Science.gov

Sample records for aircraft parabolic flight

  1. Biosignal alterations generated by parabolic flights of small aerobatic aircrafts

    NASA Astrophysics Data System (ADS)

    Simon, M. Jose; Perez-Poch, Antoni; Ruiz, Xavier; Gavalda, Fina; Saez, Nuria

    Since the pioneering works of Prof. Strughold in 1948, the aerospace medicine aimed to characterize the modifications induced in the human body by changes in the gravity level. In this respect, it is nowadays well known that one of the most serious problems of these kind of environments is the fluid shift. If this effect is enough severe and persistent, serious changes in the hemodynamic of the brain (cerebral blood flow and blood oxigenation level) appear which could be detected as alterations in the electroencephalogram, EEG [1]. Also, this fluid redistribution, together with the relocation of the heart in the thorax, induces detectable changes in the electrocardiogram, ECG [2]. Other kind of important problems are related with vestibular instability, kinetosis and illusory sensations. In particular since the seventies [3,4] it is known that in parabolic flights and due to eye movements triggered by the changing input from the otholith system, fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculogravic illusions). In order to cover all the above-mentioned potential alterations, the present work, together with the gravity level, continuously monitors the electroencephalogram, EEG, the electrocardiogram, ECG and the electrooculogram, EOG of a normal subject trying to detect correlations between the different alterations observed in these signals and the changes of gravity during parabolic flights. The small aerobatic aircraft used is a CAP10B and during the flight the subject is located near the pilot. To properly cover all the range of accelerations we have used two sensitive triaxial accelerometers covering the high and low ranges of acceleration. Biosignals have been gathered using a Biopac data unit together with the Acknowledge software package (from BionicÔ). It is important to finally remark that, due to the obvious difference between the power of the different engines, the accelerometric

  2. Piracetam and fish orientation during parabolic aircraft flight

    NASA Technical Reports Server (NTRS)

    Hoffman, R. B.; Salinas, G. A.; Homick, J. L.

    1980-01-01

    Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.

  3. Shift in arm-pointing movements during gravity changes produced by aircraft parabolic flight.

    PubMed

    Chen, Y; Mori, S; Koga, K; Ohta, Y; Wada, Y; Tanaka, M

    1999-06-01

    It has been shown that target-pointing arm movements without visual feedback shift downward in space microgravity and upward in centrifuge hypergravity. Under gravity changes in aircraft parabolic flight, however, arm movements have been reported shifting upward in hypergravity as well, but a downward shift under microgravity is contradicted. In order to explain this discrepancy, we reexamined the pointing movements using an experimental design which was different from prior ones. Arm-pointing movements were measured by goniometry around the shoulder joint of subjects with and without eyes closed or with a weight in the hand, during hyper- and microgravity in parabolic flight. Subjects were fastened securely to the seat with the neck fixed and the elbow maintained in an extended position, and the eyes were kept closed for a period of time before each episode of parabolic flight. Under these new conditions, the arm consistently shifted downward during microgravity and mostly upward during hypergravity, as expected. We concluded that arm-pointing deviation induced by parabolic flight could be also be valid for studying the mechanism underlying disorientation under varying gravity conditions.

  4. Parabolic aircraft solidification experiments

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan

    1996-01-01

    A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.

  5. Efficiency of the Regulation of Otolith Mineralisation and Susceptibility to kinetotic Behaviour in Parabolic Aircraft Flights

    NASA Astrophysics Data System (ADS)

    Knie, M.; Weigele, J.; Hilbig, R.; Anken, R.

    Under diminished gravity e g during the respective phase in the course of parabolic aircraft flight PF humans often suffer from motion sickness a kinetsosis due to sensorimotor disorders Using fish as a model system we previously provided ample evidence that an individually differently pronounced asymmetric mineralisation calcification of inner ear stones otoliths leads to the individually different susceptibility to such disorders Depending on the disposition of an individual fish the mineralisation of otoliths is more or less strictly regulated by the central nervous system via a gravity-dependent feedback loop Long-term hypergravity centrifuge e g slows down otolith mineralisation whereas simulated microgravity clinostat yields opposite results Such long-term experiments under altered gravity moreover affect otolith asymmetry According to our working hypothesis the efficiency of the respective regulatory mechanism differs among individual animals This efficiency is postulated to be high in animals who behave normally under microgravity conditions whereas it is assumed to be low in such individuals who reveal a kinetotic behaviour at diminished G-forces In order to test this hypothesis two groups of larval cichlid fish Oreochromis mossambicus were kept under long-term hypergravity centrifuge and simulated microgravity clinostat respectively in order to manipulate the efficiency of the aforementioned regulatory mechanism Subsequently the animals were subjected to diminished gravity in the course of PFs and it was analysed

  6. Behavioural Adaptation to diminished Gravity in Fish - a Parabolic Aircraft Flight Study

    NASA Astrophysics Data System (ADS)

    Forster, A.; Anken, R.; Hilbig, R.

    During the micro gravity phases in the course of parabolic aircraft flights PFs some fish of a given batch were frequently shown to exhibit sensorimotor disorders in terms of revealing so-called looping responses LR or spinning movements SM both forms of motion sickness a kinetosis In order to gain some insights into the time-course of the behavioural adaptation towards diminished gravity in total 272 larval cichlid fish Oreochromis mossambicus were subjected to PFs and their respective behaviour was monitored With the onset of the first parabola P1 15 9 of the animals revealed a kinetotic behaviour whereas kinetoses were shown in 6 5 1 5 and 1 of the animals in P5 P10 and P15 With P20 the animals had adapted completely 0 swimming kinetotically Since the relative decrease of kinetotic animals was especially prominent from P5 to P10 a detailed analysis of the behaviour was undertaken Regarding SM a ratio of 2 9 in P5 decreased to 0 5 in P10 Virtually all individuals showing a SM in P5 had regained a normal behaviour with P10 The SM animals in P10 had all exhibited a normal swimming behaviour in P5 The ratio of LR-fish also decreased from P5 3 6 to P10 1 0 In contrast to the findings regarding SM numerous LM specimens did not regain a normal postural control and only very few animals behaving normally in P5 began to sport a LM behaviour by P10 Summarizing most kinetotic animals rapidly adapted to diminished gravity but few individual fish who swam normally at the beginning of the flights may loose sensorimotor control

  7. The dynamics of parabolic flight: Flight characteristics and passenger percepts

    NASA Astrophysics Data System (ADS)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  8. The dynamics of parabolic flight: flight characteristics and passenger percepts.

    PubMed

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  9. The dynamics of parabolic flight: flight characteristics and passenger percepts

    PubMed Central

    Karmali, Faisal; Shelhamer, Mark

    2008-01-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  10. Parabolic flight as a spaceflight analog.

    PubMed

    Shelhamer, Mark

    2016-06-15

    Ground-based analog facilities have had wide use in mimicking some of the features of spaceflight in a more-controlled and less-expensive manner. One such analog is parabolic flight, in which an aircraft flies repeated parabolic trajectories that provide short-duration periods of free fall (0 g) alternating with high-g pullout or recovery phases. Parabolic flight is unique in being able to provide true 0 g in a ground-based facility. Accordingly, it lends itself well to the investigation of specific areas of human spaceflight that can benefit from this capability, which predominantly includes neurovestibular effects, but also others such as human factors, locomotion, and medical procedures. Applications to research in artificial gravity and to effects likely to occur in upcoming commercial suborbital flights are also possible.

  11. Analysis of the Quality of Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flights allow researchers to conduct several 20 second micro-gravity experiments in the course of a single day. However, the measurement can have large variations over the course of a single parabola, requiring the knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) reviewed the acceleration data of over 400 parabolic flights and investigated the quality of micro-gravity for scientific purposes. It was discovered that a parabolic flight can be segmented into multiple parts of different quality and duration, a fact to be aware of when planning an experiment.

  12. Lipoxygenase activity during parabolic flights.

    PubMed

    Maccarrone, M; Tacconi, M; Battista, N; Valgattarri, F; Falciani, P; Finazzi-Agro, A

    2001-07-01

    Experiments in Space clearly show that various cellular processes, such as growth rates, signaling pathways and gene expression, are modified when cells are placed under conditions of weightlessness. As yet, there is no coherent explanation for these observations, though recent experiments, showing that microtubule self-organization is gravity-dependent suggest that investigations at the molecular level might fill the gap between observation and understanding of Space effects. Lipoxygenases are a family of dioxygenases which have been implicated in the pathogenesis of several inflammatory conditions, in atherosclerosis, in brain aging and in HIV infection. In plants, lipoxy-genases favour germination, participate in the synthesis of traumatin and jasmonic acid and in the response to abiotic stress. Here, we took advantage of a fibre optics spectrometer developed on purpose, the EMEC (Effect of Microgravity on Enzymatic Catalysis) module, to measure the dioxygenation reaction by pure soybean lipoxygenase-1 (LOX-1) during the 28th parabolic flight campaign of the European Space Agency (ESA). The aim was to ascertain whether microgravity can affect enzyme catalysis.

  13. Treatment of motion sickness in parabolic flight with buccal scopolamine

    NASA Technical Reports Server (NTRS)

    Norfleet, William T.; Degioanni, Joseph J.; Reschke, Millard F.; Bungo, Michael W.; Kutyna, Frank A.; Homick, Jerry L.; Calkins, D. S.

    1992-01-01

    Treatment of acute motion sickness induced by parabolic flight with a preparation of scopolamine placed in the buccal pouch was investigated. Twenty-one subjects flew aboard a KC-135 aircraft operated by NASA which performed parabolic maneuvers resulting in periods of 0-g, 1-g, and 1.8-g. Each subject flew once with a tablet containing scopolamine and once with a placebo in a random order, crossover design. Signs and symptoms of motion sickness were systematically recorded during each parabola by an investigator who was blind to the content of the tablet. Compared with flights using placebo, flights with buccal scopolamine resulted in significantly lower scores for nausea (31-35 percent reduction) and vomiting (50 percent reduction in number of parabolas with vomiting). Side effects of the drug during flight were negligible. It is concluded that buccal scopolamine is more effective than a placebo in treating ongoing motion sickness.

  14. Performance of a blood chemistry analyzer during parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Claassen, Dale E.; Guikema, James A.

    1990-01-01

    The performance of the Vision System Blood Analyzer during parabolic flight on a KC-135 aircraft (NASA 930) has been tested. This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, it is demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  15. Performance of a blood chemistry analyzer during parabolic flight.

    PubMed

    Spooner, B S; Claassen, D E; Guikema, J A

    1990-01-01

    We have tested the performance of the VISION System Blood Analyzer, produced by Abbott Laboratories, during parabolic flight on a KC-135 aircraft (NASA 930). This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, we demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  16. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's solar cell arrays are prominently displayed as it touches down on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, following a test flight. The solar arrays covered more than 75 percent of Pathfinder's upper wing surface, and provided electricity to power its six electric motors, flight controls, communications links and a host of scientific sensors. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  17. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The unique Pathfinder solar-powered flying wing, is shown during a checkout flight from the Dryden Flight Research Center, Edwards, California. This two-hour low-altitude flight over Rogers Dry Lake, Nov. 19, 1996, served to test aircraft systems and functional procedures, according to officials of AeroVironment, Inc., Pathfinder's developer and operator. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  18. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft heads for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  19. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft is silhouetted against a clear blue sky as it soars aloft during a checkout flight from the Dryden Flight Research Center, Edwards, California, November, 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  20. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  1. Analysis of the Quality of Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flight allows researchers to conduct several micro-gravity experiments, each with up to 20 seconds of micro-gravity, in the course of a single day. However, the quality of the flight environment can vary greatly over the course of a single parabola, thus affecting the experimental results. Researchers therefore require knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) has reviewed the acceleration data for over 400 parabolas and investigated the level of micro-gravity quality. It was discovered that a typical parabola can be segmented into multiple phases with different qualities and durations. The knowledge of the microgravity characteristics within the parabola will prove useful when planning an experiment.

  2. Parabolic flight: loss of sense of orientation.

    PubMed

    Lackner, J R; Graybiel, A

    1979-11-30

    On the earth, or in level flight, a blindfolded subject being rotated at constant velocity about his recumbent long body axis experiences illusory orbital motion of his body in the opposite direction. By contrast, during comparable rotation in the free-fall phase of parabolic flight, no body motion is perceived and all sense of external orientation may be lost; when touch and pressure stimulation is applied to the body surface, a sense of orientation is reestablished immediately. The increased gravitoinertial force period of a parabola produces an exaggeration of the orbital motion experienced in level flight. These observations reveal an important influence of touch, pressure, and kinesthetic information on spatial orientation and provide a basis for understanding many of the postural illusions reported by astronauts in space flight.

  3. Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana.

    PubMed

    Paul, Anna-Lisa; Manak, Michael S; Mayfield, John D; Reyes, Matthew F; Gurley, William B; Ferl, Robert J

    2011-10-01

    Our primary objective was to evaluate gene expression changes in Arabidopsis thaliana in response to parabolic flight as part of a comprehensive approach to the molecular biology of spaceflight-related adaptations. In addition, we wished to establish parabolic flight as a tractable operations platform for molecular biology studies. In a succession of experiments on NASA's KC-135 and C-9 parabolic aircraft, Arabidopsis plants were presented with replicated exposure to parabolic flight. Transcriptome profiling revealed that parabolic flight caused changes in gene expression patterns that stood the statistical tests of replication on three different flight days. The earliest response, after 20 parabolas, was characterized by a prominence of genes associated with signal transduction. After 40 parabolas, this prominence was largely replaced by genes associated with biotic and abiotic stimuli and stress. Among these responses, three metabolic processes stand out in particular: the induction of auxin metabolism and signaling, the differential expression of genes associated with calcium-mediated signaling, and the repression of genes associated with disease resistance and cell wall biochemistry. Many, but not all, of these responses are known to be involved in gravity sensing in plants. Changes in auxin-related gene expression were also recorded by reporter genes tuned to auxin signal pathways. These data demonstrate that the parabolic flight environment is appropriate for molecular biology research involving the transition to microgravity, in that with replication, proper controls, and analyses, gene expression changes can be observed in the time frames of typical parabolic flight experiments.

  4. Parasympathetic heart rate modulation during parabolic flights.

    PubMed

    Beckers, F; Seps, B; Ramaekers, D; Verheyden, B; Aubert, A E

    2003-09-01

    During parabolic flight short periods of microgravity and hypergravity are created. These changes influence cardiovascular function differently according to posture. During the 29th parabolic flight campaign of the European Space Agency (ESA), the electrocardiogram (ECG) was recorded continuously in seven healthy volunteers in two positions (standing and supine). Five different phases were differentiated: 1 g (1 g=9.81 m/s(2)) before and after each parabola, 1.8 g at the ascending leg of the parabola (hypergravity), 0 g at the apex, 1.6 g at the descending leg (hypergravity). We assessed heart rate variability (HRV) by indices of temporal analysis [mean RR interval (meanRR), the standard deviation of the intervals (SDRR), and the square root of the mean squared differences of successive intervals (rMSSD) and coefficient of variation (CV)]. In the supine position no significant differences were shown between different gravity phases for all HRV indices. In the standing position the 0 g phase showed a tendency towards higher values of meanRR compared to the control and to the other phases ( p=NS). SDRR, rMSSD and CV were significantly higher compared to control ( p<0.05). Significantly higher values for meanRR in the supine position at 1 g and hypergravity ( p<0.05) were found when compared to standing. SDRR was significantly higher at 0 g in the standing position compared to supine [95 (44) ms vs. 50 (15) ms; p<0.05] and lower in other phases. rMSSD and CV showed the same trend ( p=NS). We confirm that, during parabolic flights, position matters for cardiovascular measurements. Time domain indices of HRV during different gravity phases showed: (1) higher vagal modulation of the autonomic nervous system in microgravity, when compared with normo- or hypergravity in standing subjects; and (2) no differences in supine subjects between different g phases.

  5. Graviresponses of Paramecium biaurelia during parabolic flights.

    PubMed

    Krause, Martin; Bräucker, Richard; Hemmersbach, Ruth

    2006-12-01

    The thresholds of graviorientation and gravikinesis in Paramecium biaurelia were investigated during the 5th DLR (German Aerospace Center) parabolic-flight campaign at Bordeaux in June 2003. Parabolic flights are a useful tool for the investigation of swimming behaviour in protists at different accelerations. At normal gravity (1 g) and hypergravity (1 g to 1.8 g), precision of orientation and locomotion rates depend linearly on the applied acceleration as seen in earlier centrifuge experiments. After transition from hypergravity to decreased gravity (minimal residual acceleration of <10(-2) g), graviorientation as well as gravikinesis show a full relaxation with different kinetics. The use of twelve independent cell samples per flight guarantees high data numbers and secures the statistical significance of the obtained data. The relatively slow change of acceleration between periods of microgravity and hypergravity (0.4 g/s) enabled us to determine the thresholds of graviorientation at 0.6 g and of gravikinesis at 0.4 g. The gravity-unrelated propulsion rate of the sample was found to be 874 microm/s, exceeding the locomotion rate of horizontally swimming cells (855 microm/s). The measured thresholds of graviresponses were compared with data obtained from earlier centrifuge experiments on the sounding rocket Maxus-2. Measured thresholds of gravireactions indicate that small energies, close to the thermal noise level, are sufficient for the gravitransduction process. Data from earlier hypergravity experiments demonstrate that mechanosensitive ion channels are functioning over a relative wide range of acceleration. From this, we may speculate that gravireceptor channels derive from mechanoreceptor channels.

  6. Microgravity Active Vibration Isolation System on Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  7. Changes in cerebral oxygenation during parabolic flight.

    PubMed

    Schneider, Stefan; Abeln, Vera; Askew, Christopher D; Vogt, Tobias; Hoffmann, Uwe; Denise, Pierre; Strüder, Heiko K

    2013-06-01

    Assessing changes in brain activity under extreme conditions like weightlessness is a desirable, but difficult undertaking. Results from previous studies report specific changes in brain activity connected to an increase or decrease in gravity forces. Nevertheless, so far it remains unclear (1) whether this is connected to a redistribution of blood volume during micro- or hypergravity and (2) whether this redistribution might account for neurocognitive alterations. This study aimed to display changes in brain oxygenation caused by altered gravity conditions during parabolic flight. It was hypothesized that an increase in gravity would be accompanied by a decrease in brain oxygenation, whereas microgravity would lead to an increase in brain oxygenation. Oxygenized and deoxygenized haemoglobin were measured using two near infrared spectroscopy (NIRS) probes on the left and right prefrontal cortex throughout ten parabolas in nine subjects. Results show a decrease of 1.44 μmol/l in oxygenized haemoglobin with the onset of hypergravity, followed by a considerable increase during microgravity (up to 5.34 μmol/l). In contrast, deoxygenized haemoglobin was not altered during the first but only during the second hypergravity phase and showed only minor changes during microgravity. Changes in oxygenized and deoxygenized haemoglobin indicate an increase in arterial flow to the brain and a decrease in venous outflow during microgravity.

  8. Predicting motion sickness during parabolic flight

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Schlegel, Todd T.

    2002-01-01

    BACKGROUND: There are large individual differences in susceptibility to motion sickness. Attempts to predict who will become motion sick have had limited success. In the present study, we examined gender differences in resting levels of salivary amylase and total protein, cardiac interbeat intervals (R-R intervals), and a sympathovagal index and evaluated their potential to correctly classify individuals into two motion sickness severity groups. METHODS: Sixteen subjects (10 men and 6 women) flew four sets of 10 parabolas aboard NASA's KC-135 aircraft. Saliva samples for amylase and total protein were collected preflight on the day of the flight and motion sickness symptoms were recorded during each parabola. Cardiovascular parameters were collected in the supine position 1-5 days before the flight. RESULTS: There were no significant gender differences in sickness severity or any of the other variables mentioned above. Discriminant analysis using salivary amylase, R-R intervals and the sympathovagal index produced a significant Wilks' lambda coefficient of 0.36, p=0.006. The analysis correctly classified 87% of the subjects into the none-mild sickness or the moderate-severe sickness group. CONCLUSIONS: The linear combination of resting levels of salivary amylase, high-frequency R-R interval levels, and a sympathovagal index may be useful in predicting motion sickness severity.

  9. Predicting Motion Sickness During Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Schlegel, Todd T.

    2002-01-01

    Background: There are large individual differences in susceptibility to motion sickness. Attempts to predict who will become motion sick have had limited success. In the present study we examined gender differences in resting levels of salivary amylase and total protein, cardiac interbeat intervals (R-R intervals), and a sympathovagal index and evaluated their potential to correctly classify individuals into two motion sickness severity groups. Methods: Sixteen subjects (10 men and 6 women) flew 4 sets of 10 parabolas aboard NASA's KC-135 aircraft. Saliva samples for amylase and total protein were collected preflight on the day of the flight and motion sickness symptoms were recorded during each parabola. Cardiovascular parameters were collected in the supine position 1-5 days prior to the flight. Results: There were no significant gender differences in sickness severity or any of the other variables mentioned above. Discriminant analysis using salivary amylase, R-R intervals and the sympathovagal index produced a significant Wilks' lambda coefficient of 0.36, p= 0.006. The analysis correctly classified 87% of the subjects into the none-mild sickness or the moderate-severe sickness group. Conclusions: The linear combination of resting levels of salivary amylase, high frequency R-R interval levels, and a sympathovagal index may be useful in predicting motion sickness severity.

  10. Laser Powered Aircraft Takes Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

  11. Life science experiments during parabolic flight: The McGill experience

    NASA Technical Reports Server (NTRS)

    Watt, D. G. D.

    1988-01-01

    Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.

  12. Orthostatic Intolerance and Motion Sickness After Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Brown, Troy E.; Wood, Scott J.; Benavides, Edgar W.; Bondar, Roberta L.; Stein, Flo; Moradshahi, Peyman; Harm, Deborah L.; Low, Phillip A.

    1999-01-01

    Orthostatic intolerance is common in astronauts after prolonged space flight. However, the "push-pull effect" in military aviators suggests that brief exposures to transitions between hypo- and hypergravity are sufficient to induce untoward autonomic cardiovascular physiology in susceptible individuals. We therefore investigated orthostatic tolerance and autonomic cardiovascular function in 16 healthy test subjects before and after a seated 2-hr parabolic flight. At the same time, we also investigated relationships between parabolic flight-induced vomiting and changes in orthostatic and autonomic cardiovascular function. After parabolic flight, 8 of 16 subjects could not tolerate a 30-min upright tilt test, compared to 2 of 16 before flight. Whereas new intolerance in non-Vomiters resembled the clinical postural tachycardia syndrome (POTS), new intolerance in Vomiters was characterized by comparatively isolated upright hypocapnia and cerebral vasoconstriction. As a group, Vomiters also had evidence for increased postflight fluctuations in efferent vagal-cardiac nerve traffic occurring independently of any superimposed change in respiration. Results suggest that syndromes of orthostatic intolerance resembling those occurring after space flight can occur after a brief (i.e., 2-hr) parabolic flight.

  13. Orthostatic intolerance and motion sickness after parabolic flight

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Brown, T. E.; Wood, S. J.; Benavides, E. W.; Bondar, R. L.; Stein, F.; Moradshahi, P.; Harm, D. L.; Fritsch-Yelle, J. M.; Low, P. A.

    2001-01-01

    Because it is not clear that the induction of orthostatic intolerance in returning astronauts always requires prolonged exposure to microgravity, we investigated orthostatic tolerance and autonomic cardiovascular function in 16 healthy subjects before and after the brief micro- and hypergravity of parabolic flight. Concomitantly, we investigated the effect of parabolic flight-induced vomiting on orthostatic tolerance, R-wave-R-wave interval and arterial pressure power spectra, and carotid-cardiac baroreflex and Valsalva responses. After parabolic flight 1) 8 of 16 subjects could not tolerate 30 min of upright tilt (compared to 2 of 16 before flight); 2) 6 of 16 subjects vomited; 3) new intolerance to upright tilt was associated with exaggerated falls in total peripheral resistance, whereas vomiting was associated with increased R-wave-R-wave interval variability and carotid-cardiac baroreflex responsiveness; and 4) the proximate mode of new orthostatic failure differed in subjects who did and did not vomit, with vomiters experiencing comparatively isolated upright hypocapnia and cerebral vasoconstriction and nonvomiters experiencing signs and symptoms reminiscent of the clinical postural tachycardia syndrome. Results suggest, first, that syndromes of orthostatic intolerance resembling those developing after space flight can develop after a brief (i.e., 2-h) parabolic flight and, second, that recent vomiting can influence the results of tests of autonomic cardiovascular function commonly utilized in returning astronauts.

  14. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  15. Physiological parameters of gravitaxis in the flagellate Euglena gracilis obtained during a parabolic flight campaign.

    PubMed

    Richter, Peter R; Schuster, Martin; Wagner, Helmut; Lebert, Michael; Hader, Donat-P

    2002-02-01

    The unicellular freshwater flagellate Euglena gracilis and its close relative Astasia longa show a pronounced negative gravitaxis. Previous experiments revealed that gravitaxis is most likely mediated by an active physiological mechanism in which changes of the internal calcium concentration and the membrane potential play an important role. In a recent parabolic flight experiment on board an aircraft (ESA 29th parabolic flight campaign), changes of graviorientation, membrane potential and the cytosolic calcium concentration upon changes of the acceleration (between 1 x g(n), 1.8 x g(n), microgravity) were monitored by image analysis and photometric methods using Oxonol VI (membrane potential) and Calcium Crimson (cytosolic calcium concentration). The parabolic flight maneuvers performed by the aircraft resulted in transient phases of 1.8 x g(n) (about 20 s), microgravity (about 22 s) followed by 1.8 x g(n) (about 20 s). A transient increase in the intracellular calcium concentration was detected from lower to higher accelerations (1 x g(n) to 1.8 x g(n) or microgravity to 1.8 x g(n)). Oxonol VI-labeled cells showed a signal, which indicates a depolarization during the transition from 1 x g(n) to 1.8 x g(n), a weak repolarization in microgravity followed by a rapid repolarization in the subsequent 1 x g(n) phase. The results show good coincidence with observations of recent terrestrial and space experiments.

  16. Dynamic analysis of ocular torsion in parabolic flight using video-oculography

    NASA Astrophysics Data System (ADS)

    Teiwes, W.; Clarke, A. H.; Scherer, H.

    Dynamic ocular torsion was investigated in a group of healthy subjects during the course of parabolic flight by means of our video-based eye movement recording method—video-oculography. This technique enables a non-invasive dynamic measurement of all three dimensions of eye movement in a harsh experimental environment such as parabolic flight. The test subjects were positioned so that the changing resultant gravito-inertial field in the aircraft was aligned with their interaural ( y) axis, primarily stimulating the utricular organs. The analysis of the torsional component of eye movement during the change of gravity between 1.8-0 and 0-1.8 g demonstrated a static component—well known as the ocular counter roll—and a dynamic component, which leads to a slight overshoot in the torsional response. These static and dynamic component of ocular torsion correlate with previous neurophysiological findings.

  17. High altitude aircraft flight tests

    NASA Astrophysics Data System (ADS)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  18. PIK-20 Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photo shows NASA's PIK-20E motor-glider sailplane during a research flight from the Ames-Dryden Flight Research Facility (later, the Dryden Flight Research Center), Edwards, California, in 1991. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  19. Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)

    NASA Technical Reports Server (NTRS)

    Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.

    1999-01-01

    The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.

  20. A Review of Psycho-Physiological Responses to Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Brummer, Vera; Schneider, Stefan; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    This review combines and correlates data of several studies conducted in the recent years where we were able to show an increase in stress hormone concentrations, EEG activity and a decrease in mood during parabolic flights. The aim of these studies was to consider whether previous results showing a decrease in mental and perceptual motor performance during weightlessness were solely due to the changes in gravity itself or were also, at least partly, explainable by an increase of stress and/or arousal during parabolic flights. A correlation between stress hormones and mood but not between EEG activity and mood nor between stress hormones and EEG activity could be found. We propose two different stressors: First an activation of the adrenomedullary system, secondly a general increase of cortical arousal. Whereas the first one is perceived by subjects, this is not the case for the second one.

  1. X-1 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee for Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Field, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Muroc Army Air Field (later redesignated Edwards Air Force Base) with Chalmers Goodlin, a Bell test pilot,at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lb thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before evermaking any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. The following movie runs about 20 seconds, and shows several air-to-air views of X-1 Number 2 and its modified B-50 mothership. It begins with different angles of the X-1 in-flight while mated to the B-50's bomb bay, and ends showing the air-launch. The X-1 drops below the B-50, then accelerates away as the rockets ignite.

  2. Sea urchin fertilization during a KC-135 parabolic flight.

    PubMed

    Schatten, H; Zoran, S; Levine, H G; Anderson, K; Chakrabarti, A

    1999-07-01

    For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. We have chosen the sea urchin system to study the effects of microgravity on various cellular processes visible during fertilization and subsequent development. We report here on experiments performed on NASA's KC-135 during parabolic flight trajectories to validate procedures to be implemented as part of the first Aquatic Research Facility Space Shuttle experiment on STS-77. PMID:11543042

  3. Circulatory filling pressures during transient microgravity induced by parabolic flight

    NASA Technical Reports Server (NTRS)

    Latham, Ricky D.; Fanton, John W.; White, C. D.; Vernalis, Mariana N.; Crisman, R. P.; Koenig, S. C.

    1993-01-01

    Theoretical concepts hold that blood in the gravity dependent portion of the body would relocate to more cephalad compartments under microgravity. The result is an increase in blood volume in the thoraic and cardiac chambers. However, experimental data has been somewhat contradictory and nonconclusive. Early studies of peripheral venous pressure and estimates of central venous pressure (CVP) from these data did not show an increase in CVP under microgravity. However, CVP recorded in human volunteers during a parabolic flight revealed an increase in CVP during the microgravity state. On the STS 40 shuttle mission, a payload specialist wore a fluid line that recorded CVP during the first few hours of orbital insertion. These data revealed decreased CVP. When this CVP catheter was tested during parabolic flight in four subjects, two had increased CVP recordings and two had decreased CVP measurements. In 1991, our laboratory performed parabolic flight studies in several chronic-instrumented baboons. It was again noted that centrally recorded right atrial pressure varied with exposure to microgravity, some animals having an increase, and others a decrease.

  4. Gravitactic signal transduction elements in Astasia longa investigated during parabolic flights.

    PubMed

    Richter, Peter R; Schuster, Martin; Lebert, Michael; Hader, Donat-P

    2003-01-01

    Euglena gracilis and its close relative Astasia longa show a pronounced negative gravitactic behavior. Many experiments revealed that gravitaxis is most likely mediated by an active physiological mechanism. The goal of the present study was to examine elements in the sensory transduction by means of inhibitors of gravitaxis and the intracellular calcium concentration during short microgravity periods. During the course of six parabolic flights (ESA 31th parabolic flight campaign and DLR 6th parabolic flight campaign) the effects of trifluoperazine (calmodulin inhibitor), caffeine (phosphodiesterase inhibitor) and gadolinium (blocks mechano-sensitive ion channels) was investigated. Due to the extreme parabolic flight maneuvers of the aircraft alternating phases of 1.8 x g(n) (about 20 s) and microgravity (about 22 s) were achieved (g(n): acceleration of Earth's gravity field). The duration of the microgravity periods was sufficient to detect a loss of cell orientation in the samples. In the presence of gadolinium impaired gravitaxis was found during acceleration, while caffeine-treated cells showed, compared to the controls, a very precise gravitaxis and faster reorientation in the 1.8 x g(n) period following microgravity. A transient increase of the intracellular calcium upon increased acceleration was detected also in inhibitor-treated samples. Additionally, it was found that the cells showed a higher calcium signal when they deviated from the vertical swimming direction. In the presence of trifluoperazine a slightly higher general calcium signal was detected compared to untreated controls, while gadolinium was found to decrease the intracellular calcium concentration. In the presence of caffeine no clear changes of intracellular calcium were detected compared to the control.

  5. Flight testing of unique aircraft configurations

    NASA Technical Reports Server (NTRS)

    Painter, W. D.

    1983-01-01

    Some historical developments of flight testing of unique aircraft configurations by NASA and the military sector are documented. Several test aircraft are outlined including the M2-F1 (which was the first Space Shuttle concept ever demonstrated, and contributed to the present design), the X-15, the Flying Wing, the Lunar Landing Research Vehicle, the Oblique Wing Research Aircraft, and the Space Shuttle Enterprise. Future test aircraft such as the forward swept wing X-29A Advanced Technology Demonstrator Aircraft, and the X-Wing vehicle are also mentioned. It is noted that the logical preliminary to flight testing is flight simulation, and that flight testing itself is the vital final component of the development, and seems to be the most direct approach to aircraft evaluations.

  6. European parabolic flight campaigns with Airbus ZERO-G: Looking back at the A300 and looking forward to the A310

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2015-09-01

    Aircraft parabolic flights repetitively provide up to 23 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the Chinese Space Station CSS. The European Space Agency (ESA), the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency) and the 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Centre) have used the Airbus A300 ZERO-G for research experiments in microgravity, and at Moon and Mars gravity levels, from 1997 until October 2014. The French company Novespace, a subsidiary of CNES, based in Bordeaux, France, is in charge of the organisation of Airbus A300 ZERO-G flights. A total of 104 parabolic flight campaigns have been organised by ESA, CNES and DLR since 1997, including 38 ESA, 34 CNES and 23 DLR microgravity campaigns, two Joint European ESA-CNES-DLR Partial-g Parabolic Flight Campaigns, and seven ESA Student campaigns. After 17 years of good and loyal services, this European workhorse for microgravity research in parabolic flights has been retired. The successor aircraft, the Airbus A310 ZERO-G, is being prepared for a first ESA-CNES-DLR cooperative campaign in Spring 2015. This paper looks back over 17 years of microgravity research in parabolic flights with the A300 ZERO-G, and introduces the new A310 ZERO-G that will be used from 2015 onwards.

  7. Nonclassical Flight Control for Unhealthy Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.

  8. Motor skills under varied gravitoinertial force in parabolic flight

    NASA Astrophysics Data System (ADS)

    Ross, Helen E.

    Parabolic flight produces brief alternating periods of high and low gravitoinertial force. Subjects were tested on various paper-and-pencil aiming and tapping tasks during both normal and varied gravity in flight. It was found that changes in g level caused directional errors in the z body axis (the gravity axis), the arm aiming too high under 0g and too low under 2g. The standard deviation also increased for both vertical and lateral movements in the mid-frontal plane. Both variable and directional errors were greater under 0g than 2g. In an unpaced reciprocal tapping task subjects tended to increase their error rate rather than their movement time, but showed a non-significant trend towards slower speeds under 0g for all movement orientations. Larger variable errors or slower speeds were probably due to the difficulty of re-organising a motor skill in an unfamiliar force environment, combined with anchorage difficulties under 0g.

  9. Flight Controller Software Protects Lightweight Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Lightweight flexible aircraft may be the future of aviation, but a major problem is their susceptibility to flutter-uncontrollable vibrations that can destroy wings. Armstrong Flight Research Center awarded SBIR funding to Minneapolis, Minnesota-based MUSYN Inc. to develop software that helps program flight controllers to suppress flutter. The technology is now available for aircraft manufacturers and other industries that use equipment with automated controls.

  10. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  11. Measurement of In-Flight Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.

    1995-01-01

    Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.

  12. Statistical Detection of Atypical Aircraft Flights

    NASA Technical Reports Server (NTRS)

    Statler, Irving; Chidester, Thomas; Shafto, Michael; Ferryman, Thomas; Amidan, Brett; Whitney, Paul; White, Amanda; Willse, Alan; Cooley, Scott; Jay, Joseph; Rosenthal, Loren; Swickard, Andrea; Bates, Derrick; Scherrer, Chad; Webb, Bobbie-Jo; Lawrence, Robert; Mosbrucker, Chris; Prothero, Gary; Andrei, Adi; Romanowski, Tim; Robin, Daniel; Prothero, Jason; Lynch, Robert; Lowe, Michael

    2006-01-01

    A computational method and software to implement the method have been developed to sift through vast quantities of digital flight data to alert human analysts to aircraft flights that are statistically atypical in ways that signify that safety may be adversely affected. On a typical day, there are tens of thousands of flights in the United States and several times that number throughout the world. Depending on the specific aircraft design, the volume of data collected by sensors and flight recorders can range from a few dozen to several thousand parameters per second during a flight. Whereas these data have long been utilized in investigating crashes, the present method is oriented toward helping to prevent crashes by enabling routine monitoring of flight operations to identify portions of flights that may be of interest with respect to safety issues.

  13. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  14. Context-specific adaptation of saccade gain in parabolic flight

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Clendaniel, Richard A.; Roberts, Dale C.

    2002-01-01

    Previous studies established that vestibular reflexes can have two adapted states (e.g., gains) simultaneously, and that a context cue (e.g., vertical eye position) can switch between the two states. Our earlier work demonstrated this phenomenon of context-specific adaptation for saccadic eye movements: we asked for gain decrease in one context state and gain increase in another context state, and then determined if a change in the context state would invoke switching between the adapted states. Horizontal and vertical eye position and head orientation could serve, to varying degrees, as cues for switching between two different saccade gains. In the present study, we asked whether gravity magnitude could serve as a context cue: saccade adaptation was performed during parabolic flight, which provides alternating levels of gravitoinertial force (0 g and 1.8 g). Results were less robust than those from ground experiments, but established that different saccade magnitudes could be associated with different gravity levels.

  15. The third ESA Student Parabolic-Flight Campaign.

    PubMed

    Ockels, W J; Jagger-Meziere, L

    2001-02-01

    Today's students will become tomorrow's workforce and hence they should be involved in the global space programme as early as possible so that they will be motivated to follow space careers and create a space-educated next generation for working within the space domain. Getting students involved in today's space programmes is important not only for the space industry in terms of providing a talented workforce for the future, but also for the general public who will be the future voters and potential political supporters of future European space activities. With this in mind, ESA's Office for Education and Outreach organises and runs many space-related activities for young people in order to stimulate their interest in space in particular and in science in general. One of these activities is the 'Student Parabolic-Flight Campaign'.

  16. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  17. Moon and Mars gravity environment during parabolic flights: a new European approach to prepare for planetary exploration

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice

    Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.

  18. Cerebral vasoconstriction precedes orthostatic intolerance after parabolic flight

    NASA Technical Reports Server (NTRS)

    Serrador, J. M.; Shoemaker, J. K.; Brown, T. E.; Kassam, M. S.; Bondar, R. L.; Schlegel, T. T.

    2000-01-01

    The effects of brief but repeated bouts of micro- and hypergravity on cerebrovascular responses to head-up tilt (HUT) were examined in 13 individuals after (compared to before) parabolic flight. Middle cerebral artery mean flow velocity (MCA MFV; transcranial Doppler ultrasound), eye level blood pressure (BP) and end tidal CO(2) (P(ET)CO(2)) were measured while supine and during 80 degrees HUT for 30 min or until presyncope. In the postflight tests subjects were classified as being orthostatically tolerant (OT) (n = 7) or intolerant (OI) (n = 6). BP was diminished with HUT in the OT group in both tests (p < 0.05) whereas postflight BP was not different from supine in the OI group. Postflight compared to preflight, the reduction in P(ET)CO(2) with HUT (p < 0.05) increased in both groups, although significantly so only in the OI group (p < 0.05). The OI group also had a significant decrease in supine MCA MFV postflight (p < 0.05) that was unaccompanied by a change in supine P(ET)CO(2). The decrease in MCA MFV that occurred during HUT in both groups preflight (p < 0.05) was accentuated only in the OI group postflight, particularly during the final 30 s of HUT (p < 0.05). However, this accentuated decrease in MCA MFV was not correlated to the greater decrease in P(ET)CO(2) during the same period (R = 0.20, p = 0.42). Although cerebral vascular resistance (CVR) also increased in the OI group during the last 30 s of HUT postflight (p < 0.05), the dynamic autoregulatory gain was not simultaneously changed. Therefore, we conclude that in the OI individuals, parabolic flight was associated with cerebral hypoperfusion following a paradoxical augmentation of CVR by a mechanism that was not related to changes in autoregulation nor strictly to changes in P(ET)CO(2).

  19. Otolith Asymmetry and kinetotic Behaviour of Fish in Parabolic Flights and under simulated Parabolic Flight "Micro"Gravity - a Drop-Tower Experiment

    NASA Astrophysics Data System (ADS)

    Knie, M.; Hilbig, R.; Anken, R.

    We have shown earlier that some fish of a given batch reveal motion sickness a kinetosis at the transition from earth gravity to diminished gravity The percentual ratios of the various types of behaviour normal swimming and kinetotic swimming kinetotic specimens revealed looping responses LR or spinning movements SM however highly differed depending on the quality of diminished gravity Anken and Hilbig Microgravity Sci Technol 15 52-57 2004 Whereas kinetoses were exhibited by some 90 of the individuals who had experienced flights at high quality microgravity HQM 10-6g ZARM drop-tower only some 15-25 depending on the batch of all animals had shown a kinetotic behaviour during parabolic aircraft flights PFs low quality microgravity LQM 0 03-0 05g Probably LQM is sufficient for most fish to be perceived - in relation to the individual shape or weight of otoliths and thus the performance of the vestibular system - and used as a cue for postural control In striking contrast to the results gained using PF specimens according to which otolith asymmetry differences in the size and calcium incorporation of the inner ear stones between the left and right side of the body was significantly higher in kinetotic specimens as compared to normally swimming fish a comparable asymmetry between the kinetotically and normally swimming drop-tower samples could statistically not be verified Anken et al Adv Space Res submitted The present study was designed to further elucidate the role of otolith asymmetry concerning an individually different

  20. F-15B transonic flight research testbed aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is flying a modified McDonnell-Douglas F-15B aircraft as a testbed for a variety of transonic flight experiments. The two-seat aircraft, bearing NASA tail number 836, is shown during a recent flight over the high desert carrying a Drdyen-designed Flight Test Fixture (FTF) upon which aerodynamic experiments are mounted. The FTF is a heavily instrumented fin-like structure which is mounted on the F-15B's underbelly in place of the standard external fuel tank. Since being aquired by NASA in 1993, the aircraft has been modified to include video recording, telemetry and data recording capabilities. The twin-engine aircraft flew several flights recently in support of an experiment to determine the precise location of sonic shockwave development as air passes over an airfoil. The F-15B is currently being prepared for the Boundary Layer Heat Experiment, which will explore the potential drag reduction from heating the turbulent portion of the air that passes over the fuselage of a large aircraft.

  1. Evaluation of aerosolized medications during parabolic flight maneuvers

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Martin, William J.; Gosbee, John

    1991-01-01

    The goal was to visually evaluate the effect gravity has on delivery of medications by the use of various aerosol devices. During parabolic flight the same four aerosols were retested as performed in studio ground tests. It appears that the Cetacaine spray and the Ventolin inhaler function without failure during all test. The pump spray (Nostril) appeared to function normally when the container was full, however it appeared to begin to fail to deliver a full mist with larger droplet size when the container was nearly empty. The simple hand spray bottle appeared to work when the container was full and performed progressively worse as the container was emptied. During Apollo flights, it was reported that standard spray bottles did not work well, however, they did not indicate why. It appears that we would also conclude that standard spray bottles do not function as well in zero gravity by failing to produce a normal mist spray. The standard spray bottle allowed the fluid to come out in a narrow fluid stream when held with the nozzle either level or slightly tilted upward.

  2. Hormonal responses of metoclopramide-treated subjects experiencing nausea or emesis during parabolic flight

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.

    1987-01-01

    The concentrations of adrenocorticotropic hormone (ACTH), vasopressin (AVP), epinephrine (EPI), and norepinephrine (NE) in 22 subjects administered 10 to 20 mg of metoclopramide prior to parabolic flight are measured. The effect of metoclopramide on motion sickness is examined. It is observed that metoclopramide is ineffective in the modulation of motion sickness due to stressful linear and angular acceleration and orbital flight, and it does not affect serum hormones prior to parabolic flight. It is detected that the serum level of AVP declines following emesis induced by parabolic flight and stressful angular acceleration; the serum levels of ACTH and EPI are elevated by parabolic flight and stressful angular acceleration; and serum NE is significantly elevated immediately following emesis. The possible roles of these hormones in the etiology of space motion sickness are discussed.

  3. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  4. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  5. Flight Safety Aircraft Risk: A Growing Problem

    NASA Astrophysics Data System (ADS)

    Haber, J. M.

    2012-01-01

    In recent years there has been a growing awareness of the need to have appropriate criteria for protection of aircraft from debris resulting from the flight termination of a malfunctioning space booster. There have been several sequences of events that have interacted to bring us to the current risk management problem. With the advent of the US initiative to have common flight safety analysis processes and criteria, it was recognized that the traditional aircraft protection approach was inadequate. It did not consider the added public concern for catastrophic events. While the probability may have been small for downing a large commercial passenger plane, the public outrage if it happened would not be adequately measured by the individual risk to passengers nor the collective (societal risk) presented by a single airplane. Over a period of a number of years the US has developed and evolved a criterion to address catastrophic risk protection. Beginning in the same time period, it was recognized the assertion that all debris with masses greater than one gram were lethal to aircraft was unduly conservative. Over this same period initiatives have been developed to refine aircraft vulnerability models. There were, however, two significant unconservative assumptions that were made in the early years. It was presumed that significant risk to aircraft could only occur in the launch area. In addition, aircraft risk assessments, when they were made were based on debris lists designed to protect people on the ground (typically debris with an impact kinetic energy greater than 11 ft-lb). Good debris lists for aircraft protection do not yet exist. However, it has become increasingly clear that even with partial breakup lists large regions were required from which aircraft flight would be restricted using the normal exclusion approaches. We provide a review of these events and an indication of the way forward.

  6. Pathfinder aircraft returning from a flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71

  7. Aircraft digital flight control technical review

    NASA Technical Reports Server (NTRS)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  8. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Aircraft flight risks... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract...

  9. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Aircraft flight risks... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract...

  10. 14 CFR 375.31 - Demonstration flights of foreign aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Demonstration flights of foreign aircraft... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.31 Demonstration flights of foreign aircraft. Flights of foreign civil...

  11. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Aircraft flight risks... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract...

  12. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Aircraft flight risks... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract...

  13. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.

    PubMed

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance. PMID:27463106

  14. Motion sickness susceptibility in parabolic flight and velocity storage activity

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1991-01-01

    In parabolic flight experiments, postrotary nystagmus is as found to be differentially suppressed in free fall (G) and in a high gravitoinertial force (1.8 G) background relative to 1 G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G-dependency of the velocity storage and dumping mechanisms. Here, susceptibility to motion sickness during head movements in 0 G and 1.8 G was rank-correlated with the following: (1) the decay time constant of the slow phase velocity of postrotary nystagmus under 1 G, no head movement, baseline conditions, (2) the extent of time constant reduction elicited in 0 G and 1.8 G; (3) the extent of time constant reduction elicited by head tilts in 1 G; and (4) changes in the extent of time constants reduction in 0 G and 1.8 G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1 G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in 0 G or 1.8 G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described.

  15. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.

    PubMed

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance.

  16. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight

    PubMed Central

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5–6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance. PMID:27463106

  17. Geometric visual illusions in microgravity during parabolic flight.

    PubMed

    Villard, Eric; Garcia-Moreno, Francesc Tintó; Peter, Nicolas; Clément, Gilles

    2005-08-22

    This investigation explores whether the absence of gravitational information in a microgravity environment affects the perception of several classical visual illusions based on the arrangement of horizontal and vertical lines. Because the perception of horizontal and vertical orientation changes in microgravity, our prediction was that the strength of visual illusions based on the arrangement of horizontal and vertical lines would be altered when study participants were free-floating during parabolic flight. The frequency of appearance of reversed-T, Müller-Lyer, Ponzo, and Hering illusions substantially decreased when observers were free-floating, whereas the Zöllner and the Poggendorff illusions were not affected. Because the former illusions rely more heavily on perspective cues for generating inaccurate judgments of depth and size, these results suggest an alteration in the role of linear perspective for three-dimensional vision in microgravity. They also confirm that the visual system normally relies on otolith and somatosensory information for providing accurate judgments about the size and distance of objects when presented with planar presentations of geometric figures.

  18. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  19. How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights.

    PubMed

    Limbach, Christoph; Hauslage, Jens; Schäfer, Claudia; Braun, Markus

    2005-10-01

    Early processes underlying plant gravity sensing were investigated in rhizoids of Chara globularis under microgravity conditions provided by parabolic flights of the A300-Zero-G aircraft and of sounding rockets. By applying centrifugal forces during the microgravity phases of sounding rocket flights, lateral accelerations of 0.14 g, but not of 0.05 g, resulted in a displacement of statoliths. Settling of statoliths onto the subapical plasma membrane initiated the gravitropic response. Since actin controls the positioning of statoliths and restricts sedimentation of statoliths in these cells, it can be calculated that lateral actomyosin forces in a range of 2 x 10(-14) n act on statoliths to keep them in place. These forces represent the threshold value that has to be exceeded by any lateral acceleration stimulus for statolith sedimentation and gravisensing to occur. When rhizoids were gravistimulated during parabolic plane flights, the curvature angles of the flight samples, whose sedimented statoliths became weightless for 22 s during the 31 microgravity phases, were not different from those of in-flight 1g controls. However, in ground control experiments, curvature responses were drastically reduced when the contact of statoliths with the plasma membrane was intermittently interrupted by inverting gravistimulated cells for less than 10 s. Increasing the weight of sedimented statoliths by lateral centrifugation did not enhance the gravitropic response. These results provide evidence that graviperception in characean rhizoids requires contact of statoliths with membrane-bound receptor molecules rather than pressure or tension exerted by the weight of statoliths.

  20. Anesthesia and critical-care delivery in weightlessness: A challenge for research in parabolic flight analogue space surgery studies

    NASA Astrophysics Data System (ADS)

    Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.

    2010-03-01

    BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of <1.5 m 2 (Falcon 20). Identification of an effective anesthetic regime is particularly important because inhalant anesthesia cannot be used in-flight. MethodsAfter ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days

  1. Identification of flexible aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Eulrich, B. J.; Rynaski, E. G.

    1980-01-01

    This paper describes a frequency-domain method for the estimation of the aeroelastic equations of motion of an aircraft using discrete sinusoidal inputs to the control surface actuators. The theory of estimation of the signal inputs and outputs is described as well as the method of obtaining accurate transfer functions from the resulting Bode plots. Methods of quantifying the accuracy of the results from more than one control input are discussed along with ways to obtain state-space and reduced-order models from the transfer function estimates. Presented is a summary of the results obtained in using the technique to develop a model of the USAF Total In-Flight Simulator (TIFS) aircraft which includes five symmetrical elastic modes of motion of the aircraft.

  2. Porous media matric potential and water content measurements during parabolic flight.

    PubMed

    Norikane, Joey H; Jones, Scott B; Steinberg, Susan L; Levine, Howard G; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  3. Porous media matric potential and water content measurements during parabolic flight

    NASA Technical Reports Server (NTRS)

    Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  4. ERAST Program Proteus Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  5. Rotor systems research aircraft airplane configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Erickson, R. E.

    1984-01-01

    The rotor systems research aircraft (RSRA) has undergone ground and flight tests, primarily as a compound aircraft. The purpose was to train pilots and to check out and develop the design flight envelope. The preparation and flight test of the RSRA in the airplane, or fixed-wind, configuration are reviewed and the test results are discussed.

  6. 14 CFR 375.31 - Demonstration flights of foreign aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Demonstration flights of foreign aircraft. 375.31 Section 375.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... Authorized Operations § 375.31 Demonstration flights of foreign aircraft. Flights of foreign civil...

  7. Rotor systems research aircraft airplane configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Erickson, R. E.

    1984-01-01

    The Rotor Systems Research Aircraft (RSRA) has been undergoing ground and flight tests by Ames Research Center since late 1979, primarily as a compound aircraft. The purpose was to train pilots and to check out and develop the design flight envelope established by the Sikorsky Aircraft Company. This paper reviews the preparation and flight test of the RSRA in the airplane, or fixed-wing, configuration and discusses the results of that test.

  8. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  9. Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1994-01-01

    This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

  10. Transesophageal echocardiographic evaluation of baboons during microgravity induced by parabolic flight

    NASA Technical Reports Server (NTRS)

    Vernalis, Marina N.; Latham, Ricky D.; Fanton, John W.; Geffney, F. Andrew

    1993-01-01

    Transthoracic echocardiography (TTE) is a feasible method to noninvasively examine cardiac anatomy during parabolic flight. However, transducer placement on the chest wall is very difficult to maintain during transition to microgravity. In addition, TTE requires the use of low frequency transponders which limit resolution. Transesophical echocardiography (TEE) is an established imaging technique which obtains echocardiographic information from the esophagus. It is a safe procedure and provides higher quality images of cardiac structure than obtained with TTE. This study is designed to determine whether TEE was feasible to perform during parabolic flight and to determine whether acute central volume responses occur in acute transition to zero gravity by direct visualization of the cardiac chambers.

  11. NASA's Shuttle Carrier Aircraft 911's Final Flight

    NASA Video Gallery

    NASA 911, one of NASA's two modified Boeing 747 space shuttle carrier aircraft, flew its final flight Feb. 8, a short hop from NASA's Dryden Flight Research Center at Edwards Air Force Base to the ...

  12. Two YF-12 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The YF-12A (60-6935) carries the 'coldwall' heat transfer pod on a pylon beneath the forward fuselage. The pod is seen with its insulating coating intact. In the foreground, the YF-12C flies photo chase. The coldwall project, supported by Langley Research Center, consisted of a stainless steel tube equipped with thermocouples and pressure-sensors. A special insulating coating covered the tube, which was chilled with liquid nitrogen. At Mach 3, the insulation could be pyrotechnically blown away from the tube, instantly exposing it to the thermal environment. The experiment caused many inflight difficulties, such as engine unstarts, but eventually researchers got a successful flight. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse

  13. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  14. Parabolic flight experience is related to increased release of stress hormones.

    PubMed

    Schneider, Stefan; Brümmer, Vera; Göbel, Simon; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K

    2007-06-01

    Numerous studies have shown significant effects of weightlessness on adaptational processes of the CNS, cardiovascular and/or muscular system. Most of these studies have been carried out during parabolic flights, using the recurring 20 s of weightlessness at each parabola. Although some of these studies reported on potential influences not only of weightlessness but also of the stressful situation within a parabolic flight, especially provoked by the ongoing changes between 1.8, 1 and 0 G, so far there seems to be only marginal information about objective parameters of stress evoked by parabolic flights. By collecting blood samples from a permanent venous catheter several times during parabolic flights, we were able to show an increase of prolactin, cortisol and ACTH in the course of a 120 min flight. We conclude, therefore, that previous reported effects of weightlessness on adaptational processes may be affected not only by weightlessness but also by the exposure to other stressors experienced within the environment of a Zero-G airbus.

  15. Numerical Modeling of Unsaturated Flows in Variable Gravity During Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Jones, S. B.; Heinse, R.; Šimunek, J.; Tuller, M.; Or, D.

    2007-12-01

    Parabolic flight experiments were conducted to study effects of reduced gravity on multiphase fluid distribution and transport. Notwithstanding the limited duration of microgravity (~20 s), measurements of porous-media fluid behavior have been successful in demonstrating significant differences between μ- and 1-g. Further understanding of reduced gravity effects can be gained through numerical modeling of hydrodynamic data. The gravitational acceleration during parabolic flight cycles between hypergravity (1.8-g) and microgravity (~10-6-g). Impacts of variable gravity on measurements focusing on the microgravity portion of the flight were ambiguous and difficult to interpret. One-dimensional numerical modeling using the Richards equation with a variable gravity term was compared with matric potential and water content measurements obtained during several parabolic flights. Introducing a time-dependent variable gravity term facilitated modeling of the hypergravity phase, which extends to 1.8-g and precedes each microgravity cycle. This 'complete' treatment of flight data allowed more accurate modeling of secondary water retention scanning curves. This is important because during parabolic flight, wetting and draining processes occur simultaneously in different volumes of the porous medium. Both baked clay aggregates and glass beads were packed into containers with heights varying from 1 to 7 cm. Hydrostatic and matric potentials were measured using micro-tensiometers and water content was determined either volumetrically or using TDR. Hydrus-1D was used to model the hydrodynamics with time- dependent gravity input in sub-second increments of time. Our results suggest that the impact of a preceding hypergravity-phase on microgravity hydrodynamics during parabolic flight should not be ignored and requires due attention for adequate modeling of matric potential and water content measurements in porous media.

  16. Flight test techniques for the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Cooper, James M., Jr.; Sefic, Walter J.

    1987-01-01

    The X-29A advanced technology demonstrator is a single-seat, single-engine aircraft with a forward-swept wing. The aircraft incorporates many advanced technologies being considered for this country's next generation of aircraft. This unusual aircraft configuration, which had never been flown before, required a precise approach to flight envelope expansion. This paper describes the real-time analysis methods and flight test techniques used during the envelope expansion of the x-29A aircraft, including new and innovative approaches.

  17. ESA Parabolic Flight, Drop Tower and Centrifuge Opportunities for University Students

    NASA Astrophysics Data System (ADS)

    Callens, Natacha; Ventura-Traveset, Javier; Zornoza Garcia-Andrade, Eduardo; Gomez-Calero, Carlos; van Loon, Jack J. W. A.; Pletser, Vladimir; Kufner, Ewald; Krause, Jutta; Lindner, Robert; Gai, Frederic; Eigenbrod, Christian

    The European Space Agency (ESA) Education Office was established in 1998 with the purpose of motivating young people to study science, engineering and technology subjects and to ensure a qualified workforce for ESA and the European space sector in the future. To this end the ESA Education Office is supporting several hands-on activities including small student satellites and student experiments on sounding rockets, high altitude balloons as well as microgravity and hypergravity platforms. This paper is intended to introduce three new ESA Education Office hands-on activities called "Fly Your Thesis!", "Drop Your Thesis!" and "Spin Your Thesis!". These activities give re-spectively access to aircraft parabolic flight, drop tower and centrifuge campaigns to European students. These educational programmes offer university students the unique opportunity to design, build, and eventually perform, in microgravity or hypergravity, a scientific or techno-logical experiment which is linked to their syllabus. During the "Fly Your Thesis!" campaigns, the students accompany their experiments onboard the A300 Zero-G aircraft, operated by the company Novespace, based in Bordeaux, France, for a series of three flights of 30 parabolas each, with each parabola providing about 20s of microgravity [1]. "Drop Your Thesis!" campaigns are held in the ZARM Drop Tower, in Bremen, Germany. The installation delivers 4.74s of microgravity in dropping mode and 9.3s in the catapulting mode [2]. Research topics such as fluid physics, fundamental physics, combustion, biology, material sciences, heat transfer, astrophysics, chemistry or biochemistry can greatly benefit from using microgravity platforms. "Spin Your Thesis!" campaigns take place in the Large Diameter Centrifuge (LDC) facility, at ESTEC, Noordwijk, in the Netherlands. This facility offers an acceleration from 1 to 20 times Earth's gravity [3]. The use of hypergravity allows completing the scientific picture of how gravity has an

  18. Increased brain cortical activity during parabolic flights has no influence on a motor tracking task.

    PubMed

    Schneider, Stefan; Brümmer, Vera; Mierau, Andreas; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K

    2008-03-01

    Previous studies showed that changing forces of gravity as they typically occur during parabolic flights might be responsible for adaptional processes of the CNS. However, until now it has not been differentiated between primary influences of weightlessness and secondary influences due to psycho-physiological factors (e.g., physical or mental strain). With the aim of detecting parabolic flight related changes in central cortical activity, a resting EEG was deduced in 16 subjects before, during and after parabolic flights. After subdividing EEG into alpha-, beta-,delta- and theta-wave bands, an increase in beta-power was noticeable inflight, whereas alpha(1)-power was increased postflight. No changes could be observed for the control group. To control possible effects of cortical activation, a manual tracking task with mirror inversion was performed during either the phase of weightlessness or during the normal gravity phase of a parabolic flight. No differences in performance nor in adaptation could be observed between both groups. A third group, performing under normal and stress-free conditions in a lab showed similar tracking values. We assume that the specific increase in brain activity is a sign of an increase in arousal inflight. This does support previous assumptions of non-specific stressors during parabolic flights and has to be considered as a relevant factor for experiments on central nerve adaptation. Although no influences of stress and/or weightlessness on motor performance and adaptation could be observed, we suggest that an "inflight" control group seems to be more adequate than a laboratory control group to investigate gravity-dependent changes in motor control.

  19. A proposed criterion for aircraft flight in turbulence

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Robinson, A. C.

    1971-01-01

    A proposed criterion for aircraft flight in turbulent conditions is presented. Subjects discussed are: (1) the problem of flight safety in turbulence, (2) new criterion for turbulence flight where existing ones seem adequate, and (3) computational problems associated with new criterion. Primary emphasis is placed on catastrophic occurrences in subsonic cruise with the aircraft under automatic control. A Monte Carlo simulation is used in the formulation and evaluation of probabilities of survival of an encounter with turbulence.

  20. Binding of alpha-fetoprotein by immobilized monoclonal antibodies during episodes of zero-gravity obtained by parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Guikema, James A.; Barnes, Grady

    1990-01-01

    Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.

  1. Optimization of the vertical flight profile on the flight management system for green aircraft

    NASA Astrophysics Data System (ADS)

    Felix Patron, Roberto Salvador

    To reduce aircraft's fuel consumption, a new method to calculate flight trajectories to be implemented in commercial Flight Management Systems has been developed. The aircraft's model was obtained from a flight performance database, which included experimental flight data. The optimized trajectories for three different commercial aircraft have been analyzed and developed in this thesis. To obtain the optimal flight trajectory that reduces the global flight cost, the vertical and the LNAV profiles have been studied and analyzed to find the aircraft's available speeds, possible flight altitudes and alternative horizontal trajectories that could reduce the global fuel consumption. A dynamic weather model has been implemented to improve the precision of the algorithm. This weather model calculates the speed and direction of wind, and the outside air temperature from a public weather database. To reduce the calculation time, different time-optimization algorithms have been implemented, such as the Golden Section search method, and different types of genetic algorithms. The optimization algorithm calculates the aircraft trajectory considering the departure and arrival airport coordinates, the aircraft parameters, the in-flight restrictions such as speeds, altitudes and WPs. The final output is given in terms of the flight time, fuel consumption and global flight cost of the complete flight. To validate the optimization algorithm results, the software FlightSIM RTM has been used. This software considers a complete aircraft aerodynamic model for its simulations, giving results that are accurate and very close to reality.

  2. Experimental Investigation of Pressure-volume-Temperature Mass Gauging Method Under Microgravity Condition by Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Seo, Mansu; Park, Hana; Yoo, DonGyu; Jung, Youngsuk; Jeong, Sangkwon

    Gauging the volume or mass of liquid propellant of a rocket vehicle in space is an important issue for its economic feasibility and optimized design of loading mass. Pressure-volume-temperature (PVT) gauging method is one of the most suitable measuring techniques in space due to its simplicity and reliability. This paper presents unique experimental results and analyses of PVT gauging method using liquid nitrogen under microgravity condition by parabolic flight. A vacuum-insulated and cylindrical-shaped liquid nitrogen storage tank with 9.2 L volume is manufactured by observing regulation of parabolic flight. PVT gauging experiments are conducted under low liquid fraction condition from 26% to 32%. Pressure, temperature, and the injected helium mass into the storage tank are measured to obtain the ullage volume by gas state equation. Liquid volume is finally derived by the measured ullage volume and the known total tank volume. Two sets of parabolic flights are conducted and each set is composed of approximately 10 parabolic flights. In the first set of flights, the short initial waiting time (3 ∼ 5 seconds) cannot achieve sufficient thermal equilibrium condition at the beginning. It causes inaccurate gauging results due to insufficient information of the initial helium partial pressure in the tank. The helium injection after 12 second waiting time at microgravity condition with high mass flow rate in the second set of flights achieves successful initial thermal equilibrium states and accurate measurement results of initial helium partial pressure. Liquid volume measurement errors in the second set are within 11%.

  3. Flight flutter testing of multi-jet aircraft

    NASA Technical Reports Server (NTRS)

    Bartley, J.

    1975-01-01

    Extensive flight flutter tests were conducted by BAC on B-52 and KC-135 prototype airplanes. The need for and importance of these flight flutter programs to Boeing airplane design are discussed. Basic concepts of flight flutter testing of multi-jet aircraft and analysis of the test data will be presented. Exciter equipment and instrumentation employed in these tests will be discussed.

  4. HiMAT highly maneuverable aircraft technology, flight report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Flight verification of a primary flight control system, designed to control the unstable HiMAT aircraft is presented. The initial flight demonstration of a maneuver autopilot in the level cruise mode and the gathering of a limited amount of airspeed calibration data.

  5. Operation and performance of the Ciba-Corning 512 coagulation monitor during parabolic flight

    NASA Technical Reports Server (NTRS)

    Gocke, Robyn; Lloyd, Charles W.; Greenthaner, Nancy K.

    1991-01-01

    The goal was to assess the functionality and evaluate the procedures and operations required to operate the Ciba-Corning 512 Coagulation Monitor during parabolic flight. This monitor determines the clotting characteristics of blood. The analyzer operates by laser detection of the cessation of blood flow in a capillary channel within a test cartridge. Test simulator results were excellent for both pre-and post-flight. In-flight results were not obtained due to the warm-up time required for the simulator. Since this is an electronic function only, the expected results on the simulator would be the same in zero-g.

  6. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    NASA Astrophysics Data System (ADS)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  7. Acute hemodynamic response to weightlessness during parabolic flight

    NASA Technical Reports Server (NTRS)

    Mukai, Chiaki N.; Lathers, Claire M.; Charles, John B.; Bennett, Barbara S.; Igarashi, Makoto; Patel, Saumil

    1991-01-01

    The effect of a short exposure to weightlessness on hemodynamic parameters of humans was investigated in seven subjects flown aboard the KC-135 aircraft. Particular attention is given to the relationships among various hemodynamic responses to hypergravic and hypogravic states, observed for four different postures: semisupine, supine, standing, and sitting. Results are presented on changes in the thoracic fluid index, heart rate, cardiac index, and the coefficient of variation of the R-R intervals. High values of the coefficient of variation were found at the onset of 0-G, suggesting that vagal cardiac neural activity increases in all positions except supine (where a small decrease was registered).

  8. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Qualifications: Flight instructors (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training § 135.338 Qualifications:...

  9. Role of the vestibular system in the arterial pressure response to parabolic-flight-induced gravitational changes in human subjects.

    PubMed

    Iwata, Chihiro; Abe, Chikara; Tanaka, Kunihiko; Morita, Hironobu

    2011-05-16

    Arterial pressure (AP) is known to fluctuate during parabolic-flight-induced gravitational changes in human subjects, increasing during hypergravity and decreasing during microgravity. In this study, we examined whether the vestibular system participates in the AP response to the gravitational changes induced by parabolic flight in human subjects. Eight subjects performed parabolic flights in a supine position as their AP was measured. Their vestibular inputs during the gravitational changes were reversibly masked by artificial electrical stimulation (galvanic vestibular stimulation, GVS). The AP responses during the parabolas were then compared between the GVS-off and GVS-on conditions. AP increased during hypergravity and decreased during microgravity. The AP responses at the onset of hypergravity and microgravity were abolished by GVS. These results indicate that the vestibular system elicits pressor and depressor responses during parabolic-flight-induced hypergravity and microgravity, respectively.

  10. Evaluation of Contrail Reduction Strategies Based on Aircraft Flight Distances

    NASA Technical Reports Server (NTRS)

    Chen, Neil Y.; Sridhar, Banavar; Li, Jinhua; Ng, Hok Kwan

    2012-01-01

    This paper evaluates a set of contrail reduction strategies based on the flight range of aircraft as contrail reduction strategies have different impacts on aircraft depending on how they plan to fly. In general, aircraft with longer flight distances cruise at the altitudes where contrails are more likely to form. The concept of the contrail frequency index is used to quantify contrail impacts. The strategy for reducing the persistent contrail formation is to minimize the contrail frequency index by altering the aircraft's cruising altitude. A user-defined factor is used to trade off between contrail reduction and extra CO2 emissions. A higher value of tradeoff factor results in more contrail reduction and extra CO2 emissions. Results show that contrail reduction strategies using various tradeo factors behave differently from short-range flights to long-range ights. Analysis shows that short-distance flights (less than 500 miles) are the most frequent flights but contribute least to contrail reduction. Therefore these aircraft have the lowest priority when applying contrail reduction strategies. Medium-distance flights (500 to 1000 miles) have a higher priority if the goal is to achieve maximum contrail reduction in total; long-distance flights (1000 to 1500 miles) have a higher priority if the goal is to achieve maximum contrail reduction per flight. The characteristics of transcontinental flights (greater than 1500 miles) vary with different weather days so the priority of applying contrail reduction strategies to the group needs to be evaluated based on the locations of the contrail areas during any given day. For the days tested, medium-distance ights contribute up to 42.6% of the reduction among the groups during a day. The contrail frequency index per 1,000 miles for medium-distance, long-distance, and transcontinental flights can be reduced by an average of 75%. The results provide a starting point for developing operational policies to reduce the impact of

  11. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft flight risks. 1852.228-71 Section 1852.228-71 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... the aircraft has returned to the ground and rotors are disengaged. (iv) With respect to vertical...

  12. Extraction of aerodynamic parameters for aircraft at extreme flight conditions

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.

    1985-01-01

    The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic concepts. This paper briefly discusses the maximum likelihood estimator and the aircraft equations of motion that the estimator uses. The current strength and limitations associated with obtaining flight-determined aerodynamic coefficients in extreme flight conditions is assessed. The importance of the careful combining of wind tunnel results (or calculations) and flight results and the thorough evaluation of the mathematical model is emphasized. The basic concepts of minimization and estimation are examined for a simple computed aircraft example, and the cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation of stability and control derivatives from flight data is discussed.

  13. Extraction of aerodynamic parameters for aircraft at extreme flight conditions

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.

    1985-01-01

    The maximum likelihood estimator was used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new development and applications, assuming familiarity with basic concepts. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are discussed. The current strength and limitations associated with obtaining flight-determined aerodynamic coefficients in extreme flight conditions are assessed. The importance of the careful combining of wind tunnel results (or calculations) and flight results and the thorough evaluation of the mathematical model is emphasized. The basic concepts of minimization and estimation are examined for a simple computed aircraft example, and the cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation of stability and control derivatives from flight data is discussed.

  14. Practical aspects of modeling aircraft dynamics from flight data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1984-01-01

    The purpose of parameter estimation, a subset of system identification, is to estimate the coefficients (such as stability and control derivatives) of the aircraft differential equations of motion from sampled measured dynamic responses. In the past, the primary reason for estimating stability and control derivatives from flight tests was to make comparisons with wind tunnel estimates. As aircraft became more complex, and as flight envelopes were expanded to include flight regimes that were not well understood, new requirements for the derivative estimates evolved. For many years, the flight determined derivatives were used in simulations to aid in flight planning and in pilot training. The simulations were particularly important in research flight test programs in which an envelope expansion into new flight regimes was required. Parameter estimation techniques for estimating stability and control derivatives from flight data became more sophisticated to support the flight test programs. As knowledge of these new flight regimes increased, more complex aircraft were flown. Much of this increased complexity was in sophisticated flight control systems. The design and refinement of the control system required higher fidelity simulations than were previously required.

  15. 76 FR 22163 - Ninth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  16. 76 FR 38741 - Tenth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  17. 75 FR 9016 - Fifth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  18. 75 FR 52591 - Seventh Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight... RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security...

  19. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  20. Perception of longitudinal body axis in microgravity during parabolic flight.

    PubMed

    Clément, Gilles; Arnesen, Tonje N; Olsen, Morten H; Sylvestre, Bruno

    2007-02-14

    It has been proposed that an internal representation of body vertical has a prominent role in spatial orientation. This investigation investigated the ability of human subjects to accurately locate their longitudinal body axis (an imaginary straight body midline running from head to toes) while free-floating in microgravity. Subjects were tested in-flight, as well as on ground in normal gravity in both the upright and supine orientations to provide baseline measurements. The subjects wore a goggle device and were in total darkness. They used knobs to rotate two luminous lines until they were parallel to the subjective direction of their longitudinal body axis, in the roll (right/left) and the pitch (forward/backward) planes. Results showed that the error between the perceived and the objective direction of the longitudinal body axis was significantly larger in microgravity than in normal gravity. This error in this egocentric frame of reference is presumably due to the absence of somatosensory cues when free-floating. Mechanical pressure on the chest using an airbag reduced the error in perception of the longitudinal body axis in microgravity, thus improving spatial orientation. PMID:17174031

  1. Risk assessment of high altitude free flight commercial aircraft operations

    SciTech Connect

    Kimura, C.Y.; Sandquist, G.M.; Slaughter, D.M.; Sanzo, D.L.

    1998-04-23

    A quantitative model is under development to assess the safety and efficiency of commercial aircraft operations under the Free Flight Program proposed for air traffic control for the US National Airspace System. The major objective of the Free Flight Program is to accommodate the dramatic growth anticipated in air traffic in the US. However, the potential impacts upon aircraft safety from implementing the Program have not been fully explored and evaluated. The model is directed at assessing aircraft operations at high altitude over the continental US airspace since this action is the initial step for Free Flight. Sequential steps with analysis, assessment, evaluation, and iteration will be required to satisfactorily accomplish the complete transition of US commercial aircraft traffic operations.

  2. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  3. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  4. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  5. Rat head direction cell responses in zero-gravity parabolic flight.

    PubMed

    Taube, Jeffrey S; Stackman, Robert W; Calton, Jeffrey L; Oman, Charles M

    2004-11-01

    Astronauts working in zero-gravity (0-G) often experience visual reorientation illusions (VRIs). For example, when floating upside down, they commonly misperceive the spacecraft floor as a ceiling and have a reversed sense of direction. Previous studies have identified a population of neurons in the rat's brain that discharge as a function of the rat's head direction (HD) in a gravitationally horizontal plane and is dependent on an intact vestibular system. Our goal was to characterize HD cell discharge under conditions of acute weightlessness. Seven HD cells in the anterior dorsal thalamus were monitored from rats aboard an aircraft in 0-G parabolic flight. Unrestrained rats locomoted in a clear plexiglas rectangular chamber that had wire mesh covering the floor, ceiling, and one wall. The chamber and surrounding visual environment were relatively up-down symmetrical. Each HD cell was recorded across forty 20-s episodes of 0-G. All HD cells maintained a significant direction-specific discharge when the rat was on the chamber floor during the 0-G and also during the hypergravity pull-out periods. Three of five cells also showed direction-specific responses on the wall in 1-G. In contrast, direction-specific discharge was usually not maintained when the rat locomoted on the vertical wall or ceiling in 0-G. The loss of direction-specific firing was accompanied by an overall increase in background firing. However, while the rat was on the ceiling, some cells showed occasional bursts of firing when the rat's head was oriented in directions that were flipped relative to the long axis of symmetry of the chamber compared with the cell's preferred firing direction on the floor. This finding is consistent with what might be expected if the rat had experienced a VRI. These responses indicate that rats maintain a normal allocentric frame of reference in 0-G and 1-G when on the floor, but may lose their sense of directional heading when placed on a wall or ceiling during acute

  6. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    PubMed

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis.

  7. A Preliminary Flight Investigation of Formation Flight for Drag Reduction on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Pahle, Joe; Berger, Dave; Venti, Michael W.; Faber, James J.; Duggan, Chris; Cardinal, Kyle

    2012-01-01

    Many theoretical and experimental studies have shown that aircraft flying in formation could experience significant reductions in fuel use compared to solo flight. To date, formation flight for aerodynamic benefit has not been thoroughly explored in flight for large transport-class vehicles. This paper summarizes flight data gathered during several two ship, C-17 formation flights at a single flight condition of 275 knots, at 25,000 ft MSL. Stabilized test points were flown with the trail aircraft at 1,000 and 3,000 ft aft of the lead aircraft at selected crosstrack and vertical offset locations within the estimated area of influence of the vortex generated by the lead aircraft. Flight data recorded at test points within the vortex from the lead aircraft are compared to data recorded at tare flight test points outside of the influence of the vortex. Since drag was not measured directly, reductions in fuel flow and thrust for level flight are used as a proxy for drag reduction. Estimated thrust and measured fuel flow reductions were documented at several trail test point locations within the area of influence of the leads vortex. The maximum average fuel flow reduction was approximately 7-8%, compared to the tare points flown before and after the test points. Although incomplete, the data suggests that regions with fuel flow and thrust reduction greater than 10% compared to the tare test points exist within the vortex area of influence.

  8. Flight testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Merrill, R. K.; Hall, G. W.

    1982-01-01

    The Rotor Systems Research Aircraft (RSRA) is a dedicated rotor test vehicle whose function is to fill the gap between theory, wind tunnel tests and flight verification data. Its flight test envelope has been designed to encompass the expected envelopes of future rotor systems under all flight conditions. The test configurations of the RSRA include pure helicopter and compound (winged helicopter) modes. In addition, should it become necessary to jettison an unstable rotor system in flight, the RSRA may be flown as a fixed wing aircraft. The heart of the RSRA's electronic flight control system is the TDY-43 computer, which can be programmed in numerous ways to change stability and control or force feel system gains. Computer programming changes allow the RSRA to be used as a five-degree-of-freedom inflight simulator for studying the handling qualities of research rotors.

  9. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  10. Responses of blind fish to gravitational changes as achieved in parabolic flight

    NASA Technical Reports Server (NTRS)

    Vonbaumgarten, R. J.; Shillinger, G. L., Jr.; Baldright, G.

    1972-01-01

    Blind fish, during parabolic flight, display a measurable and consistent behavior. The most spectacular new behavioral response is the forward looping of blind fish in or near weightlessness. This response shows no measurable adaptation during the entire period of weightlessness of about 30 sec. During the entrance and exit of weightless parabolas (pushover and pullout) respectively, the fish assumes a forward tilted diving position. Parabolic flight with negative g in the range between 0g and -1g causes similar diving responses of the fish with the only difference being that the dive is directed toward the top of the fish tank. When the response to a g value less than 1g is compared to the response to increased g load on the ground (escape of darting response) an essential difference is seen: higher horizontal acceleration or jerk on the ground causes fish to swim, or even dart, against the direction of inertial force; fish during weightless parabolas move into the direction of the inertial or gravitational force. Since the vestibular system of fish is homologous to that of man, the observed behavior of fish in weightless flight could help to better understand human performance and sensations in comparable situations.

  11. Introduction to the aerodynamics of flight. [including aircraft stability, and hypersonic flight

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    General concepts of the aerodynamics of flight are discussed. Topics considered include: the atmosphere; fluid flow; subsonic flow effects; transonic flow; supersonic flow; aircraft performance; and stability and control.

  12. Eclipse program F-106 aircraft in flight, front view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  13. Pathfinder aircraft prepared for flight at dawn on lakebed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft is silhouetted by the morning sun on the bed of Rogers Dry Lake as technicians prepare it for flight. The unique remotely piloted flying wing flew for two hours under control of a ground-based pilot on Nov. 19, 1996, at NASA's Dryden Flight Research Center, Edwards, California, while engineers checked out various aircraft systems. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  14. Eclipse program QF-106 aircraft in flight, view from tanker

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of QF-106 airplane from a KC-135 tanker aircraft. The Eclipse aircraft was not refueling but simply flying below and behind the tanker for purposes of shooting the photograph from the air. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  15. [Radiation safety in flights of high-altitude aircraft].

    PubMed

    Kovalev, E E; Petrov, V M

    1975-01-01

    The major sources of radiation hazard for flights of supersonic high altitude aircraft--galactic and solar radiation--are described. Estimates of an equivalent dose rate at different distances from these sources are given. The estimates are compared with the radiation dosages allowed for the average population and special personnel. It is concluded that specific measures are needed to provide radiation safety of the crews and passengers aboard supersonic aircraft.

  16. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Glascoff, W. G., III

    The textbook provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of properties of the atmosphere. How different…

  17. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This revised textbook, one in the Aerospace Education II series, provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of…

  18. Flight Test Results of a Thermoelectric Energy Harvester for Aircraft

    NASA Astrophysics Data System (ADS)

    Samson, D.; Kluge, M.; Fuss, T.; Schmid, U.; Becker, Th.

    2012-06-01

    The idea of thermoelectric energy harvesting for low-power wireless sensor systems in aircraft and its practical implementation was recently published. The concept of using a thermoelectric generator (TEG) attached to the aircraft inner hull and a thermal storage device to create an artificial temperature gradient at the TEG during take-off and landing from the temperature changes of the fuselage has passed initial tests and is now subject to flight testing. This work presents preflight test results, e.g., vibration and temperature testing of the harvesters, the practical installation of two harvesting devices inside a test plane, and the first test flight results. Several flight cycles with different flight profiles, flight lengths, and outside temperatures have been performed. Although the influence of different flight profiles on the energy output of the harvester can be clearly observed, the results are in good agreement with expectations from numerical simulations with boundary conditions evaluated from initial climate chamber experiments. In addition, the flight test demonstrates that reliable operation of thermoelectric energy harvesting in harsh aircraft environments seems to be feasible, therefore paving the way for realization of energy-autonomous, wireless sensor networks.

  19. Aircraft Configured for Flight in an Atmosphere Having Low Density

    NASA Technical Reports Server (NTRS)

    Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Guynn, Mark D. (Inventor); Hunter, Craig A. (Inventor); Paddock, David A. (Inventor); Riddick, Steven E. (Inventor); Teter, Jr., John E. (Inventor)

    2012-01-01

    An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

  20. Flight experience with manually controlled unconventional aircraft motions

    NASA Technical Reports Server (NTRS)

    Barfield, A. F.

    1978-01-01

    A modified YF-16 aircraft was used to flight demonstrate decoupled modes under the USAF Fighter Control Configured Vehicle (CCV) Program. The direct force capabilities were used to implement seven manually controlled unconventional modes on the aircraft, allowing flat turns, decoupled normal acceleration control, independent longitudinal and lateral translations, uncoupled elevation and azimuth aiming, and blended direct lift. This paper describes the design, development, and flight testing of these control modes. The need for task-tailored mode authorities, gain-scheduling and selected closed-loop design is discussed.

  1. Propeller aircraft noise-certification and flight testing

    NASA Astrophysics Data System (ADS)

    Heller, H.

    Specifications for controlling aircraft noise emission and emission as developed by the ICAO and presently entitled International Standards and Recommended Practices - Environmental Protection, ANNEX 16 to the Convention on International Civil Aviation/ Volume 1, Aircraft Noise are elaborated. Those portions dealing with the noise certification of heavy (commuter and transport) and light (sports and recreational) propeller driven aircraft are discussed. Some information on the practice of noise certification data acquisition and evaluation, based on several hundred measurements, are provided. Current ideas towards changing, consolidating, and improving the present schemes and procedures are described. Specific acoustic problem areas in flight testing and analysis are also covered.

  2. On-Line Safe Flight Envelope Determination for Impaired Aircraft

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John

    2015-01-01

    The design and simulation of an on-line algorithm which estimates the safe maneuvering envelope of aircraft is discussed in this paper. The trim envelope is estimated using probabilistic methods and efficient high-fidelity model based computations of attainable equilibrium sets. From this trim envelope, a robust reachability analysis provides the maneuverability limitations of the aircraft through an optimal control formulation. Both envelope limits are presented to the flight crew on the primary flight display. In the results section, scenarios are considered where this adaptive algorithm is capable of computing online changes to the maneuvering envelope due to impairment. Furthermore, corresponding updates to display features on the primary flight display are provided to potentially inform the flight crew of safety critical envelope alterations caused by the impairment.

  3. Flight-deck display of neighboring aircraft wake vortices

    NASA Astrophysics Data System (ADS)

    Holforty, Wendy L.

    Over the coming decades, aviation operations are predicted to rise steadily, increasing the burden on already congested and constrained airspace. A major factor governing the safe minimum separation distance between aircraft is the hazard generated by the wake of neighboring aircraft. Unaware of their proximity to other traffic, aircraft have encountered the wake turbulence of neighboring aircraft tens of miles ahead of them with serious or fatal consequences. The wake display described herein is a perspective view, synthetic vision, flight deck display that enables flight crews to "see" neighboring aircraft, as well as their wakes via a predictive algorithm. Capable of enhancing the situational awareness with respect to the wake-vortex encounter hazard by enabling the flight crew to see the relative position of their aircraft with respect to the wake hazard, the display may allow for a decrease in the standard aircraft spacing to those now used in VFR conditions and an increase in airport and airspace capacity. At present, there is no mechanism in place in the National Airspace System that warns pilots of potential wake vortex encounters. The concept of a wake vortex display addresses the need for a real-time wake vortex avoidance scheme available directly to the pilot. The wake display has been evaluated under both simulated and actual flight conditions. Thirteen pilots with flight experience ranging from a student pilot to commercial airline and military pilots served as pilot test subjects evaluating the display under simulated conditions. The pilot test subjects completed a survey concerning their knowledge and understanding of wake vortices prior to the simulation data trials and, after the trials, they completed a pilot evaluation and postflight survey rating their experience and providing feedback for the display design. One test pilot and four guest pilots flew the display during the in-flight evaluations incorporating three wake encounter scenarios. They

  4. Mach's square-or-diamond phenomenon in microgravity during parabolic flight.

    PubMed

    Clément, Gilles; Bukley, Angie

    2008-12-12

    In a classic demonstration, Ernst Mach showed that the same figure could be perceived as a square or as a diamond depending on the orientation of the subject relative to gravity. Such phenomenon is based on the use of a geocentric reference frame for object perception. If the central nervous system perceives an object with respect to the gravitationally defined vertical, what will happen if this reference frame is removed? We investigated the Mach phenomenon in subjects placed in short-term microgravity during parabolic flight. Subjects were presented with a square with a corner pointing upwards, and asked whether they perceived it as a diamond or square with the head upright or tilted 45 degrees in roll both in normal gravity and when free-floating in microgravity during parabolic flight. The addition of a rectangular frame around the figure was also investigated. In contrast to the normal gravity condition, with the head tilted the subjects still perceived a diamond figure in microgravity, indicating that they had switched from a geocentric to an egocentric reference frame. Also in contrast to the normal gravity condition, adding a rectangular frame around the figure did not significantly change the perception of the object in microgravity, suggesting that an intrinsic reference determined by the axis of elongation or symmetry of the object does not easily override an egocentric reference frame like it does for a geocentric reference frame.

  5. Altered Gravity Simulated by Parabolic Flight and Water Immersion Leads to Decreased Trunk Motion

    PubMed Central

    Tian, Yu; Li, Fan; Zhang, Shaoyao; Zhang, Lin; Guo, Yaoyu; Liu, Weibo; Wang, Chunhui; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Gravity is one of the important environmental factors that influence the physiologies and behaviors of animals and humans, and changes in gravity elicit a variety of physiological and behavioral alterations that include impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions. To elucidate the effects of gravity on human physiology and behavior, we examined changes in wrist and trunk activities and heart rate during parabolic flight and the activity of wrist and trunk in water immersion experiments. Data from 195 person-time parabolas performed by eight subjects revealed that the trunk motion counts decreased by approximately half during ascending legs (hypergravity), relative to the data acquired before the parabolic flights. In contrast, the wrist activity remained unchanged. The results from the water immersion experiments demonstrated that in the underwater condition, both the wrist and trunk activities were significantly decreased but the latter decreased to a much lower level. Together, these data suggest that gravitational alterations can result in differential influences on the motions of the wrist and the trunk. These findings might be important for understanding the degeneration of skeleton and muscular system and performance of astronauts in microgravity. PMID:26208253

  6. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  7. Altered Gravity Simulated by Parabolic Flight and Water Immersion Leads to Decreased Trunk Motion.

    PubMed

    Wang, Peiliang; Wang, Zheng; Wang, Dongni; Tian, Yu; Li, Fan; Zhang, Shaoyao; Zhang, Lin; Guo, Yaoyu; Liu, Weibo; Wang, Chunhui; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Gravity is one of the important environmental factors that influence the physiologies and behaviors of animals and humans, and changes in gravity elicit a variety of physiological and behavioral alterations that include impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions. To elucidate the effects of gravity on human physiology and behavior, we examined changes in wrist and trunk activities and heart rate during parabolic flight and the activity of wrist and trunk in water immersion experiments. Data from 195 person-time parabolas performed by eight subjects revealed that the trunk motion counts decreased by approximately half during ascending legs (hypergravity), relative to the data acquired before the parabolic flights. In contrast, the wrist activity remained unchanged. The results from the water immersion experiments demonstrated that in the underwater condition, both the wrist and trunk activities were significantly decreased but the latter decreased to a much lower level. Together, these data suggest that gravitational alterations can result in differential influences on the motions of the wrist and the trunk. These findings might be important for understanding the degeneration of skeleton and muscular system and performance of astronauts in microgravity. PMID:26208253

  8. Altered Gravity Simulated by Parabolic Flight and Water Immersion Leads to Decreased Trunk Motion.

    PubMed

    Wang, Peiliang; Wang, Zheng; Wang, Dongni; Tian, Yu; Li, Fan; Zhang, Shaoyao; Zhang, Lin; Guo, Yaoyu; Liu, Weibo; Wang, Chunhui; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Gravity is one of the important environmental factors that influence the physiologies and behaviors of animals and humans, and changes in gravity elicit a variety of physiological and behavioral alterations that include impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions. To elucidate the effects of gravity on human physiology and behavior, we examined changes in wrist and trunk activities and heart rate during parabolic flight and the activity of wrist and trunk in water immersion experiments. Data from 195 person-time parabolas performed by eight subjects revealed that the trunk motion counts decreased by approximately half during ascending legs (hypergravity), relative to the data acquired before the parabolic flights. In contrast, the wrist activity remained unchanged. The results from the water immersion experiments demonstrated that in the underwater condition, both the wrist and trunk activities were significantly decreased but the latter decreased to a much lower level. Together, these data suggest that gravitational alterations can result in differential influences on the motions of the wrist and the trunk. These findings might be important for understanding the degeneration of skeleton and muscular system and performance of astronauts in microgravity.

  9. Dryden B-52 Launch Aircraft in Flight over Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of

  10. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  11. Theory of Aircraft Flight. Aerospace Education II. Instructional Unit I.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This publication provides guidelines for teachers using the Aerospace Education II series publication entitled "Theory of Aircraft Flight." The organization of the guide for each chapter is according to objectives (traditional and behavioral), suggested outline, orientation, suggested key points, suggestions for teaching, instructional aids,…

  12. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.

    1991-01-01

    The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.

  13. Modification of urinary secretion of 8-hydroxy-2'-deoxyguanosine and serum ACTH concentration following repetitive parabolic flights.

    PubMed

    Nomura, J; Arase, Y; Sugaya, S; Moriya, T; Chen, Z; Takahashi, S; Kita, K; Kikuno, K; Nomura, F; Suzuki, N

    2001-07-01

    It is important to clarify the molecular mechanisms of physiological responses of the human body to changes in gravity. Previous reports demonstrated that gravity-changing stress increases the human urinary concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG). However, it has yet to be clarified whether repetitive parabolic flight modulates the urinary concentration of 8-OHdG after exposure to gravity-changing stress. In the present study, the effects of the number of previous experiences with parabolic flight on urinary excretion of 8-OHdG and concentration of serum ACTH were examined in 12 healthy volunteers.

  14. Water vapor in the lower stratosphere measured from aircraft flight

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Guenther, B.; Dunn, P.

    1977-01-01

    Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11-19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature were derived from the flight data and show mixing ratios predominantly between 2 and 4 microg/g with an extreme range of 1-8 microg/g. Measurement precision was estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy was estimated to be about + or - 40% at 19 km. A height-averaged latitudinal cross section of water vapor indicates symmetry of wet and dry zones. This cross section is compared with other aircraft measurements and relates to meridional circulation models.

  15. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Aircraft ground and flight... and Clauses 1852.228-70 Aircraft ground and flight risk. As prescribed in 1828.370(a), insert the..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  16. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Aircraft ground and flight... and Clauses 1852.228-70 Aircraft ground and flight risk. As prescribed in 1828.370(a), insert the..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  17. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Aircraft ground and flight... and Clauses 1852.228-70 Aircraft ground and flight risk. As prescribed in 1828.370(a), insert the..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  18. X-31 Enhanced Fighter Maneuverability Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The X-31 Enhanced Fighter Maneuverability aircraft in flight over California's Mojave desert during a 1992 test flight. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat

  19. Flight mechanics of a tailless articulated wing aircraft.

    PubMed

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

    2011-06-01

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  20. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  1. Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform

    NASA Technical Reports Server (NTRS)

    Engblom, W. A.; Decker, R. K.

    2016-01-01

    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.

  2. Flight propulsion control integration for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.

    1987-01-01

    The goal of the propulsion community is to have the enabling propulsion technologies in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack fighter aircraft in the mid-1990's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL, and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff vertical landing fighter/attack aircraft in the post-ATF period. The rationale, methods, and criteria used in developing a joint NASA Lewis and NASA Ames research program to develop the technology element for integrated flight propulsion control through integrated methodologies is presented. This program, the Supersonic STOVL Integrated Flight Propulsion Controls Program, is part of the overall NASA Lewis Supersonic STOVL integrated approach to an integrated program to achieve integrated flight propulsion control technology.

  3. Parabolic flight reveals independent binocular control of otolith-induced eye torsion

    NASA Technical Reports Server (NTRS)

    Markham, C. H.; Diamond, S. G.; Stoller, D. F.

    2000-01-01

    To examine otolith-governed ocular torsion in hyper- and hypogravity, eight subjects, including two astronauts, underwent parabolic flight while seated upright with head fixed. A mask fitted with two video cameras provided synchronized images of both eyes at a rate of 25/sec during 15 parabolas, the individual parabolas separated by a few minutes of level 1 G flight. Three main findings emerged: 1) After the first parabola, most subjects showed differential torsional offset of the two eyes in the 1 G portions between parabolas, compared to the conjugate baseline position of the eyes prior to the first parabola. 2) Changes in binocular torsion in the 0 G and 1.8 G portions of parabolic flight revealed in most subjects systematic reversal of direction. The reversal was consistent within, but not across subjects. 3) Disconjugacy defined as the moment-to-moment difference in the movements of the two eyes, and evaluated without the contribution of the differential offset, found two subjects with relatively high disconjugacy scores, and the remaining six with low scores. On the basis of prior studies (9, 20), we would predict the first two would be subject to SMS, the remainder not. The two astronauts, who did not have SMS on their space missions, fell into the low scoring group. We propose that the disconjugacies may be due to intrinsic asymmetries in the otolith receptors on the two sides of the head, which appear to be independently linked to the extraocular muscles of the two eyes, a phenomenon masked in normal 1 G states by adaptation. The apparently independent control of the two sides cannot be detected by the simpler and more common monocular studies.

  4. X-29A aircraft structural loads flight testing

    NASA Technical Reports Server (NTRS)

    Sims, Robert; Mccrosson, Paul; Ryan, Robert; Rivera, Joe

    1989-01-01

    The X-29A research and technology demonstrator aircraft has completed a highly successful multiphase flight test program. The primary research objective was to safely explore, evaluate, and validate a number of aerodynamic, structural, and flight control technologies, all highly integrated into the vehicle design. Most of these advanced technologies, particularly the forward-swept-wing platform, had a major impact on the structural design. Throughout the flight test program, structural loads clearance was an ongoing activity to provide a safe maneuvering envelope sufficient to accomplish the research objectives. An overview is presented of the technologies, flight test approach, key results, and lessons learned from the structural flight loads perspective. The overall design methodology was considered validated, but a number of structural load characteristics were either not adequately predicted or totally unanticipated prior to flight test. While conventional flight testing techniques were adequate to insure flight safety, advanced analysis tools played a key role in understanding some of the structural load characteristics, and in maximizing flight test productivity.

  5. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  6. An Indispensable Ingredient: Flight Research and Aircraft Design

    NASA Technical Reports Server (NTRS)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  7. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  8. Feasibility of real-time 3D echocardiography in weightlessness during parabolic flight.

    PubMed

    Caiani, E G; Sugeng, L; Weinert, L; Husson, S; Bailliart, O; Capderou, A; Lang, R M; Vaida, P

    2004-07-01

    Aim of the study was to test the feasibility of transthoracic real-time 3D (Philips) echocardiography (RT3D) during parabolic flight, to allow direct measurement of heart chambers volumes modifications during the parabola. One RT3D dataset corresponding to one cardiac cycle was acquired at each gravity phase (1 Gz, 1.8 Gz, 0 Gz, 1.8 Gz) during breath-hold in 8 unmedicated normal subjects (41 +/- 8 years old) in standing upright position. Preliminary results, obtained by semi-automatically tracing left ventricular (LV) and left atrial (LA) endocardial contours in multiple views (Tomtec), showed a significant (p<0.05) reduction, compared to 1 Gz, of LV and LA volumes with 1.8 Gz, and a significant increase with 0 Gz. Further analysis will focus on the right heart.

  9. Motion sickness susceptibility during rotation at 30 rpm in free-fall parabolic flight

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1979-01-01

    To make comparisons with experimental motion sickness susceptibility in Skylab missions, subjects were tested during free fall in parabolic flight and in ground-based simulation tests. They were rotated at 30 rpm in a rotating litter chair (RLC) with head fixed, head swiveling left-to-right, or with 90 degree forward and return head and body movements. Stressful accelerations similar to those in the Skylab RLC were generated only in the tests aloft, where subjects who made 'forward and return' movements (generating cross-coupled angular accelerations) were substantially more prone to motion sickness than those with either head fixed or head swiveling left-to-right. However, with head swiveling, susceptibility was slightly higher in the laboratory than aloft.

  10. Heart Rate and Blood Pressure Variability under Moon, Mars and Zero Gravity Conditions During Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Aerts, Wouter; Joosen, Pieter; Widjaja, Devy; Varon, Carolina; Vandeput, Steven; Van Huffel, Sabine; Aubert, Andre E.

    2013-02-01

    Gravity changes during partial-G parabolic flights (0g -0.16g - 0.38g) lead to changes in modulation of the autonomic nervous system (ANS), studied via the heart rate variability (HRV) and blood pressure variability (BPV). HRV and BPV were assessed via classical time and frequency domain measures. Mean systolic and diastolic blood pressure show both increasing trends towards higher gravity levels. The parasympathetic and sympathetic modulation show both an increasing trend with decreasing gravity, although the modulation is sympathetic predominant during reduced gravity. For the mean heart rate, a non-monotonic relation was found, which can be explained by the increased influence of stress on the heart rate. This study shows that there is a relation between changes in gravity and modulations in the ANS. With this in mind, countermeasures can be developed to reduce postflight orthostatic intolerance.

  11. EMG analysis of human postural responses during parabolic flight microgravity episodes

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1990-01-01

    Anticipatory postural activity in the trunk and legs precedes rapid shoulder flexion in unit gravity. The hypothesis that anticipatory activity is a component of a single neural command for arm movement was tested by monitoring the surface electromyographic activity of the biceps femoris, paraspinals, and deltoid muscles of three subjects during the microgravity phase of parabolic flight. If part of a single command, anticipatory postural activity would be expected to remain intact despite the absence of the body's center of gravity in a reduced gravity environment. However, in at least 75 percent of the microgravity trials anticipatory biceps femoris activity was absent, indicating a separation of postural and agonist muscle activity. Such a finding suggests that anticipatory postural biceps femoris activity may be initiated independently of agonist (deltoid) activity.

  12. Central hemodynamics in a baboon model during microgravity induced by parabolic flight

    NASA Astrophysics Data System (ADS)

    Latham, R. D.; Fanton, J. W.; Vernalis, M. N.; Gaffney, F. A.; Crisman, R. P.

    1994-08-01

    We developed a chronically instrumented nonhuman primate model (baboon) to evaluate the central cardiovascular responses to transient microgravity induced by parabolic flight. Instrumentation provided simultaneous recording of high fidelity (Ao) and pulmonary artery (PA) pressures, right and left ventricular and atrial pressures, Ao and PA blood flow velocities and vessel dimensions, ECG and pleural pressures. Four daily flights in 1991 and five in 1992 were flown with forty parabola per flight. Animals flown in 1991 were not controlled for volume status. Animals flown in 1992 were studied in one of three conditions: 1) volume depleted by furosemide (DH), 2) volume expanded by saline infusion (VE), and 3) euvolemic (EU, no intervention, used for echo only). Mean right atrial pressures (RAP) during 1991 flights had a variable early microgravity response: increases in n=3 and decrease in n=3 (supine) and increases in n=5, decreases in n=2 (upright). In 1992 flights, DH, upright and supine, changed -10 +/- 4.1 mmHg, -3.2 +/- 2.2 mmHg, respectively (p<.05) compared to the pull-up phase. In contrast, VE changed (from pull-up to microgravity) +13 +/- 1.5 mmHg and +4.25 +/- 2.9 mmHg (upright and supine, respectively, p <.05). EU increased with microgravity +6.9 +/- .9 mmHg (upright only). LAP responses were similar, but more variable. Finally, heart chamber areas paralleled pressure changes. Thus, right and left heart filling pressure changes with sudden entry into microgravity conditions were dependent on initial circulatory volume status and somewhat modified by position (supine vs upright).

  13. Effects of parabolic flight and spaceflight on the endocannabinoid system in humans.

    PubMed

    Strewe, Claudia; Feuerecker, Matthias; Nichiporuk, Igor; Kaufmann, Ines; Hauer, Daniela; Morukov, Boris; Schelling, Gustav; Chouker, Alexander

    2012-01-01

    The endocannabinoid system (ECS) plays an important role in the regulation of physiological functions,from stress and memory regulation to vegetative control and immunity. The ECS is considered a central and peripheral stress response system to emotional or physical challenges and acts through endocannabinoids (ECs), which bind to .their receptors inducing subsequent effecting mechanisms. In our studies, the ECS responses have been assessed through blood concentrations of the ECs anandamide and 2-arachidonoylglycerol. In parallel, saliva cortisol was determined and the degree of perceived stress was quantified by questionnaires. This report summarizes the reactivity of the ECS in humans subjected to brief periods of kinetic stress and weightlessness during parabolic flights and to prolonged stress exposure during life onboard the International Space Station (ISS). Both conditions resulted in a significant increase in circulating ECs. Under the acute stress during parabolic flights, individuals who showed no evidence of motion sickness were in low-stress conditions and had a significant increase of plasma ECs. In contrast,highly stressed individuals with severe motion sickness had an absent EC response and a massive increase in hypothalamic-pituitary-adrenal axis activity. Likewise, chronic but well-tolerated exposure to weightlessness and emotional and environmental stressors on the ISS for 6 months resulted in a sustained increase in EC blood concentrations,which returned to baseline values after the cosmonauts'return. These preliminary results suggest that complex environmental stressors result in an increase of circulating ECs and that enhanced EC signaling is probably required for adaptation and tolerance under stressful conditions.

  14. Flight evaluation of advanced flight control systems and cockpit displays for powered-lift STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Smith, D. W.; Watson, D. M.; Warner, D. N., Jr.; Innis, R. C.; Hardy, G. H.

    1976-01-01

    A flight research program was conducted to assess the improvements, in longitudinal path control during a STOL approach and landing, that can be achieved with manual and automatic control system concepts and cockpit displays with various degrees of complexity. NASA-Ames powered-lift Augmentor Wing Research Aircraft was used in the research program. Satisfactory flying qualities were demonstrated for selected stabilization and command augmentation systems and flight director combinations. The ability of the pilot to perform precise landings at low touchdown sink rates with a gentle flare maneuver was also achieved. The path-control improvement is considered to be applicable to other powered-lift aircraft configurations.

  15. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  16. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  17. Aircraft Integration and Flight Testing of 4STAR

    SciTech Connect

    Flynn, CJ; Kassianov, E; Russell, P; Redemann, J; Dunagan, S; Holben, B

    2012-10-12

    Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

  18. Nonlinear simulation of a flexible aircraft in maneuvering flight

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Arbuckle, P. Douglas; Zeiler, Thomas A.

    1987-01-01

    A mathematical model integrating nonlinear rigid-body flight mechanics and linear aeroelastic dynamics is examined; the equations of motion for an elastic aircraft in accelerated flight are developed using Lagrangian mechanics. This approach is used to construct a simulation model of an F/A-18 (configured with tip missiles) which includes angular/elastic inertial coupling (IC). In general, the elastic modes significantly affected by IC were aerodynamically decoupled from the rest of the model. The affected modes were those which induced changes in total aircraft mass distribution. The elastic effect is noticeable if deformation-induced mass distribution changes are significant with respect to modal mass and modal frequencies. A modal parameter is presented which characterizes the level of IC between elastic momentum and rigid-body angular momentum.

  19. Water vapor in the lower stratosphere measured from aircraft flight

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Guenther, B.; Dunn, P.

    1976-01-01

    Water vapor in the lower stratosphere was measured in situ by two aluminum oxide hygrometers mounted on the nose of an RB57 aircraft. Data were taken nearly continuously from January to May 1974 from an altitude of approximately 11 km to 19 km as the aircraft flew between 70 deg N and 50 deg S over the land areas in the Western Hemisphere. Pseudomeridional cross sections of water vapor and temperature are derived from the flight data and show mixing ratios predominantly between 2 and 4 micron gm/gm with an extreme range of 1 to 8 micron gm/gm. Measurement precision is estimated by comparing the simultaneously measured values from the two flight hygrometer systems. Accuracy is estimated to be about + or - 40 percent at 19 km. A height-averaged latitudinal cross section of water vapor shows symmetry of wet and dry zones.

  20. Impact of flight systems integration on future aircraft design

    NASA Technical Reports Server (NTRS)

    Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.

    1984-01-01

    Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.

  1. Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1985-01-01

    Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.

  2. Modeling flight attendants' exposures to pesticide in disinsected aircraft cabins.

    PubMed

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2013-12-17

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means ± standard devitions) of daily total exposure intakes were 0.24 (3.8 ± 10.0), 1.4 (4.2 ± 5.7), and 0.15 (2.1 ± 3.2) μg day(-1) kg(-1) of body weight for scenarios of residual application, preflight, and top-of-descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than top-of-descent spray and residual application, respectively.

  3. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  4. In-flight detection and identification and accommodation of aircraft icing

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2012-11-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  5. Function Test of an Automatic Locking and Unlocking System for Passive Damper by using Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Sakurai, M.; Yoshihara, S.; Ohnishi, M.; Watanabe, K.; Sekiya, T.

    2002-01-01

    existence of residual acceleration has been reported.The acceleration is called "g-jitter".In a lot of experiments carried out in space, the adverse influence of the g-jitter on their results has been found out.To understand the effect of g-jitter on fluid phenomena, we are making preparation to orbital experiment as a post-JUSTSAP. In the experiment, the information to understand the influence of the g-jitter on diffusion phenomena will be obtained by comparing diffusion process in two containers. One container is isolated from the g-jitter using a passive damper and the other is not. To avoid the strong accelerations during launch giving damage to the passive damper, an automatic locking and unlocking system for the passive damper must be applied to the experimental apparatus. To increase flight opportunity of the experiment, the apparatus is designed as a small, light, self-controlled and self-powered system.In order to test the function of the apparatus, we have carried out parabolic flight experiments as preparations for the orbital experiment. mol/l), ethanol (0.7%) and NaCl (0.02 mol/l) is set on the upper base plate, which has the passive damper and the locking-unlocking system.The other container is directly set on the lower base plate.The passive damper comprises of flexible membranes and thin-metal plate and connecting rods. The damping is performed under micro-gravity condition by utilizing the non-linear elasticity of flexible membranes. The CPU unit on the upper base plate has 8 channels of A/D converter to measure 3-dimensional vibrations and 8 relays to control all experimental procedures, that is, locking, unlocking, heating, recording and so on. The power unit provides electricity to the CPU unit, the locking-unlocking system and heaters. A digital camera records diffusion of color in both cells simultaneously. color between pH8.3 and pH10. airplane vibrations were directly translated to the experimental container.During a parabolic flight, a

  6. Results from a GPS Shuttle Training Aircraft flight test

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

    1991-01-01

    A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

  7. Cardiopulmonary Resuscitation in Microgravity: Efficacy in the Swine During Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Johnston, Smith L.; Campbell, Mark R.; Billica, Roger D.; Gilmore, Stevan M.

    2004-01-01

    INTRODUCTION: The International Space Station will need to be as capable as possible in providing Advanced Cardiac Life Support (ACLS) and cardiopulmonary resuscitation (CPR). Previous studies with manikins in parabolic microgravity (0 G) have shown that delivering CPR in microgravity is difficult. End tidal carbon dioxide (PetCO2) has been previously shown to be an effective non-invasive tool for estimating cardiac output during cardiopulmonary resuscitation. Animal models have shown that this diagnostic adjunct can be used as a predictor of survival when PetCO2 values are maintained above 25% of pre-arrest values. METHODS: Eleven anesthetized Yorkshire swine were flown in microgravity during parabolic flight. Physiologic parameters, including PetCO2, were monitored. Standard ACLS protocols were used to resuscitate these models after chemical induction of cardiac arrest. Chest compressions were administered using conventional body positioning with waist restraint and unconventional vertical-inverted body positioning. RESULTS: PetCO2 values were maintained above 25% of both 1-G and O-G pre-arrest values in the microgravity environment (33% +/- 3 and 41 +/- 3). No significant difference between 1-G CPR and O-G CPR was found in these animal models. Effective CPR was delivered in both body positions although conventional body positioning was found to be quickly fatiguing as compared with the vertical-inverted. CONCLUSIONS: Cardiopulmonary resuscitation can be effectively administered in microgravity (0 G). Validation of this model has demonstrated that PetCO2 levels were maintained above a level previously reported to be predictive of survival. The unconventional vertical-inverted position provided effective CPR and was less fatiguing as compared with the conventional body position with waist restraints.

  8. Centurion solar-powered high-altitude aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  9. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate...

  10. 14 CFR 91.715 - Special flight authorizations for foreign civil aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RULES Foreign Aircraft Operations and Operations of U.S.-Registered Civil Aircraft Outside of the United... required under § 91.203 if a special flight authorization for that operation is issued under this section. Application for a special flight authorization must be made to the Flight Standards Division Manager...

  11. 14 CFR 91.715 - Special flight authorizations for foreign civil aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RULES Foreign Aircraft Operations and Operations of U.S.-Registered Civil Aircraft Outside of the United... required under § 91.203 if a special flight authorization for that operation is issued under this section. Application for a special flight authorization must be made to the Flight Standards Division Manager...

  12. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate...

  13. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  14. Joint European Partial-G Parabolic Flight Campaign-Calcium Analysis in Arabidopsis Thaliana Cell Cultures

    NASA Astrophysics Data System (ADS)

    Neef, Maren; Fengler, Svenja; Ecke, Margret; Hausmann, Niklas; Hampp, Rudiger

    2013-02-01

    Callus cells derived from stem tissue suspension cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights on board of an Airbus A300 (Novespace). The cells were either wild type or expressed a fluorescent probe for the quantification of cytosolic calcium (green fluorescent protein (GFP)-based Cameleon). The wild type cells were used for both, fluorescence background control, and the analysis of gene expression. With respect to fluorescence measurements, changes in the amounts of Ca2+, an important component of signalling chains, could be assayed in vivo in real time. The technique used takes advantage of a shift in fluorescence from 480 to 535 nm with increasing Ca2+ content. During the experiment, fluorescence data were monitored at Mars, Moon and micro gravity producing flight profiles, each at 1g, pull up (1.8g), about 20 to 26 s of mars (0.36g), moon (0.16g) or micro gravity, and pull out (1.8g) for 12/12/6 consecutive parabolas at different days. Transition from hypergravity to microgravity resulted in a typical increase in cytosolic Ca2+. The flight profile “Moon” (0.16g) exhibited a very similar behaviour as microgravity, whereas simulation of “Mars” gravitation (0.36) resulted in a weaker signal. This can also be deduced from minimal/maximal values of the ratio between hyper-g and onset of reduced g. Obviously, the threshold gravitation for a Ca2+ response is above 0.36g. Increasing gravity by centrifugation, in contrast, induced a decrease in cytosolic calcium. Here, a threshold in response was obvious between 3 and 4g. In order to assay changes in gene expression, we additionally quenched parabolic flight samples by the injection of RNAlater. A microarray analysis of these samples showed a clear impact of the different profiles. Both Moon and Mars profiles exhibited less response than the μg profile. However, the latter responded also less compared to previous “μg only” flights. In those we had much higher numbers of

  15. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  16. Altus I aircraft in flight, retracting landing gear after takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The landing gear of the remotely piloted Altus I aircraft retracts into the fuselage after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, was designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology project, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  17. In-flight interior sound field mapping in propeller aircraft

    NASA Astrophysics Data System (ADS)

    van der Auweraer, H.; Gielen, L.; Otte, D.

    Interior noise in propeller aircraft is currently an important issue in the aerospace industry. Efficient noise control measures require a thorough understanding of the in-flight response of the vibro-acoustic system, formed by fuselage, trim panels and cabin cavity, to the propeller excitation. The cabin interior noise is dominated by the lower order blade pass tones of the propellers. It is therefore important to map the acoustic sound field and the trimpanel and fuselage vibration responses at these frequencies. It is further advantageous to estimate the separated contributions of the two propellers because it allows a better understanding of the coupling between the propeller sound fields, the fuselage and the cabin cavity. It also provides a convenient means to compare different flight tests, regardless of the synchrophasor setting or stability. This paper discusses the acquisition and analysis of operating data on a fully trimmed Saab 340, a twin-engine commuter aircraft. The estimation of each propeller's contribution by means of cross-spectrum and coherence analysis techniques is further explored, in relation with signal processing issues, as windowing and leakage. Some resulting in-flight cabin cavity sound field shapes and trimpanel deformations are presented and discussed.

  18. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  19. Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Hill, Melissa A.

    2012-01-01

    A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

  20. Flight Test of ASAC Aircraft Interior Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda

    1999-01-01

    A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.

  1. Emergency in-flight egress opening for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1980-01-01

    In support of a stall/spin research program, an emergency in-flight egress system is being installed in a light general aviation airplane. To avoid a major structural redesign for a mechanical door, an add-on 11.2 kg pyrotechnic-actuated system was developed to create an opening in the existing structure. The airplane skin will be explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel will be jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mock-ups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics.

  2. Flight assessment of a large supersonic drone aircraft for research use

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  3. Small-aircraft flight evaluation of Rustrak chart recorder

    NASA Technical Reports Server (NTRS)

    Salter, R. J., Jr.; Lilley, R. W.

    1976-01-01

    It was found that the RUSTRAK recorder was only slightly hampered by aircraft vibration while in level cruising flight or while taxiing, regardless of light turbulence or particular mounting configuration. No one mounting configuration was better than the other. There is some (approximately 1/4 inch) vibration error during climbs, descents, and touchdowns in choppy weather. However, it was found that improved performance resulted from setting the recorder on carpet rather than the metal floor plate. This suggests that padding the recorder with some cushioning, shock-damping material might reduce the engine vibration and wind chop effects.

  4. Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights.

    PubMed

    Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro; Tatsumi, Hitoshi

    2013-10-01

    Gravity is a critical environmental factor affecting the morphology and functions of organisms on the Earth. Plants sense changes in the gravity vector (gravistimulation) and regulate their growth direction accordingly. In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation, achieved by rotating the specimens under the ambient 1g of the Earth, is known to induce a biphasic (transient and sustained) increase in cytoplasmic calcium concentration ([Ca(2+)]c). However, the [Ca(2+)]c increase genuinely caused by gravistimulation has not been identified because gravistimulation is generally accompanied by rotation of specimens on the ground (1g), adding an additional mechanical signal to the treatment. Here, we demonstrate a gravistimulation-specific Ca(2+) response in Arabidopsis seedlings by separating rotation from gravistimulation by using the microgravity (less than 10(-4)g) conditions provided by parabolic flights. Gravistimulation without rotating the specimen caused a sustained [Ca(2+)]c increase, which corresponds closely to the second sustained [Ca(2+)]c increase observed in ground experiments. The [Ca(2+)]c increases were analyzed under a variety of gravity intensities (e.g. 0.5g, 1.5g, or 2g) combined with rapid switching between hypergravity and microgravity, demonstrating that Arabidopsis seedlings possess a very rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes (0.5g-2g) into Ca(2+) signals on a subsecond time scale.

  5. The brain adjusts grip forces differently according to gravity and inertia: a parabolic flight experiment

    PubMed Central

    White, Olivier

    2015-01-01

    In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force (GF), normal to the finger/object contact, in anticipation of the expected tangential load force (LF), resulting from the combination of the gravitational and the inertial forces. In many contexts, GF and LF are linearly coupled. A few studies have examined how we adjust the parameters–gain and offset–of this linear relationship. However, the question remains open as to how the brain adjusts GF regardless of whether LF is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of LF by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust GF, the brain is sensitive to how LFs are produced at the fingertips. This provides clear evidence that the analysis of the origin of LF is performed centrally, and not only at the periphery. PMID:25717293

  6. The behavioral responses of amphibians and reptiles to microgravity on parabolic flights.

    PubMed

    Wassersug, Richard J; Roberts, Lesley; Gimian, Jenny; Hughes, Elizabeth; Saunders, Ryan; Devison, Darren; Woodbury, Jonathan; O'Reilly, James C

    2005-01-01

    In the present study, we exposed 53 animals from 23 different species of amphibians and reptiles to microgravity (mug). This nearly doubles the number of amphibians and reptiles observed so far in mug. The animals were flown on a parabolic flight, which provided 20-25s of mug, to better characterize behavioral reactions to abrupt exposure to mug. Highly fossorial limbless caecilians and amphisbaenians showed relatively limited movement in mug. Limbed quadrupedal reptiles that were non-arboreal in the genera Leiocephalus, Anolis, and Scincella showed the typical righting response and enormous amounts of body motion and tail rotation, which we interpreted as both righting responses and futile actions to grasp the substrate. Both arboreal and non-arboreal geckos in the genera Uroplatus, Palmatogecko, Stenodactylus, Tarentola, and Eublepharis instead showed a skydiving posture previously reported for highly arboreal anurans. Some snakes, in the genera Thamnophis and Elaphe, which typically thrashed and rolled in mug, managed to knot their own bodies with their tails and immediately became quiescent. This suggests that these reptiles gave stable physical contact, which would indicate that they were not falling, primacy over vestibular input that indicated that they were in freefall. The fact that they became quiet upon self-embrace further suggests a failure to distinguish self from non-self. The patterns of behavior seen in amphibians and reptiles in mug can be explained in light of their normal ecology and taxonomic relations.

  7. Effects of Varying Gravity Levels in Parabolic Flight on the Size-Mass Illusion

    PubMed Central

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects. PMID:24901519

  8. ^4He Crystals in Reduced Gravity Obtained by Parabolic Flights of a Jet Plane

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Nomura, Ryuji; Okuda, Yuichi

    2016-11-01

    ^4He crystals usually sink to the bottom of the container in a superfluid and are deformed into a flat shape by gravity when their size is much larger than the capillary length of 1 mm. When gravity is reduced to zero, the capillary length diverges and the gravity-flattened crystals are expected to relax into an equilibrium crystal shape determined by the interfacial free energy at low enough temperatures where the relaxation time is very short. We performed a reduced gravity experiment on ^4He crystals at ultralow temperatures by developing a specially designed ^3He-^4He dilution refrigerator compatible with the experimental restrictions in a small jet plane. ^4He crystals relaxed to the equilibrium crystal shape below 600 mK during a reduced gravity period of 20 s produced by a parabolic flight. The equilibrium crystal shape, however, was metastable in most cases, governed by the boundary conditions imposed by the wall. Utilizing acoustic radiation pressure, we deformed the crystal enough to allow it to escape from the metastable shape below 150 mK. After this large deformation, the crystal relaxed to a shape completely different from its initial shape, showing three types of facets, viz., c-, a-, and s-facets, which was concluded to be the lowest energy equilibrium shape.

  9. Time-variant spectral analysis of heart rate variability during parabolic flight with and without LBNP.

    PubMed

    Caiani, E G; Mainardi, L T; Bailliart, O; Cholley, B; Cerutti, S; Capderou, A; Vaida, P

    2002-07-01

    Modifications of autonomic activity during parabolic flight were studied by a time-variant model able to estimate low (LF, 0.04-0.14 Hz) and high (HF, 0.14-0.35 Hz) frequency spectral components on a beat-to-beat basis. Ten subjects were studied with and without lower body negative pressure (LBNP). ECG and Gz load were digitized (500 Hz) and RR interval variability series extracted. Beat-to-beat mean RR, variance, LF and HF power were obtained. One-way ANOVA (p<0.01) was used to compare values obtained during starting 1Gz (I), first 1.8Gz (II), 0Gz (III), second 1.8Gz (IV), ending 1Gz (V). Without LBNP, total and LF power increased during 0Gz to 1.69 +/- 1.41 and 2.87 +/- 4.66 respectively (mean +/- SD, normalized by phase I value). With LBNP, their change during 0Gz (1.38 +/- 1.37 and 1.54 +/- l.04 respectively) reached significance only with phase II and phase V. Phase I HF power was higher than in the other phases, both without and with LBNP.

  10. The brain adjusts grip forces differently according to gravity and inertia: a parabolic flight experiment.

    PubMed

    White, Olivier

    2015-01-01

    In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force (GF), normal to the finger/object contact, in anticipation of the expected tangential load force (LF), resulting from the combination of the gravitational and the inertial forces. In many contexts, GF and LF are linearly coupled. A few studies have examined how we adjust the parameters-gain and offset-of this linear relationship. However, the question remains open as to how the brain adjusts GF regardless of whether LF is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of LF by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust GF, the brain is sensitive to how LFs are produced at the fingertips. This provides clear evidence that the analysis of the origin of LF is performed centrally, and not only at the periphery.

  11. Binding of isolated plant lectin by rhizobia during episodes of reduced gravity obtained by parabolic flight

    NASA Technical Reports Server (NTRS)

    Henry, R. L.; Green, P. D.; Wong, P. P.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1990-01-01

    Development of a legume root nodule is a complex process culminating in a plant/bacterial symbiosis possessing the capacity for biological dinitrogen fixation. Formation of root nodules is initiated by the binding and stabilization of rhizobia to plant root hairs, mediated in part by a receptor/ligand recognition system composed of lectins on the plant root surface and lectin-binding sites on the rhizobial cell surface. The dinitrogen fixation activity of these root nodules may be an important feature of enclosed, space-based life support systems, and may provide an ecological method to recycle nitrogen for amino acid production. However, the effects on nodule development of varied gravitational fields, or of root nutrient delivery hardware, remain unknown. We have investigated the effects of microgravity on root nodule formation, with preliminary experiments focused upon the receptor/ligand component. Microgravity, obtained during parabolic flight aboard NASA 930, has no apparent effect on the binding of purified lectin to rhizobia, a result that will facilitate forthcoming experiments using intact root tissues.

  12. Ocular torsion in upright and tilted positions during hypo- and hypergravity of parabolic flight

    NASA Technical Reports Server (NTRS)

    Diamond, Shirley G.; Markham, Charles H.

    1988-01-01

    Four subjects considered resistant to motion sickness were tested in KC-135 parabolic flight to examine ocular torsion at hypo-gravity and hypergravity. Three of these subjects showed no significant torsion at zero G in either the upright position or when tilted 30 deg to right or left. At 1.8 G in the tilted positions, they showed greater ocular counterrolling than at 1 G. None of these three subjects became motion sick. The fourth subject showed eye torsion toward his left in all positions at zero G. This leftward bias could also be seen at 1.8 G when tilted left ear down, the side that induces rightward counterrolling. There he had less eye torsion than at 1 G. This subject became motion sick. These results support the hypothesis that asymmetry of the utricular system may be well compensated in the normal 1 G environment, but unmasked in unaccustomed gravitational situations, suggesting a possible predictive test for space adaptation syndrome.

  13. Perception of Affordance during Short-Term Exposure to Weightlessness in Parabolic Flight.

    PubMed

    Bourrelly, Aurore; McIntyre, Joseph; Morio, Cédric; Despretz, Pascal; Luyat, Marion

    2016-01-01

    We investigated the role of the visual eye-height (VEH) in the perception of affordance during short-term exposure to weightlessness. Sixteen participants were tested during parabolic flight (0g) and on the ground (1g). Participants looked at a laptop showing a room in which a doorway-like aperture was presented. They were asked to adjust the opening of the virtual doorway until it was perceived to be just wide enough to pass through (i.e., the critical aperture). We manipulated VEH by raising the level of the floor in the visual room by 25 cm. The results showed effects of VEH and of gravity on the perceived critical aperture. When VEH was reduced (i.e., when the floor was raised), the critical aperture diminished, suggesting that widths relative to the body were perceived to be larger. The critical aperture was also lower in 0g, for a given VEH, suggesting that participants perceived apertures to be wider or themselves to be smaller in weightlessness, as compared to normal gravity. However, weightlessness also had an effect on the subjective level of the eyes projected into the visual scene. Thus, setting the critical aperture as a fixed percentage of the subjective visual eye-height remains a viable hypothesis to explain how human observers judge visual scenes in terms of potential for action or "affordances".

  14. Tactile Cueing as a Gravitational Substitute for Spatial Navigation During Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Montgomery, K. L.; Beaton, K. H.; Barba, J. M.; Cackler, J. M.; Son, J. H.; Horsfield, S. P.; Wood, S. J.

    2010-01-01

    INTRODUCTION: Spatial navigation requires an accurate awareness of orientation in your environment. The purpose of this experiment was to examine how spatial awareness was impaired with changing gravitational cues during parabolic flight, and the extent to which vibrotactile feedback of orientation could be used to help improve performance. METHODS: Six subjects were restrained in a chair tilted relative to the plane floor, and placed at random positions during the start of the microgravity phase. Subjects reported their orientation using verbal reports, and used a hand-held controller to point to a desired target location presented using a virtual reality video mask. This task was repeated with and without constant tactile cueing of "down" direction using a belt of 8 tactors placed around the mid-torso. Control measures were obtained during ground testing using both upright and tilted conditions. RESULTS: Perceptual estimates of orientation and pointing accuracy were impaired during microgravity or during rotation about an upright axis in 1g. The amount of error was proportional to the amount of chair displacement. Perceptual errors were reduced during movement about a tilted axis on earth. CONCLUSIONS: Reduced perceptual errors during tilts in 1g indicate the importance of otolith and somatosensory cues for maintaining spatial awareness. Tactile cueing may improve navigation in operational environments or clinical populations, providing a non-visual non-auditory feedback of orientation or desired direction heading.

  15. Perception of Affordance during Short-Term Exposure to Weightlessness in Parabolic Flight

    PubMed Central

    Bourrelly, Aurore; McIntyre, Joseph; Morio, Cédric; Despretz, Pascal; Luyat, Marion

    2016-01-01

    We investigated the role of the visual eye-height (VEH) in the perception of affordance during short-term exposure to weightlessness. Sixteen participants were tested during parabolic flight (0g) and on the ground (1g). Participants looked at a laptop showing a room in which a doorway-like aperture was presented. They were asked to adjust the opening of the virtual doorway until it was perceived to be just wide enough to pass through (i.e., the critical aperture). We manipulated VEH by raising the level of the floor in the visual room by 25 cm. The results showed effects of VEH and of gravity on the perceived critical aperture. When VEH was reduced (i.e., when the floor was raised), the critical aperture diminished, suggesting that widths relative to the body were perceived to be larger. The critical aperture was also lower in 0g, for a given VEH, suggesting that participants perceived apertures to be wider or themselves to be smaller in weightlessness, as compared to normal gravity. However, weightlessness also had an effect on the subjective level of the eyes projected into the visual scene. Thus, setting the critical aperture as a fixed percentage of the subjective visual eye-height remains a viable hypothesis to explain how human observers judge visual scenes in terms of potential for action or “affordances”. PMID:27097218

  16. Perception of Affordance during Short-Term Exposure to Weightlessness in Parabolic Flight.

    PubMed

    Bourrelly, Aurore; McIntyre, Joseph; Morio, Cédric; Despretz, Pascal; Luyat, Marion

    2016-01-01

    We investigated the role of the visual eye-height (VEH) in the perception of affordance during short-term exposure to weightlessness. Sixteen participants were tested during parabolic flight (0g) and on the ground (1g). Participants looked at a laptop showing a room in which a doorway-like aperture was presented. They were asked to adjust the opening of the virtual doorway until it was perceived to be just wide enough to pass through (i.e., the critical aperture). We manipulated VEH by raising the level of the floor in the visual room by 25 cm. The results showed effects of VEH and of gravity on the perceived critical aperture. When VEH was reduced (i.e., when the floor was raised), the critical aperture diminished, suggesting that widths relative to the body were perceived to be larger. The critical aperture was also lower in 0g, for a given VEH, suggesting that participants perceived apertures to be wider or themselves to be smaller in weightlessness, as compared to normal gravity. However, weightlessness also had an effect on the subjective level of the eyes projected into the visual scene. Thus, setting the critical aperture as a fixed percentage of the subjective visual eye-height remains a viable hypothesis to explain how human observers judge visual scenes in terms of potential for action or "affordances". PMID:27097218

  17. Human ocular torsion during parabolic flights: an analysis with scleral search coil

    NASA Technical Reports Server (NTRS)

    Cheung, B. S.; Money, K.; Howard, I.; Kirienko, N.; Johnson, W.; Lackner, J.; Dizio, P.; Evanoff, J.

    1992-01-01

    Rotation of the eyes about the visual axis is known as ocular torsion. A lateral inclination (a "roll") of the head induces ocular torsion in the opposite direction, a response known as ocular counterrolling. For six subjects, we recorded the static (head still) and dynamic (head in oscillatory roll motion) ocular torsion in normal 1 g condition and also during the microgravity and hypergravity periods of parabolic flight, using the electromagnetic scleral search coil technique. With the head still, the direction and magnitude of torsion that occurred in response to microgravity and hypergravity differed substantially from one individual to another, but there was a significant difference in torsional magnitude between the microgravity and hypergravity periods, for all static head positions including the upright position. Under normal 1 g conditions, counterrolling compensated for about 16% of (voluntary) static head roll, while dynamic counterroll was much larger, up to 36% of head roll at 0.55 Hz. With increasing frequency of head oscillation between 0.33 Hz and 0.55 Hz, the gain of counterrolling increased and there was no change in the phase relationship. The gain of dynamic counterroll (in response to voluntary head rolling) was not significantly less in hypogravity, suggesting that on the ground at these frequencies the contribution of gravity and gravity receptors to this reflex is redundant: this reflex is probably driven by the semicircular canals. In some subjects, the torsional displacement in microgravity is accompanied by micro-torsional oscillatory motion.

  18. The behavioral responses of amphibians and reptiles to microgravity on parabolic flights.

    PubMed

    Wassersug, Richard J; Roberts, Lesley; Gimian, Jenny; Hughes, Elizabeth; Saunders, Ryan; Devison, Darren; Woodbury, Jonathan; O'Reilly, James C

    2005-01-01

    In the present study, we exposed 53 animals from 23 different species of amphibians and reptiles to microgravity (mug). This nearly doubles the number of amphibians and reptiles observed so far in mug. The animals were flown on a parabolic flight, which provided 20-25s of mug, to better characterize behavioral reactions to abrupt exposure to mug. Highly fossorial limbless caecilians and amphisbaenians showed relatively limited movement in mug. Limbed quadrupedal reptiles that were non-arboreal in the genera Leiocephalus, Anolis, and Scincella showed the typical righting response and enormous amounts of body motion and tail rotation, which we interpreted as both righting responses and futile actions to grasp the substrate. Both arboreal and non-arboreal geckos in the genera Uroplatus, Palmatogecko, Stenodactylus, Tarentola, and Eublepharis instead showed a skydiving posture previously reported for highly arboreal anurans. Some snakes, in the genera Thamnophis and Elaphe, which typically thrashed and rolled in mug, managed to knot their own bodies with their tails and immediately became quiescent. This suggests that these reptiles gave stable physical contact, which would indicate that they were not falling, primacy over vestibular input that indicated that they were in freefall. The fact that they became quiet upon self-embrace further suggests a failure to distinguish self from non-self. The patterns of behavior seen in amphibians and reptiles in mug can be explained in light of their normal ecology and taxonomic relations. PMID:16351959

  19. Effects of varying gravity levels in parabolic flight on the size-mass illusion.

    PubMed

    Clément, Gilles

    2014-01-01

    When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.

  20. Boiling in variable gravity under the action of an electric field: results of parabolic flight experiments

    NASA Astrophysics Data System (ADS)

    Di Marco, P.; Raj, R.; Kim, J.

    2011-12-01

    Results from the variable gravity pool boiling experiments performed during the 52nd ESA parabolic flight campaign are reported in this paper. During a typical parabola, the gravity acceleration changes from 1.8gE (high gravity) to ~0gE (low gravity) and finally back to 1.8gE. The two high gravity periods and the microgravity period are each roughly maintained for 20 seconds while the transition from high gravity to low gravity and vice versa occurs over a period of 3-5 seconds. Use of the high feedback frequency microheater array allowed quasi-steady boiling data over the continuous range of gravity levels (0gE-1.8gE). The experimental apparatus consisted of a boiling chamber with a 7×7 mm2 microheater array in a 10×10 configuration. Each heater in the array was individually controlled to maintain a constant temperature. The array could be operated in a full configuration or a selectively powered reduced set of 3×3 heaters. Experiments were performed with FC-72 as the test fluid, the pressure was maintained at a constant value between 1 and 1.13 atm and the subcooling ranged from 27 to 11 K. An external electric field was imposed over the boiling surface by means of a grid consisting of 4 rods, laid parallel to the surface; voltages up to 10 kV were applied. The electric field was effective in reducing the size of the detaching bubbles, and increasing the heat transfer compared to the values in low-g, although its effectiveness decayed as the heat flux/superheat increased. The current results compared well with previous results obtained in the ARIEL apparatus that was operated in orbital flight.

  1. Foot-Ground Reaction Force During Resistance Exercise in Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.

    2003-01-01

    An interim Resistance Exercise Device (iRED) was designed to provide resistive exercise as a countermeasure to space flight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (l-g) versus micro gravity (O-g) achieved during parabolic flight. METHODS: Four subjects performed three exercises using the iRED (squat, heel raise, and deadlift) during I-g and O-g at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in three axes (x,y,z) using a force plate, and the magnitude of the resultant force vector was calculated (r = X 2 + y2 + Z2 ). Range of motion (ROM) was measured using a linear encoder. Peak force (PkF) and total work (TW) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p.::::0.05) were observed between I-g and O-g exercise. RESULTS: PkF and TW measured in the resultant axis were significantly less in O-g for each of the exercises tested. During O-g, PkF was 42-46% and TW was 33- 37% of that measured during I-g. ROM and average time to complete each repetition were not different from I-g to O-g. CONCLUSIONS: When performing exercises in which body mass is a portion of the resistance during I-g, PkF and TW measured during resistive exercise were reduced approximately 60-70% during O-g. Thus, a resistive exercise device during O-g will be required to provided higher resistances to induce a similar training stimulus to that on Earth.

  2. CID-720 aircraft high-environment flight instrumentation system

    NASA Technical Reports Server (NTRS)

    Calloway, R. S.

    1986-01-01

    The high-environment flight instrumentation system was designed to acquire Langley's structural response data during the full scale transport-controlled impact demonstration test. There was only one opportunity for data acquisition. Thus, a high reliability and crashworthy design approach was implemented. The approach featured multi-level redundancy and a vigorous quality assurance testing program. Complying with an accelerated schedule, the instrumentation system was developed, tested and shipped within 18 months to Dryden Flight Research Facility. The flight instrumentation system consists of two autonomous data systems, DAS #1 and #2, and an excellent checkout subsystem. Each data system is partitioned into four pallets. The system was designed to operate on manned and unmanned flights. There are 176 data channels per data system. These channels are sequentially sampled and encoded into 1 megabit/sec pulse code modulation (PCM) data signal. To increase the probability of success, a special PCM distribution subsystem was developed. This subsystem distributes the PCM signal to two transmitters, one delay memory, and eight recorder tracks. The data on four of these trackes was digitally delayed approximately 300 msec to maximize data acquisition during impact. Therefore each data system's data is redundantly recorded onboard and on the ground. There are two time code generators. Parallel time from each is encoded into both data systems. Serial time from each is redundantly recorded on both onboard recorders. Instrumentation power is independent of aircraft power and self-contained.

  3. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  4. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  5. Gravity-dependent changes in bioconvection of Tetrahymena and Chlamydomonas during parabolic flight: increases in wave number induced by pre- and post-parabola hypergravity.

    PubMed

    Kage, Azusa; Asato, Eriko; Chiba, Yoko; Wada, Yuuko; Katsu-Kimura, Yumiko; Kubota, Ayami; Sawai, Satoe; Niihori, Maki; Baba, Shoji A; Mogami, Yoshihiro

    2011-03-01

    Bioconvection emerges in a dense suspension of swimming protists as a consequence of their negative-gravitactic upward migration and later settling as a blob of density greater than that of water. Thus, gravity is an important parameter governing bioconvective pattern formation. However, inconsistencies are found in previous studies dealing with the response of bioconvection patterns to increased gravity acceleration (hypergravity); the wave number of the patterns has been reported to decrease during the hypergravity phases of parabolic aircraft flight, while it increases in centrifugal hypergravity. In this paper, we reassess the responses of bioconvection to altered gravity during parabolic flight on the basis of vertical and horizontal observations of the patterns formed by Tetrahymena thermophila and Chlamydomonas reinhardtii. Spatiotemporal analyses of the horizontal patterns revealed an increase in the pattern wave number in both pre- and post-parabola hypergravity. Vertical pattern analysis was generally in line with the horizontal pattern analysis, and further revealed that hypergravity-induced changes preceded at the top layer of the suspensions while microgravity-induced changes appeared to occur from the bottom part of the settling blobs. The responses to altered gravity were rather different between the two sample species: T. thermophila tended to drastically modify its bioconvection patterns in response to changes in gravity level, while the patterns of C. reinhardtii responded to a much lesser extent. This difference can be attributed to the distinct physical and physiological properties of the individual organisms, suggesting a significant contribution of the gyrotactic property to the swimming behavior of some protists.

  6. Directional solidification of Cu- Pb and Bi- Ga monotectic alloys under normal gravity and during parabolic flight

    NASA Astrophysics Data System (ADS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1988-11-01

    Cu-Pb and Bi-Ga monotectic alloys of nominal hypermonotectic compositions were directionally solidified under various furnace translation rates, temperature gradients, and gravity levels. Gravity was varied by solidifying the alloys under ground conditions and in the furnace aboard NASA KC-135 aircraft, flying on parabolic trajectories. High translation rates, high gradients, high gravity levels, and higher density and lower thermal conductivity of the L2 phase favored the formation of fiber composite structure, while the opposite conditions resulted in structures consisting of L2 droplets in α matrix. A modified particle engulfment theory as originally enunciated by Ulhmann et al. is proposed to explain these observations.

  7. Directional solidification of Cu-Pb and Bi-Ga monotectic alloys under normal gravity and during parabolic flight

    NASA Technical Reports Server (NTRS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1988-01-01

    Cu-Pb and Bi-Ga monotectic alloys of nominal hypermonotectic compositions were directionally solidified under various furnace translation rates, temperature gradients, and gravity levels. Gravity was varied by solidifying the alloys under ground conditions and in the furnace aboard NASA KC-135 aircraft, flying on parabolic trajectories. High translation rates, high gradients, high gravity levels, and higher density and lower thermal conductivity of the L2 phase favored the formation of fiber composite structure, while the opposite conditions resulted in structures consisting of L2 droplets in alpha matrix. A modified particle engulfment theory as originally enunciated by Ulhmann et al. (1964) is proposed to explain these observations.

  8. Foot-ground reaction force during resistive exercise in parabolic flight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.

    2004-01-01

    INTRODUCTION: An interim resistance exercise device (iRED) was designed to provide resistive exercise as a countermeasure to spaceflight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (1 G) vs. microgravity (0 G) achieved during parabolic flight. METHODS: There were four subjects who performed three exercises (squat, heel raise, and deadlift) using the iRED during 1 G and 0 G at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in the three orthogonal axes (x, y, z) using a force plate, and the magnitude of the resultant force vector was calculated (r = square root(x2 + y2 + z2)). Linear displacement (LD) was measured using a linear transducer. Peak force (Fpeak) and an index of total work (TWi) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p < or = 0.05) were observed between 1 G and 0 G exercise. RESULTS: Fpeak and TWi measured in the resultant axis were significantly less in 0 G for each of the exercises tested. During 0 G, Fpeak was 42-46% and TWi was 33-37% of that measured during 1 G. LD and average time to complete each repetition were not different from 1 G to 0 G. CONCLUSIONS: Crewmembers who perform resistive exercises during spaceflight that include the movement of a large portion of their body mass will require much greater external resistive force during 0 G than 1 G exercise to provide a sufficient stimulus to maintain muscle and bone mass.

  9. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  10. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  11. In-shoe force measurements from locomotion in simulated zero gravity during parabolic flight.

    PubMed

    McCrory, JL; Schwass, JP; Connell, RB; Cavanagh, PR

    1997-04-01

    INTRODUCTION:: No effective countermeasure for space-induced bone loss has yet been identified. It has been hypothesized that an effective exercise regimen would elicit loads on the lower extremity which resemble those encountered on Earth. Although a treadmill has been used on shuttle flights, the loads to which the lower extremity was exposed have not yet been quantified. It is believed that these loads are much less than the loads experienced in 1G. The purpose of this study was to determine the magnitude of lower extremity loading during tethered treadmill exercise in a 0G environment. METHODS:: Data were collected on five subjects (avg. ht. 177.3+/-10.1 cm, avg. mass 78.3+/-18.0 kg) onboard the KC-135, a NASA airplane used to simulate periods of zero gravity through parabolic flight. Subjects ambulated at 4 speeds: a walk (1.56m/sec), fast walk (2.0m/sec) slow jog (2.75m/sec), and jog (3.35m/sec) on the NASA treadmill operated in either a passive or motorized mode. Each subject wore a harness connected to the Subject Load Device (SLD) to tether them to the treadmill. The tension in the SLD was subjectively adjusted for comfort by each subject. Force data were collected at 60 Hz using Pedar insoles. The number of parabolas per subject was variable due to motion sickness and hardware problems. RESULTS:: Analysis of the insole data showed that the average SLD load was only 35.2% BW, although the values ranged from 20.1% to 56.6%. Maximum ground reaction force values increased with increasing speed and were not affected by treadmill mode. The impulse was higher during walking with the treadmill in the passive mode than in the active mode, but this difference diminished with increasing speed. Subjects tended to run on their forefeet, as shown from the extremely small heel impulse values. At higher speeds, heel contact was absent, while forefoot impulse became more pronounced. DISCUSSION:: All force values were lower than those reported from 1G studies, where

  12. Flight envelope protection of aircraft using adaptive neural network and online linearisation

    NASA Astrophysics Data System (ADS)

    Shin, Hohyun; Kim, Youdan

    2016-03-01

    Flight envelope protection algorithm is proposed to improve the safety of an aircraft. Flight envelope protection systems find the control inputs to prevent an aircraft from exceeding structure/aerodynamic limits and maximum control surface deflections. The future values of state variables are predicted using the current states and control inputs based on linearised aircraft model. To apply the envelope protection algorithm for the wide envelope of the aircraft, online linearisation is adopted. Finally, the flight envelope protection system is designed using adaptive neural network and least-squares method. Numerical simulations are conducted to verify the performance of the proposed scheme.

  13. Use of KC-135 parabolic flights to determine if brief changes in the gravity field can influence the phase and/or period of the circadian clock

    NASA Technical Reports Server (NTRS)

    Turek, Fred W. (Principal Investigator)

    1994-01-01

    In February 1994 a total of 10 hampsters flew on two separate KC-135 flights. On one flight, 25 animals experienced 31 parabolas, thus going through 31 cycles of hypergravity (up to about 1.8 G). On the other flight, the animals were exposed to 43 parabolas. fifty additional animals served as ground based controls and were treated in the same fashion as the experimental animals. The profiles of plasma GH, corisol and coricosterone from representative parabolic flight and ground control animals during pre-flight, in-flight, and post-flight conditions are depicted.

  14. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft ground and flight risk. 1852.228-70 Section 1852.228-70 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft,...

  15. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  16. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  17. X-38 research aircraft - First drop flight and landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. Those tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the Earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some

  18. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    NASA Technical Reports Server (NTRS)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  19. Dynamics of tilting proprotor aircraft in cruise flight

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    A nine degree-of-freedom theoretical model is developed for investigations of the dynamics of a proprotor operating in high inflow axial flight on a cantilever wing. The basic characteristics of the rotor high inflow aerodynamics and the resulting rotor aeroelastic behavior are discussed. The problems of classical whirl flutter, the two-bladed rotor, and the influence of the proprotor on the stability derivatives of the aircraft are treated briefly. The influence of various elements of the theoretical model is discussed, including the modeling used for the blade and wing aerodynamics, and the influence of the rotor lag degree of freedom. The results from tests of two full-scale proprotors - a gimballed, stiff-inplane rotor and a hingeless, soft-inplane rotor - are presented; comparisons with the theoretical results show good correlation.

  20. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  1. Effect of stabilization on VTOL aircraft in hovering flight

    NASA Technical Reports Server (NTRS)

    Greif, R. K.; Fry, E. B.; Gerdes, R. M.; Gossett, T. D.

    1972-01-01

    A motion simulator study was conducted to determine the effects of roll and pitch stabilization on the handling qualities and control power requirements of VTOL aircraft during hover and short-distance maneuvering flight. Three levels of stabilization complexity were compared: (1) no stabilization, (2) rate stabilization, and (3) attitude stabilization. Control sensitivities and stabilization gains were optimized prior to comparison. Results are presented to show how the optimum systems were determined and how they compared with each other at different levels of control power. Comparisons were made both in calm air and in the presence of roll disturbances. Results indicate the attitude-stabilized system provides the best handling qualities for the least amount of control power.

  2. Flight control synthesis for flexible aircraft using Eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Davidson, J. B.; Schmidt, D. K.

    1986-01-01

    The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired

  3. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul

    1994-01-01

    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

  4. Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft

    SciTech Connect

    Moore, D.G.; Jones, C.R.; Mihelic, J.E.; Barnes, J.D.

    1998-08-01

    This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration`s Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft`s right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in-flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft`s right main wheel fairing. Inspection results and techniques developed to verify the aircraft`s structural integrity are discussed.

  5. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with

  6. Analysis and Monte Carlo simulation of near-terminal aircraft flight paths

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Matthews, C. G.

    1982-01-01

    The flight paths of arriving and departing aircraft at an airport are stochastically represented. Radar data of the aircraft movements are used to decompose the flight paths into linear and curvilinear segments. Variables which describe the segments are derived, and the best fitting probability distributions of the variables, based on a sample of flight paths, are found. Conversely, given information on the probability distribution of the variables, generation of a random sample of flight paths in a Monte Carlo simulation is discussed. Actual flight paths at Dulles International Airport are analyzed and simulated.

  7. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  8. 75 FR 67450 - Eighth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT... Flight Deck Security Procedures. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck...

  9. Integrated controls pay-off. [for flight/propulsion aircraft systems

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Christiansen, Richard S.

    1989-01-01

    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  10. Aircraft motion and passenger comfort response data from TIFS ride-quality flight experiments

    NASA Technical Reports Server (NTRS)

    Schoonover, W. E., Jr.

    1976-01-01

    The aircraft motion data and passenger comfort response data obtained during ride-quality flight experiments using the USAD Total In-Flight Simulator (TIFS) are given. During each of 40 test flights, 10 passenger subjects individually assessed the ride comfort of various types of aircraft motions. The 115 individuals who served as passenger subjects were selected to be representative of air travelers in general. Aircraft motions tested consisted of both random and sinusoidal oscillations in various combinations of five degrees of freedom (transverse, normal, roll, pitch, and yaw), as well as of terminal-area flight maneuvers. The data are sufficiently detailed to allow analysis of passenger reactions to flight environments, evaluation of the use of a portable environment measuring/recording system and comparison of the in-flight simulator responses with input commands.

  11. "SP.ACE" 2013-2015: ASGARD Balloon and BIFROST Parabolic Flights: Latest Developments in Hands-On Space Education Projects for Secondary School Students

    NASA Astrophysics Data System (ADS)

    de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.

    2015-09-01

    Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.

  12. Dynamic ground effects flight test of an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Stephenson, Mark T.; Burcham, Frank W.; Curry, Robert E.

    1994-01-01

    Flight tests to determine the changes in the aerodynamic characteristics of an F-15 aircraft caused by dynamic ground effects are described. Data were obtained for low and high sink rates between 0.7 and 6.5 ft/sec and at two landing approach speeds and flap settings: 150 kn with the flaps down and 170 kn with the flaps up. Simple correlation curves are given for the change in aerodynamic coefficients because of ground effects as a function of sink rate. Ground effects generally caused an increase in the lift, drag, and nose-down pitching movement coefficients. The change in the lift coefficient increased from approximately 0.05 at the high-sink rate to approximately 0.10 at the low-sink rate. The change in the drag coefficient increased from approximately 0 to 0.03 over this decreasing sink rate range. No significant difference because of the approach configuration was evident for lift and drag; however, a significant difference in pitching movement was observed for the two approach speeds and flap settings. For the 170 kn with the flaps up configuration, the change in the nose-down pitching movement increased from approximately -0.008 to -0.016. For the 150 kn with the flaps down configuration, the change was approximately -0.008 to -0.038.

  13. Use of eternal flight unmanned aircraft in military operations

    NASA Astrophysics Data System (ADS)

    Kök, Zafer

    2014-06-01

    Unmanned Aerial Vehicles (UAV), are planned to use solar energy, are being more common and interesting gradually. Today, these systems are very promising while fossil fuels are diminishing rapidly. Academic research is still being conducted to develop unmanned aerial systems which will store energy during day time and use it during night time. Development of unmanned aerial systems, which have eternal flight or very long loiter periods, could be possible by such an energy management. A UAV, which can fly very long time, could provide many advantages that cannot be obtained by conventional aircrafts and satellites. Such systems can be operated as fixed satellites on missions with very low cost in circumstances that require continuous intelligence. By improving automation systems these vehicles could be settled on operation area autonomously and can be grounded easily in case of necessities and maintenance. In this article, the effect of solar powered UAV on operation area has been done a literature review, to be used in surveillance and reconnaissance missions.

  14. NDE of Damage in Aircraft Flight Control Surfaces

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Barnard, Daniel J.; Dayal, Vinay

    2007-03-01

    Flight control surfaces on an aircraft, such as ailerons, flaps, spoilers and rudders, are typically adhesively bonded composite or aluminum honeycomb sandwich structures. These components can suffer from damage caused by hail stone, runway debris, or dropped tools during maintenance. On composites, low velocity impact damages can escape visual inspection, whereas on aluminum honeycomb sandwich, budding failure of the honeycomb core may or may not be accompanied by a disbond. This paper reports a study of the damage morphology in such structures and the NDE methods for detecting and characterizing them. Impact damages or overload failures in composite sandwiches with Nomex or fiberglass core tend to be a fracture or crinkle or the honeycomb cell wall located a distance below the facesheet-to-core bondline. The damage in aluminum honeycomb is usually a buckling failure, propagating from the top skin downward. The NDE methods used in this work for mapping out these damages were: air-coupled ultrasonic scan, and imaging by computer aided tap tester. Representative results obtained from the field will be shown.

  15. The Proteus aircraft and NASA Dryden's T-34 in flight over Las Cruces, New Mexico.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  16. Flight test of ARINC 741 configuration low gain SATCOM system on Boeing 747-400 aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Timothy A.; Stapleton, Brian P.

    1990-01-01

    The Boeing company conducted a flight test of a SATCOM system similar to the ARINC 741 configuration on a production model 747-400. A flight plan was specifically designed to test the system over a wide variety of satellite elevations and aircraft attitudes as well as over land and sea. Interface bit errors, signal quality and aircraft position and navigational inputs were all recorded as a function of time. Special aircraft maneuvers were performed to demonstrate the potential for shadowing by aircraft structures. Both a compass rose test and the flight test indicated that shadowing from the tail is insignificant for the 747-400. However, satellite elevation angles below the aircraft horizon during banking maneuvers were shown to have a significant deleterious effect on SATCOM communications.

  17. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  18. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  19. Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Jones, C. R.; Mihelic, J. E.; Barnes, J. D.

    1998-01-01

    This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft's right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in- flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft's right main wheel fairing. Inspection results and techniques developed to verify the aircraft's structural integrity are discussed.

  20. Application of trajectory optimization techniques to upper atmosphere sampling flights using the F-15 Eagle aircraft

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.

    1976-01-01

    Atmospheric sampling has been carried out by flights using an available high-performance supersonic aircraft. Altitude potential of an off-the-shelf F-15 aircraft is examined. It is shown that the standard F-15 has a maximum altitude capability in excess of 100,000 feet for routine flight operation by NASA personnel. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants.

  1. Some flight data extraction techniques used on a general aviation spin research aircraft

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1979-01-01

    Some methods for obtaining flight data from a highly instrumented general aviation spin research aircraft are developed and illustrated. The required correction terms for the measurement of body accelerations, body velocities, and aircraft orientation are presented. In addition, the equations of motion are utilized to derive total aerodynamic coefficients for comparison with model tests and for analysis. Flight test experience is used to evaluate the utility of various instruments and calculation techniques for spin research.

  2. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  3. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  4. Identifying the principal noise sources of fixed-wing combat aircraft in high-speed flight

    NASA Astrophysics Data System (ADS)

    Bryce, W. D.; Pinker, R. A.; Strange, P. J. R.

    1992-04-01

    Before considering means for alleviating the noise from modern military combat aircraft operating in high-speed low-level flight, it is important to identify the principal noise sources. To this end, a carefully-controlled flight test program has been carried out using a Tornado aircraft (in standard training configuration) operating at flight speeds from 0.5M to 0.8M. The major sources of the aircraft noise, airframe noise, installed jet mixing noise and jet shock noise, have been successfully identified, quantified and correlated. Although the jet mixing noise tends to be the major source at low flight speeds, and the shock noise at high flight speeds, all three sources are comparable in magnitude during the rapid rise-time of the noise signal and at its peak. Indeed, were it possible to reduce greatly both the jet mixing and shock noise, the peak noise levels would only reduce by about 5 dBA.

  5. An optical technique for examining aircraft shock wave structures in flight

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1994-01-01

    The detailed properties of sonic booms have to be better understood before commercial, next generation, supersonic and hypersonic aircraft can be properly developed. Experimental tests and measurements are needed to help sort the physical details of the flows at realistic test conditions. Some of these tests can be made in wind tunnels, but the need for full flight conditions simulation, the problem of tunnel wall interference, and the short distance the shocks can be examined from the aircraft, limit the usefulness of wind tunnel tests. Previous measurement techniques for examining the flow field of aircraft in flight have included pressure measurements on the aircraft, ground based pressure measurements, and flow field measurements made with chase aircraft. Obtaining data with chase planes is a slow and difficult process, and is limited in how close it can be obtained to the test aircraft. A need clearly existed for a better technique to examine the shock structure from the plane to large distances from the plane. A new technique has been recently developed to obtain schlieren photographs of aircraft in flight (SAF). Preliminary results have been obtained, and the technique holds promise as a tool to study the shape and approximate strength of the shock wave structure around the test aircraft, and examine shock wave details all the way from the aircraft to near the ground. The current paper describes this approach, and gives some preliminary test results.

  6. Development of control laws for a flight test maneuver autopilot for an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Alag, G. S.; Duke, E. L.

    1985-01-01

    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver.

  7. The effect of parabolic flight on perceived physical, motivational and psychological state in men and women: correlation with neuroendocrine stress parameters and electrocortical activity.

    PubMed

    Schneider, Stefan; Askew, Christopher D; Brümmer, Vera; Kleinert, Jens; Guardiera, Simon; Abel, Thomas; Strüder, Heiko K

    2009-07-01

    Previous findings of decreased mental and perceptual motor performance during parabolic flights have been attributed mainly to the primary effects of weightlessness rather than the accompanying effects of stress and altered mood. Although recent studies have alluded to the possible negative effects of stress on performance, there has been no attempt to investigate this during parabolic flights. Over a period of 3 years, 27 human participants (male n = 18, mean age +/- SD 34.67 +/- 7.59 years; female n = 9, 36.22 +/- 9.92 years) were recruited with the aim to evaluate if, and to what extent, parabolic flights are accompanied by changes in mood. Furthermore, the relationships between mood and physiological markers of stress and arousal, namely circulating stress hormones (ACTH, cortisol, epinephrine, norepinephrine, prolactin and brain activity (EEG)) were investigated. A strong and significant correlation was found between circulating stress hormone concentrations and perceived physical state, motivational state (MOT) and psychological strain (PSYCHO), whereas no interaction between mood and EEG or EEG and stress hormone concentrations was observed. Therefore, two different stress responses appear to be present during parabolic flight. The first seems to be characterised by general cortical arousal, whereas the second seems to evolve from the adrenomedullary system. It is likely that both these mechanisms have different effects on mental and perceptual motor performance, which require further investigation and should to be taken into account when interpreting previous weightlessness research.

  8. Aircraft signal definition for flight safety system monitoring system

    NASA Technical Reports Server (NTRS)

    Gibbs, Michael (Inventor); Omen, Debi Van (Inventor)

    2003-01-01

    A system and method compares combinations of vehicle variable values against known combinations of potentially dangerous vehicle input signal values. Alarms and error messages are selectively generated based on such comparisons. An aircraft signal definition is provided to enable definition and monitoring of sets of aircraft input signals to customize such signals for different aircraft. The input signals are compared against known combinations of potentially dangerous values by operational software and hardware of a monitoring function. The aircraft signal definition is created using a text editor or custom application. A compiler receives the aircraft signal definition to generate a binary file that comprises the definition of all the input signals used by the monitoring function. The binary file also contains logic that specifies how the inputs are to be interpreted. The file is then loaded into the monitor function, where it is validated and used to continuously monitor the condition of the aircraft.

  9. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  10. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  11. State estimation applications in aircraft flight-data analysis: A user's manual for SMACK

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.

    1991-01-01

    The evolution in the use of state estimation is traced for the analysis of aircraft flight data. A unifying mathematical framework for state estimation is reviewed, and several examples are presented that illustrate a general approach for checking instrument accuracy and data consistency, and for estimating variables that are difficult to measure. Recent applications associated with research aircraft flight tests and airline turbulence upsets are described. A computer program for aircraft state estimation is discussed in some detail. This document is intended to serve as a user's manual for the program called SMACK (SMoothing for AirCraft Kinematics). The diversity of the applications described emphasizes the potential advantages in using SMACK for flight-data analysis.

  12. 14 CFR 61.417 - Will my flight instructor certificate with a sport pilot rating list aircraft category and class...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a sport pilot rating list aircraft category and class ratings? 61.417 Section 61.417 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.417 Will my flight instructor certificate with a sport pilot rating list aircraft category and...

  13. 14 CFR 61.417 - Will my flight instructor certificate with a sport pilot rating list aircraft category and class...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a sport pilot rating list aircraft category and class ratings? 61.417 Section 61.417 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.417 Will my flight instructor certificate with a sport pilot rating list aircraft category and...

  14. 14 CFR 61.417 - Will my flight instructor certificate with a sport pilot rating list aircraft category and class...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... a sport pilot rating list aircraft category and class ratings? 61.417 Section 61.417 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.417 Will my flight instructor certificate with a sport pilot rating list aircraft category and...

  15. 14 CFR 61.417 - Will my flight instructor certificate with a sport pilot rating list aircraft category and class...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a sport pilot rating list aircraft category and class ratings? 61.417 Section 61.417 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.417 Will my flight instructor certificate with a sport pilot rating list aircraft category and...

  16. 14 CFR 61.417 - Will my flight instructor certificate with a sport pilot rating list aircraft category and class...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a sport pilot rating list aircraft category and class ratings? 61.417 Section 61.417 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.417 Will my flight instructor certificate with a sport pilot rating list aircraft category and...

  17. Reconfigurable flight control for high angle of attack fighter aircraft, with wind tunnel study

    NASA Astrophysics Data System (ADS)

    Siddiqui, Bilal Ahmed

    In this work we studied Reconfigurable Flight Control Systems to achieve acceptable performance of a fighter aircraft, even in the event of wing damage to the aircraft at low speeds and high angle of attack, which is typical of many combat maneuvers. Equations of motion for the damaged aircraft were derived, which helped in building simulators. A new methodology combining experimental and numerical aerodynamic prediction was proposed and implemented. For this a wind-tunnel study of a similar configuration was carried out to study the aerodynamics at low speeds and high angle of attack. A baseline control system for undamaged aircraft was developed, and finally a reconfigurable flight control scheme was implemented to keep the aircraft flyable even after the damage.

  18. Flight simulator experiments to determine human reaction to aircraft motion environments

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Rudrapatna, A. N.

    1974-01-01

    An analysis of human response to aircraft motion is presented using data obtained on the NASA Flight Research Center's Jetstar aircraft. The purpose of these tests was to explore the relationship of vertical and transverse accelerations to human comfort as well as obtain information on the maximum comfortable bank angle for commercial aircraft operations. A preliminary study was also conducted to establish the importance or lack thereof of the low frequency content of aircraft motion due to natural turbulence. An effort has been made to model these data and comparisons with appropriate sources are made.

  19. Dynamic ground effects flight test of the NASA F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Corda, Stephen

    1995-01-01

    Aerodynamic characteristics of an aircraft may significantly differ when flying close to the ground rather than when flying up and away. Recent research has also determined that dynamic effects (i.e., sink rate) influence ground effects (GE). A ground effects flight test program of the F-15 aircraft was conducted to support the propulsion controlled aircraft (PCA) program at the NASA Dryden Flight Research Center. Flight data was collected for 24 landings on seven test flights. Dynamic ground effects data were obtained for low- and high-sink rates, between 0.8 and 6.5 ft/sec, at two approach speed and flap combinations. These combinations consisted of 150 kt with the flaps down (30 deg deflection) and 170 kt with the flaps up (0 deg deflection), both with the inlet ramps in the full-up position. The aerodynamic coefficients caused by ground effects were estimated from the flight data. These ground effects data were correlated with the aircraft speed, flap setting, and sink rate. Results are compared to previous flight test and wind-tunnel ground effects data for various wings and for complete aircraft.

  20. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  1. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  2. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  3. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  4. Short Term Variation of Cosmic Radiation on Aircraft at Constant Flight Condition

    NASA Astrophysics Data System (ADS)

    Lee, J.; Nam, U. W.; Pyo, J.; Kim, S.; Kwon, Y. J.; Kim, M. H. Y.

    2015-12-01

    The temporal variation of cosmic radiation was measured by Liulin detector on aircraft at constant flight condition. In this experiment, instead of using a commercial aircraft that flies over long distances, we used a military reconnaissance aircraft performing a circular flight over Korean Peninsula. Measurements indicate that the radiation dose is approximately 2.12 ~ 2.88 Sv/hr at 30,000 ft. We obtained two observational results from this experiment. First, changes in dose rate occurred within a flight time of 5 - 7 hours. Second, no strong correlation was revealed between cosmic rays observed from the ground using the Neutron Monitor and the radiation dose. Our experimental results imply that changes in cosmic radiation at the flight altitude are affected by unknown factors that might be investigated in the point of space weather.

  5. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Astrophysics Data System (ADS)

    Lasagna, P.; Mackall, K.

    1981-12-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  6. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Technical Reports Server (NTRS)

    Lasagna, P.; Mackall, K.

    1981-01-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  7. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  8. Effects of aircraft noise on flight and ground structures

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.

    1976-01-01

    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  9. Flight-path and airspeed control during landing approach for powered-lift aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1974-01-01

    Manual control of flight path and airspeed during landing approach has been investigated for powered-lift transport aircraft. An analysis was conducted to identify the behavior of the aircraft which would be potentially significant to the pilot controlling flight path and airspeed during the approach. The response characteristics found to describe the aircraft behavior were (1) the initial flight-path response and flight-path overshoot for a step change in thrust, (2) the steady-state coupling of flight path and airspeed for a step change in thrust, and (3) the sensitivity of airspeed to changes in pitch attitude. The significance of these response characteristics was evaluated by pilots on a large-motion, ground-based simulator at Ames Research Center. Coupling between flight path and airspeed was considered by the pilot to be the dominant influence on handling qualities for the approach task. Results are compared with data obtained from flight tests of three existing powered-lift V/STOL aircraft.

  10. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  11. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  12. Aircraft Flight Envelope Determination using Upset Detection and Physical Modeling Methods

    NASA Technical Reports Server (NTRS)

    Keller, Jeffrey D.; McKillip, Robert M. Jr.; Kim, Singwan

    2009-01-01

    The development of flight control systems to enhance aircraft safety during periods of vehicle impairment or degraded operations has been the focus of extensive work in recent years. Conditions adversely affecting aircraft flight operations and safety may result from a number of causes, including environmental disturbances, degraded flight operations, and aerodynamic upsets. To enhance the effectiveness of adaptive and envelope limiting controls systems, it is desirable to examine methods for identifying the occurrence of anomalous conditions and for assessing the impact of these conditions on the aircraft operational limits. This paper describes initial work performed toward this end, examining the use of fault detection methods applied to the aircraft for aerodynamic performance degradation identification and model-based methods for envelope prediction. Results are presented in which a model-based fault detection filter is applied to the identification of aircraft control surface and stall departure failures/upsets. This application is supported by a distributed loading aerodynamics formulation for the flight dynamics system reference model. Extensions for estimating the flight envelope due to generalized aerodynamic performance degradation are also described.

  13. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    NASA Technical Reports Server (NTRS)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  14. Robotics and Automation for Flight Deck Aircraft Servicing

    SciTech Connect

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

  15. Pathfinder aircraft liftoff on altitude record setting flight of 71,500 feet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Pathfinder aircraft has set a new unofficial world record for high-altitude flight of over 71,500 feet for solar-powered aircraft at the U.S. Navy's Pacific Missile Range Facility, Kauai, Hawaii. Pathfinder was designed and manufactured by AeroVironment, Inc, of Simi Valley, California, and was operated by the firm under a jointly sponsored research agreement with NASA's Dryden Flight Research Center, Edwards, California. Pathfinder's record-breaking flight occurred July 7, 1997. The aircraft took off at 11:34 a.m. PDT, passed its previous record altitude of 67,350 feet at about 5:45 p.m. and then reached its new record altitude at 7 p.m. The mission ended with a perfect nighttime landing at 2:05 a.m. PDT July 8. The new record is the highest altitude ever attained by a propellor-driven aircraft. Before Pathfinder, the altitude record for propellor-driven aircraft was 67,028 feet, set by the experimental Boeing Condor remotely piloted aircraft. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard

  16. Flight testing a highly flexible aircraft - Case study on the MIT Light Eagle

    NASA Technical Reports Server (NTRS)

    Zerweckh, S. H.; Von Flotow, A. H.; Murray, J. E.

    1988-01-01

    This paper describes the techniques developed for a flight test program of a human powered aircraft, the application of these techniques in the winter of 1987/88 and the results of the flight testing. A system of sensors, signal conditioning and data recording equipment was developed and installed in the aircraft. Flight test maneuvers which do not exceed the aircraft's limited capability were developed and refined in an iterative sequence of test flights. The test procedures were adjusted to yield maximum data quality from the point of view of estimating lateral and longitudinal stability derivatives. Structural flexibility and unsteady aerodynamics are modeled in an ad hoc manner, capturing the effects observed during the test flights. A model with flexibility-extended equations of motion is presented. Results of maneuvers that were flown are compared with the predictions of that model and analyzed. Finally the results of the flight test program are examined critically, especially with respect to future applications, and suggestions are made in order to improve maneuvers for parameter estimation of very flexible aircraft.

  17. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  18. On-Line Mu Method for Robust Flutter Prediction in Expanding a Safe Flight Envelope for an Aircraft Model Under Flight Test

    NASA Technical Reports Server (NTRS)

    Lind, Richard C. (Inventor); Brenner, Martin J.

    2001-01-01

    A structured singular value (mu) analysis method of computing flutter margins has robust stability of a linear aeroelastic model with uncertainty operators (Delta). Flight data is used to update the uncertainty operators to accurately account for errors in the computed model and the observed range of aircraft dynamics of the aircraft under test caused by time-varying aircraft parameters, nonlinearities, and flight anomalies, such as test nonrepeatability. This mu-based approach computes predict flutter margins that are worst case with respect to the modeling uncertainty for use in determining when the aircraft is approaching a flutter condition and defining an expanded safe flight envelope for the aircraft that is accepted with more confidence than traditional methods that do not update the analysis algorithm with flight data by introducing mu as a flutter margin parameter that presents several advantages over tracking damping trends as a measure of a tendency to instability from available flight data.

  19. Frequency-domain identification of aircraft structural modes from short-duration flight tests

    NASA Astrophysics Data System (ADS)

    Vayssettes, J.; Mercère, G.; Vacher, P.; De Callafon, R. A.

    2014-07-01

    This article presents identification algorithms dedicated to the modal analysis of civil aircraft structures during in-flight flutter tests. This particular operational framework implies several specifications for the identification procedure. To comply with these requirements, the identification problem is formulated in the frequency domain as an output-error problem. Iterative identification methods based on structured matrix fraction descriptions are used to solve this problem and to identify a continuous-time model. These iterative methods are specifically designed to deal with experiments where short-duration tests with multiple-input excitations are used. These algorithms are first discussed and then evaluated through a simulation example illustrative of the in-flight modal analysis of a civil aircraft. Based on these evaluation results, an efficient iterative algorithm is suggested and applied to real flight-test data measured on board a military aircraft.

  20. Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Chen, Yushu; Cao, Qingjie

    2014-01-01

    This paper focuses on the nonlinear vibration phenomenon caused by aircraft hovering flight in a rub-impact rotor system supported by two general supports with cubic stiffness. The effect of aircraft hovering flight on the rotor system is considered as a maneuver load to formulate the equations of motion, which might result in periodic response instability to the rotor system even the eccentricity is small. The dynamic responses of the system under maneuver load are presented by bifurcation diagrams and the corresponding Lyapunov exponent spectrums. Numerical analyses are carried out to detect the periodic, sub-harmonic and quasi-periodic motions of the system, which are presented by orbit diagrams, phase trajectories, Poincare maps and amplitude power spectrums. The results obtained in this paper will contribute an understanding of the nonlinear dynamic behaviors of aircraft rotor systems in maneuvering flight.

  1. Flight Validation of a Handling Qualities Metric for a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R.

    2009-01-01

    Objectives: a) Develop an asymmetric handling qualities metric to predict cross coupling effects of a damaged aircraft: 1) Initial use of U.S Army Aeronautical Design Specification ADS-33; 2) Modification as required based on flight test results. b) Simulation and Flight Validation of proposed metric: 1) F-16 VISTA (March 2010); 2) F-18 Full Scale Test bed (Potential Early Experiment); and 3) Flight Simulators (GTM, ACFS, F-18 HILS). c) Provide flight validated metric and tool box to control law designers.

  2. Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.

    1975-01-01

    A low cost flight research program was conducted to evaluate the performance of differential Omega navigation in a general aviation aircraft. The flight program consisted of two distinct parts corresponding to the two major objectives of the study. The Wallops Flight Program was conducted to obtain Omega signal and phase data in the Wallops Flight Center vicinity to provide preliminary technical information and experience in preparation for a comprehensive NASA/FAA flight test program of an experimental differential Omega system. The Northeast Corridor Flight Program was conducted to examine Omega operational suitability and performance on low altitude area navigation (RNAV) routes for city-center to city-center VTOL commercial operations in the Boston-New York-Washington corridor. The development, execution and conclusions of the flight research program are discribed. The results of the study provide both quantitative and qualitative data on the Omega Navigation System under actual operating conditions.

  3. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  4. A Whole-Genome Microarray Study of Arabidopis Thaliana Cell Cultures Exposed to Real and Simulated Partial-G Forces: A Comparison of Parabolic Flight and Clinostat Data

    NASA Astrophysics Data System (ADS)

    Fengler, S.; Spirer, I.; Neef, M.; Ecke, M.; Hauslage, J.; Hampp, R.

    2015-09-01

    Cell cultures of the plant model organism Arabidopsis thaliana were exposed to partial-g forces during parabolic flight and clinostat experiments (0.38 g, 0. 16 g and 0.5 g). To investigate gravity-dependent alterations in gene expression, samples were metabolically quenched and used for microarray analysis. An attempt to identify the potential threshold acceleration showed that the smaller the experienced g-force, the greater was the susceptibility of the cell cultures. Compared to short-term ~sg during a regular parabolic flight, the number of differentially expressed genes under partial-g was lower. In addition, the effect on the alteration of amounts of transcripts decreased during partial-g parabolic flight due to the sequence of the different parabolas (0.38 g, 0.16 g and ~sg). A time-dependent analysis under simulated 0.5 g indicates that adaptation occurs within minutes. Differentially expressed genes (at least 2-fold altered in expression) under real flight conditions were to some extent identical with those affected by clinorotation. The highest number of identical genes was detected within seconds of exposure to 0.38 g.

  5. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  6. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  7. Modeling flight attendants' exposure to secondhand smoke in commercial aircraft: historical trends from 1955 to 1989.

    PubMed

    Liu, Ruiling; Dix-Cooper, Linda; Hammond, S Katharine

    2015-01-01

    Flight attendants were exposed to elevated levels of secondhand smoke (SHS) in commercial aircraft when smoking was allowed on planes. During flight attendants' working years, their occupational SHS exposure was influenced by various factors, including the prevalence of active smokers on planes, fliers' smoking behaviors, airplane flight load factors, and ventilation systems. These factors have likely changed over the past six decades and would affect SHS concentrations in commercial aircraft. However, changes in flight attendants' exposure to SHS have not been examined in the literature. This study estimates the magnitude of the changes and the historic trends of flight attendants' SHS exposure in U.S. domestic commercial aircraft by integrating historical changes of contributing factors. Mass balance models were developed and evaluated to estimate flight attendants' exposure to SHS in passenger cabins, as indicated by two commonly used tracers (airborne nicotine and particulate matter (PM)). Monte Carlo simulations integrating historical trends and distributions of influence factors were used to simulate 10,000 flight attendants' exposure to SHS on commercial flights from 1955 to 1989. These models indicate that annual mean SHS PM concentrations to which flight attendants were exposed in passenger cabins steadily decreased from approximately 265 μg/m(3) in 1955 and 1960 to 93 μg/m(3) by 1989, and airborne nicotine exposure among flight attendants also decreased from 11.1 μg/m(3) in 1955 to 6.5 μg/m(3) in 1989. Using duration of employment as an indicator of flight attendants' cumulative occupational exposure to SHS in epidemiological studies would inaccurately assess their lifetime exposures and thus bias the relationship between the exposure and health effects. This historical trend should be considered in future epidemiological studies.

  8. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    NASA Technical Reports Server (NTRS)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  9. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  10. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  11. Process modeling KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Instrumentation will be provided for KC-135 aircraft which will provide a quantitative measure of g-level variation during parabolic flights and its effect on experiments which demonstrate differences in results obtained with differences in convective flow. The flight apparatus will provide video recording of the effects of the g-level variations on varying fluid samples. The apparatus will be constructed to be available to fly on the KC-135 during most missions.

  12. Optical Autocovariance Wind Lidar (OAWL): aircraft test-flight history and current plans

    NASA Astrophysics Data System (ADS)

    Tucker, Sara C.; Weimer, Carl; Adkins, Mike; Delker, Tom; Gleeson, David; Kaptchen, Paul; Good, Bill; Kaplan, Mike; Applegate, Jeff; Taudien, Glenn

    2015-09-01

    To address mission risk and cost limitations the US has faced in putting a much needed Doppler wind lidar into space, Ball Aerospace and Technologies Corp, with support from NASA's Earth Science Technology Office (ESTO), has developed the Optical Autocovariance Wind Lidar (OAWL), designed to measure winds from aerosol backscatter at the 355 nm or 532 nm wavelengths. Preliminary proof of concept hardware efforts started at Ball back in 2004. From 2008 to 2012, under an ESTO-funded Instrument Incubator Program, Ball incorporated the Optical Autocovariance (OA) interferometer receiver into a prototype breadboard lidar system by adding a laser, telescope, and COTS-based data system for operation at the 355 nm wavelength. In 2011, the prototype system underwent ground-based validation testing, and three months later, after hardware and software modifications to ensure autonomous operation and aircraft safety, it was flown on the NASA WB-57 aircraft. The history of the 2011 test flights are reviewed, including efforts to get the system qualified for aircraft flights, modifications made during the flight test period, and the final flight data results. We also present lessons learned and plans for the new, robust, two-wavelength, aircraft system with flight demonstrations planned for Spring 2016.

  13. Some vortical-flow flight experiments on slender aircraft that impacted the advancement of aeronautics

    NASA Astrophysics Data System (ADS)

    Lamar, John E.

    2009-08-01

    This paper highlights the three aerodynamic pillars of aeronautics; namely, theory/CFD, wind-tunnel experiments and flight tests, and notes that at any given time these three are not necessarily at the same level of maturity. After an initial history of these three pillars, the focus narrows to a brief history of some vortical-flow flight experiments on slender aircraft that have impacted the advancement of aeronautics in recent decades. They include the F-106, Concorde, SR-71, light-weight fighters (F-16, F/A-18), and F-16XL. These aircraft share in common the utilization of vortical flow and have flown at transonic speeds during a part of the flight envelope. Due to the vast amount of information from flight and CFD that has recently become available for the F-16XL, this aircraft is highlighted and its results detailed. Lastly, it is interesting to note that, though complicated, vortical flows over the F-16XL aircraft at subsonic speeds can be reliably and generally well-predicted with the current CFD flow solvers. However, these solvers still have some problems in matching flight pressure data at transonic speeds. That this problem has been highlighted is both an advancement in aeronautics and a tempting prize to those who would seek its solution.

  14. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  15. Alaskan flight trials of a synthetic vision system for instrument landings of a piston twin aircraft

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew K.; Alter, Keith W.; Jennings, Chad W.; Powell, J. D.

    1999-07-01

    Stanford University has developed a low-cost prototype synthetic vision system and flight tested it onboard general aviation aircraft. The display aids pilots by providing an 'out the window' view, making visualization of the desired flight path a simple task. Predictor symbology provides guidance on straight and curved paths presented in a 'tunnel- in-the-sky' format. Based on commodity PC hardware to achieve low cost, the Tunnel Display system uses differential GPS (typically from Stanford prototype Wide Area Augmentation System hardware) for positioning and GPS-aided inertial sensors for attitude determination. The display has been flown onboard Piper Dakota and Beechcraft Queen Air aircraft at several different locations. This paper describes the system, its development, and flight trials culminating with tests in Alaska during the summer of 1998. Operational experience demonstrated the Tunnel Display's ability to increase flight- path following accuracy and situational awareness while easing the task instrument flying.

  16. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  17. Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2006-01-01

    The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The

  18. The Insulation of Houses against Noise from Aircraft in Flight.

    ERIC Educational Resources Information Center

    Scholes, W. E.; Parkin, P. H.

    Three groups of traditional houses were insulated against aircraft noise by double glazing and installing sound attenuating ventilator units. For upper floor rooms of two story houses, overall insulations of 35-40 dB were obtainable, providing transmission through the roofs and down flues were also reduced. The noise levels caused by ventilator…

  19. Video Analysis of the Flight of a Model Aircraft

    ERIC Educational Resources Information Center

    Tarantino, Giovanni; Fazio, Claudio

    2011-01-01

    A video-analysis software tool has been employed in order to measure the steady-state values of the kinematics variables describing the longitudinal behaviour of a radio-controlled model aircraft during take-off, climbing and gliding. These experimental results have been compared with the theoretical steady-state configurations predicted by the…

  20. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    ERIC Educational Resources Information Center

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  1. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  2. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  3. The flight test program for the hydrogen powered NASP/X-30 research aircraft

    NASA Technical Reports Server (NTRS)

    Wierzbanowski, Theodore; Armstrong, Johnny G.

    1991-01-01

    The NASP/X-30 will be the first U.S. manned aircraft to be powered with hydrogen. Flight testing the X-30 powered with liquid and/or slush hydrogen along with its high speed capability will present unique challenges to the flight test community. The paper describes the overall X-30 flight research program along with some of the key technology challenges. A flight test envelope expansion concept is described along with typical mission profiles. Flight test problems unique to this class of vehicle will be outlined as well as some preliminary thoughts as to solutions to those problems. The X-30 ground operations with hydrogen must be compatible with the normal operations at the flight test site. A concept for the ground support system will be introduced.

  4. The flight test program for the hydrogen powered NASP/X-30 research aircraft

    NASA Astrophysics Data System (ADS)

    Wierzbanowski, Theodore; Armstrong, Johnny G.

    The NASP/X-30 will be the first U.S. manned aircraft to be powered with hydrogen. Flight testing the X-30 powered with liquid and/or slush hydrogen along with its high speed capability will present unique challenges to the flight test community. The paper describes the overall X-30 flight research program along with some of the key technology challenges. A flight test envelope expansion concept is described along with typical mission profiles. Flight test problems unique to this class of vehicle will be outlined as well as some preliminary thoughts as to solutions to those problems. The X-30 ground operations with hydrogen must be compatible with the normal operations at the flight test site. A concept for the ground support system will be introduced.

  5. Objective evaluation of changes in left ventricular and atrial volumes during parabolic flight using real-time three-dimensional echocardiography.

    PubMed

    Caiani, E G; Sugeng, L; Weinert, L; Capderou, A; Lang, R M; Vaïda, P

    2006-08-01

    We tested the feasibility of real-time three-dimensional (3D) echocardiographic (RT3DE) imaging to measure left heart volumes at different gravity during parabolic flight and studied the effects of lower body negative pressure (LBNP) as a countermeasure. Weightlessness-related changes in cardiac function have been previously studied during spaceflights using both 2D and 3D echocardiography. Several technical factors, such as inability to provide real-time analysis and the need for laborious endocardial definition, have limited its usefulness. RT3DE imaging overcomes these limitations by acquiring real-time pyramidal data sets encompassing the entire ventricle. RT3DE data sets were obtained (Philips 7500, X3) during breath hold in 16 unmedicated normal subjects in upright standing position at different gravity phases during parabolic flight (normogravity, 1 Gz; hypergravity, 1.8 Gz; microgravity, 0 Gz), with LBNP applied (-50 mmHg) at 0 Gz in selected parabolas. RT3DE imaging during parabolic flight was feasible in 14 of 16 subjects. Data were analyzed (Tomtec) to quantify left ventricular (LV) and atrial (LA) volumes at end diastole and end systole, which significantly decreased at 1.8 Gz and increased at 0 Gz. While ejection fraction did not change with gravity, stroke volume was reduced by 16% at 1.8 Gz and increased by 20% at 0 Gz, but it was not significantly different from 1 Gz values with LBNP. RT3DE during parabolic flight is feasible and provides the basis for accurate quantification of LV and LA volume changes with gravity. As LBNP counteracted the increase of LV and LA volumes caused by changes in venous return, it may be effectively used for preventing cardiac dilatation during 0 Gz.

  6. Flight test evaluation of a method to determine the level flight performance of a propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bridges, P. G.; Cross, E. J., Jr.; Boatwright, D. W.

    1977-01-01

    The overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag, which is generated by a towed drogue. The simplest form of the governing equations, D = delta D SHP/delta SHP, is such that all of the parameters on the right side of the equation can be measured in flight. An evaluation of the governing equations has been performed using data generated by flight test of a Beechcraft T-34B. The simplicity of this technique and its proven applicability to sailplanes and small aircraft is well known. However, the method fails to account for airframe-propulsion system.

  7. Analyses of a Gravistimulation-Specific Ca2+ Signature in Arabidopsis using Parabolic Flights1[W][OPEN

    PubMed Central

    Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro; Tatsumi, Hitoshi

    2013-01-01

    Gravity is a critical environmental factor affecting the morphology and functions of organisms on the Earth. Plants sense changes in the gravity vector (gravistimulation) and regulate their growth direction accordingly. In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation, achieved by rotating the specimens under the ambient 1g of the Earth, is known to induce a biphasic (transient and sustained) increase in cytoplasmic calcium concentration ([Ca2+]c). However, the [Ca2+]c increase genuinely caused by gravistimulation has not been identified because gravistimulation is generally accompanied by rotation of specimens on the ground (1g), adding an additional mechanical signal to the treatment. Here, we demonstrate a gravistimulation-specific Ca2+ response in Arabidopsis seedlings by separating rotation from gravistimulation by using the microgravity (less than 10−4g) conditions provided by parabolic flights. Gravistimulation without rotating the specimen caused a sustained [Ca2+]c increase, which corresponds closely to the second sustained [Ca2+]c increase observed in ground experiments. The [Ca2+]c increases were analyzed under a variety of gravity intensities (e.g. 0.5g, 1.5g, or 2g) combined with rapid switching between hypergravity and microgravity, demonstrating that Arabidopsis seedlings possess a very rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes (0.5g–2g) into Ca2+ signals on a subsecond time scale. PMID:23835410

  8. Pharmacological stimulation of type 5 adenylyl cyclase stabilizes heart rate under both microgravity and hypergravity induced by parabolic flight.

    PubMed

    Bai, Yunzhe; Tsunematsu, Takashi; Jiao, Qibin; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Jin, Meihua; Cai, Wenqian; Jin, Hui-Ling; Fujita, Takayuki; Ichikawa, Yasuhiro; Suita, Kenji; Kurotani, Reiko; Yokoyama, Utako; Sato, Motohiko; Iwatsubo, Kousaku; Ishikawa, Yoshihiro; Okumura, Satoshi

    2012-01-01

    We previously demonstrated that type 5 adenylyl cyclase (AC5) functions in autonomic regulation in the heart. Based on that work, we hypothesized that pharmacological modulation of AC5 activity could regulate the autonomic control of the heart rate under micro- and hypergravity. To test this hypothesis, we selected the approach of activating AC5 activity in mice with a selective AC5 activator (NKH477) or inhibitor (vidarabine) and examining heart rate variability during parabolic flight. The standard deviation of normal R-R intervals, a marker of total autonomic variability, was significantly greater under micro- and hypergravity in the vidarabine group, while there were no significant changes in the NKH477 group, suggesting that autonomic regulation was unstable in the vidarabine group. The ratio of low frequency and high frequency (HF) in heart rate variability analysis, a marker of sympathetic activity, became significantly decreased under micro- and hypergravity in the NKH477 group, while there was no such decrease in the vidarabine group. Normalized HF, a marker of parasympathetic activity, became significantly greater under micro- and hypergravity in the NKH477 group. In contrast, there was no such increase in the vidarabine group. This study is the first to indicate that pharmacological modulation of AC5 activity under micro- and hypergravity could be useful to regulate the autonomic control of the heart rate.

  9. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  10. Adenosine A2(A) receptor modulates the oxidative stress response of primed polymorphonuclear leukocytes after parabolic flight.

    PubMed

    Kaufmann, Ines; Feuerecker, Matthias; Salam, Alex; Schelling, Gustav; Thiel, Manfred; Choukèr, Alexander

    2011-07-01

    Space flight and gravitational stress can alter innate immune function. Parabolic flights (PFs) as a model for short-term gravitational changes prime the cytotoxic capability of polymorphonuclear leukocytes (PMNs). In view of the emerging role of adenosine in the regulation of innate immune responses, we examined the potency of adenosine to control the release of cytotoxic H(2)O(2) by primed PMNs via the adenosine receptor system. During PFs, microgravity conditions (<10(-2) G) are generated for approximately 22 seconds, followed by a hypergravity (1.8 G) phase resulting in gravitational stress. We studied the ex vivo effects of adenosine on the production of H(2)O(2) by stimulated PMNs and determined adenosine plasma levels and adenosine A2(A) receptor transcripts of leukocytes of PF participants (n = 15). Increasing concentrations of adenosine dose dependently reduced tissue-toxic H(2)O(2) production by PMNs with a half-maximal inhibitory concentration (IC(50)) of 19.5 nM before takeoff and 7.6 nM at 48 hours after PF. This increase in the adenosine-mediated inhibition of PMNs' H(2)O(2) production was completely reversed by addition of the A2(A) receptor antagonist ZM241385. PF induced a nonsignificant elevation in adenosine plasma levels; A2(A) receptor mRNA from leukocytes remained almost unchanged. Adenosine limits the oxidative stress response of PMNs after PFs through an upregulation of the adenosine A2(A) receptor function. This stop signal on inflammation is stronger than that under normal physiologic states and may limit further cytotoxic damage. Pharmacologic manipulation of the adenosine A2(A) receptor pathway could be a potential target for control of unwanted exacerbations of cytotoxic PMN functions.

  11. Real-time flight test analysis and display techniques for the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Petersen, Kevin L.

    1988-01-01

    The X-29A advanced technology demonstrator flight envelope expansion program and the subsequent flight research phase gave impetus to the development of several innovative real-time analysis and display techniques. These new techniques produced significant improvements in flight test productivity, flight research capabilities, and flight safety. These techniques include real-time measurement and display of in-flight structural loads, dynamic structural mode frequency and damping, flight control system dynamic stability and control response, aeroperformance drag polars, and aircraft specific excess power. Several of these analysis techniques also provided for direct comparisons of flight-measured results with analytical predictions. The aeroperformance technique was made possible by the concurrent development of a new simplified in-flight net thrust computation method. To achieve these levels of on-line flight test analysis, integration of ground and airborne systems was required. The capability of NASA Ames Research Center, Dryden Flight Research Facility's Western Aeronautical Test Range was a key factor in enabling implementation of these methods.

  12. Emergency in-flight egress for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1981-01-01

    A NASA program for development of an inflight egress system for the left (pilot) door of general aviation aircraft is described. The pyrotechnic release door was felt to be necessary because of pilot difficulty in reaching the right door when subjected to spin/stall centrifugal effects. A flexible, linear shaped charged of hexanitrostibene II and a lanyard actuated detonator are discussed, along with mock-up tests and instrumentation. The egress system was designed for minimum structural impact, mimimum pilot initiation procedures, low weight, and no egress interference, and to provide sufficient force to blow off the door, have low required maintenance, and high reliability. Results of 68 tests are reviewed, noting the inclusion of a screen to keep glass fragments from spraying the cabin. Certification was achieved, and uses in the F-111 and B-1 aircraft are noted.

  13. Dryden F-8 Research Aircraft Fleet 1973 in flight, DFBW and SCW

    NASA Technical Reports Server (NTRS)

    1973-01-01

    F-8 Digital Fly-By-Wire (left) and F-8 Supercritical Wing in flight. These two aircraft fundamentally changed the nature of aircraft design. The F-8 DFBW pioneered digital flight controls and led to such computer-controlled airacrft as the F-117A, X-29, and X-31. Airliners such as the Boeing 777 and Airbus A320 also use digital fly-by-wire systems. The other aircraft is a highly modified F-8A fitted with a supercritical wing. Dr. Richard T. Whitcomb of Langley Research Center originated the supercritical wing concept in the late 1960s. (Dr. Whitcomb also developed the concept of the 'area rule' in the early 1950s. It singificantly reduced transonic drag.) The F-8 Digital Fly-By-Wire (DFBW) flight research project validated the principal concepts of all-electric flight control systems now used on nearly all modern high-performance aircraft and on military and civilian transports. The first flight of the 13-year project was on May 25, 1972, with research pilot Gary E. Krier at the controls of a modified F-8C Crusader that served as the testbed for the fly-by-wire technologies. The project was a joint effort between the NASA Flight Research Center, Edwards, California, (now the Dryden Flight Research Center) and Langley Research Center. It included a total of 211 flights. The last flight was December 16, 1985, with Dryden research pilot Ed Schneider at the controls. The F-8 DFBW system was the forerunner of current fly-by-wire systems used in the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient. Electronic fly-by-wire systems replaced older hydraulic control systems, freeing designers to design aircraft with reduced in-flight stability. Fly-by-wire systems are safer because of their redundancies. They are more maneuverable because computers can command more frequent adjustments than a human pilot can. For airliners, computerized control ensures a smoother ride than a human pilot alone can provide

  14. Stability and control derivative estimates obtained from flight data for the Beech 99 aircraft

    NASA Technical Reports Server (NTRS)

    Tanner, R. R.; Montgomery, T. D.

    1979-01-01

    Lateral-directional and longitudinal stability and control derivatives were determined from flight data by using a maximum likelihood estimator for the Beech 99 airplane. Data were obtained with the aircraft in the cruise configuration and with one-third flap deflection. The estimated derivatives show good agreement with the predictions of the manufacturer.

  15. Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) for testing applicants who are preparing for certification as airline transport pilots, aircraft dispatchers, or flight navigators. The publication contains several innovative features that are a departure from previous FAA publications related to air carrier personnel…

  16. Survey of piloting factors in V/STOL aircraft with implications for flight control system design

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Craig, S. J.

    1977-01-01

    Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach.

  17. Orbiter/shuttle carrier aircraft separation: Wind tunnel, simulation, and flight test overview and results

    NASA Technical Reports Server (NTRS)

    Homan, D. J.; Denison, D. E.; Elchert, K. C.

    1980-01-01

    A summary of the approach and landing test phase of the space shuttle program is given from the orbiter/shuttle carrier aircraft separation point of view. The data and analyses used during the wind tunnel testing, simulation, and flight test phases in preparation for the orbiter approach and landing tests are reported.

  18. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  19. Application of fiber Bragg grating sensors in light aircraft: ground and flight test

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Shrestha, Pratik; Park, Yurim; Kim, Chun-Gon

    2014-05-01

    Fiber optic sensors are being spotlighted as the means to monitoring aircraft conditions due to their excellent characteristics. This paper presents an affordable structural health monitoring system based on a fiber Bragg grating sensor (FBG) for application in light aircrafts. A total of 24 FBG sensors were installed in the main wing of the test bed aircraft. In the ground test, the intactness of the installed sensors and device operability were confirmed. During the flight test, the strain and temperature responses of the wing structure were measured by the on-board low-speed FBG interrogator. The measured strains were successfully converted into the flight load history through the load calibration coefficient obtained from the ground calibration test.

  20. Modern digital flight control system design for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.

    1979-01-01

    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  1. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  2. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High-alpha flight creates unique aerodynamic phenomena which increase the level of structural mode excitation; in conjunction with high-gain digital control systems, this structural response may result in an aeroservoelastic interaction. One such interaction has been observed during high-alpha flight testing of the X-29A. Data are presented which demonstrate the enhanced modal power in this aircraft's structural accelerometers, the feedback sensors, and the command signals as a function of alpha value. The structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  3. Cardiovascular responses to repetitive exposure to hyper- and hypogravity states produced by parabolic flight

    NASA Technical Reports Server (NTRS)

    Mukai, C. N.; Lathers, C. M.; Charles, J. B.; Bennett, B. S.

    1994-01-01

    Physiologic changes to repetitive hyper- and hypogravity stresses occurring during eight to ten parabolas on NASA's KC-135 aircraft were studied. Hemodynamic responses in 11 subjects in 4 different postures (supine, standing, sitting, and semisupine Space Shuttle launch position) were determined using noninvasive impedance cardiography. Five seconds of heart rate, cardiac index, thoracic fluid index, stroke index, ejection velocity index, and ventricular ejection time data were averaged during four different gravity (g) states: 1.3g (before parabola onset); 1.9g (parabola entry); 0g (parabola peak); and 1.7g (parabola exit) for each subject. The standing position was associated with the largest changes in the cardiovascular response to hypo- and hypergravity. The thoracic fluid index did not indicate a headward redistribution during transition from a simulated launch position to weightlessness. Analysis of the eight to ten parabolas revealed that, in general, values obtained at 1.8g differed from 1.6g, 0g differed from 1.6 and 1.3g, and 1.6g differed from 1.3g. The factors of gravity, thoracic fluid index, and cardiac index exhibited significant differences that were most likely to occur between parabola 1 versus parabolas 6, 7, and 8, and parabola 2 versus parabolas 4 through 8. Only the parameter of thoracic fluid index exhibited significance for parabolas 3 versus parabolas 6 and 7.

  4. Initial results from flight testing a large, remotely piloted airplane model. [flight tests of remotely controlled scale model of F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Holleman, E. C. (Compiler)

    1974-01-01

    The first four flights of a remotely piloted airplane model showed that a flight envelope can be expanded rapidly and that hazardous flight tests can be conducted safely with good results. The flights also showed that aerodynamic data can be obtained quickly and effectively over a wide range of flight conditions, clear and useful impressions of handling and controllability of configurations can be obtained, and present computer and electronic technology provide the capability to close flight control loops on the ground, thus providing a new method of design and flight test for advanced aircraft.

  5. A study for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Daughaday, H.; Andrisani, D., II; Till, R. D.; Weingarten, N. C.

    1975-01-01

    The results of a feasibility study and preliminary design for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft are documented. Active control functions which can be demonstrated on the TIFS aircraft and the cost of preparing, equipping, and operating the TIFS aircraft for active control technology development are determined. It is shown that the TIFS aircraft is as a suitable test bed for inflight research and validation of many ACT concepts.

  6. Ground and flight testing for aircraft guidance and control

    SciTech Connect

    Onken, R.; Rediess, H.A.

    1984-12-01

    A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.

  7. Parameter estimation techniques and application in aircraft flight testing

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical papers presented at the symposium by selected representatives from industry, universities, and various Air Force, Navy, and NASA installations are given. The topics covered include the newest developments in identification techniques, the most recent flight-test experience, and the projected potential for the near future.

  8. The Goodrich 3rd generation DB-110 system: successful flight test on the F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Davis; Iyengar, Mrinal; Maver, Larry; Dyer, Gavin; Francis, John

    2007-04-01

    The 3rd Generation Goodrich DB-110 system provides users with a three (3) field-of-view high performance Airborne Reconnaissance capability that incorporates a dual-band day and nighttime imaging sensor, a real time recording and a real time data transmission capability to support long range, medium range, and short range standoff and over-flight mission scenarios, all within a single pod. Goodrich developed their 3rd Generation Airborne Reconnaissance Pod for operation on a range of aircraft types including F-16, F-15, F-18, Euro-fighter and older aircraft such as the F-4, F-111, Mirage and Tornado. This system upgrades the existing, operationally proven, 2nd generation DB-110 design with enhancements in sensor resolution, flight envelope and other performance improvements. Goodrich recently flight tested their 3rd Generation Reconnaissance System on a Block 52 F-16 aircraft with first flight success and excellent results. This paper presents key highlights of the system and presents imaging results from flight test.

  9. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus,T.

    2003-01-01

    In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.

  10. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  11. Induced Moment Effects of Formation Flight Using Two F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Cobleigh, Brent R.

    2002-01-01

    Previous investigations into formation flight have shown the possibility for significant fuel savings through drag reduction. Using two F/A-18 aircraft, NASA Dryden Flight Research Center has investigated flying aircraft in autonomous formation. Positioning the trailing airplane for best drag reduction requires investigation of the wingtip vortex effects induced by the leading airplane. A full accounting of the vortex effect on the trailing airplane is desired to validate vortex-effect prediction methods and provide a database for the design of a formation flight autopilot. A recent flight phase has mapped the complete wingtip vortex effects at two flight conditions with the trailing airplane at varying distances behind the leading one. Force and moment data at Mach 0.56 and an altitude of 25,000 ft and Mach 0.86 and an altitude of 36,000 ft have been obtained with 20, 55, 110, and 190 ft of longitudinal distance between the aircraft. The moments induced by the vortex on the trailing airplane were well within the pilot's ability to control. This report discusses the data analysis methods and vortex-induced effects on moments and side force. An assessment of the impact of the nonlinear vortex effects on the design of a formation autopilot is offered.

  12. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  13. First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Sierau, B.; Arnold, F.; Baumann, R.; Busen, R.; Schulte, P.; Schumann, U.

    Sulfuric acid (SA) was for the first time directly detected in the exhaust plume of a jet aircraft in flight. The measurements were made by a novel aircraft-based VACA (Volatile Aerosol Component Analyzer) instrument of MPI-K Heidelberg while the research aircraft Falcon was chasing another research aircraft ATTAS. The VACA measures the total SA in the gas and in volatile submicron aerosol particles. During the chase the engines of the ATTAS alternatively burned sulfur-poor and sulfur-rich fuel. In the sulfur-rich plume very marked enhancements of total SA were observed of up to 1300 pptv which were closely correlated with ΔCO2 and ΔT and were far above the local ambient atmospheric background-level of typically 15-50 pptv. Our observations indicate a lower limit for the efficiency ɛ for fuel-sulfur conversion to SA of 0.34 %.

  14. Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1986-01-01

    A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.

  15. Effect of motion frequency spectrum on subjective comfort response. [modeling passenger reactions to commercial aircraft flights

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Schoultz, M. B.; Blake, J. C.

    1973-01-01

    In order to model passenger reaction to present and future aircraft environments, it is necessary to obtain data in several ways. First, of course, is the gathering of environmental and passenger reaction data on commercial aircraft flights. In addition, detailed analyses of particular aspects of human reaction to the environment are best studied in a controllable experimental situation. Thus the use of simulators, both flight and ground based, is suggested. It is shown that there is a reasonably high probability that the low frequency end of the spectrum will not be necessary for simulation purposes. That is, the fidelity of any simulation which omits the very low frequency content will not yield results which differ significantly from the real environment. In addition, there does not appear to be significant differences between the responses obtained in the airborne simulator environment versus those obtained on commercial flights.

  16. Intrapulmonary bronchogenic cyst and cerebral gas embolism in an aircraft flight passenger.

    PubMed

    Almeida, Francisco Aécio; Desouza, Bryan X; Meyer, Thomas; Gregory, Susan; Greenspon, Lee

    2006-08-01

    Although it is estimated that > 1 billion passengers travel by air worldwide each year, the incidence of in-flight emergencies is low. However, due to nonstandardized reporting requirements for in-flight medical emergencies, the true incidence of pulmonary barotrauma in airplane passengers is unknown. We describe the case of a passenger with an asymptomatic intrapulmonary cyst in whom a severe case of cerebral gas embolism developed during an aircraft flight. The decrease in ambient pressure during the aircraft climb resulted in expansion of the cyst volume based on Boyle's law (pressure x volume = constant). Due to the cyst expansion, we believe tears in the wall led to the leakage of air into the surrounding vessels followed by brain gas emboli. Adult patients with intrapulmonary cysts should be strongly considered for cyst resection or should at least be advised to abstain from activities leading to considerable changes in ambient pressure. PMID:16899861

  17. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  18. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  19. Analysis of Control Strategies for Aircraft Flight Upset Recovery

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Cox, David E.; Muri, Daniel G.

    2012-01-01

    This paper proposes a framework for studying the ability of a control strategy, consisting of a control law and a command law, to recover an aircraft from ight conditions that may extend beyond the normal ight envelope. This study was carried out (i) by evaluating time responses of particular ight upsets, (ii) by evaluating local stability over an equilibrium manifold that included stall, and (iii) by bounding the set in the state space from where the vehicle can be safely own to wings-level ight. These states comprise what will be called the safely recoverable ight envelope (SRFE), which is a set containing the aircraft states from where a control strategy can safely stabilize the aircraft. By safe recovery it is implied that the tran- sient response stays between prescribed limits before converging to a steady horizontal ight. The calculation of the SRFE bounds yields the worst-case initial state corresponding to each control strategy. This information is used to compare alternative recovery strategies, determine their strengths and limitations, and identify the most e ective strategy. In regard to the control law, the authors developed feedback feedforward laws based on the gain scheduling of multivariable controllers. In regard to the command law, which is the mechanism governing the exogenous signals driving the feed- forward component of the controller, we developed laws with a feedback structure that combines local stability and transient response considera- tions. The upset recovery of the Generic Transport Model, a sub-scale twin-engine jet vehicle developed by NASA Langley Research Center, is used as a case study.

  20. A USA Commercial Flight Track Database for Upper Tropospheric Aircraft Emission Studies

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.; Minnis, Patrick; Costulis, Kay P.

    2003-01-01

    A new air traffic database over the contiguous United States of America (USA) has been developed from a commercially available real-time product for 2001-2003 for all non-military flights above 25,000 ft. Both individual flight tracks and gridded spatially integrated flight legs are available. On average, approximately 24,000 high-altitude flights were recorded each day. The diurnal cycle of air traffic over the USA is characterized by a broad daytime maximum with a 0130-LT minimum and a mean day-night air traffic ratio of 2.4. Each week, the air traffic typically peaks on Thursday and drops to a low Saturday with a range of 18%. Flight density is greatest during late summer and least during winter. The database records the disruption of air traffic after the air traffic shutdown during September 2001. The dataset should be valuable for realistically simulating the atmospheric effects of aircraft in the upper troposphere.

  1. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    NASA Technical Reports Server (NTRS)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  2. The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight

    NASA Technical Reports Server (NTRS)

    Maisel, Martin D.; Giulianetti, Demo J.; Dugan, Daniel C.

    2000-01-01

    This monograph is a testament to the efforts of many people overcoming multiple technical challenges encountered while developing the XV-15 tilt rotor research aircraft. The Ames involvement with the tilt rotor aircraft began in 1957 with investigations of the performance and dynamic behavior of the Bell XV-3 tilt rotor aircraft. At that time, Ames Research Center was known as the Ames Aeronautical Laboratory of the National Advisory Committee for Aeronautics (NACA). As we approach the new millennium, and after more than 40 years of effort and the successful completion of our initial goals, it is appropriate to reflect on the technical accomplishments and consider the future applications of this unique aircraft class, the tilt rotor. The talented engineers, technicians, managers, and leaders at Ames have worked hard with their counterparts in the U.S. rotorcraft industry to overcome technology barriers and to make the military and civil tilt rotor aircraft safer, environmentally acceptable, and more efficient. The tilt rotor aircraft combines the advantages of vertical takeoff and landing capabilities, inherent to the helicopter, with the forward speed and range of a fixed wing turboprop airplane. Our studies have shown that this new vehicle type can provide the aviation transportation industry with the flexibility for highspeed, long-range flight, coupled with runway-independent operations, thus having a significant potential to relieve airport congestion. We see the tilt rotor aircraft as an element of the solution to this growing air transport problem.

  3. Aircraft flight simulation of spacelab experiment using an implanted telemetry system to obtain cardiovascular data from the monkey

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.

    1977-01-01

    The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.

  4. Three-Dimensional Ballistocardiography and Seismocardiography in Parabolic Flight: Preliminary Results from the ESA B3D Project

    NASA Astrophysics Data System (ADS)

    Migeotte, P.-F.; De Ridder, S.; Neyt, X.; Pattyn, N.; Di Rienzo, M.; Beck, L.; Gauger, P.; Limper, U.; Prisk, G. K.; Rusanov, V.; Funtova, I.; Baevsky, R. M.; Tank, J.

    2013-02-01

    Ballistocardiography (BCG) is a technique that had a large interest in cardiology between the fifties and eighties. Typically BCG consisted in the recording of mechanical acceleration (Acc), caused by cardiac activity, on a subject lying on a table. As Acc was recorded only in the 2-dimensions (2D) of the horizontal plane, the antero-posterior (Z-axis) component was often neglected. From past experiments conducted in space [1,2] it was suggested that this component was comparable in magnitude to the other two and that Ballistocardiography should be recorded in three dimensions (3D). These observations and the recent modest regain of interest in the BCG technique were the starting point of the B3D project selected by ESA for the definition phase after the AO-2009. We recorded 3D Acc at various positions on the surface of the body (close to the centre of mass (CM), at the apex of the heart and on the sternum) of 8 healthy volunteers during free floating periods of parabolic flight (PF) manoeuvre (ESA 55th and DLR 19th PF campaigns conducted on-board the A300-zéroG airplane of NOVESPACE). Out of the many recordings collected, only a very limited number provided body Acc free from artefacts. Nevertheless, our results show that Seismocardiograms (SCG) and Ballistocardiograms (BCG) waves were qualitatively and quantitatively comparable in the frontal plane while larger differences were present along the antero-posterior component. Our limited number of artefact free episodes demonstrates the intrinsic difficulties of 3D recordings of SCG and BCG in PF and thus the need for a study in sustained microgravity. Moreover, our results confirm that the ventro-dorsal component of BCG is of similar amplitude as the other two which further demonstrates that the three components are essential to provide a physiological interpretation of BCG and SCG signals.

  5. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells.

    PubMed

    Grosse, Jirka; Wehland, Markus; Pietsch, Jessica; Ma, Xiao; Ulbrich, Claudia; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hauslage, Jens; Hemmersbach, Ruth; Braun, Markus; van Loon, Jack; Vagt, Nicole; Infanger, Manfred; Eilles, Christoph; Egli, Marcel; Richter, Peter; Baltz, Theo; Einspanier, Ralf; Sharbati, Soroush; Grimm, Daniela

    2012-02-01

    This study focused on the effects of short-term microgravity (22 s) on the gene expression and morphology of endothelial cells (ECs) and evaluated gravisensitive signaling elements. ECs were investigated during four German Space Agency (Deutsches Zentrum für Luft- und Raumfahrt) parabolic flight campaigns. Hoechst 33342 and acridine orange/ethidium bromide staining showed no signs of cell death in ECs after 31 parabolas (P31). Gene array analysis revealed 320 significantly regulated genes after the first parabola (P1) and P31. COL4A5, COL8A1, ITGA6, ITGA10, and ITGB3 mRNAs were down-regulated after P1. EDN1 and TNFRSF12A mRNAs were up-regulated. ADAM19, CARD8, CD40, GSN, PRKCA (all down-regulated after P1), and PRKAA1 (AMPKα1) mRNAs (up-regulated) provide a very early protective mechanism of cell survival induced by 22 s microgravity. The ABL2 gene was significantly up-regulated after P1 and P31, TUBB was slightly induced, but ACTA2 and VIM mRNAs were not changed. β-Tubulin immunofluorescence revealed a cytoplasmic rearrangement. Vibration had no effect. Hypergravity reduced CARD8, NOS3, VASH1, SERPINH1 (all P1), CAV2, ADAM19, TNFRSF12A, CD40, and ITGA6 (P31) mRNAs. These data suggest that microgravity alters the gene expression patterns and the cytoskeleton of ECs very early. Several gravisensitive signaling elements, such as AMPKα1 and integrins, are involved in the reaction of ECs to altered gravity.

  6. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  7. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  8. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  9. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  10. What ASRS incident data tell about flight crew performance during aircraft malfunctions

    NASA Technical Reports Server (NTRS)

    Sumwalt, Robert L.; Watson, Alan W.

    1995-01-01

    This research examined 230 reports in NASA's Aviation Safety Reporting System's (ASRS) database to develop a better understanding of factors that can affect flight crew performance when crew are faced with inflight aircraft malfunctions. Each report was placed into one of two categories, based on severity of the malfunction. Report analysis was then conducted to extract information regarding crew procedural issues, crew communications and situational awareness. A comparison of these crew factors across malfunction type was then performed. This comparison revealed a significant difference in ways that crews dealt with serious malfunctions compared to less serious malfunctions. The authors offer recommendations toward improving crew performance when faced with inflight aircraft malfunctions.

  11. Flight test results for the Daedalus and Light Eagle human powered aircraft

    NASA Technical Reports Server (NTRS)

    Sullivan, R. Bryan; Zerweckh, Siegfried H.

    1988-01-01

    The results of the flight test program of the Daedalus and Light Eagle human powered aircraft in the winter of 1987/88 are given. The results from experiments exploring the Light Eagle's rigid body and structural dynamics are presented. The interactions of these dynamics with the autopilot design are investigated. Estimates of the power required to fly the Daedalus aircraft are detailed. The system of sensors, signal conditioning boards, and data acquisition equipment used to record the flight data is also described. In order to investigate the dynamics of the aircraft, flight test maneuvers were developed to yield maximum data quality from the point of view of estimating lateral and longitudinal stability derivatives. From this data, structural flexibility and unsteady aerodynamics have been modeled in an ad hoc manner and are used to augment the equations of motion with flexibility effects. Results of maneuvers that were flown are compared with the predictions from the flexibility model. To extend the ad hoc flexibility model, a fully flexible aeroelastic model has been developed. The model is unusual in the approximate equality of many structural natural frequencies and the importance of unsteady aerodynamic effects. the Gossamer Albatross. It is hypothesized that this inverse ground effect is caused by turbulence in the Earth's boundary layer. The diameters of the largest boundary layer eddies (which represent most of the turbulent kinetic energy) are proportional to altitude; thus, closer to the ground, the energy in the boundary layer becomes concentrated in eddies of smaller and smaller diameter. Eventually the eddies become sufficiently small (approximately 0.5 cm) that they trip the laminar boundary layer on the wing. As a result, a greater percentage of the wing area is covered with turbulent flow. Consequently the aircraft's drag and the pow er required both increase as the aircraft flies closer to the ground. The results of the flight test program are

  12. Expanding a flutter envelope using data from accelerating flight: Application to the F-16 fighter aircraft

    NASA Astrophysics Data System (ADS)

    Harris, Charles A.

    Due to the destructive nature of flutter, flutter testing is a mandatory requirement for certification of both civilian and military aircraft. However, along with the complexity of newer aircraft, the time and cost associated with flutter testing has increased dramatically. Considering that many of the test techniques and analysis methods used to perform flutter testing date back to the 1950s and 1960's it may be time to take a fresh look at how flutter testing can best be accomplished. This thesis revisits flutter testing techniques and proposes an alternative to traditional flutter testing. The alternative uses flight test data from an aircraft that is performing an acceleration to clear the flutter envelope of the aircraft. Four academic issues arise from this new test approach. (1) Are frequencies and dampings affected by the acceleration of the aircraft? (2) Can parameter identification algorithms extract frequency and damping values from the time varying data? (3) Can the vibration response at airspeeds (or Mach numbers) beyond which the aircraft has accelerated be anticipated? (4) What formal criteria can be used to determine when the aircraft needs to end the acceleration and terminate the test point? The academic contribution of this thesis is to address these issues. It is shown that although the frequencies and damping values do change the change is so small that it is irrelevant. It is also shown that by taking small windows of data, within which the change in parameters is small, it is possible to accurately identify parameters from the time varying data. Finally it is shown that at least in principal parameters can be predicted using data from sub-critical airspeeds, and that testing can be discontinued before an unstable flight condition is reached.

  13. Pathfinder aircraft prepared for flight showing solar cell arrays on wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The solar cell arrays, which cover about 75 percent of its upper wing surface, are clearly evident in this view of the Pathfinder solar-electric aircraft. The solar arrays are capable not only of absorbing direct sunlight, but can also absorb light reflected from the ground through the transparent lower surface of the 98-foot-long wing. Engineers and technicians from Pathfinder's developer, AeroVironment, Inc., conducted a successful two-hour check-out flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 19, 1996. The craft then underwent preperations at AeroVironment's Simi Valley, California, facility for a new series of flight tests in Hawaii, during summer, 1997. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the

  14. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  15. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  16. Interactive aircraft flight control and aeroelastic stabilization. [forward swept wing flight vehicles

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Schmidt, D. K.

    1981-01-01

    Several examples are presented in which flutter involving interaction between flight mechanics modes and elastic wind bending occurs for a forward swept wing flight vehicle. These results show the basic mechanism by which the instability occurs and form the basis for attempts to actively control such a vehicle.

  17. In-flight lift-drag characteristics for a forward-swept wing aircraft and comparisons with contemporary aircraft)

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Hicks, John W.; Luke, Sue (Editor)

    1994-01-01

    Lift (L) and drag (D) characteristics have been obtained in flight for the X-29A airplane (a forward swept-wing demonstrator) for Mach numbers (M) from 0.4 to 1.3. Most of the data were obtained near an altitude of 30,000 ft. A representative Reynolds number for M = 0.9, and a pressure altitude of 30,000 ft, is 18.6 x 10(exp 6) based on the mean aerodynamic chord. The X-29A data (forward-swept wing) are compared with three high-performance fighter aircraft: the F-15C, F-16C, and F/A18. The lifting efficiency of the X-29A, as defined by the Oswald lifting efficiency factor, e, is about average for a cantilevered monoplane for M = 0.6 and angles of attack up to those required for maximum L/D. At M = 0.6 the level of L/D and e, as a function of load factor, for the X-29A was about the same as for the contemporary aircraft. The X-29A and its contemporaries have high transonic wave drag and equivalent parasite area compared with aircraft of the 1940's through 1960's.

  18. Collision avoidance in commercial aircraft Free Flight via neural networks and non-linear programming.

    PubMed

    Christodoulou, Manolis A; Kontogeorgou, Chrysa

    2008-10-01

    In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming.

  19. Flight experience and the likelihood of U.S. Navy aircraft mishaps.

    PubMed

    Yacavone, D W; Borowsky, M S; Bason, R; Alkov, R A

    1992-01-01

    Although the flight experience level of U.S. Navy pilots has not declined in recent years, current budget constraints will eventually lead to reductions in flight hours per pilot. This implies an eventual shifting of the distribution of flight hours. Analyses show that the rate of aircrew factor and pilot error mishaps tends to decrease as pilots' flight experience in model increases. Aviation loss rates are higher during a pilot's first 500 hours in model. This seems to be true no matter if the pilot is simply inexperienced overall or a highly experienced aviator transitioning to a different aircraft. These data suggest, therefore, that if the in-model experience levels of naval aviators decline sufficiently, the mishap rate will increase. PMID:1550538

  20. Flight experience and the likelihood of U.S. Navy aircraft mishaps.

    PubMed

    Yacavone, D W; Borowsky, M S; Bason, R; Alkov, R A

    1992-01-01

    Although the flight experience level of U.S. Navy pilots has not declined in recent years, current budget constraints will eventually lead to reductions in flight hours per pilot. This implies an eventual shifting of the distribution of flight hours. Analyses show that the rate of aircrew factor and pilot error mishaps tends to decrease as pilots' flight experience in model increases. Aviation loss rates are higher during a pilot's first 500 hours in model. This seems to be true no matter if the pilot is simply inexperienced overall or a highly experienced aviator transitioning to a different aircraft. These data suggest, therefore, that if the in-model experience levels of naval aviators decline sufficiently, the mishap rate will increase.

  1. Salmonellosis outbreak on transatlantic flights; foodborne illness on aircraft: 1947-1984.

    PubMed

    Tauxe, R V; Tormey, M P; Mascola, L; Hargrett-Bean, N T; Blake, P A

    1987-01-01

    In March 1984, 186 cases of gastroenteritis due to Salmonella enteritidis were reported after 29 flights to the United States on an international airline. An estimated 2,747 passengers on flights to the United States were affected. Illness was associated with flying supersonic or first class (odds ratio = 15, p less than 0.001). Eating food from the first-class menu was associated with illness (p = 0.09), and eating a tourist-class entree was protective (p less than 0.01). In 23 reported outbreaks of foodborne illness on aircraft, Salmonella has been the most common pathogen (seven outbreaks), followed by Staphylococcus (five outbreaks), and Vibrio species (five outbreaks). Outbreaks are most often the result of an improper temperature for preparation or for holding food in the flight kitchens. Serving the flight crew meals from one kitchen carries the risk that the entire crew will become ill.

  2. Coupled nonlinear flight dynamics, aeroelasticity, and control of very flexible aircraft

    NASA Astrophysics Data System (ADS)

    Shearer, Christopher M.

    Flight dynamics and control of rigid aircraft motion coupled with linearized structural dynamics has been studied for several decades. However, new requirements for very flexible aircraft are challenging the validity of most rigid body coupled linearized structural motion formulations, due to the presence of large elastic motions. This dissertation presents, the flight dynamics, integration, and control of the six degree-of-freedom equations of motion of a reference point on a very flexible aircraft coupled with the aeroelastic equations which govern the geometrically nonlinear structural response of the vehicle. A low-order strain-based nonlinear structural analysis coupled with unsteady finite-state potential flow aerodynamics form the basis for the aeroelastic formulation. The nonlinear beam structural model is based upon the finite strain approach. Kinematic differential equations are used to provide orientation and position of the fixed reference point. The resulting governing differential equations are non-linear, first- and second-order differential algebraic equations and provide a low-order complete nonlinear aircraft formulation. The resulting equations are integrated using an implicit Modified Newmark Method. The method incorporates both first- and second-order nonlinear equations without the necessity of transforming second-order equations to first-order form. The method also incorporates a Newton-Raphson sub-iteration scheme to reduce residual error. Due to the inherent flexibility of these aircraft, the low order structural modes couple directly with the rigid body modes. This creates a system which cannot be separated as in traditional control schemes. Trajectory control techniques are developed based upon a combination of linear and nonlinear inner-loop tracking and an outer-loop nonlinear transformation from desired trajectories to reference frame velocities. Numerical simulations are presented validating the proposed integration scheme and the

  3. Estimation of Handling Qualities Parameters of the Tu-144 Supersonic Transport Aircraft from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Curry, Timothy J.; Batterson, James G. (Technical Monitor)

    2000-01-01

    Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.

  4. Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight diagnostic system to be updated to the degraded health condition of the engines through a relatively simple process. Through this health baseline update, the effectiveness of the in-flight diagnostic algorithm can be maintained as the health of the engine degrades over time. Another significant aspect of the hybrid Kalman filter methodology is its capability to take advantage of conventional linear and nonlinear Kalman filter approaches. Based on the hybrid Kalman filter, an in-flight fault detection system is developed, and its diagnostic capability is evaluated in a simulation environment. Through the evaluation, the suitability of the hybrid Kalman filter technique for aircraft engine in-flight diagnostics is demonstrated.

  5. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  6. Sound Pressures and Correlations of Noise on the Fuselage of a Jet Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    Shattuck, Russell D.

    1961-01-01

    Tests were conducted at altitudes of 10,000, 20,000, and 30,000 feet at speeds of Mach 0.4, 0.6, and O.8. It was found that the sound pressure levels on the aft fuselage of a jet aircraft in flight can be estimated using an equation involving the true airspeed and the free air density. The cross-correlation coefficient over a spacing of 2.5 feet was generalized with Strouhal number. The spectrum of the noise in flight is comparatively flat up to 10,000 cycles per second.

  7. Optimization of the terrain following radar flight cues in special operations aircraft

    NASA Astrophysics Data System (ADS)

    Garman, Patrick J.; Trang, Jeff A.

    1995-05-01

    Over the past 18 months the Army has been developing a terrain following capability in it's next generation special operations aircraft (SOA), the MH-60K and the MH-47E. As two experimental test pilots assigned to the Army's Airworthiness Qualification Test Directorate of the US Army Aviation Technical Test Center, we would like to convey the role that human factors has played in the development of the MMR for terrain following operations in the SOA. In the MH-60K, the pilot remains the interface between the aircraft, via the flight controls and the processed radar data, and the flight director cues. The presentation of the processed radar data to the pilot significantly affects the overall system performance, and is directly driven by the way humans see, process, and react to stimuli. Our development has been centered around the optimization of this man-machine interface.

  8. In-Flight Alignment Using H∞ Filter for Strapdown INS on Aircraft

    PubMed Central

    Pei, Fu-Jun; Liu, Xuan; Zhu, Li

    2014-01-01

    In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition. PMID:24511300

  9. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pull up (from V max to V stall) and pushover (to V max for level flight). The technique, which is an extension of nonlinear equations of motion of the parameter identification methods of Iliff and Taylor and includes provisions for internal data compatibility improvement as well, was shown to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. Flow charts, listings, sample inputs and outputs for the relevant routines are provided as appendices. This technique was applied to flight data taken on the ATLIT aircraft. Lack of adequate knowledge of the correct full throttle thrust horsepower true airspeed variation and considerable internal data inconsistency made it impossible to apply the trajectory matching features of the technique.

  10. A new tool for radiation exposure calculations in aircraft flights during disturbed solar activity periods

    NASA Astrophysics Data System (ADS)

    Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.

  11. In-flight alignment using H ∞ filter for strapdown INS on aircraft.

    PubMed

    Pei, Fu-Jun; Liu, Xuan; Zhu, Li

    2014-01-01

    In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition.

  12. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  13. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  14. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    NASA Astrophysics Data System (ADS)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various

  15. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  16. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  17. Application of precomputed control laws in a reconfigurable aircraft flight control system

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.

    1989-01-01

    A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.

  18. Design and evaluation of flight directors for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A brief review of model-based techniques for the design of aircraft flight directors is undertaken. An analytical director design technique which utilizes an optimal control model of the human pilot is then discussed in more detail. The analytical and experimental results of three specific director design studies are discussed, all involving control of a light utility helicopter. Finally, a general design methodology is discussed which can aid in the specification of pilot-centered display requirements.

  19. V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

    1973-01-01

    An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

  20. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Flight test experiences of the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) programs are reviewed. Significant operating anomalies in these programs and the design errors which caused them are examined. The functions which a system design/information tool should provide to assist designers in avoiding errors are identified.

  1. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  2. Ground-recorded sonic boom signatures of F-18 aircraft formation flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1995-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  3. Ground-Recorded Sonic Boom Signatures of F-18 Aircraft in Formation Flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1996-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the tail shock of the upper F-18 (called tail-canopy). The second formation had the canopy of the lower F- 18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft . An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  4. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  5. The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

    2000-01-01

    The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

  6. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Flynn, Darin C.; Frederick, Michael; Ratnayake, Nalin A.

    2009-01-01

    The Rake Airflow Gage Experiment was flown on the Propulsion Flight Test Fixture at NASA Dryden Flight Research Center using one of Dryden s F-15B research testbed aircraft. Propulsion Flight Test Fixture is a modular, pylon-based platform for flight testing propulsion system components, such as the Channeled Centerbody Inlet Experiment, an innovative, variable-geometry, mixed compression supersonic inlet under development at NASA Dryden. The objective of this flight test was to ascertain the flowfield angularity and local Mach number profile of the aerodynamic interface plane that is defined by the planned location of the tip of the inlet centerbody. Knowledge of the flowfield characteristics at this location underneath will be essential to computational modeling of the new inlet as well as future propulsion systems flight testing using the test fixture. This paper describes the preparation for and execution of the flight test, as well as results and validation of the algorithm used to calculate local Mach number and angularity from the rake's pressure measurements.

  7. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  8. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  9. An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

    2000-01-01

    A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

  10. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  11. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.

    PubMed

    Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A

    2009-03-01

    Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

  12. High-angle-of-attack yawing moment asymmetry of the X-31 aircraft from flight test

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    1994-01-01

    Significant yawing moment asymmetries were encountered during the high-angle-of-attack envelope expansion of the two X-31 aircraft. These asymmetries led to position saturations of the thrust vector vanes and trailing-edge flaps during some of the dynamic stability axis rolling maneuvers at high angles of attack. This slowed the high-angle-of-attack envelope expansion and resulted in maneuver restrictions. Several aerodynamic modifications were made to the X-31 forebody with the goal of minimizing the asymmetry. A method for determining the yawing moment asymmetry from flight data was developed and an analysis of the various configuration changes completed. The baseline aircraft were found to have significant asymmetries above 45 deg angle of attack with the largest asymmetry typically occurring around 60 deg angle of attack. Applying symmetrical boundary layer transition strips along the forebody sides increased the magnitude of the asymmetry and widened the angle-of-attack range over which the largest asymmetry acted. Installing longitudinal forebody strakes and rounding the sharp nose of the aircraft caused the yawing moment asymmetry magnitude to be reduced. The transition strips and strakes made the asymmetry characteristic of the aircraft more repeatable than the clean forebody configuration. Although no geometric differences between the aircraft were known, ship 2 consistently had larger yawing moment asymmetries than ship 1.

  13. Follow on Researches for X-56A Aircraft at NASA Dryden Flight Research Center (Progress Report)

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2012-01-01

    A lot of composite materials are used for the modern aircraft to reduce its weight. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of X-56A aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes is based on the flutter analysis of X-56A aircraft. It should be noted that for all three Mach number cases rigid body modes and mode numbers seven and nine are participated 89.1 92.4 % of the first flutter mode. Modal participation of the rigid body mode and mode numbers seven and nine for the second flutter mode are 94.6 96.4%. Rigid body mode and the first two anti-symmetric modes, eighth and tenth modes, are participated 93.2 94.6% of the third flutter mode. Therefore, rigid body modes and the first four flexible modes of X-56A aircraft are the primary modes during the model tuning procedure. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is to obtain in this study. The structural dynamics finite element model of X-56A aircraft is improved using the parallelized big-bang big-crunch algorithm together with a hybrid optimization technique.

  14. Tiltrotor noise reduction through flight trajectory management and aircraft configuration control

    NASA Astrophysics Data System (ADS)

    Gervais, Marc

    A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise

  15. SR-71A in Flight with Test Fixture Mounted Atop the Aft Section of the Aircraft

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This close-up, head-on view of NASA's SR-71A Blackbird in flight shows the aircraft with an experimental test fixture mounted on the back of the airplane. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera

  16. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.; Jordan, J. L.; Schinstock, W. C.; Platz, S. J.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag.

  17. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degradation in lift and drag.

  18. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  19. Design and piloted simulation evaluation of integrated flight/propulsion controls for STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Engelland, Shawn A.

    1991-01-01

    Integrated flight/propulsion control systems have been designed for operation of STOVL aircraft over the low speed powered-lift flight envelope. The control system employs command modes for attitude, flightpath angle and flightpath acceleration during transition, and translational velocity command for hover and vertical landing. The command modes and feedback control are implemented in the form of a state-rate feedback implicit model follower to achieve the desired flying qualities and to suppress the effects of external disturbances and variations in the aircraft characteristics over the low speed envelope. A nonlinear inverse system was used to translate the output from these commands and feedback control into commands for the various aerodynamic and propulsion control effectors that are employed in powered-lift flight. Piloted evaluations of these STOVL integrated control designs have been conducted on Ames Research Center's Vertical Motion Simulator to assess flying qualities over the low-speed flight envelope. Results indicate that Level 1 flying qualities are achieved with this control system concept for each of these low-speed operations over a wide range of wind, atmospheric turbulence, and visibility conditions.

  20. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  1. In-Flight Stability Analysis of the X-48B Aircraft

    NASA Technical Reports Server (NTRS)

    Regan, Christopher D.

    2008-01-01

    This report presents the system description, methods, and sample results of the in-flight stability analysis for the X-48B, Blended Wing Body Low-Speed Vehicle. The X-48B vehicle is a dynamically scaled, remotely piloted vehicle developed to investigate the low-speed control characteristics of a full-scale blended wing body. Initial envelope clearance was conducted by analyzing the stability margin estimation resulting from the rigid aircraft response during flight and comparing it to simulation data. Short duration multisine signals were commanded onboard to simultaneously excite the primary rigid body axes. In-flight stability analysis has proven to be a critical component of the initial envelope expansion.

  2. Flight simulation of a wide-body transport aircraft to evaluate MLS-RNAV procedures

    NASA Technical Reports Server (NTRS)

    Branstetter, James R.; Houck, Jacob A.; Guenther, Arlene D.

    1988-01-01

    In a collaborative effort between the Federal Aviation Administration (FAA) NASA and the U.S. Air Force, a piloted simulation was conducted to look at the issues involved with flying a large, wide-body aircraft in the airport terminal area using Microwave Landing System Area Navigation (MLS)-RNAV procedures. A variety of approach paths, departure paths, and holding patterns were evaluated during the course of the study for operational use, flight technical errors, and safety. In addition, several methods for driving the horizontal situation indicator and flight director instruments were investigated along with needle sensitivity. The ultimate goal of the simulation was to develop and verify candidate paths and procedures prior to flight tests conducted in 1986/87. Subject pilots for the simulation study were provided by the FAA, NASA, the U.S. Air Force, and the airline industry.

  3. Evaluating the Handling Qualities of Flight Control Systems Including Nonlinear Aircraft and System Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Raymond Chao

    The handling qualities evaluation of nonlinear aircraft systems is an area of concern in loss-of-control (LOC) prevention. The Get Transfer Function (GetTF) method was demonstrated for evaluating the handling qualities of flight control systems and aircraft containing nonlinearities. NASA's Generic Transport Model (GTM), a nonlinear model of a civilian jet transport aircraft, was evaluated. Using classical techniques, the stability, control, and augmentation (SCAS) systems were designed to control pitch rate, roll rate, and airspeed. Hess's structural pilot model was used to model pilot dynamics in pitch and roll-attitude tracking. The simulated task was simultaneous tracking of, both, pitch and roll attitudes. Eight cases were evaluated: 1) gain increase of pitch-attitude command signal, 2) gain increase of roll-attitude command signal, 3) gain reduction of elevator command signal, 4) backlash in elevator actuator, 5) combination 3 and 4 in elevator actuator, 6) gain reduction of aileron command signal, 7) backlash in aileron actuator, and 8) combination of 6 and 7 in aileron actuator. The GetTF method was used to estimate the transfer function approximating a linear relationship between the proprioceptive signal of the pilot model and the command input. The transfer function was then used to predict the handling qualities ratings (HQR) and pilot-induced oscillation ratings (PIOR). The HQR is based on the Cooper-Harper rating scale. In pitch-attitude tracking, the nominal aircraft is predicted to have Level 2* HQRpitch and 2 < PIORpitch < 4. The GetTF method generally predicted degraded handling qualities for cases with impaired actuators. The results demonstrate GetTF's utility in evaluating the handling qualities during the design phase of flight control and aircraft systems. A limited human-in-the-loop pitch tracking exercise was also conducted to validate the structural pilot model.

  4. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching... safety measures during instruction; (3) Training and practice from the left and right pilot seats in the... flight instructor (simulator) must include the following: (1) Training and practice in the...

  5. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1091... subpart; (3) Has satisfactorily completed the proficiency or competency checks that are required to serve... proficiency or competency checks that are required to serve as a pilot in command in operations under...

  6. The relative role of visual and non-visual cues in determining the perceived direction of "up": experiments in parabolic flight.

    PubMed

    Jenkin, H L; Dyde, R T; Zacher, J E; Zikovitz, D C; Jenkin, M R; Allison, R S; Howard, I P; Harris, L R

    2005-01-01

    In order to measure the perceived direction of "up", subjects judged the three-dimensional shape of disks shaded to be compatible with illumination from particular directions. By finding which shaded disk appeared most convex, we were able to infer the perceived direction of illumination. This provides an indirect measure of the subject's perception of the direction of "up". The different cues contributing to this percept were separated by varying the orientation of the subject and the orientation of the visual background relative to gravity. We also measured the effect of decreasing or increasing gravity by making these shape judgements throughout all the phases of parabolic flight (0 g, 2 g and 1 g during level flight). The perceived up direction was modeled by a simple vector sum of "up" defined by vision, the body and gravity. In this model, the weighting of the visual cue became negligible under microgravity and hypergravity conditions.

  7. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The uniquely shaped Proteus high-altitude aircraft soars over California's Mojave Desert during a July 1999 flight. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The

  8. ERAST Program Proteus Aircraft in Flight over the Tehachapi Mountains in Southern California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unique shape of the Proteus high-altitude aircraft is clearly visible in this photo of the plane in flight above the rocky slopes of the Tehachapi Mountains near Mojave, California, where the Proteus was designed and built. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the

  9. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  10. Parabolic flight experiment `Convection in a Cylinder' -Interaction of 1g, 1.8g, micro-g and electro-hydrodynamic g periods

    NASA Astrophysics Data System (ADS)

    Dahley, M. Sc. Norman; Futterer, Birgit; Smieszek, Marlene; Egbers, Christoph; Crumeyrolle, Olivier; Mutabazi, Innocent

    In micro pumps, dosing systems, heat exchanger and transfer devices the flow control is realized by means of external impressed force fields. Here we focus on the enhancement of heat transfer in an annular cavity, if an electrohydrodynamic force field is set up. This synthetic force field is established with a high voltage potential between differentially heated inner and outer cylinders, filled with a dielectric insulating fluid. It acts comparable to thermal buoyancy forces induced by gravity. Sitte et al. (2001) performed quantitative parabolic flight experiments without determining critical values and finally reported a broken azimuthally symmetry due to the instability in a recent parabolic flight experiment (Sitte et al., 2003). With the experiment accomplishment in the 14th parabolic flight, first scenarios are realized in order to weigh the different influences of natural buoyancy coming from g and electro-hydrodynamic buoyancy coming from synthetic force fields, which were studied with numerical simulations by Smieszek et al. (2008). Specific experiment objective was the convection in an annular cavity with differentially heated inner and outer cylinders under the influence of the both buoyancy driven forces. By scaling the annulus width to approximate 5mm the initial outer cell radius for a first parabolic flight campaign was set to 10mm. The inner cylinder is made of aluminum and is heated with heating cartridges. The outer cylinder is made of glass. The gap in between is the experimental volume, which is filled with silicone oil and particles. With this a Laser light sheet illumination was set up. The inner cylinder, made of aluminum, is connected to a high-tension up to 10kV. The glass cylinder is coated with Indium-Tin-Oxide (ITO) inside, to make the glass conductive and is connected to ground. The central force field is introduced by applying a high voltage difference between the two cylinders. Convection was observed during the whole parabolic

  11. CID Aircraft in practice flight above target impact site with wing cutters

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720

  12. Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.

    1995-01-01

    Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.

  13. A Correlation Between Flight-Determined Derivatives and Wind-Tunnel Data for the X-24B Research Aircraft

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1976-01-01

    Longitudinal and lateral-directional estimates of the aerodynamic derivatives of the X-24B research aircraft were obtained from flight data by using a modified maximum likelihooa estimation method. Data were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5deg to 15.7deg. Data are presented for a subsonic and a transonic configuration. The flight derivatives were generally consistent and documented the aircraft well. The correlation between the flight data and wind-tunnel predictions is presented and discussed.

  14. Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III

    2005-01-01

    Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.

  15. A Correlation Between Flight-Determined Derivatives and Wind-Tunnel Data for the X-24B Research Aircraft

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1997-01-01

    Longitudinal and lateral-directional estimates of the aerodynamic derivatives of the X-24B research aircraft were obtained from flight data by using a modified maximum likelihood estimation method. Data were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5 deg. to 15.7 deg. Data are presented for a subsonic and transonic configuration. The flight derivatives were generally consistent and documented the aircraft well. The correlation between the flight data and wind-tunnel predictions is presented and discussed.

  16. Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons

    NASA Technical Reports Server (NTRS)

    Deppe, P. R.; Chalk, C. R.; Shafer, M. F.

    1996-01-01

    As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.

  17. Planform, aero-structural, and flight control optimization for tailless morphing aircraft

    NASA Astrophysics Data System (ADS)

    Molinari, Giulio; Arrieta, Andres F.; Ermanni, Paolo

    2015-04-01

    Tailless airplanes with swept wings rely on variations of the spanwise lift distribution to provide controllability in roll, pitch and yaw. Conventionally, this is achieved utilizing multiple control surfaces, such as elevons, on the wing trailing edge. As every flight condition requires different control moments (e.g. to provide pitching moment equilibrium), these surfaces are practically permanently displaced. Due to their nature, causing discontinuities, corners and gaps, they bear aerodynamic penalties, mostly in terms of shape drag. Shape adaptation, by means of chordwise morphing, has the potential of varying the lift of a wing section by deforming its profile in a way that minimizes the resulting drag. Furthermore, as the shape can be varied differently along the wingspan, the lift distribution can be tailored to each specific flight condition. For this reason, tailless aircraft appear as a prime choice to apply morphing techniques, as the attainable benefits are potentially significant. In this work, we present a methodology to determine the optimal planform, profile shape, and morphing structure for a tailless aircraft. The employed morphing concept is based on a distributed compliance structure, actuated by Macro Fiber Composite (MFC) piezoelectric elements. The multidisciplinary optimization is performed considering the static and dynamic aeroelastic behavior of the resulting structure. The goal is the maximization of the aerodynamic efficiency while guaranteeing the controllability of the plane, by means of morphing, in a set of flight conditions.

  18. Flight Test of an Adaptive Configuration Optimization System for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Georgie, Jennifer; Barnicki, Joseph S.

    1999-01-01

    A NASA Dryden Flight Research Center program explores the practical application of real-time adaptive configuration optimization for enhanced transport performance on an L-1011 aircraft. This approach is based on calculation of incremental drag from forced-response, symmetric, outboard aileron maneuvers. In real-time operation, the symmetric outboard aileron deflection is directly optimized, and the horizontal stabilator and angle of attack are indirectly optimized. A flight experiment has been conducted from an onboard research engineering test station, and flight research results are presented herein. The optimization system has demonstrated the capability of determining the minimum drag configuration of the aircraft in real time. The drag-minimization algorithm is capable of identifying drag to approximately a one-drag-count level. Optimizing the symmetric outboard aileron position realizes a drag reduction of 2-3 drag counts (approximately 1 percent). Algorithm analysis of maneuvers indicate that two-sided raised-cosine maneuvers improve definition of the symmetric outboard aileron drag effect, thereby improving analysis results and consistency. Ramp maneuvers provide a more even distribution of data collection as a function of excitation deflection than raised-cosine maneuvers provide. A commercial operational system would require airdata calculations and normal output of current inertial navigation systems; engine pressure ratio measurements would be optional.

  19. Ground Vibration and Flight Flutter Tests of the Single-seat F-16XL Aircraft with a Modified Wing

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    1993-01-01

    The NASA single-seat F-16XL aircraft was modified by the addition of a glove to the left wing. Vibration tests were conducted on the ground to assess the changes to the aircraft caused by the glove. Flight Luther testing was conducted on the aircraft with the glove installed to ensure that the flight envelope was free of aeroelastic or aeroservoelastic instabilities. The ground vibration tests showed that above 20 Hz, several modes that involved the control surfaces were significantly changed. Flight test data showed that modal damping levels and trends were satisfactory where obtainable. The data presented in this report include estimated modal parameters from the ground vibration and flight flutter test.

  20. In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B. (Inventor)

    1999-01-01

    Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

  1. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  2. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1975-01-01

    Kevlar-49 fairing panels were inspected and found to be performing satisfactorily after two years flight service on an Eastern and an Air Canada L-1011. Six panels are on each aircraft including sandwich and solid laminate wing-body panels, and 300 F service aft engine fairings. Some of the panels were removed from the aircraft to permit inspection of inner surfaces and fastener hole conditions. Minor defects such as surface cracks due to impact damage, small delaminated areas, elongation and fraying of fastener holes, were noted. None of these defects were considered serious enough to warrant corrective action in the opinion of airline personnel. The defects are typical for the most part of defects noted on similar fiberglass parts.

  3. Calibration of strain-gage installations in aircraft structures for the measurement of flight loads

    NASA Technical Reports Server (NTRS)

    Skopinski, T H; Aiken, William S , Jr; Huston, Wilber B

    1954-01-01

    A general method has been developed for calibrating strain-gage installations in aircraft structures, which permits the measurement in flight of the shear or lift, the bending moment, and the torque or pitching moment on the principal lifting or control surfaces. Although the stress in structural members may not be a simple function of the three loads of interest, a straightforward procedure is given for numerically combining the outputs of several bridges in such a way that the loads may be obtained. Extensions of the basic procedure by means of electrical combination of the strain-gage bridges are described which permit compromises between strain-gage installation time, availability of recording instruments, and data reduction time. The basic principles of strain-gage calibration procedures are illustrated by reference to the data for two aircraft structures of typical construction, one a straight and the other a swept horizontal stabilizer.

  4. Estimation of longitudinal stability and control derivatives for an icing research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Batterson, James G.; Omara, Thomas M.

    1989-01-01

    The results of applying a modified stepwise regression algorithm and a maximum likelihood algorithm to flight data from a twin-engine commuter-class icing research aircraft are presented. The results are in the form of body-axis stability and control derivatives related to the short-period, longitudinal motion of the aircraft. Data were analyzed for the baseline (uniced) and for the airplane with an artificial glaze ice shape attached to the leading edge of the horizontal tail. The results are discussed as to the accuracy of the derivative estimates and the difference between the derivative values found for the baseline and the iced airplane. Additional comparisons were made between the maximum likelihood results and the modified stepwise regression results with causes for any discrepancies postulated.

  5. Flight study of on-board enhanced vision system for all-weather aircraft landing

    NASA Astrophysics Data System (ADS)

    Akopdjanan, Yuri A.; Machikhin, Alexander S.; Bilanchuk, Vyacheslav V.; Drynkin, Vladimir N.; Falkov, Eduard Y.; Tsareva, Tatiana I.; Fomenko, Anatoly I.

    2014-11-01

    On-board enhanced vision system for all-weather aircraft navigation and landing which is currently under development in State research institute of aviation systems is described. The system is based on combination of three imagers sensitive in visible, short wave infrared (SWIR) and long wave infrared (LWIR) spectral ranges and demonstrating to the pilot only the most informative images from the time-aligned multi-sensor data. The results of flight tests at glissade trajectories of the light aircraft OR-5 MO obtained at various weather conditions are presented. It is shown that each spectral range may be informative under certain conditions of observation. In adverse and poor-visibility conditions, such as fog, high humidity and low clouds, SWIR range has the biggest information content.

  6. Partitioning of flight data for aerodynamic modeling of aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Batterson, James G.; Klein, Vladislav

    1987-01-01

    It is sometimes necessary to determine aerodynamic model structure and estimate associated stability and control derivatives for airplanes from flight data that cover a large range of angle of attack or sideslip. One method of dealing with that problem is through data partitioning. The main purpose of this paper is to provide an explanation of a data partitioning procedure and its application and to discuss both the power and limitations of that procedure for the analysis of large maneuvers of aircraft. The partitioning methodology is shown to provide estimates for coefficients of those regressors that are well excited in the aircraft motion. In particular, primary lateral stability and damping derivatives are identified throughout the maneuver ranges.

  7. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  8. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1999-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  9. A Heading and Flight-Path Angle Control of Aircraft Based on Required Acceleration Vector

    NASA Astrophysics Data System (ADS)

    Yoshitani, Naoharu

    This paper describes a control of heading and flight-path angles of aircraft to time-varying command angles. The controller first calculates an acceleration command vector (acV), which is vertical to the velocity vector. acV consists of two components; the one is feedforward acceleration obtained from the rates of command angles, and the other is feedback acceleration obtained from angle deviations by using PID control law. A bank angle command around the velocity vector and commands of pitch and yaw rates are then obtained to generate the required acceleration. A roll rate command is calculated from bank angle deviation. Roll, pitch and yaw rate commands are put into the attitude controller, which can be composed of any suitable control laws such as PID control. The control requires neither aerodynamic coefficients nor online calculation of the inverse dynamics of the aircraft. A numerical simulation illustrates the effects of the control.

  10. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  11. Flight Crew Sleep in Long-Haul Aircraft Bunk Facilities: Survey Results

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Miller, Donna L.; Gregory, Kevin B.; Dinges, David F.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    Modem long-haul aircraft can fly up to 16 continuous hours and provide a 24-hour, global capability. Extra (augmented) flight crew are available on long flights to allow planned rest periods, on a rotating basis, away from the flight deck in onboard crew rest facilities (2 bunks). A NASA/FAA study is under-way to examine the quantity and quality of sleep obtained in long-haul aircraft bunks and the factors that promote or interfere with that sleep. The first phase of the study involved a retrospective survey, followed by a second phase field study to collect standard polysomnographic data during inflight bunk sleep periods. A summary of the Phase I survey results are reported here. A multi-part 54-question retrospective survey was completed by 1,404 flight crew (37% return rate) at three different major US air carriers flying B747-100, 200, 400, and MD- 11 long-haul aircraft. The questions examined demographics, quantity and quality of sleep at home and in onboard bunks, factors that promote or interfere with sleep, and effects on subsequent performance and alertness. Flight crew reported a mean bunk sleep latency of 39.4 mins (SD=28.3 mins) (n=1,276) and a mean total sleep time of 2.2 hrs (SD=1.3 hrs) (n=603). (Different flight lengths could affect overall time available for sleep.) Crew rated 25 factors for their interference or promotion of bunk sleep. Figure I portrays the average ratings for each factor across all three carriers. A principal components analysis of the 25 factors revealed three areas that promoted bunk sleep: physiological (e.g., readiness for sleep), physical environment (e.g., bunk size, privacy), and personal comfort (e.g., blankets, pillows). Five areas were identified that interfered with sleep: environmental disturbance (e.g., background noise, turbulence), luminosity (e.g., lighting), personal disturbances (e.g., bathroom trips, random thoughts), environmental discomfort (e.g., low humidity, cold), and interpersonal disturbances (e

  12. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics

    NASA Astrophysics Data System (ADS)

    Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.

    2012-11-01

    The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.

  13. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  14. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1982-01-01

    Kevlar-49 fairing panels, installed as flight service components on three l-1011's, were inspected after 8 years service. The fairings had accumulated a total of 62,000 hours, with one ship set having 20,850 hours service. Kevlar-49 components were found to be performing satisfactorily in service with no major problems. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structures.

  15. Aircraft motion and passenger comfort data from scheduled commercial airline flights

    NASA Technical Reports Server (NTRS)

    Gruesbeck, M. G.; Sullivan, D. F.

    1976-01-01

    Data concerning the ride quality of aircraft taken on board commercial airline flights was presented. Five types of data are included: (1) root mean square (RMS) values of linear acceleration, angular acceleration or angular velocities, along with passenger subjective evaluations, (2) power spectra for the motion in each of six degrees of freedom, (3) scattergrams showing the probability density of the rms accelerations in the vertical and transverse directions, (4) probability distributions of the motion, and (5) on board noise levels during takeoff, climb, cruise, and descent.

  16. Flight investigation of cabin noise control treatments for a light turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Oneal, R. L.; Mixson, J. S.

    1985-01-01

    The in-flight evaluation of noise control treatments for a light, twin-engined turboprop aircraft presents several problems associated with data analysis and interpretation. These problems include data repeatability, propeller synchronization, spatial distributions of the exterior pressure field and acoustic treatment, and the presence of flanking paths. They are discussed here with regard to a specific aeroplane configuration. Measurements were made in an untreated cabin and in a cabin fitted with an experimental sidewall treatment. Results are presented in terms of the insertion loss provided by the treatment and comparison made with predictions based on laboratory measurements.

  17. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  18. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.

  19. Flight test validation of a frequency-based system identification method on an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Orme, John S.; Hreha, Mark A.

    1995-01-01

    A frequency-based performance identification approach was evaluated using flight data from the NASA F-15 Highly Integrated Digital Electronic Control aircraft. The approach used frequency separation to identify the effectiveness of multiple controls simultaneously as an alternative to independent control identification methods. Fourier transformations converted measured control and response data into frequency domain representations. Performance gradients were formed using multiterm frequency matching of control and response frequency domain models. An objective function was generated using these performance gradients. This function was formally optimized to produce a coordinated control trim set. This algorithm was applied to longitudinal acceleration and evaluated using two control effectors: nozzle throat area and inlet first ramp. Three criteria were investigated to validate the approach: simultaneous gradient identification, gradient frequency dependency, and repeatability. This report describes the flight test results. These data demonstrate that the approach can accurately identify performance gradients during simultaneous control excitation independent of excitation frequency.

  20. STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter, Bridget Youngs, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  1. STS-93 Mission Specialist Coleman and husband prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Catherine G. Coleman (Ph.D.) and her husband, Josh Simpson, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  2. STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter Bridget Youngs prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  3. Application of an integrated flight/propulsion control design methodology to a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.

    1991-01-01

    The application of an emerging Integrated Flight/Propulsion Control design methodology to a STOVL aircraft in transition flight is reported. The methodology steps consist of: (1) design of a centralized feedback controller to provide command tracking and stability and performance robustness considering the fully integrated airframe/propulsion model as one high-order system; (2) partition of the centralized controller into a decentralized, hierarchical form compatible with implementation requirements; and (3) design of command shaping prefilters from pilot control effectors to commanded variables to provide the overall desired response to pilot inputs. Intermediate design results using this methodology are presented, the complete point control design with the propulsion system operating schedule and limit protection logic included is evaluated for sample pilot control inputs, and the response is compared with that of an 'ideal response model' derived from Level I handling qualities requirements.

  4. Feasibility of Supersonic Aircraft Concepts for Low-Boom and Flight Trim Constraints

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2015-01-01

    This paper documents a process for analyzing whether a particular supersonic aircraft configuration layout and a given cruise condition are feasible to achieve a trimmed low-boom design. This process was motivated by the need to know whether a particular configuration at a given cruise condition could be reshaped to satisfy both low-boom and flight trim constraints. Without such a process, much effort could be wasted on shaping a configuration layout at a cruise condition that could never satisfy both low-boom and flight trim constraints simultaneously. The process helps to exclude infeasible configuration layouts with minimum effort and allows a designer to develop trimmed low-boom concepts more effectively. A notional low-boom supersonic demonstrator concept is used to illustrate the analysis/design process.

  5. Pitch attitude, flight path, and airspeed control during approach and landing of a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1972-01-01

    Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.

  6. Robust integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.

  7. H-infinity based integrated flight-propulsion control design for a STOVL aircraft in transition flight

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle M.; Ouzts, Peter J.

    1990-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic Short Take-Off and Vertical Landing (STOVL) fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC controller design with controller partitioning. Only the feedback controller design portion of the methodology is addressed. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H-infinity control problem such that it reflects the IFPC design objectives. The H-infinity controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance. A discussion is presented of the areas in which the controller performance needs to be improved, and ways in which these improvements can be achieved within the framework of an H-infinity based linear control design.

  8. [Flight and altitude medicine for anesthetists-part 3: emergencies on board commercial aircraft].

    PubMed

    Graf, Jürgen; Stüben, Uwe; Pump, Stefan

    2013-04-01

    The demographic trend of industrialized societies is also reflected in commercial airlines' passengers: passengers are older nowadays and long-haul flights are routine mode of transport despite considerable chronic and acute medical conditions. Moreover, duration of non-stop flight routes and the number of passengers on board increase. Thus, the probability of a medical incident during a particular flight event increases, too.Due to international regulations minimum standards for medical equipment on board, and first aid training of the crews are set. However, it is often difficult to assess whether a stopover at a nearby airport can improve the medical care of a critically ill passenger. Besides flight operations and technical aspects, the medical infrastructure on the ground has to be considered carefully.Regardless of the amount of experience of a physician medical emergencies on board an aircraft usually represent a particular challenge. This is mainly due to the unfamiliar surroundings, the characteristics of the cabin atmosphere, the often existing cultural and language barriers and legal liability concerns.

  9. Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions

    NASA Technical Reports Server (NTRS)

    Rizzi, Arthur; Jirasek, Adam; Lamar, John; Crippa, Simone; Badcock, Kenneth; Boelens, Oklo

    2009-01-01

    Nine groups participating in the Cranked Arrow Wing Aerodynamics Project International (CAWAPI) project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, steady or unsteady, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.

  10. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.

  11. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft

    NASA Astrophysics Data System (ADS)

    Stout, Perry Walter

    Quantitative Feedback Theory (QFT) is a control system synthesis, technique that directly considers system uncertainties and disturbance magnitudes when formulating closed-loop control algorithms. Dynamic Inversion is a nonlinear control system design technique that relies on accurate mathematical models to compute control inputs producing arbitrary system responses. Both techniques have been applied to unstable high performance aircraft flight control, and produced effective aircraft controllers. Both techniques have certain drawbacks: Nonlinear QFT controllers tend to be unnecessarily conservative (the computed controllers have excessive bandwidth) because known system properties are treated as "unknown" disturbances during loop synthesis. Meanwhile Dynamic Inversion control is sensitive to differences between assumed mathematical models and actual system dynamic properties. Combining the two control techniques provides the benefit of both while suffering the drawbacks of neither, as demonstrated by Single Input, Single Output (SISO) control of a constant airspeed, no roll, no yaw nonlinear model of the F-16 aircraft, and by Multi-Input, Multi-Output (MIMO) control of a full six-degree-of-freedom version. Design performance of the combined controllers is verified by reduced actuator efforts and by reduced sensor noise to actuator input (U( s)/n(s)) transfer function magnitudes compared to standard QFT versions.

  12. Emergency in-flight egress opening for general aviation aircraft. [pilot bailout

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1980-01-01

    An emergency in-flight egress system was installed in a light general aviation airplane. The airplane had no provision for egress on the left side. To avoid a major structural redesign for a mechanical door, an add on 11.2 kg (24.6 lb) pyrotechnic-actuated system was developed to create an opening in the existing structure. The skin of the airplane was explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel was jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mockups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics. This technology is applicable to any aircraft of similar construction.

  13. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Astrophysics Data System (ADS)

    Golub, R. A.; Preisser, J. S.

    1984-04-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  14. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Technical Reports Server (NTRS)

    Golub, R. A.; Preisser, J. S.

    1984-01-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  15. Robustness Analysis and Reliable Flight Regime Estimation of an Integrated Resilent Control System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2008-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. As a part of the validation process, this paper describes an analysis method for determining a reliable flight regime in the flight envelope within which an integrated resilent control system can achieve the desired performance of tracking command signals and detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop system over the entire flight envelope. To use the structured singular value analysis method, a linear fractional transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear dynamics over the flight envelope with the ! block which contains key varying parameters: angle of attack and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight regime is calculated for a transport aircraft closed-loop system.

  16. Modeling of Aircraft Unsteady Aerodynamic Characteristics/Part 3 - Parameters Estimated from Flight Data. Part 3; Parameters Estimated from Flight Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1996-01-01

    A nonlinear least squares algorithm for aircraft parameter estimation from flight data was developed. The postulated model for the analysis represented longitudinal, short period motion of an aircraft. The corresponding aerodynamic model equations included indicial functions (unsteady terms) and conventional stability and control derivatives. The indicial functions were modeled as simple exponential functions. The estimation procedure was applied in five examples. Four of the examples used simulated and flight data from small amplitude maneuvers to the F-18 HARV and X-31A aircraft. In the fifth example a rapid, large amplitude maneuver of the X-31 drop model was analyzed. From data analysis of small amplitude maneuvers ft was found that the model with conventional stability and control derivatives was adequate. Also, parameter estimation from a rapid, large amplitude maneuver did not reveal any noticeable presence of unsteady aerodynamics.

  17. Development of a computer technique for the prediction of transport aircraft flight profile sonic boom signatures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Coen, Peter G.

    1991-01-01

    A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.

  18. Flight test investigation of certification issues pertaining to general-aviation-type aircraft with natural laminar flow

    NASA Technical Reports Server (NTRS)

    Doty, Wayne A.

    1990-01-01

    Development of Natural Laminar Flow (NLF) technology for application to general aviation-type aircraft has raised some question as to the adequacy of FAR Part 23 for certification of aircraft with significant NLF. A series of flight tests were conducted with a modified Cessna T210R to allow quantitative comparison of the aircraft's ability to meet certification requirements with significant NLF and with boundary layer transition fixed near the leading edge. There were no significant differences between the two conditions except an increasing in drag, which resulted in longer takeoff distances and reduced climb performance.

  19. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  20. Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

    1987-01-01

    Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

  1. Overview of the preparation and use of an OV-10 aircraft for wake vortex hazards flight experiments

    NASA Technical Reports Server (NTRS)

    Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1995-01-01

    An overview is presented of the development, use, and current flight-test status of a highly instrumented North American Rockwell OV-10A Bronco as a wake-vortex-hazards research aircraft. A description of the operational requirements and measurements criteria, the resulting instrumentation systems and aircraft modifications, system-calibration and research flights completed to date, and current flight status are included. These experiments are being conducted by the National Aeronautics and Space Administration as part of an effort to provide the technology to safely improve the capacity of the nation's air transportation system and specifically to provide key data in understanding and predicting wake vortex decay, transport characteristics, and the dynamics of encountering wake turbulence. The OV-10A performs several roles including meteorological measurements platform, wake-decay quantifier, and trajectory-quantifier for wake encounters. Extensive research instrumentation systems include multiple airdata sensors, video cameras with cockpit displays, aircraft state and control-position measurements, inertial aircraft-position measurements, meteorological measurements, and an on-board personal computer for real-time processing and cockpit display of research data. To date, several of the preliminary system check flights and two meteorological-measurements deployments have been completed. Several wake encounter and wake-decay-measurements flights are planned for the fall of 1995.

  2. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H(infinity) control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic short take-off and vertical landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H(infinity) control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H(infinity)=based IFPC design study performed earlier is used as the base to formulate the robust H(infinity) control design problem and improve the previous design. Detailed evaluation results are presented for a reduced-order controller obtained from the improved H(infinity) control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with chnages in aircraft trim speed within the transition flight envelope.

  3. In flight image processing on multi-rotor aircraft for autonomous landing

    NASA Astrophysics Data System (ADS)

    Henry, Richard, Jr.

    An estimated $6.4 billion was spent during the year 2013 on developing drone technology around the world and is expected to double in the next decade. However, drone applications typically require strong pilot skills, safety, responsibilities and adherence to regulations during flight. If the flight control process could be safer and more reliable in terms of landing, it would be possible to further develop a wider range of applications. The objective of this research effort is to describe the design and evaluation of a fully autonomous Unmanned Aerial system (UAS), specifically a four rotor aircraft, commonly known as quad copter for precise landing applications. The full landing autonomy is achieved by image processing capabilities during flight for target recognition by employing the open source library OpenCV. In addition, all imaging data is processed by a single embedded computer that estimates a relative position with respect to the target landing pad. Results shows a reduction on the average offset error by 67.88% in comparison to the current return to lunch (RTL) method which only relies on GPS positioning. The present work validates the need for relying on image processing for precise landing applications instead of the inexact method of a commercial low cost GPS dependency.

  4. Longitudinal stability and control derivatives obtained from flight data of a PA-30 aircraft

    NASA Technical Reports Server (NTRS)

    Turley, D. R.; Sandlin, D. R.

    1981-01-01

    In order to obtain reliable and accurate values of the stability and control derivatives, the Dryden Fligh Research Center (DFRC) developed a technique for extracting the derivatives from flight data. This technique is implemented by a set of FORTRAN computer programs that is based on a modified maximum likelihood estimator that uses the Newton-Raphson algorithm to perform the required minimization of the derivatives. Data was obtained with a PA-30, light twin-engine general aviation aircraft in zero, half, and full flap configuration in level unaccelerated flight with the landing gear retracted. The derivatives were plotted as functions of angle of attack using various graphical arrangements to show variations of wind tunnel and flight determined values at zero flap settings. Also, data was displayed to show the effects of flap deflection and thrust variation on the longitudinal stability derivatives. The angle of attack and angle of sideslip were measured. The dynamic pressure, velocity, and altitude were calculated, using a FORTRAN computer program, from the static and dynamic pressures. The control deflections of the stabilator, ailerons, and rudder also were recorded along with left throttle position, engine rpm, and manifold pressure.

  5. Predicting the effects of unmodeled dynamics on an aircraft flight control system design using eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.

    1994-01-01

    When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).

  6. Preliminary Flight Tests of the N.A.C.A. Roots Type Aircraft Engine Supercharger

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Reid, Elliott G

    1928-01-01

    An investigation of the suitability of the N.A.C.A. Roots type aircraft engine supercharger to flight-operating conditions, as determined the effects of the use of the supercharger upon engine operation and airplane performance, is described in this report. Attention was concentrated on the operation of the engine-supercharger unit and on the improvement of climbing ability; some information concerning high speeds at altitude was obtained. The supercharger was found to be satisfactory under flight-operating conditions. Although two failures occurred during the tests, the causes of both were minor and have been eliminated. Careful examination of the engines revealed no detrimental effects which could be attributed to supercharging. Marked improvements in climbing ability and high speeds at altitude were effected. It was also found that the load which could be carried to a given moderate or high altitude in a fixed time was considerably augmented. A slight sacrifice of low-altitude performance was necessitated, however, by the use of a fixed-pitch propeller. From a consideration of the very satisfactory flight performance of the Roots supercharger and of its inherent advantages, it is concluded that this type is particularly attractive for use in certain classes of commercial airplanes and in a number of military types.

  7. Design, implementation and flight testing of PIF autopilots for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    The designs of Proportional-Integrated-Filter (PIF) auto-pilots for a General Aviation (NAVION) aircraft are presented. The PIF autopilot uses the sampled-data regulator and command generator tracking to determine roll select, pitch select, heading select, altitude select and localizer/glideslope capture and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback, command error integration for command tracking, digital complementary filtering and analog prefiltering for sensor noise suppression, a control filter for computation delay accommodation and the incremental form to eliminate trim values in implementation. Theoretical developments described in detail, were needed to combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and linear simulations. The implementation of the PIF autopilots in a digital flight computer using a high order language (FORTRAN) is briefly described. The successful flight test results for each PIF autopilot mode is presented.

  8. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  9. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    NASA Astrophysics Data System (ADS)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian

    2016-05-01

    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

  10. Summary of a Crew-Centered Flight Deck Design Philosophy for High-Speed Civil Transport (HSCT) Aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew.

  11. Flight Test Results on the Stability and Control of the F-15 Quiet Spike(TradeMark) Aircraft

    NASA Technical Reports Server (NTRS)

    Moua, Cheng M.; McWherter, Shaun C.; Cox, Timothy H.; Gera, Joe

    2012-01-01

    The Quiet Spike F-15B flight research program investigated supersonic shock reduction using a 24-ft sub-scale telescoping nose boom on an F-15B airplane. The program primary flight test objective was to collect flight data for aerodynamic and structural models validation up to 1.8 Mach. Other objectives were to validate the mechanical feasibility of a morphing fuselage at the operational conditions and determine the near-field shock wave characterization. The stability and controls objectives were to assess the effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire research flight envelop. The two main stability and controls issues were the effects of the telescoping nose boom influenced aerodynamics on the F-15B aircraft flight dynamics and air data and angle of attack sensors. This paper reports on the stability and controls flight envelope clearance methods and flight test analysis of the F-15B Quiet Spike. Brief pilot commentary on typical piloting tasks, approach and landing, refueling task, and air data sensitivity to the flight control system are also discussed in this report.

  12. X-38 research aircraft - second drop flight from NB-52B mothership

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the Earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999, including one on February 6, 1999. Although the X-38 landed safely on the lakebed at Edwards after the March

  13. Impact of Aircraft Emissions on Reactive Nitrogen over the North Atlantic Flight Corridor Region

    NASA Technical Reports Server (NTRS)

    Koike, M.; Kondo, Y.; Ikeda, H.; Gregory, G. L.; Anderson, B. E.; Sachse, G. W.; Blake, D.; Liu, S. C.; Singh, H. B.; Thompson, A.

    1999-01-01

    The impact of aircraft emissions on reactive nitrogen in the upper troposphere (UT) and lowermost stratosphere (LS) was estimated using the NO(y)-O3 correlation obtained during the SASS Ozone and NO(x) Experiment (SONEX) carried out over the US continent and North Atlantic Flight Corridor (NAFC) region in October and November 1997. To evaluate the large scale impact, we made a reference NO(y)-O3 relationship in air masses, upon which aircraft emissions were considered to have little impact. For this purpose, the integrated input of NO(x) from aircraft into an air mass along a 10-d back trajectory (DELTA-NO(y)) was calculated based on the ANCAT/EC2 emission inventory. The excess NO(y) (dNO(y)) was calculated from the observed NO(y) and the reference NO(y)-O3 relationship. As a result, a weak positive correlation was found between the dNO(y) and DELTA-NO(y), and dNO(y) and NO(x)/NO(y) values, while no positive correlation between the dNO(y) and CO values was found, suggesting that dNO(y) values can be used as a measure of the NO(x) input from aircraft emissions. The excess NO(y) values calculated from another NO(y)-O3 reference relationship made using in-situ CN data also agreed with these dNO(y) values, within the uncertainties. At the NAFC region (45 N - 60 N), the median value of dNO(y) in the troposphere increased with altitude above 9 km and reached 70 pptv (20% of NO(y)) at 11 km. The excess NO(x) was estimated to be about half of the dNO(y) values, corresponding to 30% of the observed NO(x) level. Higher dNO(y) values were generally found in air masses where O3 = 75 - 125 ppbv, suggesting a more pronounced effect around the tropopause. The median value of dNO(y) in the stratosphere at the NAFC region at 8.5 - 11.5 km was about 120 pptv. The higher dNO(y) values in the LS were probably due to the accumulated effect of aircraft emissions, given the long residence time of affected air in the LS. Similar dNO(y) values were also obtained in air masses sampled over

  14. Navier-Stokes, flight, and wind tunnel flow analysis for the F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1994-01-01

    Computational analysis of flow over the F/A-18 aircraft is presented along with complementary data from both flight and wind tunnel experiments. The computational results are based on the three-dimensional thin-layer Navier-Stokes formulation and are obtained from an accurate surface representation of the fuselage, leading-edge extension (LEX), and the wing geometry. However, the constraints imposed by either the flow solver and/or the complexity associated with the flow-field grid generation required certain geometrical approximations to be implemented in the present numerical model. In particular, such constraints inspired the removal of the empennage and the blocking (fairing) of the inlet face. The results are computed for three different free-stream flow conditions and compared with flight test data of surface pressure coefficients, surface tuft flow, and off-surface vortical flow characteristics that included breakdown phenomena. Excellent surface pressure coefficient correlations, both in terms of magnitude and overall trend, are obtained on the forebody throughout the range of flow conditions. Reasonable pressure agreement was obtained over the LEX; the general correlation tends to improve at higher angles of attack. The surface tuft flow and the off-surface vortex flow structures compared qualitatively well with the flight test results. To evaluate the computational results, a wind tunnel investigation was conducted to determine the effects of existing configurational differences between the flight vehicle and the numerical model on aerodynamic characteristics. In most cases, the geometrical approximations made to the numerical model had very little effect on overall aerodynamic characteristics.

  15. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  16. Development of a flight data acquisition system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Hood, Scott

    Current developments surrounding the use of unmanned aerial vehicles have produced a need for a high quality data acquisition platform developed specifically a research environment. This work was undertaken to produce such a system that is low cost, extensible, and better supports fixed wing research through the inclusion of a custom vane based air data probe capable of measuring airspeed, angle of attack, and angle of sideslip. This was accomplished by starting with the open source Pixhawk system as the core and then modifying the device firmware and adding sensors to suit the needs of current aerospace research at OSU. An overview of each component of the system is presented, as well as a description of various firmware modifications to the stock Pixhawk system. Tests were then performed on all of the major sensors using bench testing, wind tunnel analysis, and flight maneuvers to determine the final performance of each part of the system. This research shows that all of the critical sensors on the data acquisition platform produce data acceptable for flight research. The accelerometer has been shown to have an overall tolerance of +/-0.0545 m/s², with +/-0.223 deg/s for the gyroscopic sensor, +/-1.32 hPa for the barometric sensor, +/-0.318 m/s for the airspeed sensor, +/-1.65 °C for the outside air temperature sensor, and +/-0.00115 V for the analog to digital converter. The stock calibration curve for the airspeed sensor was determined to be correct to within +/-0.5 in H2O through wind tunnel testing, and an experimental step input analysis on the flow direction vanes showed that worst case steady state error and time to damp are acceptable for the system. Power spectral density and spectral coherence analysis of flight data was used to show that the custom air data probe is capable of following the flight dynamics of a given aircraft to within a 10 percent tolerance across a range of frequencies. Finally, general performance of the system was proven using

  17. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  18. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  19. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1979-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after five years' service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 150 C (300 F) service aft engine fairing. The fairings have accumulated a total of 40,534 hours, with one ship set having 16,091 hours service as of Feb. 11, 1979. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings.

  20. Real-time aircraft structural damage identification with flight condition variations

    NASA Astrophysics Data System (ADS)

    Lew, Jiann-Shiun; Loh, Chin-Hsiung

    2012-04-01

    This paper presents a real-time structural damage identification method for aircraft with flight condition variations. The proposed approach begins by identifying the dynamic models under various test conditions from time-domain input/output data. A singular value decomposition technique is then used to characterize and quantify the parameter uncertainties from the identified models. The uncertainty coordinates, corresponding to the identified principal directions, of the identified models are computed, and the residual errors between the identified uncertainty coordinates and the estimated uncertainty coordinates of the health structure are used to identify damage status. A correlation approach is applied to identify damage type and intensity, based on the difference between the identified parameters and the estimated parameters of the healthy structure. The proposed approach is demonstrated by application to the Benchmark Active Controls Technology (BACT) wind-tunnel model.