Science.gov

Sample records for aircraft piston engines

  1. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  2. The spark-ignition aircraft piston engine of the future

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    Areas of advanced technology appropriate to the design of a spark-ignition aircraft piston engine for the late 1980 time period were investigated and defined. Results of the study show that significant improvements in fuel economy, weight and size, safety, reliability, durability and performance may be achieved with a high degree of success, predicated on the continued development of advances in combustion systems, electronics, materials and control systems.

  3. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  4. Investigation of the misfueling of reciprocating piston aircraft engines

    NASA Technical Reports Server (NTRS)

    Scott, J. Holland, Jr.

    1988-01-01

    The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline. The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator. The gas chromatograph, in addition to providing excellent quality control of the fixed-base operator's fuel handling, is a very good backup for the detection kit in the event it produces negative results. Design parameters were developed to the extent that they may be applied easily to commercial production by the aircraft industry.

  5. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  6. Avco Lycoming/NASA contract status. [on reduction of emissions from aircraft piston engines

    NASA Technical Reports Server (NTRS)

    Duke, L. C.

    1976-01-01

    The standards promulgated by the Environmental Protection Agency (EPA) for carbon monoxide (CO), unburned hydrocarbon (HC), and oxides-of-nitrogen (NOx) emissions were the basis in a study of ways to reduce emissions from aircraft piston engines. A variable valve timing system, ultrasonic fuel atomization, and ignition system changes were postulated.

  7. 75 FR 36034 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... provide comment on the ANPR. DATES: The comment period for the ANPR published April 28, 2010 (75 FR 22440... AGENCY 40 CFR Part 87 RIN 2060-AP79 Advance Notice of Proposed Rulemaking on Lead Emissions From Piston... Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded Aviation Gasoline (hereinafter...

  8. Summary of the general aviation manufacturers' position on aircraft piston engine emissions

    NASA Technical Reports Server (NTRS)

    Helms, J. L.

    1976-01-01

    The General Aviation Manufacturers recommended that the EPA rescind the aircraft piston engine emissions regulations currently on the books. The reason was the very small emission reduction potential and the very poor benefit-cost ratio involved in this form of emission reduction. The limited resources of this industry can far better be devoted to items of much greater benefit to the citizens of this country - reducing noise, improving fuel efficiency (which will incidently reduce exhaust emissions), and improving the safety, operational, and economic aspects of aircraft, all far greater contributions to our total national transportation system.

  9. Concepts for reducing exhaust emissions and fuel consumption of the aircraft piston engine

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1979-01-01

    A study was made to reduce exhaust emissions and fuel consumption of a general aviation aircraft piston engine by applying known technology. Fourteen promising concepts such as stratified charge combustion chambers, cooling cylinder head improvements, and ignition system changes were evaluated for emission reduction and cost effectiveness. A combination of three concepts, improved fuel injection system, improved cylinder head with exhaust port liners and exhaust air injection was projected as the most cost effective and safe means of meeting the EPA standards for CO, HC and NO. The fuel economy improvement of 4.6% over a typical single engine aircraft flight profile does not though justify the added cost of the three concepts, and significant reductions in fuel consumption must be applied to the cruise mode where most of the fuel is used. The use of exhaust air injection in combination with exhaust port liners reduces exhaust valve stem temperatures which can result in longer valve guide life. The use of exhaust port liners alone can reduce engine cooling air requirements by 11% which is the equivalent of a 1.5% increase in propulsive power. The EPA standards for CO, HC and NO can be met in the IO-520 engine using air injection alone or the Simmonds improved fuel injection system.

  10. Liquid piston Stirling engines

    SciTech Connect

    West, C.D.

    1983-01-01

    This book is a presentation on piston stirling engines. Topics covered include: liquid piston engines; basic design and power calculations; more advanced power calculations; design example; and past research work and some present research needs.

  11. Stirling cycle piston engine

    SciTech Connect

    Morgan, G. R.

    1985-02-12

    This device is an improvement over the conventional type of Stirling cycle engine where the expander piston is connected to a crankshaft and the displacer piston is connected to the same or another crankshaft for operation. The improvement is based on both the expansion and displacer pistons being an integral unit having regenerating means which eliminate the mechanisms that synchronize the regeneration mode.

  12. Free piston stirling engines

    SciTech Connect

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  13. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  14. Causes and risk factors for fatal accidents in non-commercial twin engine piston general aviation aircraft.

    PubMed

    Boyd, Douglas D

    2015-04-01

    Accidents in twin-engine aircraft carry a higher risk of fatality compared with single engine aircraft and constitute 9% of all general aviation accidents. The different flight profile (higher airspeed, service ceiling, increased fuel load, and aircraft yaw in engine failure) may make comparable studies on single-engine aircraft accident causes less relevant. The objective of this study was to identify the accident causes for non-commercial operations in twin engine aircraft. A NTSB accident database query for accidents in twin piston engine airplanes of 4-8 seat capacity with a maximum certified weight of 3000-8000lbs. operating under 14CFR Part 91 for the period spanning 2002 and 2012 returned 376 accidents. Accident causes and contributing factors were as per the NTSB final report categories. Total annual flight hour data for the twin engine piston aircraft fleet were obtained from the FAA. Statistical analyses employed Chi Square, Fisher's Exact and logistic regression analysis. Neither the combined fatal/non-fatal accident nor the fatal accident rate declined over the period spanning 2002-2012. Under visual weather conditions, the largest number, n=27, (27%) of fatal accidents was attributed to malfunction with a failure to follow single engine procedures representing the most common contributing factor. In degraded visibility, poor instrument approach procedures resulted in the greatest proportion of fatal crashes. Encountering thunderstorms was the most lethal of all accident causes with all occupants sustaining fatal injuries. At night, a failure to maintain obstacle/terrain clearance was the most common accident cause leading to 36% of fatal crashes. The results of logistic regression showed that operations at night (OR 3.7), off airport landings (OR 14.8) and post-impact fire (OR 7.2) all carried an excess risk of a fatal flight. This study indicates training areas that should receive increased emphasis for twin-engine training/recency. First, increased

  15. Free-piston engine

    DOEpatents

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  16. Optimized hydrogen piston engines

    SciTech Connect

    Smith, J.R.

    1994-05-10

    Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

  17. Development and evaluation of an air quality modeling approach to assess near-field impacts of lead emissions from piston-engine aircraft operating on leaded aviation gasoline

    NASA Astrophysics Data System (ADS)

    Carr, Edward; Lee, Mark; Marin, Kristen; Holder, Christopher; Hoyer, Marion; Pedde, Meredith; Cook, Rich; Touma, Jawad

    2011-10-01

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality modeling approach using U.S. Environmental Protection Agency's (EPA) American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was developed and evaluated for estimating atmospheric concentrations of Pb at and near general aviation airports where leaded aviation gasoline (avgas) is used. These detailed procedures were made to accurately characterize emissions and dispersion leading to improved model performance for a pollutant with concentrations that vary rapidly across short distances. The new aspects of this work included a comprehensive Pb emission inventory that incorporated sub-daily time-in-mode (TIM) activity data for piston-engine aircraft, aircraft-induced wake turbulence, plume rise of the aircraft exhaust, and allocation of approach and climb-out emissions to 50-m increments in altitude. To evaluate the modeling approach used here, ambient Pb concentrations were measured upwind and downwind of the Santa Monica Airport (SMO) and compared to modeled air concentrations. Modeling results paired in both time and space with monitoring data showed excellent overall agreement (absolute fractional bias of 0.29 winter, 0.07 summer). The modeling results on individual days show Pb concentration gradients above the urban background concentration of 10 ng m-3 extending downwind up to 900 m from the airport, with a crosswind extent of 400 m. Three-month average modeled concentrations above the background were found to extend to a maximum distance of approximately 450 m beyond the airport property in summer and fall. Modeling results show aircraft engine “run-up” is the most important source contribution to the maximum Pb concentration. Sensitivity analysis

  18. Piston reciprocating compressed air engine

    SciTech Connect

    Cestero, L.G.

    1987-03-24

    A compressed air engine is described comprising: (a). a reservoir of compressed air, (b). two power cylinders each containing a reciprocating piston connected to a crankshaft and flywheel, (c). a transfer cylinder which communicates with each power cylinder and the reservoir, and contains a reciprocating piston connected to the crankshaft, (d). valve means controlled by rotation of the crankshaft for supplying compressed air from the reservoir to each power cylinder and for exhausting compressed air from each power cylinder to the transfer cylinder, (e). valve means controlled by rotation of the crankshaft for supplying from the transfer cylinder to the reservoir compressed air supplied to the transfer cylinder on the exhaust strokes of the pistons of the power cylinders, and (f). an externally powered fan for assisting the exhaust of compressed air from each power cylinder to the transfer cylinder and from there to the compressed air reservoir.

  19. Ultralean combustion in general aviation piston engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1979-01-01

    The role of ultralean combustion in achieving fuel economy in general aviation piston engines was investigated. The aircraft internal combustion engine was reviewed with regard to general aviation requirements, engine thermodynamics and systems. Factors affecting fuel economy such as those connected with an ideal leanout to near the gasoline lean flammability limit (ultralean operation) were analyzed. A Lycoming T10-541E engine was tested in that program (both in the test cell and in flight). Test results indicate that hydrogen addition is not necessary to operate the engine ultralean. A 17 percent improvement in fuel economy was demonstrated in flight with the Beechcraft Duke B60 by simply leaning the engine at constant cruiser power and adjusting the ignition for best timing. No detonation was encountered, and a 25,000 ft ceiling was available. Engine roughness was shown to be the limiting factor in the leanout.

  20. Piston and spring powered engine

    SciTech Connect

    Samodovitz, A. J.

    1985-12-10

    The invention is an improved piston engine, either two stroke or four stroke. In one, two stroke, one cylinder embodiment, the improvement comprises two springs connecting between the piston and the base of the piston. These springs are relatively relaxed when the crank is at top dead center. Then during the power/intake stroke, some of the fuel's energy is delivered to the crankshaft and some is used to compress the springs. The stored energy in the springs is delivered to the crankshaft during the exhaust/compression stroke while the springs return to their relatively relaxed condition. As a result, energy is delivered to the crankshaft during both strokes of the cycle, and the engine runs smooth. In one, four stroke, two cylinder embodiment, each cylinder has springs as described above, the cranks of each cylinder are aligned, and the cam sets one cylinder in the power stroke while the other is in the intake stroke. As a result, the engine runs smooth because energy is delivered to the crankshaft during all four strokes of the cycle, during two of the strokes by the burning fuel and during the other two by the release of energy in the springs. In both embodiments, a heavy crankshaft is not needed because of the more uniform power delivery.

  1. Two piston V-type Stirling engine

    DOEpatents

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  2. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  3. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  4. 75 FR 22439 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...EPA is issuing this Advance Notice of Proposed Rulemaking (ANPR) to describe information currently available and information being collected that will be used by the Administrator to issue a subsequent proposal regarding whether, in the Administrator's judgment, aircraft lead emissions from aircraft using leaded aviation gasoline (avgas) cause or contribute to air pollution which may......

  5. Double acting stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  6. Buoyancy engine utilizing pistons and crankshaft

    SciTech Connect

    De Shon, D.A.

    1987-08-04

    This patent describes a buoyancy engine utilizing pistons and crankshaft, comprising: cylinders, disposed in a vessel contained liquid; the vessel sitting on a base and having an air exhaust orifice at its top; hydrodynamically designed pistons, disposed within the cylinders, designed with air holding spaces to hold injected air, and attached by connecting rods to a hydrodynamically designed crankshaft; sealed connecting rod bearings which connect the piston rods to the crankshaft; wrist pins which connected the piston rods to the pistons, the crankshaft supported on sealed bearing in the vessel walls, and which is rotated by the upward motion of the relatively buoyant pistons which are attached; the crankshaft designed so that its lobes to which the pistons are attached are at angles which insure that power developed by pistons in their lift cycle is successively converted into continuing rotational force on the crankshaft; computer-controlled air injectors, programmed to crankshaft rotational speed, positioned to inject air, compressed by a compressor, into the pistons at the bottom of each piston's stroke, the pistons having pistons rings to retain the air in the piston during its upward power stroke; and vents incorporated into their design for the release of air at the top of their power stroke. An exhaust port in each cylinder conducts air released from pistons to be released into the ambient liquid; a flywheel attached to the crankshaft, stores a part of the mechanical energy produced, provides continuity to the series of energy developing cycles of the pistons; a generator attached to the crankshaft, produces electric power from the rotation of the crankshaft.

  7. Two piston V-type Stirling engine

    SciTech Connect

    Corey, J.A.

    1987-01-06

    This patent describes a Stirling cycle engine comprising: a compression piston reciprocal in a cold compression space and an expansion piston operated from a common crank shaft reciprocal in an expansion space out of phase with respect to each other. The pistons reciprocate along axes which are angularly disposed to one another, such that a V-configuration engine is formed. A regenerator means is positioned immediately adjacent a cooling means. The cooling means is axially aligned immediately adjacent the cold compression piston so as to minimize cold duct volume. A heating means is coupled with the regenerator and the expansion space completing the Stirling cycle.

  8. General aviation piston-engine exhaust emission reduction

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.; Houtman, W. H.; Westfield, W. T.; Duke, L. C.; Rezy, B. J.

    1977-01-01

    To support the promulgation of aircraft regulations, two airports were examined, Van Nuys and Tamiami. It was determined that the carbon monoxide (CO) emissions from piston-engine aircraft have a significant influence on the CO levels in the ambient air in and around airports, where workers and travelers would be exposed. Emissions standards were set up for control of emissions from aircraft piston engines manufactured after December 31, 1979. The standards selected were based on a technologically feasible and economically reasonable control of carbon monoxide. It was concluded that substantial CO reductions could be realized if the range of typical fuel-air ratios could be narrowed. Thus, improvements in fuel management were determined as reasonable controls.

  9. Carbon/Carbon Pistons for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  10. Hydraulic generator with free-piston engine

    SciTech Connect

    Bouthers, P.; Breting, O.

    1983-11-15

    A hydraulic generator is disclosed with a free-piston engine and hydropneumatic return cushion and with an associated hydraulic-fluid pumping piston feeding a hydraulic accumulator intended to be charged between two detected levels of pressure. The generator includes a lock device for the free piston at the power-stroke dead center with voluntary control, and servo-control means for this lock device with means for detection of the aforementioned two pressure levels, to assure locking the piston in response to detection of the aforementioned highest pressure level and to assure its unlocking in response to detection of the aforementioned lowest pressure level, and thus an automatic intermittent running of said engine.

  11. Piston rod seal for a Stirling engine

    SciTech Connect

    Shapiro, W.

    1984-01-31

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal. 3 figs.

  12. Piston rod seal for a Stirling engine

    DOEpatents

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  13. Engine piston having an insulating air gap

    DOEpatents

    Jarrett, Mark Wayne; Hunold,Brent Michael

    2010-02-02

    A piston for an internal combustion engine has an upper crown with a top and a bottom surface, and a lower crown with a top and a bottom surface. The upper crown and the lower crown are fixedly attached to each other using welds, with the bottom surface of the upper crown and the top surface of the lower crown forming a mating surface. The piston also has at least one centrally located air gap formed on the mating surface. The air gap is sealed to prevent substantial airflow into or out of the air gap.

  14. Balancing mechanism for reciprocating piston engine

    SciTech Connect

    Murata, N.; Ogino, T.

    1987-04-14

    This patent describes a balancing mechanism for a reciprocating piston internal combustion engine which includes a cylinder, a piston reciprocatable in the cylinder, a crankcase, a crankshaft mounted in the crankshaft, a crankpin connected to the piston, and a pair of crank arms bridging the crankshaft and crankpin. The crank arms and crankpin rotate with the crankshaft during operation and form a rotating mass. The balancing mechanism comprises at least one rotating counterweight attached to and rotating with the crankshaft, and eccentric journal means on the crankshaft adjacent the crank arms, rotating with the crankshaft. The journal means has an axis spaced to the side of the crankshaft axis which is opposite from the crankpin. The rotating counterweight and the eccentric journal means counterbalancing the rotating mass.

  15. Full-scale study of the cooling system aerodynamics of an operating piston engine installed in a light aircraft wing panel

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Katz, J.

    1981-01-01

    Measurements of the drag and of the nacelle internal pressures on a wing and nacelle that housed a horizontally opposed piston engine were made in the 40- by 80-Foot Wind Tunnel at Ames Research Center. These tests are follow-ons to earlier tests made with the same wing and nacelle but in which the engine was replaced with an electric motor and an adjustable orifice plate. In the initial tests the orifice plate was used to control the rate of cooling-air flow through the nacelle and thereby to simulate a range of gasoline engine types. Good agreement was found between the results of those tests and of the test reported here. Also, the upper and lower plenum pressure and cooling-air flow rate were found to be related by conventional equations used to represent the flow through orifices. Tests were run with three cooling air inlet sizes over a free-stream velocity range from 50 to 150 knots, an angle of attack range from 0 deg to 10 deg, and a cowl-flap deflection range from 0 deg to 30 deg. The data were analyzed by computing a flow coefficient similar to that used in the analysis of orifices. It was found that all of the flow coefficient values fell within a band that varied linearly with inlet area. The linear mean line through this band provides an estimate of the relationship between cooling-air flow rate and upper plenum pressure over a wide range of test conditions.

  16. Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1989-01-01

    Engines promise cost-effective solar-power generation. Report describes two concepts for Stirling-engine systems for conversion of solar heat to electrical energy. Recognized most promising technologies for meeting U.S. Department of Energy goals for performance and cost for terrestrial electrical-energy sources.

  17. Compression ratio control in reciprocating piston engines

    SciTech Connect

    Doundoulakis, G.J.

    1989-08-29

    The patent describes compression ratio control for reciprocating piston engines. It comprises: a reciprocating engine crankcase; a plurality of compression/expansion cylinders rigidly attached to the crankcase; each of the cylinders including a curved surface and a cylinder head; a fuel mixture in-taken in the cylinders; a piston reciprocating along each cylinder's curved surface for providing compression/expansion to the fuel mixture; a crank mechanism including a crankshaft rotating about an axial line that is substantially equidistant from the heads, crankcheek lobes radially extending from the crankshaft, crankpins inside and in contact with crankpin bearings, axially extending between the crankcheek lobes, and crankshaft journal bearings for providing low frictional support to the crankshaft; a connecting rod for each of the cylinders connecting the piston with the crankpin; crankshaft positioning; a first transmission gear, a crankshaft gear for meshing with the transmission gear, and a slot cut on the crankcase; wherein the constraint in the displacement of the crankshaft in the horizontal sense is provided by the vertical edges of the slot, and wherein the vertical edges of the slot are preferably being curved with a radius of curvature substantially equal to the average pitch diameter of the crankshaft gear and thee first transmission gear for accurate meshing of the gears.

  18. Improving Free-Piston Stirling Engine Specific Power

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell Henry

    2014-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling Engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  19. Improving Free-Piston Stirling Engine Specific Power

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  20. Stability analysis of free piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  1. Quantum optomechanical piston engines powered by heat

    NASA Astrophysics Data System (ADS)

    Mari, A.; Farace, A.; Giovannetti, V.

    2015-09-01

    We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. From a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory and for applications in energy efficient nanotechnology.

  2. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  3. Piston

    SciTech Connect

    Donahue, Richard J.

    2009-02-24

    A number of embodiments of a piston may have a shape that provides enhanced piston guidance. In such embodiments, the piston shape may include an axial profile that is configured to provide certain thrust load characteristics.

  4. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  5. Method for determining piston form for an internal combustion engine

    SciTech Connect

    Yagi, T.; Sumida, K.

    1987-04-14

    A method is described for determining a form of a piston for an internal combustion engine. The method comprises: preparing a prototype piston having dimensions slightly smaller than those of a finally processed piston; applying to an outer peripheral surface of the prototype piston, a composite material composed of 25 to 45% by weight of flake aluminum, 2 to 30% by weight of graphite, and a remainder of epoxy resin; heating the prototype piston thus applied with the composite material at temperatures in the range of 90/sup 0/ to 230/sup 0/C. for more than 20 minutes to form a covering layer on the prototype piston; incorporating the prototype piston thus formed with the covering layer into the internal combustion engine, operating the prototype piston for a predetermined period of time, thereby abrading the covering layer of the piston to form an external configuration corresponding to the internal configuration of a cylinder liner of the internal combustion engine; and utilizing the configuration obtained through abrasion of the covering layer in the design of a production piston.

  6. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  7. Loss terms in free-piston Stirling engine models

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  8. 13. View of disassembled steam engine showing cylinder, piston rod, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of disassembled steam engine showing cylinder, piston rod, parallel motion links and steam chest. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR

  9. Structural design of Stirling engine with free pistons

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  10. Internal combustion engine with a central crankshaft and integral tandem annular pistons

    NASA Astrophysics Data System (ADS)

    Esparbes, Bernard

    1993-08-01

    An internal combustion engine with tandem annular pistons and a central crankshaft is disclosed, based on that found in British patent 11027 of 11 May 1914. The piston block formed by the two pistons presents, at each axial extremity, a double axial skirt fitted with an outer crown forming the head of the piston as such, and an inner crown forming an inlet pump with a holding chamber radially located at the inside of the corresponding annular cylinder, in which the piston head delimits a combustion chamber. Radial fingers, crossing axial openings of the crankcase and radial holes of the piston block, have their inner radial ends engaged within wavy sinusoidal peripheral slots arranged in a bulging central portion of the central crankshaft set into rotation by alternating axial movements of the piston block. The admission of fuel or combustion sustaining gas is ensured axially by the extremities, valves, and openings in the end plates closing the holding chambers in which the inner crowns slide, fitted with valves to act as an inlet pump. The invention is particularly applicable to aircraft engines in view of the ease in which the shaft rotation can be adapted to such a use.

  11. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  12. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  13. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  14. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  15. Piston designs keep pace with increased engine performance

    SciTech Connect

    Mullins, P.

    1996-12-01

    Piston technology for medium-speed diesel engines is having to keep pace with steadily increasing engine performance criteria. Specific output of medium-speed diesel engines has increased some 50% since 1970, according to Walter Griffiths, chief engineer at the UK-based AE Geotze Special Products Ltd. To satisfy the higher performance now required, a two-piece piston has been developed and went into production in 1995. This type still uses an aluminum alloy forged body, but incorporates a steel crown. The composite piston can carry higher engine ratings and resists the abrasive deposits formed by heavy fuel operation. It has become well established for bore sizes above 300 mm and is becoming increasingly specified for engines down to 200 mm. The latest solution to the carbon deposits on the top of the piston that has gained widespread acceptance within the industry is to reduce the diameter of the bore above the top ring and cut back the top land to maintain the normal operating clearance. This requires an insert to be fitted into the liner after the piston has been assembled. The effect is to limit the carbon build-up on the top land to a specific diameter, which is always less than the bore diameter. Thus there is no possibility of top land contact with the bore over the effective stroke of the piston rings. 2 figs.

  16. External combustion engine with improved piston and crankshaft linkage

    SciTech Connect

    Lopez, F.

    1991-03-12

    This patent describes improvement in an external heat engine having a piston mounted for movement between a first position and a second position, means for forcibly moving the piston from the first position to the second position (power stroke), a crankshaft rotatable about a main axis, and means for linking the piston and crankshaft so that linear movement of the piston from the first position to the second position during the power stroke is transformed into rotational movement of the crankshaft, the power stroke corresponding to a first portion of one rotation of the crankshaft about the main axis, the piston moving from the second position to the first position during a second portion of one rotation of the crankshaft (compression stroke). The improvement comprises: means for linking the piston and crankshaft comprises a rotatable member; means connected to the piston for rotatably supporting the rotatable member, the rotatable member being rotatable about a first point and being connected to the crankshaft at a second point offset from the first point, for rotation about the first point in response to rotation of the crankshaft about its main axis, the first point being disposed so that when the piston is in the first position, the first point is substantially aligned with the main axis of the crankshaft during a third portion of one rotation of the crankshaft about the main axis.

  17. RE-1000 free-piston Stirling engine update

    NASA Technical Reports Server (NTRS)

    Schreiber, J. G.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  18. RE-1000 free-piston Stirling engine update

    SciTech Connect

    Schreiber, J.G.

    1985-01-01

    A free-piston Stirling engine has been under test at the NASA Lewis Research Center test facilities. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free-piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics have been completed at Lewis. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. This report presents some preliminary test results of the tests performed at the NASA Lewis facility along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  19. RE-1000 free-piston Stirling engine update

    NASA Astrophysics Data System (ADS)

    Schreiber, J. G.

    1985-05-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  20. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  1. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA).

    SciTech Connect

    Leick, Michael T.; Moses, Ronald W.

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to charge the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.

  2. Internal combustion engine having opposed pistons

    SciTech Connect

    Puzio, E.T.

    1993-07-20

    An internal combustion apparatus is described having opposed sets of pistons comprising: (a) an inner crankcase means defining an inner chamber means therein, the inner crankcase means further defining a first connecting arm aperture means and a second connecting arm aperture means therein; (b) a crankshaft means rotatably mounted within the inner chamber means of the inner crankcase means and defining a crankshaft axis means extending axially there through, the crankshaft means defining a driving means peripherally therearound to facilitate distribution of driving power therefrom; (c) a first outer crankcase means defining a first outer chamber means in fluid flow communication with respect to the inner chamber means through the first connecting arm aperture means; (d) a second outer crankcase means defining a second outer chamber means in fluid flow communication with respect to the inner chamber means through the second connecting arm aperture means, the second outer crankcase means defining a second piston bore means extending longitudinally therein; (e) a crank pin means positioned extending through the crank pin aperture in the crankshaft means, the crank pin means being rotatable with respect to the crank pin aperture means; (f) a first connecting arm means fixedly secured with respect to one end of the crank pin means and extending through the first connecting arm aperture means into the first outer crankcase means; (g) a second connecting arm means fixedly secured with respect to the other end of the crank pin means and extending through the second connecting arm aperture means into the second outer crankcase means; (h) a first piston assembly means positioned extending through the first piston bore means to be reciprocally axially movable therein; (i) a second piston assembly means positioned extending through the second piston bore means to be reciprocally axially movable therein.

  3. Development free-piston Stirling test-bed engine

    NASA Astrophysics Data System (ADS)

    Dochat, G. R.; Vitale, N. G.; Moynihan, T. M.

    The free-piston Stirling Technology Demonstrator Engine (TDE) designed and instrumented to provide data to aid in understanding free-piston Stirling engine operation and performance, is described. It is noted that the system includes instrumentation to measure the internal thermodynamic operation and to permit calculation of system power flows. Near-term testing of the engine will assess three mechanisms for engine loss. It is pointed out that recent testing has demonstrated that the power and efficiency are strong functions of heater head temperature. A maximum power output of 1,800 watts and a thermodynamic efficiency of 30% have been demonstrated at 450 C and 40 bar.

  4. Linear harmonic analysis of free-piston Stirling engines

    SciTech Connect

    Chen, N.C.J.; Griffin, F.P.

    1986-06-01

    The equations that govern the behavior of free-piston Stirling engines are nonlinear differential equations. Traditional solution methods have been time-stepping integrations that can be plagued by numerical instabilities and can use large amounts of computer time. Closed-form analytical solutions are possible if the working gas behaves isothermally or if the nonlinear terms in the governing equations are replaced with accurate approximations. An almost closed-form solution method, called the linear harmonic analysis (LHA), has been developed for free-piston Stirling engine applications by representing all of the periodic variables with harmonic functions. The solution method accounts for the important thermodynamic losses that are coupled together in free-piston engines, yet it is efficient enough for optimization studies. The LHA method was compared with a standard numerical integration method to verify its mathematical accuracy. The LHA and numerical predictions for a sample free-piston Stirling engine configuration differed by <5% for all important parameters. Sensitivity studies using the LHA method have also shown that the thermodynamic loss assumptions used in an analysis can have a significant impact on the predicted dynamic behavior of a free-piston Stirling engine.

  5. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  6. The 300 H.P. Benz Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Heller, A

    1921-01-01

    A description is given of the Benz 12-cylinder aircraft engine. The 300 H.P. engine, with the cylinders placed at an angle of 60 degrees not only realizes a long-cherished conception, but has received refinement in detail. It may be described as a perfect example of modern German aircraft engine construction. Here, a detailed description is given of the construction of this engine. Emphasis is placed on the design and construction of the cylinders, pistons, and connecting rods. Also discussed are engine fitting, lubrication, oil pumps, bearings, the oil tank, fuel pump, carburetors, and cooling system.

  7. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  8. Raising the efficiency of piston-drive helium expansion engines

    SciTech Connect

    Chernetskii, V.D.; Mironova, N.A.

    1986-07-01

    Operating tests of a cryogenic helium installation show that, at normal operating-mode parameters, the temperature of the gas flowing out through the gap between the piston and cylinder of a piston-drive expansion machine is much higher than its inlet temperature to the machine. The fact that preheated gas enters the expansion engine in line with a reverse current increases the temperature differnce between the direct and and reverse streams in the heat exchanger, thereby lowering the refrigeration capacity and the efficiency of the installation's operation as a whole. Shown, is a diagram of the DPG-4-24/0.2 piston-drive expansion engine, and figures of the warmup of helium flowing out of the expander cylinder vs. inlet temperature to the expander, and heat flow to the helium flowing out of the cylinder vs. temperature at the inlet to the expander. It is concluded that the design of the cylinder piston unit widely used is not an optimal design since gas circulation that develops from the reciprocating motion of the rod results in an additional refrigeration loss for the entire cryogenic helium installation.

  9. Palm Power Free-Piston Stirling Engine Control Electronics

    NASA Astrophysics Data System (ADS)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  10. RE-1000 free-piston Stirling engine sensitivity test results

    NASA Astrophysics Data System (ADS)

    Schreiber, Jeffrey G.; Geng, Steven M.; Lorenz, Gary V.

    1986-10-01

    The NASA Lewis Research Center has been testing a 1 kW (1.33 hp) free-piston Stirling engine. The tests performed over the past several years have been on a single cylinder machine known as the RE-1000. The data recorded were to aid in the investigation of the dynamics and thermo-dynamics of the free-piston Stirling engine. The data are intended to be used primarily for computer code validation. NASA reports TM-82999, TM-83407, and TM-87126 give initial results of the engine tests. The tests were designed to investigate the sensitivity of the engine performance to variations on the mean pressure of the working space, the working fluid used, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics. These tests have now been completed. Some of the data collected in the sensitivity tests are presented. In all, 781 data points were recorded. A completed description of the engine and test facility is given. Many of the data can be found in tabular form, and a microfiche containing all of the data points can be requested from the NASA Lewis.

  11. Piston temperature measurement in a natural gas engine. Topical report, January-December 1990

    SciTech Connect

    Burrahm, R.W.; Davis, J.K.

    1991-04-01

    The objective of the research was to determine piston operating temperatures in a high-output natural gas-fueled 454 Chevrolet engine using an SwRI developed telemetry-based system and to perform validation testing to verify the effect of piston cooling on engine durability. The project was part of the GRI program to develop a cost effective natural gas-fueled prime mover in the 300 horsepower range. The problem of piston cracking with the development piston in this natural gas engine can be overcome if sufficient data is accumulated to allow a better piston to be designed. Adequate piston temperature data are prerequisite to performing FEA modeling during the design of new pistons. The particular project was directed at obtaining this data as well as exploring the effects of piston cooling and operating conditions on piston temperatures. Piston temperature data was obtained at various engine speeds and loads including 300 horsepower at 3,600 rpm. Crown temperatures were recorded in excess of 500 F while piston pin boss and skirt temperatures remained at or below 300 F. The effects of limited piston cooling were explored at 300 horsepower. At low piston cooling oil flow rates, no decrease in piston crown temperatures were observed.

  12. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  13. Instantaneous engine frictional torque, its components and piston assembly friction

    SciTech Connect

    Nichols, F.A. ); Henein, N.A. . Center for Automotive Research)

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-[omega]) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, [omega], have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-[omega]) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  14. Hypereutectic aluminum - A piston material for modern high specific output gasoline engines

    SciTech Connect

    Whitacre, J.P.

    1987-01-01

    (Piston requirements for (gasoline engines) have changed dramatically in the last ten years. Several factors have combined to tax traditionally used alloys to their limits. This paper is concerned with the used of high silicon ''(hypereutectic)'' aluminum alloy in gasoline engine pistons. Problem areas with standard piston alloys are discussed, along with the benefits to be gained by the use of hypereutectic material. Manufacturing problems associated with the production of quality hypereutectic pistons are also discussed.

  15. Integrated two-cylinder liquid piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  16. Integrated two-cylinder liquid piston Stirling engine

    SciTech Connect

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  17. Piston engine intake and exhaust system design

    NASA Astrophysics Data System (ADS)

    Davies, P. O. A. L.

    1993-07-01

    The aim of intake and exhaust system design is to control the transfer of acoustic energy from the sources and its emission by the system with minimal loss of engine performance. A rational design process depends on the adoption of a design methodology based on predictive modeling of acoustic behavior. Virtually any system geometry can be modeled by breaking it down to a sequence of simple elements or chambers. An initial design layout is then produced with simple parametric models of individual element behavior. This design is then refined to prototype level by systematic modification of detail using realistic assessments of system performance in its operational environment. Following prototype validation by practical testing, further necessary development is again assisted by predictive modeling. The application of appropriate procedures is illustrated by a series of practical examples. These concern improvements in interior noise by control of intake noise, of vehicle performance by reducing flow losses, of the environment by control of exhaust emissions, and lastly with the control of flow noise. The report concludes with a brief outline of current and new developments involving integrated design procedures.

  18. Comparison of free-piston Stirling engine model predictions with RE1000 engine test data

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1984-01-01

    Predictions of a free-piston Stirling engine model are compared with RE1000 engine test data taken at NASA-Lewis Research Center. The model validation and the engine testing are being done under a joint interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA-Lewis. A kinematic code developed at Lewis was upgraded to permit simulation of free-piston engine performance; it was further upgraded and modified at Lewis and is currently being validated. The model predicts engine performance by numerical integration of equations for each control volume in the working space. Piston motions are determined by numerical integration of the force balance on each piston or can be specified as Fourier series. In addition, the model Fourier analyzes the various piston forces to permit the construction of phasor force diagrams. The paper compares predicted and experimental values of power and efficiency and shows phasor force diagrams for the RE1000 engine displacer and piston. Further development plans for the model are also discussed.

  19. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  20. NACA Investigation of Fuel Performance in Piston-Type Engines

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C

    1951-01-01

    This report is a compilation of many of the pertinent research data acquired by the National Advisory Committee for Aeronautics on fuel performance in piston engines. The original data for this compilation are contained in many separate NACA reports which have in the present report been assembled in logical chapters that summarize the main conclusions of the various investigations. Complete details of each investigation are not included in this summary; however, such details may be found, in the original reports cited at the end of each chapter.

  1. Simulation of the instantaneous free piston Stirling engine-electrical load interaction

    SciTech Connect

    Mehdizadeh, N.S.; Stouffs, P.

    1998-07-01

    In this paper the authors consider a gamma type free piston engine (that is, a configuration with a power piston cylinder and a separate displacer cylinder) with the MARTINI configuration (that is, with a free piston but a kinematically driven displacer). In the modeled engine, the displacer is driven by an electrical motor and there are two symmetrical, free, power pistons. This configuration ensures a complete balancing of the engine. The free pistons bear the moving parts of the linear electric alternators. This engine may be considered for solar to electrical energy conversion for land or space applications, for instance. A dynamic simulation of this engine has been developed using a decoupled analysis. The motion equation of the free piston induces a strong coupling between the electrical load and the thermodynamics inside the free piston Stirling engine. From the thermodynamics point of view, the piston-displacer phase lag is an important parameter. It is shown that if the electrical circuit elements (R-L-C) are constants, the phase lag between the free pistons and displacer motions is far from the optimum. However this phase lag can be controlled by means of a variable electrical resistance. For both cases of stand-alone engine with an independent electrical load, or grid-connected engine, it is shown how one can in a very simple way multiply the net electrical power by a factor 4 to 10 and the efficiency by a factor 1.25 to 2 without any engine geometry modification.

  2. 21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON OF STEAM ENGINE NO. 4; CONTROL PANEL MOUNTED ON THE ENGINE; FLOOR VALVES CONTROL THE STEAM. - Deer Island Pumping Station, Boston, Suffolk County, MA

  3. Free-piston stirling engine endurance test program

    NASA Technical Reports Server (NTRS)

    Dochat, G.; Rauch, J.; Antonelli, G.

    1983-01-01

    The Free-Piston Stirling Engine (FPSE) has the potential to be a long-lived, highly reliable, power conversion device attractive for many product applications such as space, residential, or remote-site power. The purpose of endurance testing the FPSE is to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle, and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearance. The engine performed well throughout the program, completing the 1000 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long-life FPSE applications. Additional testing is planned to increase the test hours to 10,000.

  4. Tests of oil scraper piston ring and piston fitted with oil drain holes

    NASA Technical Reports Server (NTRS)

    Mcdewell, H S

    1922-01-01

    Tests were conducted to determine whether or not a properly located and properly designed oil scraper piston ring, installed on a piston provided with oil drain holes of sufficient area, would prevent the excessive oiling of the Liberty engine, particularly with the engine running at idling speed with full oil pressure. Results showed that excessive oiling was in fact prevented. It is strongly recommended that scraper rings and pistons be adopted for aircraft engines.

  5. Loss terms in free-piston Stirling-engine models. Final Technical Report

    SciTech Connect

    Gordon, L.B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  6. CFD Modeling of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  7. The combustion process in a DI diesel hydraulic free piston engine

    SciTech Connect

    Somhorst, J.H.E.; Achten, P.A.J.

    1996-09-01

    In a free piston engine the piston is neither connected to a crankshaft mechanism nor to any other kinematic system. Instead the piston movement is determined by the free forces that act upon it. This difference between the kinematic principle of the crankshaft engine and the free piston principle has a significant influence on the combustion process. In this paper the combustion process in a free piston engine is described on the basis of experiments. The experimental data were obtained from measurements on the free piston engine that has been developed by the Dutch company Innas. This article discusses the influence of the free piston principle on cold start, ignition delay, heat release, heat transfer, indicated efficiency and emissions. In the optimum point the engine has an indicated efficiency of 51%, a NOx emission of 6 gr/kWhi and a soot emission corresponding to a Bosch Filter Number of less than 0.5. The combustion process of the free piston engine is furthermore characterized by a nearly constant volume combustion process.

  8. Fretting in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Bill, R. C.

    1974-01-01

    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given.

  9. Torsional vibration of aircraft engines

    NASA Technical Reports Server (NTRS)

    Lurenbaum, Karl

    1932-01-01

    Exhaustive torsional-vibration investigations are required to determine the reliability of aircraft engines. A general outline of the methods used for such investigations and of the theoretical and mechanical means now available for this purpose is given, illustrated by example. True vibration diagrams are usually obtained from vibration measurements on the completed engine. Two devices for this purpose and supplementing each other, the D.V.L. torsiograph and the D.V.L. torsion recorder, are described in this report.

  10. A review on the aviation piston engine power assembly for the air cushion boat

    NASA Astrophysics Data System (ADS)

    Jianzhang, Zhu

    1986-09-01

    The aviation piston engine has a suitable power rating. The weight of the air cushion boat developed early was rather small, mostly ranging from 2 to 4 tons. The power rating of the air cushion boat is about 100 to 135 horsepower/ton. According to this, a single engine's power rating ranges from 200 to 500 horsepower. It is well known that this is exactly the most common power rating of an aviation piston engine (and an air-cooled diesel engine).

  11. Lightweight piston

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor)

    1987-01-01

    A lightweight piston composed of carbon-carbon composites is presented. The use of carbon-carbon composites over conventional materials, such as aluminum, reduces piston weight and improves thermal efficiency of the internal combustion reciprocation engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance is so small as to eliminate the necessity for piston rings. Use of the carbon-carbon composite has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  12. 5-kWe Free-piston Stirling Engine Convertor

    NASA Technical Reports Server (NTRS)

    Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.

    2008-01-01

    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and

  13. Input/output models for general aviation piston-prop aircraft fuel economy

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.

    1982-01-01

    A fuel efficient cruise performance model for general aviation piston engine airplane was tested. The following equations were made: (1) for the standard atmosphere; (2) airframe-propeller-atmosphere cruise performance; and (3) naturally aspirated engine cruise performance. Adjustments are made to the compact cruise performance model as follows: corrected quantities, corrected performance plots, algebraic equations, maximize R with or without constraints, and appears suitable for airborne microprocessor implementation. The following hardwares are recommended: ignition timing regulator, fuel-air mass ration controller, microprocessor, sensors and displays.

  14. On the identification of piston slap events in internal combustion engines using tribodynamic analysis

    NASA Astrophysics Data System (ADS)

    Dolatabadi, N.; Theodossiades, S.; Rothberg, S. J.

    2015-06-01

    Piston slap is a major source of vibration and noise in internal combustion engines. Therefore, better understanding of the conditions favouring piston slap can be beneficial for the reduction of engine Noise, Vibration and Harshness (NVH). Past research has attempted to determine the exact position of piston slap events during the engine cycle and correlate them to the engine block vibration response. Validated numerical/analytical models of the piston assembly can be very useful towards this aim, since extracting the relevant information from experimental measurements can be a tedious and complicated process. In the present work, a coupled simulation of piston dynamics and engine tribology (tribodynamics) has been performed using quasi-static and transient numerical codes. Thus, the inertia and reaction forces developed in the piston are calculated. The occurrence of piston slap events in the engine cycle is monitored by introducing six alternative concepts: (i) the quasi-static lateral force, (ii) the transient lateral force, (iii) the minimum film thickness occurrence, (iv) the maximum energy transfer, (v) the lubricant squeeze velocity and (vi) the piston-impact angular duration. The validation of the proposed methods is achieved using experimental measurements taken from a single cylinder petrol engine in laboratory conditions. The surface acceleration of the engine block is measured at the thrust- and anti-thrust side locations. The correlation between the theoretically predicted events and the measured acceleration signals has been satisfactory in determining piston slap incidents, using the aforementioned concepts. The results also exhibit good repeatability throughout the set of measurements obtained in terms of the number of events occurring and their locations during the engine cycle.

  15. Aircraft engines. III

    SciTech Connect

    Mikkelson, D.C.; Reck, G.M.

    1988-01-01

    Prospective powerplant configuration advancements for tilt-rotor subsonic flight, supersonic commercial flight, and hypersonic flight are speculated upon, with a view to possibilities for the exploitation of novel materials and of such advanced fuels as liquid methane and hydrogen. Attention is given to the foldable tilt-rotor concept, which employs a hydraulic torque converter to engage the fan stage of the high-bypass turbofan engine used in forward flight after the tilt-rotor blades have been stowed, and several advanced cycles and turbomechanical configurations for cruise in the high supersonic regime and beyond, through the hypersonic regime, and into orbital velocity.

  16. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    SciTech Connect

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  17. Double bowl piston

    DOEpatents

    Meffert, Darrel Henry; Urven, Jr., Roger Leroy; Brown, Cory Andrew; Runge, Mark Harold

    2007-03-06

    A piston for an internal combustion engine is disclosed. The piston has a piston crown with a face having an interior annular edge. The piston also has first piston bowl recessed within the face of the piston crown. The first piston bowl has a bottom surface and an outer wall. A line extending from the interior annular edge of the face and tangent with the outer wall forms an interior angle greater than 90 degrees with the face of the piston. The piston also has a second piston bowl that is centrally located and has an upper edge located below a face of the piston crown.

  18. Overview of NASA Lewis Research Center free-piston Stirling engine activities

    SciTech Connect

    Slaby, J.G.

    1984-01-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities is presented. These include (1) a generic free-piston Stirling technology project being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE)/Oak Ridge National Laboratory (ORNL); and (2) a free-piston Stirling space power technology feasibility demonstration project being conducted in support of the Defense Advanced Research Projects Agency (DARPA), DOE, NASA, SP-100 project. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. The newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a free-piston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency greater than or equal to 70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.

  19. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  20. Engine with selective venting of unburned mixture from the piston crevice volume

    SciTech Connect

    Siewert, R.M.

    1980-03-04

    The exhaust of unburned hydrocarbons from an internal combustion engine is reduced by selective venting of unburned air-fuel mixture trapped in the piston-cylinder crevice volume in advance of each engine exhaust stroke. Exemplary venting means disclosed include (1) a bypass channel in the cylinder wall which bypasses the piston rings and connects the crevice volume with the engine crankcase in the lower portions of the piston stroke and (2) a cylinder pressure actuated valve controlled bypass passage in the piston which accomplishes a similar function. Location of the bypass channel or passage near to the exhaust valve permits the selective retention of unburned hydrocarbon containing mixture distant from the exhaust valve and thus unlikely to be discharged in the exhaust process. Bypassed mixture is recycled from the crankcase to the inlet manifold with the engine blowby gases for combustion in the cylinders.

  1. Durability, Performance, and Emission of Diesel Engines Using Carbon Fiber Piston and Liner

    NASA Technical Reports Server (NTRS)

    Afify, E. M.; Roberts, W. L.

    1999-01-01

    This report summarizes the research conducted by NC State University in investigating the durability, performance and emission of a carbon fiber piston and liner in our single cylinder research Diesel engine. Both the piston and liner were supplied to NC State University by NASA LaRC and manufactured by C-CAT under a separate contract to NASA LaRC. The carbon-carbon material used to manufacture the piston and liner has significantly lower thermal conductivity, coefficient of thermal expansion, and superior strength characteristics at elevated temperatures when compared to conventional piston materials such as aluminum. The results of the carbon-carbon fiber piston testing were compared to a baseline configuration, which used a conventional aluminum piston in a steel liner. The parameters measured were the brake specific fuel consumption, ignition delay, frictional horsepower, volumetric efficiency, and durability characteristics of the two pistons. Testing was performed using a naturally aspirated Labeco Direct Injection single cylinder diesel engine. Two test cases were performed over a range of loads and speeds. The fixed test condition between the aluminum and carbon-carbon piston configurations was the brake mean effective pressure. The measured data was the fuel consumption rate, volumetric efficiency, load, speed, cylinder pressure, needle lift, and exhaust gas temperature. The cylinder pressure, and fuel consumption, exhaust gas temperature, and needle lift were recorded using a National Instruments DAQ board and a PC. All test cases used Diesel no. 2 for fuel.

  2. Lightweight aircraft engines, the potential and problems for use of automotive fuels

    NASA Technical Reports Server (NTRS)

    Patterson, D. J.

    1983-01-01

    A comprehensive data research and analysis for evaluating the use of automotive fuels as a substitute for aviation grade fuel by piston-type general aviation aircraft engines is presented. Historically known problems and potential problems with fuels were reviewed for possible impact relative to application to an aircraft operational environment. This report reviews areas such as: fuel specification requirements, combustion knock, preignition, vapor lock, spark plug fouling, additives for fuel and oil, and storage stability.

  3. The development and testing of ceramic components in piston engines. Final report

    SciTech Connect

    McEntire, B.J.; Willis, R.W.; Southam, R.E.

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  4. Component improvement of free-piston Stirling engine key technology for space power

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1988-01-01

    The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.

  5. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    DOEpatents

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  6. Overview of NASA Lewis Research Center free-piston Stirling engine activities

    SciTech Connect

    Slaby, J.G.

    1984-08-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities is presented. These include (1) a generic free-piston Stirling technology project being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, costshared effort with the Department of Energy (DOE)/Oak Ridge National Laboratory (ORNL); and (2) a free-piston Stirling space power technology feasibility demonstration project being conducted in support of the Defense Advanced Research Projects Agency (DARPA), DOE, NASA, SP-100 project. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. The newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a freepiston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency greater than or equal to70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.

  7. Space Power Free-Piston Stirling Engine Scaling Study

    NASA Technical Reports Server (NTRS)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power

  8. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  9. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Flemig, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficiency of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficieny points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  10. Magnetic bearings for free-piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Curwen, P. W.; Flemig, D. P.; Rao, D. K.; Wilson, D. S.

    The feasibility and efficiency of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficieny points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  11. Magnetic bearings for free-piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-08-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  12. An update of free-piston Stirling engine heat pump development

    SciTech Connect

    Ackermann, R.A.; Clinch, J.M.; Privon, G.T.

    1986-01-01

    A Free-Piston Stirling Engine Heat Pump (FPSE/HP) for residential applications has been under development for the past five years. The system consists of a natural gas combustor, free-piston Stirling engine, and a variable-stroke resonant piston refrigerant compressor. The compressor is linked to the engine via a unique hydraulic transmission that provides for both efficient power transfer and hermetic sealing between the engine working fluid (helium) and the compressor refrigerant. This development effort has led to a breadboard heat pump power module, engine/transmission/compressor, that has undergone a comprehensive test program to evaluate the performance of an FPSE/HP and to judge its potential for further development. The results obtained from this testing are presented in this paper.

  13. Lubricants effects on piston/rings/liner friction in an instrumented single cylinder diesel engine

    SciTech Connect

    Gauthier, A.; Constans, B.; Perrin, H.; Roux, F.

    1987-01-01

    Extensive measurements of oil film temperature and mainly of friction losses have been performed on an instrumented single-cylinder diesel engine. To assess the behavior of Newtonian and non-Newtonian oils in the piston/rings/liner contact, several operating conditions (running-in, motoring and firing) have been investigated. An original data processing method is proposed to evaluate the share of boundary friction in piston assembly friction loss.

  14. Control scheme for power modulation of a free piston Stirling engine

    DOEpatents

    Dhar, Manmohan

    1989-01-01

    The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

  15. On the laser quenching of the groove of the piston head in large diesel engines

    SciTech Connect

    Liu, Q.; Song, Y.; Yang, Y.; Xu, G.; Zhao, Z.

    1998-06-01

    The service life of piston heads and the stability of large diesel engines are remarkably affected by the wear resistance of the groove of the piston head. Unfortunately, conventional high-frequency quenching methods result in several deleterious effects that may impair the antifriction and wear properties of the groove of the piston head. Excellent wear resistance characteristics may be achieved provided the groove surface is properly surface treated. Laser surface quenching is a new candidate technique. A 2 kW CW CO{sub 2} laser was employed for the laser quenching of the groove of the piston head in large diesel engines. The hardness and depth of the laser quenched layer reached 750 HV and 0.59 mm, respectively. The microstructure of the quenched layer is composed of martensite and retained austenite. Wear tests were performed using laser quenching and high-frequency quenching samples, and wear resistance was compared by using a method of mass loss. The results show that the wear resistances of laser quenched samples are 1.3{times} higher than that resulting from the high-frequency quenching method. Practical application of laser quenched piston heads in diesel power plants indicate that it is an effective way to prolong the service life of the piston head in large diesel engines.

  16. Testing and performance characteristics of a 1-kW free piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Schreiber, J.

    1983-01-01

    A 1 kW single cylinder free piston Stirling engine, configured as a research engine, was tested with helium working gas. The engine features a posted displacer and dashpot load. The test results show the engine power output and efficiency to be lower than those observed during acceptance tests by the manufacturer. Engine tests results are presented for operation at the two heater head temperatures and with two regenerator porosities, along with flow test results for the heat exchangers.

  17. Some single-piston closed-cycle machines and Peter Tailer's thermal lag engine

    NASA Astrophysics Data System (ADS)

    West, C. D.

    1993-05-01

    Peter Tailer has devised, built, and operated a beautifully simple engine with a closed working gas cycle, external heating, and only a single piston. The aim of this paper is to cast some light on the possible modes of operation for his machine. The methods developed to analyze certain aspects of Stirling cycle engines, and especially the thermodynamic losses incurred in systems that are neither perfectly isothermal nor perfectly adiabatic, can be applied to Tailer's system. The results identify two idealized cycles fr such machines; relate those cycles to a single piston, ported cylinder machine proposed earlier; and offer a possible explanation for the success of the thermal lag engine.

  18. A transient tribodynamic approach for the calculation of internal combustion engine piston slap noise

    NASA Astrophysics Data System (ADS)

    Dolatabadi, N.; Littlefair, B.; De la Cruz, M.; Theodossiades, S.; Rothberg, S. J.; Rahnejat, H.

    2015-09-01

    An analytical/numerical methodology is presented to calculate the radiated noise due to internal combustion engine piston impacts on the cylinder liner through a film of lubricant. Both quasi-static and transient dynamic analyses coupled with impact elasto-hydrodynamics are reported. The local impact impedance is calculated, as well as the transferred energy onto the cylinder liner. The simulations are verified against experimental results for different engine operating conditions and for noise levels calculated in the vicinity of the engine block. Continuous wavelet signal processing is performed to identify the occurrence of piston slap noise events and their spectral content, showing good conformance between the predictions and experimentally acquired signals.

  19. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  20. Overview of NASA Lewis Research Center free-piston Stirling engine activities

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1984-01-01

    A generic free-piston Stirling technology project is being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. A newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a free-piston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency or equal to 70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.

  1. Development of free-piston Stirling engine performance and optimization codes based on Martini simulation technique

    NASA Technical Reports Server (NTRS)

    Martini, William R.

    1989-01-01

    A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included. Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable input and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.

  2. Measurement of thermal deformation of an engine piston using a conical mirror and ESPI

    NASA Astrophysics Data System (ADS)

    Albertazzi, Armando, Jr.; Melao, Iza; Devece, Eugenio

    1998-07-01

    An experimental technique is developed to measure the radial displacement component of cylindrical surfaces using a conical mirror for normal illumination and observation. Single illumination ESPI is used to obtain fringe patterns related to the radial displacement field. Some data processing strategies are presented and discussed to properly extract the measurement data. Data reduction algorithms are developed to quantify and compensate the rigid body displacements: translations and rotations. The displacement component responsible for shape distortion (deformation) can be separated from the total displacement field. The thermal radial deformation of an aluminum engine piston with a steel sash is measured by this technique. A temperature change of about 2 degrees Celsius was applied to the engine piston by means of an electrical wire wrapped up in the first engine piston grove. The fringe patterns are processed and the results are presented as polar graphics and 3D representation. The main advantages and limitations of the developed technique are discussed.

  3. Advanced 35 W Free-Piston Stirling Engine for Space Power Applications

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Lane, Neill

    2003-01-01

    This paper presents the projected performance and overall design characteristics of a high efficiency, low mass 35 W free-piston Stirling engine design. Overall (engine plus linear alternator) thermodynamic performance greater than 50% of Carnot, with a specific power close to 100 W/kg appears to be a reasonable goal at this small power level. Supporting test data and analysis results from exiting engines are presented. Design implications of high specific power in relatively low power engines is presented and discussed.

  4. Initial results of sensitivity tests performed on the RE-1000 free-piston stirling engine

    SciTech Connect

    Schreiber, J.G.

    1984-08-01

    A 1 kW (1.33hp) single cylinder free-piston Stirling engine has been tested in the test facilities at the Lewis laboratory. Tests have been performed over the past several years on an engine designed to investigate the dynamics of a free-piston Stirling engine for the purpose of computer code validation. A description of the engine and its instrumentation is given in a prior NASA report TM-82999. Some initial test results are given in NASA Report TM-83407. Tests to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics have been initiated at Lewis. Maps of engine performance have been recorded with the use of an 81.2% porosity regenerator; both a high efficiency displacer and a high power displacer were tested; efficiencies up to 33% were recorded and power output of approximately 1500 watts was recorded. This report presents preliminary results from the Lewis sensitivity tests being performed on the RE-1000 free-piston Stirling engine. Descriptions of future tests are also given.

  5. 76 FR 31465 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Procedures (44 FR 11034, February 26, 1979); and (3) Will not have a significant economic impact, positive or... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... engine, in- flight engine shutdown and forced landing, damage to the aeroplane and injury to...

  6. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based...

  7. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based...

  8. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based...

  9. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based...

  10. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based...

  11. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.7 Persons authorized to approve aircraft, airframes, aircraft...

  12. The effect of thermal barrier coated piston crown on engine characteristics

    SciTech Connect

    Chan, S.H.; Khor, K.A.

    2000-02-01

    While there have been numerous research papers in recent years describing the theoretical benefits obtained from the use of ceramic components in reciprocating engines, the amount of literature that describes practical results is very limited. Although successes have been reported and ceramic components are now in service in production engines, mainly for reduced in-cylinder heat rejection, many researchers have experienced failures or a drop in engine performance. This article presents the work completed on a low heat rejection engine. Extensive experiments were conducted on a three-cylinder SI Daihatsu engine with piston crowns coated with a layer of ceramic, which consisted of yttria-stabilized zirconia (YSZ). Measurement and comparison of engine performance, in particular fuel consumption, were made before and after the application of YSZ coatings deposited onto the piston crowns. The details of the cylinder pressures during the combustion process were also investigated.

  13. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  14. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines. Previously announced in STAR as N83-34947

  15. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time. PMID:17817782

  16. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  17. Four-piston double-duct liquid metal MHD engine and AC generator

    SciTech Connect

    Haaland, C.M.

    1995-12-31

    Operating principles, features and applications of the Liquid Metal (LM) engine are presented. This engine combines a free-piston internal combustion engine with an MHD AC power generator. Liquid metal (LM) oscillates back-and-forth in two separate channels, driven by free pistons coupled magnetically to pistons driven by internal combustion. One of the principal breakthroughs is the concept of using double ducts in a Hartmann configuration for MHD production of alternating current. The LM flows in opposing directions in the two adjacent Hartmann ducts, thus eliminating magnetic-induced instabilities, eliminating vibration, and providing an ideal setup for attaching an output transformer on one side provide to provide useful ranges of current and voltage. Because LM is used, the length of the piston stroke can be easily varied over a large range, thus making possible an engine that, changes size, according to variation in output load requirements. Increasing the stroke length results in increased compression ratio, which requires computer controlled modification of the fuel injection mixture. Higher fuel efficiencies will result, whether the engine is idling or operating at maximum power. Because of viscous dissipation losses in the LM, this engine will be more efficient for larger engines. Applications include any power generation where variable load is required, such as stationary electric generators for remote towns and cities, temporary military encampments, and mobile primary power generators for off-road and on-road automotive equipment, including caterpillars, cars, military vehicles, trucks, and trains. The advantages for automotive propulsion will be described in comparisons with current and developmental vehicles using internal combustion engines. Because the LM-engine generates electricity, an LM-engine vehicle is readily adaptable to hybrid concepts. An R&D program will be outlined for bringing the concept of the LM engine to commercial application.

  18. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

    SciTech Connect

    Hanson, Reed M; Curran, Scott; Wagner, Robert M; Reitz, Rolf; Kokjohn, Sage

    2012-01-01

    Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

  19. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  20. Toward scramjet aircraft. [progress in engine development

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Huber, P. W.

    1978-01-01

    The possibility for civil, military, and remotely-piloted aviation above Mach 5 is discussed with reference to the scramjet. Actively cooled aircraft structures of low weight are described, together with jet nozzle design and combustion parameters. The scramjet is seen as operating alone or in tandem with ramjet propulsion, which would power an aircraft up to scramjet speeds. Attention is given to the specific impulse of the scramjet engine, with hydrogen as the primary fuel. Applications include: advanced reconnaissance and interceptor aircraft, strategic cruise (both aircraft and missiles), highly-maneuverable interceptor missiles, transports, aircraft-type launch vehicles, first stages for Space Shuttle launching craft, and single-stage-to-orbit vehicles. Research has focused on increasing the propulsion power of the scramjet engine, while reducing drag on the accompanying airframe.

  1. Nitrited-Steel Piston Rings for Engines of High Specific Power

    NASA Technical Reports Server (NTRS)

    Collins, John H; Bisson, Edmond E; Schmiedlin, Ralph F

    1945-01-01

    Stability and control characteristics determined from tests in the Langley 19-foot pressure tunnel of a 0.2375-scale model of the Douglas XA-26 airplane are compared with those measured in flight tests of a Douglas A-26b airplane. Several designs of nitrided-steel piston rings were performance-tested under variable conditions of output. The necessity of good surface finish and conformity of the ring to the bore was indicated in the preliminary tests. Nitrided-steel rings of the same dimensions as cast-iron rings operating on the original piston were unsatisfactory, and the final design was a lighter, rectangular, thin-face-width ring used on a piston having a maximum cross-head area and a revised skirt shape. Results were obtained from single-cylinder and multicylinder engine runs.

  2. Rotary hydraulic engine having oppositely disposed pistons in a scotch yoke assembly

    SciTech Connect

    Courtright, H.D.

    1986-07-08

    A rotary hydraulic engine is described comprising, in combination; frame means; crankshaft means supported by aid frame means in substantially fixed relation therewith and having an eccentric crank portion; housing means encircling the crankshaft means and being rotatable relative thereto, the housing means defining a plurality of pairs of cylinders disposed in laterally opposed sets such that each cylinder is laterally opposed to and co-axial with an opposed cylinder; a piston slidingly disposed within each of the cylinders; a scotch yoke assembly having a pair of discrete slide members each of which interconnects the pistons disposed within the laterally opposed set of cylinders and has cooperative relation with the eccentric crank portion so as to effect tandem movement of the interconnected pistons and thereby effect relative movement between the housing means and the crankshaft means; external valve means operatively associated with each of the cylinders so as to enable selective application of fluid pressure to the pistons in a manner adapted to effect predetermined sequential movement of the pistons and associated scotch yoke assembly, thereby imparting rotary motion to the housing.

  3. Initial results of sensitivity tests - Performed on the RE-1000 free-piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Schreiber, J. G.

    1984-01-01

    Tests have been performed over several years to investigate the dynamics of a free-piston Stirling engine for the purpose of computer code validation. Tests on the 1 kW (1.33 hp) single cylinder engine have involved the determination of the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass, and displacer dynamics. Maps of engine performance have been recorded with the use of an 81.2 percent porosity regenerator. Both a high-efficiency displacer and a high-power displacer were tested; efficiencies up to 33 percent were recorded, and power output of approximately 1500 W was obtained. Preliminary results of the sensitivity tests are presented, and descriptions of future tests are given.

  4. Overview of the 1985 NASA Lewis Research Center SP-100 free-piston Stirling engine activities

    NASA Technical Reports Server (NTRS)

    Slaby, J.

    1985-01-01

    This effort is keyed on the design, fabrication, assembly, and testing of a 25 kWe Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-hr endurance test conducted on a 2 kWe free-piston Stirling/linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kWe free-piston Stirling engine) using a passive dynamic absorber will be discussed along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests will be described covering a hydrodynamic gas bearing concept for potential SP-100 application.

  5. Engine selection for transport and combat aircraft.

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    Review of the procedures used to select engines for transport and combat aircraft by illustrating the procedures for a long haul CTOL transport, a short haul VTOL transport, a long range SST, and a fighter aircraft. For the CTOL transport, it is shown that advances in noise technology and advanced turbine cooling technology will greatly reduce the airplane performance penalties associated with achieving low noise goals. A remote lift fan powered by a turbofan air generator is considered for the VTOL aircraft. In this case, the lift fan pressure ratio which maximizes payload also comes closest to meeting the noise goal. High turbine temperature in three different engines is considered for the SST. Without noise constraints it leads to an appreciable drop in DOC, but with noise constraints the reduction in DOC is very modest. For the fighter aircraft it is shown how specific excess power requirements play the same role in engine selection as noise constraints for commercial airplanes.

  6. Engine selection for transport and combat aircraft

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    The procedures that are used to select engines for transport and combat aircraft are discussed. In general, the problem is to select the engine parameters including engine size in such a way that all constraints are satisfied and airplane performance is maximized. This is done for four different classes of aircraft: (1) a long haul conventional takeoff and landing (CTOL) transport, (2) a short haul vertical takeoff and landing (VTOL) transport, (3) a long range supersonic transport (SST), and (4) a fighter aircraft. For the commercial airplanes the critical constraints have to do with noise while for the fighter, maneuverability requirements define the engine. Generally, the resultant airplane performance (range or payload) is far less than that achievable without these constraints and would suffer more if nonoptimum engines were selected.

  7. Free-piston Stirling engine development. Annual report, December 1, 1984-December 31, 1985

    SciTech Connect

    Ackermann, R.A.

    1986-04-01

    The free-piston Stirling engine (FPSE) is being developed as a potential gas-fired prime mover for heat-pump applications in the residential market. The heat pump features an advanced FPSE coupled to a Rankine refrigerant compressor through a hermetically sealed diaphragm-activated hydraulic transmission. During the past year, the program has concentrated on developing the engine and compressor component improvement in performance and realiability. The report presents the progress made.

  8. Comparative survey of dynamic analyses of free-piston stirling engines

    SciTech Connect

    Kankam, M.D.; Rauch, J.S.

    1994-09-01

    This paper compares reported dynamic analyses for evaluating the steady-state response and stability of free-piston Stirling engine (FPSE) systems. Various analytical approaches are discussed to provide guidance on their salient features. Recommendations are made in the recommendations remarks for an approach which captures most of the inherent properties of the engine. Such an approach has the potential for yielding results which will closely match practical FPSE-load systems.

  9. Comparative survey of dynamic analyses of free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Rauch, Jeffrey S.

    1991-01-01

    Reported dynamics analyses for evaluating the steady-state response and stability of free-piston Stirling engine (FPSE) systems are compared. Various analytical approaches are discussed to provide guidance on their salient features. Recommendations are made in the recommendations remarks for an approach which captures most of the inherent properties of the engine. Such an approach has the potential for yielding results which will closely match practical FPSE-load systems.

  10. Method and apparatus for locating top dead center position of a piston of an internal combustion engine

    SciTech Connect

    Schroeder, T.

    1987-05-26

    The method is described of locating the top dead center position of a piston of a diesel internal combustion engine that is reciprocable within a cylinder of the engine and which is connected to the crankshaft of the engine. The steps comprise: while the engine is running detecting light radiation developed within the cylinder when the piston is operating in its compression stroke; developing an electrical signal the magnitude of which varies in accordance with the intensity of the light radiation, the signal having a peak that occurs at a position of the piston that is prior to the top dead center position of the piston; recording data that includes simultaneous crankshaft positions and signal magnitudes for a succession of crankshaft positions during the compression stroke of the engine, determining from the data the peak related crankshaft position at which the peak occurred; and determining engine speed.

  11. Overview of free-piston Stirling engine technology for space power application

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1987-01-01

    An overview is presented of free-piston Stirling engine activities, directed toward space power applications. One of the major elements of the program is the development of advanced power conversion. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators are discussed. Technology work was conducted on heat-exchanger concepts to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space power converter. Projections are made for future space power requirements over the next few decades along with a recommendation to consider the use of dynamic power conversion systems, either solar or nuclear. A cursory comparison is presented showing the mass benefits of a Stirling system over a Brayton system for the same peak temperature and output power. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space power module to the 150 kWe power range is presented.

  12. The Development of a Control System for a 5 Kilowatt Free Piston Stirling Engine Convertor

    NASA Technical Reports Server (NTRS)

    Kirby, Raymond L.; Vitale, Nick

    2008-01-01

    The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling convertors for 2020 launch. Use of two of the nominal 5 kW convertors allows the system to be dynamically balanced. A group of four dual-convertor combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the Free Piston Stirling Engine (FPSE) convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.

  13. Overview of free-piston Stirling engine technology for space power application

    SciTech Connect

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Technology work is also conducted on heat-exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. Projections are made for future space-power requirements over the next few decades along with a recommendation to consider the use of dynamic power-conversion systems - either solar or nuclear. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kWe power range is presented.

  14. The influence of thermodynamic losses on free-piston Stirling engine performance

    SciTech Connect

    Benvenuto, G.; Monte, F. de; Galli, G.

    1995-12-31

    In order to improve the performance of a free-piston Stirling engine by means of a thermodynamic design optimization, it is important to quantify the entropy productions related to the different causes of irreversibility typical of these machines. This is done in the present paper, where the entropy generated in the various engine components is calculated applying the energy and entropy balance equations and assuming for the engine behavior description a mathematical model presented in past studies. The developed methodology is applied to the Sunpower RE-1000 engine for which it allows the most important causes of energy loss to be singled out.

  15. Overview of the 1985 NASA Lewis Research Center SP-100 free-piston Stirling engine activities

    SciTech Connect

    Slaby, J.G.

    1985-01-01

    An overview of the 1985 (NASA) Lewis Research Center free-piston Stirling engine activities in support of the SP-100 Program is presented. The SP-100 program is being conducted in support of the Department of Advanced Research Projects Agency (DARPA) and the Department of Energy (DOE), and NASA. This effort is keyed on the design, fabrication, assembly, and testing of a 25 kW(e) Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-h goal endurance test conducted on a 2 kW(e) free-piston Stirling/linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kW(e) free-piston Stirling engine) using a passive dynamic absorber is discussed, along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests are described covering a hydrodynamic gas bearing concept for potential SP-100 application.

  16. RE-1000 free-piston Stirling engine sensitivity test results. Final report

    SciTech Connect

    Schreiber, J.G.; Geng, S.M.; Lorenz, G.V.

    1986-10-01

    The NASA Lewis Research Center has been testing a 1 kW (1.33 hp) free-piston Stirling engine at the NASA Lewis test facilities. The tests performed over the past several years have been on a single cylinder machine known as the RE-1000. The data recorded were to aid in the investigation of the dynamics and thermodynamics of the free-piston Stirling engine. The data are intended to be used primarily for computer code validation. NASA reports TM-82999, TM-83407, and TM-87126 give initial results of the engine tests. The tests were designed to investigate the sensitivity of the engine performance to variations on the mean pressure of the working space, the working fluid used, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics. These tests have now been completed at NASA Lewis. This report presents some of the detailed data collected in the sensitivity tests. In all, 781 data points were recorded. A complete description of the engine and test facility is given. Many of the data can be found in tabular form, while a microfiche containing all of the data points can be requested from NASA Lewis.

  17. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  18. Instantaneous engine frictional torque, its components and piston assembly friction. Final report

    SciTech Connect

    Nichols, F.A.; Henein, N.A.

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-{omega}) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, {omega}, have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-{omega}) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  19. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Hydrogen enrichment for aircraft piston engines is studied. The feasibility is examined of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. Results are summarized.

  20. Free-piston Stirling Engine system considerations for various space power applications

    NASA Technical Reports Server (NTRS)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  1. Design of heat exchanger for Ericsson-Brayton piston engine.

    PubMed

    Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef; Holubcik, Michal; Nosek, Radovan

    2014-01-01

    Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy--energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. PMID:24977174

  2. Design of Heat Exchanger for Ericsson-Brayton Piston Engine

    PubMed Central

    Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef

    2014-01-01

    Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy—energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. PMID:24977174

  3. Development of Gas-Lubricated Pistons for Heavy Duty Diesel Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Shapiro, W.

    1984-01-01

    Static testing of a segmented, gas-lubricated, piston-ring was accomplished. The ring utilizes high-pressure gas generated during the diesel cycle to energize a hydrostatic gas film between the piston and cylinder liner. The configuration was deficient in overall performance, because all segments of a ring set failed to form a fluid-film simultaneously, when exposed to internal preload. The difficulty was traced to the moment balance required to prevent the segments from overturning and contacting the cylinder walls. Some individual sectors formed a film and performed well in every respect including load capability to 6,000 N. These results produce optimism as to the ultimate feasibility of hydrostatic, gas-lubricated piston rings. In addition to test results, the principles of operation, and theoretical developments are presented. Breathable liner concepts are suggested for future consideration. In these configurations, solid hydrostatic pistons are coupled with flexible liners that elastically deform to form a gas-film under hydrostatic pressurization. Breathable liners afford the mechanical simplicity required for mass produced engines, and initial examination indicates satisfactory operation.

  4. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    NASA Technical Reports Server (NTRS)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  5. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    SciTech Connect

    Rauch, J.S.; Kankam, M.D.; Santiago, W.; Madi, F.J.

    1992-08-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  6. Reciprocating balance weight mechanism for a piston type internal combustion engine

    SciTech Connect

    Nivi, H.; Field, N.L. III

    1987-08-25

    A balancing mechanism is described for reducing the vibration of a piston type internal combustion engine having a crankshaft and a camshaft, the balancing mechanisms comprising one or more reciprocating balance weights, with each weight comprising an elongate body having a cam follower mounted at either end and with each weight being driven by two rotating cams with at least one of the cams being driven by either the crankshaft or the camshaft.

  7. Preliminary assessment of a magnetically coupled free-piston Stirling engine heat pump compressor

    SciTech Connect

    Beale, W.T.; Chen, G.

    1988-01-01

    The potential advantages of direct magnetic coupling of a free-piston Stirling engine with a vapor compressor are being investigated experimentally. Results to date indicate no problems with dynamics, mechanical arrangements, efficiency or deterioration. The problems of size and cost remain, but these are determined by the properties of the magnetic material, which are improving rapidly. If the magnet material becomes available at a satisfactory price, the work undertaken here will facilitate a commercially attractive magnet drive system. 4 figs.

  8. Infrared study of a piston-ring temperatures in a fired engine. Final report

    SciTech Connect

    Spikes, H.A.

    1990-11-01

    Sapphire windows have been inserted in the liner of a Petter AV1 diesel engine to enable temperatures of piston lands and rings to be monitored during firing. The overall temperatures thus measured are comparable to those reported in the literature obtained using embedded thermocouples. However the very fast response time and surface specificity of the infrared method has also enabled transient temperature changes which take place just after ignition to be observed.

  9. Calibration and comparison of the NASA Lewis free-piston Stirling engine model predictions with RE-1000 test data

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.

    1987-01-01

    A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Resonable agreement was obtained between the code predictions and the experimental data over a wide range of engine operating conditions.

  10. Free-piston Stirling engine system considerations for various space power applications

    SciTech Connect

    Dochat, G.R.; Dhar, M. )

    1991-01-05

    The U.S. Government is evaluating power requirements for future space applications. As power requirements increase solar or nuclear dynamic systems become increasingly attractive. Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (AC, DC, high or low voltage, and fixed or variable load). This paper will review potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. Currently free-piston Stirling engine technology for space power applications is being developed under contract with NASA-Lewis Research Center. This paper will also briefly outline the program and recent progress.

  11. Fluid dynamic modeling of a free piston engine with labyrinth seals

    NASA Astrophysics Data System (ADS)

    Larjola, Jaakko; Honkatukia, Juha; Sallinen, Petri; Backman, Jari

    2010-04-01

    Preliminary design and simulation of a free piston engine suitable for small-scale energy production in distributed energy systems is presented in this paper. The properties, particularly the properties of gas seals of the engine are simulated using a simulation program developed for this case, and the results are utilized in preliminary main design parameter selection. The engine simulation program was developed by combining and modifying the source codes of the simulation and calculation programs obtained from Helsinki University of Technology, Tampere University of Technology, and Lappeenranta University of Technology. Because of the contact-free labyrinth seal used in the piston, the efficiency of the motor is lower than the efficiency of a conventional motor with oil lubricated piston rings. On the other hand, the lack of bearing losses, and the lack of losses associated with a crankshaft system and a gearbox, as well as the lack of lubrication oil expenses, compensates this effect. As a net result, this new motor would perform slightly better than the conventional one. Being completely oil-free, it is very environmentally friendly, and its exhaust gases are completely free of oil residuals which are causing problems in normal gas motors.

  12. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.

  13. Mechanical override for electronic fuel control on a piston engine

    SciTech Connect

    Jedrziewski, S.T.

    1987-02-17

    This patent describes an apparatus for controlling the throttle of a fuel burning engine from either a shaft powered by automatic fuel control equipment or by the translational motion of a manually positioned throttle lever. The apparatus is attached to the engine via a throttle shaft extending outwardly from the wall of the engine fuel-air metering system, the apparatus comprising: an outer housing shell having a generally cylindrical interior and a lever arm rigidly attached to and extending radially away from the periphery thereof, the lever end furthest from the periphery of the outer housing shell being pivotally connected to the manual throttle lever; an output spool mounted for rotation within one end of the outer housing shell, the output spool having an axial boring at its outermost end sized to receive and be secured to the throttle shaft. The inward facing end of the output spool is coaxially formed into a cup shaped annulus; and an input spool having a generally cylindrical shape, the input spool mounted for rotation within the second end of the outer housing shell, the innermost end of the input spool being sized to fit within the cup shaped annulus on the inward facing end of the output spool. The input spool has an axial boring at its outermost end sized to receive and be secured to a shaft powered by the automatic fuel control equipment.

  14. Inlet distortion in engines on VSTOL aircraft

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Greitzer, Edward M.

    1994-01-01

    This report presents the results of a research program on inlet distortion in engines on VSTOL aircraft carried out at the MIT Gas Turbine Laboratory during the period Oct. 1989 - Dec. 1993. The program focused on the development of three dimensional flow computational methodology for predicting the effects of nonuniform flow on the performance of aircraft engines in VSTOL aircraft, the development of a three dimensional instability analysis of flow in multistage axial compressors, and the preliminary applications of these newly developed methodologies for elucidating the effects of flow three dimensionality. The accomplishments of the program are brought out when the current status of predictive capabilities for three dimensional flow instabilities in compressors is assessed against that in 1989.

  15. Aircraft engine soot as contrail nuclei

    NASA Astrophysics Data System (ADS)

    Popovicheva, O. B.; Persiantseva, N. M.; Lukhovitskaya, E. E.; Shonija, N. K.; Zubareva, N. A.; Demirdjian, B.; Ferry, D.; Suzanne, J.

    2004-06-01

    The physico-chemical properties of aircraft engine soot are characterized with respect to their ability to act as CCN. Comparison with laboratory-generated kerosene soot shows a significant influence of combustion conditions on the morphology, microstructure, chemical composition, surface nature, and hygroscopicity of soot. Engine soot particles separate into two components based on composition and structural heterogeneities: a main soot fraction and a fraction of impurities containing an appreciable amount of metal and sulfur. The high concentration of soluble sulfates, of inorganics and of organics in the fraction that contains impurities, explains the engine soot hygroscopicity and its ability to act as CCN at threshold conditions for contrail formation. Laboratory-generated kerosene soot is not able to reproduce the hygroscopicity of engine soot, but we show that it is a good surrogate for the insoluble black carbon fraction of aircraft soot in the upper troposphere.

  16. Aircraft engine mathematical model - linear system approach

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ

    2016-06-01

    This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.

  17. Method of vibration isolating an aircraft engine

    NASA Technical Reports Server (NTRS)

    Bender, Stanley I. (Inventor); Butler, Lawrence (Inventor); Dawes, Peter W. (Inventor)

    1991-01-01

    A method for coupling an engine to a support frame for mounting to a fuselage of an aircraft using a three point vibration isolating mounting system in which the load reactive forces at each mounting point are statically and dynamically determined. A first vibration isolating mount pivotably couples a first end of an elongated support beam to a stator portion of an engine with the pivoting action of the vibration mount being oriented such that it is pivotable about a line parallel to a center line of the engine. An aft end of the supporting frame is coupled to the engine through an additional pair of vibration isolating mounts with the mounts being oriented such that they are pivotable about a circumference of the engine. The aft mounts are symmetrically spaced to each side of the supporting frame by 45 degrees. The relative orientation between the front mount and the pair of rear mounts is such that only the rear mounts provide load reactive forces parallel to the engine center line, in support of the engine to the aircraft against thrust forces. The forward mount is oriented so as to provide only radial forces to the engine and some lifting forces to maintain the engine in position adjacent a fuselage. Since each mount is connected to provide specific forces to support the engine, forces required of each mount are statically and dynamically determinable.

  18. System analysis of a piston steam engine employing the uniflow principle, a study in optimized performance

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1975-01-01

    Results are reported which were obtained from a mathematical model of a generalized piston steam engine configuration employing the uniflow principal. The model accounted for the effects of clearance volume, compression work, and release volume. A simple solution is presented which characterizes optimum performance of the steam engine, based on miles per gallon. Development of the mathematical model is presented. The relationship between efficiency and miles per gallon is developed. An approach to steam car analysis and design is presented which has purpose rather than lucky hopefulness. A practical engine design is proposed which correlates to the definition of the type engine used. This engine integrates several system components into the engine structure. All conclusions relate to the classical Rankine Cycle.

  19. Aircraft Engineering Conference 1934 - Full Scale Tunnel

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Gathered together in the only facility big enough to hold them, attendees at Langleys 1934 aircraft Engineering Conference pose in the Full Scale Wind Tunnel underneath a Boeing P-26A Peashooter. Present, among other notables, were Orville Wright, Charles Lindbergh, and Howard Hughes.

  20. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  1. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... 12866; 2. Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... Engine model Aeromot-Industria Mecanico AMT-200 912 A2. Metalurgica ltda. Diamond Aircraft...

  2. 75 FR 28504 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Policies and Procedures (44 FR 11034, February 26, 1979); and 3. Will not have a significant economic... Aircraft model Engine model Aeromot-Industrial Mecanico AMT-200......... 912 A2 Metalurgica tda.....

  3. Free-piston Stirling engine development. Annual report, December 1, 1983-December 31, 1984

    SciTech Connect

    Marusak, T.J.; Ackerman, R.A.

    1985-07-01

    The FPSE/HP is a heat-actuated heat pump that is being developed for residential applications. The system features an advanced free-piston Stirling engine coupled to a Rankine refrigerant compressor through a unique and highly efficient diaphragm-actuated hydraulic transmission. During the past year the program has concentrated on developing the performance of the individual components, and this report presents the progress made. The engine development is being funded by the Gas Research Institute, with the main technical goal of integrating the most advanced, reliable system components into a prototype FPSE heat pump module for laboratory testing and evaluation.

  4. Advanced aircraft engine materials trends

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Gray, H. R.; Levine, S. R.; Signorelli, R.

    1981-01-01

    Recent activities of the Lewis Research Center are reviewed which are directed toward developing materials for rotating hot section components for aircraft gas turbines. Turbine blade materials activities are directed at increasing metal temperatures approximately 100 C compared to current directionally solidified alloys by use of oxide dispersion strengthening or tungsten alloy wire reinforcement of nickel or iron base superalloys. The application of thermal barrier coatings offers a promise of increasing gas temperatures an additional 100 C with current cooling technology. For turbine disk alloys, activities are directed toward reducing the cost of turbine disks by 50 percent through near net shape fabrication of prealloyed powders as well as towards improved performance. In addition, advanced alloy concepts and fabrication methods for dual alloy disks are being studied as having potential for improving the life of future high performance disks and reducing the amount of strategic materials required in these components.

  5. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  6. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to...

  7. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate must subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to an...

  8. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to...

  9. Free-piston Stirling hydraulic engine and drive system for automobiles

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  10. Start-up and control method and apparatus for resonant free piston Stirling engine

    DOEpatents

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  11. Comparison of measured and calculated forces on the RE-1000 free-piston Stirling engine displacer

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1987-01-01

    The NASA Lewis Research Center has tested a 1 kW free-piston Stirling engine at the NASA Lewis test facilities. The tests performed over the past several years on the RE-1000 single cylinder engine are known as the sensitivity tests. This report presents an analysis of some of the data published in the sensitivity test report. A basic investigation into the measured forces acting on the unconstrained displacer of the engine is presented. These measured forces are then correlated with the values predicted by the NASA Lewis Stirling engine computer simulation. The results of the investigation are presented in the form of phasor diagrams. Possible future work resulting from this investigation is outlined.

  12. Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Rauch, Jeffrey S.

    1994-01-01

    This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.

  13. Making Ceramic Components For Advanced Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Franklin, J. E.; Ezis, A.

    1994-01-01

    Lightweight, oxidation-resistant silicon nitride components containing intricate internal cooling and hydraulic passages and capable of withstanding high operating temperatures made by ceramic-platelet technology. Used to fabricate silicon nitride test articles of two types: components of methane-cooled regenerator for air turbo ramjet engine and components of bipropellant injector for rocket engine. Procedures for development of more complex and intricate components established. Technology has commercial utility in automotive, aircraft, and environmental industries for manufacture of high-temperature components for use in regeneration of fuels, treatment of emissions, high-temperature combustion devices, and application in which other high-temperature and/or lightweight components needed. Potential use in fabrication of combustors and high-temperature acoustic panels for suppression of noise in future high-speed aircraft.

  14. Fuel-efficient cruise performance model for general aviation piston engine airplanes

    SciTech Connect

    Parkinson, R.C.H.

    1982-01-01

    The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its simplicity and low volume data storage requirements, appears suitable for airborne microprocessor implementation.

  15. Nitride ion beam mixing of piston rings for high temperature diesel engine

    SciTech Connect

    Bryzik, W.; Kamo, R.; Woods, M.

    1995-05-01

    Direct ion implantation and ion beam mixing surface treatment processes are being explored to enhance the friction and wear characteristics of piston rings for the adiabatic diesel engine. Bench test results to temperatures of 540{degrees}C indicate that titanium nitride and chrome nitride ion beam mixing of M2 steel produces superior friction and wear properties compared to traditional plasma-sprayed chrome oxide and chrome carbide coatings. Friction was reduced by factor of two and wear was reduced by a factor of 20. 10 refs., 9 figs., 1 tab.

  16. Piston ring coating developments for use in tomorrow`s heavy duty engines

    SciTech Connect

    Delaet, M.; Coddet, C.

    1996-12-31

    Extended life and higher performance are being required for heavy duty diesel engines which have to run more than 1 million kilometers. Reducing the amount of exhaust gas pollutants from diesel engines is now a social concern from the viewpoints of an environmental conservation, air pollution and influence on human health. In order to lower the amount of particulate emission, mainly composed of unburnt fuel and oil, it is desirable to reduce oil consumption which depends largely upon the sliding surface profiles of piston top rings. In addition to some new nitriding treatment or hard chromium plating techniques, plasma spray coatings are largely developed in Perfect Circle Europe, because of the wide range of coating materials which ensure numerous tribological properties. Powder formulations and spraying parameters are of great importance to reduce the piston ring and the liner wear, to improve the adhesive and cohesive qualities of coatings and to increase their tearing and corrosive resistances. Spraying parameters and the utilized plasma gas also play a large part in obtaining coatings of high quality and in increasing the deposition efficiency. Tests on idealized samples coupled with engine tests help to characterize the tribological behavior of some molybdenum based coatings.

  17. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  18. Aircraft Engine Sump Fire Mitigation

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1973-01-01

    An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.

  19. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  20. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  1. Alaskan flight trials of a synthetic vision system for instrument landings of a piston twin aircraft

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew K.; Alter, Keith W.; Jennings, Chad W.; Powell, J. D.

    1999-07-01

    Stanford University has developed a low-cost prototype synthetic vision system and flight tested it onboard general aviation aircraft. The display aids pilots by providing an 'out the window' view, making visualization of the desired flight path a simple task. Predictor symbology provides guidance on straight and curved paths presented in a 'tunnel- in-the-sky' format. Based on commodity PC hardware to achieve low cost, the Tunnel Display system uses differential GPS (typically from Stanford prototype Wide Area Augmentation System hardware) for positioning and GPS-aided inertial sensors for attitude determination. The display has been flown onboard Piper Dakota and Beechcraft Queen Air aircraft at several different locations. This paper describes the system, its development, and flight trials culminating with tests in Alaska during the summer of 1998. Operational experience demonstrated the Tunnel Display's ability to increase flight- path following accuracy and situational awareness while easing the task instrument flying.

  2. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  3. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  4. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Astrophysics Data System (ADS)

    Slaby, Jack G.

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  5. Free-piston Stirling engine/linear alternator 1000-hour endurance test

    NASA Astrophysics Data System (ADS)

    Rauch, J.; Dochat, G.

    1985-03-01

    The Free Piston Stirling Engine (FPSE) has the potential to be a long lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long life FPSE applications.

  6. Free-piston Stirling engine/linear alternator 1000-hour endurance test

    NASA Technical Reports Server (NTRS)

    Rauch, J.; Dochat, G.

    1985-01-01

    The Free Piston Stirling Engine (FPSE) has the potential to be a long lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long life FPSE applications.

  7. Large Eddy Simulations of Turbulent Reacting Flows in an Opposed-Piston Two Stroke Engine

    NASA Astrophysics Data System (ADS)

    Srivastava, Shalabh; Schock, Harold; Jaberi, Farhad

    2013-11-01

    The two-phase filtered mass density function (FMDF) subgrid-scale model has been used for large eddy simulation (LES) of turbulent spray combustion in a generic single cylinder, opposed-piston, two-stroke engine configuration. The LES/FMDF is implemented via an efficient, hybrid numerical method in which the filtered compressible Navier-Stokes equations are solved with a high-order, multi-block, compact differencing scheme, and the spray and FMDF are implemented with stochastic Lagrangian methods. The reliability and consistency of the numerical methods are established for the engine configuration by comparing the Eulerian and Lagrangian components of the LES/FMDF. The effects of various operating conditions like boost pressure, heat transfer model, fuel spray temperature, nozzle diameter, injection pressure, and injector configuration on the flow field, heat loss and the evolution of spray and combustion are studied.

  8. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    In free piston Stirling engine research the integrity of both amplitude and phase of the dynamic pressure measurements is critical to the characterization of cycle dynamics and thermodynamics. It is therefore necessary to appreciate all possible sources of signal distortion when designing pressure measurement systems for this type of research. The signal distortion inherent to pressure transmission lines is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving helium-charged free piston Stirling engines. The scope and limitations of the dynamic response analysis are considered.

  9. Fractal approach to the evaluation of burning rates in the vicinity of the piston in a spark-ignition engine

    SciTech Connect

    Foucher, F.; Mounaim-Rousselle, C.

    2005-11-01

    The burning rate in the vicinity of a piston is estimated from a fractal analysis. The fractal parameters are determined from laser sheet tomography flame images for methane-air mixtures with three equivalence ratios (1, 0.9, 0.8) in a transparent spark-ignition engine. Two imaging configurations were used: five horizontal planes placed at different distances from the piston (0, 1, 2, 3, and 5 mm) and a vertical one passed through the center of the combustion chamber. The methodology proposed by Foucher et al. [F. Foucher, S. Burnel, C. Mounaim-Rousselle, Proc. Combust. Inst. 29 (2002) 751-757] allows the effect of cyclic variations to be avoided. The fractal formulation is modified to take into account the flame-piston distance and flame quenching. Far from the piston, evolution of the fractal dimension versus q{sup '}/S{sub L}{sup 0} is found to be in good agreement with literature results. Near the piston, the fractal dimension evolves significantly when the distance is about twice the integral length scale and tends toward 2, the fractal dimension of a laminar flame front. The quenching ratio parameter Q{sub R} is introduced to consider the quenching of the flame by the piston. Finally, the burning rate is determined as a function of the distance between the wall and the mean flame contour and compared to a flame density approach, and similar results are found.

  10. Damage Propagation Modeling for Aircraft Engine Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil

    2008-01-01

    This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.

  11. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  12. Dynamic analysis of free-piston Stirling engine/linear alternator-load system - Experimentally validated

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Rauch, Jeffrey S.; Santiago, Walter

    1992-01-01

    This paper discusses the effects of a variations in system parameters on the dynamic behavior of a Free-Piston Stirling Engine/Linear Alternator (FPSE/LA)-load system. The mathematical formulations incorporates both the mechanical and thermodynamic properties of the FPSE, as well as the electrical equations of the connected load. State-space technique in the frequency domain is applied to the resulting system of equations to facilitate the evaluation of parametric impacts on the system dynamic stability. Also included is a discussion on the system transient stability as affected by sudden changes in some key operating conditions. Some representative results are correlated with experimental data to verify the model and analytic formulation accuracies. Guidelines are given for ranges of the system parameters which will ensure an overall stable operation.

  13. RE-1000 free-piston Stirling engine hydraulic output system description

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Geng, Steven M.

    1987-01-01

    The NASA Lewis Research Center was involved in free-piston Stirling engine research since 1976. Most of the work performed in-house was related to characterization of the RE-1000 engine. The data collected from the RE-1000 tests were intended to provide a data base for the validation of Stirling cycle simulations. The RE-1000 was originally build with a dashpot load system which did not convert the output of the engine into useful power, but was merely used as a load for the engine to work against during testing. As part of the interagency program between NASA Lewis and the Oak Ridge National Laboratory, (ORNL), the RE-1000 was converted into a configuration that produces useable hydraulic power. A goal of the hydraulic output conversion effort was to retain the same thermodynamic cycle that existed with the dashpot loaded engine. It was required that the design must provide a hermetic seal between the hydraulic fluid and the working gas of the engine. The design was completed and the hardware was fabricated. The RE-1000 was modified in 1985 to the hydraulic output configuration. The early part of the RE-1000 hydraulic output program consisted of modifying hardware and software to allow the engine to run at steady-state conditions. A complete description of the engine is presented in sufficient detail so that the device can be simulated on a computer. Tables are presented showing the masses of the oscillating components and key dimensions needed for modeling purposes. Graphs are used to indicate the spring rate of the diaphragms used to separate the helium of the working and bounce space from the hydraulic fluid.

  14. Free-piston Stirling engine conceptual design and technologies for space power, phase 1

    NASA Technical Reports Server (NTRS)

    Penswick, L. Barry; Beale, William T.; Wood, J. Gary

    1990-01-01

    As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis.

  15. Increasing reliability of gas-air systems of piston and combined internal combustion engines by improving thermal and mechanic flow characteristics

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Grigor'ev, N. I.; Zhilkin, B. P.; Plotnikov, L. V.; Shestakov, D. S.

    2015-12-01

    Results of experimental study of thermal and mechanical characteristics of gas exchange flow in piston and combined engines are presented. Ways for improving intake and exhaust processes to increase reliability of gas-air engine systems are proposed.

  16. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... General Note 6, HTSUS, as a civil aircraft, aircraft engine, or ground flight simulator, or their parts... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components,...

  17. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components,...

  18. Free-piston engine linear generator for hybrid vehicles modeling study. Interim report, January-August 1994

    SciTech Connect

    Callahan, T.J.; Ingram, S.K.

    1995-05-01

    Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

  19. Recent Advances in Design of Low Cost Film Concentrator and Low Pressure Free Piston Stirling Engines for Solar Power

    NASA Technical Reports Server (NTRS)

    Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.

    1984-01-01

    The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.

  20. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  1. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  2. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engines. (a) Each person manufacturing aircraft engines under a type certificate must subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to an acceptable...) The test runs required by paragraph (a) of this section may be made with the engine...

  3. 14 CFR 21.128 - Tests: aircraft engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engines. (a) Each person manufacturing aircraft engines under a type certificate must subject each engine (except rocket engines for which the manufacturer must establish a sampling technique) to an acceptable...) The test runs required by paragraph (a) of this section may be made with the engine...

  4. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  5. An engine with means for changing the phase angle between displacer and working pistons: Its thermo dynamic cycle compared to the ideal Stirling cycle

    SciTech Connect

    Ayala V., E.

    1984-08-01

    This paper describes a heat engine comprising a displacer piston actuated by the pressure changes accomplished by the working piston combined with the force exerted by the pressure of a spring against the piston which can be changed to modify the phase angle between the displacer and working pistons. A gas cooler is arranged in an independent closed loop circuit that is put into operation between the end of the expansion stroke and the beginning of the compression stroke. The working cylinder is connected to the cold end of the displacer cylinder through an auxiliary cooler and to the end of the displacer cylinder through the heat regenerator and the heater.

  6. Performance tests of a single-cylinder compression-ignition engine with a displacer piston

    NASA Technical Reports Server (NTRS)

    Moore, C S; Foster, H H

    1935-01-01

    Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly.

  7. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Duty-free entry of civil aircraft, aircraft... ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Civil Aircraft § 10.183 Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components,...

  8. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Duty-free entry of civil aircraft, aircraft... ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Civil Aircraft § 10.183 Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components,...

  9. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Duty-free entry of civil aircraft, aircraft... ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Civil Aircraft § 10.183 Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components,...

  10. Heterogeneous reactions in aircraft gas turbine engines

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Miake-Lye, R. C.; Lukachko, S. P.; Waitz, I. A.

    2002-05-01

    One-dimensional flow models and unity probability heterogeneous rate parameters are used to estimate the maximum effect of heterogeneous reactions on trace species evolution in aircraft gas turbines. The analysis includes reactions on soot particulates and turbine/nozzle material surfaces. Results for a representative advanced subsonic engine indicate the net change in reactant mixing ratios due to heterogeneous reactions is <10-6 for O2, CO2, and H2O, and <10-10 for minor combustion products such as SO2 and NO2. The change in the mixing ratios relative to the initial values is <0.01%. Since these estimates are based on heterogeneous reaction probabilities of unity, the actual changes will be even lower. Thus, heterogeneous chemistry within the engine cannot explain the high conversion of SO2 to SO3 which some wake models require to explain the observed levels of volatile aerosols. Furthermore, turbine heterogeneous processes will not effect exhaust NOx or NOy levels.

  11. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  12. State variable modeling of the integrated engine and aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Sprinţu, Iuliana

    2014-12-01

    This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.

  13. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or component parts for return to service after maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT...

  14. A fuel-efficient cruise performance model for general aviation piston engine airplanes. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Parkinson, R. C. H.

    1983-01-01

    A fuel-efficient cruise performance model which facilitates maximizing the specific range of General Aviation airplanes powered by spark-ignition piston engines and propellers is presented. Airplanes of fixed design only are considered. The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its implicity and low volume data storge requirements, appears suitable for airborne microprocessor implementation.

  15. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    SciTech Connect

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators. Projections are made for future space-power requirements over the next few decades. A cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  16. Calculation of flow in the piston-cylinder-ring crevices of a homogeneous-charge engine and comparison with experiment

    SciTech Connect

    Kuo, T.W.; Sellnau, M.C.; Theobald, M.A.; Jones, J.D.

    1989-01-01

    A crevice-flow model that had been published in the literature was reconstructed and used to calculate flow in the crevices between the piston, the cylinder, and the rings in a homogeneous-charge engine. The code was then modified to run interactively with a more sophisticated ring-friction model developed previously for calculation of the film thickness of lubricating oil on the cylinder liner. This paper discusses the accuracy of this crevice-flow model evaluated with engine-blowby data taken from tests on a multicylinder engine.

  17. Supersonic through-flow fan engine and aircraft mission performance

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C.; Maldonado, Jaime J.

    1989-01-01

    A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines.

  18. 76 FR 33660 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... 2010-23-09, Amendment 39-16498 (75 FR 68179, November 5, 2010), for Austro Engine GmbH model E4 diesel...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect... FR 68179, November 5, 2010), and adding the following new AD: Austro Engine GmbH: Docket No....

  19. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    .... SUMMARY: The FAA is correcting a technical amendment published on July 5, 2012 (77 FR 39623). In that... Technical Amendment entitled, ``Airworthiness Standards: Aircraft Engine'' (77 FR 39623). In that technical... Administration 14 CFR Part 33 RIN 2120-AF57 Technical Amendment; Airworthiness Standards: Aircraft...

  20. Re-engining - The sound case for aircraft noise reduction

    NASA Astrophysics Data System (ADS)

    Goddard, K.

    1991-06-01

    The paper reviews the history of legislation to reduce jet-powered aircraft noise, particularly in the U.S.A. Recently introduced legislation is discussed and the paper goes on to explain the fundamental advantage of re-engining as a means of reducing aircraft noise. Th Rolls-Royce Tay engine is introduced and the two re-engine programs already launched are described. The expected large reductions in noise level which result from re-engining are illustrated. The paper concludes with a discussion on new programs, on the current airline business scene and on some aspects of the economics of re-engining.

  1. Aircraft Engine Sump Fire Mitigation, Phase 2

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1978-01-01

    The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.

  2. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Federal Aviation Administration 14 CFR Part 33 Airworthiness Standards: Aircraft Engines; Technical Amendment AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; technical amendment.... ] DATES: This amendment becomes effective July 5, 2012. FOR FURTHER INFORMATION CONTACT: For...

  3. The Altitude Laboratory for the Test of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Dickinson, H C; Boutell, H G

    1920-01-01

    Report presents descriptions, schematics, and photographs of the altitude laboratory for the testing of aircraft engines constructed at the Bureau of Standards for the National Advisory Committee for Aeronautics.

  4. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    PubMed

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future. PMID:16194561

  5. In-cylinder flows of a motored four-stroke engine with flat-crown and slightly concave-crown pistons

    SciTech Connect

    Huang, R.F.; Yang, H.S.; Yeh, C.-N.

    2008-04-15

    The temporal and spatial evolution processes of the in-cylinder flow structures and turbulence intensities in the symmetry and offset planes of a motored four-valve, four-stroke engine during the intake and compression strokes are diagnosed by using a particle image velocimeter. Two pistons of different crown shapes (flat-crown and slightly concave-crown pistons) are studied. The inception, establishment, and evolution of the tumbling vortical flow structures during the intake and compression strokes are clearly depicted. Quantitative strengths of the rotating vortical flow motions are presented by a dimensionless parameter, the tumble ratio, which can represent the mean angular velocity of the vortices in the target plane. The turbulence intensity of the in-cylinder flow is also calculated by using the measured time-varying velocity data. The results show that the flat-crown piston induces higher bulk-averaged tumble ratio and turbulence intensity than the slightly concave-crown piston does because the tumble ratio and turbulence generated by the flat-crown piston in the offset planes during the compression stroke are particularly large. The engine with the flat-crown piston also presents larger torque and power outputs and lower hydrocarbon emission than that with the slightly concave-crown piston. This might be caused by the enhanced combustion in the engine cylinder due to the stronger tumble ratio and turbulence intensity. (author)

  6. Further developments in the design of a free-piston Stirling engine heat pump for residential applications

    SciTech Connect

    Ackermann, R.A.; Clinch, J.M.; Privon, G.T.

    1987-01-01

    During the past year (1986/1987), the development of an improved Stirling engine driver for the Free-Piston Stirling Engine Heat Pump (FPSE/HP) has led to a significant increase in heat pump performance. With the improved engine, named the MARK I, the FPSE/HP has achieved its two critical milestones of producing 3.0 refrigeration tons (RT) at the 35/sup 0/C (95/sup 0/F) ambient temperature conditions and an engine efficiency of 25%, as measured from the fuel input energy, based on the higher heating value of the natural gas and mechanical power developed by the engine. This paper describes the latest configuration of the FPSE/HP module and presents measured performance data. Performance has been measured over a broad range of ambient temperature conditions and engine operating parameters. The results obtained from this testing are presented.

  7. Further developments in the design of a free-piston Stirling engine heat pump for residential applications

    SciTech Connect

    Ackerman, R.A.; Clinch, J.M.; Privon, G.

    1987-06-01

    During the past year (1986/1987), the development of an improved Stirling engine driver for the Free-Piston Stirling Engine Heat Pump (FPSE/HP) has led to a significant increase in heat pump performance. With the improved engine, the MARK I, the FPSE/HP has achieved its two critical milestones of producing 3.0 refrigeration tons (RT) at the 95 F (35/sup 0/C) ambient temperature conditions and an engine efficiency of 25%, as measured from the fuel input energy, based on the higher heating value of the natural gas and mechanical power developed by the engine. This paper describes the latest configuration of the FPSE/HP module and presents measured performance data. Performance has been measured over a broad range of ambient temperature conditions and engine operating parameters. The results obtained from this testing are presented.

  8. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  9. The development of a free-piston Stirling engine power conversion system for multiple applications utilizing alternative fuel sources

    NASA Astrophysics Data System (ADS)

    Marusak, T. J.

    The thermodynamic and mechanical advantages of free-piston Stirling engines developed to date by NASA, and their future potential as small powerplants, are discussed. Applications include heat-pumps, mobile electric power systems, solar thermal electric power generation and multiple heat source-capability power systems. Existing prototypes have demonstrated engine efficiencies of 33% even at low output levels, and an advanced design capable of 40% efficiency and an output power of more than 3 kW is currently undergoing extensive testing.

  10. A Roadmap for Aircraft Engine Life Extending Control

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2001-01-01

    The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.

  11. Supersonic through-flow fan engines for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1978-01-01

    Engine performance, weight and mission studies were carried out for supersonic through flow fan engine concepts. The mission used was a Mach 2.32 cruise mission. The advantages of supersonic through flow fan engines were evaluated in terms of mission range comparisons between the supersonic through flow fan engines and a more conventional turbofan engine. The specific fuel consumption of the supersonic through flow fan engines was 12 percent lower than the more conventional turbofan. The aircraft mission range was increased by 20 percent with the supersonic fan engines compared to the conventional turbofan.

  12. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  13. Further studies of methods for reducing community noise around airports. [aircraft noise - aircraft engines

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Barry, D. J.; Kline, D. M.

    1975-01-01

    A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.

  14. Integrated engine-generator for aircraft secondary power.

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    The integrated engine-generator concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power-conversion equipment and generator controls are conveniently located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. The available generating capacity permits use of electrically driven engine accessories. This reduces or eliminates the need for an external gearbox on the engine, thereby simplifying the engine and nacelle assembly and increasing aircraft design flexibility. The nacelle diameter can then be decreased, resulting in less aerodynamic drag and reduced takeoff gross weight.

  15. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  16. Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou (Compiler)

    1999-01-01

    In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.

  17. Condensed data on the aircraft engines of the world

    NASA Technical Reports Server (NTRS)

    Fliedner, C S

    1929-01-01

    This compilation of the outstanding characteristics of the available aircraft engines of the world was prepared as a compact ready reference for desk use. It does not pretend to be anything but a skeleton outline of the characteristics of engines reported in the technical press as being in either the experimental, development, or production stage.

  18. Control Design for a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  19. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  20. Design study of a 15 kW free-piston Stirling engine-linear alternator for dispersed solar electric power systems

    NASA Technical Reports Server (NTRS)

    Dochat, G. R.; Chen, H. S.; Bhate, S.; Marusak, T.

    1979-01-01

    A conceptual design of a free piston solar Stirling engine-linear alternator which can be designed and developed to meet the requirements of a near-term solar test bed engine with minimum risks was developed. The conceptual design was calculated to have an overall system efficiency of 38% and provide 15kW electric output. The free piston engine design incorporates features such as gas bearings, close clearance seals, and gas springs. This design is hermetically sealed to provide long life, reliability, and maintenance free operation. An implementation assessment study performed indicates that the free piston solar Stirling engine-linear alternator can be manufactured at a reasonable price cost (direct labor plus material) of $2,500 per engine in production quantities of 25,000 units per year. Opportunity for significant reduction of cost was also identified.

  1. 14 CFR 21.500 - Acceptance of aircraft engines and propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Acceptance of aircraft engines and... TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Acceptance of Aircraft Engines, Propellers, and Articles for Import § 21.500 Acceptance of aircraft engines and propellers. An...

  2. Aircraft stress sequence development: A complex engineering process made simple

    NASA Technical Reports Server (NTRS)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  3. 77 FR 13488 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... (75 FR 32253, June 8, 2010), and adding the following new AD: 2010-11-09R1 Thielert Aircraft Engines... IBR on July 13, 2010 (75 FR 32253, June 8, 2010). (i) Thielert Aircraft Engines (TAE) GmbH, TAE SB No... 13, 2010 (75 FR 32253, June 8, 2010). ADDRESSES: For service information identified in this...

  4. Piston Ring Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kuhn, M.

    1943-01-01

    The discovery and introduction of the internal combustion engine has resulted in a very rapid development in machines utilizing the action of a piston. Design has been limited by the internal components of the engine, which has been subjected to ever increasing thermal and mechanical stresses, Of these internal engine components, the piston and piston rings are of particular importance and the momentary position of engine development is not seldom dependent upon the development of both of the components, The piston ring is a well-known component and has been used in its present shape in the steam engine of the last century, Corresponding to its importance, the piston ring has been a rich field for creative activity and it is noteworthy that in spite of this the ring has maintained its shape through the many years. From the many and complicated designs which have been suggested as a packing between piston and cylinder wall hardly one suggestion has remained which does not resemble the original design of cast iron rectangular ring.

  5. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    NASA Technical Reports Server (NTRS)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  6. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Astrophysics Data System (ADS)

    Ennix, Kimberly A.

    1994-02-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  7. Rankline-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Rankine-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  9. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1993-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  10. Engine exhaust characteristics evaluation in support of aircraft acoustic testing

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.

    1994-01-01

    NASA Dryden Flight Research Facility and NASA Langley Research Center completed a joint acoustic flight test program. Test objectives were (1) to quantify and evaluate subsonic climb-to-cruise noise and (2) to obtain a quality noise database for use in validating the Aircraft Noise Prediction Program. These tests were conducted using aircraft with engines that represent the high nozzle pressure ratio of future transport designs. Test flights were completed at subsonic speeds that exceeded Mach 0.3 using F-18 and F-16XL aircraft. This paper describes the efforts of NASA Dryden Flight Research Facility in this flight test program. Topics discussed include the test aircraft, setup, and matrix. In addition, the engine modeling codes and nozzle exhaust characteristics are described.

  11. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  12. Civil aircraft. [composite materials for airframes and engines

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1974-01-01

    This study deals with aircraft material and structural requirements, advantages of composites, airframe and engine applications, design procedures, problem areas, and future trends in civil aircraft. The selection of materials and design of structure for any given component or part must be made not only on the basis of the mechanical and structural functions, but must also consider the operational and cost parameters for civil aircraft. Composites have caused the orientation to shift from a metal-based philosophy for design, where only incremental improvements could be anticipated, to one where substantial changes in design approaches are possible. Future designs are likely to include a combination of new approaches and composite materials.

  13. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    SciTech Connect

    West, B.; Green, J.B.

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  14. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  15. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  16. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  17. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  18. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  19. Test results and description of a 1-kW free-piston Stirling engine with a dashpot load

    NASA Technical Reports Server (NTRS)

    Schreiber, J.

    1983-01-01

    A 1 kW (1.33 hp) single cylinder free piston Stirling engine was installed in the test facilities at the Lewis laboratory. The engine was designed specifically for research of the dynamics of its operation. A more complete description of the engine and its instrumentation is provided in a prior NASA paper TM-82999 by J. G. Schreiber. Initial tests at Lewis showed the power level and efficiency of the engine to be below design level. Tests were performed to help determine the specific problems in the engine causing the below design level performance. Modifications to engine hardware and to the facility where performed in an effort to bring the power output and efficiency to their design values. As finally configured the engine generated more than 1250 watts of output power at an engine efficiency greater than 32 percent. This report presents the tests performed to help determine the specific problems, the results if the problem was eliminated, the fix performed to the hardware, and the test results after the engine was tested. In cases where the fix did not cause the anticipated effects, a possible explanation is given.

  20. Test results and description of a 1 kW free-piston Stirling engine with a dashpot load

    NASA Technical Reports Server (NTRS)

    Schreiber, J.

    1983-01-01

    A 1 kW (1.33 hp) single cylinder free piston Stirling engine was installed in the test facilities at the Lewis laboratory. The engine was designed specifically for research of the dynamics of its operation. A more complete description of the engine and its instrumentation is provided in a prior NASA paper TM-82999 by J. G. Schreiber. Initial tests at Lewis showed the power level and efficiency of the engine to be below design level. Tests were performed to help determine the specific problems in the engine causing the below design level performance. Modifications to engine hardware and to the facility where performed in an effort to bring the power output and efficiency to their design values. As finally configured the engine generated more than 1250 watts of output power at an engine efficiency greater than 32 percent. This report presents the tests performed to help determine the specific problems, the results if the problem was eliminated, the fix performed to the hardware, and the test results after the engine was tested. In cases where the fix did not cause the anticipated effects, a possible explanation is given. Previously announced in STAR as N83-27346

  1. Real-Time Aircraft Engine-Life Monitoring

    NASA Technical Reports Server (NTRS)

    Klein, Richard

    2014-01-01

    This project developed an inservice life-monitoring system capable of predicting the remaining component and system life of aircraft engines. The embedded system provides real-time, inflight monitoring of the engine's thrust, exhaust gas temperature, efficiency, and the speed and time of operation. Based upon this data, the life-estimation algorithm calculates the remaining life of the engine components and uses this data to predict the remaining life of the engine. The calculations are based on the statistical life distribution of the engine components and their relationship to load, speed, temperature, and time.

  2. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    .... A47CE to include the new model DA- 40NG with the Austro Engine GmbH model E4 Aircraft Diesel Engine (ADE...-tail airplane with the Austro Engine GmbH model E4 diesel engine and an increased maximum takeoff gross... Engine GmbH model E4 aircraft diesel engine. 1. Electronic Engine Control a. For electronic...

  3. The development of turbojet aircraft in Germany, Britain, and the United States: A multi-national comparison of aeronautical engineering, 1935--1946

    NASA Astrophysics Data System (ADS)

    Pavelec, Sterling Michael

    In the 1930s aeronautical engineering needed revision. A presumptive anomaly was envisaged as piston-engine aircraft flew higher and faster. Radical alternatives to piston engines were considered in the unending quest for speed. Concurrently, but unwittingly, two turbojet engine programs were undertaken in Europe. The air-breathing three-stage turbojet engine was based on previous turbine technology; the revolutionary idea was the gas turbine as a prime mover for aircraft. In Germany, Dr. Hans von Ohain was the first to complete a flight-worthy turbojet engine for aircraft. Installed in a Heinkel designed aircraft, the Germans began the jet age on 27 August 1939. The Germans led throughout the war and were the first to produce jet aircraft for combat operations. The principal limiting factor for the German jet program was a lack of reliable engines. The continuing myths that Hitler orders, too little fuel, or too few pilots hindered the program are false. In England, Frank Whittle, without substantial support, but with dogged determination, also developed a turbojet engine. The British came second in the jet race when the Whittle engine powered the Gloster Pioneer on 15 May 1941. The Whittle-Gloster relationship continued and produced the only Allied combat jet aircraft during the war, the Meteor, which was confined to Home Defense in Britain. The American turbojet program was built directly from the Whittle engine. General Electric copied the Whittle designs and Bell Aircraft was contracted to build the first American jet plane. The Americans began the jet age on 1 October 1942 with a lackluster performance from their first jet, the Airacomet. But the Americans forged ahead, and had numerous engine and airframe programs in development by the end of the war. But, the Germans did it right and did it first. Partly because of a predisposition towards excellent engineering and physics, partly out of necessity, the Germans were able to produce combat turbojet aircraft

  4. Small engine technology payoffs for future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Kaehler, H.; Schneider, W.

    1986-01-01

    High payoff technologies for a year 2000 regenerative cycle turboprop engine were identified for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. Four advanced technologies are recommended to achieve a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential direct operating cost (DOC) benefit of 12.5 percent is obtained. At $2.00 per gallon, the potential DOC benefit increases to 17.0 percent.

  5. Lean, premixed, prevaporized combustion for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1979-01-01

    The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.

  6. Recent Progress in Engine Noise Reduction for Commercial Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2003-01-01

    Considerable progress has been made over the past ten years developing technologies for reducing aircraft noise. Engine noise continues to be a dominate source, particularly for aircraft departing from airports. Research efforts have concentrated on developing noise prediction methods, experimental validation, and developing noise reduction concepts that have been verified through model scale and static engine tests. Most of the work has concentrated on fan and jet components for commercial turbofan engines. In this seminar, an overview of the engine noise reduction work that was sponsored by NASA s Advanced Subsonic Technology Noise Reduction Program will be given, along with background information on turbofan noise sources and certification procedures. Concepts like "chevron" nozzles for jet noise reduction and swept stators for fan noise reduction will be highlighted. A preliminary assessment on how the new technologies will impact future engines will be given.

  7. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  8. Control of turbofan lift engines for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Szuch, J. R.

    1973-01-01

    The use of turbofan engines as lift units for VTOL aircraft poses new engine control problems. At low flight speeds, the lift units must provide the fast thrust response needed for aircraft attitude and height control. The results are presented of an analytical study of the dynamics and control of turbofan lift engines, and methods are proposed for meeting the response requirements imposed by the VTOL aircraft application. Two types of lift fan engines are discussed: the integral and remote. The integral engine is a conventional two-spool, high bypass ratio turbofan designed for low noise and short length. The remote engine employs a gas generator and a lift fan which are separated by a duct, and which need not be coaxial. For the integral engine, a control system design is presented which satisfies the VTOL response requirements. For the remote engine, two unconventional methods of control involving flow transfer between lift units are discussed. Both methods are shown to have thrust response near the required levels.

  9. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  10. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  11. Knowledge Gained from Practical Experience in the Designing of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Kurtz, Oskar

    1933-01-01

    The present report examines a few important points of engine design such as: in-line water cooled engines, air-cooled in-line engines, and air-cooled radial engines. Subassemblies are also discussed like cylinder types, blower driving gears, pistons, valves, bearings, and crankshafts.

  12. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  13. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  14. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  15. A Method of Measuring Piston Temperatures

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Mangniello, Eugene J

    1940-01-01

    A method that makes use of thermocouples has been developed to measure the temperature of engine pistons operating at high speeds. The thermocouples installed on the moving piston are connected with a potentiometer outside the engine by means of pneumatically operated plungers, which make contact with the piston thermocouples for about 10 crankshaft degrees at the bottom of the piston stroke. The equipment is operated satisfactory at engine speeds of 2,400 r.p.m. and shows promise of successful operation at higher engine speeds. Measurements of piston temperatures in a liquid-cooled compression-ignition engine and in an air-cooled spark-ignition are presented.

  16. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  17. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... comment includes information claimed to be Confidential Business Information (CBI) or other information... Procedures for Aircraft;'' Final Rule, 38 FR 19088, July 17, 1973. \\12\\ U.S. EPA, ``Control of Air Pollution from Aircraft and Aircraft Engines; Emission Standards and Test Procedures;'' Final Rule, 62 FR...

  18. The Power of Aircraft Engines at Altitude

    NASA Technical Reports Server (NTRS)

    Ragazzi, Paolo

    1939-01-01

    The subject of the present paper is confined to the investigations and methods employed by the Fiat company in their studies on the altitude performance of an air-cooled engine of the production type. The experimental set-up as well as test engine data are provided.

  19. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  20. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  1. Lean burn combustor technology at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Dodds, Willard J.

    1992-01-01

    This presentation summarizes progress to date at GE Aircraft Engines in demonstration of a lean combustion system for the High Speed Civil Transport (HSCT). These efforts were supported primarily by NASA contracts, with the exception of initial size and weight estimates and development of advanced diagnostics which were conducted under GE Independent Research and Development projects. Key accomplishments to date are summarized below.

  2. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  3. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  4. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  5. PVD TBC experience on GE aircraft engines

    NASA Technical Reports Server (NTRS)

    Bartz, A.; Mariocchi, A.; Wortman, D. J.

    1995-01-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of Thermal Barrier Coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the Physical Vapor Deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micrometer (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than uncoated components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however, a significant temperature reduction was realized over an airfoil without any TBC.

  6. PVD TBC experience on GE aircraft engines

    NASA Technical Reports Server (NTRS)

    Maricocchi, Antonio; Bartz, Andi; Wortman, David

    1995-01-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.

  7. PVD TBC experience on GE aircraft engines

    NASA Astrophysics Data System (ADS)

    Maricocchi, A.; Bartz, A.; Wortman, D.

    1997-06-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reli-ability of materials in the turbine. The increased engine temperatures required to achieve the higher per-formance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 μm (0.005 in.) PVD TBC have demonstrated component operating tem-peratures of 56 to 83 °C (100 to 150 °F) lower than non-PVD TBC components. Engine testing has also revealed that TBCs are susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area ; however, a significant temperature reduc-tion was realized over an airfoil without TBC.

  8. Review of the Rhein-Flugzeugbau Wankel powered aircraft program. [ducted fan engines

    NASA Technical Reports Server (NTRS)

    Riethmueller, M.

    1978-01-01

    The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.

  9. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  10. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  11. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  12. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  13. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  14. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  15. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  16. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  17. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    NASA Astrophysics Data System (ADS)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  18. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    Free piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology Program. This five year program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussions are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators. Projections are made for future space power requirements over the next few decades. And a cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  19. A 150 and 300 kW lightweight diesel aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.

  20. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  1. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  2. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  3. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  4. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  5. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  6. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.

    1983-01-01

    Two different engines were studied. The advantages of a diesel to general aviation were reduced to fuel consumption, reduced operating costs, and reduced fire and explosion hazard. There were no ignition mixture control or inlet icing problems. There are fewer controls and no electrical interference problems.

  7. Control of turbofan lift engines for VTOL aircraft.

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Szuch, J. R.

    1973-01-01

    This paper presents the results of an analytical study of the dynamics and control of turbofan lift engines, and proposes methods of meeting the response requirements imposed by the VTOL aircraft application. Two types of lift fan engines are discussed: the integral and remote. The integral engine is a conventional two-spool, high bypass ratio turbofan designed for low noise and short length. The remote engine employs a gas generator and a lift fan which are separated by a duct, and which need not be coaxial. For the integral engine, a control system design is presented which satisfies the VTOL response requirements. For the remote engine, two unconventional methods of control involving flow transfer between lift units are discussed.

  8. Conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications. Final Report

    SciTech Connect

    Vatsky, A.; Chen, H.S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developed engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  9. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    NASA Technical Reports Server (NTRS)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-01-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  10. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    NASA Astrophysics Data System (ADS)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  11. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  12. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  13. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  14. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  15. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  16. Study of small turbofan engines applicable to general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.; Burnett, G. A.; Alsworth, C. C.

    1973-01-01

    The applicability of small turbofan engines to general aviation aircraft is discussed. The engine and engine/airplane performance, weight, size, and cost interrelationships are examined. The effects of specific engine noise constraints are evaluated. The factors inhibiting the use of turbofan engines in general aviation aircraft are identified.

  17. Sealing technology for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Johnson, R. L.

    1974-01-01

    Experimental evaluation under simulated engine conditions revealed that conventional mainshaft seals have disadvantages of high gas leakage rates and wear. An advanced seal concept, the self-acting face seal, has a much lower gas leakage rate and greater pressure and speed capability. In endurance tests (150 hr) to 43,200 rpm the self-acting seal wear was not measurable, indicating that noncontact sealing operation was maintained even at this high rotative speed. A review of published data revealed that the leakage through gas path seals has a significant effect on thrust specific fuel consumption, stall margin, and engine maintenance. Reducing leakages by reducing seal clearances results in rubbing contact, and then the seal thermal response and wear determines the final seal clearances.

  18. Advanced technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1973-01-01

    The proposed EPA regulations covering emissions of gas turbine engines will require extensive combustor development. The NASA is working to develop technology to meet these goals through a wide variety of combustor research programs conducted in-house, by contract, and by university grant. In-house efforts using the swirl-can modular combustor have demonstrated sizable reduction in NO emission levels. Testing to reduce idle pollutants has included the modification of duplex fuel nozzles to air-assisted nozzles and an exploration of the potential improvements possible with combustors using fuel staging and variable geometry. The Experimental Clean Combustor Program, a large contracted effort, is devoted to the testing and development of combustor concepts designed to achieve a large reduction in the levels of all emissions. This effort is planned to be conducted in three phases with the final phase to be an engine demonstration of the best reduced emission concepts.

  19. Sealing technology for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Johnson, R. L.

    1974-01-01

    Experimental evaluation under simulated engine conditions revealed that conventional mainshaft seals have disadvantages of high gas leakage rates and wear. An advanced seal concept, the self-acting face seal, has a much lower gas leakage rate and greater pressure and speed capability. In endurance tests (150 hr) to 43 200 rpm the self-acting seal wear was not measurable, indicating noncontact sealing operation was maintained even at this high rotative speed. A review of published data revealed that the leakage through gas path seals has a significant effect on TSFC, stall margin and engine maintenance. Reducing leakages by reducing seal clearances results in rubbing contact, and then the seal thermal response and wear determines the final seal clearances. The control of clearances requires a material with the proper combination of rub tolerance (abradability) and erosion resistance. Increased rub tolerance is usually gained at the expense of reduced erosion resistance and vice versa.

  20. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26...-Ind stria AMT-200 912 A2 Mec nico- Metal rgica Ltda. Diamond Aircraft Industries...... HK 36 R...

  1. Dynamic analysis of Free-Piston Stirling Engine/Linear Alternator-load system-experimentally validated

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Rauch, Jeffrey S.; Santiago, Walter

    1992-01-01

    This paper discusses the effects of variations in system parameters on the dynamic behavior of the Free-Piston Stirling Engine/Linear Alternator (FPSE/LA)-load system. The mathematical formulations incorporate both the mechanical and thermodynamic properties of the FPSE, as well as the electrical equations of the connected load. A state-space technique in the frequency domain is applied to the resulting system of equations to facilitate the evaluation of parametric impacts on the system dynamic stability. Also included is a discussion on the system transient stability as affected by sudden changes in some key operating conditions. Some representative results are correlated with experimental data to verify the model and analytic formulation accuracies. Guidelines are given for ranges of the system parameters which will ensure an overall stable operation.

  2. The theory and a technique for an efficiency enhancing two stage bottoming cycle for piston/cylinder engines

    SciTech Connect

    Wicks, F.; Zeh, D.

    1995-12-31

    While there is now much interest in electric vehicles or various hybrids, the most benefit may result from a revolutionary modification and efficiency improvement of the conventional internal combustion Otto cycle engine, by recovering a large portion of the availability that exists at the end of the power stroke. This paper will describe the theory and a potentially practical method for achieving a 50% improvement in power output and fuel efficiency. While the topping cycle will remain the internal combustion piston/cylinder engine, a two stage bottom cycle will be used. The first bottom stage is a single process consisting of a turbine installed in the exhaust stream to extract power from the excess pressure that exists when the engine exhaust valve opens. The second bottom stage is a complete external combustion gas turbine cycle consisting of a compressor, exhaust gas to compressed air heat exchanger and a turbine. Such a two stage bottoming cycle can be practical and may increase the power output by about 50%. This means that a car that achieves 30 mpg without a bottoming cycle can achieve 45 mpg with this bottoming cycle. Alternatively if the performance of cars can be improved to 66 mpg by means of decreasing the power requirements with smaller size and frontal area, better aerodynamics, lower rolling resistance tires and better transmission and drive trains, this vehicle can be extended to 100 mpg with this combined cycle engine.

  3. Piston slap induced pressure fluctuation in the water coolant passage of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuhide; Wang, Xiaoyu; Saeki, Atsushi

    2016-02-01

    Liner cavitation is caused by water pressure fluctuation in the water coolant passage (WCP). When the negative pressure falls below the saturated vapor pressure, the impulsive pressure following the implosion of cavitation bubbles causes cavitation erosion of the wet cylinder liner surface. The present work establishes a numerical model for structural-acoustic coupling between the crankcase and the acoustic field in the WCP considering their dynamic characteristics. The coupling effect is evaluated through mutual interaction terms that are calculated from the mode shapes of the acoustic field and of the crankcase vibration on the boundary. Water pressure fluctuations in the WCP under the action of piston slap forces are predicted and the contributions of the uncoupled mode shapes of the crankcase and the acoustic field to the pressure waveform are analyzed. The influence of sound speed variations on the water pressure response is discussed, as well as the pressure on the thrust sides of the four cylinders.

  4. New piston telemetry applied to spherical joint piston development

    SciTech Connect

    Wiczynski, P.D.; Varo, R.G.; Archuleta, S.A.; Galarno, M.J.

    1996-09-01

    A new telemetry system has been developed for temperature or strain measurements on a spherical joint piston. The system includes a piston mounted signal multiplexer and transmitter. A patented, piston mounted power generator operates in conjunction with a modified cylinder liner. The telemetry system is robust, having high inertia load capability and high environmental temperature operating capability. The telemetry system was installed and operated on an engine motoring test rig. Temperature signals were transmitted at engine speeds from 400 rpm to 2,100 rpm. Over 100 hours of high engine speed testing with oil sump temperatures up to 122 C were completed.

  5. Primary VOC emissions from Commercial Aircraft Jet Engines

    NASA Astrophysics Data System (ADS)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  6. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  7. Cobalt: A vital element in the aircraft engine industry

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  8. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  9. Compression retaining piston

    SciTech Connect

    Quaglino, A.V. Jr.

    1987-06-16

    A piston apparatus is described for maintaining compression between the piston wall and the cylinder wall, that comprises the following: a generally cylindrical piston body, including: a head portion defining the forward end of the body; and a continuous side wall portion extending rearward from the head portion; a means for lubricating and preventing compression loss between the side wall portion and the cylinder wall, including an annular recessed area in the continuous side wall portion for receiving a quantity of fluid lubricant in fluid engagement between the wall of the recessed and the wall of the cylinder; a first and second resilient, elastomeric, heat resistant rings positioned in grooves along the wall of the continuous side wall portion, above and below the annular recessed area. Each ring engages the cylinder wall to reduce loss of lubricant within the recessed area during operation of the piston; a first pump means for providing fluid lubricant to engine components other than the pistons; and a second pump means provides fluid lubricant to the recessed area in the continuous side wall portion of the piston. The first and second pump means obtains lubricant from a common source, and the second pump means including a flow line supplies oil from a predetermined level above the level of oil provided to the first pump means. This is so that should the oil level to the second pump means fall below the predetermined level, the loss of oil to the recessed area in the continuous side wall portion of the piston would result in loss of compression and shut down of the engine.

  10. Application of automobile emission control technology to light piston aircraft engines

    NASA Technical Reports Server (NTRS)

    Tripp, D.; Kittredge, G.

    1976-01-01

    The possibility was evaluated for achieving the EPA Standards for HC and CO emissions through the use of air-fuel ratio enleanment at selected power modes combined with improved air-fuel mixture preparation, and in some cases improved cooling. Air injection was also an effective approach for the reduction of HC and CO, particularly when combined with exhaust heat conservation techniques such as exhaust port liners.

  11. Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Randall, Robert Bond; Peeters, Bart

    2016-06-01

    Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.

  12. Computation of Engine Noise Propagation and Scattering Off an Aircraft

    NASA Technical Reports Server (NTRS)

    Xu, J.; Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a comparison of experimental noise data measured in flight on a two-engine business jet aircraft with Kulite microphones placed on the suction surface of the wing with computational results. Both a time-domain discontinuous Galerkin spectral method and a frequency-domain spectral element method are used to simulate the radiation of the dominant spinning mode from the engine and its reflection and scattering by the fuselage and the wing. Both methods are implemented in computer codes that use the distributed memory model to make use of large parallel architectures. The results show that trends of the noise field are well predicted by both methods.

  13. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program. Volume 1: Technical discussion

    NASA Astrophysics Data System (ADS)

    Ackermann, R. A.

    1988-01-01

    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling-engine-driven diaphragm-coupled compressor for a heat pump application. The heat pump module consists of a 3-kW free-piston Stirling engine (FPSE), an efficient hydraulic transmission, and a nominal 3-ton capacity refrigerant (R-22) reciprocating compressor. During earlier Phase 1 activity, the lower end (hydraulic transmission and compressor) was designed, fabricated, mated to an existing Mechanical Technology Incorporated (MTI) FPSE, and tested. After several years of development, this heat pump module achieved a capacity of 2.5 refrigeration tons at 95 F ambient conditions. While this was below the module's rated 3.0-ton capacity, it demonstrated the potential of the FPSE heat pump (FPSE/HP) and identified a lack of engine power as the main reason for the low capacity. During a companion engine development program sponsored by the Gas Research Institute, the engine was improved by developing a new displacer drive that increased the FPSE's power capability. During Phase 2, the new engine, the Mark I, was mated to the lower end (transmission/compressor) and tested. The testing of the Mark I FPSE/HP module was very successful, with the system achieving its 3.0-ton capacity goal and all other proof-of-concepts targets. Included herein is a discussion of the Phase 2 activity, including the results of the Mark I FPSE/HP module testing, a component design effort of several key lower end components that was performed to optimize the design, and the Lennox evaluation.

  14. 14 CFR 21.331 - Issuance of export airworthiness approvals for aircraft engines, propellers, and articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for aircraft engines, propellers, and articles. 21.331 Section 21.331 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND... to export a new aircraft engine, propeller, or article that is manufactured under this part if...

  15. Pollution prevention assessment for a manufacturer of combustion engine piston rings

    SciTech Connect

    Jendrucko, R.J.; Thomas, T.M.; Looby, G.P.

    1995-08-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at the University of Tennessee performed an assessment at a plant that manufactures piston rings. Steel and iron rings are machined, chrome-plated or coated, machined again, cleaned, and shipped to customers. The assessment team`s report, detailing findings and recommendations, indicated that wastewater and wastewater treatment sludge are the waste streams generated in greatest quantity and that the greatest cost savings could be achieved by modifying the method of masking the rings prior to chrome plating. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  16. Intelligent Life-Extending Controls for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Chen, Philip; Jaw, Link

    2005-01-01

    Aircraft engine controllers are designed and operated to provide desired performance and stability margins. The purpose of life-extending-control (LEC) is to study the relationship between control action and engine component life usage, and to design an intelligent control algorithm to provide proper trade-offs between performance and engine life usage. The benefit of this approach is that it is expected to maintain safety while minimizing the overall operating costs. With the advances of computer technology, engine operation models, and damage physics, it is necessary to reevaluate the control strategy fro overall operating cost consideration. This paper uses the thermo-mechanical fatigue (TMF) of a critical component to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage with minimum sacrifice in performance. A Monte Carlo simulation is also performed to evaluate the likely engine damage accumulation under various operating conditions. The simulation results show that an optimized acceleration schedule can provide a significant life saving in selected engine components.

  17. Fiber Optics For Aircraft Engine/Inlet Control

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1982-01-01

    A review of NASA programs which focus on the use of fiber optics for aircraft engine/inlet control is presented. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible, eliminating the need for electrical wires to be connected between sensors and computers. Using low level optical signals to control actuators is also feasible when power is generated at the actuator. For engine/inlet control applications, fiber optic cables and cornectors will be subjected to nacelle air temperatures. These temperatures range between -55°C to 260°C. Each application of fiber optics for aircraft control has different requirements for both the optical cables and optical connectors. Sensors that measure position and speed using slotted plates can use lossy cables and bundle type connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cable and optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically-switched actuators that operate at 250°C is also described.

  18. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  19. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  20. 77 FR 44429 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect... engine operation, engine misfire, in-flight engine shutdown, and forced landing. We are issuing this AD... shutdown and forced landing, damage to the aeroplane and injury to occupants. To address this...

  1. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  2. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  3. Lightweight diesel engine designs for commuter type aircraft

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  4. Rapid measurement of emissions from military aircraft turbine engines by downstream extractive sampling of aircraft on the ground: Results for C-130 and F-15 aircraft

    NASA Astrophysics Data System (ADS)

    Spicer, Chester W.; Holdren, Michael W.; Cowen, Kenneth A.; Joseph, Darrell W.; Satola, Jan; Goodwin, Bradley; Mayfield, Howard; Laskin, Alexander; Lizabeth Alexander, M.; Ortega, John V.; Newburn, Matthew; Kagann, Robert; Hashmonay, Ram

    Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO 2, CO, NO, NO x, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.

  5. A study of external fuel vaporization. [for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.; Baker, C. E.

    1981-01-01

    Candidate external vaporizer designs for an aircraft gas turbine engine are evaluated with respect to fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. The selected concept is shown to offer potential gains in engine performance in terms of reduced specific fuel consumption and improved engine thrust/weight ratio. The thrust/weight improvement can be traded against vaporization system weight.

  6. Free-piston Stirling engine-driven heat pump program plan

    SciTech Connect

    Ross, B.A.; Hutchinson, R.A.; Chen, F.C.

    1988-07-01

    Stirling engine driven heat pumps are one of the most attractive potential products based on Stirling engines. Their many advantages in efficiency, fuel adaptability, quietness, compactness, controllability and potential for high reliability are well known. This paper briefly reviews these advantages, then turns to key technical concerns in Sterling engine driven heat pump development. These have been organized into an effective development program that will require about $4 million per year for 8 years to complete basic research, component development, and an estimated 3 generations of system hardware. The planning effort was directed by the Building Equipment Division of the DOE Office of Buildings and Communities Systems. 7 refs., 2 figs.

  7. The knocking characteristics of fuels in relation to maximum permissible performance of aircraft engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Biermann, Arnold E

    1939-01-01

    An analysis is presented of the relationship of various engine factors to knock in preignition in an aircraft engine. From this analysis and from the available experimental data, a method of evaluating the knocking characteristics of the fuel in an aircraft-engine cylinder is suggested.

  8. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  9. A technique for integrating engine cycle and aircraft configuration optimization

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.

    1994-01-01

    A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission

  10. NACA's 9th Annual Aircraft Engineering Research Conference

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Eight of the twelve members of the National Advisory Committee for Aeronautics attending the 9th Annual Aircraft Engineering Research Conference posed for this photograph at Langley Field, Virginia, on May 23, 1934. Those pictured are (left to right): Brig. Gen. Charles A. Lindbergh, USAFR Vice Admiral Arthur B. Cook, USN Charles G. Abbot, Secretary of the Smithsonian Institution Dr. Joseph S. Ames, Committee Chairman Orville Wright Edward P. Warner Fleet Admiral Ernest J. King, USN Eugene L. Vidal, Director, Bureau of Air Commerce.

  11. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  12. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  13. Improving safety of aircraft engines: a consortium approach

    NASA Astrophysics Data System (ADS)

    Brasche, Lisa J. H.

    1996-11-01

    With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.

  14. Free-piston Stirling engine development. Annual report 1 December 1982-31 December 1983

    SciTech Connect

    Marusak, T.J.; Gilles, T.

    1984-04-01

    The FPSE is an important prime mover option in developing a viable gas-fueled heat pump for residential applications. The Stirling engine, while potentially attractive from a performance, life, and cost standpoint, is on a long-term development track. The reported results show that progress has been made in improving engine performance and reliability. The engine development is being funded by the Gas Research Institute, with the main technical goal of integrating the most advanced, reliable system components into a prototype FPSE heat pump module for laboratory testing and evaluation. Development of the compressor for the FPSE-driven heat pump is being supported by a coordinated and parallel DOE-sponsored program.

  15. SPRE 1 free-piston Stirling engine testing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.

    1988-01-01

    As part of the NASA funded portion of the SP-100 Advanced Technology Program the Space Power Research Engine (SPRE 1) was designed and built to serve as a research tool for evaluation and development of advanced Stirling engine concepts. The SPRE 1 is designed to produce 12.5 kW electrical power when operated with helium at 15 MPa and with an absolute temperature ratio of two. The engine is now under test in a new test facility which was designed and built at NASA Lewis specifically to test the SPRE 1. The SPRE 1, the NASA facility, the initial SPRE 1 test results, and future SPRE 1 test plans are described.

  16. Analysis of the piston ring/liner oil film development during warm-up for an SI-engine

    SciTech Connect

    Froelund, K.; Schramm, J.; Tian, T.; Wong, V.; Hochgreb, S.

    1996-12-31

    A one-dimensional ring-pack lubrication model developed at MIT is applied to simulate the oil film behavior during the warm-up period of a Kohler spark ignition engine. This is done by making assumptions for the evolution of the oil temperatures during warm-up and that the oil control ring during downstrokes is fully flooded. The ring-pack lubrication model includes features such as three different lubrication regimes, i.e. pure hydrodynamic lubrication, boundary lubrication and pure asperity contact, nonsteady wetting of both inlet and outlet of the piston ring, capability to use all ring face profiles that can be approximated by piece-wise polynomials and, finally, the ability to model the rheology of multi-grade oils. Not surprisingly, the simulations show that by far the most important parameter is the temperature dependence of the oil viscosity. This dependence is subsequently examined further by choosing different oils. The baseline oil is SAE 10W30 and results are compared to those using the SAE 30 and the SAE 10W50 oils.

  17. The effects of fuel volatility, structure, speed and load on hydrocarbon emissions from piston wetting in direct injection spark ignition engines

    NASA Astrophysics Data System (ADS)

    Huang, Yiqun

    Piston wetting can be isolated from the other sources of hydrocarbon (HC) emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In the present study, a variety of pure liquid hydrocarbons are used to examine the influence of fuel volatility, structure, speed and load. The exhaust hydrocarbons were speciated to differentiate between the emissions resulting from the gaseous fuel and those resulting from the liquid fuel. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. To examine the fuel volatility and structure effects, tests of a matrix of nine pure liquid hydrocarbon fuels, including normal-alkanes, iso-alkanes, cyclo-alkanes and aromatics, were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). The effects of engine speed and load were also examined. For these tests, four different normal alkanes were used, including one that appears to be near the Leidenfrost point for operation at the WWMP, one that is near the Nukiyama point, and one that appears to be in the transition region. It is shown that the "Piston Wetting Emissions Index" for engine-out total hydrocarbon emissions increases with both decreasing speed and decreasing load, and that this is primarily an effect of oxidation kinetics. Speed and load have opposite effects on unburned fuel emissions, and this appears to be a pressure effect. For all speeds and loads the Leidenfrost effect appears to be important: the most volatile fuel has the highest total hydrocarbon and unburned fuel emissions whereas the two least volatile fuels have lower emissions and the fuel that is within the transition regime yields intermediate emissions.

  18. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  19. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  20. New technique for the direct measurement of core noise from aircraft engines. [YF 102 turbofan engine

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    The core noise levels from gas turbine aircraft engines were measured using a technique which requires that fluctuating pressures be measured in the far field and at two locations within the engine core. The cross spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine vore. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an Avco Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  1. DIESEL ENGINE EFFICIENCY AND EMISSIONS IMPROVEMENT VIA PISTON TEMPERATURE CONTROL - PHASE I

    EPA Science Inventory

    Diesel engine manufacturers need a way to improve fuel economy as well as limit NOx and particulate emissions to meet upcoming federal, state and global regulations. A large percentage of emissions and fuel consumption occurs during cold start and light to medium load ope...

  2. 76 FR 82110 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ...-16236 (75 FR 12439, March 16, 2010). (c) Applicability This AD applies to Thielert Aircraft Engines GmbH..., Amendment 39-16236 (75 FR 12439, March 16, 2010). That AD applies to the specified products. The NPRM published in the Federal Register on October 18, 2011 (76 FR 64285). That NPRM proposed to require...

  3. 78 FR 1733 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... (76 FR 17757, March 31, 2011), and adding the following new AD: 2012-26-13 Thielert Aircraft Engines... rulemaking (NPRM) to amend 14 CFR part 39 to supersede AD 2011-07-09, Amendment 39-16646 (76 FR 17757, March... September 17, 2012 (77 FR 57041). That NPRM proposed to require removing all software mapping versions...

  4. Progressive fabrication processes in aircraft-engine production

    NASA Astrophysics Data System (ADS)

    Vorobei, V. V.

    The papers presented in this volume provide an overview of some advanced fabrication processes that are currently used in the production of aircraft engines. In particular, attention is given to an analytical study of the bulk-abrasive machining of screw-shaped parts, exoemission diagnostics of the surface layer of gas turbine engine components following ion treatment, and calculation of the profile of a film deposited in a magnetron spraying system of the plane annular type. The discussion also covers an automated method for monitoring the shape and position of parts of complex configurations, automated measurement of shape deviations, and problems in the hardware and software support of computerized balancing. (For individual items see A93-31127 to A93-31139)

  5. Thermal barrier coatings for aircraft engines: history and directions

    NASA Astrophysics Data System (ADS)

    Miller, R. A.

    1997-03-01

    Thin thermal barrier coatings (TBCs) for protecting aircraft turbine section airfoils are examined. The discussion focuses on those advances that led first to TBC use for component life extension and more re-cently as an integral part of airfoil design. Development has been driven by laboratory rig and furnace testing, corroborated by engine testing and engine field experience. The technology has also been sup-ported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors that have led to the selection of current state-of-the-art plasma-sprayed and physical-vapor-deposited zirconia-yttria/MCrAlX TBCs are emphasized, as are observations fundamentally related to their behav-ior. Current directions in research into TBCs and recent progress at NASA are also noted.

  6. Commercial Aircraft Maintenance Experience Relating to Engine External Hardware

    NASA Technical Reports Server (NTRS)

    Soditus, Sharon M.

    2006-01-01

    Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.

  7. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

  8. Thermal barrier coating life modeling in aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Nissley, David M.

    1995-01-01

    Analytical models for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas turbine engines are presented. Electron beam-physical vapor deposited (EB-PVD) and plasma sprayed TBC systems are discussed. An overview of the following TBC spalling mechanisms is presented: metal oxidation at the ceramic-metal interface, ceramic-metal interface stress singularities at edges and corners, ceramic-metal interface stresses caused by radius of curvature and interface roughness, material properties and mechanical behavior, temperature gradients, component design features and object impact damage. TBC spalling life analytical models are proposed based on observations of TBC spalling and plausible failure theories. TBC spalling was assumed to occur when the imposed stresses exceed the material strength (at or near the ceramic-metal interface). TBC failure knowledge gaps caused by lack of experimental evidence and analytical understanding are noted. The analytical models are considered initial engineering approaches that capture observed TBC failure trends.

  9. Predicting Noise From Aircraft Turbine-Engine Combustors

    NASA Technical Reports Server (NTRS)

    Gliebe, P.; Mani, R.; Salamah, S.; Coffin, R.; Mehta, Jayesh

    2005-01-01

    COMBUSTOR and CNOISE are computer codes that predict far-field noise that originates in the combustors of modern aircraft turbine engines -- especially modern, low-gaseous-emission engines, the combustors of which sometimes generate several decibels more noise than do the combustors of older turbine engines. COMBUSTOR implements an empirical model of combustor noise derived from correlations between engine-noise data and operational and geometric parameters, and was developed from databases of measurements of acoustic emissions of engines. CNOISE implements an analytical and computational model of the propagation of combustor temperature fluctuations (hot spots) through downstream turbine stages. Such hot spots are known to give rise to far-field noise. CNOISE is expected to be helpful in determining why low-emission combustors are sometimes noisier than older ones, to provide guidance for refining the empirical correlation model embodied in the COMBUSTOR code, and to provide insight on how to vary downstream turbinestage geometry to reduce the contribution of hot spots to far-field noise.

  10. Structural Optimization Methodology for Rotating Disks of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.

    1995-01-01

    In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.

  11. Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  12. Simulation of Aircraft Engine Blade-Out Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2001-01-01

    A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.

  13. Boosted performance of a compression-ignition engine with a displaced piston

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1936-01-01

    Performance tests were made using a rectangular displacer arranged so that the combustion air was forced through equal passages at either end of the displacer into the vertical-disk combustion chamber of a single-cylinder, four-stroke-cycle compression-ignition test engine. After making tests to determine optimum displacer height, shape, and fuel-spray arrangement, engine-performance tests were made at 1,500 and 2,000 r.p.m. for a range of boost pressures from 0 to 20 inches of mercury and for maximum cylinder pressures up to 1,150 pounds per square inch. The engine operation for boosted conditions was very smooth, there being no combustion shock even at the highest maximum cylinder pressures. Indicated mean effective pressures of 240 pounds per square inch for fuel consumptions of 0.39 pound per horsepower-hour have been readily reproduced during routine testing at 2,000 r.p.m. at a boost pressure of 20 inches of mercury.

  14. High temperature tribology for piston ring and cylinder liner in advanced low heat rejection engines

    SciTech Connect

    Kamo, L.S.; Kleyman, A.S.; Bryzik, W.; Mekari, M.

    1996-12-31

    High temperature tribology research efforts being pursued at Adiabatics are directed in the area of post treatment densified plasma sprayed coatings. Previous work has yielded good results for laboratory bench tests using no liquid lubrication. The process infiltrates a thermal sprayed coating layer with Chrome Oxide and Phosphate Glass compounds which serve to enhance the mechanical bond of a thermal sprayed layer, while improving its internal integrity, and sealing off open porosity. It has been applied to over 150 different wear combinations. Of these tests, Iron Oxide based coatings versus Molybdenum alloy materials provide the best results. Testing in a modified Low Heat Rejection (LHR) single cylinder diesel engine proved this wear combination superior to the state of the art materials available today. These data show improvement over past research efforts directed at developing solid lubricants, but they do not achieve goals set for operation in future advanced military LHR diesel powerplants. Through involvement with the support of the US Army Tank Automotive Research Development and Engineering Center (TARDEC) the authors have predetermined a goal of attaining bench test friction coefficients of {mu}{sub f} < 0.10, and material wear rates {le}1.0 mg/hr, at a temperature of 540 C. The research efforts discussed in this paper, focus on optimizing material friction and wear combinations and their interaction with liquid lubricants to generate boundary lubrication effects noted in previous studies and their correlation to advanced diesel engine design.

  15. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  16. Failure Investigation of WB-57 Aircraft Engine Cowling

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Gafka, T.; Figert, J.

    2014-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas is the home of the NASA WB-57 High Altitude Research Program. Three fully operational WB-57 aircraft are based near JSC at Ellington Field. The aircraft have been flying research missions since the early 1960's, and continue to be an asset to the scientific community with professional, reliable, customer-oriented service designed to meet all scientific objectives. The NASA WB-57 Program provides unique, high-altitude airborne platforms to US Government agencies, academic institutions, and commercial customers in order to support scientific research and advanced technology development and testing at locations around the world. Mission examples include atmospheric and earth science, ground mapping, cosmic dust collection, rocket launch support, and test bed operations for future airborne or spaceborne systems. During the return from a 6 hour flight, at 30,000 feet, in the clean configuration, traveling at 175 knots indicated airspeed, in un-accelerated flight with the auto pilot engaged, in calm air, the 2-man crew heard a mechanical bang and felt a slight shudder followed by a few seconds of high frequency vibration. The crew did not notice any other abnormalities leading up to, or for the remaining 1 hour of flight and made an uneventful landing. Upon taxi into the chocks, the recovery ground crew noticed the high frequency long wire antenna had become disconnected from the vertical stabilizer and was trailing over the left inboard wing, and that the left engine upper center removable cowling panel was missing, with noticeable damage to the left engine inboard cowling fixed structure. The missing cowling panel was never recovered. Each engine cowling panel is attached to the engine nacelle using six bushings made of 17-4 PH steel. The cylinder portions of four of the six bushings were found still attached to the aircraft (Fig 1). The other two bushings were lost with the panel. The other four bushings exhibited

  17. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  18. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  19. Energy efficient engine program contributions to aircraft fuel conservation

    SciTech Connect

    Batterton, P.G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  20. Energy efficient engine program contributions to aircraft fuel conservation

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt & Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  1. Transposed compression piston and cylinder

    SciTech Connect

    Ross, M.A.

    1992-04-14

    This patent describes an improved V-type two piston Stirling engine wherein the improvement is a transposed compression piston slidably engaged in a mating cylinder. It comprises: a cylindrical body which is pivotally connected to a connecting rod at a pivot axis which is relatively nearer the outer end of the cylindrical body and has a seal relatively nearer the inner end of the cylindrical body.

  2. On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence

    NASA Astrophysics Data System (ADS)

    Zentgraf, Florian; Baum, Elias; Böhm, Benjamin; Dreizler, Andreas; Peterson, Brian

    2016-04-01

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.

  3. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  4. A candidate V/STOL research aircraft design concept using an S-3A aircraft and 2 Pegasus 11 engines

    NASA Technical Reports Server (NTRS)

    Lampkin, B. A.

    1980-01-01

    A candidate V/STOL research aircraft concept which uses an S-3A airframe and two Pegasus 11 engines was studied to identify a feasible V/STOL national flight facility that could be obtained at the lowest possible cost for the demonstration of V/STOL technology, inflight simulation, and flight research. The rationale for choosing the configuration, a description of the configuration, and the capability of a fully developed aircraft are discussed.

  5. Fatigue Lifetime Assessment of Aircraft Engine Disc via Multi-source Information Fusion

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Zhong; Cui, Ping-Liang; Peng, Weiwen; Gao, Hui-Ying; Wang, Hai-Kun

    2014-06-01

    Fatigue lifetime assessment for aircraft engine discs is an important issue for the operation and health management of aircraft engines. Due to the lack of field test data, traditional methods can hardly meet the requirements of fatigue lifetime assessment of aircraft engine discs. By combining a multi-source information fusion method with a Bayesian inference technique, this paper develops a practical approach for fatigue lifetime assessment of aircraft engine discs. Subjective information and historical data are combined coherently with the sparse test data to generate a credible fatigue lifetime assessment of aircraft engine discs. Methods for quantifying subjective information, checking different experts' information, and fusing multiple prior distributions are presented to facilitate the implementation of fatigue lifetime assessment. An illustrative example is presented to demonstrate the procedures and the implication of the proposed method.

  6. Piston rod seal

    DOEpatents

    Lindskoug, Stefan

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  7. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  8. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  9. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    1999-01-01

    An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4.909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially. the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel. to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar. or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U" channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum-alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  10. Time-resolved nature of exhaust gas emissions and piston wall temperature under transient operation in a small diesel engine

    SciTech Connect

    Reksowardojo, I.K.; Ogawa, Hideyuki; Miyamoto, Noboru; Enomoto, Yoshiteru; Kitamura, Toru

    1996-09-01

    Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.

  11. Researches on the Piston Ring

    NASA Technical Reports Server (NTRS)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  12. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  13. Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation

    NASA Technical Reports Server (NTRS)

    Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

    2005-01-01

    The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

  14. Thermal barrier coating life modeling in aircraft gas turbine engines

    NASA Astrophysics Data System (ADS)

    Nissley, D. M.

    1997-03-01

    Analytical models for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas tur-bine engines are presented. Electron beam/physical vapor-deposited and plasma-sprayed TBC systems are discussed. An overview of the following TBC spalling mechanisms is presented: (1) metal oxidation at the ceramic/metal interface, (2) ceramic/metal interface stresses caused by radius of curvature and inter-face roughness, (3) material properties and mechanical behavior, (4) component design features, (5) tem-perature gradients, (6) ceramic/metal interface stress singularities at edges and corners, and (7) object impact damage. Analytical models for TBC spalling life are proposed based on observations of TBC spall-ing and plausible failure theories. Spalling was assumed to occur when the imposed stresses exceed the material strength (at or near the ceramic/metal interface). Knowledge gaps caused by lack of experimen-tal evidence and analytical understanding of TBC failure are noted. The analytical models are considered initial engineering approaches that capture observed TBC spalling failure trends.

  15. Thermal barrier coating life modeling in aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.

    1995-01-01

    Analytical models useful for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas turbine engines are presented. Electron beam-physical vapor deposited (EB-PVD) and plasma sprayed TBC systems are discussed. TBC spalling was attributed to a combination of mechanisms such as metal oxidation at the ceramic-metal interface, ceramic-metal interface stress concentrations at free surfaces due to dissimilar materials, ceramic-metal interface stresses caused by local radius of curvature and interface roughness, material properties and mechanical behavior, transient temperature gradients across the ceramic layer and component design features. TBC spalling life analytical models were developed based on observations of TBC failure modes and plausible failure theories. TBC failure was assumed to occur when the imposed stresses exceeded the material strength (at or near the ceramic-metal interface). TBC failure knowledge gaps caused by lack of experimental evidence and analytical understanding are noted. The analytical models are considered initial engineering approaches that capture observed TBC failure trends.

  16. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ...These special conditions are issued for the Diamond Aircraft Industry (DAI) GmbH model DA-40NG the Austro Engine GmbH model E4 aircraft diesel engine (ADE) using turbine (jet) fuel. This airplane will have a novel or unusual design feature(s) associated with the installation of a diesel cycle engine utilizing turbine (jet) fuel. The applicable airworthiness regulations do not contain adequate......

  17. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  18. Data Fusion for Enhanced Aircraft Engine Prognostics and Health Management

    NASA Technical Reports Server (NTRS)

    Volponi, Al

    2005-01-01

    Aircraft gas-turbine engine data is available from a variety of sources, including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data fusion is the integration of data or information from multiple sources for the achievement of improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/ information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This report describes a basic PHM data fusion architecture being developed in alignment with the NASA C-17 PHM Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center, NASA Dryden Flight Research Center, and Pratt & Whitney have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion, as it applies to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This report will provide a chronology and summary of the work accomplished under this research contract.

  19. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  20. Thrust and wing loading requirements for short haul aircraft constrained by engine noise and field length

    NASA Technical Reports Server (NTRS)

    Bowles, J. V.; Waters, M. H.; Galloway, T. L.

    1976-01-01

    Propulsion system and wing loading requirements are determined for a mechanical flap and an externally blown flap aircraft for various engine noise levels and two engine cycles. Both aircraft are sized to operate from a 914m (3000 ft) runway and perform the same mission. For each aircraft concept, propulsion system sizing is demonstrated for two different engine cycles - one having a fan pressure ratio of 1.5 and a bypass ratio of 9, and the other having a fan pressure ratio of 1.25 and a bypass ratio of 17.8. The results presented include the required thrust-to-weight ratio, wing loading, resulting gross weight, and direct operating costs, as functions of the engine noise level, for each combination of engine cycle and aircraft concept.

  1. Preliminary Training Proposal for Cessna Aircraft of Independence.

    ERIC Educational Resources Information Center

    Independence Community Coll., KS.

    This proposal for a program designed to train workers to manufacture single-engine, piston-driven aircraft for Cessna Corporation was developed by Independence Community College in conjunction with Pittsburgh State University (Kansas) and the Southeast Kansas Area Vocational-Technical School. The proposal provides for on-site training in a…

  2. Price-Weight Relationships of General Aviation, Helicopters, Transport Aircraft and Engines

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1981-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's cost to manufacture, economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for sailplanes, general aviation, agriculture, helicopter, business and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly how new technologies, aircraft complexity and inflation have affected these.

  3. Preliminary study of advanced turboprop and turboshaft engines for light aircraft. [cost effectiveness

    NASA Technical Reports Server (NTRS)

    Knip, G.; Plencner, R. M.; Eisenberg, J. D.

    1980-01-01

    The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.

  4. Development potential of Intermittent Combustion (I.C.) aircraft engines for commuter transport applications

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1982-01-01

    An update on general aviation (g/a) and commuter aircraft propulsion research effort is reviewed. The following topics are discussed: on several advanced intermittent combustion engines emphasizing lightweight diesels and rotary stratified charge engines. The current state-of-the-art is evaluated for lightweight, aircraft suitable versions of each engine. This information is used to project the engine characteristics that can be expected on near-term and long-term time horizons. The key enabling technology requirements are identified for each engine on the long-term time horizon.

  5. Engine balance apparatus and accessory drive device

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    2000-01-01

    A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons such as those engines used in automobiles, aircrafts, boats, piston-driven compressors, piston-driven slider crank mechanisms, etc. The present balancing mechanism may comprise a first balance mass non-rotatably affixed to the crankshaft and a second balance mass rotatably supported on the crankshaft. A driver assembly is affixed to crankshaft to cause the second balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components.

  6. 49 CFR 230.93 - Pistons and piston rods.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Pistons and piston rods. 230.93 Section 230.93... Tenders Driving Gear § 230.93 Pistons and piston rods. (a) Maintenance and testing. Pistons and piston rods shall be maintained in safe and suitable condition for service. Piston rods shall be inspected...

  7. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.

  8. Variable stream control engine concept for advanced supersonic aircraft: Features and benefits

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1976-01-01

    The Variable Stream Control Engine is studied for advanced supersonic cruise aircraft. Significant environmental and performance improvements relative to first generation supersonic turbojet engines are cited. Two separate flow streams, each with independent burner and nozzle systems are incorporated within the engine. By unique control of the exhaust temperatures and velocities in two coannular streams, significant reduction in jet noise is obtained.

  9. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  10. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.

  11. 78 FR 50317 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Federal Register on May 16, 2013 (78 FR 28719). One comment was received from Cessna Aircraft Company... cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and associated systems installed....

  12. The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed.

  13. Drive piston assembly for a valve actuator assembly

    DOEpatents

    Sun, Zongxuan

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  14. Results and status of the NASA aircraft engine emission reduction technology programs

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Diehl, L. A.; Petrash, D. A.; Grobman, J.

    1978-01-01

    The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed.

  15. Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Foley, W. H.; Sheridan, A. E.; Smith, C. W.

    1982-01-01

    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.

  16. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  17. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  18. Aerodynamics of heat exchangers for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  19. Spherical Joint Piston and Connecting Rod Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under an interagency agreement with the Department of Energy, the NASA Lewis Research Center manages a Heavy-Duty Diesel Engine Technology (HDET) research program. The overall program objectives are to reduce fuel consumption through increased engine efficiency, reduce engine exhaust emissions, and provide options for the use of alternative fuels. The program is administered with a balance of research contracts, university research grants, and focused in-house research. The Cummins Engine Company participates in the HDET program under a cost-sharing research contract. Cummins is researching and developing in-cylinder component technologies for heavy-duty diesel engines. An objective of the Cummins research is to develop technologies for a low-emissions, 55-percent thermal efficiency (LE-55) engine. The best current-production engines in this class achieve about 46-percent thermal efficiency. Federal emissions regulations are driving this technology. Regulations for heavy duty diesel engines were tightened in 1994, more demanding emissions regulations are scheduled for 1998, and another step is planned for 2002. The LE-55 engine emissions goal is set at half of the 1998 regulation level and is consistent with plans for 2002 emissions regulations. LE-55 engine design requirements to meet the efficiency target dictate a need to operate at higher peak cylinder pressures. A key technology being developed and evaluated under the Cummins Engine Company LE-55 engine concept is the spherical joint piston and connecting rod. Unlike conventional piston and connecting rod arrangements which are joined by a pin forming a hinged joint, the spherical joint piston and connecting rod use a ball-and-socket joint. The ball-and-socket arrangement enables the piston to have an axisymmetric design allowing rotation within the cylinder. The potential benefits of piston symmetry and rotation are reduced scuffing, improved piston ring sealing, improved lubrication, mechanical and thermal

  20. Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.

    2006-01-01

    An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.

  1. Engineering and Technical Configuration Aspects of HIAPER, the new NSF/NCAR Research Aircraft

    NASA Astrophysics Data System (ADS)

    Friesen, R.; Laursen, K.

    2002-12-01

    The High-performance Instrumented Airborne Platform for Environmental Research, or HIAPER, is the new research aircraft presently being developed at the National Center for Atmospheric Research (NCAR) to serve the environmental research needs of the National Science Foundation (NSF) for the next several decades. The basic aircraft -- a Gulfstream V (G-V) business jet -- has been completed and will shortly undergo extensive modification to prepare it for future deployments in support of a variety of geosciences research missions. This presentation will focus on the many design and engineering considerations that have been made and are yet to come in converting a "green" business jet into a versatile research aircraft to serve the environmental research community. The project teams composed of engineers and scientists from NCAR and the scientific community at large are faced with trade offs involving costs of modifications, airframe structural integrity, aircraft performance (e.g. weight, drag), cabin environment, locations of inlet and sampling ports and FAA certification requirements. Many of the specific engineering specifications and modifications that have been made to date will be presented by way of engineering drawings, graphical depictions and actual photographs of the aircraft structure. Additionally, projected performance data of the modified-for-research aircraft will be presented along with some of the analyses performed to arrive at critical decisions (e.g. CFD airflow analysis). Finally, some of the details of the aircraft "infrastructure" such as signal and power wiring, generic cabin layout and data acquisition will be discussed.

  2. The impact of emission standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    The advent of environmental standards for controlling aircraft gas turbine engine emissions has led to a reevaluation of combustor design techniques. Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  3. Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Lezberg, E. A.

    1976-01-01

    Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.

  4. Differences in Characteristics of Aviation Accidents During 1993-2012 Based on Aircraft Type

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2015-01-01

    Civilian aircraft are available in a variety of sizes, engine types, construction materials and instrumentation complexity. For the analysis reported here, eleven aircraft categories were developed based mostly on aircraft size and engine type, and these categories were applied to twenty consecutive years of civil aviation accidents. Differences in various factors were examined among these aircraft types, including accident severity, pilot characteristics and accident occurrence categories. In general, regional jets and very light sport aircraft had the lowest rates of adverse outcomes (injuries, fatal accidents, aircraft destruction, major accidents), while aircraft with twin (piston) engines or with a single (piston) engine and retractable landing gear carried the highest incidence of adverse outcomes. The accident categories of abnormal runway contact, runway excursions and non-powerplant system/component failures occur frequently within all but two or three aircraft types. In contrast, ground collisions, loss of control - on ground/water and powerplant system/component failure occur frequently within only one or two aircraft types. Although accidents in larger aircraft tend to have less severe outcomes, adverse outcome rates also differ among accident categories. It may be that the type of accident has as much or more influence on the outcome as the type of aircraft.

  5. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  6. Emissions and new technology programs for conventional spark-ignition aircraft engines

    NASA Technical Reports Server (NTRS)

    Wintucky, W. T.

    1976-01-01

    A long-range technology plan in support of general aviation engines was formulated and is being implemented at the Lewis Research Center. The overall program was described, and that part of the program that represents the in-house effort at Lewis was presented in detail. Three areas of government and industry effort involving conventional general-aviation piston engines were part of a coordinated overall plan: (1) FAA/NASA joint program, (2) NASA contract exhaust emissions pollution reduction program, and (3) NASA in-house emissions reduction and new technology program.

  7. MPT Prediction of Aircraft-Engine Fan Noise

    NASA Technical Reports Server (NTRS)

    Connell, Stuart D.

    2004-01-01

    A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh

  8. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.

  9. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  10. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  11. Spool valve and piston power plant

    SciTech Connect

    Landon, H.A.

    1992-01-21

    This patent describes an engine. It comprises cylinders each containing a piston disposed therein for reciprocating movement, a crankshaft connected to one end of each piston, a drive shaft connected to an end of the crankshaft, a source of pressurized fluid connected by conduits to each cylinder, each piston comprising: a first sealing member acting as the piston head, a second sealing member acting as the bottom of the piston, an arm connected at one end thereof to the bottom of the piston and connected at the other end thereof to the crankshaft, a lower fluid chamber formed by the bottom of the piston and a housing surrounding the arm and the crankshaft, a first port associated with each cylinder for delivering pressurized fluid to the head of the piston, a second port associated with each cylinder for removing pressurized fluid selectively from the upper chamber or delivering pressurized fluid to the lower chamber, a third port for removing pressurized fluid from the lower chamber, and a fourth part connected to the source of pressurized fluid and associated with each cylinder for delivering pressurized fluid to the upper chamber whereby the reciprocating movement of each piston is translated into rotary movement of the drive shaft through the crankshaft.

  12. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  13. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  14. Turbulence in the air tubes of radiators for aircraft engines

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes an investigation of the characteristics of flow in the air passages of aircraft radiators. The work was done by the National Bureau of Standards for the National Advisory Committee for Aeronautics.

  15. Investigation of aerosol formation and sulfur speciation in subsonic jet aircraft engines

    NASA Astrophysics Data System (ADS)

    Durlak, Susan Kaye

    1997-12-01

    Combustion-related atmospheric pollutants, both gaseous and particulate, can contribute to short-term health risks, as well as long-term climate change. While aircraft engine emissions may present short-term health risks near airports, aircraft are uniquely able to impact long-term climate change due to their insertion of anthropogenic pollutants in the upper troposphere and lower stratosphere. Aircraft emissions can impact the climate either directly, via emissions of light- scattering particulates, or indirectly, via emission of cloud condensation nuclei (CCN) particulates which influence cloud formation, or through heterogeneous reactions in the atmosphere. Carbonaceous aerosol emissions from aircraft engines can directly impact the climate, whereas speciation of sulfur emissions from aircraft engines can indirectly impact the climate by forming submicron, sulfuric acid particles which then form CCN. The number, size and composition of carbonaceous aerosol, and speciation of sulfur in the exhaust, are the main parameters influencing these emissions' fate in the environment and impact on the climate. However, little is understood about the formation of these pollutants within aircraft engines, due in part to the complexity and cost involved in testing these highly engineered machines. This study examines the feasibility of using a miniature working jet aircraft engine (Sophia J450 Model Jet Engine) to perform lab-scale, controlled tests to explore the formation of aircraft engine emissions. The miniature engine was run at a variety of power levels, and emissions were sampled at the exhaust. Two types of jet fuel (JP-5 and Jet A) and one other fuel (White Gas, or Coleman Fuel) were combusted in the engine. Engine performance is characterized and exhaust carbonaceous aerosol size distribution measurements are compared to full-scale turbojet engines. Measurements were made of sulfur speciation in the exhaust of the miniature jet engine burning Jet A and JP-5 with

  16. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  17. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  18. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    NASA Technical Reports Server (NTRS)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  19. Thermodynamic efficiency of present types of internal combustion engines for aircraft

    NASA Technical Reports Server (NTRS)

    Lucke, Charles E

    1917-01-01

    Report presents requirements of internal combustion engines suitable for aircraft. Topics include: (1) service requirements for aeronautic engines - power versus weight, reliability, and adaptability factors, (2) general characteristics of present aero engines, (3) aero engine processes and functions of parts versus power-weight ratio, reliability, and adaptability factors, and (4) general arrangement, form, proportions, and materials of aero parts - power-weight ratio, reliability, and adaptability.

  20. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  1. Wear reduction systems liquid piston ring

    SciTech Connect

    Raymond, R.J.; Chen, T.N.; DiNanno, L.

    1990-09-01

    The overall objective of the program was to demonstrate the technical feasibility of achieving an acceptable wear rate for the cylinder liner, piston, and piston rings in a coal/water-slurry-fueled engine that utilized the concept of a liquid piston ring above the conventional piston rings and to identify technical barriers and required research and development. The study included analytical modeling of the system, a bench study of the fluid motion in the liquid piston ring, and a single-cylinder test rig for wear comparison. A system analysis made on the different variations of the liquid supply system showed the desirability of the once-through version from the standpoint of system simplicity. The dynamics of the liquid ring were modeled to determine the important design parameters that influence the pressure fluctuation in the liquid ring during a complete engine cycle and the integrity of the liquid ring. This analysis indicated the importance of controlling heat transfer to the liquid ring through piston and liner to avoid boiling the liquid. A conceptual piston design for minimizing heat transfer is presented in this report. Results showed that the liquid piston ring effectively reduced the solid particles on the wall by scrubbing, especially in the case where a surfactant was added to the water. The wear rates were reduced by a factor of 2 with the liquid ring. However, leakage of the contaminated liquid ring material past the top ring limited the effectiveness of the liquid ring concept. 8 refs., 33 figs., 1 tab.

  2. Adjustable expandable cryogenic piston and ring

    DOEpatents

    Mazur, Peter O.; Pallaver, Carl B.

    1980-01-01

    The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.

  3. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  4. Study of LH2-fueled topping cycle engine for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  5. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  6. A simulator investigation of engine failure compensation for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Nieuwenhuijse, A. W.; Franklin, J. A.

    1974-01-01

    A piloted simulator investigation of various engine failure compensation concepts for powered-lift STOL aircraft was carried out at the Ames Research Center. The purpose of this investigation was to determine the influence of engine failure compensation on recovery from an engine failure during the landing approach and on the precision of the STOL landing. The various concepts include: (1) cockpit warning lights to cue the pilot of an engine failure, (2) programmed thrust and roll trim compensation, (3) thrust command and (4) flight-path stabilization. The aircraft simulated was a 150 passenger four-engine, externally blown flap civil STOL transport having a 90 psf wing loading and a .56 thrust to weight ratio. Results of the simulation indicate that the combination of thrust command and flight-path stabilization offered the best engine-out landing performance in turbulence and did so over the entire range of altitudes for which engine failures occurred.

  7. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  8. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    EPA Science Inventory

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  9. Engineering problems in ensuring the strength and reliability of the new generation of aircraft engines

    SciTech Connect

    Boguslaev, V.A.

    1995-11-01

    The {open_quotes}Motor Sich{close_quotes} plant - formerly the Zaporozh`e Engine Plant - has been a major contributor to the genesis and development of the domestic aviation industry. More than 20,000 engines made at the plant are currently operating in 18 domestic models of airplanes and helicopters, while roughly 4000 of the factory`s engines are in use abroad. Also, 998 mobile gas-turbine power plants of the PAES-2500 type are presently in service in and outside the CIS. Successes such as these are the result of the tremendous effort put forth by plant personnel and close collaboration with aircraft designers and buyers and scientific-research institutes on engine manufacture, operation, and servicing. Their contributions have made it possible to improve the strength and reliability of engines AI-20, AI-241 AI-25, AI-25TL, and TVZ-117. These models are renowned most of all for their durability, surpassing comparable foreign makes with respect to length of service. Engines AI-20, AI-24, and AI-25 have an average service life of 200,000 h, versus the 50,000 h life of foreign counterparts {open_quotes}Tyne,{close_quotes} {open_quotes}Dart,{close_quotes} and TE.731. At present, engine model D-18T is still not the equal of comparable foreign-made engines in terms of reliability and service life. This can be attributed to both to the problems associated with designing high-thrust engines and to the lack of adequate diagnostic systems. After several problems are resolved, new-generation engines D-36, D-136, and D-18 will provide new levels of reliability and durability. The durability of the D-36 is presently limited by the life of the casing of the combustor (6053 cycles) and the disks of the low- and high-pressure compressors (6500-7000 cycles). The life of the D-18T is restricted mainly by the life of the rotor blades in the high-pressure turbine, defects in the disks of the high-pressure compressor, and other problems.

  10. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  11. Piston and connecting rod assembly

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor); Chatten, John K. (Inventor)

    2001-01-01

    A piston and connecting rod assembly includes a piston crown, a piston skirt, a connecting rod, and a bearing insert. The piston skirt is a component separate from the piston crown and is connected to the piston crown to provide a piston body. The bearing insert is a component separate from the piston crown and the piston skirt and is fixedly disposed within the piston body. A bearing surface of a connecting rod contacts the bearing insert to thereby movably associate the connecting rod and the piston body.

  12. Investigation of a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free-piston stirling engines

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Tong, Chengde; Zhao, Jing; Yu, Bin; Li, Lin; Bai, Jingang; Zhang, Lu

    2012-04-01

    This paper investigates a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free piston Stirling engines (FPSEs). Taking the advantages of Halbach array, a 1 kW prototype alternator is designed. Considering the rms value of electromotive force (EMF) and harmonic distortion, the optimal length ratio of the axial- and radial-magnetized permanent magnets and thicknesses of the permanent magnets are optimized by 2D finite element method. The alternator detent force, which is an important factor for smooth operation of FPSEs, is studied by optimizing slot tip and end tooth. The load and thermal performances of the final design are simulated. A prototype alternator was designed, built and tested. Experimental data indicated satisfactory design.

  13. Engine/airframe compatibility studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology assessment studies were conducted to provide an updated technology base from which an advanced supersonic cruise aircraft can be produced with a high probability of success. An assessment of the gains available through the application of advanced technologies in aerodynamics, propulsion, acoustics, structures, materials, and active controls is developed. The potential market and range requirements as well as economic factors including payload, speed, airline operating costs, and airline profitability are analyzed. The conceptual design of the baseline aircraft to be used in assessing the technology requirements is described.

  14. Design study: A 186 kW lightweight diesel aircraft engine

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.

  15. Chemistry in plumes of high-flying aircraft with H 2 combustion engines: a modelling study

    NASA Astrophysics Data System (ADS)

    Weibring, G.; Zellner, R.

    1994-05-01

    . Recent discussions on high-speed civil transport (HSCT) systems have renewed the interest in the chemistry of supersonic-aircraft plumes. The engines of these aircraft emit large concentrations of radicals like O, H, OH, and NO. In order to study the effect of these species on the composition of the atmosphere, the detailed chemistry of an expanding and cooling plume is examined for different expansion models.

  16. The impact of emissions standards on the design of aircraft gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Effective emission control techniques have been identified and a wide spectrum of potential applications for these techniques to existing and advanced engines are being considered. Results from advanced combustor concept evaluations and from fundamental experiments are presented and discussed and comparisons are made with existing EPA emission standards and recommended levels for high altitude cruise. The impact that the advanced low emission concepts may impose on future aircraft engine combustor designs and related engine components is discussed.

  17. An Object-oriented Computer Code for Aircraft Engine Weight Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Naylor, Bret A.

    2008-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc. that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300- passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case. Keywords: NASA, aircraft engine, weight, object-oriented

  18. Lightweight piston architecture

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor); Ransone, Philip O. (Inventor)

    1990-01-01

    The invention is an improvement in a lightweight carbon-carbon composite piston, the improvement uses near-net shape knitted or warp-interlock preforms to improve the structural qualities of the piston. In its preferred embodiment, a one piece, tubular, closed-ended, knitted preform (a sock) of carbon fibers embedded within the matrix of the piston structure forms the crown, side wall, skirt and inner surface of the piston, and wrap-interlock preforms strengthen the piston crown and wrist pin bosses.

  19. A Sensitivity Study of Commercial Aircraft Engine Response for Emergency Situations

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2011-01-01

    This paper contains the details of a sensitivity study in which the variation in a commercial aircraft engine's outputs is observed for perturbations in its operating condition inputs or control parameters. This study seeks to determine the extent to which various controller limits can be modified to improve engine performance, while capturing the increased risk that results from the changes. In an emergency, the engine may be required to produce additional thrust, respond faster, or both, to improve the survivability of the aircraft. The objective of this paper is to propose changes to the engine controller and determine the costs and benefits of the additional capabilities produced by the engine. This study indicates that the aircraft engine is capable of producing additional thrust, but at the cost of an increased risk of an engine failure due to higher turbine temperatures and rotor speeds. The engine can also respond more quickly to transient commands, but this action reduces the remaining stall margin to possibly dangerous levels. To improve transient response in landing scenarios, a control mode known as High Speed Idle is proposed that increases the responsiveness of the engine and conserves stall margin

  20. Ceramics Technology Project database: September 1991 summary report. [Materials for piston ring-cylinder liner for advanced heat/diesel engines

    SciTech Connect

    Keyes, B.L.P.

    1992-06-01

    The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All data in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.

  1. System design and performance prediction of a free-piston Stirling engine/magnetic coupling/compressor assembly in a gas residential heat pump

    NASA Astrophysics Data System (ADS)

    Chen, G.; Beale, W. T.

    Based on the previous evaluation of a magnetic coupling and the described system-design targets, a gas fired free piston Stirling engine/magnetic coupling/compressor (FPSE/MC/C) assembly as a power module for a residential heat pump application was designed and analyzed. A porous combustor/FPSE/magnetic coupling/variable gas control spring/reciprocating compressor assembly was the design selected. Based on the system characteristics, design efforts are described on the following issues: (1) design of a combustor allowing low pressure of natural gas supply; (2) the means to achieve engine power-load matching; (3) the method to maintain the assembly as a resonant system tuning over a wide range of operating conditions; (4) the design of an engine/coupling structure to minimize the magnet mass without sacrificing its mechanical properties; and (5) compressor load capacity modulation. The system analysis and the system performance, which is analytically predicted and described, indicate all the system design goals can be met leading to a strong recommendation for further development.

  2. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  3. The horsepower of aircraft engines and their maximum frontal area

    NASA Technical Reports Server (NTRS)

    Precoul, Michel

    1936-01-01

    This adaptation of a Russian report reveals the effect of maximum cross section of an engine as well as the interest attaching to a choice not solely based on horsepower. The tabulation gives a comparison between different engines restored at 5,000 meters. Radial versus inverted in-line engines are also compared.

  4. The STOL performance of a two-engine, USB powered-lift aircraft with cross-shafted fans

    NASA Technical Reports Server (NTRS)

    Stevens, V. C.; Wilson, S. B., III; Zola, C. A.

    1985-01-01

    The short takeoff and landing capabilities that characterize the performance of powered-lift aircraft are dependent on engine thrust and are, therefore, severely affected by loss of an engine. This paper shows that the effects of engine loss on the short takeoff and landing performance of powered-lift aircraft can be effectively mitigated by cross-shafting the engine fans in a twin-engine configuration. Engine-out takeoff and landing performances are compared for three powered-lift aircraft configurations: one with four engines, one with two engines, and one with two engines in which the fans are cross-shafted. The results show that the engine-out takeoff and landing performance of the cross-shafted two-engine configuration is significantly better than that of the two-engine configuration without cross-shafting.

  5. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  6. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 3: Library of maps

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.

  7. Inlet, engine, airframe controls integration development for supercruising aircraft

    NASA Technical Reports Server (NTRS)

    Houchard, J. H.; Carlin, C. M.; Tjonneland, E.

    1983-01-01

    In connection with a consideration of advanced military aircraft systems, attention is given to research for improving the technology of the design of supersonic cruise aircraft. Syberg et al. (1981) have shown that an analytic design method is now available to accurately predict the flow characteristics of axisymmetric supersonic inlets, including off-design angle of attack operation. On the basis of information regarding the inlet flow characteristics, the control system designer can begin the inlet design and development, before wind tunnel testing has begun. The present investigation is concerned with details and status of inlet control technology. A detailed representation of a supersonic propulsion system is developed. This development demonstrates the feasibility of the selected hybrid computational concept.

  8. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.

  9. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  10. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  11. Preliminary Fatigue Studies on Aluminum Alloy Aircraft Engines

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Preliminary information on the complex subject of the fatigue strength of fabricated structural members for aircraft is presented in the test results obtained on several different types of airship girders subjected to axial tension and compression in a resonance fatigue machine. A description of this machine as well as numerous photographs of the fatigue failures are given. There is also presented an extended bibliography on the subject of fatigue strength.

  12. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  13. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-01

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  14. Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2007-01-01

    This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

  15. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  16. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  17. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  18. Description and Laboratory Tests of a Roots Type Aircraft Engine Supercharger

    NASA Technical Reports Server (NTRS)

    Ware, Marsden

    1926-01-01

    This report describes a roots type aircraft engine supercharger and presents the results of some tests made with it at the Langley Field Laboratories of the National Advisory Committee for Aeronautics. The supercharger used in these tests was constructed largely of aluminum, weighed 88 pounds and was arranged to be operated from the rear of a standard aircraft engine at a speed of 1 1/2 engine crankshaft speed. The rotors of the supercharger were cycloidal in form and were 11 inches long and 9 1/2 inches in diameter. The displacement of the supercharger was 0.51 cubic feet of air per revolution of the rotors. The supercharger was tested in the laboratory, independently and in combination with a Liberty-12 aircraft engine, under simulated altitude pressure conditions in order to obtain information on its operation and performance. From these tests it seems evident that the Roots blower compares favorably with other compressor types used as aircraft engine superchargers and that it has several features that make it particularly attractive for such use.

  19. Surface modifications of pistons and cylinder liners

    SciTech Connect

    Suzuki, Y. )

    1988-01-01

    With higher brake mean effective pressure (BMEP) of a diesel engine, pistons and cylinder liners suffer from increasing mechanical and thermal loading which causes several problems on these engine parts. The main critical problems are thermally induced cracking on the piston head and scuffing on the cylinder bore. Hard anodizing the piston head is described. It is currently the most effective countermeasure against heat cracking. Another promising method, to reinforce the piston head by means of SiC-whiskers, is also reported. A new process for improving the surface lubrication of the cylinder liner was developed. The bore has numerous finely distributed micropits which act as good oil reservoir. This improves the antiscuffing property of the cylinder liner.

  20. Laser beam propagation through a full scale aircraft turboprop engine exhaust

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Gustafsson, Ove; Sjöqvist, Lars; Seiffer, Dirk; Wendelstein, Norbert

    2010-10-01

    The exhaust from engines introduces zones of extreme turbulence levels in local environments around aircraft. This may disturb the performance of aircraft mounted optical and laser systems. The turbulence distortion will be especially devastating for optical missile warning and laser based DIRCM systems used to protect manoeuvring aircraft against missile attacks, situations where the optical propagation path may come close to the engine exhaust. To study the extent of the turbulence zones caused by the engine exhaust and the strength of the effects on optical propagation through these zones a joint trial between Germany, the Netherlands, Sweden and the United Kingdom was performed using a medium sized military turboprop transport aircraft tethered to the ground at an airfield. This follows on earlier trials performed on a down-scaled jet-engine test rig. Laser beams were propagated along the axis of the aircraft at different distances relative to the engine exhaust and the spatial beam profiles and intensity scintillations were recorded with cameras and photodiodes. A second laser beam path was directed from underneath the loading ramp diagonally past one of the engines. The laser wavelengths used were 1.5 and 3.6 μm. In addition to spatial beam profile distortions temporal effects were investigated. Measurements were performed at different propeller speeds and at different distances from exhaust nozzle to the laser path. Significant increases in laser beam wander and long term beam radius were observed with the engine running. Corresponding increases were also registered in the scintillation index and the temporal fluctuations of the instantaneous power collected by the detector.