previous studies have shown higher NOx emissions relative to petroleum diesel in traditional direct-injection (DI) diesel engines. In this study, effects of injection timing and different biodiesel blends are studied for low load [2 bar IMEP (indicated mean effective pressure)] conditions. The results show that maximum heat release rate can be reduced by retarding fuel injection. Ignition and peak heat release rate are both delayed for fuels containing more biodiesel. Retarding the injection to post-TDC (top dead center) lowers the peak heat release and flattens the heat release curve. It is observed that low-temperature combustion effectively reduces NOx emissions because less thermal NOx is formed. Although biodiesel combustion produces more NOx for both conventional and late-injection strategies, with the latter leading to a low-temperature combustion mode, the levels of NOx of B20 (20 vol % soy biodiesel and 80 vol % European low-sulfur diesel), B50, and B100 all with post-TDC injection are 68.1%, 66.7%, and 64.4%, respectively, lower than pure European low-sulfur diesel in the conventional injection scenario.

  8. The effect of functional forms of nitrogen on fuel-NOx emissions.

    PubMed

    Zhang, Linghui; Su, Dagen; Zhong, Mingfeng

    2015-01-01

    This work explores the effects of different nitrogen functional forms on fuel-NOx emissions at 900 °C. The majority of tests are performed with an excess air coefficient of 1.4. Fuel-NOx is detected by measuring N-(1-naphthyl) ethylenediamine dihydrochloride (C₁₂H₁₆Cl₂N₂) via spectrophotometry. The different functional forms of nitrogen in the raw materials are identified by using X-ray photoelectron spectroscopy (XPS). A reliable density functional theory (DFT) method at the B3LYP/6-311++G** level is employed to investigate the reaction pathways of all functional forms of nitrogen during combustion. The results indicate that the functional forms of nitrogen influence the formation of nitrogen oxides. While under the same experimental conditions, fuel-NOx emissions increase by using less activation energy and nitrogen-containing groups with poor thermal stability. It is determined that fuel-NOx emissions vary in the following order: glycine > pyrrole > pyridine > methylenedi-p-phenylene diisocyanate (MDI). Glycine is the chain structure of amino acids in waste-leather and has low activation energy and poor thermal stability. With these properties, it is noted that glycine produces the most fuel-NOx in all of the raw materials studied. More pyrrole than pyridine in coal lead to high yields of fuel-NOx. The lowest yields of fuel-NO x are obtained using polyurethanes in waste-PU.

  9. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury

  10. 40 CFR 76.7 - Revised NOX emission limitations for Group 1, Phase II boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Revised NOX emission limitations for Group 1, Phase II boilers. 76.7 Section 76.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.7 Revised...

  11. 40 CFR 76.7 - Revised NOX emission limitations for Group 1, Phase II boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Revised NOX emission limitations for Group 1, Phase II boilers. 76.7 Section 76.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.7 Revised...

  12. 40 CFR 76.7 - Revised NOX emission limitations for Group 1, Phase II boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Revised NOX emission limitations for Group 1, Phase II boilers. 76.7 Section 76.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.7 Revised...

  13. 40 CFR 76.7 - Revised NOX emission limitations for Group 1, Phase II boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Revised NOX emission limitations for Group 1, Phase II boilers. 76.7 Section 76.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.7 Revised...

  14. 40 CFR 76.7 - Revised NOX emission limitations for Group 1, Phase II boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Revised NOX emission limitations for Group 1, Phase II boilers. 76.7 Section 76.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.7 Revised...

  15. Differences in satellite-derived NOx emission factors between Eurasian and North American boreal forest fires

    NASA Astrophysics Data System (ADS)

    Schreier, S. F.; Richter, A.; Schepaschenko, D.; Shvidenko, A.; Hilboll, A.; Burrows, J. P.

    2015-11-01

    Current fire emission inventories apply universal emission factors (EFs) for the calculation of NOx emissions over large biomes such as boreal forest. However, recent satellite-based studies over tropical and subtropical regions have indicated spatio-temporal variations in EFs within specific biomes. In this study, satellite measurements of tropospheric NO2 vertical columns (TVC NO2) from the GOME-2 instrument and fire radiative power (FRP) from MODIS are used for the estimation of fire emission rates (FERs) of NOx over Eurasian and North American boreal forests. The retrieval of TVC NO2 is based on a stratospheric correction using simulated stratospheric NO2 instead of applying the reference sector method, which was used in a previous study. The model approach is more suitable for boreal latitudes. TVC NO2 and FRP are spatially aggregated to a 1° × 1° horizontal resolution and temporally averaged to monthly values. The conversion of the satellite-derived tropospheric NO2 columns into production rates of NOx from fire (Pf) is based on the NO2/NOx ratio as obtained from the MACC reanalysis data set and an assumed lifetime of NOx. A global land cover map is used to define boreal forests across these two regions in order to evaluate the FERs of NOx for this biome. The FERs of NOx, which are derived from the gradients of the linear relationship between Pf and FRP, are more than 30% lower for North American than for Eurasian boreal forest fires. We speculate that these discrepancies are mainly related to the variable nitrogen content in plant tissues, which is higher in deciduous forests dominating large parts in Eurasia. In order to compare the obtained values with EFs found in the literature, the FERs are converted into EFs. The satellite-based EFs of NOx are estimated at 0.83 and 0.61 g kg-1 for Eurasian and North American boreal forests, respectively, which is in good agreement with the value found in a recent emission factor compilation. However, recent fire

  16. NOx emission estimates during the 2014 Youth Olympic Games in Nanjing

    NASA Astrophysics Data System (ADS)

    Ding, J.; van der A, R. J.; Mijling, B.; Levelt, P. F.; Hao, N.

    2015-08-01

    The Nanjing Government applied temporary environmental regulations to guarantee good air quality during the Youth Olympic Games (YOG) in 2014. We study the effect of those regulations by applying the emission estimate algorithm DECSO (Daily Emission estimates Constrained by Satellite Observations) to measurements of the Ozone Monitoring Instrument (OMI). We improved DECSO by updating the chemical transport model CHIMERE from v2006 to v2013 and by adding an Observation minus Forecast (OmF) criterion to filter outlying satellite retrievals due to high aerosol concentrations. The comparison of model results with both ground and satellite observations indicates that CHIMERE v2013 is better performing than CHIMERE v2006. After filtering the satellite observations with high aerosol loads that were leading to large OmF values, unrealistic jumps in the emission estimates are removed. Despite the cloudy conditions during the YOG we could still see a decrease of tropospheric NO2 column concentrations of about 32 % in the OMI observations when compared to the average NO2 columns from 2005 to 2012. The results of the improved DECSO algorithm for NOx emissions show a reduction of at least 25 % during the YOG period and afterwards. This indicates that air quality regulations taken by the local government have an effect in reducing NOx emissions. The algorithm is also able to detect an emission reduction of 10 % during the Chinese Spring Festival. This study demonstrates the capacity of the DECSO algorithm to capture the change of NOx emissions on a monthly scale. We also show that the observed NO2 columns and the derived emissions show different patterns that provide complimentary information. For example, the Nanjing smog episode in December 2013 led to a strong increase in NO2 concentrations without an increase in NOx emissions. Furthermore, DECSO gives us important information on the non-trivial seasonal relation between NOx emissions and NO2 concentrations on a local scale.

  17. Lagrangian Hotspots of In-Use NOX Emissions from Transit Buses.

    PubMed

    Kotz, Andrew J; Kittelson, David B; Northrop, William F

    2016-06-07

    In-use, spatiotemporal NOX emissions were measured from a conventional powertrain transit bus and a series electric hybrid bus over gradients of route kinetic intensity and ambient temperature. This paper introduces a new method for identifying NOX emissions hotspots along a bus route using high fidelity Lagrangian vehicle data to explore spatial interactions that may influence emissions production. Our study shows that the studied transit buses emit higher than regulated emissions because on-route operation does not accurately represent the range of engine operation tested according to regulatory standards. Using the Lagrangian hotspot detection, we demonstrate that NOX hotspots occurred at bus stops, during cold starts, on inclines, and for accelerations. On the selected routes, bus stops resulted in 3.3 times the route averaged emissions factor in grams/km without significant dependence on bus type or climate. The buses also emitted 2.3 times the route averaged NOX emissions factor at the beginning of each route due to cold selective catalytic reduction aftertreatment temperature. The Lagrangian hotspot detection technique demonstrated here could be employed in future connected vehicles empowered by advances in computational power, data storage capability, and improved sensor technology to optimize emissions as a function of spatial location.

  18. Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Molina-Herrera, Saúl; Haas, Edwin; Grote, Rüdiger; Kiese, Ralf; Klatt, Steffen; Kraus, David; Kampffmeyer, Tatjana; Friedrich, Rainer; Andreae, Henning; Loubet, Benjamin; Ammann, Christof; Horváth, László; Larsen, Klaus; Gruening, Carsten; Frumau, Arnoud; Butterbach-Bahl, Klaus

    2017-03-01

    Soils are a significant source for the secondary greenhouse gas NO and assumed to be a significant source of tropospheric NOx in rural areas. Here we tested the LandscapeDNDC model for its capability to simulate magnitudes and dynamics of soil NO emissions for 22 sites differing in land use (arable, grassland and forest) and edaphic as well as climatic conditions. Overall, LandscapeDNDC simulated mean soil NO emissions agreed well with observations (r2 = 0.82). However, simulated day to day variations of NO did only agree weakly with high temporal resolution measurements, though agreement between simulations and measurements significantly increased if data were aggregated to weekly, monthly and seasonal time scales. The model reproduced NO emissions from high and low emitting sites, and responded to fertilization (mineral and organic) events with pulse emissions. After evaluation, we linked the LandscapeDNDC model to a GIS database holding spatially explicit data on climate, land use, soil and management to quantify the contribution of soil biogenic NO emissions to the total NOx budget for the State of Saxony, Germany. Our calculations show that soils of both agricultural and forest systems are significant sources and contribute to about 8% (uncertainty range: 6-13%) to the total annual tropospheric NOx budget for Saxony. However, the contributions of soil NO emission to total tropospheric NOx showed a high spatial variability and in some rural regions such as the Ore Mts., simulated soil NO emissions were by far more important than anthropogenic sources.

  19. Heavy-Duty Emissions Control: Plasma-Facilitated vs Reformer-Assisted Lean NOx Catalysis

    SciTech Connect

    Aardahl, C; Rozmiarek, R; Rappe, K; Mendoza, D Park, P

    2003-08-24

    Progress has been made in the control of combustion processes to limit the formation of environmentally harmful species, but lean burn vehicles, such as those powered by diesel engines used for the majority of commercial trucking and off-road applications, remain a major source of nitrogen oxides (NOx) and particulate matter (PM) emissions. Tighter control of the combustion process coupled with exhaust gas recirculation has brought emissions in line with 2004 targets worldwide. Additional modifications to the engine control system, somewhat limited NOx control, and PM filters will likely allow the 2007 limits to be met for the on-highway regulations for heavy-duty engines in the United States. Concern arises when the NOx emission limit of 0.2 g/bhphr set for the year 2010 is considered.

  20. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rates in Table LM-2 of this section are inappropriately high for the unit, the owner or operator may use... interval, the owner or operator shall either report the appropriate default NOX emission rate from Table LM... example, use the default emission rates in Tables LM-1, LM-2, and LM-3 of this section or use the...

  1. 40 CFR 51.122 - Emissions reporting requirements for SIP revisions relating to budgets for NOX emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SIP revisions relating to budgets for NOX emissions. 51.122 Section 51.122 Protection of Environment... OF IMPLEMENTATION PLANS Control Strategy § 51.122 Emissions reporting requirements for SIP revisions... set forth in § 51.50. (b) For its transport SIP revision under § 51.121, each state must submit to...

  2. 40 CFR 51.122 - Emissions reporting requirements for SIP revisions relating to budgets for NOX emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SIP revisions relating to budgets for NOX emissions. 51.122 Section 51.122 Protection of Environment... OF IMPLEMENTATION PLANS Control Strategy § 51.122 Emissions reporting requirements for SIP revisions... set forth in § 51.50. (b) For its transport SIP revision under § 51.121, each state must submit to...

  3. 40 CFR 51.122 - Emissions reporting requirements for SIP revisions relating to budgets for NOX emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SIP revisions relating to budgets for NOX emissions. 51.122 Section 51.122 Protection of Environment... OF IMPLEMENTATION PLANS Control Strategy § 51.122 Emissions reporting requirements for SIP revisions... set forth in § 51.50. (b) For its transport SIP revision under § 51.121, each state must submit to...

  4. The Impact of Buoyancy and Flame Structure on Soot, Radiation and NOx Emissions from a Turbulent Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Kennedy, I. M.; Kollman, W.; VanderWal, R. L.

    1999-01-01

    It is hypothesized that the spatial structure of a turbulent diffusion flame plays an important role in determining the emissions of radiative energy, soot and NO, from a combustor. This structure, manifested in the two point statistics, is influenced by buoyancy. Radiation, soot and NOx emissions are the cumulative result of processes that occur throughout a flame. For example, radiation fluxes along a line of sight can be found from summing up the contributions from sources in individual pockets of hot soot that emit, and from sinks in cold soot that absorb. Soot and NOx are both the results of slow chemistry and are not equilibrium products. The time that is available for production and burnout is crucial in determining the eventual emissions of these pollutants. Turbulence models generally rely on a single point closure of the appropriate time averaged equations. Hence, spatial information is lost and needs to be modeled using solution variables such as turbulence kinetic energy and dissipation rate, often with the assumption of isotropy. However, buoyancy can affect the physical structure of turbulent flames and can change the spatial extent of soot bearing regions. Theoretical comparisons with models are best done in the limit of infinite Froude number because the inclusion of buoyancy in flow models introduces significant uncertainties. Hence, LII measurements of soot, measurements of radiation fluxes from soot, Particle Imaging Velocimetry (PIV) of the flow field and measurements of post flame NOX will be carried out on the NASA Lewis 2.2 sec drop tower and eventually on the parabolic flight aircraft. The drop rig will be a modified version of a unit that has been successfully used at Lewis in the past.

  5. Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars.

    PubMed

    Yang, Liuhanzi; Franco, Vicente; Mock, Peter; Kolke, Reinhard; Zhang, Shaojun; Wu, Ye; German, John

    2015-12-15

    Controlling nitrogen oxides (NOx) emissions from diesel passenger cars during real-world driving is one of the major technical challenges facing diesel auto manufacturers. Three main technologies are available for this purpose: exhaust gas recirculation (EGR), lean-burn NOx traps (LNT), and selective catalytic reduction (SCR). Seventy-three Euro 6 diesel passenger cars (8 EGR only, 40 LNT, and 25 SCR) were tested on a chassis dynamometer over both the European type-approval cycle (NEDC, cold engine start) and the more realistic Worldwide harmonized light-duty test cycle (WLTC version 2.0, hot start) between 2012 and 2015. Most vehicles met the legislative limit of 0.08 g/km of NOx over NEDC (average emission factors by technology: EGR-only 0.07 g/km, LNT 0.04 g/km, and SCR 0.05 g/km), but the average emission factors rose dramatically over WLTC (EGR-only 0.17 g/km, LNT 0.21 g/km, and SCR 0.13 g/km). Five LNT-equipped vehicles exhibited very poor performance over the WLTC, emitting 7-15 times the regulated limit. These results illustrate how diesel NOx emissions are not properly controlled under the current, NEDC-based homologation framework. The upcoming real-driving emissions (RDE) regulation, which mandates an additional on-road emissions test for EU type approvals, could be a step in the right direction to address this problem.

  6. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B.

    2014-09-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 State Implementation Plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-Decoupled Direct Method (DDM) model to adjust Texas NOx emissions using a high resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCD) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The sector-based DKF inversion tends to scale down area and non-road NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using inverted NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05 and increases the model correlation with ground measurement in O3 simulations and makes O3 more sensitive to NOx emissions in the O3 non-attainment areas.

  7. A Portable Emissions Measurement System (PEMS) study of NOx and primary NO2 emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Rosalind; ApSimon, Helen M.; Oxley, Tim; Molden, Nick; Stettler, Marc E. J.; Thiyagarajah, Aravinth

    2016-11-01

    Real world emissions of oxides of nitrogen (NOx) often greatly exceed those achieved in the laboratory based type approval process. In this paper the real world emissions from a substantial sample of the latest Euro 6 diesel passenger cars are presented with a focus on NOx and primary NO2. Portable Emissions Measurement System (PEMS) data is analysed from 39 Euro 6 diesel passenger cars over a test route comprised of urban and motorway sections. The sample includes vehicles installed with exhaust gas recirculation (EGR), lean NOx traps (LNT), or selective catalytic reduction (SCR). The results show wide variability in NOx emissions from 1 to 22 times the type approval limit. The average NOx emission, 0.36 (sd. 0.36) g km-1, is 4.5 times the Euro 6 limit. The average fraction primary NO2 (fNO2) is 44 (sd. 20) %. Higher emissions during the urban section of the route are attributed to an increased number of acceleration events. Comparisons between PEMS measurements and COPERT speed dependent emissions factors show PEMS measurements to be on average 1.6 times higher than COPERT estimates for NOx and 2.5 times for NO2. However, by removing the 5 most polluting vehicles average emissions were reduced considerably.

  8. Reduction in NO(x) emission trends over China: regional and seasonal variations.

    PubMed

    Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Liu, Zhen

    2013-11-19

    We analyzed satellite observations of nitrogen dioxide (NO2) columns by the Ozone Monitoring Instrument (OMI) over China from 2005 to 2010 in order to estimate the top-down anthropogenic nitrogen oxides (NOx) emission trends. Since NOx emissions were affected by the economic slowdown in 2009, we removed one year of abnormal data in the analysis. The estimated average emission trend is 4.01 ± 1.39% yr(-1), which is slower than the trend of 5.8-10.8% yr(-1) reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trends. The average NOx emission trend of 3.47 ± 1.07% yr(-1) in warm season (June-September) is less than the trend of 5.03 ± 1.92% yr(-1) in cool season (October-May). The regional annual emission trends decrease from 4.76 ± 1.61% yr(-1) in North China Plain to 3.11 ± 0.98% yr(-1) in Yangtze River Delta and further down to -4.39 ± 1.81% yr(-1) in Pearl River Delta. The annual emission trends of the four largest megacities, Shanghai, Beijing, Guangzhou, and Shenzhen are -0.76 ± 0.29%, 0.69 ± 0.27%, -4.46 ± 1.22%, and -7.18 ± 2.88% yr(-1), considerably lower than the regional averages or surrounding rural regions. These results appear to suggest that a number of factors, including emission control measures of thermal power plants, increased hydro-power usage, vehicle emission regulations, and closure or migration of high-emission industries, have significantly reduced or even reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions, but their effects are not as significant in other major cities or less economically developed regions.

  9. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOx emissions.

    PubMed

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-03-09

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NOx emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NOx emissions during the study period, while energy efficiency and technology improvement factors offset total NOx emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NOx emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NOx emissions.

  10. 40 CFR 75.17 - Specific provisions for monitoring emissions from common, bypass, and multiple stacks for NOX...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Install, certify, operate, and maintain a NOX continuous emission monitoring system in the duct to the... the ducts from the affected units; or (B) Develop, demonstrate, and provide information satisfactory..., and maintain a NOX-diluent continuous emission monitoring system in the duct from each affected...

  11. Emission Reduction of Fuel-Staged Aircraft Engine Combustor Using an Additional Premixed Fuel Nozzle.

    PubMed

    Yamamoto, Takeshi; Shimodaira, Kazuo; Yoshida, Seiji; Kurosawa, Yoji

    2013-03-01

    The Japan Aerospace Exploration Agency (JAXA) is conducting research and development on aircraft engine technologies to reduce environmental impact for the Technology Development Project for Clean Engines (TechCLEAN). As a part of the project, combustion technologies have been developed with an aggressive target that is an 80% reduction over the NOx threshold of the International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP)/4 standard. A staged fuel nozzle with a pilot mixer and a main mixer was developed and tested using a single-sector combustor under the target engine's landing and takeoff (LTO) cycle conditions with a rated output of 40 kN and an overall pressure ratio of 25.8. The test results showed a 77% reduction over the CAEP/4 NOx standard. However, the reduction in smoke at thrust conditions higher than the 30% MTO condition and of CO emission at thrust conditions lower than the 85% MTO condition are necessary. In the present study, an additional fuel burner was designed and tested with the staged fuel nozzle in a single-sector combustor to control emissions. The test results show that the combustor enables an 82% reduction in NOx emissions relative to the ICAO CAEP/4 standard and a drastic reduction in smoke and CO emissions.

  12. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    NASA Astrophysics Data System (ADS)

    Wang, S. W.; Zhang, Q.; Streets, D. G.; He, K. B.; Martin, R. V.; Lamsal, L. N.; Chen, D.; Lei, Y.; Lu, Z.

    2012-01-01

    Using OMI (Ozone Monitoring Instrument) tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem), we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005-2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005-2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005-2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79-0.82) with OMI measurements over grids dominated by power plant emissions, with only 7-14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8-17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite retrievals.

  13. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    NASA Astrophysics Data System (ADS)

    Wang, S. W.; Zhang, Q.; Streets, D. G.; He, K. B.; Martin, R. V.; Lamsal, L. N.; Chen, D.; Lei, Y.; Lu, Z.

    2012-05-01

    Using OMI (Ozone Monitoring Instrument) tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem), we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005-2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005-2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005-2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79-0.82) with OMI measurements over grids dominated by power plant emissions, with only 7-14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8-17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite retrievals.

  14. Comparison of impacts of aircraft emissions within the boundary layer on the regional ozone in South Korea

    NASA Astrophysics Data System (ADS)

    Song, Sang-Keun; Shon, Zang-Ho; Kang, Yoon-Hee

    2015-09-01

    In this study, the air pollutants emitted from aircraft within the boundary layer (BL) were investigated for their impacts on the ozone (O3) concentration at and around three international airports (Incheon, RKSI; Gimpo, RKSS; and Jeju, RKPC) using the WRF-CMAQ modeling system during the summer of 2010. The analysis was performed using two sets of simulation scenarios: (1) with (i.e., TOTAL case) and (2) without aircraft emissions (i.e., BASE case). The model study suggested that aircraft emissions within the BL over the three airports can have a significant impact on the O3 (and NOx) concentrations in the source regions (the airports) and their surrounding/downwind areas. A significant negative impact of aircraft emissions on the O3 concentrations in the late afternoon (19:00 LST) was predicted near the three airports with their largest impact of -20 ppb near the RKSI at 19:00 LST. This was attributed mainly to the high NOx conditions in the VOC-limited areas and possibly in part to the rapid titration of O3 by NO around these airports. The rate of photochemical O3 destruction due to the aircraft emissions near the three airports was the most dominant contributor to the O3 levels compared to the other physical processes.

  15. The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry

    NASA Astrophysics Data System (ADS)

    Holmes, C. D.; Prather, M. J.; Vinken, G. C. M.

    2014-07-01

    Nitrogen oxide (NOx) emissions from maritime shipping produce ozone (O3) and hydroxyl radicals (OH), which in turn destroy methane (CH4). The balance between this warming (due to O3) and cooling (due to CH4) determines the net effect of ship NOx on climate. Previous estimates of the chemical impact and radiative forcing (RF) of ship NOx have generally assumed that plumes of ship exhaust are instantly diluted into model grid cells spanning hundreds of kilometers, even though this is known to produce biased results. Here we improve the parametric representation of exhaust-gas chemistry developed in the GEOS-Chem chemical transport model (CTM) to provide the first estimate of RF from shipping that accounts for sub-grid-scale ship plume chemistry. The CTM now calculates O3 production and CH4 loss both within and outside the exhaust plumes and also accounts for the effect of wind speed. With the improved modeling of plumes, ship NOx perturbations are smaller than suggested by the ensemble of past global modeling studies, but if we assume instant dilution of ship NOx on the grid scale, the CTM reproduces previous model results. Our best estimates of the RF components from increasing ship NOx emissions by 1 Tg(N) yr-1 are smaller than that given in the past literature: + 3.4 ± 0.85 mW m-2 (1σ confidence interval) from the short-lived ozone increase, -5.7 ± 1.3 mW m-2 from the CH4 decrease, and -1.7 ± 0.7 mW m-2 from the long-lived O3 decrease that accompanies the CH4 change. The resulting net RF is -4.0 ± 2.0 mW m-2 for emissions of 1 Tg(N) yr-1. Due to non-linearity in O3 production as a function of background NOx, RF from large changes in ship NOx emissions, such as the increase since preindustrial times, is about 20% larger than this RF value for small marginal emission changes. Using sensitivity tests in one CTM, we quantify sources of uncertainty in the RF components and causes of the ±30% spread in past model results; the main source of uncertainty is the

  16. The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry

    NASA Astrophysics Data System (ADS)

    Holmes, C. D.; Prather, M. J.; Vinken, G. C. M.

    2014-02-01

    Nitrogen oxide (NOx) emissions from maritime shipping produce ozone (O3) and hydroxyl radicals (OH), which in turn destroy methane (CH4). The balance between this warming (due to O3) and cooling (due to CH4) determines the net effect of ship NOx on climate. Previous estimates of the chemical impact and radiative forcing (RF) of ship NOx have generally assumed that plumes of ship exhaust are instantly diluted into model grid cells spanning hundreds of kilometers, even though this is known to produce biased results. Here we improve the parametric representation of exhaust-gas chemistry developed in the GEOS-Chem chemical transport model (CTM) to provide the first estimate of RF from shipping that accounts for sub-grid-scale ship plume chemistry. The CTM now calculates O3 production and CH4 loss both within and outside the exhaust plumes and also accounts for the effect of wind speed. With the improved modeling of plumes, ship NOx perturbations are smaller than suggested by the ensemble of past global modeling studies, but if we assume instant dilution of ship NOx on the grid scale, the CTM reproduces previous model results. Our best estimates of the RF components from increasing ship NOx emissions by 1 Tg(N) yr-1 are smaller than given in the past literature: +3.4 ± 0.85 mW m-2 from the short-lived ozone increase, -5.0 ± 1.1 mW m-2 from the CH4 decrease, and -1.7 ± 0.7 mW m-2 from the long-lived O3 decrease that accompanies the CH4 change. The resulting net RF is -3.3 ± 1.8 mW m-2 for emissions of 1 Tg(N) yr-1. Due to non-linearity in O3 production as a function of background NOx, RF from large changes in ship NOx emissions, such as the increase since preindustrial times, is about 20% larger than this RF value for small marginal emission changes. Using sensitivity tests in one CTM, we quantify sources of uncertainty in the RF components and causes of the ±30% spread in past model results. The main source of uncertainty is the composition of the background

  17. Constraining NOx emissions using satellite NO2 measurements during 2013 DISCOVER-AQ Texas campaign

    NASA Astrophysics Data System (ADS)

    Souri, Amir Hossein; Choi, Yunsoo; Jeon, Wonbae; Li, Xiangshang; Pan, Shuai; Diao, Lijun; Westenbarger, David A.

    2016-04-01

    Reliable emission inventories are key to precisely model air pollutant concentrations. The relatively large reduction in NOx emissions that is well corroborated by satellite and in-situ observations over southeast Texas has resulted in discrepancies between observations and regional model simulations based on the National Emission Inventory (NEI) provided every three years in U.S. In this study, a Bayesian inversion of OMI tropospheric NO2 is conducted to update anthropogenic sources of NEI-2011 and soil-biogenic sources from BEIS3 (Biogenic Emission Inventory System version 3) over southeast Texas and west Louisiana during the 2013 DISCOVER-AQ Texas campaign. Results reveal that influences of the a priori profile used in OMI NO2 retrieval play a significant role in inconsistencies between model and satellite observations, which should be mitigated. A posteriori emissions are produced using the regional Community Multiscale Air Quality (CMAQ) model associated with Decoupled Direct Method (DDM) sensitivity analysis. The inverse estimate suggests a reduction in area (44%), mobile (30%), and point sources (60%) in high NOx areas (ENOx> 0.2 mol/s), and an increase in soil (∼52%) and area emissions (37%) in low NOx regions (ENOx< 0.02 mol/s). The reductions in anthropogenic sources in high NOx regions are attributed to both uncertainty of the priori and emissions policies, while increases in area and soil-biogenic emissions more likely resulted from under-estimation of ships emissions, and the Yienger- Levy scheme used in BEIS respectively. In order to validate the accuracy of updated NOx emissions, CMAQ simulation was performed and results were evaluated with independent surface NO2 measurements. Comparing to surface monitoring sites, we find improvements (before and after inverse modeling) for MB (1.95, -0.30 ppbv), MAB (3.65, 2.60 ppbv), RMSE (6.13, 4.37 ppbv), correlation (0.68, 0.69), and IOA (0.76, 0.82). The largest improvement is seen for morning time surface

  18. Comparison of wintertime CO to NOx ratios to MOVES and MOBILE6.2 on-road emissions inventories

    NASA Astrophysics Data System (ADS)

    Wallace, H. W.; Jobson, B. T.; Erickson, M. H.; McCoskey, J. K.; VanReken, T. M.; Lamb, B. K.; Vaughan, J. K.; Hardy, R. J.; Cole, J. L.; Strachan, S. M.; Zhang, W.

    2012-12-01

    The CO-to-NOx molar emission ratios from the US EPA vehicle emissions models MOVES and MOBILE6.2 were compared to urban wintertime measurements of CO and NOx. Measurements of CO, NOx, and volatile organic compounds were made at a regional air monitoring site in Boise, Idaho for 2 months from December 2008 to January 2009. The site is impacted by roadway emissions from a nearby busy urban arterial roads and highway. The measured CO-to-NOx ratio for morning rush hour periods was 4.2 ± 0.6. The average CO-to-NOx ratio during weekdays between the hours of 08:00 and 18:00 when vehicle miles travelled were highest was 5.2 ± 0.5. For this time period, MOVES yields an average hourly CO-to-NOx ratio of 9.1 compared to 20.2 for MOBILE6.2. Off-network emissions are a significant fraction of the CO and NOx emissions in MOVES, accounting for 65% of total CO emissions, and significantly increase the CO-to-NOx molar ratio. Observed ratios were more similar to the average hourly running emissions for urban roads determined by MOVES to be 4.3.

  19. Evaluation of the impacts of biodiesel and second generation biofuels on NO(x) emissions for CARB diesel fuels.

    PubMed

    Hajbabaei, Maryam; Johnson, Kent C; Okamoto, Robert A; Mitchell, Alexander; Pullman, Marcie; Durbin, Thomas D

    2012-08-21

    The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.

  20. 40 CFR 75.70 - NOX mass emissions provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... affected unit that is subject to an Acid Rain emissions limitation shall comply with the initial... unit that is not subject to an Acid Rain emissions limitation shall comply with the initial... that is subject to an Acid Rain emissions limitation shall comply with the initial certification...

  1. 40 CFR 75.70 - NOX mass emissions provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... affected unit that is subject to an Acid Rain emissions limitation shall comply with the initial... unit that is not subject to an Acid Rain emissions limitation shall comply with the initial... that is subject to an Acid Rain emissions limitation shall comply with the initial certification...

  2. 40 CFR 75.70 - NOX mass emissions provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected unit that is subject to an Acid Rain emissions limitation shall comply with the initial... unit that is not subject to an Acid Rain emissions limitation shall comply with the initial... that is subject to an Acid Rain emissions limitation shall comply with the initial certification...

  3. 40 CFR 75.70 - NOX mass emissions provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected unit that is subject to an Acid Rain emissions limitation shall comply with the initial... unit that is not subject to an Acid Rain emissions limitation shall comply with the initial... that is subject to an Acid Rain emissions limitation shall comply with the initial certification...

  4. 40 CFR 75.70 - NOX mass emissions provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... affected unit that is subject to an Acid Rain emissions limitation shall comply with the initial... unit that is not subject to an Acid Rain emissions limitation shall comply with the initial... that is subject to an Acid Rain emissions limitation shall comply with the initial certification...

  5. PHOTOCHEMICAL EFFECTS ON NOX AND CO EMISSIONS IN A BRAZILIAN SAVANNA

    EPA Science Inventory

    Land clearing and burning in the tropics often results in increased solar irradiation of soil and surface organic matter. This increased light exposure may impact the emissions of nitrogen oxides (NOx) and carbon monoxide (CO), trace gases that play an important role in troposph...

  6. NOX AND CO EMISSIONS FROM SOIL AND SURFACE LITTER IN A BRAZILIAN SAVANNA

    EPA Science Inventory

    Land clearing and burning in the tropics often results in increased solar irradiation of soil and surface organic matter. This increased light exposure and surface heating may impact the emissions of nitrogen oxides (NOx) and carbon monoxide (CO), trace gases that play an importa...

  7. Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions

    EPA Science Inventory

    In this work, we evaluate ambient ozone trends at urban, suburban, and rural monitoring sites across the United States over a period of decreasing NOx and VOC emissions (1998–2013). We find that decreasing ozone trends generally occur in the summer, in less urbanized areas,...

  8. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CO2 concentration in the flue gases. (b) Moisture correction. If a correction for the stack gas... pollutant concentration monitor measures on a different moisture basis from the diluent monitor, the owner... emission rates (in lb/mmBtu) by combining the NOX concentration (in ppm), diluent concentration (in...

  9. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CO2 concentration in the flue gases. (b) Moisture correction. If a correction for the stack gas... pollutant concentration monitor measures on a different moisture basis from the diluent monitor, the owner... emission rates (in lb/mmBtu) by combining the NOX concentration (in ppm), diluent concentration (in...

  10. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CO2 concentration in the flue gases. (b) Moisture correction. If a correction for the stack gas... pollutant concentration monitor measures on a different moisture basis from the diluent monitor, the owner... emission rates (in lb/mmBtu) by combining the NOX concentration (in ppm), diluent concentration (in...

  11. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CO2 concentration in the flue gases. (b) Moisture correction. If a correction for the stack gas... pollutant concentration monitor measures on a different moisture basis from the diluent monitor, the owner... emission rates (in lb/mmBtu) by combining the NOX concentration (in ppm), diluent concentration (in...

  12. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CO2 concentration in the flue gases. (b) Moisture correction. If a correction for the stack gas... pollutant concentration monitor measures on a different moisture basis from the diluent monitor, the owner... emission rates (in lb/mmBtu) by combining the NOX concentration (in ppm), diluent concentration (in...

  13. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  14. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport.

    PubMed

    Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C

    2008-03-15

    The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.

  15. NOx Emission Reduction and its Effects on Ozone during the 2008 Olympic Games

    SciTech Connect

    Yang, Qing; Wang, Yuhang; Zhao, Chun; Liu, Zhen; Gustafson, William I.; Shao, Min

    2011-07-15

    We applied a daily-assimilated inversion method to estimate NOx (NO+NO2) emissions for June-September 2007 and 2008 on the basis of the Aura Ozone Monitoring Instrument (OMI) observations of nitrogen dioxide (NO2) and model simulations using the Regional chEmistry and trAnsport Model (REAM). Over urban Beijing, rural Beijing, and the Huabei Plain, OMI column NO2 reductions are approximately 45%, 33%, and 14%, respectively, while the corresponding anthropogenic NOx emission reductions are only 28%, 24%, and 6%, during the full emission control period (July 20 – Sep 20, 2008). The emission reduction began in early July and was in full force by July 20, corresponding to the scheduled implementation of emission controls over Beijing. The emissions did not appear to recover after the emission control period. Meteorological change from summer 2007 to 2008 is the main factor contributing to the column NO2 decreases not accounted for by the emission reduction. Model simulations suggest that the effect of emission reduction on ozone concentrations over Beijing is relatively minor using a standard VOC emission inventory in China. With an adjustment of the model emissions to reflect in situ observations of VOCs in Beijing, the model simulation suggests a larger effect of the emission reduction.

  16. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    NASA Astrophysics Data System (ADS)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  17. Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Oechsle, Victor L.

    2003-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.

  18. Quantification of NOx emissions from NO2 hotspots over China: A satellite perspective

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; Wagner, Thomas; He, Kebin

    2014-05-01

    China is the primary contributor of global anthropogenic NOx emissions, owing to its massive energy demand driven by strong economic growth. Most of the emissions are emitted by power plants or/and from urban areas, from which have been placed considerable emphasis on promoting emission reduction by Chinese government. Better knowledge of their emissions could help to assess the achieved emission reductions and provide perspectives as to the future effectiveness, which is also a valuable aid for taking regulatory steps. Thus we have developed an unit-based emission inventory of China's coal-fired power plants with high spatial and temporal resolution for the period 1990-2010 in our previous work (Liu et al., in preparation), but developing an emission inventory for each city at the same resolution and accuracy is much more challenging. Strong power plants and large cities can be identified as NO2 "hotspots" using satellite-based instruments. It has been demonstrated in previous studies (Beirle et al., Science, 2011) that OMI products can be applied for the determination of megacity NOx emissions and their lifetime by analyzing the downwind decay of the NO2 plume. In addition, from the analysis of the OMI time-series, the construction of new, large power plants in China can clearly be identified (Zhang et al, GRL, 2009). We are working on determining Chinese hotspots emissions and lifetimes of NOx simultaneously from the observed downwind plume evolution and ECMWF wind fields using the latest OMI product (DOMINO V2.0). However, the method applied to isolated megacities like Riyadh needs to be modified in order to take interferences of several strong NOx sources within small distances into account.We will present and discuss different approaches to deal with this challenge. The derived power plant emission will be compared to the bottom-up unit-based emission inventory. The found relation between bottom-up and top-down emissions will be used for the evaluation of top

  19. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.

    PubMed

    Wang, Qin'geng; Han, Zhiwei; Wang, Tijian; Zhang, Renjian

    2008-05-20

    This study is intended to understand and quantify the impacts of biogenic emissions of volatile organic compounds (VOC) and nitrogen oxides (NO(x)) on the formation of tropospheric ozone during summertime in eastern China. The model system consists of the non-hydrostatic mesoscale meteorological model (MM5) and a tropospheric chemical and transport model (TCTM) with the updated carbon-bond chemical reaction mechanism (CBM-IV). The spatial resolution of the system domain is 30 km x 30 km. The impacts of biogenic emissions are investigated by performing simulations (36 h) with and without biogenic emissions, while anthropogenic emissions are constant. The results indicate that biogenic emissions have remarkable impacts on surface ozone in eastern China. In big cities and their surrounding areas, surface ozone formation tends to be VOC-limited. The increase in ozone concentration by biogenic VOC is generally 5 ppbv or less, but could be more than 10 ppbv or even 30 ppbv in some local places. The impacts of biogenic NO(x) are different or even contrary in different regions, depending on the relative availability of NO(x) and VOC. The surface ozone concentrations reduced or increased by the biogenic NO(x) could be as much as 10 ppbv or 20 ppbv, respectively. The impacts of biogenic emissions on ozone aloft are generally restricted to the boundary layer and generally more obvious during the daytime than during the nighttime. This study is useful for understanding the role of biogenic emissions and for planning strategies for surface ozone abatement in eastern China. Due to limitations of the emission inventories used and the highly non-linear nature of zone formation, however, some uncertainties remain in the results.

  20. Study of Nox Emission Characteristics of a 1025t/h Coal-Fired Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Li, Q. Y.; Mi, Z. D.; Zhang, Q. F.

    Measurements of emission are carried out in a 1025t/h CFB boiler. The effect of some factors including coal properties, bed temperature, unit load, excess air on the emission of NOx are investigated. The measurement results show that the N concentration in the coal is dominant parameter to predict the NOx emission from a large-scale CFB boiler. NOx emission from the 1025t/h CFB boiler increases with cyclone temperature and upper pressure drop due to post combustion and external cycle.

  1. Direct carbon dioxide emissions from civil aircraft

    NASA Astrophysics Data System (ADS)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  2. Identification of surface NOx emission sources on a regional scale using OMI NO2

    NASA Astrophysics Data System (ADS)

    Zyrichidou, I.; Κoukouli, M. E.; Balis, D.; Markakis, K.; Poupkou, A.; Katragkou, E.; Kioutsioukis, I.; Melas, D.; Boersma, K. F.; van Roozendael, M.

    2015-01-01

    In this study, an inverse modeling technique is applied to obtain, at a regional scale, top-down emission estimates for nitrogen oxides utilizing tropospheric nitrogen dioxide (NO2) columns retrieved by the OMI/Aura instrument and estimated by the Comprehensive Air Quality Model with extensions (CAMx). The main idea, applied previously using models with coarse spatial resolution, is to combine the a priori information from the bottom up emission inventory used in an air quality simulation that covers the Balkan peninsula in a high resolution grid (0.1° × 0.1°) with the tropospheric NO2 quantities estimated for one complete year by CAMx and the tropospheric NO2 columns retrieved by satellite observations in order to identify missing emissions sources on a regional scale. The results have identified biases between the a priori and a posteriori emission inventories due to the missing emission sources or over-estimation of the spread and quantity of certain emission sources. In such a fine resolution grid we have also analyzed and considered the horizontal transport on the a posteriori NOx emissions. The deduced a posteriori NOx emissions, dominated by the fossil fuel emissions, were found to be1.11 ± 0.30 Tg N/y, compared to 0.87 ± 0.43 Tg N/y found in the a priori Balkan emission inventory. Soil emissions over the extended Greek domain, omitted in the a priori inventory, were estimated to account for almost 20% of the total emitted amount, while for the year 2009 the biomass burning NOx emission flux was also estimated and the average rate accounted for 0.5 × 10-6 Tg N/km2.

  3. 40 CFR 51.122 - Emissions reporting requirements for SIP revisions relating to budgets for NOX emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NOX emissions data as described in this section. (c) Each revision must provide for periodic reporting...) of this section. (3) Through 2011, reports are to be submitted according to the schedule in Table 1... reports are to be submitted each year that a triennial report is not required. Table 1—Schedule...

  4. 40 CFR 51.122 - Emissions reporting requirements for SIP revisions relating to budgets for NOX emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NOX emissions data as described in this section. (c) Each revision must provide for periodic reporting...) of this section. (3) Through 2011, reports are to be submitted according to the schedule in Table 1... reports are to be submitted each year that a triennial report is not required. Table 1—Schedule...

  5. Aircraft emissions characterization: F101 and F110 engines. Final report Jun 87-Mar 89

    SciTech Connect

    Spicer, C.W.; Holdren, M.W.; Smith, D.L.; Miller, S.E.; Smith, R.N.

    1990-03-01

    Assessment of the environmental impact of aircraft operations is required by Air Force regulations. This program was undertaken to quantify gaseous and particulate emissions associated with two Air Force turbine engines (F101 and F110). The emissions tests were carried out using a test cell at Tinker AFB, Oklahoma City, OK. All tests employed JP-4 as the fuel, and fuel samples were characterized by standard tests and analyzed for composition. Emissions were measured at five power settings for each engine. Detailed organic composition, CO, CO2, NO, NOx, smoke emissions, particle concentration, and particle size distribution were measured. A multiport sampling rake was used to sample the exhaust, and heated Teflon tubing was used to transfer exhaust to the monitoring instrumentation. Measured and calculated fuel/air ratios were compared to assure representative sampling of the exhaust.

  6. Flame Tube NOx Emissions Using a Lean-Direct-Wall-Injection Combustor Concept

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2001-01-01

    A low-NOx emissions combustor concept has been demonstrated in flame tube tests. A lean-direct injection concept was used where the fuel is injected directly into the flame zone and the overall fuel-air mixture is lean. In this concept the air is swirled upstream of a venturi section and the fuel is injected radially inward into the air stream from the throat section using a plain-orifice injector. Configurations have two-, four-, or six-wall fuel injectors and in some cases fuel is also injected from an axially located simplex pressure atomizer. Various orifice sizes of the plain-orifice injector were evaluated for the effect on NOx. Test conditions were inlet temperatures up to 8 1 OK, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 15 percent of the combustion air would be used for liner cooling and using an advanced engine cycle, for the best configuration, the NOx emissions using the correlation is estimated to be <75 percent of the 1996 ICAO standard.

  7. Constraints on ship NOx emissions in Europe using OMI NO2 observations

    NASA Astrophysics Data System (ADS)

    Vinken, G. C. M.; Boersma, K. F.

    2012-04-01

    About 90% of world trade is transported by oceangoing ships, and seaborne trade has been shown to have increased by about 5% per year in the past decade. Global ship traffic is currently not regulated under international treaties (e.g. Kyoto protocol) and ships are still allowed to burn low-grade bunker fuel. As a result, ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Previous studies indicated that the global NOx emissions from shipping are in the range 3.0-10.4 Tg N per year (15-30% of total global NOx emissions). Because most ships sail within 400 km of the coast, it is important to understand the contribution of ship emissions to atmospheric composition in the densely populated coastal regions. Chemistry Transport Models (CTMs), in combination with emission inventories, are used to simulate atmospheric concentrations of air pollutants to assess the impact of ship emissions. However, these bottom-up inventories, based on extrapolation of a few engine measurements and strong assumptions, suffer from large uncertainties. In this study we provide top-down constraints on ship NOx emissions in Europe using satellite observations of NO2 columns. We use the nested version of the GEOS-Chem model (0.5°-0.667°) to simulate tropospheric NO2 columns over Europe for the years 2005-2006, using our plume-in-grid treatment of ship NOx emissions. We improve the NO2 retrievals from the Ozone Monitoring Instrument (OMI v2.0) by replacing the coarse a priori (TM4) vertical NO2 profiles (2°-3°) with the high-resolution GEOS-Chem profiles. This ensures consistency between the retrievals and model simulations. GEOS-Chem simulations of tropospheric NO2 columns show remarkable quantitative agreement with the observed OMI columns over Europe (R2=0.89, RMS difference < 0.2-1015 molec. cm-2), providing confidence in the ability of the model to simulate NO2 pollution over the European mainland. We

  8. SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

    SciTech Connect

    Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R Panov, A

    2003-08-24

    NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

  9. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  10. Field test of available methods to measure remotely SO2 and NOx emissions from ships

    NASA Astrophysics Data System (ADS)

    Balzani Lööv, J. M.; Alfoldy, B.; Beecken, J.; Berg, N.; Berkhout, A. J. C.; Duyzer, J.; Gast, L. F. L.; Hjorth, J.; Jalkanen, J.-P.; Lagler, F.; Mellqvist, J.; Prata, F.; van der Hoff, G. R.; Westrate, H.; Swart, D. P. J.; Borowiak, A.

    2013-11-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  11. Field test of available methods to measure remotely SOx and NOx emissions from ships

    NASA Astrophysics Data System (ADS)

    Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.

    2014-08-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  12. Constraints on Eurasian ship NOx emissions using OMI NO2 observations and GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Vinken, Geert C. M.; Boersma, Folkert; van Donkelaar, Aaron; Zhang, Lin

    2013-04-01

    Ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Ships burn low-grade marine heavy fuel due to the limited regulations that exist for the maritime sector in international waters. Previous studies showed that global ship NOx emission inventories amount to 3.0-10.4 Tg N per year (15-30% of total NOx emissions), with most emissions close to land and affecting air quality in densely populated coastal regions. Bottom-up inventories depend on the extrapolation of a relatively small number of measurements that are often unable to capture annual emission changes and can suffer from large uncertainties. Satellites provide long-term, high-resolution retrievals that can be used to improve emission estimates. In this study we provide top-down constraints on ship NOx emissions in major European ship routes, using observed NO2 columns from the Ozone Monitoring Instrument (OMI) and NO2 columns simulated with the nested (0.5°×0.67°) version of the GEOS-Chem chemistry transport model. We use a plume-in-grid treatment of ship NOx emissions to account for in-plume chemistry in our model. We ensure consistency between the retrievals and model simulations by using the high-resolution GEOS-Chem NO2 profiles as a priori. We find evidence that ship emissions in the Mediterranean Sea are geographically misplaced by up to 150 km and biased high by a factor of 4 as compared to the most recent (EMEP) ship emission inventory. Better agreement is found over the shipping lane between Spain and the English Channel. We extend our approach and also provide constraints for major ship routes in the Red Sea and Indian Ocean. Using the full benefit of the long-term retrieval record of OMI, we present a new Eurasian ship emission inventory for the years 2005 to 2010, based on the EMEP and AMVER-ICOADS inventories, and top-down constraints from the satellite retrievals. Our work shows that satellite retrievals can

  13. Impact of Ship Emissions on Marine Boundary Layer NO(x) and SO2 Distributions over the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Davis, D. D.; Grodzinsky, G.; Kasibhatla, P.; Crawford, J.; Chen, G.; Liu, S.; Bandy, A.; Thornton, D.; Guan, H.; Sandholm, S.

    2001-01-01

    The impact of ship emissions on marine boundary layer (MBL) NO(x) and SO2 levels over the Pacific Ocean has been explored by comparing predictions (with and without ships) from a global chemical transport model (GCTM) against compiled airborne observations of MBL NO(x) and SO2. For latitudes above 15 N, which define that part of the Pacific having the heaviest shipping, this analysis revealed significant model over prediction for NOx and a modest under prediction for SO2 when ship emissions were considered. Possible reasons for the difference in NO(x) and SO2 were explored using a full-chemistry box model. These results revealed that for an actual plume setting the NO(x) lifetime could be greatly shortened by chemical processes promoted by ship plume emissions themselves. Similar chemical behavior was not found for SO2.

  14. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    PubMed

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  15. 40 CFR 86.1861-17 - How do the NMOG+NOX and evaporative emission credit programs work?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission standards for NMOG+NOX described in § 86.1811-17(b)(8), credits generated in model years 2017...) in model year 2017. (c) The credit-deficit provisions 40 CFR 1037.745 apply to the NMOG+NOX...

  16. Measurement of NO(x) fluxes from a tall tower in Central London, UK and comparison with emissions inventories.

    PubMed

    Lee, James D; Helfter, Carole; Purvis, Ruth M; Beevers, Sean D; Carslaw, David C; Lewis, Alastair C; Møller, Sarah J; Tremper, Anja; Vaughan, Adam; Nemitz, Eiko G

    2015-01-20

    Direct measurements of NOx concentration and flux were made from a tall tower in central London, UK as part of the Clean Air for London (ClearfLo) project. Fast time resolution (10 Hz) NO and NO2 concentrations were measured and combined with fast vertical wind measurements to provide top-down flux estimates using the eddy covariance technique. Measured NOx fluxes were usually positive and ranged from close to zero at night to 2000-8000 ng m(-2) s(-1) during the day. Peak fluxes were usually observed in the morning, coincident with the maximum traffic flow. Measurements of the NOx flux have been scaled and compared to the UK National Atmospheric Emissions Inventory (NAEI) estimate of NOx emission for the measurement footprint. The measurements are on average 80% higher than the NAEI emission inventory for all of London. Observations made in westerly airflow (from parts of London where traffic is a smaller fraction of the NOx source) showed a better agreement on average with the inventory. The observations suggest that the emissions inventory is poorest at estimating NOx when traffic is the dominant source, in this case from an easterly direction from the BT Tower. Agreement between the measurements and the London Atmospheric Emissions Inventory (LAEI) are better, due to the more explicit treatment of traffic flow by this more detailed inventory. The flux observations support previous tailpipe observations of higher NOx emitted from the London vehicle diesel fleet than is represented in the NAEI or predicted for several EURO emission control technologies. Higher-than-anticipated vehicle NOx is likely responsible for the significant discrepancies that exist in London between observed NOx and long-term NOx projections.

  17. Satellite-observed U.S. power plant NOx emission reductions and their impact on air quality

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; Heckel, A.; McKeen, S. A.; Frost, G. J.; Hsie, E.-Y.; Trainer, M. K.; Richter, A.; Burrows, J. P.; Peckham, S. E.; Grell, G. A.

    2006-11-01

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O3). One of the largest U.S. sources, electric power generation, represented about 25% of the U.S. anthropogenic NOx emissions in 1999. Here we show that space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to the recent implementation of pollution controls by utility companies in the eastern U.S. Satellite-retrieved summertime nitrogen dioxide (NO2) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast U.S. urban corridor. Model simulations predict lower O3 across much of the eastern U.S. in response to these emission reductions.

  18. High ozone concentrations on hot days: The role of electric power demand and NOx emissions

    NASA Astrophysics Data System (ADS)

    He, Hao; Hembeck, Linda; Hosley, Kyle M.; Canty, Timothy P.; Salawitch, Ross J.; Dickerson, Russell R.

    2013-10-01

    ambient temperatures intensify photochemical production of tropospheric ozone, leading to concerns that global warming may exacerbate smog episodes. This widely observed phenomenon has been termed the climate penalty factor (CPF). A variety of meteorological and photochemical processes have been suggested to explain why surface ozone increases on hot days. Here, we quantify an anthropogenic factor previously overlooked: the rise of ozone precursor emissions on hot summer days due to high electricity demand. Between 1997 and 2011, power plant emissions of NOx in the eastern U.S. increased by ~2.5-4.0%/°C, raising surface NOx concentrations by 0.10-0.25 ppb/°C. Given an ozone production efficiency (OPE) of ~8 mol/mol based on the 2011 NASA DISCOVER-AQ campaign, at least one third of the CPF observed in the eastern U.S. can be attributed to the temperature dependence of NOx emissions. This finding suggests that controlling emissions associated with electricity generation on hot summer days can mitigate the CPF.

  19. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations.

    PubMed

    Wu, Fengcheng; Li, Ang; Xie, Pinhua; Chen, Hao; Hu, Zhaokun; Zhang, Qiong; Liu, Jianguo; Liu, Wenqing

    2017-01-25

    Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO₂ emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity is 30-40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO₂ and NO₂ emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy.

  20. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations

    PubMed Central

    Wu, Fengcheng; Li, Ang; Xie, Pinhua; Chen, Hao; Hu, Zhaokun; Zhang, Qiong; Liu, Jianguo; Liu, Wenqing

    2017-01-01

    Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO2 emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity is 30–40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO2 and NO2 emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy. PMID:28125054

  1. SUMMARY REPORT CONTROL OF NOX EMISSIONS BY REBURNING

    EPA Science Inventory

    This report covers NOx control employing reburning technology: A new, effective method of controlling NOx emissions from a wide range of stationary combustion sources including large, coal-fired, utility boilers. Although reburning potentially is applicable ...

  2. Observational constraints on upper tropospheric NOx emissions, lifetime, and oxidative products

    NASA Astrophysics Data System (ADS)

    Nault, Benjamin Albert

    Nitrogen oxides (NOx ≡ NO + NO2) regulate tropospheric ozone (O3) production rates. In the upper troposphere (~8 -- 15 km above ground level), where O3 is an important greenhouse gas, there are few detailed measurements of NOx and its oxidation products. As a result, the chemical reactions that involve NO x are poorly characterized under the low temperature conditions in this region of the atmosphere. For the reactions that have been studied under these conditions (e.g., daytime nitric acid, or HNO3, and pernitric acid, or HO2NO2, production), the results from various experiments indicate a 20 -- 50% disagreement for the rate constants, and the other important NOx oxidation reactions (production of acyl peroxy nitrate, like PAN and PPN, and alkyl and multifunctional nitrates) have not been well characterized for the conditions characteristic of the upper troposphere. Besides the poorly understood NOx oxidation rates, recent calculations have indicated there is an important upper tropospheric NOx oxidation product (methyl peroxy nitrate, or CH3O2NO2) that has not been measured in the atmosphere. These uncertainties in the products and oxidation rate constants affect the characterization of the input of NO x from lightning. In this dissertation, I report observations obtained during two airborne field campaigns, the Deep Convective Clouds and Chemistry (DC3, May -- June, 2012) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS, August -- September, 2013) experiments, and use these observations to investigate the reaction products and rate constants for the oxidation of NOx to less reactive reservoirs. The observations focused on fresh lightning emissions in deep convective outflow, and the subsequent chemical aging of the outflow downwind. First, I present the first ambient observations of CH3O 2NO2, and recommendations on how to measure upper tropospheric in situ NO2 with minimal interferences from

  3. Increase in NOx emissions from Indian thermal power plants during 1996-2010: unit-based inventories and multisatellite observations.

    PubMed

    Lu, Zifeng; Streets, David G

    2012-07-17

    Driven by rapid economic development and growing electricity demand, NO(x) emissions (E) from the power sector in India have increased dramatically since the mid-1990s. In this study, we present the NO(x) emissions from Indian public thermal power plants for the period 1996-2010 using a unit-based methodology and compare the emission estimates with the satellite observations of NO(2) tropospheric vertical column densities (TVCDs) from four spaceborne instruments: GOME, SCIAMACHY, OMI, and GOME-2. Results show that NO(x) emissions from Indian power plants increased by at least 70% during 1996-2010. Coal-fired power plants, NO(x) emissions from which are not regulated in India, contribute ∼96% to the total power sector emissions, followed by gas-fired (∼4%) and oil-fired (<1%) ones. A number of isolated NO(2) hot spots are observed over the power plant areas, and good agreement between NO(2) TVCDs and NO(x) emissions is found for areas dominated by power plant emissions. Average NO(2) TVCDs over power plant areas were continuously increasing during the study period. We find that the ratio of ΔE/E to ΔTVCD/TVCD changed from greater than one to less than one around 2005-2008, implying that a transition of the overall NO(x) chemistry occurred over the power plant areas, which may cause significant impact on the atmospheric environment.

  4. Method for reducing CO2, CO, NOX, and SOx emissions

    DOEpatents

    Lee, James Weifu; Li, Rongfu

    2002-01-01

    Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

  5. Model Calculations of the Impact of NO(x) from Air Traffic, Lightning and Surface Emissions, Compared with Measurements

    NASA Technical Reports Server (NTRS)

    Meijer, E. W.; vanVelthoven, P. F. J.; Thompson, A. M.; Pfister, L.; Schlager, H.; Schulte, P.; Kelder, H.

    1999-01-01

    The impact of NO(x) from aircraft emissions, lightning and surface contributions on atmospheric nitrogen oxides and ozone has been investigated with the three-dimensional global chemistry transport model TM3 by partitioning the nitrogen oxides and ozone according to source category. The results have been compared with POLINAT II and SONEX airborne measurements in the North Atlantic flight corridor in 1997. Various cases have been investigated: measurements during a stagnant anti-cyclone and an almost cut-off low, both with expected high aircraft contributions, a southward bound flight with an expected strong flight corridor gradient and lightning contributions in the South, and a transatlantic flight with expected boundary layer pollution near the U.S. coast. The agreement between modeled results and measurements is reasonably good for NO and ozone. Also, the calculated impact of the three defined sources were consistent with the estimated exposure of the sampled air to these sources, obtained by specialized back-trajectory model products.

  6. Emission reduction of NOx, PM, PM-carbon, and PAHs from a generator fuelled by biodieselhols.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Chao, How-Ran; Lin, Chih-Chung; Hsieh, Lien-Te

    2014-06-15

    This investigation examines the particulate matter (PM), particulate carbon, polycyclic aromatic hydrocarbons (PAHs), and nitrogen oxides (NOx) emitted from a generator fueled by petroleum diesel blended with waste-edible-oil-biodiesel and water-containing acetone. Experimental results show that using biodieselhols with water-containing (or pure) acetone as the fuel of generator, in comparison to using petroleum diesel, significantly reduces PM emission; roughly, this reduction increased as percentage of water-containing acetone increased. When the percentages of waste-edible-oil-biodiesel were ≤ 5 vol%, adding pure or water-containing acetone (1-3 vol%) to biodieselhols generated emission reductions of NOx, PM, particle-bound organic carbon (OC), total-PAHs, and total-BaPeq. Consequently, using water-containing acetone biodieselhols as an alternative generator fuel is feasible and helps recycle and reuse waste solvents containing water-containing acetone.

  7. NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns.

    PubMed

    Fu, Mingliang; Ge, Yunshan; Wang, Xin; Tan, Jianwei; Yu, Linxiao; Liang, Bin

    2013-05-01

    NOx and particulate matter (PM) emissions from heavy-duty diesel vehicles (HDVs) have become the most important sources of pollutants affecting urban air quality in China. In recent years, a series of emission control strategies and diesel engine polices have been introduced that require advanced emission control technology. China and Europe mostly have used Selective Catalytic Reduction (SCR) with urea to meet the Euro IV diesel engine emission standard. In this study, two Euro IV busses with SCR were tested by using potable emission measurement system (PEMS) to assess NOx emissions associated with urban, suburban and freeway driving patterns. The results indicated that with the SCR system, the urea injection time for the entire driving period increased with higher vehicle speed. For freeway driving, the urea injection time covered 71%-83% of the driving period; the NOx emission factors from freeway driving were lower than those associated with urban and suburban driving. Unfortunately, the NOx emission factors were 2.6-2.8-, 2.3-2.7- and 2.2-2.3-fold higher than the Euro IV standard limits for urban, suburban and freeway driving, respectively; NOx emission factors (in g/km and g/(kW·h)) from the original vehicles (without SCR) were higher than their corresponding vehicles with SCR for suburban and freeway driving. Compared with the IVE model results, the measured NOx emission factors were 1.60-1.16-, 1.77-1.27-, 2.49-2.44-fold higher than the NOx predicted by the IVE model for urban and suburban driving, respectively. Thus, an adjustment of emission factors is needed to improve the estimation of Euro IV vehicle emissions in China.

  8. CHARACTERIZATION OF ROTATING-WING AIRCRAFT EMISSIONS

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.; Mahurin, Shannon Mark; DeWitt, M.

    2007-01-01

    Rotating-wing aircraft or helicopters are heavily used by the US military to transport cargo, troops and personnel, and perform combat missions. Similar helicopter engines (those from the Chinook helicopter, for example) are being used by civilian companies to lift and transport heavy loads. Emissions data for this type of engines are limited but are important for development and design of air quality control strategy for military installations and bases in the country that are surrounded by cities and metropolitan areas. Major gaseous, selected air toxics, and particulate emissions data from helicopters were measured for T700-GE-700 and T700-GE-701C running JP-8 and Fischer-Tropsch fuels in separate engine exhaust tests. Each engine-fuel combination test was run at three engine power levels from idle to maximum in sequence in each test in June 2007 at Hunter Army Airfield (HAAF) in Savannah, GA. The emissions from these engines were smaller than those (T33 and T56) tested earlier in terms of gas concentrations and particulate mass/number concentration. The mode diameter of a particle size distribution obtained from a test run throughout the whole campaign was smaller than 100 nm by a research-grade fast scanning mobility particle sizer, which was confirmed by a commercial scanning mobility particle sizer taking sample from a collocated position right at the engine exhaust exit plane. Use of FT fuel led to reduced particulate and gaseous emissions as compared to the use of JP-8 fuel on the same engine. Production of nanoparticles (with mobility diameter smaller than 20 nm) by the engine running on JP-8 fuel was clearly observed using a nano-DMA equipped scanning mobility particle sizer a few meters downstream from the engine exhaust plane. The production was proportional to the engine power setting, and likely to be caused by the sulfur content in the JP-8 fuel. Sulfate/sulfur data measured at the engine exhaust and the same downstream location supports such a

  9. Will Euro 6 reduce the NOx emissions of new diesel cars? - Insights from on-road tests with Portable Emissions Measurement Systems (PEMS)

    NASA Astrophysics Data System (ADS)

    Weiss, Martin; Bonnel, Pierre; Kühlwein, Jörg; Provenza, Alessio; Lambrecht, Udo; Alessandrini, Stefano; Carriero, Massimo; Colombo, Rinaldo; Forni, Fausto; Lanappe, Gaston; Le Lijour, Philippe; Manfredi, Urbano; Montigny, Francois; Sculati, Mirco

    2012-12-01

    The nitrogen dioxide (NO2) pollution in urban areas of Europe can be partially attributed to the increasing market penetration of diesel cars that show higher distance-specific nitrogen oxides (NOx) emissions than gasoline cars. The on-road NOx emissions of diesel cars, furthermore, appear to exceed substantially applicable emissions standards. This observation raises concerns that the introduction of more stringent Euro 6 emissions standards in 2014 may not adequately reduce the distance-specific on-road NOx emissions of new diesel cars. We address the existing concerns by analyzing the gaseous emissions of one novel Euro 6 diesel car and six Euro 4-5 diesel cars with Portable Emissions Measurement Systems (PEMS). We find that the average on-road NOx emissions of the Euro 6 car (0.21 ± 0.09 g per kilometer [g km-1]) are considerably lower than those of the Euro 4 cars (0.76 ± 0.12 g km-1) and the Euro 5 cars (0.71 ± 0.30 g km-1). The selective catalytic reduction (SCR) system of the Euro 6 diesel car is suitable to limit NOx emissions during real-world on-road driving. Still, all tested cars, including the Euro 6 diesel car, exceed their NOx emissions standards on the road by 260 ± 130%. This finding suggests that the current type-approval procedure does not adequately capture the on-road NOx emissions of diesel cars. By introducing a complementary emissions test procedure that covers a wide range of normal operating conditions, the European legislative authorities can address this problem and ensure that Euro 6 will indeed deliver an adequate reduction in the NOx emissions of new diesel cars.

  10. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler.

    PubMed

    Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing

    2010-05-15

    A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.

  11. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    PubMed

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Päivi; Korhonen, Satu

    2015-04-07

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 °C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern.

  12. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber

    SciTech Connect

    Gao, Zhiming; Kim, Miyoung; Choi, Jae-Soon; Daw, C Stuart; Parks, II, James E; Smith, David E

    2012-01-01

    We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

  13. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  14. A Low NO(x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert; Wey, Changlie; Laing, Peter; Mansour, Adel

    2002-01-01

    A low NO(x) emissions combustor has been demonstrated in flame-tube tests. A multipoint, lean-direct injection concept was used. Configurations were tested that had 25- and 36- fuel injectors in the size of a conventional single fuel injector. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers and fuel manifold into a single element. Test conditions were inlet temperatures up to 810 K, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation was developed relating the NO(x) emissions with the inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 10 percent of the combustion air would be used for liner cooling and using a hypothetical engine cycle, the NO(x) emissions using the correlation from flame-tube tests were estimated to be less than 20 percent of the 1996 ICAO standard.

  15. Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system.

    PubMed

    Kwon, Sangil; Park, Yonghee; Park, Junhong; Kim, Jeongsoo; Choi, Kwang-Ho; Cha, Jun-Seok

    2017-01-15

    This paper presents the on-road nitrogen oxides (NOx) emissions measurements from Euro 6 light-duty diesel vehicles using a portable emissions measurement system on the predesigned test routes in the metropolitan area of Seoul, Korea. Six diesel vehicles were tested and the NOx emissions results were analyzed according to the driving routes, driving conditions, data analysis methods, and ambient temperatures. Total NOx emissions for route 1, which has higher driving severity than route 2, differed by -4-60% from those for route 2. The NOx emissions when the air conditioner (AC) was used were higher by 68% and 85%, on average, for routes 1 and 2, respectively, compared to when the AC was not used. The analytical results for NOx emissions by the moving averaging window method were higher by 2-31% compared to the power binning method. NOx emissions at lower ambient temperatures (0-5°C) were higher by 82-192% compared to those at higher ambient temperatures (15-20°C). This result shows that performance improvements of exhaust gas recirculation and the NOx after-treatment system will be needed at lower ambient temperatures.

  16. The contribution of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season

    NASA Astrophysics Data System (ADS)

    Mamtimin, Buhalqem; Meixner, Franz X.; Behrendt, Thomas; Badawy, Moawad; Wagner, Thomas

    2016-08-01

    A study was carried out to understand the contributions of soil biogenic NO emissions from managed (fertilized and irrigated) hyperarid ecosystems in NW China to the regional NOx emissions during the growing season. Soil biogenic net potential NO fluxes were quantified by laboratory incubation of soil samples from the three dominating ecosystems (desert, cotton, and grape fields). Regional biogenic NO emissions were calculated bottom-up hourly for the entire growing season (April-September 2010) by considering corresponding land use, hourly data of soil temperature, gravimetric soil moisture, and fertilizer enhancement factors. The regional HONO emissions were estimated using the ratio of the optimum condition ((FN,opt(HONO) to FN,opt (NO)). Regional anthropogenic NOx emissions were calculated bottom-up from annual statistical data provided by regional and local government bureaus which have been downscaled to monthly value. Regional top-down emission estimates of NOx were derived on the monthly basis from satellite observations (OMI) of tropospheric vertical NO2 column densities and prescribed values of the tropospheric NOx lifetime. In order to compare the top-down and bottom-up emission estimates, all emission estimates were expressed in terms of mass of atomic nitrogen. Consequently, monthly top-down NOx emissions (total) were compared with monthly bottom-up NOx emissions (biogenic + anthropogenic) for the time of the satellite overpass (around 13:00 LT) with the consideration of the diurnal cycle of bottom-up estimates. Annual variation in total Tohsun Oasis NOx emissions is characterized by a strong peak in winter (December-February) and a secondary peak in summer (June-August). During summer, soil biogenic emissions were from equal to double that of related anthropogenic emissions, and grape soils were the main contributor to soil biogenic emissions, followed by cotton soils, while emissions from the desert were negligible. The top-down and bottom

  17. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  18. Bridge-based sensing of NOx and SO2 emissions from ocean-going ships

    NASA Astrophysics Data System (ADS)

    Burgard, Daniel A.; Bria, Carmen R. M.

    2016-07-01

    As emissions from nonroad mobile sources face increased regulatory scrutiny, a surprisingly few number of real-world, in-use measurements exist for these sources. This paper reports the first use of an open-path Remote Sensing Device (RSD) to measure emissions from ocean-going ships, including cruise ships. This noninvasive technique measured NOx and SO2 emission factors from 16 individually identified ocean-going ships as they passed under the Lions Gate Bridge in Vancouver, B.C. and their exhaust plumes passed through the sensing beam of the RSD on a bridge directly above. Ship NOx emissions generally agreed with previous studies showing no emissions trends across vessel type. Ship SO2 emissions were reasonable based on expected Environmental Control Area fuel sulfur requirements and corresponded to 0.4-2.4% sulfur in the fuels. This method's specificity of individual vessel SO2 measurements suggests that this technique could be used as a tool to detect high sulfur fuel use in vessels.

  19. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kazuyuki; Eskes, Henk; Sudo, Kengo; Folkert Boersma, K.; Bowman, Kevin; Kanaya, Yugo

    2017-01-01

    Global surface emissions of nitrogen oxides (NOx) over a 10-year period (2005-2014) are estimated from an assimilation of multiple satellite data sets: tropospheric NO2 columns from Ozone Monitoring Instrument (OMI), Global Ozone Monitoring Experiment-2 (GOME-2), and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), O3 profiles from Tropospheric Emission Spectrometer (TES), CO profiles from Measurement of Pollution in the Troposphere (MOPITT), and O3 and HNO3 profiles from Microwave Limb Sounder (MLS) using an ensemble Kalman filter technique. Chemical concentrations of various species and emission sources of several precursors are simultaneously optimized. This is expected to improve the emission inversion because the emission estimates are influenced by biases in the modelled tropospheric chemistry, which can be partly corrected by also optimizing the concentrations. We present detailed distributions of the estimated emission distributions for all major regions, the diurnal and seasonal variability, and the evolution of these emissions over the 10-year period. The estimated regional total emissions show a strong positive trend over India (+29 % decade-1), China (+26 % decade-1), and the Middle East (+20 % decade-1), and a negative trend over the USA (-38 % decade-1), southern Africa (-8.2 % decade-1), and western Europe (-8.8 % decade-1). The negative trends in the USA and western Europe are larger during 2005-2010 relative to 2011-2014, whereas the trend in China becomes negative after 2011. The data assimilation also suggests a large uncertainty in anthropogenic and fire-related emission factors and an important underestimation of soil NOx sources in the emission inventories. Despite the large trends observed for individual regions, the global total emission is almost constant between 2005 (47.9 Tg N yr-1) and 2014 (47.5 Tg N yr-1).

  20. Increased Use of Natural Gas for Power Generation in the U.S. and the Resulting Reductions in Emissions of CO2, NOx and SO2

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.; Parrish, D. D.; Trainer, M.

    2013-12-01

    Over the past decades, natural gas has increasingly replaced coal as a fuel for electrical power generation in the U.S. As a result, there have been significant reductions in the emissions of carbon dioxide (CO2), nitrogen oxides (NOx) and sulfur dioxide (SO2). Power plant emissions are continuously measured at the stack using continuous emissions monitoring systems (CEMS) required by the EPA. Previous studies using airborne measurements have shown these CEMS measurements to be accurate. Here, we use annual emissions since 1995 from all point sources included in the CEMS database to quantify the changes in CO2, NOx and SO2 emissions that have resulted from the changing use of fuels and technologies for power generation. In 1997, 83% of electrical power in the CEMS database was generated from coal-fired power plants. In 2012, the contribution from coal had decreased to 59%, and natural gas contributed 34% of the electrical power. Natural gas-fired power plants, in particular those equipped with combined cycle technology, emit less than 50% of CO2 per kWh produced compared to coal-fired plants. As a result of the increased use of natural gas, total CO2 emissions from U.S. power plants have decreased since 2008. In addition, natural gas-fired power plants emit less NOx and far less SO2 per kWh produced than coal-fired power plants. The increased use of natural gas has therefore led to significant emissions reductions of NOx and SO2 in addition to those obtained from the implementation of emissions control systems on coal-fired power plants. The increased use of natural gas for power generation has led to significant reductions in CO2 emissions as well as improvements in U.S. air quality. We will illustrate these points with examples from airborne measurements made using the NOAA WP-3D aircraft in the Southeastern U.S. in 2013 as part of the NOAA Southeast Nexus (SENEX) study. The emissions reductions from U.S. power plants due to the increased use of natural gas will

  1. Combining support vector regression and ant colony optimization to reduce NOx emissions in coal-fired utility boilers

    SciTech Connect

    Ligang Zheng; Hao Zhou; Chunlin Wang; Kefa Cen

    2008-03-15

    Combustion optimization has recently demonstrated its potential to reduce NOx emissions in high capacity coal-fired utility boilers. In the present study, support vector regression (SVR), as well as artificial neural networks (ANN), was proposed to model the relationship between NOx emissions and operating parameters of a 300 MW coal-fired utility boiler. The predicted NOx emissions from the SVR model, by comparing with that of the ANN-based model, showed better agreement with the values obtained in the experimental tests on this boiler operated at different loads and various other operating parameters. The mean modeling error and the correlation factor were 1.58% and 0.94, respectively. Then, the combination of the SVR model with ant colony optimization (ACO) to reduce NOx emissions was presented in detail. The experimental results showed that the proposed approach can effectively reduce NOx emissions from the coal-fired utility boiler by about 18.69% (65 ppm). A time period of less than 6 min was required for NOx emissions modeling, and 2 min was required for a run of optimization under a PC system. The computing times are suitable for the online application of the proposed method to actual power plants. 37 refs., 8 figs., 3 tabs.

  2. Experimental study on combustion characteristics and NOX emissions of pulverized anthracite preheated by circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhu, Jian-Guo; Lu, Qing-Gang

    2011-08-01

    A 30 kW bench-scale rig of pulverized anthracite combustion preheated by a circulating fluidized bed (CFB) was developed. The CFB riser has a diameter of 90 mm and a height of 1,500 mm. The down-fired combustion chamber (DFCC) has a diameter of 260 mm and a height of 3,000 mm. Combustion experiments were carried out using pulverized anthracite with 6.74% volatile content. This low volatile coal is difficult to ignite and burn out. Therefore, it requires longer burnout time and higher combustion temperature, which results in larger NOX emissions. In the current study, important factors that influence the combustion characteristics and NOX emissions were investigated such as excess air ratio, air ratio in the reducing zone, and fuel residence time in the reducing zone. Pulverized anthracite can be quickly preheated up to 800°C in CFB when the primary air is 24% of theoretical air for combustion, and the temperature profile is uniform in DFCC. The combustion efficiency is 94.2%, which is competitive with other anthracite combustion technologies. When the excess air ratio ranges from 1.26 to 1.67, the coal-N conversion ratio is less than 32% and the NOX emission concentration is less than 371 mg/m3 (@6% O2). When the air ratio in the reducing zone is 0.12, the NOX concentration is 221 mg/m3 (@6% O2), and the coal-N conversion ratio is 21%, which is much lower than that of other boilers.

  3. Verification of NOx emission inventory over South Korea using sectoral activity data and satellite observation of NO2 vertical column densities

    NASA Astrophysics Data System (ADS)

    Kim, Na Kyung; Kim, Yong Pyo; Morino, Yu; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2013-10-01

    In this study, the emission inventories of NOx, which is a major air pollutant of South Korea were compared and analyzed. The two bottom-up emission inventories, Clean Air Policy Support System (CAPSS) and Regional Emission inventory in ASia (REAS), which are the latest emission inventories about the air pollutant emissions about South Korea were compared to find out the trend of NOx emission during 1996-2005. Also, these two emission inventories were compared with the top down NOx emissions estimated from satellite observations to validate the amount of NOx emitted from South Korea. The total NOx emission trends, sectoral and regional comparisons were carried out. The trend of the top down estimated NOx emission was similar to CAPSS and REAS. However, the magnitudes of the top down estimated NOx emission were usually closer to those of CAPSS than those of REAS. The NOx emissions from transportation sector of REAS were larger than that of CAPSS, and this corresponded to the difference of total amount of NOx emission between CAPSS and REAS. By comparing the differences of the ratios of the vehicle kilometers traveled (VKT) and emission factors (EFs), it was identified that most of the difference between CAPSS and REAS was due to these factors for diesel vehicles in REAS. Implications of this higher VKT values in REAS were discussed.

  4. Aircraft emission measurements by remote sensing methodologies at airports

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Jahn, Carsten; Sturm, Peter; Lechner, Bernhard; Bacher, Michael

    The emission indices of aircraft engine exhausts from measurements taken under operating conditions, to calculate precisely the emission inventories of airports, are not available up to now. To determine these data, measurement campaigns were performed on idling aircraft at major European airports using non-intrusive spectroscopic methods like Fourier transform infrared spectrometry and differential optical absorption spectroscopy. Emission indices for CO and NO x were calculated and compared to the values given in the International Civil Aviation Organisation (ICAO) database. The emission index for CO for 36 different aircraft engine types and for NO x (24 different engine types) were determined. It was shown that for idling aircraft, CO emissions are underestimated using the ICAO database. The emission indices for NO x determined in this work are lower than given in the ICAO database. In addition, a high variance of emission indices in each aircraft family and from engine to engine of the same engine type was found. During the same measurement campaigns, the emission indices for CO and NO of eight different types of auxilliary power units were investigated.

  5. Comparison of Anthropogenic CO2, NOx, and CO Emissions: Exploiting a Synergy Between Air Quality and Carbon Cycle Studies

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Gurney, K. R.; Gregg, J. S.; Murtishaw, S.; Knox, S.; Andres, R. J.; Sieb, B.

    2005-05-01

    Studies of biospheric CO2 exchange at the regional to continental scale would be facilitated by spatiotemporally resolved estimates of CO2 emissions from fossil fuel combustion and other human activities. However, current estimates of fossil CO2 emissions do not provide sufficient temporal or spatial resolution for regional-scale investigations. The US-EPA National Emission Inventory (NEI) for criteria pollutants (e.g., NOx and CO) was developed for control of regional air quality and currently provides high resolution emissions estimates that are based, in part on, estimates of fuel consumption. Here we investigate the applicability of estimating CO2 emissions from either 1) NEI estimates of NOx or CO emissions, or 2) underlying information on fuel use contained within NEI. First, we calculate monthly sums of NOx and CO emissions separately for mobile, distributed area, and point sources for the 48 continental United States. We compare the aggregate NOx and CO emissions with monthly sums of each states CO2 emissions computed from sales of petroleum, natural gas, and coal as reported by the US Energy Information Agency (EIA). We then compute linear regressions to estimate CO:CO2 and NOx:CO2 emissions ratios and quantify the fraction of variance in CO2 captured by NOx and CO. Although the categories in the two data sets do not overlap perfectly, we find that in the cases where a close correspondence between fuel type and use is expected (e.g., petroleum and mobile sources), variations in NOx and CO explain approximately 80% of the variation in CO2 emissions. Second, we employ the Consolidated Community Emissions Processing Tool (CONCEPT) framework to extract estimates of fuel use or other proxy variables and estimate CO2 directly from the information contained in the NEI, and compare with the EIA estimates of CO2 emissions, and with NEI estimates of NOx and CO emissions as above. Finally, we discuss these results with consideration of previous atmospheric

  6. Comparison of Anthropogenic CO2, NOx, and CO Emissions: Exploiting a Synergy Between Air Quality and Carbon Cycle Studies

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Gurney, K. R.; Gregg, J. S.; Murtishaw, S.; Knox, S.; Andres, R. J.; Sieb, B.

    2006-12-01

    Studies of biospheric CO2 exchange at the regional to continental scale would be facilitated by spatiotemporally resolved estimates of CO2 emissions from fossil fuel combustion and other human activities. However, current estimates of fossil CO2 emissions do not provide sufficient temporal or spatial resolution for regional-scale investigations. The US-EPA National Emission Inventory (NEI) for criteria pollutants (e.g., NOx and CO) was developed for control of regional air quality and currently provides high resolution emissions estimates that are based, in part on, estimates of fuel consumption. Here we investigate the applicability of estimating CO2 emissions from either 1) NEI estimates of NOx or CO emissions, or 2) underlying information on fuel use contained within NEI. First, we calculate monthly sums of NOx and CO emissions separately for mobile, distributed area, and point sources for the 48 continental United States. We compare the aggregate NOx and CO emissions with monthly sums of each states CO2 emissions computed from sales of petroleum, natural gas, and coal as reported by the US Energy Information Agency (EIA). We then compute linear regressions to estimate CO:CO2 and NOx:CO2 emissions ratios and quantify the fraction of variance in CO2 captured by NOx and CO. Although the categories in the two data sets do not overlap perfectly, we find that in the cases where a close correspondence between fuel type and use is expected (e.g., petroleum and mobile sources), variations in NOx and CO explain approximately 80% of the variation in CO2 emissions. Second, we employ the Consolidated Community Emissions Processing Tool (CONCEPT) framework to extract estimates of fuel use or other proxy variables and estimate CO2 directly from the information contained in the NEI, and compare with the EIA estimates of CO2 emissions, and with NEI estimates of NOx and CO emissions as above. Finally, we discuss these results with consideration of previous atmospheric

  7. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    NASA Technical Reports Server (NTRS)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  8. Influence of population density and temporal variations in emissions on the air duality benefits of NOx emission trading.

    PubMed

    Nobel, Carolyn E; McDonald-Buller, Elena C; Kimura, Yosuke; Lumbley, Katherine E; Allen, David T

    2002-08-15

    Ozone formation is a complex function of local hydrocarbon and nitrogen oxide emissions. Therefore, trading of NOx emissions among geographically distributed facilities can lead to more or less ozone formation than across-the-board reductions. Monte Carlo simulations of trading scenarios involving 51 large NOx point sources in eastern Texas were used in a previous study by the authors to assess the effects of trading on air quality benefits, as measured by changes in ozone concentrations. The results indicated that 12% of trading scenarios would lead to greater than a 25% variation from conventional across-the-board reductions when air quality benefits are based only on changes in ozone concentration. The current study found that when benefits are based on a metric related to population exposure to ozone, two-thirds of the trading scenarios lead to changes in air quality benefits of approximately 25%. Variability in air quality benefits is not as strongly dependent on the temporal distribution of NOx emissions.

  9. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.

  10. Neural network boiler optimization of efficiency, emission, and reliability with TVA Kingston Unit 3 low NOx optimization test results

    SciTech Connect

    Chang, P.S.; Poston, J.M.; Schroech, K.A.; Hou, H.S.

    1995-12-31

    Boiler performance optimization includes the preservation of efficiency, emission, capacity, and reliability. Competitive pressures require cost reduction and environmental compliance. It is a challenge for utility personnel to balance these requirements often demand tradeoffs. The Clean Air Act Amendment requires utilities to reduce NOx emission. NOx emission reduction has often been accomplished by installation of new low NOx burners. Boiler tuning for NOx control can be used as an alternative to low NOx burner installation. Specifically in tangentially-fired boilers, boiler tuning can be very effective in NOx reduction. A PC-based computer software program was developed to assist the tuning process. This software, System Optimization Analysis Program (SOAP), is a neural network based code which uses the self-adaptation learning process, with an adaptive filter added for data noise control. SOAP can use historical data as the knowledge base and provides a fast optimal solution to adaptive control problems. SOAP was tested at TVA`s Kingston Unit 3 tangentially coal-fired furnace for NOx reduction. With a well-organized test plan, the optimized solution was reached with 16 tests at each test series load level. SOAP will be used for other plant equipment or system optimization, such as pulverizer performance, combustion system optimization, compared thermal performance design, and boiler tube leak detection and allocation.

  11. Analysis of long-term observations of NOx and CO in megacities and application to constraining emissions inventories

    NASA Astrophysics Data System (ADS)

    Hassler, Birgit; McDonald, Brian C.; Frost, Gregory J.; Borbon, Agnes; Carslaw, David C.; Civerolo, Kevin; Granier, Claire; Monks, Paul S.; Monks, Sarah; Parrish, David D.; Pollack, Ilana B.; Rosenlof, Karen H.; Ryerson, Thomas B.; Schneidemesser, Erika; Trainer, Michael

    2016-09-01

    Long-term atmospheric NOx/CO enhancement ratios in megacities provide evaluations of emission inventories. A fuel-based emission inventory approach that diverges from conventional bottom-up inventory methods explains 1970-2015 trends in NOx/CO enhancement ratios in Los Angeles. Combining this comparison with similar measurements in other U.S. cities demonstrates that motor vehicle emissions controls were largely responsible for U.S. urban NOx/CO trends in the past half century. Differing NOx/CO enhancement ratio trends in U.S. and European cities over the past 25 years highlights alternative strategies for mitigating transportation emissions, reflecting Europe's increased use of light-duty diesel vehicles and correspondingly slower decreases in NOx emissions compared to the U.S. A global inventory widely used by global chemistry models fails to capture these long-term trends and regional differences in U.S. and Europe megacity NOx/CO enhancement ratios, possibly contributing to these models' inability to accurately reproduce observed long-term changes in tropospheric ozone.

  12. Public health impacts of excess NOx emissions from Volkswagen diesel passenger vehicles in Germany

    NASA Astrophysics Data System (ADS)

    Chossière, Guillaume P.; Malina, Robert; Ashok, Akshay; Dedoussi, Irene C.; Eastham, Sebastian D.; Speth, Raymond L.; Barrett, Steven R. H.

    2017-03-01

    In September 2015, the Volkswagen Group (VW) admitted the use of ‘defeat devices’ designed to lower emissions measured during VW vehicle testing for regulatory purposes. Globally, 11 million cars sold between 2008 and 2015 are affected, including about 2.6 million in Germany. On-road emissions tests have yielded mean on-road NOx emissions for these cars of 0.85 g km‑1, over four times the applicable European limit of 0.18 g km‑1. This study estimates the human health impacts and costs associated with excess emissions from VW cars driven in Germany. A distribution of on-road emissions factors is derived from existing measurements and combined with sales data and a vehicle fleet model to estimate total excess NOx emissions. These emissions are distributed on a 25 by 28 km grid covering Europe, using the German Federal Environmental Protection Agency’s (UBA) estimate of the spatial distribution of NOx emissions from passenger cars in Germany. We use the GEOS-Chem chemistry-transport model to predict the corresponding increase in population exposure to fine particulate matter and ozone in the European Union, Switzerland, and Norway, and a set of concentration-response functions to estimate mortality outcomes in terms of early deaths and of life-years lost. Integrated over the sales period (2008–2015), we estimate median mortality impacts from VW excess emissions in Germany to be 1200 premature deaths in Europe, corresponding to 13 000 life-years lost and 1.9 billion EUR in costs associated with life-years lost. Approximately 60% of mortality costs occur outside Germany. For the current fleet, we estimate that if on-road emissions for all affected VW vehicles in Germany are reduced to the applicable European emission standard by the end of 2017, this would avert 29 000 life-years lost and 4.1 billion 2015 EUR in health costs (median estimates) relative to a counterfactual case with no recall.

  13. Quantification of hourly variability in NO(x) emissions for baseload coal-fired power plants.

    PubMed

    Abdel-Aziz, Amr; Frey, H Christopher

    2003-11-01

    The objectives of this paper are to (1) quantify variability in hourly utility oxides of nitrogen (NO(x)) emission factors, activity factors, and total emissions; (2) investigate the autocorrelation structure and evaluate cyclic effects at short and long scales of the time series of total hourly emissions; (3) compare emissions for the ozone (O3) season versus the entire year to identify seasonal differences, if any; and (4) evaluate interannual variability. Continuous emissions monitoring data were analyzed for 1995 and 1998 for 32 units from nine baseload power plants in the Charlotte, NC, airshed. Unit emissions have a strong 24-hr cycle attributable primarily to the capacity factor. Typical ranges of the coefficient of variation for emissions at a given hour of the day were from 0.2 to 0.45. Little difference was found when comparing weekend emissions with the entire week or when comparing the O3 season with the entire year. There were substantial differences in the mean and standard deviation of emissions when comparing 1995 and 1998 data, indicative of the effect of retrofits of control technology during the intervening time. The wide range of variability and its autocorrelation should be accounted for when developing probabilistic utility emission inventories for analysis of near-term future episodes.

  14. Experimental investigation on NOx emission characteristics of a new solid fuel made from sewage sludge mixed with coal in combustion.

    PubMed

    Zhai, Yunbo; Zhu, Lu; Chen, Hongmei; Xu, Bibo; Li, Caiting; Zeng, Guangming

    2015-02-01

    In this article, a new briquette fuel (SC), which was produced by the mixture of coal fines (25.9%), sewage sludge (60.6%), lignin (4.5%), tannic acid (4.5%) and elemental silicon (4.5%), was provided. Then, in a high temperature electric resistance tubular furnace, the total emissions of NO2 and NO, effects of combustion temperature, air flow rate and heating rate on NOx (NO, NO2) emissions of SC were studied during the combustion of SC; furthermore, effects of additives on hardness were also analysed, and the X-ray photoelectron spectroscopy was applied to investigate the reduced NOx emission mechanism. The research results showed that, compared with the characteristics of briquette fuel (SC0) produced only by the mixture of coal and sewage sludge (the ratio of coal to sewage sludge was the same as that of SC), the Meyer hardness of SC was 12.6% higher than that of SC0 and the emissions of NOx were 27.83% less than that of SC0 under the same combustion conditions. The NOx emissions of SC decreased with the adding of heating rate and increased with the rise of air flow rate. When the temperature was below 1000 °C, the emissions of NOx increased with the elevated temperature, however, further temperature extension will result in a decreasing in emissions of NOx. Furthermore, the X-ray photoelectron spectroscopy results proposed that the possible mechanism for the reduction of NOx emissions was nitrogen and silicon in SC to form the compounds of silicon and nitrogen at high temperatures.

  15. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  16. Reductions in particulate and NO(x) emissions by diesel engine parameter adjustments with HVO fuel.

    PubMed

    Happonen, Matti; Heikkilä, Juha; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-06-05

    Hydrotreated vegetable oil (HVO) diesel fuel is a promising biofuel candidate that can complement or substitute traditional diesel fuel in engines. It has been already reported that by changing the fuel from conventional EN590 diesel to HVO decreases exhaust emissions. However, as the fuels have certain chemical and physical differences, it is clear that the full advantage of HVO cannot be realized unless the engine is optimized for the new fuel. In this article, we studied how much exhaust emissions can be reduced by adjusting engine parameters for HVO. The results indicate that, with all the studied loads (50%, 75%, and 100%), particulate mass and NO(x) can both be reduced over 25% by engine parameter adjustments. Further, the emission reduction was even higher when the target for adjusting engine parameters was to exclusively reduce either particulates or NO(x). In addition to particulate mass, different indicators of particulate emissions were also compared. These indicators included filter smoke number (FSN), total particle number, total particle surface area, and geometric mean diameter of the emitted particle size distribution. As a result of this comparison, a linear correlation between FSN and total particulate surface area at low FSN region was found.

  17. Estimates of ozone response to various combinations of NO(x) and VOC emission reductions in the eastern United States

    NASA Technical Reports Server (NTRS)

    Roselle, Shawn J.; Schere, Kenneth L.; Chu, Shao-Hang

    1994-01-01

    There is increasing recognition that controls on NO(x) emissions may be necessary, in addition to existing and future Volatile Organic Compounds (VOC) controls, for the abatement of ozone (O3) over portions of the United States. This study compares various combinations of anthropogenic NO(x) and VOC emission reductions through a series of model simulations. A total of 6 simulations were performed with the Regional Oxidant Model (ROM) for a 9-day period in July 1988. Each simulation reduced anthropogenic NO(x) and VOC emissions across-the-board by different amounts. Maximum O3 concentrations for the period were compared between the simulations. Comparison of the simulations suggests that: (1) NO(x) controls may be more effective than VOC controls in reducing peak O3 over most of the eastern United States; (2) VOC controls are most effective in urban areas having large sources of emissions; (3) NO(x) controls may increase O3 near large point sources; and (4) the benefit gained from increasing the amount of VOC controls may lessen as the amount of NO(x) control is increased. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency's peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  18. Does the New European Driving Cycle (NEDC) really fail to capture the NOX emissions of diesel cars in Europe?

    PubMed

    Degraeuwe, Bart; Weiss, Martin

    2017-03-01

    Tests with Portable Emissions Measurement Systems (PEMS) have demonstrated that diesel cars emit several times more NOX on the road than during certification on the New European Driving Cycle (NEDC). Policy makers and scientists have attributed the discrepancy to the unrealistically low dynamics and the narrow temperature range of NEDC testing. Although widely accepted, this assumption was never been put under scientific scrutiny. Here, we demonstrate that the narrow NEDC test conditions explain only a small part of the elevated on-road NOX emissions of diesel cars. For seven Euro 4-6 diesel cars, we filter from on-road driving those events that match the NEDC conditions in instantaneous speed, acceleration, CO2 emissions, and ambient temperature. The resulting on-road NOX emissions exceed by 206% (median) those measured on the NEDC, whereas the NOX emissions of all unfiltered on-road measurements exceed the NEDC emissions by 266% (median). Moreover, when applying the same filtering of on-road data to two other driving cycles (WLTP and CADC), the resulting on-road NOX emissions exceed by only 13% (median) those measured over the respective cycles. This result demonstrates that our filtering method is accurate and robust. If neither the low dynamics nor the limited temperature range of NEDC testing can explain the elevated NOX emissions of diesel cars, emissions control strategies used during NEDC testing must be inactive or modulated on the road, even if vehicles are driven under certification-like conditions. This points to defeat strategies that warrant further investigations by type-approval authorities and, in turn, limitations in the enforcement of the European vehicle emissions legislation by EU Member States. We suggest applying our method as a simple yet effective tool to screen and select vehicles for in-depth analysis by the competent certification authorities.

  19. Analyses of Scenarios for Past and Possible Future Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.; Patten, Kenneth O.; Rahmes, Tim

    1997-01-01

    This project contains several components to work with the NASA AEAP program in better definition of scenarios for aircraft emissions and in determining the sensitivity of the atmosphere to such emissions. Under this project, Don Wuebbles continues as chair of the Operations and Emissions Scenarios Committee for AEAP. We are also coordinating with the International Civil Aviation Organization (ICAO) to ensure the highest quality possible in the emissions scenarios promoted by the Emissions Scenarios committee. We continue to help coordination of NASA AEAP with international activities. This includes work with ICAO towards international analysis of aircraft emissions inventories; performing analyses to compare and evaluate databases of aircraft emissions developed for NASA and by various international groups and from these analyses, develop guidelines for future emissions scenarios development. Special sensitivity analyses, using our two-dimensional chemical-transport model of the global troposphere and stratosphere, have been used to determine potential sensitivity of further enhancements that could be made to emissions scenarios development. The latter studies are to be used in prioritizing further emissions scenario development.

  20. Estimation of glycol air emissions from aircraft deicing

    SciTech Connect

    McCready, D.

    1998-12-31

    Ethylene glycol (EG) and propylene glycol (PG)-based fluids (collectively referred to as glycol) are recognized as effective in removing and preventing snow and ice contamination on aircraft before take-off. Although much work has been done to develop an understanding of the potential impact of spent fluid run-off to water bodies, little attention has been paid to the potential environmental impact, if any, due to air emissions. In order to determine potential impact from air emissions, it is necessary to develop a protocol for estimating the glycol emissions during deicing operations. This paper presents two approaches for estimating glycol air emissions from aircraft deicing fluids (ADF) and aircraft anti-icing fluids (AAF). The first simple approach is based on emission factors and the quantity of fluid applied. The second approach estimates emissions for a typical deicing event based on site-specific parameters. Sample calculations are presented. The predicted glycol evaporation rates are quite low. Calculated emissions from ethylene glycol-based fluids are lower than emissions from PG-based fluids. The calculated air emissions for a typical event are less than a pound for EG-based fluids. The emission rate from PG-based fluids can be two times greater.

  1. Assessing the Impact of Aircraft Emissions on the Stratosphere

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Anderson, D. E.

    1999-01-01

    For the past decade, the NASA Atmospheric Effects of Aviation Project (AEAP) has been the U.S. focal point for research on aircraft effects. In conjunction with U.S. basic research programs, AEAP and concurrent European research programs have driven remarkable progress reports released in 1999 [IPCC, 1999; Kawa et al., 1999]. The former report primarily focuses on aircraft effects in the upper troposphere, with some discussion on stratospheric impacts. The latter report focuses entirely on the stratosphere. The current status of research regarding aviation effects on stratospheric ozone and climate, as embodied by the findings of these reports, is reviewed. The following topics are addressed: Aircraft Emissions, Pollution Transport, Atmospheric Chemistry, Polar Processes, Climate Impacts of Supersonic Aircraft, Subsonic Aircraft Effect on the Stratosphere, Calculations of the Supersonic Impact on Ozone and Sensitivity to Input Conditions.

  2. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOEpatents

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  3. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  4. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  5. Estimates of Emissions and Chemical Lifetimes of NOx from Point Sources using OMI Retrievals

    NASA Astrophysics Data System (ADS)

    de Foy, B.

    2014-12-01

    We use three different methods to estimate emissions of NOx from large point sources based on OMI retrievals. The results are evaluated against data from the Continuous Emission Monitoring System (CEMS). The methods tested are: 1. Simple box model, 2. Two-dimensional Gaussian fit and 3. Exponentially-Modified Gaussian Fit. The sensitivity of the results to the plume speed and wind direction was explored by considering different ways of estimating these from wind measurements. The accuracy of the emissions estimates compared with the CEMS data was found to be variable from site to site. Furthermore, lifetimes obtained from some of the methods were found to be very short and are thought to be more representative of plume transport than of chemical transformation. We explore the strengths and weaknesses of the methods and consider avenues for improved estimates.

  6. NOx emission constraints on high-temperature processes. Final report, April 1988-November 1990

    SciTech Connect

    Brown, R.A.; Mason, H.B.; Nicholson, J.A.; Okoh, C.I.

    1990-11-01

    Current and emerging NOx emission regulations were reviewed to identify possible constraints on high-performance burner application in industrial furnaces. Industrial furnace regulations were evaluated for new and existing sources in air quality attainment and nonattainment areas. Processes emphasized were ferrous and nonferrous metals heating and heat-treating furnaces, glass melting furnaces, and mineral kilns. Regulation of best available control technology (BACT) for new sources is projected to impact process furnaces the most. Metal reheating furnaces, glass melting furnaces, and kilns will be the most susceptible to BACT. Nonferrous melting forging furnace and soaking pits will not be seriously constrained by BACT.

  7. Using satellite observations to quantify biomass burning emissions of NOx, and hydrocarbons in the Tropics

    NASA Technical Reports Server (NTRS)

    Jaegle, Lyatt

    2005-01-01

    This is the final report for "Using satellite observations to quantify biomass burning emissions of NOx and hydrocarbons in the Tropics", funded through the New Investigator Program between March 2001 and March 2005. This period includes a 1-year no-cost extension of the original award. This report summarizes our accomplishments during the duration of the grant. Section 2 focuses on the research component of this work, while section 3 describes the education component. The personnel supported under this project is given in section 4. Section 5 lists publications resulting from NASA support and section 6 provides a list of conferences and seminars where the results were presented.

  8. Pollution Emission Analysis of Selected Air Force Aircraft

    DTIC Science & Technology

    1974-04-29

    percent for large non-combat tranaport engines) are proposed. Eraoke numbers wlilch will ensure Invisible aircraft smoke plumes are specified. The...standards are being violated, as well as being significant sources of smoke , ,••(3) that maintenance of the national ambient sir quality BlSndards...and reduced impact of smoke emission requires that air- craft and aircraft engines be Bubjected to a program of control compatible with their

  9. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    PubMed

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  10. Anthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements

    SciTech Connect

    Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Boersma, K. Folkert

    2014-06-27

    Inverse modeling using satellite observations of nitrogen dioxide (NO2) columns has been extensively used to estimate nitrogen oxides (NOx) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring Instrument (OMI) provide independent global NO2 column measurements on a nearly daily basis at around 9:30 and 13:30 local time across the equator, respectively. Anthropogenic NOx emission estimates by applying previously developed monthly inversion (MI) or daily inversion (DI) methods to these two sets of measurements show substantial differences. We improve the DI method by conducting model simulation, satellite retrieval, and inverse modeling sequentially on a daily basis. After each inversion, we update anthropogenic NOx emissions in the model simulation with the newly obtained a posteriori results. Consequently, the inversion-optimized emissions are used to compute the a priori NO2 profiles for satellite retrievals. As such, the a priori profiles used in satellite retrievals are now coupled to inverse modeling results. The improved procedure was applied to GOME-2 and OMI NO2 measurements in 2011. The new daily retrieval-inversion (DRI) method estimates an average NOx emission of 6.9 Tg N/yr over China, and the difference between using GOME-2 and OMI measurements is 0.4 Tg N/yr, which is significantly smaller than the difference of 1.3 Tg N/yr using the previous DI method. Using the more consistent DRI inversion results, we find that anthropogenic NOx emissions tend to be higher in winter and summer than spring (and possibly fall) and the weekday-to-weekend emission ratio tends to increase with NOx emission in China.

  11. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.

    PubMed

    Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2012-09-18

    Regulations monitoring SO(2), NO(X), mercury, and other metal emissions in the U.S. will likely result in coal plant retirement in the near-term. Life cycle assessment studies have previously estimated the environmental benefits of displacing coal with natural gas for electricity generation, by comparing systems that consist of individual natural gas and coal power plants. However, such system comparisons may not be appropriate to analyze impacts of coal plant retirement in existing power fleets. To meet this limitation, simplified economic dispatch models for PJM, MISO, and ERCOT regions are developed in this study to examine changes in regional power plant dispatch that occur when coal power plants are retired. These models estimate the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs, with cheaper plants being dispatched first. Five scenarios of coal plant retirement are considered: retiring top CO(2) emitters, top NO(X) emitters, top SO(2) emitters, small and inefficient plants, and old and inefficient plants. Changes in fuel use, life cycle greenhouse gas emissions (including uncertainty), and SO(2) and NO(X) emissions are estimated. Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. In addition, changes in marginal damage costs due to SO(2), and NO(X) emissions are estimated using the county level marginal damage costs reported in the Air Pollution Emissions Experiments and Policy (APEEP) model, which are a proxy for measuring regional impacts of SO(2) and NO(X) emissions. Results suggest that location specific parameters should be considered within environmental policy frameworks targeting coal plant retirement, to account for regional variability in the benefits of reducing the impact of SO(2) and NO(X) emissions.

  12. Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS

    EIA Publications

    2001-01-01

    At the request of the Subcommittee, the Energy Information Administration prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, and CO2 emissions. The current report extends the earlier analysis to add the impacts of reducing power sector mercury emissions and introducing renewable portfolio standard (RPS) requirements.

  13. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    NASA Astrophysics Data System (ADS)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  14. Propulsion Investigation for Zero and Near-Zero Emissions Aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Berton, Jeffrey J.; Brown, Gerald v.; Dolce, James L.; Dravid, Marayan V.; Eichenberg, Dennis J.; Freeh, Joshua E.; Gallo, Christopher A.; Jones, Scott M.; Kundu, Krishna P.; Marek, Cecil J.; Millis, Marc G.; Murthy, Pappu L.; Roach, Timothy M.; Smith, Timothy D.; Stefko, George L.; Sullivan, Roy M.; Tornabene, Robert T.; Geiselhat, Karl A.; Kascak, Albert F.

    2009-01-01

    As world emissions are further scrutinized to identify areas for improvement, aviation s contribution to the problem can no longer be ignored. Previous studies for zero or near-zero emissions aircraft suggest aircraft and propulsion system sizes that would perform propulsion system and subsystems layout and propellant tankage analyses to verify the weight-scaling relationships. These efforts could be used to identify and guide subsequent work on systems and subsystems to achieve viable aircraft system emissions goals. Previous work quickly focused these efforts on propulsion systems for 70- and 100-passenger aircraft. Propulsion systems modeled included hydrogen-fueled gas turbines and fuel cells; some preliminary estimates combined these two systems. Hydrogen gas-turbine engines, with advanced combustor technology, could realize significant reductions in nitrogen emissions. Hydrogen fuel cell propulsion systems were further laid out, and more detailed analysis identified systems needed and weight goals for a viable overall system weight. Results show significant, necessary reductions in overall weight, predominantly on the fuel cell stack, and power management and distribution subsystems to achieve reasonable overall aircraft sizes and weights. Preliminary conceptual analyses for a combination of gas-turbine and fuel cell systems were also performed, and further studies were recommended. Using gas-turbine engines combined with fuel cell systems can reduce the fuel cell propulsion system weight, but at higher fuel usage than using the fuel cell only.

  15. In-use NOx emissions from model year 2010 and 2011 heavy-duty diesel engines equipped with aftertreatment devices.

    PubMed

    Misra, Chandan; Collins, John F; Herner, Jorn D; Sax, Todd; Krishnamurthy, Mohan; Sobieralski, Wayne; Burntizki, Mark; Chernich, Don

    2013-07-16

    The California Air Resources Board (ARB) undertook this study to characterize the in-use emissions of model year (MY) 2010 or newer diesel engines. Emissions from four trucks: one equipped with an exhaust gas recirculation (EGR) and three equipped with EGR and a selective catalytic reduction (SCR) device were measured on two different routes with three different payloads using a portable emissions measurement system (PEMS) in the Sacramento area. Results indicated that brake-specific NOx emissions for the truck equipped only with an EGR were independent of the driving conditions. Results also showed that for typical highway driving conditions, the SCR technology is proving to be effective in controlling NOx emissions. However, under operations where the SCR's do not reach minimum operating temperature, like cold starts and some low load/slow speed driving conditions, NOx emissions are still elevated. The study indicated that strategies used to maintain exhaust temperature above a certain threshold, which are used in some of the newer SCRs, have the potential to control NOx emissions during certain low-load/slow speed driving conditions.

  16. Ozone trends across the United States over a period of decreasing NOx and VOC emissions.

    PubMed

    Simon, Heather; Reff, Adam; Wells, Benjamin; Xing, Jia; Frank, Neil

    2015-01-06

    In this work, we evaluate ambient ozone trends at urban, suburban, and rural monitoring sites across the United States over a period of decreasing NOx and VOC emissions (1998-2013). We find that decreasing ozone trends generally occur in the summer, in less urbanized areas, and at the upper end of the ozone distribution. Conversely, increasing ozone trends generally occur in the winter, in more urbanized areas, and at the lower end of the ozone distribution. The 95(th) percentile ozone concentrations decreased at urban, suburban, and rural monitors by 1-2 ppb/yr in the summer and 0.5-1 ppb/yr in the winter. In the summer, there are both increasing and decreasing trends in fifth percentile ozone concentrations of less than 0.5 ppb/yr at urban and suburban monitors, while fifth percentile ozone concentrations at rural monitors decreased by up to 1 ppb/yr. In the winter, fifth percentile ozone concentrations generally increased by 0.1-1 ppb/yr. These results demonstrate the large scale success of U.S. control strategies targeted at decreasing peak ozone concentrations. In addition, they indicate that as anthropogenic NOx emissions have decreased, the ozone distribution has been compressed, leading to less spatial and temporal variability.

  17. Capabilities Enhanced for Researching the Reduction of Emissions in Future Aircraft

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Aircraft future aircraft jet engines will run at higher pressures to obtain greater fuel efficiency and performance. This will require new combustor designs to keep the nitrogen oxide and carbon monoxide emissions at environmentally acceptable levels. The actual pressures and temperatures found in gas turbine combustors must be duplicated in a laboratory to verify the emissions characteristics of gas turbine engines. Recognizing this, the U.S. aircraft gas turbine industry identified a need for a national facility that could duplicate the severe inlet conditions of future combustors. Because of our expertise in combustion emissions reduction research and in the design and operation of high-pressure test facilities, the NASA Lewis Research Center was seen as the natural location for such a facility. As a national laboratory, Lewis could provide these facilities to all U.S. gas turbine engine manufacturers while protecting their proprietary interests. Called the Advanced Subsonic Combustion Rig, the facility will provide up to 60-atm pressures at inlet temperatures up to 1300 F and air flow rates up to 38 lb/sec. Furthermore, it will offer state-of-the-art diagnostic methods for characterizing advanced combustor concepts. Aeronautical combustion research at Lewis provided several significant accomplishments recently in support of both the High Speed Research (HSR) and Advanced Subsonic Technology (AST) programs. For example, in the High Speed Research Program, NO_x reductions of up to 90 percent were achieved in prototype combustor hardware. Advanced computational analysis, gas sampling, and laser diagnostic techniques were critical to this success. Working closely with the gas turbine industry, we have successfully transferred this low-emissions combustor technology into engine prototype hardware. This hardware is now being tested at the engine manufacturers facilities. Complementary tests in Lewis currently available 30-atm test facilities are also underway, taking

  18. Fluidized combustion of coal. [to limit SO2 and NOx emissions

    NASA Technical Reports Server (NTRS)

    Pope, M.

    1978-01-01

    A combustion technology that permits the burning of low quality coal, and other fuels, while maintaining stack emissions within State and Federal EPA limits is discussed. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600 F, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. The progress that has been made in the development of fluidized bed combustion technology and work currently underway are discussed.

  19. Multi-annual changes of NOx emissions in megacity regions: nonlinear trend analysis of satellite measurement based estimates

    NASA Astrophysics Data System (ADS)

    Konovalov, I. B.; Beekmann, M.; Richter, A.; Burrows, J. P.; Hilboll, A.

    2010-04-01

    Hazardous impact of air pollutant emissions from megacities on atmospheric composition on regional and global scales is currently an important issue in atmospheric research. However, the quantification of emissions and related effects is frequently a difficult task, especially in the case of developing countries, due to the lack of reliable data and information. This study examines possibilities to retrieve multi-annual NOx emissions changes in megacity regions from satellite measurements of nitrogen dioxide and to quantify them in terms of linear and nonlinear trends. By combining the retrievals of the GOME and SCIAMACHY satellite instrument data with simulations performed by the CHIMERE chemistry transport model, we obtain the time series of NOx emission estimates for the 12 largest urban agglomerations in Europe and the Middle East in the period from 1996 to 2008. We employ then a novel method allowing estimation of a nonlinear trend in a noisy time series of an observed variable. The method is based on the probabilistic approach and the use of artificial neural networks; it does not involve any quantitative a priori assumptions. As a result, statistically significant nonlinearities in the estimated NOx emission trends are detected in 5 megacities (Bagdad, Madrid, Milan, Moscow and Paris). Statistically significant upward linear trends are detected in Istanbul and Tehran, while downward linear trends are revealed in Berlin, London and the Ruhr agglomeration. The presence of nonlinearities in NOx emission changes in Milan, Paris and Madrid is confirmed by comparison of simulated NOx concentrations with independent air quality monitoring data. A good quantitative agreement between the linear trends in the simulated and measured near surface NOx concentrations is found in London.

  20. Multi-annual changes of NOx emissions in megacity regions: nonlinear trend analysis of satellite measurement based estimates

    NASA Astrophysics Data System (ADS)

    Konovalov, I. B.; Beekmann, M.; Richter, A.; Burrows, J. P.; Hilboll, A.

    2010-09-01

    Hazardous impact of air pollutant emissions from megacities on atmospheric composition on regional and global scales is currently an important issue in atmospheric research. However, the quantification of emissions and related effects is frequently a difficult task, especially in the case of developing countries, due to the lack of reliable data and information. This study examines possibilities to retrieve multi-annual NOx emissions changes in megacity regions from satellite measurements of nitrogen dioxide and to quantify them in terms of linear and nonlinear trends. By combining the retrievals of the GOME and SCIAMACHY satellite instrument data with simulations performed by the CHIMERE chemistry transport model, we obtain the time series of NOx emission estimates for the 12 largest urban agglomerations in Europe and the Middle East in the period from 1996 to 2008. We employ then a novel method allowing estimation of a nonlinear trend in a noisy time series of an observed variable. The method is based on the probabilistic approach and the use of artificial neural networks; it does not involve any quantitative a priori assumptions. As a result, statistically significant nonlinearities in the estimated NOx emission trends are detected in 5 megacities (Bagdad, Madrid, Milan, Moscow and Paris). Statistically significant upward linear trends are detected in Istanbul and Tehran, while downward linear trends are revealed in Berlin, London and the Ruhr agglomeration. The presence of nonlinearities in NOx emission changes in Milan, Paris and Madrid is confirmed by comparison of simulated NOx concentrations with independent air quality monitoring data. A good quantitative agreement between the linear trends in the simulated and measured near surface NOx concentrations is found in London.

  1. Emission of atmospheric pollutants out of Africa - Analysis of CARIBIC aircraft air samples

    NASA Astrophysics Data System (ADS)

    Thorenz, Ute R.; Baker, Angela K.; Schuck, Tanja; van Velthoven, Peter F. J.; Ziereis, Helmut; Brenninkmeijer, Carl A. M.

    2014-05-01

    Africa is the single largest continental source of biomass burning (BB) emissions. The burning African savannas and tropical forests are a source for a wide range of chemical species, which are important for global atmospheric chemistry, especially for the pristine Southern Hemisphere. Emitted compounds include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, oxygenated hydrocarbons and particles. Deep convection over Central Africa transports boundary layer emissions to the free troposphere making aircraft-based observations useful for investigation of surface emissions and examination of transport and chemistry processes over Africa The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmosphere.com part of IAGOS www.iagos.org) is a long term atmospheric measurement program using an instrument container deployed aboard a Lufthansa Airbus A340-600 for a monthly sequence of long-distance passenger flights. Besides the online measurements mixing ratios of greenhouse gases and a suite of C2-C8 non methane hydrocarbons (NMHCs) are measured from flask samples collected at cruise altitude. During northern hemispheric winter 2010/2011 CARIBIC flights took place from Frankfurt to Cape Town and Johannesburg in South Africa. Several BB tracers like methane, CO and various NMHCs were found to be elevated over tropical Africa. Using tracer-CO- and tracer-NOy-correlations emissions were characterized. The NMHC-CO correlations show monthly changing slopes, indicating a change in burned biomass, major fire stage, source region and/or other factors influencing NMHC emissions. To expand our analysis of emission sources a source region data filter was used, based on backward trajectories calculated along the flight tracks. Taking all CARIBIC samples into account having backward trajectories to the African boundary layer the dataset was enlarged from 77 to 168 samples. For both datasets tracer

  2. Comparison of NOx emissions from China III and China IV in-use diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Wu, Bobo; Wu, Yunong; Cao, Xinyue; Jiang, Xi

    2015-12-01

    To mitigate NOx and other emissions from diesel vehicles, China I, China II, China III and China IV emissions standards for new vehicles have been implemented nationwide. However, recent on-road measurements using a portable emission measurement system (PEMS) have revealed no significant reductions in the NOx emissions factors of diesel trucks due to the change from China II emissions standards to the more stringent China III standards. Thus, it is important to understand the effect of the China IV emissions standard on NOx emissions. In this study, nine China III and nine China IV diesel trucks of three sizes (light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs)) were tested on real roads in Beijing using a PEMS. Compared to the tested China III diesel trucks, the China IV diesel trucks showed significant reductions of the average NOx emissions factors in terms of both distance travelled and fuel consumption. However, the driving conditions had an important impact on the reduction. Under non-highway driving (NHD), several of the tested China IV diesel trucks experienced no reduction or an increase in NOx emissions compared to their China III counterparts. The NOx emissions factors of the 18 tested diesel trucks under NHD were on average 1.5-times greater than those under highway driving (HD), and the effects on NOx emissions removal from China III to China IV diesel trucks were greater under HD than under NHD. In addition, no significant reduction of NOx based on fuel consumption for China IV diesel trucks was observed for MDDTs and HDDTs compared to the test results for similar China II vehicles reported in a previous study. To reduce NOx emissions in China, additional control measures of vehicular NOx emissions should be formulated.

  3. TCM aircraft piston engine emission reduction program

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.

    1976-01-01

    The technology necessary to safely reduce general aviation piston engine exhaust emissions to meet the EPA 1980 Emission Standards with minimum adverse effects on cost, weight, fuel economy, and performance was demonstrated. A screening and assessment of promising emission reduction concepts was provided, and the preliminary design and development of those concepts was established. A system analysis study and a decision making procedure were used by TCM to evaluate, trade off, and rank the candidate concepts from a list of 14 alternatives. Cost, emissions, and 13 other design criteria considerations were defined and traded off against each candidate concept to establish its merit and emission reduction usefulness. A computer program was used to aid the evaluators in making the final choice of three concepts.

  4. Overall evaluation of combustion and NO(x) emissions for a down-fired 600 MW(e) supercritical boiler with multiple injection and multiple staging.

    PubMed

    Kuang, Min; Li, Zhengqi; Liu, Chunlong; Zhu, Qunyi

    2013-05-07

    To achieve significant reductions in NOx emissions and to eliminate strongly asymmetric combustion found in down-fired boilers, a deep-air-staging combustion technology was trialed in a down-fired 600 MWe supercritical utility boiler. By performing industrial-sized measurements taken of gas temperatures and species concentrations in the near wing-wall region, carbon in fly ash and NOx emissions at various settings, effects of overfire air (OFA) and staged-air damper openings on combustion characteristics, and NOx emissions within the furnace were experimentally determined. With increasing the OFA damper opening, both fluctuations in NOx emissions and carbon in fly ash were initially slightly over OFA damper openings of 0-40% but then lengthened dramatically in openings of 40-70% (i.e., NOx emissions reduced sharply accompanied by an apparent increase in carbon in fly ash). Decreasing the staged-air declination angle clearly increased the combustible loss but slightly influenced NOx emissions. In comparison with OFA, the staged-air influence on combustion and NOx emissions was clearly weaker. Only at a high OFA damper opening of 50%, the staged-air effect was relatively clear, i.e., enlarging the staged-air damper opening decreased carbon in fly ash and slightly raised NOx emissions. By sharply opening the OFA damper to deepen the air-staging conditions, although NOx emissions could finally reduce to 503 mg/m(3) at 6% O2 (i.e., an ultralow NOx level for down-fired furnaces), carbon in fly ash jumped sharply to 15.10%. For economical and environment-friendly boiler operations, an optimal damper opening combination (i.e., 60%, 50%, and 50% for secondary air, staged-air, and OFA damper openings, respectively) was recommended for the furnace, at which carbon in fly ash and NOx emissions attained levels of about 10% and 850 mg/m(3) at 6% O2, respectively.

  5. Alternative Fuels Tests on a C-17 Aircraft: Emissions Characteristics

    DTIC Science & Technology

    2010-12-01

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3 . DATES COVERED (From - To) December...Emissions were collected from engine 3 of the parked aircraft operated on conventional JP-8 and 50/50 blends of JP-8 and a beef tallow-derived HRJ, and a... 3 2.1.2 Gaseous Emissions.............................................................................. 5

  6. USAF Aircraft Engine Emission Goals: A Critical Review.

    DTIC Science & Technology

    1979-09-01

    dif- ficult to obtain. Combustion product gases at the exhaust plane are extremely reactive and at high temperature; consequently, much of the CO and...19. KEY WORDS (Continue on reverse side if necessary and identify by block number) J Pollution Abatement Exhaust Emissions Combustion Aircraft...The USAF must continue basic research in areas of combustion , smoke formation, etc. it - -W: (7) Variability of emissions is an area where more

  7. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  8. Regulations for Greenhouse Gas Emissions from Aircraft

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  9. NOx removal from vehicle emissions by functionality surface of asphalt road.

    PubMed

    Chen, Meng; Liu, Yanhua

    2010-02-15

    This paper reported the potential of heterogeneous photocatalysis as an advanced oxidation technology for NO(x) removal from vehicle emissions by using TiO(2) as a photocatalyst immobilized on the surface of asphalt road. Based on asphalt road material porous characteristic, we utilized permeability technology to make asphalt nano-TiO(2) to be environmental protection materials. And then using scanning electron microscope, we observed the penetrating effect of TiO(2). The effect of surface friction, humidity and light intensity on NO(x) removal had been systematically investigated by the use of TiO(2) immobilized on the surface of asphalt road as photocatalytic environmental protection materials. In addition, the decontaminating effect was tested by contrast test in TiO(2) spraying section with non-spraying section, while the productions were used in road environment. Results of experiment revealed that decontaminating rate of the productions ranged from 6% to 12% this kind of photochemical catalysis environmental protection material has good environment purification function.

  10. Method for control of NOx emission from combustors using fuel dilution

    DOEpatents

    Schefer, Robert W.; Keller, Jay O

    2007-01-16

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  11. Measurements of real-world vehicle CO and NOx fleet average emissions in urban tunnels of two cities in China

    NASA Astrophysics Data System (ADS)

    Deng, Yiwen; Chen, Chao; Li, Qiong; Hu, Qinqiang; Yuan, Haoting; Li, Junmei; Li, Yan

    2015-12-01

    Urban tunnels located in the city center areas, can alleviate traffic pressure and provide more convenient traffic for people. Vehicles emit pollutants that are significant contributors to air pollution inside and at the outlet of tunnels. Ventilation is the most widely used method to dilute pollutants in tunnels. To calculate the design required air volume flow accurately, vehicle emissions should be exactly determined. Emission factors are important parameters to estimate vehicle emissions. To characterize carbon monoxide (CO) and nitrogen oxides (NOX) emission factors for a mixed vehicle fleet under real-world driving conditions of urban China, we measured CO and NOX concentrations in Shanghai East Yan'an Road tunnel and Changsha Yingpan Road tunnel in 2012 and 2013. In-use fleet average CO and NOX emission factors were calculated according to tunnel pollutants mass balance models. The results showed that the maximum CO concentration in August was 86 ppm, while in October it was 45 ppm in Shanghai East Yan'an Road tunnel. The maximum concentrations of CO and NOX were 33 ppm and 2 ppm in Changsha Yingpan Road tunnel, respectively. In-use fleet average CO emission factors of East Yan'an Road tunnel, with gradient of -3% ∼ 3%, were 1.266 (±0.889) ∼ 3.974 (±2.189) g km-1 vehicle-1. In-use fleet average CO and NOX emission factors of Yingpan Road tunnel with gradient of -6% ∼ 6% amounted to 0.754 (±0.561) ∼ 6.050 (±5.940) g km-1 vehicle-1 and 0.121 (±0.022) ∼ 0.818 (±0.755) g km-1 vehicle-1, respectively. The dependences of CO and NOX emission on roadway gradient and vehicle speed were found. The average CO and NOX emission factors increased with the ascending of roadway gradient as well as reverse with vehicle speed. These findings provide meaningful reference for ventilation design and environmental assessment of urban tunnels, and further help provide basic data to formulate relevant standards and norms.

  12. Aircraft measurements of microwave emission from Arctic Sea ice

    USGS Publications Warehouse

    Wilheit, T.; Nordberg, W.; Blinn, J.; Campbell, W.; Edgerton, A.

    1971-01-01

    Measurements of the microwave emission from Arctic Sea ice were made with aircraft at 8 wavelengths ranging from 0.510 to 2.81 cm. The expected contrast in emissivities between ice and water was observed at all wavelengths. Distributions of sea ice and open water were mapped from altitudes up to 11 km in the presence of dense cloud cover. Different forms of ice also exhibited strong contrasts in emissivity. Emissivity differences of up to 0.2 were observed between two types of ice at the 0.811-cm wavelength. The higher emissivity ice type is tentatively identified as having been formed more recently than the lower emissivity ice. ?? 1971.

  13. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOEpatents

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  14. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    SciTech Connect

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  15. Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China

    NASA Astrophysics Data System (ADS)

    van der A, Ronald J.; Mijling, Bas; Ding, Jieying; Elissavet Koukouli, Maria; Liu, Fei; Li, Qing; Mao, Huiqin; Theys, Nicolas

    2017-02-01

    Air quality observations by satellite instruments are global and have a regular temporal resolution, which makes them very useful in studying long-term trends in atmospheric species. To monitor air quality trends in China for the period 2005-2015, we derive SO2 columns and NOx emissions on a provincial level with improved accuracy. To put these trends into perspective they are compared with public data on energy consumption and the environmental policies of China. We distinguish the effect of air quality regulations from economic growth by comparing them relatively to fossil fuel consumption. Pollutant levels, per unit of fossil fuel, are used to assess the effectiveness of air quality regulations. We note that the desulfurization regulations enforced in 2005-2006 only had a significant effect in the years 2008-2009, when a much stricter control of the actual use of the installations began. For national NOx emissions a distinct decreasing trend is only visible from 2012 onwards, but the emission peak year differs from province to province. Unlike SO2, emissions of NOx are highly related to traffic. Furthermore, regulations for NOx emissions are partly decided on a provincial level. The last 3 years show a reduction both in SO2 and NOx emissions per fossil fuel unit, since the authorities have implemented several new environmental regulations. Despite an increasing fossil fuel consumption and a growing transport sector, the effects of air quality policy in China are clearly visible. Without the air quality regulations the concentration of SO2 would be about 2.5 times higher and the NO2 concentrations would be at least 25 % higher than they are today in China.

  16. Method for the control of NOx emissions in long-range space travel.

    PubMed

    Xu, X H; Shi, Y; Liu, S H; Wang, H P; Chang, S G; Fisher, J W; Pisharody, S; Moran, M; Wignarajah, K

    2003-01-01

    The wheat straw, an inedible biomass that can be continuously produced in a space vehicle has been used to produce activated carbon for effective control of NOx emissions from the incineration of wastes. The optimal carbonization temperature of wheat straw was found to be around 600 degrees C when a burnoff of 67% was observed. The BET surface area of the activated carbon produced from the wheat straw reached as high as 300 m2/g. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 2 h by the activated carbons when 10% oxygen was present and the ratio of carbon weight to the flue gas flow rate (W/F) was 30 g min/L, with a contact time of 10.2 s. All of NO was reduced to N2 by the activated carbon at 450 degrees C with a W/F ratio of 15 g min/L and a contact time of 5.1 s. Reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency. However, the reduction of the adsorbed NO resulted in a loss of carbon which was determined to be about 0.99% of the activated carbon per cycle of regeneration. The sufficiency of the amount of wheat straw in providing the activated carbon based on a six-person crew, such as the mission planned for Mars, has been determined. This novel approach for the control of NOx emissions is sustainable in a closed system such as the case in space travel. It is simple to operate and is functional under microgravity environment.

  17. Method for the control of NOx emissions in long-range space travel

    NASA Technical Reports Server (NTRS)

    Xu, X. H.; Shi, Y.; Liu, S. H.; Wang, H. P.; Chang, S. G.; Fisher, J. W.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2003-01-01

    The wheat straw, an inedible biomass that can be continuously produced in a space vehicle has been used to produce activated carbon for effective control of NOx emissions from the incineration of wastes. The optimal carbonization temperature of wheat straw was found to be around 600 degrees C when a burnoff of 67% was observed. The BET surface area of the activated carbon produced from the wheat straw reached as high as 300 m2/g. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 2 h by the activated carbons when 10% oxygen was present and the ratio of carbon weight to the flue gas flow rate (W/F) was 30 g min/L, with a contact time of 10.2 s. All of NO was reduced to N2 by the activated carbon at 450 degrees C with a W/F ratio of 15 g min/L and a contact time of 5.1 s. Reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency. However, the reduction of the adsorbed NO resulted in a loss of carbon which was determined to be about 0.99% of the activated carbon per cycle of regeneration. The sufficiency of the amount of wheat straw in providing the activated carbon based on a six-person crew, such as the mission planned for Mars, has been determined. This novel approach for the control of NOx emissions is sustainable in a closed system such as the case in space travel. It is simple to operate and is functional under microgravity environment.

  18. Measurements of NO(x) over the eastern Pacific Ocean and southwestern United States during the spring 1984 NASA GTE aircraft program

    NASA Technical Reports Server (NTRS)

    Ridley, B. A.; Carroll, M. A.; Dunlap, D. D.; Trainer, M.; Sachse, G. W.; Gregory, G. L.; Condon, E. P.

    1989-01-01

    Measurements of NO, NO(x) (NO + NO2), O3, and CO are presented from seven aircraft flights made over the eastern Pacific Ocean and the southwestern United States in spring of 1984. The sampling region was characterized by large- and small-scale variability for all of the measurements, likely as a result of vigorous synoptic scale meteorology and the influence of tropopause folds. Median values for NO, NO(x), O3, and CO from the flights made over the ocean in the region of 5.8-7.6 km were 10 parts per trillion by volume (pptv), 32 pptv, 46 parts per billion by volume (ppbv), and 120 ppbv, respectively. Corresponding values from two flights made over the continent at similar altitudes were 16 pptv, 38 pptv, 42 ppbv, and 111 ppbv. There was a strong tendency for NO or NO(x) to be correlated positively with O3 and to be anticorrelated with dew-point/frost-point measurements. No significant overall correlation occurred between NO(x) and CO for the ocean data. The variability of NO(x) was such that regions of net destruction and regions of net production of O(3) were sampled both over the ocean and over the continent. However, in the middle free troposphere over the ocean, net O(3) destruction was predominant.

  19. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  20. Evaluation of Exhaust Emissions from Three Diesel-Hybrid Cars and Simulation of After-Treatment Systems for Ultralow Real-World NOx Emissions.

    PubMed

    Franco, Vicente; Zacharopoulou, Theodora; Hammer, Jan; Schmidt, Helge; Mock, Peter; Weiss, Martin; Samaras, Zissis

    2016-12-06

    Hybridization offers great potential for decreasing pollutant and carbon dioxide emissions of diesel cars. However, an assessment of the real-world emissions performance of modern diesel hybrids is missing. Here, we test three diesel-hybrid cars on the road and benchmark our findings with two cars against tests on the chassis dynamometer and model simulations. The pollutant emissions of the two cars tested on the chassis dynamometer were in compliance with the relevant Euro standards over the New European Driving Cycle and Worldwide harmonized Light vehicles Test Procedure. On the road, all three diesel-hybrids exceeded the regulatory NOx limits (average exceedance for all trips: +150% for the Volvo, +510% for the Peugeot, and +550% for the Mercedes-Benz) and also showed elevated on-road CO2 emissions (average exceedance of certification values: +178, +77, and +52%, respectively). These findings point to a wide discrepancy between certified and on-road CO2 and suggest that hybridization alone is insufficient to achieve low-NOx emissions of diesel powertrains. Instead, our simulation suggests that properly calibrated selective catalytic reduction filter and lean-NOx trap after-treatment technologies can reduce the on-road NOx emissions to 0.023 and 0.068 g/km on average, respectively, well below the Euro 6 limit (0.080 g/km).

  1. Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Veres, Patrick R.; Williams, Jonathan; Wagner, Thomas

    2016-07-01

    We present a top-down approach to infer and quantify rain-induced emission pulses of NOx ( ≡ NO + NO2), stemming from biotic emissions of NO from soils, from satellite-borne measurements of NO2. This is achieved by synchronizing time series at single grid pixels according to the first day of rain after a dry spell of prescribed duration. The full track of the temporal evolution several weeks before and after a rain pulse is retained with daily resolution. These are needed for a sophisticated background correction, which accounts for seasonal variations in the time series and allows for improved quantification of rain-induced soil emissions. The method is applied globally and provides constraints on pulsed soil emissions of NOx in regions where the NOx budget is seasonally dominated by soil emissions. We find strong peaks of enhanced NO2 vertical column densities (VCDs) induced by the first intense precipitation after prolonged droughts in many semi-arid regions of the world, in particular in the Sahel. Detailed investigations show that the rain-induced NO2 pulse detected by the OMI (Ozone Monitoring Instrument), GOME-2 and SCIAMACHY satellite instruments could not be explained by other sources, such as biomass burning or lightning, or by retrieval artefacts (e.g. due to clouds). For the Sahel region, absolute enhancements of the NO2 VCDs on the first day of rain based on OMI measurements 2007-2010 are on average 4 × 1014  molec cm-2 and exceed 1 × 1015  molec cm-2 for individual grid cells. Assuming a NOx lifetime of 4 h, this corresponds to soil NOx emissions in the range of 6 up to 65 ng N m-2 s-1, which is in good agreement with literature values. Apart from the clear first-day peak, NO2 VCDs are moderately enhanced (2 × 1014  molec cm-2) compared to the background over the following 2 weeks, suggesting potential further emissions during that period of about 3.3 ng N m-2 s-1

  2. An enhanced rate-based emission trading program for NOX: the Dutch model.

    PubMed

    Sholtz, A M; Van Amburg, B; Wochnick, V K

    2001-12-01

    Since 1997 government and industry in The Netherlands have been engaged in intensive policy discussions on how to design an emission trading program that would satisfy the Government's policy objectives within the national and international regulatory framework and accommodate industry's need for a flexible and cost-effective approach. Early on in the discussion the most promising solution was a rate-based approach, which dynamically allocated saleable emission credits based on a performance standard rate and actual energy used by facilities. All industrial facilities above a threshold of 20 MWth would be judged on their ability to meet this performance rate. Those "cleaner" than the standard can sell excess credits to others with an allocation that is less than their actual NOX emission. With some changes in law, such a design could be made to fit well into the national and EU legislative framework while at the same time uniquely meeting industry's requirement of flexibility toward economic growth and facility expansion. (An analysis of the legislative changes required will be given in a separate paper by Chris Dekkers.) However, the environmental outcome of such a system is not as certain as under an absolute emission cap. At the request of the Netherlands Ministry of Housing, Spatial Planning and the Environment (VROM), Automated Credit Exchange (ACE), in close cooperation with the working group of government and industry representatives introduced a number of features into the Dutch NOX program allowing full exploitation of market mechanisms while allowing intermediate adjustments in the performance standard rates. The design is geared toward meeting environmental targets without jeopardizing the trading market the program intends to create. The paper discusses the genesis of the two-tier credit system ACE helped to design, explains the differences between primary (fixed) and secondary (variable) credits, and outlines how the Dutch system is expected to

  3. In-use NOx emissions from diesel and liquefied natural gas refuse trucks equipped with SCR and TWC respectively.

    PubMed

    Misra, Chandan; Ruehl, Chris; Collins, John Francis; Chernich, Don; Herner, Jorn

    2017-02-07

    The California Air Resources Board (ARB) and the City of Sacramento undertook this study to characterize the in-use emissions from model year (MY) 2010 or newer diesel, liquefied natural gas (LNG) and hydraulic hybrid diesel engines during real-world refuse truck operation. Emissions from five trucks: two diesels equipped with selective catalytic reduction (SCR), two LNG's equipped with three-way catalyst (TWC) and one hydraulic hybrid diesel equipped with SCR were measured using a portable emissions measurement system (PEMS) in the Sacramento area. Results showed that the brake-specific NOx emissions for the LNG trucks equipped with the TWC catalyst were lowest of all the technologies tested. Results also showed that the brake specific NOx emissions from the conventional diesel engines were significantly higher despite the exhaust temperature being high enough for proper SCR function. Like diesel engines, the brake specific NOx emissions from the hydraulic hybrid diesel also exceeded certification although this can be explained on the basis of the temperature profile. Future studies are warranted to establish whether the below average SCR performance observed in this study is a systemic issue or is it a problem specifically observed during this work.

  4. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia).

    PubMed

    Toro, María Victoria; Cremades, Lázaro V; Calbó, Josep

    2006-10-01

    Relationship between volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions and the chemical production of tropospheric ozone is studied through mathematical simulation. The study is applied to the Aburrá Valley, in the Colombian Andes, which is a practically unknown area from the point of view of ozone formation. The model used for this application is the European modelling of atmospheric constituents (EUMAC) zooming model (EZM) which consists of a mesoscale prognostic model (MEMO, mesoscale meteorological model) and a chemical reaction model (MUSE, multiscale for the atmospheric dispersion of reactive species), coupled to the chemical mechanism EMEP (European monitoring and evaluation program). The analysis is performed for a real episode that was characterized by high ozone production and that happened during the 23rd and 24th December, 1999 in Medellín (Colombia). From this real scenario, a sensitivity analysis has been carried out in order to assess the influence of VOC and NOx amounts on ozone production and to extract some conclusions for future ozone abatement policies in Andean regions. As far as ozone air quality is concerned, it is shown that in order to keep current levels the emphasis must be put to avoid increasing NOx emissions, or alternatively, to augment VOC emissions in order to have a high VOC/NOx ratio.

  5. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.

    PubMed

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Lv, Qingzhi; Sun, Ye; Wang, Hongmei; Liu, Yu; Zhang, Fan

    2016-09-01

    The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system. Therefore, it is suggested that the injection amount of ammonia water in SNCR system may reduce to cut down the operating costs during co-processing the sewage sludge in cement kiln. In addition, the emission of total PAHs seems to increase with the increased amount of the sewage sludge feeding to the cement kiln. However, the distributions of PAHs were barely changed, and lower molecular weight PAHs were mainly distributed in gaseous phase, accounted for the major portion of PAHs when co-processing sewage sludge in cement kiln.

  6. Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China.

    PubMed

    Yang, Xiaoyang; Wang, Xinhua; Yang, Wen; Xu, Jun; Ren, Lihong; He, Youjiang; Liu, Bing; Bai, Zhipeng; Meng, Fan; Hu, Min

    2016-09-01

    In order to investigate long-range transport of the air pollution in the East Asia, air pollutants, including SO2, NOx, CO, and O3, were observed by aircraft measurement over the coastal and offshore area of Yellow Sea of China in April 2011. NOx and SO2 seemed to become moderate in recent years, and the concentrations during the whole observations ranged from 0.49 to 9.57 ppb and from 0.10 to 16.02 ppb, respectively. The high concentrations of CO were measured with an average value of 0.98 ppm. The measured O3 average concentration was 76.25 ppb, which showed a higher level comparing with the results from some previous studies. Most of the results for the concentration values generally followed the typical characteristic of vertical and spatial distribution, which were "low altitude > high altitude" and "land/coastal > sea," respectively. Transport of polluted air mass from the continent to the aircraft measurement area was confirmed in some days during the observation by the meteorological analysis, while the measurement results supposed to represent the background level of the pollutants in rest days. Additionally, some small-scale air pollution plumes were observed. Significant positive correlations between NOx and SO2 indicated that these two species originated from the same region. On the other hand, good positive correlations between NOx and O3 found during 2-day flight suggested that the O3 formation was probably under "NOx-limited" regime in these days.

  7. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Karman, Deniz

    2011-06-01

    Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1-3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial

  8. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  9. Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Biggerstaff, M. I.; Betten, D. P.; Hair, J. W.; Butler, C. F.; Schwartz, M. J.; Barth, M. C.

    2016-06-01

    During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements. During DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state's history were burning, which strongly influenced air quality in the DC3 thunderstorm inflow and outflow region. Lofted biomass burning (BB) plumes were frequently observed in the mid- and upper troposphere (UT) in the vicinity of deep convection. The impact of lightning-produced NOx (LNOx) and BB emissions was analyzed on the basis of mean vertical profiles and tracer-tracer correlations (CO-NOx and O3-NO). On a regular basis DC3 thunderstorms penetrated the tropopause and injected large amounts of LNOx into the lower stratosphere (LS). Inside convection, low O3 air (~80 nmol mol-1) from the lower troposphere was rapidly transported to the UT/LS region. Simultaneously, O3-rich stratospheric air masses (~100-200 nmol mol-1) were present around and below the thunderstorm outflow and enhanced UT-O3 mixing ratios significantly. A 10 year global climatology of H2O data from the Aura Microwave Limb Sounder confirmed that the Central U.S. is a preferred region for convective injection into the LS.

  10. Measurement of ethylene emission from Japanese red pine (Pinus densiflora) under field conditions in NOx-polluted areas.

    PubMed

    Kume, A; Tsuboi, N; Nakatani, N; Nakane, K; Sakurai, N; Nakagawa, N; Sakugawa, H

    2001-01-01

    Emission of ethylene from the needles of Japanese red pine, Pinus densiflora, was measured in air-polluted areas in Hiroshima, Japan. We applied a suitable protocol to determine the rate of ethylene emission from the excised needles. The influence of excision of needles on ethylene emission was not detected during the first 4 h of incubation at 20 degrees C. Ethylene emissions were low in the unpolluted (clean) areas regardless of the altitude or season. The emission of stress ethylene increased with the atmospheric NO2 concentration, suggesting that atmospheric NOx or related substances induced the higher ethylene emission in the polluted areas (near urban and industrial areas). In all cases, 1-year-old needles emitted significantly larger amounts of ethylene than the current needles. Ethylene emission did not increase evenly in the polluted areas, but the frequency of trees emitting high ethylene increased. Therefore, threshold rates for the baseline ethylene emission were proposed.

  11. Comparison of Weekly Cycle of NO2 Satellite Retrievals and NO(x) Emission Inventories for the Continental United States

    NASA Technical Reports Server (NTRS)

    Kaynak, B.; Hu, Y.; Martin, R. V.; Sioris, C. E.; Russell, A. G.

    2009-01-01

    Spatially resolved weekly NO2 variations are obtained from 2003 to 2005 Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) tropospheric NO2 columns for three different types of regions: urban, rural, and rural-point (rural with significant electricity generation unit (EGU) emissions). Regions are compared for magnitudes and weekly profiles. Rural regions do not show any weekly pattern, whereas urban areas show a distinct decrease on the weekends. Rural regions with EGUs show a slight decrease on Sundays. When compared with estimated mobile and stationary nitrogen oxides (NO(x)) emissions from the year 2004 for seven cities, the satellite data have greater variation during weekdays (Monday-Friday). Overall comparisons show that SCIAMACHY derived NO2 correlate well with estimated NO(x) emissions for urban and rural but less for rural-point regions.

  12. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  13. Aircraft HO sub x and NO sub x emission effects on stratospheric ozone and temperature

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Widhopf, G. F.

    1978-01-01

    A simplified two-dimensional steady-state photochemical model of the atmosphere was developed. The model was used to study the effect on the thermal and chemical structure of the atmosphere of two types of pollution cases: (1) injection of NOx and HOx from a hypothetical fleet of supersonic and subsonic aircraft and (2) injection of HOx from a hypothetical fleet of liquid-fueled hydrogen aircraft. The results are discussed with regard to stratospheric perturbations in ozone, water vapor and temperature.

  14. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    PubMed

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles.

  15. Simulations of NOx Emissions from Low Emissions Discrete Jet Injector Combustor Tests

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Breisacher, Kevin

    2014-01-01

    An experimental and computational study was conducted to evaluate the performance and emissions characteristics of a candidate Lean Direct Injection (LDI) combustor configuration with a mix of simplex and airblast injectors. The National Combustion Code (NCC) was used to predict the experimentally measured EINOx emissions for test conditions representing low power, medium power, and high-power engine cycle conditions. Of the six cases modeled with the NCC using a reduced-kinetics finite-rate mechanism and lagrangian spray modeling, reasonable predictions of combustor exit temperature and EINOx were obtained at two high-power cycle conditions.

  16. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  17. Turbojet emissions, hydrogen versus JP

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Norgren, C. T.; Anderson, D.

    1973-01-01

    Preliminary data from an experimental combustor show that the NOx emission index, g(NO2)/Kg fuel, is about three times greater for hydrogen than for JP at simulated cruise conditions. However, if these results are applied to aircraft designed for a given mission, hydrogen's higher heating value enables the aircraft to have a lower gross weight and a lower fuel flow rate so that the NOx emission rate, Kg (NO2)/hr may be reduced about 30 percent compared to JP. Theoretical kinetics calculations indicate that combustors may be designed for hydrogen that could further decrease NOx emissions by taking advantage of hydrogen's wide flammable limits and high burning velocity.

  18. Effects of biodiesel made from swine- and chicken-fat residues on CO, CO2, and NOx emissions.

    PubMed

    Feddern, Vivian; Cunha Junior, Anildo; De Prá, Marina C; Busi da Silva, Marcio L; Nicoloso, Rodrigo da S; Higarashi, Martha M; Coldebella, Arlei; de Abreu, Paulo G

    2017-01-12

    Implications Emissions from motor vehicles can contribute considerably to the levels of greenhouse gases in the atmosphere. The use of biodiesel to replace or augment diesel can not only decrease our dependency on fossil fuels but also help decrease air pollution. Thus, different sources of feedstocks are constantly being explored for affordable biodiesel production. However, the amount of CO, CO2 and/or NOx emissions can vary largely depending on type of feedstock used to produce biodiesel. In this work we demonstrated animal fat feasibility in replacing petrodiesel with less impact regarding greenhouse gas emissions than other sources.

  19. Reduction of aircraft gas turbine engine pollutant emissions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.

    1978-01-01

    To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.

  20. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  1. An intercomparison of results from ferrous sulphate and photolytic converter techniques for measurements of NO(x) made during the NASA GTE/CITE 1 aircraft program

    NASA Technical Reports Server (NTRS)

    Ridley, B. A.; Carroll, M. A.; Torres, A. L.; Condon, E. P.; Sachse, G. W.; Hill, G. F.; Gregory, G. L.

    1988-01-01

    Two techniques designed for measurements of NO(x (NO + NO2) were intercompared during aircraft flights made in the spring of 1984 in the middle free troposphere over the eastern Pacific Ocean and southwestern U.S. One NO chemiluminescence instrument was equipped with a ferrous sulphate converter, another with a photolytic converter. The ferrous sulphate-equipped instrument was apparently much less specific for NO2. It registered levels about three times larger than the photolytic converter and gave NO2/NO ratios that were much larger than photochemical calculations would indicate as reasonable. Additionally, the results imply that active NO(x) was only 10-20 percent of the total odd nitrogen in the middle free troposphere.

  2. Aircraft measurements of ozone, NOx, CO, and aerosol concentrations in biomass burning smoke over Indonesia and Australia in October 1997: Depleted ozone layer at low altitude over Indonesia

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yukitomo; Sawa, Yousuke; Makino, Yukio; Jensen, Jørgen B.; Gras, John L.; Ryan, Brian F.; Diharto, Sri; Harjanto, Hery

    The 1997 El Niño unfolded as one of the most sever El Niño Southern Oscillation (ENSO) events in this century and it coincided with massive biomass burning in the equatorial western Pacific region. To assess the influence on the atmosphere, aircraft observations of trace gases and aerosol were conducted over Kalimantan in Indonesia and Australia. Over Kalimantan in Indonesia, high concentrations of O3, NOx, CO, and aerosols were observed during the flight. Although the aerosol and NOx decreased with altitude, the O3 had the maximum concentration (80.5 ppbv) in the middle layer of the smoke haze and recorded very low concentrations (˜20 ppbv) in the lower smoke layer. This feature was not observed in the Australian smoke. We proposed several hypotheses for the low O3 concentration at low levels over Kalimantan. The most likely are lack of solar radiation and losses at the surface of aerosol particles.

  3. Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline and diesel vehicles under real-world driving test cycles.

    PubMed

    Trinh, Ha T; Imanishi, Katsuma; Morikawa, Tazuko; Hagino, Hiroyuki; Takenaka, Norimichi

    2017-04-01

    Reactive nitrogen species emission from the exhausts of gasoline and diesel vehicles, including nitrogen oxides (NOx) and nitrous acid (HONO), contributes as a significant source of photochemical oxidant precursors in the ambient air. Multiple laboratory and on-road exhaust measurements have been performed to estimate the NOx emission factors from various vehicles and their contribution to atmospheric pollution. Meanwhile, HONO emission from vehicle exhaust has been under-measured despite the fact that HONO can contribute up to 60% of the total hydroxyl budget during daytime and its formation pathway is not fully understood. A profound traffic-induced HONO to NOx ratio of 0.8%, established by Kurtenbach et al. since 2001, has been widely applied in various simulation studies and possibly linked to under-estimation of HONO mixing ratios and OH radical budget in the morning. The HONO/NOx ratios from direct traffic emission have become debatable when it lacks measurements for direct HONO emission from vehicles upon the fast-changing emission reduction technology. Several recent studies have reported updated values for this ratio. This study has reported the measurement of HONO and NOx emission as well as the estimation of exhaust-induced HONO/NOx ratios from gasoline and diesel vehicles using different chassis dynamometer tests under various real-world driving cycles. For the tested gasoline vehicle, which was equipped with three-way catalyst after-treatment device, HONO/NOx ratios ranged from 0 to 0.95 % with very low average HONO concentrations. For the tested diesel vehicle equipped with diesel particulate active reduction device, HONO/NOx ratios varied from 0.16 to 1.00 %. The HONO/NOx ratios in diesel exhaust were inversely proportional to the average speeds of the tested vehicles.

  4. An inventory of particle and gaseous emissions from large aircraft thrust engine operations at an airport

    NASA Astrophysics Data System (ADS)

    Mazaheri, M.; Johnson, G. R.; Morawska, L.

    2011-07-01

    Published particle number emission factors for aircraft operations remain very sparse and so far such emissions have not been included in the International Civil Aviation Organization (ICAO) databases. This work addresses this gap in knowledge by utilizing recent progress in the quantification of aircraft particle emissions. Annual emissions of particle number (PN), particle mass (PM 2.5) and NO x throughout the aircraft landing and takeoff (LTO) cycles and ground running procedures (GRP) are presented for aircraft using Brisbane Airport BNE (domestic and international). The aircraft are grouped according to an airframe based classification system. The resulting data are then used to develop an emissions inventory for large aircraft thrust engine operations on the ground, during LTO cycles and GRP, at the Airport. Annual PN, PM 2.5 and NO x emissions from large aircraft operations during LTO cycles and GRP at BNE were 1.98 × 10 24 yr -1, 1.35 × 10 4 kg yr -1 and 8.13 × 10 5 kg yr -1, respectively. Results showed that LTO cycles contribute more than 97% of these annual emissions at BNE in comparison to GRP related emissions. Analysis of the LTO cycle contribution to the daily emissions showed that the contribution of the climbout mode is considerably higher than for other individual LTO operational modes. Emissions during aircraft departures were significantly higher than those during arrival operations, due to the higher aircraft engine emission rates during takeoff and climbout.

  5. The use of rice hulls for sustainable control of NOx emissions in deep space missions

    SciTech Connect

    Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.W.; Pisharody, S.; Moran, M.J.; Wignarajah, K.

    2001-12-21

    The use of the activated carbon produced from rice hulls to control NOx emissions for the future deep space missions has been demonstrated. The optimal carbonization temperature range was found to be between 600 C and 750 C. The burnoff of 61.8% was found at 700 C in pyrolysis and 750 C in activation. The BET surface area of the activated carbon from rice hulls was determined to be 172 m{sup 2}/g when prepared at 700 C. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of NO in the flue gas was removed for more than one and a half hours when 10% oxygen was present and using a ratio of the carbon weight to the flue gas flow rate (W/F) of 15.4 g-min/L. The reduction of the adsorbed NO to form N{sub 2} can be effectively accomplished under anaerobic conditions at 550 C. For NO saturated activated carbon, the loss of carbon mass was determined to be about 0.16% of the activated carbon per cycle of regeneration. The reduction of the adsorbed NO also regenerates the activated carbon. The regenerated activated carbon exhibits improved NO adsorption efficiency.

  6. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOEpatents

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  7. Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Harris, B.; Hashmonay, R.; Holdren, M.; Kaganan, R.; Spicer, C.

    2007-01-01

    Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power setting increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.

  8. Soot and NO(x) Emissions and Combustion Characteristics of Low Heat Rejection Direct Injection Diesel Engines

    DTIC Science & Technology

    1994-01-10

    Thin ceramic thermal barrier coatings were applied to the piston crown and bowl, the head and valves, and the cylinder liner. The coated piston and...performance. Coating the piston crown alone results in generally lower cylinder pressure, lower brake specific fuel consumption and lower NOx emission compared...thermal coatings. The computer modeling has led to an understanding of the effect of coating the piston on NO production. The hotter piston crown warms the

  9. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  10. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... nitrogen (NO X ), compliance flexibilities, and other regulatory requirements for aircraft turbofan or... Exposure to Ozone, PM and NO X a. Deposition of Nitrogen b. Visibility Effects c. Plant and Ecosystem... nitrogen (NO X ) emission standards for aircraft engines with rated thrusts greater than 26.7 kN...

  11. PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy

    NASA Astrophysics Data System (ADS)

    Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan

    2012-12-01

    Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.

  12. Emissions of NOx, SO2, CO, and HCHO from commercial marine shipping during Texas Air Quality Study (TexAQS) 2006

    NASA Astrophysics Data System (ADS)

    Williams, E. J.; Lerner, B. M.; Murphy, P. C.; Herndon, S. C.; Zahniser, M. S.

    2009-11-01

    We report measurements of NOx, SO2, CO, and HCHO mass-based emission factors from more than 200 commercial vessel encounters in the Gulf of Mexico and the Houston-Galveston region of Texas during August and September, 2006. For underway ships, bulk freight carriers have the highest average NOx emissions at ˜87 g NOx (kg fuel)-1, followed by tanker ships at ˜79 g NOx (kg fuel)-1, while container carriers, passenger ships, and tugs all emit an average of about ˜60 g NOx (kg fuel)-1. Emission of NOx from stationary vessels was lower, except for container ships and tugs, and likely reflects use of medium-speed diesel engines. Overall, our mean NOx emission factors are 10-15% lower than published data. Average emission of SO2 was lower for passenger ships and tugs and tows (6-7 g SO2 (kg fuel)-1) than for larger cargo vessels (20-30 g SO2 (kg fuel)-1). Our data for large cargo ships in this region indicate an average residual fuel sulfur content of ˜1.4% which is a factor of two lower than the global average of 2.7%. Emission of CO was low for all categories (7-16 g CO (kg fuel)-1), although our mean overall CO emission factor is about 10% higher than published data. Emission of HCHO was less than 5% that of CO. Despite considerable variability, no functional relationships, such as emissions changes with engine speed or load, could be discerned. Comparison of emission factors from ships to those from other sources suggests ship emissions in this region cannot be ignored.

  13. Characterization of hourly NOx atmospheric concentrations near the Venice International Airport with additive semi-parametric statistical models

    NASA Astrophysics Data System (ADS)

    Valotto, Gabrio; Varin, Cristiano

    2016-01-01

    An additive modeling approach is employed to provide a statistical description of hourly variation in concentrations of NOx measured in proximity of the Venice "Marco Polo" International Airport, Italy. Differently from several previous studies on airport emissions based on daily time series, the paper analyzes hourly data because variations of NOx concentrations during the day are informative about the prevailing emission source. The statistical analysis is carried out using a one-year time series. Confounder effects due to seasonality, meteorology and airport traffic volume are accounted for by suitable covariates. Four different model specifications of increasing complexity are considered. The model with the aircraft source expressed as the NOx emitted near the airport is found to have the best predictive quality. Although the aircraft source is statistically significant, the comparison of model-based predictions suggests that the relative impact of aircraft emissions to ambient NOx concentrations is limited and the road traffic is the likely dominant source near the sampling point.

  14. Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry-climate model simulations

    NASA Astrophysics Data System (ADS)

    Roy, Chaitri; Fadnavis, Suvarna; Müller, Rolf; Ayantika, D. C.; Ploeger, Felix; Rap, Alexandru

    2017-01-01

    The Asian summer monsoon (ASM) anticyclone is the most pronounced circulation pattern in the upper troposphere and lower stratosphere (UTLS) during northern hemispheric summer. ASM convection plays an important role in efficient vertical transport from the surface to the upper-level anticyclone. In this paper we investigate the potential impact of enhanced anthropogenic nitrogen oxide (NOx) emissions on the distribution of ozone in the UTLS using the fully coupled aerosol-chemistry-climate model, ECHAM5-HAMMOZ. Ozone in the UTLS is influenced both by the convective uplift of ozone precursors and by the uplift of enhanced-NOx-induced tropospheric ozone anomalies. We performed anthropogenic NOx emission sensitivity experiments over India and China. In these simulations, covering the years 2000-2010, anthropogenic NOx emissions have been increased by 38 % over India and by 73 % over China with respect to the emission base year 2000. These emission increases are comparable to the observed linear trends of 3.8 % per year over India and 7.3 % per year over China during the period 2000 to 2010. Enhanced NOx emissions over India by 38 % and China by 73 % increase the ozone radiative forcing in the ASM anticyclone (15-40° N, 60-120° E) by 16.3 and 78.5 mW m-2 respectively. These elevated NOx emissions produce significant warming over the Tibetan Plateau and increase precipitation over India due to a strengthening of the monsoon Hadley circulation. However, increase in NOx emissions over India by 73 % (similar to the observed increase over China) results in large ozone production over the Indo-Gangetic Plain and Tibetan Plateau. The higher ozone concentrations, in turn, induce a reversed monsoon Hadley circulation and negative precipitation anomalies over India. The associated subsidence suppresses vertical transport of NOx and ozone into the ASM anticyclone.

  15. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  16. Study of air emissions related to aircraft deicing

    SciTech Connect

    Zarubiak, D.C.Z.; DeToro, J.A.; Menon, R.P.

    1997-12-31

    This paper outlines the results of a study that was conducted by Trinity Consultants Incorporated (Trinity) to estimate the airborne emissions of glycol from Type 1 Deicer fluid and potential exposure of ground personnel during routine deicing of aircraft. The study involved the experimental measurement of Type 1 Deicer fluid vapor emissions by Southern Research Institute (SRI, Research Triangle Park, NC). An open path Fourier Transform Infrared (FTIR) spectroscopic technique developed by SRI was used during a simulated airplane deicing event. The emissions measurement data are analyzed to obtain appropriate emission rates for an atmospheric dispersion modeling analysis. The modeled gaseous Type 1 Deicer fluid concentrations are determined from calculated emission rates and selected meteorological conditions. A propylene glycol (PG)-based Type 1 Deicer fluid was used. In order to examine the effects of the assumptions that are made for the development of the emission quantification and dispersion modeling methodologies, various scenarios are evaluated. A parametric analysis evaluates the effect of variations in the following parameters on the results of the study: glycol concentrations in deicing fluids, error limits of emission measurements, emission source heights, evaporation rate for various wind speeds, wind directions over typical physical layouts, and background (ambient) Type 1 Deicer fluid concentrations. The emissions for an EG based Type 1 Deicing fluid are expected to be between 80 and 85% of the reported data. In general, the model shows the region of maximum concentrations is located between 20 and 50 meters downwind from the trailing edge of the wing. This range is consistent with experimental findings. Depending on the specific modeled scenarios, maximum glycol concentrations are found to generally range between 50 and 500 milligrams per cubic meter.

  17. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution - Scenario analysis for the city of Antwerp, Belgium

    NASA Astrophysics Data System (ADS)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2016-02-01

    The annual NO2 concentrations in many European cities exceed the established air quality standard. This situation is mainly caused by Diesel cars whose NOx emissions are higher on the road than during type approval in the laboratory. Moreover, the fraction of NO2 in the NOx emissions of modern diesel cars appears to have increased as compared to previous models. In this paper, we assess 1) to which level the distance-specific NOx emissions of Diesel cars should be reduced to meet established air quality standards and 2) if it would be useful to introduce a complementary NO2 emissions limit. We develop a NO2 pollution model that accounts in an analysis of 9 emission scenarios for changes in both, the urban background NO2 concentrations and the local NO2 emissions at street level. We apply this model to the city of Antwerp, Belgium. The results suggest that a reduction in NOx emissions decreases the regional and urban NO2 background concentration; high NO2 fractions increase the ambient NO2 concentrations only in close spatial proximity to the emission source. In a busy access road to the city centre, the average NO2 concentration can be reduced by 23% if Diesel cars emitted 0.35 g NOx/km instead of the current 0.62 g NOx/km. Reductions of 45% are possible if the NOX emissions of Diesel cars decreased to the level of gasoline cars (0.03 g NOx/km). Our findings suggest that the Real-Driving Emissions (RDE) test procedure can solve the problem of NO2 exceedances in cities if it reduced the on-road NOx emissions of diesel cars to the permissible limit of 0.08 g/km. The implementation of a complementary NO2 emissions limit may then become superfluous. If Diesel cars continue to exceed by several factors their NOx emissions limit on the road, a shift of the vehicle fleet to gasoline cars may be necessary to solve persisting air quality problems.

  18. Estimation of NOx emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data

    NASA Astrophysics Data System (ADS)

    Shaiganfar, R.; Beirle, S.; Sharma, M.; Chauhan, A.; Singh, R. P.; Wagner, T.

    2011-11-01

    We present the first Multi-Axis-(MAX-) DOAS observations in India performed during April 2010 and January 2011 in Delhi and nearby regions. The MAX-DOAS instrument was mounted on a car roof, which allowed us to perform measurements along individual driving routes. From car MAX-DOAS observations along closed circles around Delhi, together with information on wind speed and direction, the NOx emissions from the greater Delhi area were determined: our estimate of 4.4 × 1025 molecules s-1 is found to be slightly lower than the corresponding emission estimates using the EDGAR emission inventory and substantially smaller compared to a recent study by Gurjar et al. (2004). We also determined NOx emissions from Delhi using OMI satellite observations on the same days. These emissions are slightly smaller than those from the car MAX-DOAS measurements. Finally the car MAX-DOAS observations were also used for the validation of simultaneous OMI satellite measurements of the tropospheric NO2 VCD and found a good agreement of the spatial patterns. Concerning the absolute values, OMI data are, on average, higher than the car MAX-DOAS observations close to strong emission sources, and vice versa over less polluted regions. Our results indicate that OMI NO2 VCDs are biased low over strongly polluted regions, probably caused by inadequate a-priori profiles used in the OMI satellite retrieval.

  19. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2

    NASA Astrophysics Data System (ADS)

    Jain, Atul K.; Tao, Zhining; Yang, Xiaojuan; Gillespie, Conor

    2006-03-01

    Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5° × 0.5° spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO2/yr, 438-568 Tg CO/yr, 11-16 Tg NOx/yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO2), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.

  20. Costs of mitigating CO2 emissions from passenger aircraft

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  1. The use of rice hulls for sustainable control of NOx emissions in deep space missions

    NASA Technical Reports Server (NTRS)

    Xu, X. H.; Shi, Y.; Kwak, D.; Chang, S. G.; Fisher, J. W.; Pisharody, S.; Moran, M. J.; Wignarajah, K.

    2003-01-01

    The use of the activated carbon produced from rice hulls to control NOx emissions for future deep space missions has been demonstrated. The optimal carbonization temperature range was found to be between 600 and 750 degrees C. A burnoff of 61.8% was found at 700 degrees C in pyrolysis and 750 degrees C in activation. The BET surface area of the activated carbon from rice hulls was determined to be 172 m2/g when prepared at 700 degrees C. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 1.5 h when 10% oxygen was present and the ratio of the carbon weight to the flue gas flow rate (W/F) was 15.4 g min/L. Reduction of the adsorbed NO to form N2 could be effectively accomplished under anaerobic conditions at 550 degrees C. The adsorption capacity of NO on the activated carbon was found to be 5.02 mg of NO/g of carbon. The loss of carbon mass was determined to be about 0.16% of the activated carbon per cycle of regeneration if the regeneration occurred when the NO in the flue gas after the carbon bed reached 4.8 ppm, the space maximum allowable concentration. The reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency.

  2. Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions.

    PubMed

    Jaeglé, Lyatt; Steinberger, Linda; Martin, Randall V; Chance, Kelly

    2005-01-01

    We use space-based observations of NO2 columns from the Global Ozone Monitoring Experiment (GOME) to derive monthly top-down NOx emissions for 2000 via inverse modeling with the GEOS-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel and biofuel), biomass burning and soils by exploiting the spatio-temporal distribution of remotely sensed fires and a priori information on the location of regions dominated by fuel combustion. The top-down inventory is combined with an a priori inventory to obtain an optimized a posteriori estimate of the relative roles of NOx sources. The resulting a posteriori fuel combustion inventory (25.6 TgN year(-1)) agrees closely with the a priori (25.4 TgN year(-1)), and errors are reduced by a factor of 2, from +/- 80% to +/- 40%. Regionally, the largest differences are found over Japan and South Africa, where a posteriori estimates are 25% larger than a priori. A posteriori fuel combustion emissions are aseasonal, with the exception of East Asia and Europe where winter emissions are 30-40% larger relative to summer emissions, consistent with increased energy use during winter for heating. Global a posteriori biomass burning emissions in 2000 resulted in 5.8 TgN (compared to 5.9 TgN year(-1) in the a priori), with Africa accounting for half of this total. A posteriori biomass burning emissions over Southeast Asia/India are decreased by 46% relative to a priori; but over North equatorial Africa they are increased by 50%. A posteriori estimates of soil emissions (8.9 TgN year(-1)) are 68% larger than a priori (5.3 TgN year(-1)). The a posteriori inventory displays the largest soil emissions over tropical savanna/woodland ecosystems (Africa), as well as over agricultural regions in the western U.S. (Great Plains), southern Europe (Spain, Greece, Turkey), and Asia (North China Plain and North India), consistent with field measurements. Emissions over these regions are highest during summer at

  3. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  4. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    PubMed

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis.

  5. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.

    PubMed

    Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai

    2016-12-01

    In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO2 emission decreases. Meanwhile, the ratio of NO2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel.

  6. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  7. Gaseous Emissions from Aircraft Engines. A Handbook for the Calculation of Emission Indexes and Gaseous Emissions from Aircraft Engines

    DTIC Science & Technology

    1987-09-01

    corresponded to intervals of stable engine operation, as specified by the operators of the engine. Each laboratory reported emission indexes for the read ...period. The test established 50 read periods for gaseous emissions. Tabl, 5-1 gives the emission indexes at idle, high idle, approach, cruise and...emission indexes from a T58-GE-8F engine Test Cell - 12 Location - Naval Air Rework Facility, North Island IDLE Date Time Reading Prior Emission index

  8. Gas Emissions Acquired during the Aircraft Particle Emission Experiment (APEX) Series

    NASA Technical Reports Server (NTRS)

    Changlie, Wey; Chowen, Chou Wey

    2007-01-01

    NASA, in collaboration with other US federal agencies, engine/airframe manufacturers, airlines, and airport authorities, recently sponsored a series of 3 ground-based field investigations to examine the particle and gas emissions from a variety of in-use commercial aircraft. Emissions parameters were measured at multiple engine power settings, ranging from idle to maximum thrust, in samples collected at 3 different down stream locations of the exhaust. Sampling rakes at nominally 1 meter down stream contained multiple probes to facilitate a study of the spatial variation of emissions across the engine exhaust plane. Emission indices measured at 1 m were in good agreement with the engine certification data as well as predictions provided by the engine company. However at low power settings, trace species emissions were observed to be highly dependent on ambient conditions and engine temperature.

  9. Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

  10. Constraints on Anthropogenic NOx Emissions from Geostationary Satellite Observations in a Regional Chemical Data Assimilation System: Evaluation Using Observing System Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.

    2015-12-01

    Nitrogen oxides (NOx=NO+NO2) control the tropospheric ozone (O3) budget, the abundance of the hydroxyl radical (OH), the formation of organic and inorganic nitrate aerosol, and therefore affect air quality and climate. There remain significant uncertainties in the processes responsible for NOx emissions and subsequent mixing and chemical removal. NOx has a short lifetime and its emissions show high spatiotemporal variability at urban scale. Future geostationary satellite instruments including TEMPO, GEMS and Sentinel-4 will provide hourly time resolution and high spatial resolution observations providing maps of NO2 on diurnal and local scales. Here we determine the extent to which a TEMPO like instrument can quantify urban-scale NOx emissions using a regional data assimilation (DA) system comprising of a chemical transport model, WRF-Chem, a TEMPO simulator and the DART Ensemble Adjustment Kalman Filter. We generate synthetic TEMPO observations by sampling from a nature run on an urban scale domain. We consider the effect of albedo, surface pressure, solar and viewing angles and a priori NO2 profiles on the TEMPO NO2 averaging kernel to achieve scene-dependent instrument sensitivity. We estimate NOx emissions using DART in a state augmentation approach by including NOx emissions in the state vector being analyzed. The ensemble-based statistical estimation of error correlations between concentrations and emissions are critical as they determine the impact of assimilated observations. We describe observing system simulation experiments to explore the optimal approach in the ensemble-based DA system to estimate hourly-resolved NOx emissions from TEMPO NO2 observations. Several case studies will be presented examining the role of covariance localization length and chemical perturbations on the success of the approach.

  11. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2011-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  12. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  13. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  14. Reduction on NOx emissions on urban areas by changing specific vehicle fleets: effects on NO2 and O3 concentration

    NASA Astrophysics Data System (ADS)

    Goncalves, M.; Jimenez, P.; Baldasano, J.

    2007-12-01

    The largest amount of NOx emissions in urban areas comes from on-road traffic, which is the largest contributor to urban air pollution (Colvile et al., 2001). Currently different strategies are being tested in order to reduce its effects; many of them oriented to the reduction of the unitary vehicles emissions, by alternative fuels use (such as biofuels, natural gas or hydrogen) or introduction of new technologies (such as hybrid electric vehicles or fuel cells). Atmospheric modelling permits to predict their consequences on tropospheric chemistry (Vautard et al., 2007). Hence, this work assesses the changes on NO2 and O3 concentrations when substituting a 10 per cent of the urban private cars fleets by petrol hybrid electric cars (HEC) or by natural gas cars (NGC) in Madrid and Barcelona urban areas (Spain). These two cities are selected in order to highlight the different patterns of pollutants transport (inland vs. coastal city) and the different responses to emissions reductions. The results focus on a typical summertime episode of air pollution, by means of the Eulerian air quality model ARW- WRF/HERMES/CMAQ, applied with high resolution (1-hr, 1km2) since of the complexity of both areas under study. The detailed emissions scenarios are implemented in the HERMES traffic emissions module, based on the Copert III-EEA/EMEP-CORINAIR (Nztiachristos and Samaras, 2000) methodology. The HEC introduction reduces NOx emissions from on-road traffic in a 10.8 per cent and 8.2 per cent; and the NGC introduction in a 10.3 per cent and 7.8 per cent, for Madrid and Barcelona areas, respectively. The scenarios also affect the NMVOCs reduction (ranging from -3.1 to -6.9 per cent), influencing the tropospheric photochemistry through the NOx/NMVOCs ratio. The abatement of the NO photooxidation but also to the reduction on primary NO2 involves a decrease on NO2 levels centred on urban areas. For example, the NO2 24-hr average concentration in downtown areas reduces up to 8 per

  15. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2003-01-31

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

  16. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2001-08-01

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. For the Third Quarter of this project we present our data on trace metal partitioning obtained from combustion of MSS and Gas, MSS and Coal and Coal and Gas alone.

  17. Impact of aircraft NO x emission on NO x and ozone over China

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Isaksen, I. S. A.; Sundet, J. K.; Zhou, Xiuji; Ma, Jianzhong

    2003-07-01

    A three-dimensional global chemistry transport model (OSLO CTM2) is used to investigate the impact of subsonic aircraft NO x emission on NO x and ozone over China in terms of a year 2000 scenario of subsonic aircraft NO x emission. The results show that subsonic aircraft NO x emission significantly affects northern China, which makes NO x at 250 hPa increase by about 50 pptv with the highest percentage of 60% in January, and leading to an ozone increase of 8 ppbv with 5% relative change in April. The NO x increase is mainly attributed to the transport process, but ozone increase is produced by the chemical process. The NO x increases by less than 10 pptv by virtue of subsonic aircraft NO x emission over China, and ozone changes less than 0.4 ppbv. When subsonic aircraft NO x emission over China is doubled, its influence is still relatively small.

  18. New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK

    NASA Astrophysics Data System (ADS)

    Carslaw, David C.; Rhys-Tyler, Glyn

    2013-12-01

    In this paper we report the first direct measurements of nitrogen dioxide (NO2) in the UK using a vehicle emission remote sensing technique. Measurements of NO, NO2 and ammonia (NH3) from almost 70,000 vehicles were made spanning vehicle model years from 1985 to 2012. These measurements were carefully matched with detailed vehicle information data to understand the emission characteristics of a wide range of vehicles in a detailed way. Overall it is found that only petrol fuelled vehicles have shown an appreciable reduction in total NOx emissions over the past 15-20 years. Emissions of NOx from diesel vehicles, including those with after-treatment systems designed to reduce emissions of NOx, have not reduced over the same period of time. It is also evident that the vehicle manufacturer has a strong influence on emissions of NO2 for Euro 4/5 diesel cars and urban buses. Smaller-engined Euro 4/5 diesel cars are also shown to emit less NO2 than larger-engined vehicles. It is shown that NOx emissions from urban buses fitted with Selective Catalytic Reduction (SCR) are comparable to those using Exhaust Gas Recirculation for Euro V vehicles, while reductions in NOx of about 30% are observed for Euro IV and EEV vehicles. However, the emissions of NO2 vary widely dependent on the bus technology used. Almost all the NOx emission from Euro IV buses with SCR is in the form of NO, whereas EEV vehicles (Enhanced Environmentally friendly Vehicle) emit about 30% of the NOx as NO2. We find similarly low amounts of NO2 from trucks (3.5-12t and >12t). Finally, we show that NH3 emissions are most important for older generation catalyst-equipped petrol vehicles and SCR-equipped buses. The NH3 emissions from petrol cars have decreased by over a factor of three from the vehicles manufactured in the late 1990s compared with those manufactured in 2012. Tables of emission factors are presented for NOx, NO2 and NH3 together with uncertainties to assist the development of new emission

  19. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  20. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  1. Emission reduction of NOx and CO by optimization of the automatic control system in a coal-fired stoker boiler

    SciTech Connect

    Schnelle, K.B.; Laungphairojana, A.; Debelak, K.A.

    2006-07-15

    To date research on NO, and CO emission reduction in stoker-fired boilers has been devoted to combustion modification to the overfire air, diverting air to a selected set of burners, using modified low-NOx, burners, using flue gas recirculation or flue gas treatment with specially controlled catalyst and additives. This study introduces a concept that focuses on the dynamics of the boiler and the automatic control system. The objective of this study was to reduce the NO and CO emissions by restructuring the automatic control system and then tuning the control system with parameters that have been optimized with emission reduction as the objective. Dynamic data were obtained from a step-input test of either the underfire air or the overfire air. These data were used to model the boiler with a transfer function describing the emissions. The analyzer dynamic response was included in the overall model. The control parameters were determined from this overall emissions transfer function by mathematical optimization. These control parameters constituted the initial values in the automatic control system used for the final tests in the boiler. Additional adjustments to reduce the emissions were carried out during boiler operation. A low controller gain and a fast reset time were found to be the most suitable setting for the control system. The NO emissions controlled by the overfire air and CO emissions controlled by the underfire air produced the best results.

  2. Procedure for generating global atmospheric engine emissions data from future supersonic transport aircraft. The 1990 high speed civil transport studies

    NASA Technical Reports Server (NTRS)

    Sohn, R. A.; Stroup, J. W.

    1990-01-01

    The input for global atmospheric chemistry models was generated for baseline High Speed Civil Transport (HSCT) configurations at Mach 1.6, 2.2, and 3.2. The input is supplied in the form of number of molecules of specific exhaust constituents injected into the atmosphere per year by latitude and by altitude (for 2-D codes). Seven exhaust constituents are currently supplied: NO, NO2, CO, CO2, H2O, SO2, and THC (Trace Hydrocarbons). An eighth input is also supplied, NO(x), the sum of NO and NO2. The number of molecules of a given constituent emitted per year is a function of the total fuel burned by a supersonic fleet and the emission index (EI) of the aircraft engine for the constituent in question. The EIs for an engine are supplied directly by the engine manufacturers. The annual fuel burn of a supersonic fleet is calculated from aircraft performance and economic criteria, both of which are strongly dependent on basic design parameters such as speed and range. The altitude and latitude distribution of the emission is determined based on 10 Intern. Air Transport Assoc. (IATA) regions chosen to define the worldwide route structure for future HSCT operations and the mission flight profiles.

  3. Real-Time Control of Lean Blowout in a Turbine Engine for Minimizing No(x) Emissions

    NASA Technical Reports Server (NTRS)

    Zinn, Ben

    2004-01-01

    This report describes research on the development and demonstration of a controlled combustor operates with minimal NO, emissions, thus meeting one of NASA s UEET program goals. NO(x) emissions have been successfully minimized by operating a premixed, lean burning combustor (modeling a lean prevaporized, premixed LPP combustor) safely near its lean blowout (LBO) limit over a range of operating conditions. This was accomplished by integrating the combustor with an LBO precursor sensor and closed-loop, rule-based control system that allowed the combustor to operate far closer to the point of LBO than an uncontrolled combustor would be allowed to in a current engine. Since leaner operation generally leads to lower NO, emissions, engine NO, was reduced without loss of safety.

  4. A Comprehensive Program for Measurement of Military Aircraft Emissions

    SciTech Connect

    Cheng, Mengdawn

    2009-11-01

    Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicate that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.

  5. Effect of NOx emission controls from world regions on the long-range transport of ozone air pollution and human mortality

    NASA Astrophysics Data System (ADS)

    West, J.; Naik, V.; Horowitz, L. W.

    2007-12-01

    We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions on surface ozone air quality in that region and all other regions, using the MOZART-2 model of tropospheric chemistry and transport. In doing so, we quantify the relative importance of long-range transport between different world regions for ozone. We find that the strongest inter-regional influences are for Europe to the Former Soviet Union (FSU), East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for tropical source regions, due to greater sensitivity of ozone production to NOx emissions. Results show, for example, that NOx reductions in North America are about 20% as effective per ton at reducing ozone in Europe, as NOx reductions from Europe itself. In estimating the changes in cases of premature mortality associated with ozone, we find that NOx reductions in North America, Europe, and FSU reduce more mortalities outside of the source regions than within. Among world regions, an average ton of NOx reduced in India causes the greatest number of avoided mortalities (mainly in India itself). We also assess the long-term increases in global ozone resulting from methane increases due to the regional NOx reductions. For many of the more distant source-receptor pairs, the long-term increase in ozone roughly negates the direct short-term ozone decrease. The increase in methane and long-term ozone per unit of NOx reduced is greatest in tropical source regions and varies among different regions by a factor of ten.

  6. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  7. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  8. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  9. Sensitivity of urban air pollution to aircraft emissions in Paris area

    NASA Astrophysics Data System (ADS)

    Pison, I.; Menut, L.

    2003-04-01

    An accurate estimation of the emissions of primary pollutants is a key parameter for modeling surface concentrations observed during regional pollution events. These emissions are generally taken into account near the surface only, representing surface fluxes such as traffic, industries or biogenic sources. Other sources exist such as commercial aircraft emissions. In large urbanized areas, airports represent a non negligible source including landing and take-off of aircraft within the boundary layer. Even if these emissions certainly are not the most important process explaining urban pollution, the quantification of their impact on local pollution is rarely studied. This is the case of Paris where one national airport (Le Bourget) and two international airports (Roissy-Charles-de-Gaulle and Orly) are located less than 30~km from the center of the city. In this paper, we present the first model analysis of the impact of aircraft emissions over Paris area. Using a three-dimensional aircraft emission inventory we partly elaborated, we compare ozone surface concentrations obtained with and without these emissions by the chemistry-transport model CHIMERE. The observed differences show the spatial and temporal influence of these emissions within the boundary layer. This enables us to estimate the perturbations due to aircraft emissions on surface concentrations recorded in and around the city during the second intensive observation period (IOP2) of the ESQUIF project. Finally, aircraft emitted masses of VOCs and nitrogen oxides were disturbed in order to study the sensitivity of ozone concentrations to the accuracy of the inventory.

  10. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    NASA Astrophysics Data System (ADS)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  11. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.

    PubMed

    Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying

    2012-02-21

    The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.

  12. Aircraft emissions characterization: TF41-a2, TF30-p103, and TF30-p109 engines. Final report, December 1985-March 1987

    SciTech Connect

    Spicer, C.W.; Holdren, M.W.; Miller, S.E.; Smith, D.L.; Smith, R.N.

    1987-12-01

    Assessment of the environmental impact of aircraft operations is required by Air Force regulations. This program was undertaken with the aim of quantifying the gaseous and particulate emissions associated with three Air Force turbine engines. These engines were TF41-A2, TF30-P103, and TF30-P109. The emissions tests were carried out, using a test cell Tinker AFP, Oklahoma City, OK. All tests employed JP-4 as the fuel, and fuel samples were characterized by standard tests and analyzed for composition. Emissions were measured at power settings of idle, 30%, 75%, 100%, and afterburner (where appropriate). Measurements were made of detailed organic composition, CO, CO/sub 2/, NO, NOx, smoke number, particle concentration, and particle-size distribution. A multiport sampling rake was used to sample the exhaust, and heated Teflon tubing was used to transfer exhaust to the monitoring instrumentation. Measured and calculated fuel/air ratios were compared to assure representative sampling of the exhaust.

  13. Experimental Assessment of the Emissions Control Potential of a Rich/Quench/ Lean Combustor for High Speed Civil Transport Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R. (Technical Monitor); Rosfjord, T. J.; Padget, F. C.

    2001-01-01

    In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of an HSCT engine cycle. Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NO(x). The spatial profiles of NO(x) and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NO(x). Based on this study, it was also concluded that: (1) While NO(x) formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NO(x) exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve

  14. Experimental Assessment of the Emissions Control Potential of a Rich/Quench/Lean Combustor for High Speed Civil Transport Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Padget, F. C.; Tacina, Robert R. (Technical Monitor)

    2001-01-01

    In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of a HSCT engine cycle, Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NOx. The spatial profiles of NOx and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NOx. Based on this study, it was also concluded that (1) While NOx formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NOx exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and

  15. Impact of the 2008 Global Recession on Air Quality over the United States: Implications for Surface Ozone Levels from Changes in NOx Emissions

    NASA Technical Reports Server (NTRS)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-01-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  16. Impact of the 2008 Global Recession on air quality over the United States: Implications for surface ozone levels from changes in NOx emissions

    NASA Astrophysics Data System (ADS)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-09-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the "would-be" NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain "realistic" changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 1-2 ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.5-1 ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  17. Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Veres, Patrick; Williams, Jonathan; Wagner, Thomas

    2016-04-01

    Soil emissions of NOx (≡ NO + NO2), stemming from biotic emissions of NO, represent a considerable fraction of total NOx emissions, and may even dominate in agricultural and remote areas. Rain-induced spikes in NOx have been observed by in-situ measurements and also satellite observations. However, the estimation of soil emissions over broad geographic regions and on short time scales remains uncertain. This study presents a top-down approach to estimate pulsed soil emissions of trace gases on a global scale using tropospheric NO2 column densities (as a proxy for NOx) as observed by OMI, GOME-2 and SCIAMACHY. We introduce an optimized algorithm that synchronizes and averages multiple time series of atmospheric variables either from one location only, or also from different grid pixels, by aligning them on a relative scale to each other. This method allows investigating changes in the evolution of NO2 VCDs around the first day of rainfall after a prolonged dry period with a temporal resolution of one day and a spatial resolution of 0.25° . We find enhancements in NO2 VCDs on the day of first rainfall in many semi-arid regions in the world which are highly dependent on the season and land cover type. Strongest and most clustered enhancements are found in the distinct band of the Sahel region during the onset of the wet season in April-May-June. Absolute enhancements averaged over the Sahel region for four seasons from 2007 to 2010 range from 0.3*1015molec cm-2 for OMI to 0.4*1015molec cm-2 for GOME-2 and SCIAMACHY on the first day of rainfall. A thorough analysis of other influences on the retrieved signal as well as sensitivity studies are conducted which help to better characterize these short term enhancements. Translating the observed enhancements in NO2 VCDs to emission rates, leads to estimates between 5 and 65 ng N m-2 s-1 for the first day of rainfall which is in line with previous literature. We find that the enhancement in NO2 VCDs already starts to

  18. NO(x) Concentrations in the Upper Troposphere as a Result of Lightning

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.

    1998-01-01

    Upper tropospheric NO(x) controls, in part, the distribution of ozone in this greenhouse-sensitive region of the atmosphere. Many factors control NO(x) in this region. As a result it is difficult to assess uncertainties in anthropogenic perturbations to NO from aircraft, for example, without understanding the role of the other major NO(x) sources in the upper troposphere. These include in situ sources (lightning, aircraft), convection from the surface (biomass burning, fossil fuels, soils), stratospheric intrusions, and photochemical recycling from HNO3. This work examines the separate contribution to upper tropospheric "primary" NO(x) from each source category and uses two different chemical transport models (CTMS) to represent a range of possible atmospheric transport. Because aircraft emissions are tied to particular pressure altitudes, it is important to understand whether those emissions are placed in the model stratosphere or troposphere and to assess whether the models can adequately differentiate stratospheric air from tropospheric air. We examine these issues by defining a point-by-point "tracer tropopause" in order to differentiate stratosphere from troposphere in terms of NO(x) perturbations. Both models predict similar zonal average peak enhancements of primary NO(x) due to aircraft (approx. = 10-20 parts per trillion by volume (pptv) in both January and July); however, the placement of this peak is primarily in a region of large stratospheric influence in one model and centered near the level evaluated as the tracer tropopause in the second. Below the tracer tropopause, both models show negligible NO(x) derived directly from the stratospheric source. Also, they predict a typically low background of 1 - 20 pptv NO(x) when tropospheric HNO3 is constrained to be 100 pptv of HNO3. The two models calculate large differences in the total background NO(x) (defined as the source of NO(x) from lightning + stratosphere + surface + HNO3) when using identical loss

  19. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  20. Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories

    NASA Astrophysics Data System (ADS)

    Tong, Daniel Q.; Lamsal, Lok; Pan, Li; Ding, Charles; Kim, Hyuncheol; Lee, Pius; Chai, Tianfeng; Pickering, Kenneth E.; Stajner, Ivanka

    2015-04-01

    National emission inventories (NEIs) take years to assemble, but they can become outdated quickly, especially for time-sensitive applications such as air quality forecasting. This study compares multi-year NOx trends derived from satellite and ground observations and uses these data to evaluate the updates of NOx emission data by the US National Air Quality Forecast Capability (NAQFC) for next-day ozone prediction during the 2008 Global Economic Recession. Over the eight large US cities examined here, both the Ozone Monitoring Instrument (OMI) and the Air Quality System (AQS) detect substantial downward trends from 2005 to 2012, with a seven-year total of -35% according to OMI and -38% according to AQS. The NOx emission projection adopted by NAQFC tends to be in the right direction, but at a slower reduction rate (-25% from 2005 to 2012), due likely to the unaccounted effects of the 2008 economic recession. Both OMI and AQS datasets display distinct emission reduction rates before, during, and after the 2008 global recession in some cities, but the detailed changing rates are not consistent across the OMI and AQS data. Our findings demonstrate the feasibility of using space and ground observations to evaluate major updates of emission inventories objectively. The combination of satellite, ground observations, and in-situ measurements (such as emission monitoring in power plants) is likely to provide more reliable estimates of NOx emission and its trend, which is an issue of increasing importance as many urban areas in the US are transitioning to NOx-sensitive chemical regimes by continuous emission reductions.

  1. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2001-01-31

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. For the First Quarter of this three year project work has centered around recruiting a graduate student to take responsibility for execution of portions of the research, and modifying the furnace and supporting equipment to allow the combustion of coal/MMS mixtures. We have readied the analytical panel for measuring NO{sub x} and other gaseous pollutants. We expect initial experiments for data gathering for coal/MSS mixtures to commence in the next Quarter.

  2. The empirical relationship between satellite-derived tropospheric NO2 and fire radiative power and possible implications for fire emission rates of NOx

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan F.; Richter, Andreas; Kaiser, Johannes W.; Schepaschenko, Dmitry; Shvidenko, Anatoly; Hilboll, Andreas; Burrows, John P.

    2014-05-01

    Vegetation fires across the globe have various impacts on Earth systems such as the atmosphere and biosphere. Every year, large quantities of biomass in different ecosystems are burned, either started by lightning strikes or caused by humans. Consequently, a considerable amount of trace gases (e.g. NOx) and aerosols is released into the atmosphere. As nitrogen oxides (NOx) affect atmospheric chemistry, air quality, and climate, a quantification of the total emissions is needed. Although several approaches have been developed for the estimation of NOx emissions from fires, they still suffer from large uncertainties. We present a simple statistical approach to estimate fire emission rates (FERs) of NOx based on the linear relationship between satellite-observed tropospheric NO2 vertical columns (TVC NO2) and fire radiative power (FRP). While the great advantage of the method is the spatial coverage of FERs and the application to various biomes and regions, the uncertainties in the two retrieved parameters can lead to uncertainties in the FERs. In general, the approach performs well for the tropical and subtropical regions where both the number and the spatial extent of vegetation fires are rather large throughout the fire season. However, due to the smaller number of fires and the patchy spatial occurrence, the estimation of FERs is more complicated in the boreal regions. Nevertheless, it is possible to derive FERs for some characteristic regions in the North American and Eurasian part of the boreal forest biome. The estimated FERs of NOx for the dominating types of vegetation burned are lowest for open shrublands, savannas, and boreal forest (0.28-1.03 g NOx s-1 MW-1) and highest for croplands and woody savannas (0.82-1.56 g NOx s-1 MW-1). Interestingly, there are large regional discrepancies of up to 40 % observed for evergreen broadleaf forest and boreal forest. Possible explanations for these regional discrepancies are discussed.

  3. Expected ozone benefits of reducing nitrogen oxide (NOx) emissions from coal-fired electricity generating units in the eastern United States.

    PubMed

    Vinciguerra, Timothy; Bull, Emily; Canty, Timothy; He, Hao; Zalewsky, Eric; Woodman, Michael; Aburn, George; Ehrman, Sheryl; Dickerson, Russell R

    2017-03-01

    On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NOx emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NOx emissions were adjusted to match the lowest NOx rates observed during the ozone seasons (April 1-October 31) of 2005-2012 (Scenario A), where ozone decreased by 3-4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ∼4-7 ppb. NOx emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ∼4-5 ppb. Finally in Scenario D, the impact of additional NOx reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2-4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NOx originates, even if additional capital investments are not made (Scenario A).

  4. Sensitivity of stratospheric ozone to present and possible future aircraft emissions

    SciTech Connect

    Wuebbles, D.J.; Kinnison, D.E.

    1990-08-01

    The aircraft industry is showing renewed interest in the development of supersonic, high flying aircraft for intercontinental passenger flights. There appears to be confidence that such high-speed civil transports can be designed, and that aircraft will be economically viable as long as they are also environmentally acceptable. As such, it is important to establish the potential for such environmental problems early in the aircraft design. Initial studies with LLNL models of global atmospheric chemical, radiative, and transport processes have indicated that substantial decreases in stratospheric ozone concentrations could result from emissions of NO{sub x} from aircraft flying the stratosphere, depending on the fleet size and magnitude of the engine emissions. The purpose of this study is to build on previous analyses of potential aircraft emission effects on ozone in order to better define the sensitivity of ozone to such emissions. In addition to NO{sub x}, the effects of potential emissions of carbon monoxide and water vapor are also examined. More realistic scenarios for the emissions as a function of altitude, latitude, and season are examined in comparison to prior analyses. These studies indicate that the effects on ozone are sensitive to the altitude and latitude, as well as the magnitude, of the emissions.

  5. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  6. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    SciTech Connect

    Kurniawan, Jermanto S. Khardi, S.

    2011-04-15

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly or indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.

  7. EPA Takes First Steps to Address Greenhouse Gas Emissions from Aircraft

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) is proposing to find under the Clean Air Act that greenhouse gas (GHG) emissions from commercial aircraft contribute to the pollution that causes climate change endangering the health and welfare

  8. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  9. Results and status of the NASA aircraft engine emission reduction technology programs

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Diehl, L. A.; Petrash, D. A.; Grobman, J.

    1978-01-01

    The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed.

  10. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2014-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  11. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2015-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  12. Summary of the general aviation manufacturers' position on aircraft piston engine emissions

    NASA Technical Reports Server (NTRS)

    Helms, J. L.

    1976-01-01

    The General Aviation Manufacturers recommended that the EPA rescind the aircraft piston engine emissions regulations currently on the books. The reason was the very small emission reduction potential and the very poor benefit-cost ratio involved in this form of emission reduction. The limited resources of this industry can far better be devoted to items of much greater benefit to the citizens of this country - reducing noise, improving fuel efficiency (which will incidently reduce exhaust emissions), and improving the safety, operational, and economic aspects of aircraft, all far greater contributions to our total national transportation system.

  13. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions.

    PubMed

    Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-04-01

    To promote the utilization of waste material as alternative fuel, the mono- and co-combustion characteristics of sewage sludge (SS) and coal gangue (CG) were systematically investigated, with emphasis on environmental influences. The emission of SO2, NOx as well as the trace elements during combustion of SS and CG were studied with regard to the effects of their chemistries, structures and interactions. Results showed that co-combustion can be beneficial for ignition performance. A synergic effect on both desulfurization and denitrification can be expected at ca. 800°C. Further, an enhanced retention of trace elements during co-combustion was also observed, especially for Pb and Zn. On the basis of the results, it can be expected that, with proper operation, co-combustion of SS and CG can be a promising method for the disposal of these two wastes.

  14. NOx Emission Reduction by the Optimization of the Primary Air Distribution in the 235Mwe CFB Boiler

    NASA Astrophysics Data System (ADS)

    Mirek, P.; Czakiert, T.; Nowak, W.

    The article presents the results of experimental studies conducted on a large-scale 235 MWe CFB (Circulating Fluidized Bed) boiler, in which the primary air distribution system was modified. The modification was connected with the change of internal geometry of primary air channels as well as internal space of plenum chamber. The obtained results have shown, that the optimization of primary air flow has a great influence on the intensity of the combustion process and the temperature distribution along the height of combustion chamber. As a result, the NOx emission has been reduced by up to ten percent and the temperature profile in the combustion chamber has been revealed to be more uniform.

  15. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP 1 Table 1 to Subpart JJJJ of Part...

  16. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP 1 Table 1 to Subpart JJJJ of Part...

  17. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP 1 Table 1 to Subpart JJJJ of Part...

  18. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP 1 Table 1 to Subpart JJJJ of Part...

  19. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Combustion Engines Pt. 60, Subpt. JJJJ, Table 1 Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP 1 Table 1 to Subpart JJJJ of Part...

  20. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  1. Reducing NOx Emissions for a 600 MWe Down-Fired Pulverized-Coal Utility Boiler by Applying a Novel Combustion System.

    PubMed

    Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan

    2015-11-03

    A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%.

  2. EMISSIONS AND COST ESTIMATES FOR GLOBALLY SIGNIFICANT ANTHROPOGENIC COMBUSTION SOURCES OF NOX, N2O, CH4, CO AND CO2

    EPA Science Inventory

    The report discusses the development of emission factors for CO2, CO, CH4, NOx, and N2O for about 80 globally significant combustion sources in seven source categories: utility, industrial, fuel production, transportation, residential, commercial, and kilns/ovens/dryers. ecause o...

  3. NOx Emissions Characteristics and Correlation Equations of Two P and W's Axially Staged Sector Combustors Developed Under NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.

    2017-01-01

    Two P&W (Pratt & Whitney)'s axially staged sector combustors have been developed under NASA's Environmentally Responsible Aviation (ERA) project. One combustor was developed under ERA Phase I, and the other was developed under ERA Phase II. Nitrogen oxides (NOx) emissions characteristics and correlation equations for these two sector combustors are reported in this article. The Phase I design was to optimize the NOx emissions reduction potential, while the Phase II design was more practical and robust. Multiple injection points and fuel staging strategies are used in the combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom (Phase I) or on the top only (Phase II) of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve lean burn throughout the combustor yielding very low NOx emissions. The ICAO (International Civil Aviation Organization) landing-takeoff NOx emissions are verified to be 88 percent (Phase I) and 76 percent (Phase II) under the ICAO CAEP/6 (Committee on Aviation Environmental Protection 6th Meeting) standard, exceeding the ERA project goal of 75 percent reduction, and the combustors proved to have stable combustion with room to maneuver on fuel flow splits for operability.

  4. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  5. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  6. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  7. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  8. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  9. Quantification of the impact of aircraft traffic emissions on tropospheric ozone over Paris area

    NASA Astrophysics Data System (ADS)

    Pison, Isabelle; Menut, Laurent

    Accurate estimations of the emissions of primary pollutants are crucial for the modeling of photo-oxidants' concentrations. For a majority of chemistry-transport models (CTMs), these emissions are taken into account near the surface only. They are expressed as surface fluxes and represent surface activities such as traffic, industries or biogenic processes. However, in the vicinity of large cities, commercial aircraft emissions represent a nonnegligible source, located both at the surface and at altitude, including landing and take-off of aircraft within the boundary layer. This is the case of Paris where one national airport (Le Bourget) and two international airports (Roissy-Charles-de-Gaulle and Orly) are located less than 30 km away from the city center. This study presents the first-model analysis of the impact of aircraft emissions on photo-oxidant concentrations over the Paris area. Using a three-dimensional aircraft emission inventory, we compare ozone surface concentrations obtained with and without these emissions by running the CTM CHIMERE during the second Intensive Observation Period of the ESQUIF project. The simulated differences enable us to estimate the impact of aircraft traffic emissions on ozone surface concentrations in and around the city. The results showed that the maximum impact, which consists in a fast ozone titration by NO near the airports within the surface layer, occurs during the night. In remote areas and at altitude, adding new emissions enhanced photo-chemistry during the afternoon. In order to estimate the impact of the uncertainty of our inventory, aircraft emitted masses of volatile organic compounds (VOCs) and NO x are perturbed. The results showed that NO x air traffic emissions have a more important impact than VOC emissions, particularly during the night and near the sources. Nevertheless, these variations of air traffic emissions do not change previous conclusions.

  10. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Parrish, D. D.; Frost, G. J.; Trainer, M.

    2014-02-01

    Since 1997, an increasing fraction of electric power has been generated from natural gas in the United States. Here we use data from continuous emission monitoring systems (CEMS), which measure emissions at the stack of most U.S. electric power generation units, to investigate how this switch affected the emissions of CO2, NOx, and SO2. Per unit of energy produced, natural gas power plants equipped with combined cycle technology emit on an average 44% of the CO2 compared with coal power plants. As a result of the increased use of natural gas, CO2 emissions from U.S. fossil-fuel power plants were 23% lower in 2012 than they would have been if coal had continued to provide the same fraction of electric power as in 1997. In addition, natural gas power plants with combined cycle technology emit less NOx and far less SO2 per unit of energy produced than coal power plants. Therefore, the increased use of natural gas has led to emission reductions of NOx (40%) and SO2 (44%), in addition to those obtained from the implementation of emission control systems on coal power plants. These benefits to air quality and climate should be weighed against the increase in emissions of methane, volatile organic compounds, and other trace gases that are associated with the production, processing, storage, and transport of natural gas.

  11. Analysis of the CO2, NOx emission and fuel consumption from a heavy-duty vehicle designed for carriage of timber

    NASA Astrophysics Data System (ADS)

    Fuc, P.; Lijewski, P.; Ziolkowski, A.

    2016-09-01

    The paper presents the results of measurements of the CO2 and NOx emission and fuel consumption recorded under actual operating conditions of a heavy-duty vehicle designed for loading and carriage of timber. The tests were performed on a specially designed test route that reflected the arrival of the vehicle to the felling site in the forest, the loading process and return to the lumberyard. The route ran through paved (asphalt) and unpaved (forest) portions. Its total length was 8.6 km. An advanced PEMS (Portable Emission Measurement System) device was used for the measurement of the exhaust emissions - SEMTECH DS by Sensors Inc. The paper analyses the CO2 and NOx emission and fuel consumption on all portions of the test route and presents a comparison between the forest and asphalt roads.

  12. The observed response of Ozone Monitoring Instrument (OMI) NO2 columns to NOx emission controls on power plants in the United States: 2005-2011

    NASA Astrophysics Data System (ADS)

    Duncan, Bryan N.; Yoshida, Yasuko; de Foy, Benjamin; Lamsal, Lok N.; Streets, David G.; Lu, Zifeng; Pickering, Kenneth E.; Krotkov, Nickolay A.

    2013-12-01

    We show that Aura Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) tropospheric column data may be used to assess changes of the emissions of nitrogen oxides (NOx) from power plants in the United States, though careful interpretation of the data is necessary. There is a clear response for OMI NO2 data to NOx emission reductions from power plants associated with the implementation of mandated emission control devices (ECDs) over the OMI record (2005-2011). This response is scalar for all intents and purposes, whether the reduction is rapid or incremental over several years. However, it is variable among the power plants, even for those with the greatest absolute decrease in emissions. We document the primary causes of this variability, presenting case examples for specific power plants.

  13. The Observed Response of Ozone Monitoring Instrument (OMI) NO2 Columns to NOx Emission Controls on Power Plants in the United States: 2005-2011

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; deFoy, Benjamin; Lamsal, Lok N.; Streets, David G.; Lu, Zifeng; Pickering, Kenneth E.; Krotkov, Nickolay A.

    2013-01-01

    We show that Aura Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) tropospheric column data may be used to assess changes of the emissions of nitrogen oxides (NOx) from power plants in the United States, though careful interpretation of the data is necessary. There is a clear response for OMI NO2 data to NOx emission reductions from power plants associated with the implementation of mandated emission control devices (ECDs) over the OMI record (2005e2011). This response is scalar for all intents and purposes, whether the reduction is rapid or incremental over several years. However, it is variable among the power plants, even for those with the greatest absolute decrease in emissions. We document the primary causes of this variability, presenting case examples for specific power plants.

  14. Estimation of NOx emissions from the Megacity of Lahore, Pakistan using car MAX-DOAS observations and comparison with OMI satellite data

    NASA Astrophysics Data System (ADS)

    Razi, Maria; Shaiganfar, Reza; Fahim Khokhar, Muhammad; Dörner, Steffen; Ahmad, Noor; Donner, Sebastian; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Lahore is a metropolitan city of Pakistan with about more than 10 million inhabitants and thus a strong emission source of atmospheric pollutants. The quantification of these emission sources is usually accomplished by so-called bottom-up inventories, based on the summation of the emissions of individual emission sources for all relevant emission categories. Such inventories are subject to large errors because of uncertainties in the emission estimates for individual sources as well as their numbers and characteristics. Here we present results of a top-down emission inventory for Lahore based on car multi-axis differential optical absorption spectroscopy (car-MAX-DOAS) observations. We performed such measurements around the city on Lahore on six days in December 2015. From the measured spectra we derive the vertically integrated concentration of NO2 along the driving route (the so called tropospheric vertical column density, VCD). By combining these observations with wind data we estimate the total NO2 emissions from the city of Lahore. Since from the measured spectra only NO2 (but not NO) can be retrieved, we convert the NO2 emissions to total NOx (NO2 plus NO) emissions. We also apply corrections for the decay of NOx on the way between the emission source and the location of the measurements. We compare the derived NOx emissions to existing emission inventories. We also compare the spatial distributions of the tropospheric NO2 VCDs observed by car MAX-DOAS with collocated results from satellite observations of the Ozone Monitoring Instrument (OMI).

  15. Using hydroponic biomass to regulate NOx emissions in long range space travel

    SciTech Connect

    Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2002-02-01

    The incineration of wastes is one of the most promising reclamation technologies being developed for life support in long range space travel. However, incineration in a closed environment will build up hazardous NOx if not regulated. A technology that can remove NOx under microgravity conditions without the need of expendables is required. Activated carbon prepared from inedible wheat straw and sweet potato stalk that were grown under hydroponic conditions has been demonstrated to be able to adsorb NO and reduce it to N{sub 2}. The high mineral content in the activated carbon prepared from hydroponic biomass prohibits high surface area production and results in inferior NO adsorption capacity. The removal of mineral from the carbon circumvents the aforementioned negative effect. The optimal production conditions to obtain maximum yield and surface area for the activated carbon have been determined. A parametric study on the NO removal efficiency by the activated carbon has been done. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. The NO adsorption capacity and the duration before it exceeds the Space Maximum Allowable Concentration were determined. After the adsorption of NO, the activated carbon can be regenerated for reuse by heating the carbon bed under anaerobic conditions to above 500 C, when the adsorbed NO is reduced to N{sub 2}. The regenerated activated carbon exhibits improved NO adsorption efficiency. However, regeneration had burned off a small percentage of the activated carbon.

  16. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  17. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  18. Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Etyemezian, V.; Kuhns, H.; McAlpine, J. D.; King, J.; Uppapalli, S.; Nikolich, G.; Engelbrecht, J.

    2010-03-01

    There is a dearth of information on dust emissions from sources that are unique to U.S. Department of Defense testing and training activities. Dust emissions of PM 10 and PM 2.5 from low-level rotary-winged aircraft travelling (rotor-blade ≈7 m above ground level) over two types of desert surfaces (i.e., relatively undisturbed desert pavement and disturbed desert soil surface) were characterized at the Yuma Proving Ground (Yuma, AZ) in May 2007. Fugitive emissions are created by the shear stress of the outflow of high speed air created by the rotor-blade. The strength of the emissions was observed to scale primarily as a function of forward travel speed of the aircraft. Speed affects dust emissions in two ways: 1) as speed increases, peak shear stress at the soil surface was observed to decline proportionally, and 2) as the helicopter's forward speed increases its residence time over any location on the surface diminishes, so the time the downward rotor-generated flow is acting upon that surface must also decrease. The state of the surface over which the travel occurs also affects the scale of the emissions. The disturbed desert test surface produced approximately an order of magnitude greater emission than the undisturbed surface. Based on the measured emission rates for the test aircraft and the established scaling relationships, a rotary-winged aircraft similar to the test aircraft traveling 30 km h -1 over the disturbed surface would need to travel 4 km to produce emissions equivalent to one kilometer of travel by a light wheeled military vehicle also traveling at 30 km h -1 on an unpaved road. As rotary-winged aircraft activity is substantially less than that of off-road vehicle military testing and training activities it is likely that this source is small compared to emissions created by ground-based vehicle movements.

  19. Evaluation of mass balance, 4D-Var, and hybrid approaches to constraining NOx emissions using OMI NO2 remote sensing measurements.

    NASA Astrophysics Data System (ADS)

    Qu, Z.

    2015-12-01

    Nitrogen oxides (NOx) contribute to photochemical smog, tropospheric ozone and aerosol, and human health problems. Remote sensing observations provide a valuable means of constraining emissions of NOx, and thus improving our ability to use air quality models for further understanding these issues. Traditional top-down estimates have provided important constraints for NOx emission inventories in China, but are either time-consuming (e.g., 4D-Var) or only crudely represent the influence of atmospheric transport and chemistry (e.g., mass balance). Here, we combine mass balance and 4D-Var approaches, and investigate the improvements in simulated NOx column density over China. Scaling factors derived from the mass balance approach with OMI observations are first applied to NOx emissions. In this process, a smoothing kernel is used to account for emissions from adjacent grid cells, and optimized NOx emissions are derived using maximum likelihood estimation, which weigh top-down and bottom up estimates by their relative errors. This is followed by subsequent inversion using an adjoint-based 4D-Var approach with GEOS-Chem at the 0.5x0.667 degree resolution. We consider the correlations between errors in neighboring grid cells by using off-diagonal terms in scaling factors' error covariance matrix. An optimal value of the regularization parameter is selected using an L-curve and minimization of total error. We compare the solutions obtained using this hybrid approach with that obtained from standard 4D-Var, as well as to the direct solution from the mass balance approach itself. Differences between these methods in specific grid cells are investigated. We demonstrate the effect of transport and chemistry on the performance of mass balance and 4D-Var, identifying cases where the smoothing kernel and weighting errors in mass balance can cause the scaling factor to be in a direction that occasionally increases residual error. This study shows potential to facilitate decadal

  20. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-11-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  1. Influence of the overfire air ratio on the NO(x) emission and combustion characteristics of a down-fired 300-MW(e) utility boiler.

    PubMed

    Ren, Feng; Li, Zhengqi; Chen, Zhichao; Fan, Subo; Liu, Guangkui

    2010-08-15

    Down-fired boilers used to burn low-volatile coals have high NO(x) emissions. To find a way of solving this problem, an overfire air (OFA) system was introduced on a 300 MW(e) down-fired boiler. Full-scale experiments were performed on this retrofitted boiler to explore the influence of the OFA ratio (the mass flux ratio of OFA to the total combustion air) on the combustion and NO(x) emission characteristics in the furnace. Measurements were taken of gas temperature distributions along the primary air and coal mixture flows, average gas temperatures along the furnace height, concentrations of gases such as O(2), CO, and NO(x) in the near-wall region and carbon content in the fly ash. Data were compared for five different OFA ratios. The results show that as the OFA ratio increases from 12% to 35%, the NO(x) emission decreases from 1308 to 966 mg/Nm(3) (at 6% O(2) dry) and the carbon content in the fly ash increases from 6.53% to 15.86%. Considering both the environmental and economic effect, 25% was chosen as the optimized OFA ratio.

  2. Improving combustion characteristics and NO(x) emissions of a down-fired 350 MW(e) utility boiler with multiple injection and multiple staging.

    PubMed

    Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi

    2011-04-15

    Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.

  3. Global contrail coverage simulated by CAM5 with the inventory of 2006 global aircraft emissions

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Chieh; Gettelman, Andrew; Craig, Cheryl; Minnis, Patrick; Duda, David P.

    2012-02-01

    This paper documents the incorporation of an inventory of the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions for the year of 2006 into the National Center for Atmospheric Research Community Earth System Model (CESM) version 1. The original dataset reports aircraft emission mass of ten species on an hourly basis which is converted to monthly emission mixing ratio tendencies as the released version of the dataset. We also describe how the released aircraft emission dataset is incorporated into CESM. A contrail parameterization is implemented in the CESM in which it is assumed that persistent contrails initially form when aircraft water vapor emissions experience a favorable atmospheric environment. Both aircraft emissions and ambient humidity are attributed to the formation of contrails. The ice water content of contrails is assumed to follow an empirical function of atmospheric temperature which determines the cloud fraction associated with contrails. Our modeling study indicates that the simulated global contrail coverage is sensitive to the vertical resolution of the GCMs in the upper troposphere and lower stratosphere because of model assumptions about the vertical overlap structure of clouds. Furthermore, the extent of global contrail coverage simulated by CESM exhibits a seasonal cycle which is in broad agreement with observations.

  4. NO2 columns in the western United States observed from space and simulated by a regional chemistry model and their implications for NOx emissions

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; Heckel, A.; Frost, G. J.; Richter, A.; Gleason, J.; Burrows, J. P.; McKeen, S.; Hsie, E.-Y.; Granier, C.; Trainer, M.

    2009-06-01

    There are many isolated sources of NOx emissions across the western United States, including electrical power generation plants and urban areas. In this manuscript, two satellite instruments measuring NO2 vertical columns over these sources and an atmospheric chemical-transport model are used to evaluate bottom-up NOx emission inventories, model assumptions, and satellite retrieval algorithms. We carried out simulations with the Weather Research and Forecasting-Chemistry (WRF-Chem) model for the western U.S. domain during the summer of 2005 using measured power plant NOx emissions. Model NO2 vertical columns are compared with a retrieval of the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument data by the University of Bremen and retrievals of the Ozone Monitoring Instrument (OMI) data by the U.S. National Aeronautics and Space Administration (NASA) and a modified version of the NASA OMI retrieval produced by the University of Bremen. For areas dominated by power plant NOx emissions, the model NO2 columns serve as a comparison standard for satellite retrievals because emissions are continuously monitored at all large U.S. power plants. An extensive series of sensitivity tests of the assumptions in both the satellite retrievals and the model are carried out over the Four Corners and San Juan power plants, two adjacent facilities in the northwest corner of New Mexico that together represent the largest NOx point source in the United States. Overall, the SCIAMACHY and OMI NO2 columns over western U.S. power plants agree well with model NO2 columns, with differences between the two being within the variability of the model and satellite. In contrast to regions dominated by power plant emissions, model NO2 columns over large urban areas along the U.S. west coast are approximately twice as large as satellite NO2 columns from SCIAMACHY and OMI retrievals. The discrepancies in urban areas are beyond the sensitivity

  5. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    ERIC Educational Resources Information Center

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  6. THE ACID RAIN NOX PROGRAM

    EPA Science Inventory

    Between 350,000 and 400,000 tons of annual NOx emissions have been eliminated as a result of Phase I of the Acid Rain NOx Program. As expected. the utilities have chosen emissions averaging as the primary compliance option. This reflects that, in general, NO x reductions have ...

  7. Constraints on ship NOx emissions in Europe using OMI NO2 observations

    NASA Astrophysics Data System (ADS)

    Vinken, G. C.; Boersma, F.; van Donkelaar, A.; Zhang, L.

    2012-12-01

    Strong emissions of gases and particulate matter by ships affect the composition of the marine boundary layer, with important consequences for climate change, air quality and public health. Because hardly any regulations for the maritime sector exist in international waters, ships are still allowed to burn low-grade marine heavy fuel. As a result, ships emit large quantities of nitrogen oxides (NO x = NO + NO 2), important precursors for ozone (O 3) and particulate matter formation. Previous studies showed that global ship NO x emission inventories amount to 3.0-10.4 Tg N per year (15-30% of total NO x emissions), with most of these emissions within 400 km of the densely populated coastal regions. However, as individual measurements of ship emissions are sparse, and these few measurements are extrapolated, these bottom-up inventories suffer from large uncertainties. In this study we provide top-down constraints on ship NO x emissions in major European ship routes, using observed NO 2 columns from the Ozone Monitoring Instrument (OMI) and NO 2 columns simulated with the nested (0.5o×0.67o) version of the GEOS-Chem chemistry transport model. Two simulations were performed using a plume-in-grid treatment of ship NO x emissions: (1) using EMEP and (2) using AMVER-ICOADS as ship emission inventory. We ensure consistency between the retrievals and model simulations by using the high-resolution GEOS-Chem NO 2 profiles as a priori. The OMI observations suggest that NO x emissions from the (2001) AMVER-ICOADS inventory are too low by a factor of 16 over the ship lane between Spain and the English Channel, and a factor of 10 over the lane between Cairo and Sicily. When comparing the OMI observations against the more recent (2005) EMEP inventory, our method unambiguously shows that ship emissions in the Mediterranean Sea are geographically misplaced by up to 150 km. EMEP emission totals however agree reasonably well with our OMI-constrained emissions over the eastern

  8. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... action revises the standards for oxides of nitrogen and test procedures for exhaust emissions based on... Environmental Protection Agency (EPA) proposed new aircraft engine emission standards for oxides of nitrogen (NO... Protection (CAEP) of ICAO uses to differentiate the CAEP work cycles that produce new standards. For...

  9. Jet aircraft engine emissions database development: 1992 military, charter, and nonscheduled traffic

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1995-01-01

    Studies relating to environmental emissions database for the military, charter, and non-scheduled traffic for the year 1992 were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report also includes a comparison with a previous emission database for year 1990. Discussions of the methodology used in formulating these databases are provided.

  10. Reduction environmental effects of civil aircraft through multi-objective flight plan optimisation

    NASA Astrophysics Data System (ADS)

    Lee, D. S.; Gonzalez, L. F.; Walker, R.; Periaux, J.; Onate, E.

    2010-06-01

    With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).

  11. Aircraft Emissions: Potential Effects on Ozone and Climate - A Review and Progress Report

    DTIC Science & Technology

    1977-03-01

    soil by biological processes; it is also apparently produced during combustion , as in coal -fired power plants (Craig, 1976). Also, N2 0 production by...given in Table 2.18. In general, very low NOx emission indices (3 or less) are based on the assumed implementation of lean premix combustion techniques...Ultra-low NO values (0.3) have also been demonstrated,x using very lean flames or catalytic combustion techniques. TABLE 2.17. NASA AD HOC COMMITTEE

  12. Atomizing characteristics of swirl can combustor modules with swirl blast fuel injectors. [in terms of NOX emission rate

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1980-01-01

    Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/sq cm sec and water flow rates of 6.3 to 18.9 g/sec. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors were determined. Also, from these data it was possible to determine the effect of design modifications on the atomizing performance of various fuel injector and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studues with the same swirl can combustors. It was found that the fuel injector design that gave the best combustor performance in terms of a low NOx emission index also gave the best atomizing performance as characterized by a spray of relatively small mean drop diameter. It was also demonstrated that at constant inlet air stream momentum the nitrogen oxides emission index was found to vary inversely with the square of the mean drop diameter of the spray produced by the different swirl blast fuel injectors. Test conditions were inlet air static pressures of 100,000 to 200,000 N/sq m at an inlet air temperature of 293 K.

  13. Estimation of NOx emissions from Delhi using car MAX-DOAS observations and comparison with OMI satellite data

    NASA Astrophysics Data System (ADS)

    Shaiganfar, R.; Beirle, S.; Sharma, M.; Chauhan, A.; Singh, R. P.; Wagner, T.

    2011-07-01

    We present the first Multi-Axis- (MAX-) DOAS observations in India performed during April 2010 and January 2011 in Delhi and nearby regions. The MAX-DOAS instrument was mounted on a car roof, which allowed us to perform measurements along individual driving routes. From car MAX-DOAS observations along closed circles around Delhi, together with information on wind speed and direction, the NOx emissions from the greater Delhi area were determined: our estimate of 3.7 × 1025 molec s-1 is found to be slightly lower than the corresponding emission estimates using the EDGAR data base and substantially smaller compared to a recent study by Gurjar et al. (2004). We have also used the MAX-DOAS observations of the tropospheric NO2 VCD for validation of simultaneous satellite observations from the OMI instrument and found a good agreement of the spatial patterns. The absolute values show a reasonably good agreement. However, OMI data tends to underestimate the tropospheric NO2 VCDs in regions with high pollution levels, and tends to overestimate the tropospheric NO2 VCDs in more clean areas. These findings indicate possible discrepancies between the true vertical NO2 profiles and the profile assumptions in the OMI satellite retrieval.

  14. Control of NOx and particulate emissions from spreader-stokers fired with hogged wood

    SciTech Connect

    Munro, J.M.; Bradshaw, F.W.; Pershing, D.W.

    1987-06-01

    The formation and emission of nitrogen oxides and particulate carry-over were studied from spreader-stoker combustion of nogged Douglas-fir, with a focus on optimizing the combustion conditions in each of the two distinct combustion zones, the bed phase and the suspension phase. Local oxygen availability was the controlling parameter for nitric oxide formation. Minimum nitric oxide emissions were found when local air: fuel stoichiometric ratios were held at 0.70-0.85, with emissions reduced as much as 39%. Long first-stage residence times allowed intermediate nitrogenous species to decay to molecular nitrogen, if there was sufficient oxygen for first-stage formation of nitric oxide. Entrainment of large particulates was a function of furnace gas velocities in the bed zone. Operation of the furnace at low stoichiometric ratios (fuel rich) in the bed zone reduced these gas velocities and thus reduced particulate emissions. (Refs. 12).

  15. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a...

  16. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a...

  17. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a...

  18. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of 40 CFR part 75, then the State need not provide annual reporting of these pollutants to EPA for... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Emissions reporting requirements for..., AND SUBMITTAL OF IMPLEMENTATION PLANS Control Strategy § 51.125 Emissions reporting requirements...

  19. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  20. The impact of emissions standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  1. Investigation of rain-induced NOx and HCHO emissions from soils as viewed by the GOME-2 and SCIAMACHY satellite sensors

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Veres, Patrick; Williams, Jonathan; Wagner, Thomas

    2013-04-01

    Outside industrial areas, soil emissions of NOx (stemming from bacterial emissions of NO) represent a considerable fraction of total NOx emissions and may even dominate in remote tropical and agricultural areas. NOx fluxes from soils are controlled by abiotic and microbiological processes which depend on ambient environmental conditions, but are also strongly affected by agricultural management practices. Rain-induced spikes in NOx have been observed by in-situ measurements and also satellite observations, i.e. by Jaegle et al. (2004), Bertram et al. (2005), Ghude et al. (2010) and Hudman et al. (2010). The latter studies present the first estimation of soil NOx emissions derived from satellite observations of tropospheric NO2 columns. However, since soil emissions over broad geographic regions remain difficult to measure or even estimate using bottom-up approaches, their representation in chemical models can still be improved by accurate satellite constraints. This study extends the previous research by investigating peaks in tropospheric NO2 concentrations after rain fall events following dry spells. Additionally, we examine the possibility for detection of HCHO emissions from wetted soils which has not been previously attempted by using satellite observations. A limited number of laboratory experiments on soil fluxes suggest that significant HCHO emissions from soil can occur. Vertical NO2 and HCHO columns retrieved from GOME-2 aboard METOP and SCIAMACHY aboard ENVISAT were used. An in-depth analysis of rain-induced soil emissions was conducted for not only broad seasonal and annual averages but also investigate the soil-temperature dependencies using TRMM precipitation data and model data from the ECMWF Interim Reanalysis project. Moreover, a thorough validity check and the crucial source partitioning of the measured NO2 and HCHO signals are conducted to evaluate whether the observed signals originate from fire, other anthropogenic and biogenic influences

  2. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  3. Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin.

    PubMed

    Lavoie, Tegan N; Shepson, Paul B; Cambaliza, Maria O L; Stirm, Brian H; Karion, Anna; Sweeney, Colm; Yacovitch, Tara I; Herndon, Scott C; Lan, Xin; Lyon, David

    2015-07-07

    We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total.

  4. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.

  5. An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia.

    PubMed

    Qu, Yu; An, Junling; He, Youjiang; Zheng, Jun

    2016-06-01

    The long-range transport of oxidized sulfur (sulfur dioxide (SO2) and sulfate) and oxidized nitrogen (nitrogen oxides (NOx) and nitrate) in East Asia is an area of increasing scientific interest and political concern. This paper reviews various published papers, including ground- and satellite-based observations and numerical simulations. The aim is to assess the status of the anthropogenic emissions of SO2 and NOx and the long-range transport of oxidized S and N pollutants over source and downwind region. China has dominated the emissions of SO2 and NOx in East Asia and urgently needs to strengthen the control of their emissions, especially NOx emissions. Oxidized S and N pollutants emitted from China are transported to Korea and Japan, due to persistent westerly winds, in winter and spring. However, the total contributions of China to S and N pollutants across Korea and Japan were not found to be dominant over longer time scales (e.g., a year). The source-receptor relationships for oxidized S and N pollutants in East Asia varied widely among the different studies. This is because: (1) the nonlinear effects of atmospheric chemistry and deposition processes were not well considered, when calculating the source-receptor relationships; (2) different meteorological and emission data inputs and solution schemes for key physical and chemical processes were used; and (3) different temporal and spatial scales were employed. Therefore, simulations using the same input fields and similar model configurations would be of benefit, to further evaluate the source-receptor relationships of the oxidized S and N pollutants.

  6. Measurement of air toxic emissions from a coal-fired boiler equipped with a tangentially-fired low NOx combustion system

    SciTech Connect

    Dismukes, E.B.; Clarkson, R.J.; Hardman, R.R.; Elia, G.G.

    1993-11-01

    This paper presents the results of measurements of chemical emissions from a coal-burning, tangentially-fired, utility boiler equipped with a hot-side electrostatic precipitator and a low NOx firing system. The tests were conducted in response to Title III of the 1990 Amendments to the Clean Air Act which lists 189 chemicals to be evaluated as {open_quotes}Air Toxics.{close_quotes} The project was jointly funded by the Electric Power Research Institute and the US Department of Energy under an existing Innovative Clean Coal Technology Cooperative Agreement managed by Southern Company Services. Field chemical emissions monitoring was conducted in two phases: a baseline {open_quotes}pre-low NOx burner{close_quotes} condition in September 1991 and in the LNCFS Level III low NOx firing condition in January 1992. In addition to stack emissions measurements of both organic and inorganic chemicals, plant material balance evaluations were performed to determine the efficiency of the hot-side ESP at controlling emissions of air toxics and to determine the fate of the target chemicals in various plant process streams.

  7. On-road measurements of NMVOCs and NOx: Determination of light-duty vehicles emission factors from tunnel studies in Brussels city center

    NASA Astrophysics Data System (ADS)

    Ait-Helal, W.; Beeldens, A.; Boonen, E.; Borbon, A.; Boréave, A.; Cazaunau, M.; Chen, H.; Daële, V.; Dupart, Y.; Gaimoz, C.; Gallus, M.; George, C.; Grand, N.; Grosselin, B.; Herrmann, H.; Ifang, S.; Kurtenbach, R.; Maille, M.; Marjanovic, I.; Mellouki, A.; Miet, K.; Mothes, F.; Poulain, L.; Rabe, R.; Zapf, P.; Kleffmann, J.; Doussin, J.-F.

    2015-12-01

    Emission factors (EFs) of pollutants emitted by light-duty vehicles (LDV) were investigated in the Leopold II tunnel in Brussels city center (Belgium), in September 2011 and in January 2013, respectively. Two sampling sites were housing the instruments for the measurements of a large range of air pollutants, including non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx) and carbon dioxide (CO2). The NMVOCs and NOx traffic EFs for LDV were determined from their correlation with CO2 using a single point analysis method. The emission factor of NOx is (544 ± 199) mg vehicle-1 km-1; NMVOCs emission factors vary from (0.26 ± 0.09) mg vehicle-1 km-1 for cis-but-2-ene to (8.11 ± 2.71) mg vehicle-1 km-1 for toluene. Good agreement is observed between the EFs determined in the Leopold II tunnel and the most recent EFs determined in another European roadway tunnel in 2004, with only a slight decrease of the EFs during the last decade. An historical perspective is provided and the observed trend in the NMVOCs emission factors reflect changes in the car fleet composition, the fuels and/or the engine technology that have occurred within the last three decades in Europe.

  8. Rain-induced emission pulses of NOx and HCHO from soils in African regions after dry spells as viewed by satellite sensors

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Veres, Patrick; Williams, Jonathan; Wagner, Thomas

    2014-05-01

    Outside industrial areas, soil emissions of NOx (stemming from bacterial emissions of NO) represent a considerable fraction of total NOx emissions, and may even dominate in remote tropical and agricultural areas. NOx fluxes from soils are controlled by abiotic and microbiological processes which depend on ambient environmental conditions. Rain-induced spikes in NOx have been observed by in-situ measurements and also satellite observations. However, the estimation of soil emissions over broad geographic regions remains uncertain using bottom-up approaches. Independent, global satellite measurements can help constrain emissions used in chemical models. Laboratory experiments on soil fluxes suggest that significant HCHO emissions from soil can occur. However, it has not been previously attempted to detect HCHO emissions from wetted soils by using satellite observations. This study investigates the evolution of tropospheric NO2 (as a proxy for NOx) and HCHO column densities before and after the first rain fall event following a prolonged dry period in semi-arid regions, deserts as well as tropical regions in Africa. Tropospheric NO2 and HCHO columns retrieved from OMI aboard the AURA satellite, GOME-2 aboard METOP and SCIAMACHY aboard ENVISAT are used to study and inter-compare the observed responses of the trace gases with multiple space-based instruments. The observed responses are prone to be affected by other sources like lightning, fire, influx from polluted air masses, as well measurement errors in the satellite retrieval caused by manifold reasons such as an increased cloud contamination. Thus, much care is taken verify that the observed spikes reflect enhancements in soil emissions. Total column measurements of H2O from GOME-2 give further insight into the atmospheric state and help to explain the increase in humidity before the first precipitation event. The analysis is not only conducted for averages of distinct geographic regions, i.e. the Sahel, but also

  9. OPEN-PATH FTIR MEASUREMENTS OF NOX AND OTHER DIESEL EMISSIONS

    EPA Science Inventory

    The paper gives results of a demonstration of the feasibility of using an open-path Fourier transform infrared (OP-FTIR) monitoring technique to address the across-road characterization of diesel vehicle emissions of criteria pollutants and hazardous air pollutants. Four sets of ...

  10. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2

    EIA Publications

    2001-01-01

    This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

  11. Reconciling NOx emissions reductions and ozone trends in the U.S., 2002–2006

    EPA Science Inventory

    Dynamic evaluation seeks to assess the ability of photochemical models to replicate changes in air quality as emissions and other conditions change. When a model fails to replicate an observed change, a key challenge is to discern whether the discrepancy is caused by errors in me...

  12. 40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Stationary Combustion Turbines Reporting § 60.4380 How are excess emissions and monitor... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection...

  13. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    EPA Science Inventory

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  14. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  15. Inter-Instrument Comparison of Remote Sensing Devices and a New Method For Calculating On Road NOx Emissions and Validation of Vehicle Specific Power.

    PubMed

    Rushton, Christopher E; Tate, James E; Shepherd, Simon P; Carslaw, David C

    2017-03-13

    Emissions of NOX by vehicles in real driving environments are only partially understood. This has been brought to the attention of the world with recent revelations of the cheating of the type approval tests exposed in the dieselgate scandal. Remote sensing devices offer investigators an opportunity to directly measure in-situ real driving emissions of tens of thousands of vehicles. The availability of remote sensing NO2 measurements are not as widely available as would be desirable. The aim of this study is to improve the ability of investigators to estimate the NO2 emissions and to improve the confidence of the total NOX results calculated from standard RSD measurements. The accuracy of the RSD speed and acceleration module was also validated using state-of-the-art onboard GPS tracking. Two RSDs used in roadside vehicle emissions surveys were tested side by side under off carriageway conditions away from transient pollution sources to ascertain the consistency of their measurements. The speed correlation was consistent across the range of measurements at 95% confidence and the acceleration correlation was consistent at 95% confidence intervals for all but the most extreme acceleration cases. VSP was consistent at 95% confidence across all measurements except for VSP ≥ 15kW t(-1) which show a small underestimate. The controlled distribution gas nitric oxide measurements follow a normal distribution with 2σ equal to 18.9% of the mean compared to 15% that was observed during factory calibration indicative of additional error introduced into the system. Systematic errors of +84ppm were observed but within the tolerance of the control gas. Inter-instrument correlation was performed with the relationship between the FEAT and the RSD4600 being linear with a gradient of 0.93 and an R(2) of 0.85 indicating good correlation. A new method to calculate NOX emissions using fractional NO2 combined with NO measurements made by the RSD4600 was constructed, validated and shown

  16. Development of a combustion technology for ultra-low emission (< 5 ppm nox) industrial burner

    SciTech Connect

    Littlejohn, D.; Majeski, A.J.; Cheng, R.K.; Castaldini, C.

    2002-11-01

    A combustion concept to achieve ultra-low emissions (NO{sub x} {le} 2 ppm and CO {le} 20 ppm) was tested on an 18 kW low swirl burner (LSB). It is based on lean premixed combustion combined with flue gas recirculation (FGR) and partially reformed natural gas (PRNG). Flame stability and emissions were assessed as a function of {phi}, FGR, and PRNG. The results show that PRNG improves flame stability and reduces CO, with no impact on NO{sub x} at {phi} = 0.8. A 1D flame simulation satisfactorily predicted prompt NO{sub x} at lean conditions with high FGR. Two catalysts were tested in a prototype steam reformer, and the results were used to estimate reactor volume and steam requirements in a practical system. An advanced Sud Chemie catalyst displayed good conversion efficiency at relatively low temperatures and high space velocities, which indicates that the reformer can be small and will track load changes. Tests conducted on the LSB with FGR and 0.05 PRNG shows that boilers using a LSB with PRNG and high FGR and {phi} close to stoichiometry can operate with low emissions and high efficiency.

  17. Modeling the effects of changes in New Source Review on national SO{sub 2} and NOx emissions from electricity-generating units

    SciTech Connect

    David A. Evans; Benjamin F. Hobbs; Craig Oren; Karen L. Palmer

    2007-03-15

    The Clean Air Act establishes New Source Review (NSR) programs that apply to the construction or modification of major stationary emissions sources. In 2002 and 2003, the U.S. Environmental Protection Agency revised its rules to narrow the applicability of NSR to facility renovations. Congress then mandated a National Research Council study of the effects of the rules. An electricity-sector model - the Integrated Planning Model (IPM) - was used to explore the possible effects of the equipment replacement provision (ERP), the principal NSR change that was to affect the power-generation industry. The studies focused in particular on coal-fired electricity generating units, EGUs, for two reasons. First, coal-fired EGUs are important contributors of these pollutants, accounting for approximately 70 and 20% of nations SO{sub 2} and NOx emissions in 2004, respectively. Second, the shares of total capacity of large coal-fired EGUs that lack flue-gas desulfurization to control SO{sub 2} and selective catalytic reduction to reduce NOx emissions are 62 and 63% respectively. Although the analysis cannot predict effects on local emissions, assuming that the Clean Air Interstate Rule (CAIR) is implemented, we find that stringent enforcement of the previous NSR rules would likely lead to no or limited decreases in national emissions compared to policies such as ERP. Our results indicate that tighter emissions caps could achieve further decreases in national emissions more cost-effectively than NSR programs. 15 refs., 3 figs., 1 tab.

  18. Evaluating real-world CO2 and NOX emissions for public transit buses using a remote wireless on-board diagnostic (OBD) approach.

    PubMed

    Yang, Liuhanzi; Zhang, Shaojun; Wu, Ye; Chen, Qizheng; Niu, Tianlin; Huang, Xu; Zhang, Shida; Zhang, Liangjun; Zhou, Yu; Hao, Jiming

    2016-11-01

    The challenge to mitigate real-world emissions from vehicles calls for powerful in-use compliance supervision. The remote on-board diagnostic (OBD) approach, with wireless data communications, is one of the promising next-generation monitoring methods. We collected second-by-second profiles of carbon dioxide (CO2) and nitrogen oxides (NOX) emissions, driving conditions and engine performance for three conventional diesel and three hybrid diesel buses participating in a remote OBD pilot program in Nanjing, China. Our results showed that the average CO2 emissions for conventional diesel and hybrid diesel buses were 816 ± 83 g km(-1) and 627 ± 54 g km(-1), respectively, under a typical driving pattern. An operating mode binning analysis indicated that CO2 emissions reduction by series-parallel hybrid technology was largely because of the significant benefits of the technology under the modes of low speed and low power demand. However, significantly higher CO2 emissions were observed for conventional diesel buses during rush hours, higher than 1200 g km(-1). The OBD data suggested no improvement in NOX emission reduction for hybrid buses compared with conventional buses; both were approximately 12 g km(-1) because of poor performance of the selective catalyst reduction (SCR) systems in the real world. Speed-dependent functions for real-world CO2 and NOX emissions were also constructed. The CO2 emissions of hybrid buses were much less sensitive to the average speed than conventional buses. If the average speed decreased from 20 km h(-1) to 10 km h(-1), the estimated CO2 emission factor for conventional buses would be increased by 34%. Such a change in speed would increase NOX emissions for conventional and hybrid buses by 38% and 56%, respectively. This paper demonstrates the useful features of the remote OBD system and can inform policy makers how to take advantage of these features in monitoring in-use vehicles.

  19. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  20. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.