Science.gov

Sample records for aircraft radiation exposure

  1. Management of cosmic radiation exposure for aircraft crew in Japan.

    PubMed

    Yasuda, Hiroshi; Sato, Tatsuhiko; Yonehara, Hidenori; Kosako, Toshiso; Fujitaka, Kazunobu; Sasaki, Yasuhito

    2011-07-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y(-1). The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Institute of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program.

  2. Estimates of cosmic radiation exposure on Tunisian passenger aircraft.

    PubMed

    Zarrouk, Neïla; Bennaceur, Raouf

    2008-01-01

    Radiation field produced by cosmic radiations in the earth's atmosphere is very complex and is significantly different from that found in the nuclear industry and other environments at ground level. Aircraft crew and frequent flyers are exposed to high levels of cosmic radiations of galactic and solar origin and to secondary radiation produced in the atmosphere. Following recommendations of the International Commission on Radiological Protection in publication 60, the European Union introduced a revised Basic Safety Standard Directive, which included exposure to natural sources of ionising radiations, including cosmic radiation, as occupational exposure. We computed the dose received by some Tunisian flights, using CARI-6, EPCARD, PCAIRE, and SIEVERT codes. Calculations performed during the year 2007, on mostly regular passenger flights of the Nouvelair Tunisian Company, indicate a mean effective dose rate ranging between 3 and 4 microSv/h. We give the general background and details, focusing on the situation in Tunisia with respect to radiation protection aspects of the cosmic radiation exposure. As far as we know, such a study has not previously been carried out.

  3. European measurements of aircraft crew exposure to cosmic radiation.

    PubMed

    Menzel, H G; O'Sullivan, D; Beck, P; Bartlett, D

    2000-11-01

    For more than 5 y, the European Commission has supported research into scientific and technical aspects of cosmic-ray dosimetry at flight altitudes in civil radiation. This has been in response to legislation to regard exposure of aircraft crew as occupational, following the recommendations of the International Commission on Radiological Protection in Publication 60. The response to increased public interest and concern, and in anticipation of European and national current work, within a total of three multi-national, multi-partner research contracts, is based on a comprehensive approach including measurements with dosimetric and spectrometric instruments during flights, at high-mountain altitudes, and in a high-energy radiation reference field at CERN, as well as cosmic-ray transport calculations. The work involves scientists in the fields of neutron physics, cosmic-ray physics, and general dosimetry. A detailed set of measurements has been obtained by employing a wide range of detectors on several routes, both on subsonic and supersonic aircraft. Many of the measurements were made simultaneously by several instruments allowing the intercomparison of results. This paper presents a brief overview of results obtained. It demonstrates that the knowledge about radiation fields and on exposure data has been substantially consolidated and that the available data provide an adequate basis for dose assessments of aircraft crew, which will be legally required in the European Union after 13 May 2000.

  4. Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave

    Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.

  5. Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew.

    PubMed

    Bottollier-Depois, J F; Beck, P; Bennett, B; Bennett, L; Bütikofer, R; Clairand, I; Desorgher, L; Dyer, C; Felsberger, E; Flückiger, E; Hands, A; Kindl, P; Latocha, M; Lewis, B; Leuthold, G; Maczka, T; Mares, V; McCall, M J; O'Brien, K; Rollet, S; Rühm, W; Wissmann, F

    2009-10-01

    The assessment of the exposure to cosmic radiation onboard aircraft is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher onboard aircraft than at ground level and its intensity depends on the solar activity. The dose is usually estimated using codes validated by the experimental data. In this paper, a comparison of various codes is presented, some of them are used routinely, to assess the dose received by the aircraft crew caused by the galactic cosmic radiation. Results are provided for periods close to solar maximum and minimum and for selected flights covering major commercial routes in the world. The overall agreement between the codes, particularly for those routinely used for aircraft crew dosimetry, was better than +/-20 % from the median in all but two cases. The agreement within the codes is considered to be fully satisfactory for radiation protection purposes.

  6. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  7. A new tool for radiation exposure calculations in aircraft flights during disturbed solar activity periods

    NASA Astrophysics Data System (ADS)

    Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.

  8. Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1998-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  9. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  10. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    PubMed

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.

  11. Aircraft Crew Radiation Exposure in Aviation Altitudes During Quiet and Solar Storm Periods

    NASA Astrophysics Data System (ADS)

    Beck, Peter

    The European Commission Directorate General Transport and Energy published in 2004 a summary report of research on aircrew dosimetry carried out by the EURADOS working group WG5 (European Radiation Dosimetry Group, http://www.eurados.org/). The aim of the EURADOS working group WG5 was to bring together, in particular from European research groups, the available, preferably published, experimental data and results of calculations, together with detailed descriptions of the methods of measurement and calculation. The purpose is to provide a dataset for all European Union Member States for the assessment of individual doses and/or to assess the validity of different approaches, and to provide an input to technical recommendations by the experts and the European Commission. Furthermore EURADOS (European Radiation Dosimetry Group, http://www.eurados.org/) started to coordinate research activities in model improvements for dose assessment of solar particle events. Preliminary results related to the European research project CONRAD (Coordinated Network for Radiation Dosimetry) on complex mixed radiation fields at workplaces are presented. The major aim of this work is the validation of models for dose assessment of solar particle events, using data from neutron ground level monitors, in-flight measurement results obtained during a solar particle event and proton satellite data. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results obtained by different methods or groups, and comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H* (10). This paper gives an overview of aircrew radiation exposure measurements during quiet and solar storm conditions and focuses on dose results using the EURADOS In-Flight Radiation Data Base and published data on solar particle events

  12. Exposure of aircraft crew to cosmic radiation: on-board intercomparison of various dosemeters.

    PubMed

    Bottollier-Depois, J-F; Trompier, F; Clairand, I; Spurny, F; Bartlett, D; Beck, P; Lewis, B; Lindborg, L; O'Sullivan, D; Roos, H; Tommasino, L

    2004-01-01

    Owing to their professional activity, flight crews may receive a dose of some millisieverts within a year; airline passengers may also be concerned. The effective dose is to be estimated using various experimental and calculation tools. The European project DOSMAX (Dosimetry of Aircrew Exposure during Solar Maximum) was initiated in 2000 extending to 2004 to complete studies over the current solar cycle during the solar maximum phase. To compare various dosemeters in real conditions simultaneously in the same radiation field, an intercomparison was organised aboard a Paris-Tokyo round-trip flight. Both passive and active detectors were used. Good agreement was observed for instruments determining the different components of the radiation field; the mean ambient dose equivalent for the round trip was 129 +/- 10 microSv. The agreement of values obtained for the total dose obtained by measurements and by calculations is very satisfying.

  13. Radiation Exposure

    MedlinePlus

    ... particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a long time, it raises your risk ...

  14. Radiation exposure and pregnancy.

    PubMed

    Labant, Amy; Silva, Christina

    2014-01-01

    Radiological exposure from nuclear power reactor accidents, transportation of nuclear waste accidents, industrial accidents, or terrorist activity may be a remote possibility, but it could happen. Nurses must be prepared to evaluate and treat pregnant women and infants who have been exposed to radiation, and to have an understanding of the health consequences of a nuclear or radiological incident. Pregnant women and infants are a special group of patients who need consideration when exposed to radiation. Initial care requires thorough assessment and decisions regarding immediate care needs. Ongoing care is based on type and extent of radiation exposure. With accurate, comprehensive information and education, nurses will be better prepared to help mitigate the effects of radiation exposure to pregnant women and infants following a radiological incident. Information about radiation, health effects of prenatal radiation exposure, assessment, patient care, and treatment of pregnant women and infants are presented.

  15. Americans' Average Radiation Exposure

    SciTech Connect

    NA

    2000-08-11

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

  16. Aircraft Radiation Shield Experiments--Preflight Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Shinn, Judy L.; Wilson, John W.; Maiden, Donald L.; Thibeault, Sheila A.; Badavi, Francis F.; Conroy, Thomas; Braby, Leslie

    1999-01-01

    In the past, measurements onboard a research Boeing 57F (RB57-F) aircraft have demonstrated that the neutron environment within the aircraft structure is greater than that in the local external environment. Recent studies onboard Boeing 737 commercial flights have demonstrated cabin variations in radiation exposure up to 30 percent. These prior results were the basis of the present study to quantify the potential effects of aircraft construction materials on the internal exposures of the crew and passengers. The present study constitutes preflight measurements using an unmoderated Cf-252 fission neutron source to quantify the effects of three current and potential aircraft materials (aluminum, titanium, and graphite-epoxy composite) on the fast neutron flux. Conclusions about the effectiveness of the three selected materials for radiation shielding must wait until testing in the atmosphere is complete; however, it is clear that for shielding low-energy neutrons, the composite material is an improved shielding material over aluminum or titanium.

  17. Radiation exposure during ureteroscopy

    SciTech Connect

    Bagley, D.H.; Cubler-Goodman, A. )

    1990-12-01

    Use of fluoroscopy during ureteroscopy increases the risk of radiation exposure to the urologist and patient. Radiation entrance dosages were measured at skin level in 37 patients, and at the neck, trunk and finger of the urologist, and neck and trunk of the circulating nurse. Radiation exposure time was measured in 79 patients, and was related to the purpose of the procedure and the type of ureteroscope used, whether rigid or flexible. Exposure could be minimized by decreasing the fluoroscopy time. A portable C-arm fluoroscopy unit with electronic imaging and last image hold mode should be used to minimize exposure time. Lead aprons and thyroid shields should be used by the urologist and other personnel in the endoscopy room.

  18. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group.

  19. Antarctic radiation exposure doubles

    NASA Astrophysics Data System (ADS)

    Blue, Charles

    New data reveal that the Antarctic Peninsula received twice its normal maximum dose of hazardous solar ultraviolet radiation in December 1990. The prolonged persistence of the ozone hole over Antarctica caused an increased exposure of radiation, according to a paper published in the October issue of Geophysical Research Letters.John Frederick and Amy D. Alberts of the University of Chicago calculated the amount of ultraviolet solar spectral radiation from data collected at Palmer Station, Antarctica. During the spring of 1990 the largest observed values for ultraviolet radiation were approximately double the values expected, based on previous years. “The measurements from Palmer Station are consistent with similar data from McMurdo Sound, where a factor of three [ultraviolet radiation] enhancement was recorded, according to work by Knut Stamnes and colleagues at the University of Alaska,” Frederick said. “The radiation levels observed over Palmer Station in December 1990 may be the largest experienced in this region of the world since the development of the Earth's ozone layer,” he added.

  20. Overview of Radiation Environments and Human Exposures

    NASA Technical Reports Server (NTRS)

    Wilson, John W.

    2004-01-01

    Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by the Earth s atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high altitude and space operations.

  1. Overview of radiation environments and human exposures

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    2000-01-01

    Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by Earth's atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high-altitude and space operations.

  2. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  3. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  4. Epidemiology of accidental radiation exposures.

    PubMed Central

    Cardis, E

    1996-01-01

    Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discuss information that could be obtained from studies of accidental exposures and the types of studies that are needed. PMID:8781398

  5. Epidemiology of accidental radiation exposures.

    PubMed

    Cardis, E

    1996-05-01

    Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discuss information that could be obtained from studies of accidental exposures and the types of studies that are needed.

  6. Radiation survey of aircraft and heavy machinery scrap.

    PubMed

    Idriss, Hajo; Salih, Isam; Gumaa, Elsadig; Yassin, Abbas; Yousif, E H; Abdel Hamid, Saad Eldeen M; Sam, A K

    2012-12-01

    This study was conducted primarily to survey aircraft and heavy machinery at 30 locations within Khartoum State using handheld radiation survey meters to detect and identify any radiation sources that might be present and to estimate radiation dose levels. The survey has resulted in detection of 16 sealed sources of (90)Sr and one of (226)Ra in aircraft scrap. Of course, (90)Sr sources are used in military aircraft as temperature sensors while (226)Ra is used for indicating fuel levels. These sources were found intact without spreading radioactivity contamination; however, none was detected in heavy machine scrap. The levels of radiation dose measured at 0.1m from the source fall within the range of 25.1-40.2 μSv/h with an average value of 33.52 ± 4.06 μSv/h. These orphan sources have been separated from the scrap, tested for possible leakage, conditioned and stored in waste management facility. The result of this study has revealed without doubt that the scrap constitute a serious source of public exposure and highlights the importance of legislation making radiation monitoring of scrap in the country mandatory before it is sold to metal industry for reprocessing.

  7. DOE 2011 occupational radiation exposure

    SciTech Connect

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  8. DOE 2012 occupational radiation exposure

    SciTech Connect

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  9. DOE 2010 occupational radiation exposure

    SciTech Connect

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  10. DOE 2008 occupational radiation exposure

    SciTech Connect

    none,

    2009-10-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. The DOE 2008 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  11. DOE 2009 occupational radiation exposure

    SciTech Connect

    none,

    2010-09-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2009 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  12. Epidemiology of accidental radiation exposures

    SciTech Connect

    Cardis, E.

    1996-05-01

    Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental exposures and the types of studies that are needed. 64 refs., 3 tabs.

  13. Measurements of neutron radiation in aircraft.

    PubMed

    Vuković, B; Poje, M; Varga, M; Radolić, V; Miklavcić, I; Faj, D; Stanić, D; Planinić, J

    2010-12-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21° to 58°; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was Ḣ(n)=5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of Ḣ(f)=1.4 μSv/h.

  14. Malignant mesothelioma following radiation exposure

    SciTech Connect

    Antman, K.H.; Corson, J.M.; Li, F.P.; Greenberger, J.; Sytkowski, A.; Henson, D.E.; Weinstein, L.

    1983-11-01

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommon cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered.

  15. Radiation Exposure and Pregnancy

    MedlinePlus

    ... Gynecol 200(1):4-24; 2009. International Atomic Energy Agency. Pregnancy and radiation protection in diagnostic radiology, radiotherapy and nuclear medicine. 2010. Available at: http: / / rpop. iaea. org/ ...

  16. DOE 2013 occupational radiation exposure

    SciTech Connect

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  17. Cardiovascular complications of radiation exposure.

    PubMed

    Finch, William; Shamsa, Kamran; Lee, Michael S

    2014-01-01

    The cardiovascular sequelae of radiation exposure are an important cause of morbidity and mortality following radiation therapy for cancer, as well as after exposure to radiation after atomic bombs or nuclear accidents. In the United States, most of the data on radiation-induced heart disease (RIHD) come from patients treated with radiation therapy for Hodgkin disease and breast cancer. Additionally, people exposed to radiation from the atomic bombs in Hiroshima and Nagasaki, Japan, and the Chernobyl, Ukraine, nuclear accident have an increased risk of cardiovascular disease. The total dose of radiation, as well as the fractionation of the dose, plays an important role in the development of RIHD. All parts of the heart are affected, including the pericardium, vasculature, myocardium, valves, and conduction system. The mechanism of injury is complex, but one major mechanism is injury to endothelium in both the microvasculature and coronary arteries. This likely also contributes to damage and fibrosis within the myocardium. Additionally, various inflammatory and profibrotic cytokines contribute to injury. Diagnosis and treatment are not significantly different from those for conventional cardiovascular disease; however, screening for heart disease and lifelong cardiology follow-up is essential in patients with past radiation exposure.

  18. Community sensitivity to changes in aircraft noise exposure

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Teffeteller, S.; Pearsons, K.

    1981-01-01

    Interviews were conducted in the vicinity of Burbank Airport during a four month period during which a counterbalanced series of changes in aircraft noise exposure occurred due to runway repairs. Another interview was undertaken approximately one year after completion of the initial runway repairs. Noise measurements were made in conjunction with administration of a brief questionnaire to a near exhaustive sample of residents in four airport neighborhoods. The magnitude and direction of change of annoyance with aircraft noise exposure corresponded closely to the actual changes in physical exposure. Estimates were made of time constants for the rate of change of attitudes toward aircraft noise.

  19. Prenatal radiation exposure: dose calculation.

    PubMed

    Scharwächter, C; Röser, A; Schwartz, C A; Haage, P

    2015-05-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero x-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties. • Radiation exposure of the unborn child can result in both deterministic as well as stochastic damage und hitherto should be avoided or reduced to a minimum

  20. Childhood cancer and occupational radiation exposure in parents

    SciTech Connect

    Hicks, N.; Zack, M.; Caldwell, G.G.; Fernbach, D.J.; Falletta, J.M.

    1984-04-15

    To test the hypothesis that a parent's job exposure to radiation affeOR). its his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR)) . infinity, one-sided 95% lower limit . 1.5; P . 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR . 2.73; P . 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations.

  1. Biological monitoring of radiation exposure

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  2. Night time aircraft noise exposure and children's cognitive performance.

    PubMed

    Stansfeld, Stephen; Hygge, Staffan; Clark, Charlotte; Alfred, Tamuno

    2010-01-01

    Chronic aircraft noise exposure in children is associated with impairment of reading and long-term memory. Most studies have not differentiated between day or nighttime noise exposure. It has been hypothesized that sleep disturbance might mediate the association of aircraft noise exposure and cognitive impairment in children. This study involves secondary analysis of data from the Munich Study and the UK Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) Study sample to test this. In the Munich study, 330 children were assessed on cognitive measures in three measurement waves a year apart, before and after the switchover of airports. Self-reports of sleep quality were analyzed across airports, aircraft noise exposure and measurement wave to test whether changes in nighttime noise exposure had any effect on reported sleep quality, and whether this showed the same pattern as for changes in cognitive performance. For the UK sample of the RANCH study, night noise contour information was linked to the children's home and related to sleep disturbance and cognitive performance. In the Munich study, analysis of sleep quality questions showed no consistent interactions between airport, noise, and measurement wave, suggesting that poor sleep quality does not mediate the association between noise exposure and cognition. Daytime and nighttime aircraft noise exposure was highly correlated in the RANCH study. Although night noise exposure was significantly associated with impaired reading and recognition memory, once home night noise exposure was centered on daytime school noise exposure, night noise had no additional effect to daytime noise exposure. These analyses took advantage of secondary data available from two studies of aircraft noise and cognition. They were not initially designed to examine sleep disturbance and cognition, and thus, there are methodological limitations which make it less than ideal in giving definitive answers to these

  3. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  4. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    PubMed

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  5. Estimation of health risks from radiation exposures

    SciTech Connect

    Randolph, M.L.

    1983-08-01

    An informal presentation is given of the cancer and genetic risks from exposures to ionizing radiations. The risks from plausible radiation exposures are shown to be comparable to other commonly encountered risks.

  6. Techniques for controlling radiation exposure

    SciTech Connect

    Ocken, H.; Wood, C.J.

    1993-02-01

    The US nuclear power industry has been remarkably successful in reducing worker radiation exposure over the past 10 years. There has been more than a fourfold reduction in person-rem per MW-year of electric power generated: from 1.8 person-rems in 1980 to only 0.4 person-rems in 1991. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in the 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, and there will be more requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the 1995 industry goals for unit median collective exposure. No one method will suffice, but implementing suitable combinations from this compendium will help utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: Outages are shorter, staffing requirements are reduced, and work quality is improved. Despite up-front costs, the benefits over the following one to three years typically outweigh the expenses.

  7. Inherited susceptibility and radiation exposure

    SciTech Connect

    Little, J.B.

    1997-03-01

    There is continuing concern that some people in the general population may have genetic makeups that place them at particularly high risk for radiation-induced cancer. The existence of such a susceptible subpopulation would have obvious implications for the estimation of risks of radiation exposure. Although it has been long known that familial aggregations of cancer do sometimes occur, recent evidence suggests that a general genetic predisposition to cancer does not exist; most cancers occur sporadically. On the other hand, nearly 10% of the known Mendelian genetic disorders are associated with cancer. A number of these involve a familial predisposition to cancer, and some are characterized by an enhanced susceptibility to the induction of cancer by various physical and chemical carcinogens, including ionizing radiation. Such increased susceptibility will depend on several factors including the frequency of the susceptibility gene in the population and its penetrance, the strength of the predisposition, and the degree to which the cancer incidence in susceptible individuals may be increased by the carcinogen. It is now known that these cancer-predisposing genes may be responsible not only for rare familial cancer syndromes, but also for a proportion of the common cancers. Although the currently known disorders can account for only a small fraction of all cancers, they serve as models for genetic predisposition to carcinogen-induced cancer in the general population. In the present report, the author describes current knowledge of those specific disorders that are associated with an enhanced predisposition to radiation-induced cancer, and discusses how this knowledge may bear on the susceptibility to radiation-induced cancer in the general population and estimates of the risk of radiation exposure.

  8. Selected methods for quantification of community exposure to aircraft noise

    NASA Technical Reports Server (NTRS)

    Edge, P. M., Jr.; Cawthorn, J. M.

    1976-01-01

    A review of the state-of-the-art for the quantification of community exposure to aircraft noise is presented. Physical aspects, people response considerations, and practicalities of useful application of scales of measure are included. Historical background up through the current technology is briefly presented. The developments of both single-event and multiple-event scales are covered. Selective choice is made of scales currently in the forefront of interest and recommended methodology is presented for use in computer programing to translate aircraft noise data into predictions of community noise exposure. Brief consideration is given to future programing developments and to supportive research needs.

  9. New approaches to reduce radiation exposure

    PubMed Central

    Hill, Kevin D.; Einstein, Andrew J.

    2015-01-01

    Exposure to ionizing radiation is associated with a long term risk of health effects including cancer. Radiation exposure to the U.S. population from cardiac imaging has increased markedly over the past three decades. Initiatives to reduce radiation exposure have focused on the tenets of appropriate study “justification” and “optimization” of imaging protocols. This article reviews ways to optimally reduce radiation dose across the spectrum of cardiac imaging. PMID:25962784

  10. Environmental Exposure Effects on Composite Materials for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1981-01-01

    This period's activities were highlighted by continued long term and accelerated lab exposure testing, and by completion of all fabrication tasks on the optional material systems, AS1/3501-6 and Kevlar 49/F161-188. Initial baseline testing was performed on the two optional material systems. Long term exposure specimens were returned from three of the four ground rack sites and from two of the three aircraft locations. Test data from specimens returned from Dryden after 2 years exposure do not indicate continuing trends of strength reduction from the 1 year data. Test data from specimens returned from the Wellington, new Zealand ground rack and on Air New Zealand aircraft after 1 year exposure show strength changes fairly typical of other locations.

  11. Airborne asbestos exposure during light aircraft brake replacement.

    PubMed

    Blake, Charles L; Johnson, Giffe T; Harbison, Raymond D

    2009-08-01

    Asbestos containing materials are a component of many vehicle brake systems, including those found in some light aircraft. To characterize the asbestos exposure that results from the installation and maintenance of these components, an aircraft fitted with asbestos containing brake pads had brake changes performed while both area and personal air samples were taken. The brake changing process took place in a closed, unventilated aircraft hanger and all operations were performed according to the manufacturer's recommended procedure. Personal air samples did not detect any measurable amount of asbestos fibers during the brake changing or subsequent cleanup procedures. Analysis of personal samples (n=9) using phase contrast microscopy indicated airborne fiber concentrations at or below 0.003f/ml as 8-h time weighted averages (TWAs) and less than 0.069f/ml averaged over 28-30min sampling periods. Airborne chrysotile fibers were detected by two area air samples with fiber concentrations remaining at or below 0.0013f/ml over an 8-h TWA. These results indicate that normal brake changing work practices on aircraft with asbestos containing brake pads does not produce a harmful level of asbestos exposure for aircraft mechanics.

  12. PHYSICAL FACTORS AND DOSIMETRY IN THE MARSHALL ISLAND RADIATION EXPOSURES

    DTIC Science & Technology

    FALLOUT, *RADIATION HAZARDS, *RADIOCHEMISTRY, DOSE RATE, PERSONNEL, RADIATION, RADIATION MONITORS, DOSAGE , EXPOSURE (PHYSIOLOGY), EXPOSURE METERS, EXPERIMENTAL DATA, ENERGY, TIME, GAMMA RAY SPECTROSCOPY, BETA DECAY, PHOTONS.

  13. Nuclear Submarines and Aircraft Carriers | Radiation ...

    EPA Pesticide Factsheets

    2016-02-23

    Nuclear submarines and aircraft carriers are powered by onboard nuclear reactors. Heat from the nuclear reaction makes the steam needed to power the submarine. When a nuclear vessel is taken out of service, its radioactive parts are disposed of and monitored.

  14. Modeling flight attendants' exposures to pesticide in disinsected aircraft cabins.

    PubMed

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2013-12-17

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means ± standard devitions) of daily total exposure intakes were 0.24 (3.8 ± 10.0), 1.4 (4.2 ± 5.7), and 0.15 (2.1 ± 3.2) μg day(-1) kg(-1) of body weight for scenarios of residual application, preflight, and top-of-descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than top-of-descent spray and residual application, respectively.

  15. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, Daniel J.; Bielawski, William J.

    1991-01-01

    A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.

  16. Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins

    PubMed Central

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2014-01-01

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734

  17. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.

    PubMed

    Dörr, Harald; Meineke, Viktor

    2011-11-25

    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  18. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution.

  19. DOE occupational radiation exposure 2005 report

    SciTech Connect

    none,

    2005-12-31

    The U.S. Department of Energy (DOE) Offi ce of Corporate Safety Analysis (HS-30) within the Office of Health Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. This report provides a summary and an analysis of occupational radiation exposure information for all monitored individuals associated with the DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  20. Ionizing radiation exposure of LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V. (Editor); Heinrich, W. (Editor)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment.

  1. DOE Occupational Radiation Exposure, 2001 report

    SciTech Connect

    None, None

    2001-12-31

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  2. DOE occupational radiation exposure 2007 report

    SciTech Connect

    none,

    2007-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The annual DOEOccupational Radiation Exposure 2007 Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and ALARA process requirements. In addition the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  3. Radiation Exposure of Air Carrier Crewmembers 2

    DTIC Science & Technology

    1992-01-01

    occupationally exposed adult . The radiation exposure of a pregnant crewmember who worked 70 block hours a month for 5 months would exceed the recommended 2...the dose received. Table 5 provides estimates of the risk to the child of incurring one or more serious health defects from prenatal exposure to...the International Commission on Radiological Protection for a nonpregnant occupationally exposed adult . Thus, radiation exposure is not likely to be a

  4. Minimizing radiation exposure during percutaneous nephrolithotomy.

    PubMed

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  5. Hexavalent chromium exposures during full-aircraft corrosion control.

    PubMed

    Carlton, Gary N

    2003-01-01

    Aluminum alloys used in the construction of modern aircraft are subject to corrosion. The principal means of controlling this corrosion in the U.S. Air Force are organic coatings. The organic coating system consists of a chromate conversion coat, epoxy resin primer, and polyurethane enamel topcoat. Hexavalent chromium (CrVI) is present in the conversion coat in the form of chromic acid and in the primer in the form of strontium chromate. CrVI inhalation exposures can occur when workers spray conversion coat onto bare metal and apply primer to the treated metal surface. In addition, mechanical abrasion of aircraft surfaces can generate particulates that contain chromates from previously applied primers and conversion coats. This study measured CrVI exposures during these corrosion control procedures. Mean time-weighted average (TWA) exposure to chromic acid during conversion coat treatment was 0.48 microg/m(3), below the current American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV(R)) TWA of 50 microg/m(3) for water-soluble CrVI compounds. Mean TWA exposures to strontium chromate were 5.33 microg/m(3) during mechanical abrasion and 83.8 microg/m(3) during primer application. These levels are in excess of the current ACGIH TLV-TWA of 0.5 microg/m(3) for strontium chromate. In the absence of a change from chromated to nonchromated conversion coats and primers, additional control measures are needed to reduce these exposures.

  6. [Occupational exposure to hexavalent chromium during aircraft painting].

    PubMed

    Gherardi, M; Gatto, M P; Gordiani, A; Paci, E; Proietto, A

    2007-01-01

    Hygienists are interested in hexavalent chromium due to its genotoxic and carcinogenic effect on humans. The use of products containing hexavalent chromium is decreasing in many industrial fields because of the substitution with less-toxic compounds. In the aeronautical industry, however, the chromate are added to primer paint as a corrosion inhibitor of aircrafts surfaces: so hexavalent chromium compounds are available in many primers with a composition ranging from 10% to 13%. The application of these primers by using electrostatic guns potentially exposes painting and coating workers at high concentrations of aerosols containing Cr(VI). The aim of the present study is the evaluation of professional exposure to hexavalent chromium during aircraft painting, by adopting both environmental personal sampling and biological monitoring. To valuate workers exposure levels the personal measurements results have been compared with the exposure limit values (TLV-TWA) and the urinary chromium contents with the biological exposure indices (IBE). Moreover the strategy of coupling environmental sampling with biological monitoring seems to be a useful instrument to measure the validity of the individual protection devices.

  7. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1978-01-01

    Activities reported include completion of the program design tasks, resolution of a high fiber volume problem and resumption of specimen fabrication, fixture fabrication, and progress on the analysis methodology and definition of the typical aircraft environment. Program design activities including test specimens, specimen holding fixtures, flap-track fairing tailcones, and ground exposure racks were completed. The problem experienced in obtaining acceptable fiber volume fraction results on two of the selected graphite epoxy material systems was resolved with an alteration to the bagging procedure called out in BAC 5562. The revised bagging procedure, involving lower numbers of bleeder plies, produces acceptable results. All required laminates for the contract have now been laid up and cured. Progress in the area of analysis methodology has been centered about definition of the environment that a commercial transport aircraft undergoes. The selected methodology is analagous to fatigue life assessment.

  8. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The effects of environmental exposure on composite materials are determined. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209, and T300/934. Future results will include AS-1/3501-6 and Kevlar 49/F161-188. Specimens are exposed on the exterior and interior of 737 airplanes of three airlines, and to continuous ground-level exposure at four locations. In addition, specimens are exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to five years at five ground-level exposure locations and on airplanes from one airline.

  9. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations

    PubMed Central

    Kutanzi, Kristy R.; Lumen, Annie; Koturbash, Igor; Miousse, Isabelle R.

    2016-01-01

    Children are at a greater risk than adults of developing cancer after being exposed to ionizing radiation. Because of their developing bodies and long life expectancy post-exposure, children require specific attention in the aftermath of nuclear accidents and when radiation is used for diagnosis or treatment purposes. In this review, we discuss the carcinogenic potential of pediatric exposures to ionizing radiation from accidental, diagnostic, and therapeutic modalities. Particular emphasis is given to leukemia and thyroid cancers as consequences of accidental exposures. We further discuss the evidence of cancers that arise as a result of radiotherapy and conclude the review with a summary on the available literature on the links between computer tomography (CT) and carcinogenesis. Appropriate actions taken to mitigate or minimize the negative health effects of pediatric exposures to ionizing radiation and future considerations are discussed. PMID:27801855

  10. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  11. Cancer risks after radiation exposures

    SciTech Connect

    Voelz, G.L.

    1980-01-01

    A general overview of the effects of ionizing radiation on cancer induction is presented. The relationship between the degree of risk and absorbed dose is examined. Mortality from radiation-induced cancer in the US is estimated and percentages attributable to various sources are given. (ACR)

  12. Airborne exposure patterns from a passenger source in aircraft cabins.

    PubMed

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins.

  13. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  14. Instrumentation for remote sensing solar radiation from light aircraft.

    PubMed

    Howard, J A; Barton, I J

    1973-10-01

    The paper outlines the instrumentation needed to study, from a light aircraft, the solar radiation reflected by ground surfaces and the incoming solar radiation. A global shortwave radiometer was mounted on the roof of the aircraft and a specially designed mount was used to support a downward pointing 70-mm aerial camera, a downward pointing narrow-beam pyranometer, and, sometimes, a downward pointing global shortwave pyranometer. Calibration factors were determined for the three pyranometers by comparison with a standard Angstrom compensation pyrheliometer. Results have indicated trends in the albedos of major plant communities and have shown that the calculated albedo values vary according to whether the downward pointing instrument is narrow-beam or global. Comparisons were also made with albedos measured on the ground.

  15. Ultraviolet Radiation: Human Exposure and Health Risks.

    ERIC Educational Resources Information Center

    Tenkate, Thomas D.

    1998-01-01

    Provides an overview of human exposure to ultraviolet radiation and associated health effects as well as risk estimates for acute and chronic conditions resulting from such exposure. Demonstrates substantial reductions in health risk that can be achieved through preventive actions. Also includes a risk assessment model for skin cancer. Contains 36…

  16. In-situ Measurements of the Cosmic Radiation on the Aircraft Altitude over Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, I.; Lee, J.; Oh, S.; Kim, Y. C.

    2014-12-01

    This study presents the comparison between the measured and modeled cosmic radiation on aircraft altitude over Korean peninsula. We performed the measurement with a radiation spectrometer, Liulin-6K on board a Republic of Korea (ROK) Air Force aircraft accomplishing the high-altitude (above 9 km) flight over Korea, and the modeled data was obtained from the operational modeling program, CARI-6M developed by FAA. A number of measurements for the flight mission at high-altitude have been executed to evaluate the exposed dose of cosmic radiation. Both the measured and the calculated data show that the exposed radiation dose enhances dramatically as the altitude increases. The results reveal that the exposed dose rate of aircrews at high-altitude flight is 2-3 orders of magnitude (1-2 mSv/hour) higher than the exposure rate at sea level. It is inferred that the annual total dose of radiation for the aircrews at high-altitude could be higher than the annually public limit (1 mSv) recommended by ICRP. Finally, since neutrons are the dominant components reflecting among total cosmic radiation above 9 km, we try to analyze the relationship between the neutron count from the neutron monitor on the ground and the effective dose from the on board spectrometer. Based on these results, it is suggested that the annual criterion and the proper managing procedure of exposed dose for the flight aircrews of ROK Air Force should be regulated.

  17. Validation of Aircraft Noise Models at Lower Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.

    1996-01-01

    Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.

  18. Radiation exposure in the moon environment

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Matthiae, Daniel

    2012-12-01

    During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the

  19. Cosmic radiation in aviation: radiological protection of Air France aircraft crew.

    PubMed

    Desmaris, G

    2016-06-01

    Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders.

  20. OCCUPATIONAL EXPOSURE TO EXTERNAL RADIATION IN SWITZERLAND.

    PubMed

    Mayer, S; Baechler, S; Damet, J; Elmiger, R; Frei, D; Giannini, S; Leupin, A; Sarott, F; Schuh, R

    2016-09-01

    Individual monitoring for both external and internal exposures is well regulated in Switzerland. The article gives an overview on the occupational exposure to external radiation of workers based on the data collected in the Swiss national dose registry (NDR) in 2013. The NDR records the monthly doses of radiation workers since the introduction of ICRP 60 recommendations and is manifested in the Swiss ordinance since 1994. Annual dose limits for effective dose are typically exceeded once a year in Switzerland, mostly in medicine. The NDR is a useful optimisation tool to identify and characterise areas with the highest exposures. While exceeded dose limits were often related to accidental acute exposure in the past, they are now more related to continuous exposure during normal work, especially in medicine.

  1. Prenatal radiation exposure policy: A labor arbitration

    SciTech Connect

    Kelly, J.J. )

    1990-07-01

    A policy on prenatal radiation exposure at two nuclear power plants was revised to give better assurance of compliance with NCRP recommendations on fetal radiation exposure. This action was taken after publication of NCRP 91 in June 1987 to provide better assurance that a total dose equivalent limit to an embryo-fetus be no greater than 0.5 mSv (0.05 rem) in any month and no more than 5 mSv (500 mrem) for a gestation period. For any female worker to receive radiation exposure greater than 1.5 mSv (0.15 rem) in a month at these nuclear power plants, she was asked to initiate an administrative request for radiation exposure in excess of this limit. In this request, she was asked to acknowledge that she was aware of the guidance in U.S. NRC Regulatory Guide 8.13. A worker who had the potential for radiation exposure in excess of 1.5 mSv (0.15 rem) refused to process this request and was consequently denied overtime work. She filed a grievance for denial of overtime, and this grievance was submitted for labor arbitration in June 1988. The arbitration decision and its basis and related NRC actions are discussed.

  2. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    SciTech Connect

    Mansfield, J.A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident, collisions into an alert aircraft by an aircraft that is on landing or take-off, and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  3. DOE occupational radiation exposure 1996 report

    SciTech Connect

    1996-12-31

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ``As Low As Reasonably Achievable`` (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources.

  4. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project.

    PubMed

    Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Alfred, Tamuno; Head, Jenny; Davies, Hugh W; Haines, Mary M; Lopez Barrio, Isabel; Matheson, Mark; Stansfeld, Stephen A

    2006-01-01

    Transport noise is an increasingly prominent feature of the urban environment, making noise pollution an important environmental public health issue. This paper reports on the 2001-2003 RANCH project, the first cross-national epidemiologic study known to examine exposure-effect relations between aircraft and road traffic noise exposure and reading comprehension. Participants were 2,010 children aged 9-10 years from 89 schools around Amsterdam Schiphol, Madrid Barajas, and London Heathrow airports. Data from The Netherlands, Spain, and the United Kingdom were pooled and analyzed using multilevel modeling. Aircraft noise exposure at school was linearly associated with impaired reading comprehension; the association was maintained after adjustment for socioeconomic variables (beta = -0.008, p = 0.012), aircraft noise annoyance, and other cognitive abilities (episodic memory, working memory, and sustained attention). Aircraft noise exposure at home was highly correlated with aircraft noise exposure at school and demonstrated a similar linear association with impaired reading comprehension. Road traffic noise exposure at school was not associated with reading comprehension in either the absence or the presence of aircraft noise (beta = 0.003, p = 0.509; beta = 0.002, p = 0.540, respectively). Findings were consistent across the three countries, which varied with respect to a range of socioeconomic and environmental variables, thus offering robust evidence of a direct exposure-effect relation between aircraft noise and reading comprehension.

  5. Optical Radiation Transmittance of Aircraft Windscreens and Pilot Vision

    DTIC Science & Technology

    2007-07-01

    organizations is the one shown in Figure 12 (15). The erythema action spectrum indicates that skin is most vulnerable to UV -B exposure. Fortunately...higher altitudes for longer periods of time than private pilots should take spe- cial precautions to protect their vision from UV exposure. Aircrew ...Institute (CAMI) for both visible and invisible optical radiation. This paper focuses on windscreen transmittance in the ultraviolet ( UV ) (< 380 nm) and

  6. A Translatable Predictor of Human Radiation Exposure

    PubMed Central

    Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J.; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P.

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay. PMID:25255453

  7. Exposure to UV radiation and human health

    NASA Astrophysics Data System (ADS)

    Kimlin, Michael G.

    2005-08-01

    This paper will overview the significant issues facing researchers in relating the impact of exposure to sunlight and human health. Exposure to solar ultraviolet radiation is the major causative factor in most sun-related skin and eye disorders, however, very little is known quantitatively about human UV exposures. Interestingly, human exposure to sunlight also has a nutritional impact, namely the development of pre-Vitamin D, which is an important nutrient in bone health. New research suggest that low vitamin D status may be a causative factor in the development of selective types of cancer and autoimminue diseases, as well as a contributing factor in bone health. The 'health duality' aspect of sunlight exposure is an interesting and controversial topic that is a research focus of Kimlin's research group.

  8. Radiation exposure in interventional radiology

    NASA Astrophysics Data System (ADS)

    Pinto, N. G. V.; Braz, D.; Vallim, M. A.; Filho, L. G. P.; Azevedo, F. S.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.

  9. Cosmic radiation exposure and persistent cognitive dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  10. Cosmic radiation exposure and persistent cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K; Chmielewski, Nicole N; Giedzinski, Erich; Acharya, Munjal M; Britten, Richard A; Baulch, Janet E; Limoli, Charles L

    2016-10-10

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain.

  11. Cataractogenesis following high-LET radiation exposure.

    PubMed

    Hamada, Nobuyuki; Sato, Tatsuhiko

    Biological effectiveness of ionizing radiation differs with its linear energy transfer (LET) such that high-LET radiation is more effective for various biological endpoints than low-LET radiation. Human exposure to high-LET radiation occurs in cancer patients, nuclear workers, aviators, astronauts and other space travellers. From the radiation protection viewpoint, the ocular lens is among the most radiosensitive tissues in the body, and cataract (a clouding of the normally transparent lens) is classified as tissue reactions (formerly called nonstochastic or deterministic effects) with a threshold below which no effect would occur. To prevent radiation cataracts, the International Commission on Radiological Protection (ICRP) has recommended an equivalent dose limit for the lens according to the threshold for vision-impairing cataracts. ICRP recommended the threshold of >8Gy in 1984 and an occupational dose limit of 150mSv/year in 1980. These remained unchanged until 2011, when ICRP recommended lowering the threshold to 0.5Gy and the dose limit to 20mSv/year (averaged over 5 years with no single year exceeding 50mSv). Although such reduction of the threshold was based on findings from low-LET radiation, the dose limit was recommended in Sv. Historically, the lens is the exceptional tissue for which ICRP had assigned a special factor in addition to a general radiation weighting factor, predicated on a belief that the lens is more vulnerable to high-LET radiation than other tissues. Considering such radiosensitive nature of the lens, a deeper understanding of a cataractogenic potential of high-LET radiation is indispensable. This review is thus designed to provide an update on the current knowledge as to high-LET radiation cataractogenesis. To this end, changes in ICRP recommendations on lenticular radiation protection, epidemiological and biological findings on high-LET cataractogenesis are reviewed, and future research needs are then discussed.

  12. DOE occupational radiation exposure 1999 report

    SciTech Connect

    none,

    1999-12-31

    The U.S. Department of Energy (DOE) Office of Safety and Health publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  13. DOE occupational radiation exposure 1996 report

    SciTech Connect

    none,

    1996-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in their management of radiological safety programs and to assist them in the prioritization of resources. We appreciate the efforts and contributions from the various stakeholders within and outside the DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of collective data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  14. DOE occupational radiation exposure 2004 report

    SciTech Connect

    none,

    2004-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, and subcontractors, as well as members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  15. DOE occupational radiation exposure 1998 report

    SciTech Connect

    none,

    1998-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health with support from Environment Safety and Health Technical Information Services publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  16. DOE occupational radiation exposure 2003 report

    SciTech Connect

    none,

    2003-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  17. DOE occupational radiation exposure 2000 report

    SciTech Connect

    none,

    2000-12-31

    The U.S. Department of Energy (DOE) Office of Safety and Health publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE in making this report most useful to them. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  18. DOE occupational radiation exposure 2002 report

    SciTech Connect

    none,

    2002-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and members of the public. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  19. DOE occupational radiation exposure 1997 report

    SciTech Connect

    none,

    1997-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  20. Space Radiation and Human Exposures, A Primer.

    PubMed

    Nelson, Gregory A

    2016-04-01

    The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates.

  1. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation.

  2. [Radiation exposure and air quality aboard commercial airplanes].

    PubMed

    Bergau, L

    1999-10-01

    The amount of exposure to cosmic radiation during air travel is next to a number of additional factors mainly dependent on the flight level of the aircraft. Flying in an altitude of 41,000 feet equaling 12,800 meters the amount of radiation exposure is of course considerable higher than on the ground. The overall exposure of flying personnel to cosmic radiation flying about 600-700 hours per year can be estimated between 3 and 6 mSv (300-600 mrem). According to the flight hours of passengers, the radiation exposure is much lower and can be neglected for most of the travelers final judgement about the possible risks for flying personnel as far as a higher incident of malignant tumors is concerned has not jet been finally made. Talking of cabin air quality compromises have to be made and thus the well-being of the passengers can be negatively influenced. Air pressure and oxygen partial pressure correspond to an altitude of 2400 meters (8,000 feet) above sea level with possible consequences to the cardiopulmonary system. Increased level of ozone can lead to respiratory problems of the upper airways, increased carbon dioxide may cause hyperventilation. The mucous membranes of the respiratory tract are dried out due to the extremely low humidity of the cabin air. Smoking during flight results in an increase of the nicotine blood levels even in passengers sitting in the non-smoking areas. In modern aircraft the fresh-air flow cannot be regulated individually any more, this may lead to an insufficient circulation of used air in relation to fresh air and could cause the phenomena of hanging smoke. There has always been the idea that there is an increased risk for passengers for acquiring infectious diseases. However this is not the case. Modern HEPA-filter prevent an accumulation even of the smallest particles including bacteria and viruses within the recirculation flow in the cabin air. The overall risk of getting an infectious disease is significantly lower than in other

  3. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  4. Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure.

    PubMed

    Cacao, Eliedonna; Cucinotta, Francis A

    2016-03-01

    Radiation impairment of neurogenesis in the hippocampal dentate gyrus is one of several factors associated with cognitive detriments after treatment of brain cancers in children and adults with radiation therapy. Mouse models have been used to study radiation-induced changes in neurogenesis, however the models are limited in the number of doses, dose fractions, age and time after exposure conditions that have been studied. The purpose of this study is to develop a novel predictive mathematical model of radiation-induced changes to neurogenesis using a system of nonlinear ordinary differential equations (ODEs) to represent the time, age and dose-dependent changes to several cell populations participating in neurogenesis as reported in mouse experiments exposed to low-LET radiation. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation treatment in altering neurogenesis: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN) and (4) glioblasts (GB). Because neurogenesis is decreasing with increasing mouse age, a description of the age-related dynamics of hippocampal neurogenesis is considered in the model, which is shown to be an important factor in comparisons to experimental data. A key feature of the model is the description of negative feedback regulation on early and late neuronal proliferation after radiation exposure. The model is augmented with parametric descriptions of the dose and time after irradiation dependences of activation of microglial cells and a possible shift of NSC proliferation from neurogenesis to gliogenesis reported at higher doses (∼10 Gy). Predictions for dose-fractionation regimes and for different mouse ages, and prospects for future work are then discussed.

  5. Cosmic radiation exposure in subsonic air transport

    NASA Technical Reports Server (NTRS)

    Wallace, R. W.; Sondhaus, C. A.

    1978-01-01

    Data derived from 1973 statistics on 2.99 million intercity flights carrying 468 million seats were included in the calculations, yielding a total of 581 billion seat-kilometer. The average flight was 1,084 km in length, was flown at an altitude of 9.47 km, and lasted 1.41 h. The average dose rate was 0.20 mrem/h, resulting in an average passenger dose of 2.82 mrem/year and an average crewmember dose of 160 mrem/year. The average radiation dose to the total U.S. population was 0.47 mrem/person/year. These results are in good agreement with data from several experiments performed by us and others in aircraft at various altitudes and latitudes. The significance of these doses to the population is discussed.

  6. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Radiofrequency radiation exposure limits. 1... Radiofrequency radiation exposure limits. The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except...

  7. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b) within the... human exposure to RF radiation as specified in § 1.1307(b), except for portable devices as defined in... the environmental impact of human exposure to RF radiation as specified in § 1.1307(b). (4) Both...

  8. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b) within the... human exposure to RF radiation as specified in § 1.1307(b), except for portable devices as defined in... the environmental impact of human exposure to RF radiation as specified in § 1.1307(b). (4) Both...

  9. [Cutaneous radiation syndrome after accidental skin exposure to ionizing radiation].

    PubMed

    Peter, R U

    2013-12-01

    Accidental exposure of the human skin to single doses of ionizing radiation greater than 3 Gy results in a distinct clinical picture, which is characterized by a transient and faint erythema after a few hours, then followed by severe erythema, blistering and necrosis. Depending on severity of damage, the latter generally occurs 10-30 days after exposure, but in severe cases may appear within 48 hrs. Between three and 24 months after exposure, epidermal atrophy combined with progressive dermal and subcutaneous fibrosis is the predominant clinical feature. Even years and decades after exposure, atrophy of epidermis, sweat and sebaceous glands; telangiectases; and dermal and subcutaneous fibrosis may be found and even continue to progress. For this distinct pattern of deterministic effects following cutaneous accidental radiation exposure the term "cutaneous radiation syndrome (CRS)" was coined in 1993 and has been accepted by all international authorities including IAEA and WHO since 2000. In contrast to the classical concept that inhibition of epidermal stem cell proliferation accounts for the clinical symptomatology, research of the last three decades has demonstrated the additional crucial role of inflammatory processes in the etiology of both acute and chronic sequelae of the CRS. Therefore, therapeutic approaches should include topical and systemic anti-inflammatory measures at the earliest conceivable point, and should be maintained throughout the acute and subacute stages, as this reduces the need for surgical intervention, once necrosis has occurred. If surgical intervention is planned, it should be executed with a conservative approach; no safety margins are needed. Antifibrotic measures in the chronic stage should address the chronic inflammatory nature of this process, in which over-expression TGF beta-1 may be a target for therapeutic intervention. Life-long follow-up often is required for management of delayed effects and for early detection of secondary

  10. Ionizing Radiation Environments and Exposure Risks

    NASA Astrophysics Data System (ADS)

    Kim, M. H. Y.

    2015-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.

  11. Radiation Safety Issues in High Altitude Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  12. Children's cognition and aircraft noise exposure at home--the West London Schools Study.

    PubMed

    Matsui, T; Stansfeld, S; Haines, M; Head, J

    2004-01-01

    The association of aircraft noise exposure with cognitive performance was examined by means of a cross-sectional field survey. Two hundred thirty six children attending 10 primary schools around Heathrow Airport in west London were tested on reading comprehension, immediate/delayed recall and sustained attention. In order to obtain the information about their background, a questionnaire was delivered to the parents and 163 answers were collected. Logistic regression models were used to assess performance on the cognitive tests in relation to aircraft noise exposure at home and possible individual and school level confounding factors. A significant dose-response relationship was found between aircraft noise exposure at home and performance on memory tests of immediate/delayed recall. However there was no strong association with the other cognitive outcomes. These results suggest that aircraft noise exposure at home may affect children's memory.

  13. DOE 2012 Occupational Radiation Exposure October 2013

    SciTech Connect

    Podonsky, Glenn S.

    2012-02-02

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The

  14. Effects of changed aircraft noise exposure on experiential qualities of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-10-01

    The literature indicates that sound and visual stimuli interact in the impression of landscapes. This paper examines the relationship between annoyance with sound from aircraft and annoyance with other area problems (e.g., careless bicycle riding, crowding, etc.), and how changes in noise exposure influence the perceived overall recreational quality of outdoor recreational areas. A panel study (telephone interviews) conducted before and after the relocation of Norway's main airport in 1998 examined effects of decreased or increased noise exposure in nearby recreational areas (n = 591/455). Sound from aircraft annoyed the largest proportion of recreationists, except near the old airport after the change. The decrease in annoyance with sound from aircraft was accompanied by significant decreases in annoyance with most of the other area problems. Near the new airport annoyance with most factors beside sound from aircraft increased slightly, but not significantly. A relationship between aircraft noise annoyance and perceived overall recreational quality of the areas was found.

  15. Lead exposure and radiator repair work.

    PubMed

    Lussenhop, D H; Parker, D L; Barklind, A; McJilton, C

    1989-11-01

    In 1986, the ambient air for lead in radiator repair shops in the Minneapolis-St. Paul metropolitan area exceeded the Occupational Safety and Health Administration (OSHA) action level in nine of 12 shops sampled by Minnesota OSHA. We therefore sought to determine the prevalence of lead exposure/toxicity in this industry. Thirty-five radiator shops were identified, 30 were visited, and 53 workers were studied. The mean blood lead level was 1.53 (range 0.24-2.80). Seventeen individuals had blood lead levels greater than or equal to 1.93 mumol/L (40 micrograms/dl). The mean zinc protoporphyrin level (ZPP) was 0.55 mumol/L (range 0.16-1.43). No single worksite or personal characteristic was a strong determinant of either blood lead or ZPP level.

  16. Lead exposure and radiator repair work

    SciTech Connect

    Lussenhop, D.H.; Parker, D.L.; Barklind, A.; McJilton, C. )

    1989-11-01

    In 1986, the ambient air for lead in radiator repair shops in the Minneapolis-St. Paul metropolitan area exceeded the Occupational Safety and Health Administration (OSHA) action level in nine of 12 shops sampled by Minnesota OSHA. We therefore sought to determine the prevalence of lead exposure/toxicity in this industry. Thirty-five radiator shops were identified, 30 were visited, and 53 workers were studied. The mean blood lead level was 1.53 (range 0.24-2.80). Seventeen individuals had blood lead levels greater than or equal to 1.93 mumol/L (40 micrograms/dl). The mean zinc protoporphyrin level (ZPP) was 0.55 mumol/L (range 0.16-1.43). No single worksite or personal characteristic was a strong determinant of either blood lead or ZPP level.

  17. LPGS. Code System for Calculating Radiation Exposure

    SciTech Connect

    White, J.E.; Eckerman, K.F.

    1983-01-01

    LPGS was developed to calculate the radiological impacts resulting from radioactive releases to the hydrosphere. The name LPGS was derived from the Liquid Pathway Generic Study for which the original code was used primarily as an analytic tool in the assessment process. The hydrosphere is represented by the following types of water bodies: estuary, small river, well, lake, and one-dimensional (1-d) river. LPGS is designed to calculate radiation dose (individual and population) to body organs as a function of time for the various exposure pathways. The radiological consequences to the aquatic biota are estimated. Several simplified radionuclide transport models are employed with built-in formulations to describe the release rate of the radionuclides. A tabulated user-supplied release model can be input, if desired. Printer plots of dose versus time for the various exposure pathways are provided.

  18. DOE 2008 Occupational Radiation Exposure October 2009

    SciTech Connect

    U.S. Department of Energy, Office of Health, Safety and Security

    2009-10-01

    A major priority of the U.S. Department of Energy (DOE) is to ensure the health, safety, and security of DOE employees, contractors, and subcontractors. The Office of Health, Safety and Security (HSS) provides the corporate-level leadership and strategic vision necessary to better coordinate and integrate health, safety, environment, security, enforcement, and independent oversight programs. One function that supports this mission is the DOE Corporate Operating Experience Program that provides collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. This analysis supports corporate decision-making and synthesizes operational information to support continuous environment, safety, and health improvement across the DOE complex.

  19. Intrauterine radiation exposures and mental retardation

    SciTech Connect

    Miller, R.W.

    1988-08-01

    Small head size and mental retardation have been known as effects of intrauterine exposure to ionizing radiation since the 1920s. In the 1950s, studies of Japanese atomic-bomb survivors revealed that at 4-17 wk of gestation, the greater the dose, the smaller the brain (and head size), and that beginning at 0.5 Gy (50 rad) in Hiroshima, mental retardation increased in frequency with increasing dose. No other excess of birth defects was observed. Otake and Schull (1984) pointed out that the period of susceptibility to mental retardation coincided with that for proliferation and migration of neuronal elements from near the cerebral ventricles to the cortex. Mental retardation could be the result of interference with this process. Their analysis indicated that exposures at 8-15 wk to 0.01-0.02 Gy (1-2 rad) doubled the frequency of severe mental retardation. This estimate was based on small numbers of mentally retarded atomic-bomb survivors. Although nuclear accidents have occurred recently, new cases will hopefully be too rare to provide further information about the risk of mental retardation. It may be possible, however, to learn about lesser impairment. New psychometric tests may be helpful in detecting subtle deficits in intelligence or neurodevelopmental function. One such test is PEERAMID, which is being used in schools to identify learning disabilities due, for example, to deficits in attention, short- or long-term memory, or in sequencing information. This and other tests could be applied in evaluating survivors of intrauterine exposure to various doses of ionizing radiation. The results could change our understanding of the safety of low-dose exposures.

  20. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  1. Multilayer reflectance during exposure to EUV radiation

    NASA Astrophysics Data System (ADS)

    Oestreich, Sebastian; Klein, Roman; Scholze, Frank; Jonkers, Jeroen; Louis, Eric; Yakshin, Andrey E.; Goerts, Peter C.; Ulm, Gerhard; Haidl, Markus; Bijkerk, Fred

    2000-11-01

    Mo/S multilayer mirrors have been exposed to intense monochromatic EUV radiation in order to investigate a possible deterioration of the mirror reflectance under different vacuum conditions. Power densities up to 3 mW/mm2 were applied at the PB undulator beamline at BESSY II, applying a hydrocarbon enriched vacuum. The mirror reflectance has been monitored in situ during several hours of exposure. Vacuum pressures of 3 X 10-8 mbar (without hydrocarbons) and 10-7 mbar (with hydrocarbons) at EUV intensities of 3 mW/mm2, respectively 0.2 mW/mm2 have been applied. The reflectance of the mirrors decreased when exposed to EUV radiation in hydrocarbon enriched vacuum, while no loss in reflectance was observed when no hydrocarbons were added to the vacuum. Ozone-cleaning experiments, using UV produced ozone from air at atmospheric pressure, were performed and show that Mo/S mirrors do not suffer from prolonged exposure to ozone.

  2. Saliva Cortisol and Exposure to Aircraft Noise in Six European Countries

    PubMed Central

    Selander, Jenny; Bluhm, Gösta; Theorell, Töres; Pershagen, Göran; Babisch, Wolfgang; Seiffert, Ingeburg; Houthuijs, Danny; Breugelmans, Oscar; Vigna-Taglianti, Federica; Antoniotti, Maria Chiara; Velonakis, Emmanuel; Davou, Elli; Dudley, Marie-Louise; Järup, Lars

    2009-01-01

    Background Several studies show an association between exposure to aircraft or road traffic noise and cardiovascular effects, which may be mediated by a noise-induced release of stress hormones. Objective Our objective was to assess saliva cortisol concentration in relation to exposure to aircraft noise. Method A multicenter cross-sectional study, HYENA (Hypertension and Exposure to Noise near Airports), comprising 4,861 persons was carried out in six European countries. In a subgroup of 439 study participants, selected to enhance the contrast in exposure to aircraft noise, saliva cortisol was assessed three times (morning, lunch, and evening) during 1 day. Results We observed an elevation of 6.07 nmol/L [95% confidence interval (CI), 2.32–9.81 nmol/L] in morning saliva cortisol level in women exposed to aircraft noise at an average 24-hr sound level (LAeq,24h) > 60 dB, compared with women exposed to LAeq,24h ≤ 50 dB, corresponding to an increase of 34%. Employment status appeared to modify the response. We found no association between noise exposure and saliva cortisol levels in men. Conclusions Our results suggest that exposure to aircraft noise increases morning saliva cortisol levels in women, which could be of relevance for noise-related cardiovascular effects. PMID:20049122

  3. The effects of road traffic and aircraft noise exposure on children's episodic memory: the RANCH project.

    PubMed

    Matheson, Mark; Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Haines, Mary; Barrio, Isabel Lopez; Hygge, Staffan; Stansfeld, Stephen

    2010-01-01

    Previous studies have found that chronic exposure to aircraft noise has a negative effect on children's performance on tests of episodic memory. The present study extended the design of earlier studies in three ways: firstly, by examining the effects of two noise sources, aircraft and road traffic, secondly, by examining exposure-effect relationships, and thirdly, by carrying out parallel field studies in three European countries, allowing cross-country comparisons to be made. A total of 2844 children aged between 8 years 10 months and 12 years 10 months (mean age 10 years 6 months) completed classroom-based tests of cued recall, recognition memory and prospective memory. Questionnaires were also completed by the children and their parents in order to provide information about socioeconomic context. Multilevel modeling analysis revealed aircraft noise to be associated with an impairment of recognition memory in a linear exposure-effect relationship. The analysis also found road traffic noise to be associated with improved performance on cued recall in a linear exposure-effect relationship. No significant association was found between exposure to aircraft noise and cued recall or prospective memory. Likewise, no significant association was found between road traffic noise and recognition or prospective memory. Taken together, these findings indicate that exposure to aircraft noise and road traffic noise can impact on certain aspects of children's episodic memory.

  4. Ocular ultraviolet radiation exposure of welders.

    PubMed

    Tenkate, Thomas D

    2017-03-15

    I read with interest a recent paper in your journal by Slagor et al on the risk of cataract in relation to metal arc welding (1). The authors highlight that even though welders are exposed to substantial levels of ultraviolet radiation (UVR), "no studies have reported data on how much UVR welders' eyes are exposed to during a working day. Thus, we do not know whether welders are more or less exposed to UVR than outdoor workers" (1, p451). Undertaking accurate exposure assessment of UVR from welding arcs is difficult, however, two studies have reported ocular/facial UVR levels underneath welding helmets (2, 3). In the first paper, UVR levels were measured using polysulphone film dosimeters applied to the cheeks of a patient who suffered from severe facial dermatitis (2). UVR levels of four times the American Conference of Governmental Industrial Hygienists (ACGIH) maximum permissible exposure (MPE) (4) were measured on the workers left cheek and nine times the MPE on the right cheek. The authors concluded that the workers dermatitis was likely to have been due to the UVR exposure received during welding. In the other paper, a comprehensive exposure assessment of personal UVR exposure of workers in a welding environment was reported (3). The study was conducted at a metal fabrication workshop with participants being welders, boilermakers and non-welders (eg, supervisors, fitters, machinists). Polysulphone film dosimeters were again used to measure UVR exposure of the workers, with badges worn on the clothing of workers (in the chest area), on the exterior of welding helmets, attached to 11 locations on the inside of welding helmets, and on the bridge and side-shields of safety spectacles. Dosimeters were also attached to surfaces throughout the workshop to measure ambient UVR levels. For welding subjects, mean 8-hour UVR doses within the welding helmets ranged from around 9 mJ/cm (2)(3×MPE) on the inside of the helmets to around 15 mJ/cm (2)(5×MPE) on the headband

  5. Radiation Exposure in X-Ray and CT Examinations

    MedlinePlus

    ... the largest source of background radiation comes from radon gas in our homes (about 2 mSv per ... Like other sources of background radiation, exposure to radon varies widely from one part of the country ...

  6. Medical radiation exposure and genetic risks

    SciTech Connect

    Baker, D.G.

    1980-09-01

    Everyone is exposed to background radiation throughout life (100 mrem/year to the gonads or 4 to 5 rem during the reproductive years). A lumbosacral series might deliver 2500 mrem to the male or 400 mrem to the female gonads. A radiologic procedure is a cost/benefit decision, and genetic risk is a part of the cost. Although cost is usually very low compared to benefit, if the procedure is unnecessary then the cost may be unacceptable. On the basis of current estimates, the doubling dose is assumed to be 40 rem (range 20 to 200) for an acute dose, and 100 rem for protracted exposure. Although there is no satisfactory way to predict the size of the risk for an individual exposed, any risk should be incentive to avoid unnecessary radiation to the gonads. Conception should be delayed for at least ten months for women and three or four months for men after irradiation of the gonads. The current incidence of genetically related diseases in the United States population is 60,000 per million live births. Based on the most conservative set of assumptions, an average gonadal dose of 1000 mrem to the whole population would increase the incidence of genetically related diseases by 0.2%.

  7. Radiation exposure of LDEF: Initial results

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Parnell, T. A.; Watts, John W., Jr.

    1991-01-01

    Initial results from Long Duration Exposure Facility (LDEF) include radiation detector measurements from four experiments; P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also at the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose dependence of a factor of approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly (SAA). On the trailing edge of the orbiter, a range of doses from 664 to 291 rad were measured under nominal shielding of 0.42 to 8.45 g/sq cm. A second set of detectors near this locations results are also given. On the leading edge, doses of 258 to 210 rad were found under shielding of 1.25 to 2.48 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses, and dose equivalents, for LET in H2O greater than or = 5 keV/micron, were measured with plastic nuclear track detectors located in the four experiments. Also, preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils.

  8. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes which occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in a urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spacial variability. The partitioning of energy budget terms depends on the surface type. In natural landscapes, the partitioning is dependent on canopy biomass, leaf area index, aerodynamic roughness, and moisture status, all of which are influenced by the development stage of the ecosystem. In urban landscapes, coverage by man-made materials substantially alters the surface face energy budget. The remotely sensed data obtained from aircraft and satellites, when properly calibrated allows the measurement of important terms in the radiative surface energy budget a urban landscape scale.

  9. Effects of high vs low-level radiation exposure

    SciTech Connect

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved.

  10. Occupational Radiation Exposure During Endovascular Aortic Repair

    SciTech Connect

    Sailer, Anna M.; Schurink, Geert Willem H.; Bol, Martine E. Haan, Michiel W. de Zwam, Willem H. van Wildberger, Joachim E. Jeukens, Cécile R. L. P. N.

    2015-08-15

    PurposeThe aim of the study was to evaluate the radiation exposure to operating room personnel and to assess determinants for high personal doses during endovascular aortic repair.Materials and MethodsOccupational radiation exposure was prospectively evaluated during 22 infra-renal aortic repair procedures (EVAR), 11 thoracic aortic repair procedures (TEVAR), and 11 fenestrated or branched aortic repair procedures (FEVAR). Real-time over-lead dosimeters attached to the left breast pocket measured personal doses for the first operators (FO) and second operators (SO), radiology technicians (RT), scrub nurses (SN), anesthesiologists (AN), and non-sterile nurses (NSN). Besides protective apron and thyroid collar, no additional radiation shielding was used. Procedural dose area product (DAP), iodinated contrast volume, fluoroscopy time, patient’s body weight, and C-arm angulation were documented.ResultsAverage procedural FO dose was significantly higher during FEVAR (0.34 ± 0.28 mSv) compared to EVAR (0.11 ± 0.21 mSv) and TEVAR (0.06 ± 0.05 mSv; p = 0.003). Average personnel doses were 0.17 ± 0.21 mSv (FO), 0.042 ± 0.045 mSv (SO), 0.019 ± 0.042 mSv (RT), 0.017 ± 0.031 mSv (SN), 0.006 ± 0.007 mSv (AN), and 0.004 ± 0.009 mSv (NSN). SO and AN doses were strongly correlated with FO dose (p = 0.003 and p < 0.001). There was a significant correlation between FO dose and procedural DAP (R = 0.69, p < 0.001), iodinated contrast volume (R = 0.67, p < 0.001) and left-anterior C-arm projections >60° (p = 0.02), and a weak correlation with fluoroscopy time (R = 0.40, p = 0.049).ConclusionAverage FO dose was a factor four higher than SO dose. Predictors for high personal doses are procedural DAP, iodinated contrast volume, and left-anterior C-arm projections greater than 60°.

  11. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    PubMed Central

    Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931

  12. Radiation Exposure from Medical Exams and Procedures

    MedlinePlus

    ... the amount of radia- tion used. A more quantitative assessment of the benefits of medi- cal radiation ... engineers, lawyers, and other professionals. Activities include encouraging research in radiation science, developing standards, and disseminating radiation ...

  13. DOE occupational radiation exposure. Report 1992--1994

    SciTech Connect

    1997-05-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.

  14. Radiation exposure of nurses in a coronary care unit

    SciTech Connect

    Jankowski, C.B.

    1984-01-01

    In response to increasing awareness of radiation as a possible occupational hazard, nursing personnel staffing a hospital CCU were monitored over a 3-year period to determine occupational exposure. Portable x-ray machines, fluoroscopic units, and patients injected with radiopharmaceuticals were all potential radiation sources on such a unit. Whole-body TLD badges, exchanged monthly, indicated no cumulative exposures over 80 mR during the entire study period. The minimal exposures reported do not justify regular use of dosimeters. Adherence to standard protective measures precludes most exposure to machine-produced radiation. Close, prolonged contact with a patient after an RVG study that utilizes /sup 99m/Tc may account for some exposure. The data indicate that radiation is not a significant occupational hazard for CCU nurses at this hospital; similar minimal exposures would be expected of other nonoccupationally exposed nursing personnel in like environments.

  15. Approximating the Probability of Mortality Due to Protracted Radiation Exposures

    DTIC Science & Technology

    2016-06-01

    fatality plots in HPAC for whole body exposure due to nuclear weapons frequently indicate a median lethal dose (LD50) much higher than the prompt dose...mortality for whole- body , protracted radiation exposure in the fallout field of a nuclear detonation is based on the Radiation-Induced Performance Decrement...for the toxic load model of the effects of chemical exposure. Modelers must be keep in mind that these power law relationships can rarely be

  16. Tidewater and Weather-exposure Tests on Metals Used in Aircraft II.

    NASA Technical Reports Server (NTRS)

    Mutchler, Willard; Galvin, W G

    1942-01-01

    This report is an addendum to NACA Technical Note No. 736, which dealt with tidewater and weather-exposure tests being conducted by the National Bureau of Standards on various aluminum alloys, magnesium alloys, and stainless steels used in aircraft. The exposures were begun in June 1938 and were terminated, for this particular series, in June 1941. The methods of exposure and the materials being investigated are described, and the more important results obtained up to the conclusion of the second year's exposure are reported.

  17. DOE Basic Overview of Occupational Radiation Exposure_2011 pamphlet

    SciTech Connect

    ORAU

    2012-08-08

    This pamphlet focusses on two HSS activities that help ensure radiation exposures are accurately assessed and recorded, namely: 1) the quality and accuracy of occupational radiation exposure monitoring, and 2) the recording, reporting, analysis, and dissemination of the monitoring results. It is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE. The Department of Energy Laboratory Accreditation Program (DOELAP) is in place to ensure that radiation exposure monitoring at all DOE sites is precise and accurate, and conforms to national and international performance and quality assurance standards. The DOE Radiation Exposure Monitoring Systems (REMS) program provides for the collection, analysis, and dissemination of occupational radiation exposure information. The annual REMS report is a valuable tool for managing radiological safety programs and for developing policies to protect individuals from occupational exposure to radiation. In tandem, these programs provide DOE management and workers an assurance that occupational radiation exposures are accurately measured, analyzed, and reported.

  18. High energy radiation from aircraft-triggered lightning and thunderstorm

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; van Deursen, Alexander P. J.; de Boer, Alte I.; Bardet, Michiel; Boissin, Jean-François

    2016-04-01

    In-flight Lightning Strike Damage Assessment System (ILDAS http://ildas.nlr.nl/) was developed in an EU FP6 project to provide information on threat that lightning poses to aircraft. The system contains one E-field and eight H-field sensors distributed over the fuselage. It has recently been extended to include two LaBr3 scintillation detectors. The scintillation detectors are sensitive to x-ray photons above 30 keV. The entire system is installed on an A-350 aircraft. When triggered by lightning and digitizes data synchronously with 10 ns intervals. Twelve continuously monitoring photon energy channels were implemented for X-ray detectors operating at slower rate (15 ms, pulse counting). In spring of 2014 and 2015 the aircraft flew through thunderstorm cells recording the data from the sensors. Total of 93 lightning strikes to the aircraft are recorded. Eighteen of them are also detected by WWLLN network. One strike consists of six individual strokes within 200 ms that were all synchronously identified by WWLLN. The WWLLN inter-stroke distance is much larger than the aircraft movement. Three of these strokes generated X-ray bursts. One exceptionally bright X-ray pulse of more than 8 MeV has been detected in association with another strike; it probably saturated the detector's photomultiplier. Neither long gamma-ray glow, nor positron annihilation have been detected during the campaign. An explanation is sought in the typical altitude profile of these test flights.

  19. Aircrew Exposure To Cosmic Radiation Evaluated By Means Of Several Methods; Results Obtained In 2006

    SciTech Connect

    Ploc, Ondrej; Spurny, Frantisek; Jadrnickova, Iva; Turek, Karel

    2008-08-07

    Routine evaluation of aircraft crew exposure to cosmic radiation in the Czech Republic is performed by means of calculation method. Measurements onboard aircraft work as a control tool of the routine method, as well as a possibility of comparison of results measured by means of several methods. The following methods were used in 2006: (1) mobile dosimetry unit (MDU) type Liulin--a spectrometer of energy deposited in Si-detector; (2) two types of LET spectrometers based on the chemically etched track detectors (TED); (3) two types of thermoluminescent detectors; and (4) two calculation methods. MDU represents currently one of the most reliable equipments for evaluation of the aircraft crew exposure to cosmic radiation. It is an active device which measures total energy depositions (E{sub dep}) in the semiconductor unit, and, after appropriate calibration, is able to give a separate estimation for non-neutron and neutron-like components of H*(10). This contribution consists mostly of results acquired by means of this equipment; measurements with passive detectors and calculations are mentioned because of comparison. Reasonably good agreement of all data sets could be stated.

  20. Monte Carlo calculation of the radiation field at aircraft altitudes.

    PubMed

    Roesler, S; Heinrich, W; Schraube, H

    2002-01-01

    Energy spectra of secondary cosmic rays are calculated for aircraft altitudes and a discrete set of solar modulation parameters and rigidity cut-off values covering all possible conditions. The calculations are based on the Monte Carlo code FLUKA and on the most recent information on the interstellar cosmic ray flux including a detailed model of solar modulation. Results are compared to a large variety of experimental data obtained on the ground and aboard aircraft and balloons, such as neutron, proton, and muon spectra and yields of charged particles. Furthermore, particle fluence is converted into ambient dose equivalent and effective dose and the dependence of these quantities on height above sea level, solar modulation, and geographical location is studied. Finally, calculated dose equivalent is compared to results of comprehensive measurements performed aboard aircraft.

  1. Exposure assessment for a large epidemiological study of aircraft manufacturing workers.

    PubMed

    Marano, D E; Boice, J D; Fryzek, J P; Morrison, J A; Sadler, C J; McLaughlin, J K

    2000-08-01

    Methods were developed to assess exposure to a wide variety of chemicals for nearly 80,000 workers involved in manufacturing aircraft since 1928. The facilities, now closed, consisted of four major plants, over 200 buildings, and a changing workforce during 60 years of operation. To access chemical exposures by specific jobs and calendar years, we reviewed complete work histories, examined detailed job descriptions available going back to 1940, interviewed long-term employees, conducted walk-through visits of aircraft manufacturing plants, reviewed comprehensive environmental assessment reports and industrial hygiene surveys on the facilities, and built on experience gained in previous studies of the aircraft industry. Using computer-based imaging systems, we examined and evaluated the complete work histories found on service record cards for the cohort and abstracted detailed information on all jobs held among the factory workers who had been employed for at least one year. Jobs were classified into one of three exposure categories related to the use of specific chemicals: routine, intermittent, and none, and these classifications were subsequently used in the epidemiological analyses. The approach to exposure assessment began with the most general categorization of employees (i.e., all workers) and then became progressively more specific, that is, factor workers, job families (similar activities), job titles, and jobs with chemical usage (exposure potential). Because exposure surveys were limited or absent during the early years of plant operations, we did not assign quantitative measures of exposure to individual job activities. Instead, we used as our exposure metric, the length of time spent in jobs with potential exposure to the chemical. Important occupational exposures included chromate-containing compounds such as used in paint primers, trichloroethylene and perchloroethylene used as vapor-state degreasing solvents, and a broad range of other solvents.

  2. DOE 2010 Occupational Radiation Exposure November 2011

    SciTech Connect

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  3. Exposing Exposure: Automated Anatomy-specific CT Radiation Exposure Extraction for Quality Assurance and Radiation Monitoring

    PubMed Central

    Warden, Graham I.; Farkas, Cameron E.; Ikuta, Ichiro; Prevedello, Luciano M.; Andriole, Katherine P.; Khorasani, Ramin

    2012-01-01

    Purpose: To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. Materials and Methods: This institutional review board–approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Results: Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality

  4. Effects of Changed Aircraft Noise Exposure on Experiential Qualities of Outdoor Recreational Areas

    PubMed Central

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-01-01

    The literature indicates that sound and visual stimuli interact in the impression of landscapes. This paper examines the relationship between annoyance with sound from aircraft and annoyance with other area problems (e.g., careless bicycle riding, crowding, etc.), and how changes in noise exposure influence the perceived overall recreational quality of outdoor recreational areas. A panel study (telephone interviews) conducted before and after the relocation of Norway’s main airport in 1998 examined effects of decreased or increased noise exposure in nearby recreational areas (n = 591/455). Sound from aircraft annoyed the largest proportion of recreationists, except near the old airport after the change. The decrease in annoyance with sound from aircraft was accompanied by significant decreases in annoyance with most of the other area problems. Near the new airport annoyance with most factors beside sound from aircraft increased slightly, but not significantly. A relationship between aircraft noise annoyance and perceived overall recreational quality of the areas was found. PMID:21139858

  5. Regulation of nuclear radiation exposures in India.

    PubMed

    Mishra, U C

    2004-01-01

    India has a long-term program of wide spread applications of nuclear radiations and radioactive sources for peaceful applications in medicine, industry, agriculture and research and is already having several thousand places in the country where such sources are being routinely used. These places are mostly outside the Department of Atomic Energy (DAE) installations. DAE supplies such sources. The most important application of nuclear energy in DAE is in electricity generation through nuclear power plants. Fourteen such plants are operating and many new plants are at various stages of construction. In view of the above mentioned wide spread applications, Indian parliament through an Act, called Atomic Energy Act, 1964 created an autonomous body called Atomic Energy Regulatory Board (AERB) with comprehensive authority and powers. This Board issues codes, guides, manuals, etc., to regulate such installations so as to ensure safe use of such sources and personnel engaged in such installations and environment receives radiation exposures within the upper bounds prescribed by them. Periodic reports are submitted to AERB to demonstrate compliance of its directives. Health, Safety and Environment Group of Bhabha Atomic Research Centres, Mumbai carries out necessary surveillance and monitoring of all installations of the DAE on a routine basis and also periodic inspections of other installations using radiation sources. Some of the nuclear fuel cycle plants like nuclear power plants and fuel reprocessing involve large radioactive source inventories and have potential of accidental release of radioactivity into the environment, an Environmental Surveillance Laboratory (ESL) is set up at each such site much before the facility goes into operation. These ESL's collect baseline data and monitor the environment throughout the life of the facilities including the decommissioning stage. The data is provided to AERB and is available to members of the public. In addition, a multi

  6. Development of a proposed international standard for certification of aircraft to High Intensity Radiated Fields (HIRF)

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.

    1993-01-01

    Avionic systems performing critical functions in modern aircraft are potentially susceptible to the hazards of electromagnetic radiation from ground and airborne transmitters. The Federal Aviation Administration (FAA) requested that the Society of Automotive Engineers (SAE) coordinate the development of procedures and guidance material which can be used during the aircraft certification process to ensure adequate protection against high intensity radiated fields (HIRF). This paper addresses both the technical challenge of drafting a certification procedure and guidance standard as well as the management process used by the SAE subcommittee AE4R to converge a diverse range of opinions by its international membership in the shortest possible time.

  7. Human noise exposure criteria for combat aircraft training areas

    NASA Astrophysics Data System (ADS)

    Lee, Robert A.; Harris, C. Stanley; Vongierke, Henning E.

    1992-04-01

    An overview of interpretive criteria for the noise exposure conditions associated with low altitude flying operations in the United States is presented. It includes description of single event and cumulative noise characteristics unique to such flying activity and a discussion of rationale for using the measure, onset rated adjusted Day-Night Average Sound Level, for predicting population annoyance.

  8. Modeling flight attendants' exposure to secondhand smoke in commercial aircraft: historical trends from 1955 to 1989.

    PubMed

    Liu, Ruiling; Dix-Cooper, Linda; Hammond, S Katharine

    2015-01-01

    Flight attendants were exposed to elevated levels of secondhand smoke (SHS) in commercial aircraft when smoking was allowed on planes. During flight attendants' working years, their occupational SHS exposure was influenced by various factors, including the prevalence of active smokers on planes, fliers' smoking behaviors, airplane flight load factors, and ventilation systems. These factors have likely changed over the past six decades and would affect SHS concentrations in commercial aircraft. However, changes in flight attendants' exposure to SHS have not been examined in the literature. This study estimates the magnitude of the changes and the historic trends of flight attendants' SHS exposure in U.S. domestic commercial aircraft by integrating historical changes of contributing factors. Mass balance models were developed and evaluated to estimate flight attendants' exposure to SHS in passenger cabins, as indicated by two commonly used tracers (airborne nicotine and particulate matter (PM)). Monte Carlo simulations integrating historical trends and distributions of influence factors were used to simulate 10,000 flight attendants' exposure to SHS on commercial flights from 1955 to 1989. These models indicate that annual mean SHS PM concentrations to which flight attendants were exposed in passenger cabins steadily decreased from approximately 265 μg/m(3) in 1955 and 1960 to 93 μg/m(3) by 1989, and airborne nicotine exposure among flight attendants also decreased from 11.1 μg/m(3) in 1955 to 6.5 μg/m(3) in 1989. Using duration of employment as an indicator of flight attendants' cumulative occupational exposure to SHS in epidemiological studies would inaccurately assess their lifetime exposures and thus bias the relationship between the exposure and health effects. This historical trend should be considered in future epidemiological studies.

  9. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe.

    PubMed

    Di, Guo-Qing; Zhou, Bing; Li, Zheng-Guang; Lin, Qi-Li

    2011-12-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L(WECPN)) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe.

  10. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe*

    PubMed Central

    Di, Guo-qing; Zhou, Bing; Li, Zheng-guang; Lin, Qi-li

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L WECPN) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  11. Validation of Aircraft Noise Prediction Models at Low Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.

  12. Cosmic radiation dose in aircraft--a neutron track etch detector.

    PubMed

    Vuković, B; Radolić, V; Miklavcić, I; Poje, M; Varga, M; Planinić, J

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  13. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study

    PubMed Central

    Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven

    2013-01-01

    Objective To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥65 years) residing near airports. Design Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. Setting 2218 zip codes surrounding 89 airports in the contiguous states. Participants 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥65 years) residing near airports in 2009. Main outcome measures Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Results Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Conclusions Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports. PMID:24103538

  14. Taste aversions conditioned with partial body radiation exposures

    SciTech Connect

    Smith, J.C.; Hollander, G.R.; Spector, A.C. . Dept. of Psychology)

    1981-11-01

    Radiation-induced taste aversion was compared in rats which received partial body exposure to the head or abdomen with rats receiving whole body irradiation. Exposure levels ranged from 25 to 300 roentgens (R). In additional groups, saccharin aversion to partial body gamma ray exposures of the abdomen were conditioned in animals which had prior experience with the saccharin solution. Aversion was measured with a single-bottle short-term test, a 23-hour preference test and by the number of days taken to recover from the aversion. Whole-body exposure was most effective in conditioning the aversion, and exposure of the abdominal area was more effective than exposure to the head. Also, the higher the exposure, the stronger the aversion. Rats receiving prior experience with the saccharin did not condition as well as control rats with no prior saccharin experience. The possible role of radiation-induced taste aversion in human radiotherapy patients was discussed.

  15. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  16. Radiation exposure from fluoroscopy during orthopedic surgical procedures

    SciTech Connect

    Riley, S.A. )

    1989-11-01

    The use of fluoroscopy has enabled orthopedic surgeons to become technically more proficient. In addition, these surgical procedures tend to have less associated patient morbidity by decreasing operative time and minimizing the area of the operative field. The trade-off, however, may be an increased risk of radiation exposure to the surgeon on an annual or lifetime basis. The current study was designed to determine the amount of radiation received by the primary surgeon and the first assistant during selected surgical procedures involving the use of fluoroscopy. Five body sites exposed to radiation were monitored for dosage. The results of this study indicate that with appropriate usage, (1) radiation exposure from fluoroscopy is relatively low; (2) the surgeon's dominant hand receives the most exposure per case; and (3) proper maintenance and calibration of fluoroscopic machines are important factors in reducing exposure risks. Therefore, with proper precautions, the use of fluoroscopy in orthopedic procedures can remain a safe practice.

  17. Control of excessive lead exposure in radiator repair workers.

    PubMed

    1991-03-01

    In 1988, 83 automotive repair workers with blood lead levels (BLLs) greater than 25 micrograms/dL were reported to state health departments in the seven states that collaborated with CDC's National Institute for Occupational Safety and Health (NIOSH) in maintaining registries of elevated BLLs in adults. In 18 (22%) of these 83 persons, BLLs were greater than 50 micrograms/dL. Among automotive repair workers for whom a job category was specified, radiator repair work was the principal source of lead exposure. The major sources of exposure for radiator repair workers are lead fumes generated during soldering and lead dust produced during radiator cleaning. This report summarizes current BLL surveillance data for radiator repair workers and describes three control technologies that are effective in reducing lead exposures in radiator repair shops.

  18. Structural Alterations in the Cornea from Exposure to Infrared Radiation

    DTIC Science & Technology

    1985-07-01

    mylar disks that were preformed - 4- to match the corneal curvature. The disks were attached 0 at their edges to excised corneas using cyanoacrylate ...ICFIECOP JHU/APL TG 1364 JULY 1985 (0 FINAL Technical Memorandum STRUCTURAL ALTERATIONS IN THE CORNEA FROM EXPOSURE TO INFRARED RADIATION R. A...Structural Alterations in the Cornea from Exposure to Infrared Radiation 12. PERSONAL AUTHOR(S) R. A. Farrell, R. L. McCally, C. B. Bargeron, and W. R. Green

  19. Personnel exposure to radiation at some angiographic procedures

    SciTech Connect

    Gustafsson, M.; Lunderquist, A.

    1981-09-01

    Personnel exposure to radiation was investigated during radiological procedures where x-ray shielding is particularly difficult. Ten percutaneous transhepatic cholangiographies, four percutaneous transhepatic portographies, and four coronary angiographies are included in the study. Exposure to radiation was measured at several anatomical sites for both the radiologist and the assisting nurse. Effective dose equivalents as proposed by the International Commisson on Radiological Protection (ICRP) were estimated from the registered absorbed doses.

  20. Personnel exposure to radiation at some angiographic procedures

    SciTech Connect

    Gustafsson, M.; Lunderquist, A.

    1981-09-01

    Personnel exposure to radiation was investigated during radiological procedures where x-ray shielding is particularly difficult. Ten percutaneous transhepatic cholangiographies, four percutaneous transhepatic portographies, and four coronary angiographies are included in the study. Exposure to radiation was measured at several anatomical sites for both the radiologist and the assisting nurse. Effective dose equivalents as proposed by the International Commission on Radiological Protection (ICRP) were estimated from the registered absorbed doses.

  1. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  2. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  3. Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment

    SciTech Connect

    Maddalena, Randy I.; McKone, Thomas E.

    2008-10-01

    The objective of this project was to provide initial estimates of the relationship between insecticide use on passenger aircraft and exposure levels present in the cabin environment. The work was initially divided into three tasks including 1) a review of insecticide application practices in commercial aircraft, 2) exploratory measurements of insecticide concentrations in treated aircraft and 3) screening level exposure modeling. Task 1 gathered information that is needed to assess the time-concentration history of insecticides in the airline cabin. The literature review focused on application practices, information about the cabin environment and existing measurements of exposure concentrations following treatment. Information from the airlines was not available for estimating insecticide application rates in the U.S. domestic fleet or for understanding how frequently equipment rotate into domestic routes following insecticide treatment. However, the World Health Organization (WHO) recommends several methods for treating aircraft with insecticide. Although there is evidence that these WHO guidelines may not always be followed, and that practices vary by airline, destination, and/or applicator company, the guidelines in combination with information related to other indoor environments provides a plausible basis for estimating insecticide loading rates on aircraft. The review also found that while measurements of exposure concentrations following simulated aerosol applications are available, measurements following residual treatment of aircraft or applications in domestic aircraft are lacking. Task 2 focused on developing an approach to monitor exposure concentrations in aircraft using a combination of active and passive sampling methods. An existing active sampling approach was intended to provide data immediately following treatment while a passive sampler was developed to provide wider coverage of the fleet over longer sampling periods. The passive sampler, based

  4. The atmospheric cosmic- and solar energetic particle radiation environment at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Smart, D F; Sauer, H H

    1998-01-01

    Galactic cosmic rays interact with the solar wind, the earth's magnetic field and hadron, lepton and photon fields at aircraft altitudes. In addition to cosmic rays, energetic particles generated by solar activity bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as atmospheric cosmic rays. We have used a code based on transport theory to calculate atmospheric cosmic-ray quantities and compared them with experimental data. Agreement with these data is seen to be good. We have then used this code to calculate equivalent doses to aircraft crews. We have also used the code to calculate radiation doses from several large solar energetic particle events which took place in 1989, including the very large event that occurred on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory.

  5. Charged particle radiation exposure of geocentric satellites

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1989-01-01

    The near-earth radiation environment is characterized, summarizing published data on trapped and transient charged particles and their potential effects on hardware systems and the crews of manned missions. Topics examined include the role of the magnetosphere, the five radiation domains, cyclic and sporadic variations in the radiation environment, the potential effect of a high-altitude nuclear explosion, NASA empirical models for predicting trapped proton and electron fluxes, and the South Atlantic anomaly and the estimation of flux-free periods. Consideration is given to solar cosmic rays and heavy ions, Galactic cosmic rays, geomagnetic shielding, secondary radiation, the design of shielding systems, variables affecting dose evaluations, and ionizing-radiation doses. Extensive diagrams, graphs, and tables of numerical data are provided.

  6. Characterisation of bubble detectors for aircrew and space radiation exposure.

    PubMed

    Green, A R; Bennett, L G I; Lewis, B J; Tume, P; Andrews, H R; Noulty, R A; Ing, H

    2006-01-01

    The Earth's atmosphere acts as a natural radiation shield which protects terrestrial dwellers from the radiation environment encountered in space. In general, the intensity of this radiation field increases with distance from the ground owing to a decrease in the amount of atmospheric shielding. Neutrons form an important component of the radiation field to which the aircrew and spacecrew are exposed. In light of this, the neutron-sensitive bubble detector may be ideal as a portable personal dosemeter at jet altitudes and in space. This paper describes the ground-based characterisation of the bubble detector and the application of the bubble detector for the measurement of aircrew and spacecrew radiation exposure.

  7. Econometric model for age- and population-dependent radiation exposures

    SciTech Connect

    Sandquist, G.M.; Slaughter, D.M. ); Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.

  8. Serum Amyloid A as a Biomarker for Radiation Exposure

    PubMed Central

    Sproull, Mary; Kramp, Tamalee; Tandle, Anita; Shankavaram, Uma; Camphausen, Kevin

    2016-01-01

    There is a need for minimally invasive biomarkers that can accurately and quickly quantify radiation exposure. Radiation-responsive proteins have applications in clinical medicine and for mass population screenings after a nuclear or radiological incident where the level of radiation exposure and exposure pattern complicate medical triage for first responders. In this study, we evaluated the efficacy of the acute phase protein serum amyloid A (SAA) as a biomarker for radiation exposure using plasma from irradiated mice. Ten-week-old female C57BL6 mice received a 1–8 Gy single whole-body or partial-body dose from a Pantak X-ray source at a dose rate of 2.28 Gy/min. Plasma was collected by mandibular or cardiac puncture at 6, 24, 48 and 72 h or 1–3 weeks postirradiation. SAA levels were determined using a commercially available ELISA assay. Data was pooled to generate SAA μg/ml threshold values correlating plasma SAA levels with radiation dose. SAA levels were statistically significant over control at all exposures between 2 and 8 Gy at 24 h postirradiation but not at 6, 48 and 72 h or 1–3 weeks postirradiation. SAA levels at 1 Gy were not significantly elevated over control at all time points. Total-body-irradiated (TBI) SAA levels at 24 h were used to generate a dose prediction model that successfully differentiated TBI mice into dose received cohorts of control/1 Gy and ≥2 Gy groups with a high degree of accuracy in a blind study. Dose prediction of partial-body exposures based on the TBI model correlated increasing predictive accuracy with percentage of body exposure to radiation. Our findings indicate that plasma SAA levels might be a useful biomarker for radiation exposure in a variety of total- and partial-body irradiation settings. PMID:26114330

  9. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbons, M. N.

    1982-01-01

    The data base for composite materials' properties as they are affected by the environments encountered in operating conditions, both in flight and at ground terminals is expanded. Absorbed moisture degrades the mechanical properties of graphite/epoxy laminates at elevated temperatures. Since airplane components are frequently exposed to atmospheric moisture, rain, and accumulated water, quantitative data are required to evaluate the amount of fluids absorbed under various environmental conditions and the subsequent effects on material properties. In addition, accelerated laboratory test techniques are developed are reliably capable of predicting long term behavior. An accelerated environmental exposure testing procedure is developed, and experimental results are correlated and compared with analytical results to establish the level of confidence for predicting composite material properties.

  10. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  11. Effects of Changed Aircraft Noise Exposure on the Use of Outdoor Recreational Areas

    PubMed Central

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-01-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway’s main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied. PMID:21139867

  12. Effects of changed aircraft noise exposure on the use of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-11-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway's main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied.

  13. Some recent issues in low-exposure radiation epidemiology.

    PubMed Central

    MacMahon, B

    1989-01-01

    Three areas of activity in the field of low-level radiation epidemiology have been reviewed. They concern the questions of cancer risk related to antenatal X-ray exposure, occupational radiation exposure, and residence in areas of real or supposed increased levels of radiation. Despite the a priori unlikelihood of useful information developing from studies in any of these areas, such investigations are being pursued, and the results are proving to be stimulating. Much important information will be forthcoming in the near future. PMID:2667975

  14. The Effects of Cold Exposure on Wet Aircraft Passengers: A Review

    DTIC Science & Technology

    1994-05-01

    lation. AnnualRex. Physiol. 35:391-430, 1973. 6 9. Therminarias A., Flore P., Oddou-Chirpaz M.F., 13. Guyton A.C. The autonomic nevous system ; the Gharib C...spray system (CWSS) aboard commercial passenger aircraft has been suggested as a mechanism of reducing passenger death and injury from the fire and...exposure as well as the degree of protection provided to the individual, particularly the cardiorespiratory system , by CWSS would need to be fully

  15. Radiation exposure for human Mars exploration

    NASA Technical Reports Server (NTRS)

    Simonsen, L. C.; Wilson, J. W.; Kim, M. H.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2000-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human space flight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle events was of great concern. A new challenge appears in deep-space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays since the missions are of long duration, and accumulated exposures can be high. Because cancer induction rates increase behind low to moderate thicknesses of aluminum shielding, according to available biological data on mammalian exposures to galactic cosmic ray-like ions, aluminum shield requirements for a Mars mission may be prohibitively expensive in terms of mission launch costs. Alternative materials for vehicle construction are under investigation to provide lightweight habitat structures with enhanced shielding properties. In the present paper, updated estimates for astronaut exposures on a Mars mission are presented and shielding properties of alternative materials are compared with aluminum.

  16. Radiation exposure to personnel performing endoscopic retrograde cholangiopancreatography

    PubMed Central

    Naidu, L; Singhal, S; Preece, D; Vohrah, A; Loft, D

    2005-01-01

    Background: Endoscopic retrograde cholangiopancreatography (ERCP) relies on the use of ionising radiation but risks to operator and patient associated with radiation exposure are unclear. The aim of this prospective study was to estimate the radiation dose received by personnel performing fluoroscopic endoscopic procedures, mainly ERCP. Methods: Consecutive procedures over a two month period were included. The use of thermoluminescent dosimeters to measure radiation exposure to the abdomen, thyroid gland, and hands of the operator permitted an estimation of the annual whole body effective dose equivalent. Results: During the study period 66 procedures (61 ERCP) were performed and the estimated annual whole body effective dose equivalent received by consultant operators ranged between 3.35 and 5.87 mSv. These values are similar to those received by patients undergoing barium studies and equate to an estimated additional lifetime fatal cancer risk between 1 in 7000 and 1 in 3500. While within legal safety limits for radiation exposure to personnel, these doses are higher than values deemed acceptable for the general public. Conclusions: It is suggested that personnel as well as patients may be exposed to significant values of radiation during ERCP. The study emphasises the need to carefully assess the indication for, and to use measures that minimise radiation exposure during any fluoroscopic procedure. PMID:16210465

  17. Effects of parental radiation exposure on developmental instability in grasshoppers.

    PubMed

    Beasley, D E; Bonisoli-Alquati, A; Welch, S M; Møller, A P; Mousseau, T A

    2012-06-01

    Mutagenic and epigenetic effects of environmental stressors and their transgenerational consequences are of interest to evolutionary biologists because they can amplify natural genetic variation. We studied the effect of parental exposure to radioactive contamination on offspring development in lesser marsh grasshopper Chorthippus albomarginatus. We used a geometric morphometric approach to measure fluctuating asymmetry (FA), wing shape and wing size. We measured time to sexual maturity to check whether parental exposure to radiation influenced offspring developmental trajectory and tested effects of radiation on hatching success and parental fecundity. Wings were larger in early maturing individuals born to parents from high radiation sites compared to early maturing individuals from low radiation sites. As time to sexual maturity increased, wing size decreased but more sharply in individuals from high radiation sites. Radiation exposure did not significantly affect FA or shape in wings nor did it significantly affect hatching success and fecundity. Overall, parental radiation exposure can adversely affect offspring development and fitness depending on developmental trajectories although the cause of this effect remains unclear. We suggest more direct measures of fitness and the inclusion of replication in future studies to help further our understanding of the relationship between developmental instability, fitness and environmental stress.

  18. A Low LET Radiation Spectrometer for Measuring Particle Doses in Space and Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Brucker, G. J.; Dachev, T. P.; Day, John H. (Technical Monitor)

    2002-01-01

    This paper presents experimental data that demonstrates the feasibility of fabricating a miniature nuclear particle dosimeter for monitoring doses in aircraft and satellites. The basic instrument is a Low Linear-Energy-Transfer (LET) Radiation Spectrometer (LoLRS) that is designed to measure the energy deposited by particles with low LET values. The heart of the instrument is a Silicon-Lithium Drifted Diode (SLDD). Test results show that the LoLRS can be used to monitor the radiation threat to personnel in flights of space- and aircraft and also to generate a comprehensive data base from aviation and satellite measurements that can contribute to the formulation of more accurate environmental radiation models for dose predictions with reduced uncertainty factors.

  19. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  20. Electromagnetic on-aircraft antenna radiation in the presence of composite plates

    NASA Technical Reports Server (NTRS)

    Kan, S. H-T.; Rojas, R. G.

    1994-01-01

    The UTD-based NEWAIR3 code is modified such that it can model modern aircraft by composite plates. One good model of conductor-backed composites is the impedance boundary condition where the composites are replaced by surfaces with complex impedances. This impedance-plate model is then used to model the composite plates in the NEWAIR3 code. In most applications, the aircraft distorts the desired radiation pattern of the antenna. However, test examples conducted in this report have shown that the undesired scattered fields are minimized if the right impedance values are chosen for the surface impedance plates.

  1. Radiation exposure risks to nuclear well loggers.

    PubMed

    Fujimoto, K; Wilson, J A; Ashmore, J P

    1985-04-01

    This report is based on statistical data from the Canadian National Dose Registry (As82) and information obtained from visits to 1 supplier and 9 oil-well service companies in the Province of Alberta. The companies are representative of most in this industry and provide services at the well head from logging, perforating and fracturing to cementing and tracer work. The information obtained indicates that typical exposures can account for an average dose of 1 to 2 mSv/y. The observations of well-logging procedures revealed a number of potentially hazardous situations which could lead to unnecessary exposure and based upon these, several recommendations are included.

  2. Tissue equivalent proportional counter microdosimetry measurements utililzed aboard aircraft and in accelerator based space radiation shielding studies

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Wilkins, Richard

    The space radiation environment presents a potential hazard to the humans, electronics and materials that are exposed to it. Particle accelerator facilities such as the NASA Space Ra-diation Laboratory (NSRL) and Loma Linda University Medical Center (LLUMC) provide particle radiation of specie and energy within the range of that found in the space radiation environment. Experiments performed at these facilities determine various endpoints for bio-logical, electronic and materials exposures. A critical factor in the performance of rigorous scientific studies of this type is accurate dosimetric measurements of the exposures. A Tissue Equivalent Proportional Counter (TEPC) is a microdosimeter that may be used to measure absorbed dose, average quality factor (Q) and dose equivalent of the particle beam utilized in these experiments. In this work, results from a variety of space radiation shielding studies where a TEPC was used to perform dosimetry in the particle beam will be presented. These results compare the absorbed dose and dose equivalent measured downstream of equal density thicknesses of stan-dard and multifunctional shielding materials. The standard materials chosen for these shielding studies included High-Density Polyethylene (HDPE) and aluminum alloy, while the multifunc-tional materials included carbon composite infused with single walled carbon nanotubes. High energy particles including proton, silicon and iron nuclei were chosen as the incident radia-tion for these studies. Further, TEPC results from measurements taken during flights aboard ER-2 and KC-135 aircraft will also be discussed. Results from these flight studies include TEPC measurements for shielded and unshielded conditions as well as the effect of vibration and electromagnetic exposures on the TEPC operation. The data selected for presentation will highlight the utility of the TEPC in space radiation studies, and in shielding studies in particular. The lineal energy response function of the

  3. Sources of confusion in establishment of radiation exposure guidelines

    SciTech Connect

    Thomas, R.G.

    1996-12-31

    There are several factors that induce the many fallacies underlying current radiation protection guidelines, and there is little hope on the horizon that common sense will prevail to override these fallacies. Radiation is looked upon by influential committee members as an absolute hazard to human health. In other words, they believe that all radiation is harmful at any level of exposure! There is no evidence for such a statement. This paper is separated into several major topics, each showing the reasons this philosophy concerning all radiation to be harmful is so misguided.

  4. MODELING ACUTE EXPOSURE TO SOLAR RADIATION

    EPA Science Inventory

    One of the major technical challenges in calculating solar flux on the human form has been the complexity of the surface geometry (i.e., the surface normal vis a vis the incident radiation). The American Cancer Society reports that over 80% of skin cancers occur on the face, he...

  5. Risk assessment and management of radiofrequency radiation exposure

    NASA Astrophysics Data System (ADS)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  6. Risk assessment and management of radiofrequency radiation exposure

    SciTech Connect

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  7. Health Impacts from Acute Radiation Exposure

    SciTech Connect

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  8. Estimates of radiation exposure from solar cosmic rays in SST altitudes

    NASA Technical Reports Server (NTRS)

    Foelsche, T.

    1974-01-01

    Factors influencing crew and passenger exposure to solar and galactic cosmic rays that is expected to occur during flights of supersonic transport aircraft are discussed, and some possibilities are considered for decreasing such exposure.

  9. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. and Co., Aiken, SC . Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. and Co., Aiken, SC . Savannah River Lab.)

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  10. Modelling of aircrew radiation exposure from galactic cosmic rays and solar particle events.

    PubMed

    Takada, M; Lewis, B J; Boudreau, M; Al Anid, H; Bennett, L G I

    2007-01-01

    Correlations have been developed for implementation into the semi-empirical Predictive Code for Aircrew Radiation Exposure (PCAIRE) to account for effects of extremum conditions of solar modulation and low altitude based on transport code calculations. An improved solar modulation model, as proposed by NASA, has been further adopted to interpolate between the bounding correlations for solar modulation. The conversion ratio of effective dose to ambient dose equivalent, as applied to the PCAIRE calculation (based on measurements) for the legal regulation of aircrew exposure, was re-evaluated in this work to take into consideration new ICRP-92 radiation-weighting factors and different possible irradiation geometries of the source cosmic-radiation field. A computational analysis with Monte Carlo N-Particle eXtended Code was further used to estimate additional aircrew exposure that may result from sporadic solar energetic particle events considering real-time monitoring by the Geosynchronous Operational Environmental Satellite. These predictions were compared with the ambient dose equivalent rates measured on-board an aircraft and to count rate data observed at various ground-level neutron monitors.

  11. Influence of clouds on the cosmic radiation dose rate on aircraft.

    PubMed

    Pazianotto, Maurício T; Federico, Claudio A; Cortés-Giraldo, Miguel A; Pinto, Marcos Luiz de A; Gonçalez, Odair L; Quesada, José Manuel M; Carlson, Brett V; Palomo, Francisco R

    2014-10-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications.

  12. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  13. Active Control of Turbulent Boundary Layer Induced Sound Radiation from Multiple Aircraft Panels

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2002-01-01

    The objective of this work is to experimentally investigate active structural acoustic control of turbulent boundary layer (TBL) induced sound radiation from multiple panels on an aircraft sidewall. One possible approach for controlling sound radiation from multiple panels is a multi-input/multi-output scheme which considers dynamic coupling between the panels. Unfortunately, this is difficult for more than a few panels, and is impractical for a typical aircraft which contains several hundred such panels. An alternative is to implement a large number of independent control systems. Results from the current work demonstrate the feasibility of reducing broadband radiation from multiple panels utilizing a single-input/single-output (SISO) controller per bay, and is the first known demonstration of active control of TBL induced sound radiation on more than two bays simultaneously. The paper compares sound reduction for fully coupled control of six panels versus independent control on each panel. An online adaptive control scheme for independent control is also demonstrated. This scheme will adjust for slow time varying dynamic systems such as fuselage response changes due to aircraft pressurization, etc.

  14. Radiation Exposure - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Translations Russian (Русский) Radiation Therapy Лучевая терапия - Русский (Russian) Bilingual PDF Health Information Translations Spanish (español) Exposición a la radiación Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  15. Radiation exposure at ground level by secondary cosmic radiation.

    PubMed

    Wissmann, F; Dangendorf, V; Schrewe, U

    2005-01-01

    The contribution of the charged component of secondary cosmic radiation to the ambient dose equivalent H*(10) at ground level is investigated using the muon detector MUDOS and a TEPC detector surrounded by the coincidence detector CACS to identify charged particles. The ambient dose equivalent rate H*(10)T as measured with the TEPC/CACS is used to calibrate the MUDOS count rate in terms of H*(10). First results from long-term measurements at the PTB reference site for ambient radiation dosimetry are reported. The air pressure corrected dose rate shows, as expected, a strong correlation with the neutron count rate as measured with the Kiel neutron monitor. The measured seasonal variations exhibit a negative correlation with the temperature changes in the upper layers of the atmosphere where the ground level muons are produced.

  16. [Adaptive changes in the body upon exposure to electromagnetic radiation].

    PubMed

    Zubkova, S M

    1996-01-01

    The chance to use electromagnetic exposures as active adaptogen and the detecting of adaptive changes following them were objects of our studies. The data of experimental and clinical studies significative the dependence of changes on the functional state of organism were seen. Particular attention is paid to the site of exposure and to the advantages in the action of electromagnetic exposures on areas overlaying the endocrine glands and control centers of central nerve system. In these conditions electromagnetic exposures play a part of trigger initiated natural processes of homeostatic regulation in the organism functional systems. It is shown that the course of electromagnetic exposures in wide frequency range until laser radiation (infrared and red) arises adaptive changes of the regulator systems, of the bioenergetic and the biosynthetic processes in myocardium, liver, brain, thymus and other tissues predetermined genetically and secured the power of the adaptive systems. The cross-adaptation effects underlie the electromagnetic exposures medical action.

  17. Risk Assessment of Radiation Exposure using Molecular Biodosimetry

    NASA Technical Reports Server (NTRS)

    Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.

    2007-01-01

    Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.

  18. Occupational Exposure to Ionizing Radiation for Crews of Suborbital Spacecraft: Questions and Answers

    DTIC Science & Technology

    2013-12-01

    Crewmembers, Ionizing Radiation, Galactic Cosmic Radiation, Solar Cosmic Radiation, Cancer Risk, Hereditary Risks, Radiation Exposure Limits Document is...higher altitudes. The dose to non-pregnant crewmembers could also have exceeded the recommended limit . A solar radiation alert system, developed by...Occupational Exposure to Ionizing Radiation for Crews of Suborbital Spacecraft : Questions & Answers Kyle Copeland Civil Aerospace Medical Institute

  19. Passive exposure of Earth radiation budget experiment components (A0147)

    NASA Technical Reports Server (NTRS)

    Hickey, J. R.; Griffin, F. J.

    1984-01-01

    In-flight calibration for the solr and Earth flux channels was examined. Earth Radiation on Budget (ERB) channel components were exposed to the space environment and then retrieved and resubmitted to radiometric calibration after exposure. It is suggested that corrections may be applied to ERB results and information will be obtained to aid in the selection of components for future operational solar and Earth radiation budget experiments. To assure that these high accuracy devices are measuring real variations and are not responding to changes induced by the space environment, it is desirable to test such devices radiometrically after exposure to the best approximation of the orbital environment.

  20. Passive exposure of Earth radiation budget experiment components (A0147)

    NASA Astrophysics Data System (ADS)

    Hickey, J. R.; Griffin, F. J.

    1984-02-01

    In-flight calibration for the solr and Earth flux channels was examined. Earth Radiation on Budget (ERB) channel components were exposed to the space environment and then retrieved and resubmitted to radiometric calibration after exposure. It is suggested that corrections may be applied to ERB results and information will be obtained to aid in the selection of components for future operational solar and Earth radiation budget experiments. To assure that these high accuracy devices are measuring real variations and are not responding to changes induced by the space environment, it is desirable to test such devices radiometrically after exposure to the best approximation of the orbital environment.

  1. Radiation exposure and risk assessment for critical female body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Hardy, Alva C.

    1991-01-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed.

  2. Digital methods for reducing radiation exposure during medical fluoroscopy

    NASA Astrophysics Data System (ADS)

    Edmonds, Ernest W.; Rowlands, John A.; Hynes, David M.; Toth, B. D.; Porter, Anthony J.

    1990-07-01

    There is increased concern over radiation exposure to the general population from many sources. One of the most significant sources is that received by the patient during medical diagnostic procedures, and of these, the procedure with the greatest potential hazard is fluoroscopy. The legal limit for fluoroscopy in most jurisdictions is SR per minute skin exposure rate. Fluoroscopes are often operated in excess of this figure, and in the case of interventional procedures, fluorocopy times may exceed 20 minutes. With improvements in medical technology these procedures are being performed more often, and also are being carried out on younger age groups. Radiation exposure during fluoroscopy, both to patient and operator, is therefore becoming a matter of increasing concern to regulating authorities, and it is incumbent on us to develop digital technology to minimise the radiation hazard in these procedures. This paper explores the technical options available for radiation exposure reduction, including pulsed fluoroscopy, digital noise reduction, or simple reduction in exposure rate to the x-ray image intensifier. We also discuss educational aspects of fluoroscopy which radiologists should be aware of which can be more important than the technological solutions. A "work in progress" report gives a completely new approach to the implementation of a large number of possible digital algorithms, for the investigation of clinical efficacy.

  3. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    PubMed

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed.

  4. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  5. Radiation exposure of LDEF: Initial results

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Parnell, T. A.; Watts, J. W., Jr.

    1992-01-01

    Initial results from LDEF include radiation detector measurements from four experiments, P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also on the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose ratio dependence of a factor approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly. On the trailing edge of the orbiter a range of doses from 6.64 to 2.91 Gy were measured under Al equivalent shielding of 0.42 to 1.11 g/sq cm. A second set of detectors near this location yielded doses of 6.48 to 2.66 Gy under Al equivalent shielding of 0.48 to 15.4 g/sq cm. On the leading edge, doses of 2.58 to 2.10 Gy were found under Al equivalent shielding of 1.37 to 2.90 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses and dose equivalents, for LET in H2O greater than or = 8 keV/micron, were measured with plastic nuclear track detectors (PNTDs) located in two experiments. Also preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils.

  6. [Cutaneous damage after acute exposure to ionizing radiation: decisive for the prognosis of radiation accident victims].

    PubMed

    Dörr, H; Baier, T; Meineke, V

    2013-12-01

    The cutaneous radiation syndrome includes all deterministic effects on the skin and visible parts of the mucosa from ionizing radiation. The Intensity and duration of radiation-induced skin symptoms depend on the kind and quality of ionizing radiation. The aim of this study was the investigation of the importance of the time of the development of radiation induced-skin effects on the prognosis of radiation accident victims. Clinical data about radiation accident victims from the database SEARCH were used. 211 cases with good documentation regarding radiation-induced skin effects were selected. From these 211 patients, 166 survived the acute phase of the acute radiation syndrome, while 45 died during the acute phase. Among those patients who did not survive the acute phase, 82.2 % showed their first documented radiation-induced skin symptoms during the first 3 days after radiation exposure. Of those patients whose first documented radiation-induced skin symptoms appeared on or after day four, 94.2 % survived the acute phase. The time to the occurrence of the first radiation-induced skin effects is diagnostically significant. The skin plays an important role in the clinical course of radiation syndromes and in the development of radiation-induced multi-organ failure. In a retrospective data analysis like this, the quality of data might be a limitation.

  7. Biomarkers of Ionizing Radiation Exposure: A Multiparametric Approach.

    PubMed

    Zeegers, Dimphy; Venkatesan, Shriram; Koh, Shu Wen; Low, Grace Kah Mun; Srivastava, Pallavee; Sundaram, Neisha; Sethu, Swaminathan; Banerjee, Birendranath; Jayapal, Manikandan; Belyakov, Oleg; Baskar, Rajamanickam; Balajee, Adayabalam S; Hande, M Prakash

    2017-01-01

    Humans are exposed to ionizing radiation not only through background radiation but also through the ubiquitous presence of devices and sources that generate radiation. With the expanded use of radiation in day-to-day life, the chances of accidents or misuse only increase. Therefore, a thorough understanding of the dynamic effects of radiation exposure on biological entities is necessary. The biological effects of radiation exposure on human cells depend on much variability such as level of exposure, dose rate, and the physiological state of the cells. During potential scenarios of a large-scale radiological event which results in mass casualties, dose estimates are essential to assign medical attention according to individual needs. Many attempts have been made to identify biomarkers which can be used for high throughput biodosimetry screening. In this study, we compare the results of different biodosimetry methods on the same irradiated cells to assess the suitability of current biomarkers and push forward the idea of employing a multiparametric approach to achieve an accurate dose and risk estimation.

  8. Biomarkers of Ionizing Radiation Exposure: A Multiparametric Approach

    PubMed Central

    Zeegers, Dimphy; Venkatesan, Shriram; Koh, Shu Wen; Low, Grace Kah Mun; Srivastava, Pallavee; Sundaram, Neisha; Sethu, Swaminathan; Banerjee, Birendranath; Jayapal, Manikandan; Belyakov, Oleg; Baskar, Rajamanickam; Balajee, Adayabalam S.; Hande, M. Prakash

    2017-01-01

    Humans are exposed to ionizing radiation not only through background radiation but also through the ubiquitous presence of devices and sources that generate radiation. With the expanded use of radiation in day-to-day life, the chances of accidents or misuse only increase. Therefore, a thorough understanding of the dynamic effects of radiation exposure on biological entities is necessary. The biological effects of radiation exposure on human cells depend on much variability such as level of exposure, dose rate, and the physiological state of the cells. During potential scenarios of a large-scale radiological event which results in mass casualties, dose estimates are essential to assign medical attention according to individual needs. Many attempts have been made to identify biomarkers which can be used for high throughput biodosimetry screening. In this study, we compare the results of different biodosimetry methods on the same irradiated cells to assess the suitability of current biomarkers and push forward the idea of employing a multiparametric approach to achieve an accurate dose and risk estimation. PMID:28250913

  9. Ionizing radiation exposure of LDEF (pre-recovery estimates)

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.

  10. Aircraft disinsection: exposure assessment and evaluation of a new pre-embarkation method.

    PubMed

    Berger-Preiss, Edith; Koch, Wolfgang; Gerling, Susanne; Kock, Heiko; Klasen, Jutta; Hoffmann, Godehard; Appel, Klaus E

    2006-01-01

    A new "pre-embarkation" method for aircraft disinsection was investigated using two different 2% d-phenothrin containing aerosols. Five experiments in aircrafts of the type Airbus 310 (4x) and Boeing 747-400 (1x) were performed. In the absence of passengers and crew the d-phenothrin aerosol was sprayed under the seat rows and in a second step at the height of approximately 1.60 m by moving from one end of the cabin to the other. Concentration levels of d-phenothrin were determined at different time periods after application of the aerosol spray. In a B 747-400 with the air conditioning system operating the concentrations ranged between 853 and 1753 microg/m3 during and till 5 min after the beginning of spraying at different locations in the cabin. Within 5-20min after the end of the spraying concentrations of 36-205 microg/m3 and 20-40 min thereafter only ca. 1 microg d-phenothrin/m3 were detectable (average values in relation to each period of measurement). On cabin interior surfaces the median values for mainly horizontal areas ranged from 100 to 1160 ng d-phenothrin/cm2. d-Phenothrin concentrations in the air were sufficient to kill flying insects like house flies and mosquitoes within 20 min. Horizontal surfaces were 100% effective against insects up to 24 h after spraying. Doses inhaled by sprayers determined by personal measurements were calculated to be 30-235 microg d-phenothrin per 100 g spray applied (30% in the respirable fraction for Arrow Aircraft Disinsectant; 10% for Aircraft Disinsectant Denka). If passengers will board, e.g., 20 min after the end of the disinsection operation, inhalation exposure is estimated to be practically negligible. Also possible dermal exposure from residues in seats and headrests is very low for passengers during the flight. Therefore any health effects for passengers and crew members are very unlikely.

  11. Astronaut radiation exposure in low-earth orbit. Part 1. Galactic cosmic radiation

    SciTech Connect

    Letaw, J.R.

    1988-03-31

    In recent years, there has been increasing concern about the radiation doses that will be suffered by astronauts on present-day and future space missions. In order to characterize radiation exposure risks on space missions one requires models of space-radiation environments, codes for transporting the components of ionizing radiation, and procedures for assessing radiation risks of a given exposure. To verify their accuracy, predictions based on these transport results must then be compared with existing dosimetry data. Linear energy transfer (LET) spectra, absorbed dose, and dose equivalent from galactic cosmic radiation and its fragments are presented for four, representative low-earth orbit configurations. The orbits include a high (STS-5IJ) and low (STS-61C) altitude, low-inclination (28.5 degs) flight; a high inclination (49.5 degs) flight (STS-51F); and a polar flight. Results are compared with computations for an exo-magnetospheric flight.

  12. Hexavalent chromium and isocyanate exposures during military aircraft painting under crossflow ventilation.

    PubMed

    Bennett, James S; Marlow, David A; Nourian, Fariba; Breay, James; Hammond, Duane

    2016-01-01

    Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group--the total of monomer and oligomer as NCO group mass--showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re

  13. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    SciTech Connect

    Sailer, Anna M.; Schurink, Geert Willem H.; Wildberger, Joachim E. Graaf, Rick de Zwam, Willem H. van Haan, Michiel W. de Kemerink, Gerrit J. Jeukens, Cécile R. L. P. N.

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.

  14. Radiation exposure of U.S. military individuals.

    PubMed

    Blake, Paul K; Komp, Gregory R

    2014-02-01

    The U.S. military consists of five armed services: the Army, Navy, Marine Corps, Air Force, and Coast Guard. It directly employs 1.4 million active duty military, 1.3 million National Guard and reserve military, and 700,000 civilian individuals. This paper describes the military guidance used to preserve and maintain the health of military personnel while they accomplish necessary and purposeful work in areas where they are exposed to radiation. It also discusses military exposure cohorts and associated radiogenic disease compensation programs administered by the U.S. Department of Veterans Affairs, the U.S. Department of Justice, and the U.S. Department of Labor. With a few exceptions, the U.S. military has effectively employed ionizing radiation since it was first introduced during the Spanish-American War in 1898. The U.S military annually monitors 70,000 individuals for occupational radiation exposure: ~2% of its workforce. In recent years, the Departments of the Navy (including the Marine Corps), the Army, and the Air Force all have a low collective dose that remains close to 1 person-Sv annually. Only a few Coast Guard individuals are now routinely monitored for radiation exposure. As with the nuclear industry as a whole, the Naval Reactors program has a higher collective dose than the remainder of the U.S. military. The U.S. military maintains occupational radiation exposure records on over two million individuals from 1945 through the present. These records are controlled in accordance with the Privacy Act of 1974 but are available to affected individuals or their designees and other groups performing sanctioned epidemiology studies.Introduction of Radiation Exposure of U.S. Military Individuals (Video 2:19, http://links.lww.com/HP/A30).

  15. The high-energy radiation dose received aboard aircraft exposed to a terrestrial gamma- ray flash

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Grefenstette, B. W.; Hazelton, B. J.

    2008-12-01

    Terrestrial gamma-ray flashes (TGF) are large bursts of high energy radiation observed from space that originate from our atmosphere. These millisecond long flashes of gamma-rays are often so bright that they saturate detectors, even from 600 km away. Several independent observations suggest that terrestrial gamma-ray flashes originate from thunderstorms deep within the atmosphere, near the altitudes where commercial aircraft fly. Based upon the flux of gamma-rays observed by the RHESSI spacecraft, detailed gamma-ray propagation models show that at least 1.0E17 energetic, multi-MeV electrons, are typically produced at the source. This large number of energetic electrons could potentially be a hazard for aircraft passengers, pilots and electronics. Using theoretical and observational estimates of the size of the TGF source region, we calculate the high-energy radiation dose from the energetic electrons and the gamma-rays for an aircraft exposed to the TGF from a close range. Finally, we shall discuss upcoming observations that will help constrain this radiation risk from TGFs.

  16. Environmental radiation exposure: Regulation, monitoring, and assessment

    SciTech Connect

    Chen, S.Y.; Yu, C.; Hong, K.J.

    1991-01-01

    Radioactive releases to the environment from nuclear facilities constitute a public health concern. Protecting the public from such releases can be achieved through the establishment and enforcement of regulatory standards. In the United States, numerous standards have been promulgated to regulate release control at nuclear facilities. Most recent standards are more restrictive than those in the past and require that radioactivity levels be as low as reasonably achievable (ALARA). Environmental monitoring programs and radiological dose assessment are means of ensuring compliance with regulations. Environmental monitoring programs provide empirical information on releases, such as the concentrations of released radioactivity in environmental media, while radiological dose assessment provides the analytical means of quantifying dose exposures for demonstrating compliance.

  17. Cancer risk estimation caused by radiation exposure during endovascular procedure

    NASA Astrophysics Data System (ADS)

    Kang, Y. H.; Cho, J. H.; Yun, W. S.; Park, K. H.; Kim, H. G.; Kwon, S. M.

    2014-05-01

    The objective of this study was to identify the radiation exposure dose of patients, as well as staff caused by fluoroscopy for C-arm-assisted vascular surgical operation and to estimate carcinogenic risk due to such exposure dose. The study was conducted in 71 patients (53 men and 18 women) who had undergone vascular surgical intervention at the division of vascular surgery in the University Hospital from November of 2011 to April of 2012. It had used a mobile C-arm device and calculated the radiation exposure dose of patient (dose-area product, DAP). Effective dose was measured by attaching optically stimulated luminescence on the radiation protectors of staff who participates in the surgery to measure the radiation exposure dose of staff during the vascular surgical operation. From the study results, DAP value of patients was 308.7 Gy cm2 in average, and the maximum value was 3085 Gy cm2. When converted to the effective dose, the resulted mean was 6.2 m Gy and the maximum effective dose was 61.7 milliSievert (mSv). The effective dose of staff was 3.85 mSv; while the radiation technician was 1.04 mSv, the nurse was 1.31 mSv. All cancer incidences of operator are corresponding to 2355 persons per 100,000 persons, which deemed 1 of 42 persons is likely to have all cancer incidences. In conclusion, the vascular surgeons should keep the radiation protection for patient, staff, and all participants in the intervention in mind as supervisor of fluoroscopy while trying to understand the effects by radiation by themselves to prevent invisible danger during the intervention and to minimize the harm.

  18. Long-term effects of radiation exposure on health.

    PubMed

    Kamiya, Kenji; Ozasa, Kotaro; Akiba, Suminori; Niwa, Ohstura; Kodama, Kazunori; Takamura, Noboru; Zaharieva, Elena K; Kimura, Yuko; Wakeford, Richard

    2015-08-01

    Late-onset effects of exposure to ionising radiation on the human body have been identified by long-term, large-scale epidemiological studies. The cohort study of Japanese survivors of the atomic bombings of Hiroshima and Nagasaki (the Life Span Study) is thought to be the most reliable source of information about these health effects because of the size of the cohort, the exposure of a general population of both sexes and all ages, and the wide range of individually assessed doses. For this reason, the Life Span Study has become fundamental to risk assessment in the radiation protection system of the International Commission on Radiological Protection and other authorities. Radiation exposure increases the risk of cancer throughout life, so continued follow-up of survivors is essential. Overall, survivors have a clear radiation-related excess risk of cancer, and people exposed as children have a higher risk of radiation-induced cancer than those exposed at older ages. At high doses, and possibly at low doses, radiation might increase the risk of cardiovascular disease and some other non-cancer diseases. Hereditary effects in the children of atomic bomb survivors have not been detected. The dose-response relation for cancer at low doses is assumed, for purposes of radiological protection, to be linear without a threshold, but has not been shown definitively. This outstanding issue is not only a problem when dealing appropriately with potential health effects of nuclear accidents, such as at Fukushima and Chernobyl, but is of growing concern in occupational and medical exposure. Therefore, the appropriate dose-response relation for effects of low doses of radiation needs to be established.

  19. Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: a commentary.

    PubMed

    de Ree, Hans; van den Berg, Martin; Brand, Teus; Mulder, Gerard J; Simons, Ries; Veldhuijzen van Zanten, Brinio; Westerink, Remco H S

    2014-12-01

    Possible exposure to TriCresyl Phosphates (TCPs) has led to concerns among airline crew members. One isomer, Tri-ortho-Cresyl Phosphate (ToCP) is known to be neurotoxic and exposure to ToCP via contaminated cabin air has been suggested to be associated with the alleged Aerotoxic syndrome. The symptoms associated with Aerotoxic syndrome are diverse, including headaches, loss of balance, numbness and neurobehavioral abnormalities such as emotional instability, depression and cognitive dysfunction. Other ortho-isomers are toxic as well, but the non-ortho isomers are regarded as less toxic. In a collaborative effort to increase insight into the possible association between exposure to TCPs via contaminated cabin air and Aerotoxic syndrome, we performed an exposure- and toxicological risk assessment. Measurements in KLM 737 aircraft have demonstrated the presence of non-ortho isomers in low concentrations, though ToCP and other ortho-isomers could not be detected. Based on this exposure assessment, we established a toxicological risk model that also takes into account human differences in bioactivation and detoxification to derive a hazard quotient. From this model it appears unlikely that the health effects and alleged Aerotoxic syndrome are due to exposure to ToCP. Alternative explanations for the reported symptoms are discussed, but evaluation of the current findings in light of the criteria for occupational disease leads to the conclusion that the Aerotoxic Syndrome cannot be regarded as such. Additional research is thus required to unravel the underlying causes for the reported health complaints.

  20. Modelling of aircrew radiation exposure during solar particle events

    NASA Astrophysics Data System (ADS)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  1. Radiation exposure of fertile women in medical research studies

    SciTech Connect

    Vetter, R.J.

    1988-08-01

    Fertile women may be exposed to ionizing radiation as human subjects in medical research studies. If the woman is pregnant, such exposures may result in risk to an embryo/fetus. Fertile women may be screened for pregnancy before exposure to ionizing radiation by interview, general examination, or pregnancy test. Use of the sensitive serum pregnancy test has become common because it offers concrete evidence that the woman is not pregnant (more specifically, that an embryo is not implanted). Evidence suggests that risk to the embryo from radiation exposure before organogenesis is extremely low or nonexistent. Further, demonstrated effects on organogenesis are rare or inconclusive at fetal doses below 50 mSv (5 rem). Therefore, there may be some level of radiation exposure below which risk to the fetus may be considered essentially zero, and a serum pregnancy test is unnecessary. This paper reviews the fetal risks and suggests that consideration be given to establishing a limit to the fetus of 0.5 mSv (50 mrem), below which pregnancy screening need not include the use of a serum pregnancy test.

  2. Medical management of three workers following a radiation exposure incident

    SciTech Connect

    House, R.A.; Sax, S.E.; Rumack, E.R.; Holness, D.L. )

    1992-01-01

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experienced somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.

  3. Performance deficit produced by partial body exposures to space radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions to other planets, astronauts will be exposed to types of radiation (particles of high energy and charge [HZE particles]) that are not experienced in low earth orbit, where the space shuttle operates. Previous research has shown that exposure to HZE particles can affect...

  4. DOE Radiation Exposure Monitoring System (REMS) Data Update

    SciTech Connect

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  5. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  6. Radiation exposure of aviation crewmembers and cancer.

    PubMed

    Bramlitt, Edward T; Shonka, Joseph J

    2015-01-01

    Crewmembers are exposed to galactic cosmic radiation on every flight and occasionally to solar protons on polar flights. Data are presented showing that the proton occasions are seven times more frequent than generally believed. Crewmembers are also exposed to neutrons and gamma rays from the sun and to gamma rays from terrestrial thunderstorms. Solar neutrons and gamma rays (1) expose the daylight side of Earth, (2) are most intense at lower latitudes, (3) may be as or more frequent than solar protons, and (4) have relativistic energies. The U.S. agency responsible for crewmember safety only considers the galactic component with respect to its recommended 20 mSv y(-1) limit, but it has an estimate for a thunderstorm dose of 30 mSv. In view of overlooked sources, possible over-limit doses, and lack of dosimetry, dose reconstructions are needed. However, using the agency dose estimates and the compensation procedure for U.S. nuclear weapon workers, the probability of crewmember cancers can be at least as likely as not. Ways to improve the quality of dose estimates are suggested, and a worker's compensation program specific to aviation crewmembers is recommended.

  7. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2011-01-01

    Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.

  8. Radiation exposure to the surgeon during closed interlocking intramedullary nailing

    SciTech Connect

    Levin, P.E.; Schoen, R.W. Jr.; Browner, B.D.

    1987-06-01

    During interlocking intramedullary nailing of twenty-five femoral and five tibial fractures, the primary surgeon wore both a universal film badge on the collar of the lead apron and a thermoluminescent dosimeter ring on the dominant hand to quantify the radiation that he or she received. When distal interlocking was performed, the first ring was removed and a second ring was used so that a separate recording could be made for this portion of the procedure. At the conclusion of the study, all of the recorded doses of radiation were averaged. The average amount of radiation to the head and neck during the entire procedure was 7.0 millirems of deep exposure and 8.0 millirems of shallow exposure. The average dose of radiation to the dominant hand during insertion of the intramedullary nail and the proximal interlocking screw was 13.0 millirems, while the average amount during insertion of the distal interlocking nail was 12.0 millirems. Both of these averages are well within the government guidelines for allowable exposure to radiation during one-quarter (three months) of a year. Precautions that are to be observed during this procedure are recommended.

  9. Chromosome aberrations as biomarkers of radiation exposure: Modelling basic mechanisms

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Ottolenghi, A.

    The space radiation environment is a mixed field consisting of different particles having different energies, including high charge and energy (HZE) ions. Conventional measurements of absorbed doses may not be sufficient to completely characterise the radiation field and perform reliable estimates of health risks. Biological dosimetry, based on the observation of specific radiation-induced endpoints (typically chromosome aberrations), can be a helpful approach in case of monitored exposure to space radiation or other mixed fields, as well as in case of accidental exposure. Furthermore, various ratios of aberrations (e.g. dicentric chromosomes to centric rings and complex exchanges to simple exchanges) have been suggested as possible fingerprints of radiation quality, although all of them have been subjected to some criticisms. In this context a mechanistic model and a Monte Carlo code for the simulation of chromosome aberration induction were developed. The model, able to provide dose-responses for different aberrations (e.g. dicentrics, rings, fragments, translocations, insertions and other complex exchanges), was further developed to assess the dependence of various ratios of aberrations on radiation quality. The predictions of the model were compared with available data, whose experimental conditions were faithfully reproduced. Particular attention was devoted to the scoring criteria adopted in different laboratories and to possible biases introduced by interphase death and mitotic delay. This latter aspect was investigated by taking into account both metaphase data and data obtained with Premature Chromosome Condensation (PCC).

  10. Implications of the road traffic and aircraft noise exposure and children's cognition and health (RANCH) study results for classroom acoustics

    NASA Astrophysics Data System (ADS)

    Stansfeld, Stephen A.; Clark, Charlotte

    2005-04-01

    Studies in West London have found associations between aircraft noise exposure and childrens' cognitive performance. This has culminated in the RANCH Study examining exposure-effect associations between aircraft and road traffic noise exposure and cognitive performance and health. The RANCH project, the largest cross-sectional study of noise and childrens health, examined 2844 children, 9-10 years old, from 89 schools around three major airports: in the Netherlands, Spain and the United Kingdom. Children were selected by external aircraft and road traffic noise exposure at school predicted from noise contour maps, modeling and on-site measurements. A substudy indicated high internal levels of noise within classrooms. Schools were matched for socioeconomic position within countries. Cognitive and health outcomes were measured by standardized tests and questionnaires administered in the classroom. A parental questionnaire collected information on socioeconomic position, parental education and ethnicity. Linear exposure-effect associations were found between chronic aircraft noise exposure and impairment of reading comprehension and recognition memory, maintained after adjustment for mothers education, socioeconomic factors, longstanding illness and classroom insulation. Road traffic noise exposure was linearly associated with episodic memory. The implications of these results for childrens' learning environments will be discussed. [Work supported by European Community (QLRT-2000-00197) Vth framework program.

  11. Diagnostic imaging and radiation exposure in inflammatory bowel disease.

    PubMed

    Zakeri, Nekisa; Pollok, Richard C G

    2016-02-21

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.

  12. Diagnostic imaging and radiation exposure in inflammatory bowel disease

    PubMed Central

    Zakeri, Nekisa; Pollok, Richard CG

    2016-01-01

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282

  13. Radiation exposure and safety practices during pediatric central line placement

    PubMed Central

    Saeman, Melody R.; Burkhalter, Lorrie S.; Blackburn, Timothy J.; Murphy, Joseph T.

    2015-01-01

    Purpose Pediatric surgeons routinely use fluoroscopy for central venous line (CVL) placement. We examined radiation safety practices and patient/surgeon exposure during fluoroscopic CVL. Methods Fluoroscopic CVL procedures performed by 11 pediatric surgeons in 2012 were reviewed. Fluoroscopic time (FT), patient exposure (mGy), and procedural data were collected. Anthropomorphic phantom simulations were used to calculate scatter and dose (mSv). Surgeons were surveyed regarding safety practices. Results 386 procedures were reviewed. Median FT was 12.8 seconds. Median patient estimated effective dose was 0.13 mSv. Median annual FT per surgeon was 15.4 minutes. Simulations showed no significant difference (p = 0.14) between reported exposures (median 3.5 mGy/min) and the modeled regression exposures from the C-arm default mode (median 3.4 mGy/min). Median calculated surgeon exposure was 1.5 mGy/year. Eight of 11 surgeons responded to the survey. Only three reported 100% lead protection and frequent dosimeter use. Conclusion We found non-standard radiation training, safety practices, and dose monitoring for the 11 surgeons. Based on simulations, the C-arm default setting was typically used instead of low dose. While most CVL procedures have low patient/surgeon doses, every effort should be used to minimize patient and occupational exposure, suggesting the need for formal hands-on training for non-radiologist providers using fluoroscopy. PMID:25837269

  14. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  15. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low-dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 gm/cm(sup 2) would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  16. Reproductive effects of low-to-moderate medical radiation exposure.

    PubMed

    Latini, G; Dipaola, L; Mantovani, A; Picano, E

    2012-01-01

    Medical radiation from x-rays and nuclear medicine is the largest man-made source of radiation exposure in Western countries, accounting for a mean effective dose of 3.0 mSv per capita per year, comparable to the radiologic risk of 150 chest x-rays, and in many cases gonads fall in the imaging field, with > 20 millions examinations per year in US being abdominal and pelvic CT, and > 0.5 million barium enema. Of the over 7 million workers exposed to medical radiation, special attention has been paid to those working in the interventional cardiology and radiology labs, with high and increasing professional exposures, two-to three times higher than diagnostic radiologists. Thus, adverse effects of radiation exposure are well worth of the scientific community's interest. Aims of this review are: 1) to assess gonad dose to patients undergoing diagnostic testing or interventional fluoroscopy therapy and in professionally exposed interventional fluoroscopists; and 2) to evaluate the evidence linking radiation exposure in the low-to-moderate range (besides the radiotherapy high dose range) to adverse reproductive effects. In patients, the gonad radiation exposure can reach 5 mSv for a lower limb angiography, 20 mSv for a CT pelvis and hips, and 36 (in females) to 90 mSv (for males) for a lower gastrointestinal series. For interventional cardiologists, the gonad dose (below lead apron) is in the same order of magnitude of the shielded thyroid dose, with a median of 50 to 100 microSievert per cine-angiography procedure. The dose can be ten-fold higher for a complex interventional procedure. This leads to a cumulative exposure in the 0.5-1 Sv range over a professional lifetime of 30 years. At present, the epidemiological approach provided inconclusive results, inadequate for a robust evidence-based advice to exposed subjects, since large groups followed-up for decades would be required to detect a small increase in risk. A molecular epidemiology approach and/or the use of

  17. General Principles of Radiation Protection in Fields of Diagnostic Medical Exposure

    PubMed Central

    2016-01-01

    After the rapid development of medical equipment including CT or PET-CT, radiation doses from medical exposure are now the largest source of man-made radiation exposure. General principles of radiation protection from the hazard of ionizing radiation are summarized as three key words; justification, optimization, and dose limit. Because medical exposure of radiation has unique considerations, diagnostic reference level is generally used as a reference value, instead of dose limits. In Korea, medical radiation exposure has increased rapidly. For medical radiation exposure control, Korea has two separate control systems. Regulation is essential to control medical radiation exposure. Physicians and radiologists must be aware of the radiation risks and benefits associated with medical exposure, and understand and implement the principles of radiation protection for patients. The education of the referring physicians and radiologists is also important. PMID:26908991

  18. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    PubMed

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  19. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, V. E.

    2012-01-01

    Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.

  20. Chernobyl experience: biological indicators of exposure to ionizing radiation.

    PubMed

    Baranov, A E; Guskova, A K; Nadejina, N M; Nugis VYu

    1995-05-01

    Using the Chernobyl accident as an example, an attempt is made to consider the possibility of using the biological markers of exposure and effects of exposure to ionizing radiation in relation to biology dosimetry, and to predict early and late nonstochastic and stochastic radiation consequences. The biological dosimetry was based on the three markers: chromosome aberrations of peripheral blood lymphocytes, dynamics of blood cell (lymphocytes, neutrophils) counts and electron spin resonance (ESR) of tooth enamel. The first two methods can be applied in a short period of time (days or weeks) after exposure and only after high doses (> 0.5-1 Gy) of acute total body irradiation (TBI). The ESR tooth enamel method possesses dosimetric value at all conditions of uniform gamma TBI (acute, prolonged, chronic and high as well as low level of doses) and at any time after exposure. The low limit of sensitivity of the ESR test is about 0.1 Gy. The use of biological markers of effects of radiation exposure as early diagnostic signs was limited to clinical significant disorders of hemopoietic, immune systems and skin in conditions of acute high-dose irradiation. In cases of acute or prolonged irradiation in low doses, many changes on the cellular as well as organism level were discovered. However, there were not enough data on radiation specificity or dose dependence of these changes. Hence they cannot be considered as the indicators of clinically significant early and late nonstochastic effects. The role of biological markers of stochastic effects in clinical practice is discussed herein.

  1. Cell phone radiation exposure on brain and associated biological systems.

    PubMed

    Kesari, Kavindra Kumar; Siddiqui, Mohd Haris; Meena, Ramovatar; Verma, H N; Kumar, Shivendra

    2013-03-01

    Wireless technologies are ubiquitous today and the mobile phones are one of the prodigious output of this technology. Although the familiarization and dependency of mobile phones is growing at an alarming pace, the biological effects due to the exposure of radiations have become a subject of intense debate. The present evidence on mobile phone radiation exposure is based on scientific research and public policy initiative to give an overview of what is known of biological effects that occur at radiofrequency (RF)/ electromagnetic fields (EMFs) exposure. The conflict in conclusions is mainly because of difficulty in controlling the affecting parameters. Biological effects are dependent not only on the distance and size of the object (with respect to the object) but also on the environmental parameters. Health endpoints reported to be associated with RF include childhood leukemia, brain tumors, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, infertility and some cardiovascular effects. Most of the reports conclude a reasonable suspicion of mobile phone risk that exists based on clear evidence of bio-effects which with prolonged exposures may reasonably be presumed to result in health impacts. The present study summarizes the public issue based on mobile phone radiation exposure and their biological effects. This review concludes that the regular and long term use of microwave devices (mobile phone, microwave oven) at domestic level can have negative impact upon biological system especially on brain. It also suggests that increased reactive oxygen species (ROS) play an important role by enhancing the effect of microwave radiations which may cause neurodegenerative diseases.

  2. Exposure to vibration and self-reported health complaints of riveters in the aircraft industry.

    PubMed

    Burdorf, A; Monster, A

    1991-06-01

    Workers using vibrating tools may experience neurological and vascular symptoms in the fingers and hands. The effect of vibration exposure on bone and joint disorders in the hand, arm and shoulder is less clear. In a cross-sectional study, riveters and controls in an aircraft company were investigated for vibration exposure and health complaints. Vibration measurements showed that frequency-weighted acceleration levels for riveting hammers and bucking bars ranged from 5.5 to 12.3 m s -2. The calculated equivalent frequency-weighted acceleration for a period of 4 h was the questionnaire survey 101 riveters reported statistically significant more complaints of pain and stiffness in their hands and arms when compared with 76 controls with no, or little, exposure to vibration. After 10 years of exposure statistically significant age-adjusted odds ratios (P less than 0.05) were found for vibration-induced white finger (VWF) (1.9) and pain or stiffness of the wrist (3.2). Although they were not statistically significant (0.05 less than P less than 0.10) odds ratios appreciably greater than 1 were found for numbness in fingers (1.6) and pain or stiffness in the elbow (1.6) and the shoulder (1.5), and these complaints were strongly associated with duration of exposure to vibration. With logistic regression the probabilities for a riveter of having symptoms of VWF after 10 and 20 years of exposure was estimated to be P = 0.18 and P = 0.29, respectively, which can be compared with the prevalences predicted by the dose-response relationship for VWF in ISO 5349, which are 10 and 30%. The results of this study suggest that exposure to vibration from working with impact power tools can contribute to complaints of pain and stiffness in the hand, arm and shoulder, and especially in the wrist.

  3. Aircraft observations of the vertical structure of stratiform precipitation relevant to microwave radiative transfer

    SciTech Connect

    Chang, A.T.C. ); Barnes, A.; Glass, M. ); Kakar, R. ); Wilheit, T.T. )

    1993-06-01

    The retrieval of rainfall intensity over the oceans from passive microwave observations is based on a radiative transfer model. direct rainfall observations of oceanic rainfall are virtually nonexistent making validation of the retrievals extremely difficult. Observations of the model assumptions provide an alternative approach for improving and developing confidence in the rainfall retrievals. In the winter of 1983, the NASA CV-990 aircraft was equipped with a payload suitable for examining several of the model assumptions. The payload included microwave and infrared radiometers, mirror hygrometers, temperature probes, and PMS probes. On two occasions the aircraft ascended on a spiral track through stratiform precipitation providing an opportunity to study the atmospheric parameters. The assumptions concerning liquid hydrometeors, water vapor, lapse rate, and nonprecipitating clouds were studied. Model assumptions seem to be supported by these observations. 23 refs., 7 figs.

  4. Aircraft observations of the vertical structure of stratiform precipitation relevant to microwave radiative transfer

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Barnes, A.; Glass, M.; Kakar, R.; Wilheit, T. T.

    1993-01-01

    The retrieval of rainfall intensity over the oceans from passive microwave observations is based on a radiative transfer model. Direct rainfall observations of oceanic rainfall are virtually nonexistent making validation of the retrievals extremely difficult. Observations of the model assumptions provide an alternative approach for improving and developing confidence in the rainfall retrievals. In the winter of 1983, the NASA CV-990 aircraft was equipped with a payload suitable for examining several of the model assumptions. The payload included microwave and infrared radiometers, mirror hygrometers, temperature probes, and PMS probes. On two occasions the aircraft ascended on a spiral track through stratiform precipitation providing an opportunity to study the atmospheric parameters. The assumptions concerning liquid hydrometeors, water vapor, lapse rate, and nonprecipitating clouds were studied. Model assumptions seem to be supported by these observations.

  5. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    SciTech Connect

    Marica, Lucia; Moraru, Luminita

    2011-12-26

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  6. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    NASA Astrophysics Data System (ADS)

    Marica, Lucia; Moraru, Luminita

    2011-12-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  7. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults

    PubMed Central

    Schmidt, Frank P.; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas

    2013-01-01

    Aims Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. Methods and results We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). Conclusion In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of

  8. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    SciTech Connect

    Wiley, Al; Sugarman, Steve

    2015-03-08

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  9. Mediastinal fibrosis and radiofrequency radiation exposure: is there an association?

    PubMed

    Papandreou, L; Panagou, P; Bouros, D

    1992-01-01

    A 45-year-old officer, working for a period of 18 years at a military radar base, presented with progressive exertional dyspnea, dry cough, and hemoptysis. Subsequent evaluation demonstrated a left pulmonary artery occlusion as well as a left upper lobe bronchus stenosis, due to a dense fibrotic mediastinal mass. Histologically, this proved to be idiopathic mediastinal fibrosis (IMF). The development of IMF in a man exposed for a long period to radio-frequency radiation (RFR) is unique in the literature in English. The possible association of radiation exposure with IMF is discussed.

  10. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    ScienceCinema

    Wiley, Al; Sugarman, Steve

    2016-07-12

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  11. Overview of DOE Radiation Exposure Information Reporting System (REIRS)

    SciTech Connect

    Fix, J.J.; Briscoe, G.J.; Selby, J.M.; Vallario, E.J.

    1981-05-01

    The purpose of the study is to determine the adequacy of the present system, identify any necessary short-term improvements and propose feasible alternatives for an improved system. The study includes topical reports as follows: current Personnel Dosimetry Practices at DOE Facilities; overview of DOE Radiation Exposure Information Reporting System (REIRS); and alternatives to Provide Upgraded Occupational Exposure Record System. This study constitutes the second report and was a joint effort between Battelle Northwest and EG and G, Idaho Falls. EG and G has been responsible for the respository since the fall of 1978.

  12. The limitations of using vertical cutoff rigidities determined from the IGRF magnetic field models for computing aircraft radiation dose.

    PubMed

    Smart, D F; Shea, M A

    2003-01-01

    Vertical cutoff rigidities derived from the International Geomagnetic Reference Fields (IGRF) are normally used to compute the radiation dose at a specific location and to organize the radiation dose measurements acquired at aircraft altitudes. This paper presents some of the usually ignored limits on the accuracy of the vertical cutoff rigidity models and describes some of the computational artifacts present in these models. It is noted that recent aircraft surveys of the radiation dose experienced along specific flight paths is sufficiently precise that the secular variation of the geomagnetic field is observable.

  13. Radiation exposure and risk assessment for critical female body organs

    SciTech Connect

    Atwell, W.; Weyland, M.D.; Hardy, A.C. NASA, Johnson Space Center, Houston, TX )

    1991-07-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed. 13 refs.

  14. [Occupational risk related to optical radiation exposure in construction workers].

    PubMed

    Gobba, F; Modenese, A

    2012-01-01

    Optical Radiation is a relevant occupational risk in construction workers, mainly as a consequence of the exposure to the ultraviolet (UV) component of solar radiation (SR). Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma, squamous cell carcinoma of the skin and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in construction workers. The role of occupational physicians in prevention is fundamental.

  15. Predictive modeling of terrestrial radiation exposure from geologic materials

    NASA Astrophysics Data System (ADS)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  16. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  17. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  18. Novel Human Radiation Exposure Biomarker Panel Applicable for Population Triage

    SciTech Connect

    Bazan, Jose G.; Chang, Polly; Balog, Robert; D'Andrea, Annalisa; Shaler, Thomas; Lin, Hua; Lee, Shirley; Harrison, Travis; Shura, Lei; Schoen, Lucy; Knox, Susan J.; Cooper, David E.

    2014-11-01

    Purpose: To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Methods and Materials: Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groups were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. Results: A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). Conclusions: A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear or other

  19. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  20. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    SciTech Connect

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2012-07-07

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  1. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants

    PubMed Central

    Huang, Di; Song, XuPing; Cui, Qi; Tian, Jinhui; Wang, Quan; Yang, Kehu

    2015-01-01

    To determine if aircraft noise exposure causes an increased incidence of hypertension among residents near airports. We conducted a meta-analysis of observational studies to evaluate the association between aircraft noise exposure and the incidence of hypertension. PubMed, Embase, Web of Science, the Cochrane Library, and the Chinese Biomedical Literature Database were searched without any restrictions. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted. The pooled ORs were calculated using both the fixed effects model and random effects model. All analyses were performed using STATA version 12.0 software (Stata Corporation, College Station, TX, USA). We examined five studies, comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.63 (95% CI, 1.14-2.33), and one of our included studies showed that there was no evidence that aircraft noise is a risk factor for hypertension in women. According to our subgroup analysis, the summary OR for the incidence was 1.31 (95% CI, 0.85-2.02) with I2 of 80.7% in women and 1.36 (95% CI, 1.15-1.60) with moderate heterogeneity in men. The pooled OR for the incidence of hypertension in residents aged over 55 years and under 55 years was 1.66 (95% CI, 1.21-2.27) with no heterogeneity and 1.78 (95% CI, 1.33-2.39) with I2 of 29.4%, respectively. The present meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders. PMID:25774612

  2. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants.

    PubMed

    Huang, Di; Song, XuPing; Cui, Qi; Tian, Jinhui; Wang, Quan; Yang, Kehu

    2015-01-01

    To determine if aircraft noise exposure causes an increased incidence of hypertension among residents near airports. We conducted a meta-analysis of observational studies to evaluate the association between aircraft noise exposure and the incidence of hypertension. PubMed, Embase, Web of Science, the Cochrane Library, and the Chinese Biomedical Literature Database were searched without any restrictions. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted. The pooled ORs were calculated using both the fixed effects model and random effects model. All analyses were performed using STATA version 12.0 software (Stata Corporation, College Station, TX, USA). We examined five studies, comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.63 (95% CI, 1.14-2.33), and one of our included studies showed that there was no evidence that aircraft noise is a risk factor for hypertension in women. According to our subgroup analysis, the summary OR for the incidence was 1.31 (95% CI, 0.85-2.02) with I2 of 80.7% in women and 1.36 (95% CI, 1.15-1.60) with moderate heterogeneity in men. The pooled OR for the incidence of hypertension in residents aged over 55 years and under 55 years was 1.66 (95% CI, 1.21-2.27) with no heterogeneity and 1.78 (95% CI, 1.33-2.39) with I2 of 29.4%, respectively. The present meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders.

  3. Calculations and observations of solar particle enhancements to the radiation environment at aircraft altitudes.

    PubMed

    Dyer, C S; Lei, F; Clucas, S N; Smart, D F; Shea, M A

    2003-01-01

    Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations

  4. Medical effects and risks of exposure to ionising radiation.

    PubMed

    Mettler, Fred A

    2012-03-01

    Effects and risk from exposure to ionising radiation depend upon the absorbed dose, dose rate, quality of radiation, specifics of the tissue irradiated and other factors such as the age of the individual. Effects may be apparent almost immediately or may take decades to be manifest. Cancer is the most important stochastic effect at absorbed doses of less than 1 Gy. The risk of cancer induction varies widely across different tissues; however, the risk of fatal radiation-induced cancer for a general population following chronic exposure is about 5% Sv(-1). Quantification of cancer risk at doses of less than 0.1 Gy remains problematic. Hereditary risks from irradiation that might result in effects to offspring of humans appear to be much lower and any such potential risks can only be estimated from animal models. At high doses (over 1 Gy) cell killing and modification causes deterministic effects such as skin burns, and bone marrow depression, in which case immunosuppression becomes a critical issue. Acute whole body penetrating gamma irradiation at doses in excess of 2 Gy results in varying degrees of acute radiation sickness and doses over 10 Gy are usually lethal as a result of combined organ injury.

  5. Elastomeric Seal Performance after Terrestrial Ultraviolet Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.; Dunlap, Patrick H.

    2015-01-01

    Ultraviolet radiation was evaluated to determine its negative effects on the performance of elastomeric gas pressure seals. The leak rates of the silicone elastomer S0383-70 O-ring test articles were used to quantify the degradation of the seals after exposure to vacuum-ultraviolet and/or middle-to-near-ultraviolet wavelength radiation. Three groups of seals were exposed in terrestrial facilities to 115-165 nm wavelength radiation, 230-500 nm wavelength radiation, or both spectrums, for an orbital spaceflight equivalent of 125 hours. The leak rates of the silicone elastomer S0383-70 seals were quantified and compared to samples that received no radiation. Each lot contained six samples and statistical t-tests were used to determine the separate and combined influences of exposure to the two wavelength ranges. A comparison of the mean leak rates of samples exposed to 115-165 nm wavelength radiation to the control specimens showed no difference, suggesting that spectrum was not damaging. The 230-500 nm wavelength appeared to be damaging, as the mean leak rates of the specimens exposed to that range of wavelengths, and those exposed to the combined 115-165 nm and 230-500 nm spectrums, were significantly different from the leak rates of the control specimens. Most importantly, the test articles exposed to both wavelength spectrums exhibited mean leak rates two orders of magnitude larger than any other exposed specimens, which suggested that both wavelength spectrums are important when simulating the orbital environment.

  6. ESCOMPTE experiment: intercomparison of four aircraft dynamical, thermodynamical, radiation and chemical measurements

    NASA Astrophysics Data System (ADS)

    Saïd, F.; Corsmeier, U.; Kalthoff, N.; Kottmeier, C.; Lothon, M.; Wieser, A.; Hofherr, T.; Perros, P.

    2005-03-01

    Among seven airplanes involved in the Experience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emission (ESCOMPTE) experiment in 2001, four measured classical meteorological parameters, radiation fluxes, trace gases and turbulence (for three among four): the Dornier 128 from the Institut für Meteorologie und Klimaforschung, the Fokker 27 ARAT from the Institut National des Sciences de l'Univers, the Merlin 4 and Piper Aztec 23 from Météo France. This paper presents the results of intercomparison flights between three pairs of aircraft. The results are very similar for mean parameters except for the horizontal wind measurements provided by the Merlin that showed a problem that is probably linked to the measurement of the aircraft velocity. Further investigation is required to know whether corrections are possible or not for these wind measurements. Turbulence is studied along two legs over a flat and homogeneous area: in spite of the heterogeneity of the measured functions (one leg is close to the top of the boundary layer), the comparison is rather good. The relative accuracy of the data provided to the data base is given. It easily allows to use the huge amount of aircraft data collected during the experiment with very few restrictions. We underline some points where efforts should be borne for future experiments: wind coupling between Inertial Navigation System data and Global Positioning System (GPS) data, CO and NO x measurements.

  7. Exposure of aircraft maintenance technicians to organophosphates from hydraulic fluids and turbine oils: a pilot study.

    PubMed

    Schindler, Birgit Karin; Koslitz, Stephan; Weiss, Tobias; Broding, Horst Christoph; Brüning, Thomas; Bünger, Jürgen

    2014-01-01

    Hydraulic fluids and turbine oils contain organophosphates like tricresyl phosphate isomers, triphenyl phosphate and tributyl phosphate from very small up to high percentages. The aim of this pilot study was to determine if aircraft maintenance technicians are exposed to relevant amounts of organophosphates. Dialkyl and diaryl phosphate metabolites of seven organophosphates were quantified in pre- and post-shift spot urine samples of technicians (N=5) by GC-MS/MS after solid phase extraction and derivatization. Pre- and post shift values of tributyl phosphate metabolites (dibutyl phosphate (DBP): median pre-shift: 12.5 μg/L, post-shift: 23.5 μg/L) and triphenyl phosphate metabolites (diphenyl phosphate (DPP): median pre-shift: 2.9 μg/L, post-shift: 3.5 μg/L) were statistically higher than in a control group from the general population (median DBP: <0.25 μg/L, median DPP: 0.5 μg/L). No tricresyl phosphate metabolites were detected. The aircraft maintenance technicians were occupationally exposed to tributyl and triphenyl phosphate but not to tricresyl phosphate, tri-(2-chloroethyl)- and tri-(2-chloropropyl)-phosphate. Further studies are necessary to collect information on sources, routes of uptake and varying exposures during different work tasks, evaluate possible health effects and to set up appropriate protective measures.

  8. Radiation Exposure in Transjugular Intrahepatic Portosystemic Shunt Creation

    SciTech Connect

    Miraglia, Roberto Maruzzelli, Luigi Cortis, Kelvin; D’Amico, Mario; Floridia, Gaetano Gallo, Giuseppe Tafaro, Corrado Luca, Angelo

    2016-02-15

    PurposeTransjugular intrahepatic portosystemic shunt (TIPS) creation is considered as being one of the most complex procedures in abdominal interventional radiology. Our aim was twofold: quantification of TIPS-related patient radiation exposure in our center and identification of factors leading to reduced radiation exposure.Materials and methodsThree hundred and forty seven consecutive patients underwent TIPS in our center between 2007 and 2014. Three main procedure categories were identified: Group I (n = 88)—fluoroscopic-guided portal vein targeting, procedure done in an image intensifier-based angiographic system (IIDS); Group II (n = 48)—ultrasound-guided portal vein puncture, procedure done in an IIDS; and Group III (n = 211)—ultrasound-guided portal vein puncture, procedure done in a flat panel detector-based system (FPDS). Radiation exposure (dose-area product [DAP], in Gy cm{sup 2} and fluoroscopy time [FT] in minutes) was retrospectively analyzed.ResultsDAP was significantly higher in Group I (mean ± SD 360 ± 298; median 287; 75th percentile 389 Gy cm{sup 2}) as compared to Group II (217 ± 130; 178; 276 Gy cm{sup 2}; p = 0.002) and Group III (129 ± 117; 70; 150 Gy cm{sup 2}p < 0.001). The difference in DAP between Groups II and III was also significant (p < 0.001). Group I had significantly longer FT (25.78 ± 13.52 min) as compared to Group II (20.45 ± 10.87 min; p = 0.02) and Group III (19.76 ± 13.34; p < 0.001). FT was not significantly different between Groups II and III (p = 0.73).ConclusionsReal-time ultrasound-guided targeting of the portal venous system during TIPS creation results in a significantly lower radiation exposure and reduced FT. Further reduction in radiation exposure can be achieved through the use of modern angiographic units with FPDS.

  9. Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure.

    PubMed

    Zeeb, Hajo; Hammer, Gaël P; Blettner, Maria

    2012-03-01

    Aircrew and passengers are exposed to low-level cosmic ionising radiation. Annual effective doses for flight crew have been estimated to be in the order of 2-5 mSv and can attain 75 mSv at career end. Epidemiological studies in this occupational group have been conducted over the last 15-20 years, usually with a focus on radiation-associated cancer. These studies are summarised in this note. Overall cancer risk was not elevated in most studies and subpopulations analysed, while malignant melanoma, other skin cancers and breast cancer in female aircrew have shown elevated incidence, with lesser risk elevations in terms of mortality. In some studies, including the large German cohort, brain cancer risk appears elevated. Cardiovascular mortality risks were generally very low. Dose information for pilots was usually derived from calculation procedures based on routine licence information, types of aircraft and routes/hours flown, but not on direct measurements. However, dose estimates have shown high validity when compared with measured values. No clear-cut dose-response patterns pointing to a higher risk for those with higher cumulative doses were found. Studies on other health outcomes have shown mixed results. Overall, aircrew are a highly selected group with many specific characteristics and exposures that might also influence cancers or other health outcomes. Radiation-associated health effects have not been clearly established in the studies available so far.

  10. X-ray fluorescence spectrometry using Synchrotron Radiation with applications in unmanned aircraft environmental sensing

    NASA Astrophysics Data System (ADS)

    Barberie, Sean Richard Gopal

    In this thesis I present an analytical optimization of the Synchrotron Radiation X-Ray Fluorescence (SR-XRF) technique for applications in unmanned aircraft aerosol studies. In environmental and atmospheric science, there is a pressing need for aerosol measurements at various altitudes in the atmosphere and spanning large regions. This need is currently either ignored, or met to a limited degree by studies that employ manned aircraft. There is, however, a great deal of opportunity to improve and expand on these studies using the emerging technology of unmanned aircraft systems. A newly developed aerosol sampler makes this opportunity a near-reality by its ability to collect aerosol samples in-situ from unmanned aircraft platforms. The challenge lies in analyzing these samples for elemental composition. In airborne aerosol studies, the ability to resolve where a sample was collected both spatially and temporally is limited by the sensitivity of the analysis technique. In aircraft-based aerosol collection, the length of the aerosol sample spot corresponds to distance. Thus the spatial resolution of an airborne study is limited by the amount of mass that must be collected for analysis. The SR-XRF optimizations outlined in this thesis decrease the amount of sample mass required for detectable elemental concentrations, allowing aerosol samples to be analyzed in smaller areas corresponding to smaller time steps. Since, in a flight path, time steps are directly correlated with distance, analysis of smaller time steps results in the ability to measure aerosols at higher spatial resolution. Four SR-XRF analysis configurations were experimentally tested: monochromatic beam, white beam, filtered white beam, and filtered white beam-filtered detector to determine which configuration gave the highest elemental sensitivity and selectivity. Of these tested methods, the straight polychromatic white beam configuration resulted in the best sensitivity for elements across a large

  11. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy.

    PubMed

    Hess, Clayton B; Thompson, Holly M; Benedict, Stanley H; Seibert, J Anthony; Wong, Kenneth; Vaughan, Andrew T; Chen, Allen M

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning--a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of "gentle IGRT."

  12. Delayed effects of external radiation exposure: a brief history.

    PubMed

    Miller, R W

    1995-11-01

    Within months of Roentgen's discovery of X rays, severe adverse effects were reported, but not well publicized. As a result, over the next two decades, fluoroscope operators suffered lethal skin carcinomas. Later, case reports appeared concerning leukemia in radiation workers, and infants born with severe mental retardation after their mothers had been given pelvic radiotherapy early in pregnancy. Fluoroscopy and radiotherapy for benign disorders continued to be used with abandon until authoritative reports were published on the adverse effects of ionizing radiation by the U.S. NAS-NRC and the UK MRC in 1956. Meanwhile, exposure to the atomic bombs in Japan had occurred and epidemics of delayed effects began to be recognized among the survivors: cataracts (1949), leukemia (1952) and severe mental retardation among newborn infants after intrauterine exposure (1952). No statistically significant excess of germ-cell genetic effects was detected by six clinical measurements (1956), the F1 mortality (1981), cytogenetic studies (1987) or biochemical genetic studies (1988). Somatic cell effects were revealed by long-lasting chromosomal aberrations in peripheral lymphocytes (1968), and somatic cell mutations were found at the glycophorin A locus in erythrocytes (1992). Molecular biology is a likely focus of new studies based on the function of the gene for ataxia telangiectasia (1995), a disorder in which children have severe, even lethal acute radiation reactions when given conventional doses of radiotherapy for lymphoma, to which they are prone. Also, obligate heterozygote female relatives can be studied for increased susceptibility to radiation-induced breast cancer, as suggested by clinical studies. The tumor registries in Hiroshima and Nagasaki now provide incidence data that show the extent of increases in eight common cancers and no increase in eight others (1994). The possibility of very late effects of A-bomb exposure is suggested by recent reports of increased

  13. Method for imaging quantum dots during exposure to gamma radiation

    NASA Astrophysics Data System (ADS)

    Immucci, Andrea N.; Chamson-Reig, Astrid; Yu, Kui; Wilkinson, Diana; Li, Chunsheng; Stodilka, Robert Z.; Carson, Jeffrey J. L.

    2011-03-01

    Quantum dots have been used in a wide variety of biomedical applications. A key advantage of these particles is that their optical properties depend predictably on size, which enables tuning of the emission wavelength. Recently, it was found that CdSe/ZnS quantum dots lose their ability to photoluminescence after exposure to gamma radiation (J. Phys. Chem. C., 113: 2580-2585 (2009). A method for readout of the loss of quantum dot photoluminescence during exposure to radiation could enable a multitude of real-time dosimetry applications. Here, we report on a method to image photoluminescence from quantum dots from a distance and under ambient lighting conditions. The approach was to construct and test a time-gated imaging system that incorporated pulsed illumination. The system was constructed from a pulsed green laser (Nd:YAG, 20 pulses/s, 5 ns pulse duration, ~5 mJ/pulse), a time-gated camera (LaVision Picostar, 2 ns gate width), and optical components to enable coaxial illumination and imaging. Using the system to image samples of equivalent concentration to the previous end-point work, quantum dot photoluminescence was measureable under ambient room lighting at a distance of 25 cm from the sample with a signal to background of 7.5:1. Continuous exposure of samples to pulsed laser produced no measureable loss of photoluminescence over a time period of one hour. With improvements to the light collection optics the range of the system is expected to increase to several metres, which will enable imaging of samples during exposure to a gamma radiation source.

  14. Mars Radiation Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Nealy, John E.

    2007-01-01

    NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.

  15. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis

    PubMed Central

    Li, Changzhao; Athar, Mohammad

    2016-01-01

    This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology. PMID:26930381

  16. An Epidemiological Prospective Study of Children’s Health and Annoyance Reactions to Aircraft Noise Exposure in South Africa

    PubMed Central

    Seabi, Joseph

    2013-01-01

    The purpose of this study was to investigate health and annoyance reactions to change in chronic exposure to aircraft noise on a sample of South African children. It was the intention of this study to examine if effects of noise on health and annoyance can be demonstrated. If so, whether such effects persist over time, or whether such effects are reversible after the cessation of exposure to noise. A cohort of 732 children with a mean age of 11.1 (range = 8–14) participated at baseline measurements in Wave 1 (2009), and 649 (mean age = 12.3; range = 9–15) and 174 (mean age = 13.3; range = 10–16) children were reassessed in Wave 2 (2010) and Wave 3 (2011) after the relocation of the airport, respectively. The findings revealed that the children who were exposed to chronic aircraft noise continued to experience significantly higher annoyance than their counterparts in all the waves at school, and only in Wave 1 and Wave 2 at home. Aircraft noise exposure did not have adverse effects on the children’s self-reported health outcomes. Taken together, these findings suggest that chronic exposure to aircraft noise may have a lasting impact on children’s annoyance, but not on their subjective health rating. This is one of the first longitudinal studies of this nature in the African continent to make use of an opportunity resulting from the relocation of airport. PMID:23823713

  17. An epidemiological prospective study of children's health and annoyance reactions to aircraft noise exposure in South Africa.

    PubMed

    Seabi, Joseph

    2013-07-03

    The purpose of this study was to investigate health and annoyance reactions to change in chronic exposure to aircraft noise on a sample of South African children. It was the intention of this study to examine if effects of noise on health and annoyance can be demonstrated. If so, whether such effects persist over time, or whether such effects are reversible after the cessation of exposure to noise. A cohort of 732 children with a mean age of 11.1 (range = 8-14) participated at baseline measurements in Wave 1 (2009), and 649 (mean age = 12.3; range = 9-15) and 174 (mean age = 13.3; range = 10-16) children were reassessed in Wave 2 (2010) and Wave 3 (2011) after the relocation of the airport, respectively. The findings revealed that the children who were exposed to chronic aircraft noise continued to experience significantly higher annoyance than their counterparts in all the waves at school, and only in Wave 1 and Wave 2 at home. Aircraft noise exposure did not have adverse effects on the children's self-reported health outcomes. Taken together, these findings suggest that chronic exposure to aircraft noise may have a lasting impact on children's annoyance, but not on their subjective health rating. This is one of the first longitudinal studies of this nature in the African continent to make use of an opportunity resulting from the relocation of airport.

  18. Decentralized Control of Sound Radiation from an Aircraft-Style Panel Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2008-01-01

    A decentralized LQG-based control strategy is designed to reduce low-frequency sound transmission through periodically stiffened panels. While modern control strategies have been used to reduce sound radiation from relatively simple structural acoustic systems, significant implementation issues have to be addressed before these control strategies can be extended to large systems such as the fuselage of an aircraft. For instance, centralized approaches typically require a high level of connectivity and are computationally intensive, while decentralized strategies face stability problems caused by the unmodeled interaction between neighboring control units. Since accurate uncertainty bounds are not known a priori, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is validated using real-time control experiments performed on a built-up aluminum test structure representative of the fuselage of an aircraft. Experiments demonstrate that the iterative approach is capable of achieving 12 dB peak reductions and a 3.6 dB integrated reduction in radiated sound power from the stiffened panel.

  19. Cognitive deficits induced by 56Fe radiation exposure

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  20. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    PubMed

    Koops, L

    2016-11-24

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions.

  1. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  2. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    NASA Technical Reports Server (NTRS)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  3. Nine-year evaluation of emergency department personnel exposure to ionizing radiation

    SciTech Connect

    Grazer, R.E.; Meislin, H.W.; Westerman, B.R.; Criss, E.A.

    1987-03-01

    Emergency department personnel experience potential occupational hazards from exposure to ionizing radiation (x-rays). To assess this risk, ionizing radiation exposure was analyzed during a nine-year period for 128 ED personnel. The group consisted of 21 physicians, 92 nurses, and 15 ancillary personnel. Exposure was measured for both penetrating and nonpenetrating radiation using standard film dosimeter badges. Film badge use compliance was 66.7% for physicians, 86.2% for nurses, and 86.7% for ancillary personnel. Penetrating radiation exposure averaged 0.12 mrem/month for physicians, 0.70 mrem/month for nurses, and 0 mrem/month for ancillary personnel, all less than the average natural background exposure. We concluded that if standard radiation precautions are taken, the occupational risk from ionizing radiation exposure to personnel in the ED is minimal, and that routine monitoring of radiation exposure of ED personnel is unnecessary.

  4. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.

  5. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  6. Long-Term Aircraft Noise Exposure and Body Mass Index, Waist Circumference, and Type 2 Diabetes: A Prospective Study

    PubMed Central

    Hilding, Agneta; Pyko, Andrei; Bluhm, Gösta; Pershagen, Göran; Östenson, Claes-Göran

    2014-01-01

    Background: Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. Objectives: The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. Methods: This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. Results: The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Conclusions: Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference. Citation: Eriksson C, Hilding A, Pyko A, Bluhm G, Pershagen G, Östenson CG. 2014. Long-term aircraft noise exposure and

  7. A different approach to evaluating health effects from radiation exposure

    SciTech Connect

    Bond, V.P.; Sondhaus, C.A.; Feinendegen, L.E.

    1988-01-01

    Absorbed dose D is shown to be a composite variable, the product of the fraction of cells hit (I/sub H/) and the mean /open quotes/dose/close quotes/ (hit size) /ovr z/ to those cells. D is suitable for use with high level (HLE) to radiation and its resulting acute organ effects because, since I/sub H/ = 1.0, D approximates closely enough the mean energy density in the cell as well as in the organ. However, with low-level exposure (LLE) to radiation and its consequent probability of cancer induction from a single cell, stochastic delivery of energy to cells results in a wide distribution of hit sizes z, and the expected mean value, /ovr z/, is constant with exposure. Thus, with LLE, only I/sub H/ varies with D so that the apparent proportionality between /open quotes/dose/close quotes/ and the fraction of cells transformed is misleading. This proportionality therefore does not mean that any (cell) dose, no matter how small, can be lethal. Rather, it means that, in the exposure of a population of individual organisms consisting of the constituent relevant cells, there is a small probabililty of particle-cell interactions which transfer energy. The probability of a cell transforming and initiating a cancer can only be greater than zero if the hit size (/open quotes/dose of energy/close quotes/) to the cell is large enough. Otherwise stated, if the /open quotes/dose/close quotes/ is defined at the proper level of biological organization, namely, the cell and not the organ, only a large dose z to that cell is effective. The above precepts are utilized to develop a drastically different approach to evaluation oif risk from LLE, that holds promise of obviating any requirement for the components of the present system: absorbed organ dose, LET, a standard radiation, REB(Q), dose equivalent and rem. 12 refs., 11 figs.

  8. Delayed effects of external radiation exposure: A brief history

    SciTech Connect

    Miller, R.W.

    1995-11-01

    Within months of Roentgen`s discovery of X rays, severe adverse effects were reported, but not well publicized. As a result, over the next two decades, fluoroscope operators suffered lethal skin carcinomas. Later, case reports appeared concerning leukemia in radiation workers, and infants born with severe mental retardation after their mothers had been given pelvic radiotherapy early in pregnancy. Fluoroscopy and radiotherapy for benign disorders continued to be used with abandon until authoritative reports were published on the adverse effects of ionizing radiation by the U.S. NAS-NRC and the UK MRC in 1956. Meanwhile, exposure to the atomic bombs in Japan had occurred and epidemics of delayed effects began to be recognized among the survivors: cataracts, leukemia and severe mental retardation among newborn infants after intra-uterine exposure. No statistically significant excess of germ-cell genetic effects was detected by six clinical measurements, the F{sub 1} mortality, cytogenetic studies or biochemical genetic studies. Somatic cell effects were revealed by long-lasting chromosomal aberrations in peripheral lymphocytes, and somatic cell mutations were found at the glycophorin A locus in erythrocytes. Molecular biology is a likely focus of new studies based on the function of the gene for ataxia telangiectasia, a disorder in which children have severe, even lethal acute radiation reactions when given conventional doses of radiotherapy for lymphoma, to which they are prone. The tumor registries in Hiroshima and Nagasaki now provide incidence data that show the extent of increases in eight common cancers and no increase in eight others. The possibility of very late effects of A-bomb exposure is suggested by recent reports of increased frequencies of hyperparathyroidism, parathyroid cancers and certain causes of death other than cancer. 88 refs., 1 fig.

  9. A first-principles model for estimating the prevalence of annoyance with aircraft noise exposure.

    PubMed

    Fidell, Sanford; Mestre, Vincent; Schomer, Paul; Berry, Bernard; Gjestland, Truls; Vallet, Michel; Reid, Timothy

    2011-08-01

    Numerous relationships between noise exposure and transportation noise-induced annoyance have been inferred by curve-fitting methods. The present paper develops a different approach. It derives a systematic relationship by applying an a priori, first-principles model to the findings of forty three studies of the annoyance of aviation noise. The rate of change of annoyance with day-night average sound level (DNL) due to aircraft noise exposure was found to closely resemble the rate of change of loudness with sound level. The agreement of model predictions with the findings of recent curve-fitting exercises (cf. Miedma and Vos, 1998) is noteworthy, considering that other analyses have relied on different analytic methods and disparate data sets. Even though annoyance prevalence rates within individual communities consistently grow in proportion to duration-adjusted loudness, variability in annoyance prevalence rates across communities remains great. The present analyses demonstrate that 1) community-specific differences in annoyance prevalence rates can be plausibly attributed to the joint effect of acoustic and non-DNL related factors and (2) a simple model can account for the aggregate influences of non-DNL related factors on annoyance prevalence rates in different communities in terms of a single parameter expressed in DNL units-a "community tolerance level."

  10. Female germ cell loss from radiation and chemical exposures

    SciTech Connect

    Dobson, R.L.; Felton, J.S.

    1983-01-01

    Female germ cells in some mammals are extremely sensitive to killing by ionizing radiation, especially during development. Primordial oocytes in juvenile mice have an LD50 of only 6-7 rad, and the germ cell pool in squirrel monkeys is destroyed by prenatal exposure of 0.7 rad/day. Sensitivity varies greatly with species and germ cell stage. Unusually high sensitivity has not been found in macaques and may not occur in man, but this has not been established for all developmental stages. The exquisite oocyte radiosensitivity in mice apparently reflects vulnerability of the plasma membrane, not DNA, which may have implications for estimating human genetic risks. Germ cells can be killed also by chemicals. Such oocyte loss, with similarities to radiation effects, is under increasing study, including chemotherapy observations in women. More than 75 compounds have been tested in mice, with in vivo toxicity quantified by oocyte loss; certain chemicals apparently act on the membrane.

  11. Radiation exposure inside reinforced concrete buildings at Nagasaki

    SciTech Connect

    Rhoades, W.A.; Childs, R.L.; Ingersoll, D.T.

    1989-05-01

    The biological effects on the residents of Hiroshima and Nagasaki due to initial-irradiation exposure during the nuclear attacks of World War II was recognized immediately as an important source of information. After the war, an extensive effort gathered data concerning the locations of individuals at the time of the attack and their subsequent medical histories. The data from personnel located in reinforced concrete buildings are particularly significant, since large groups of occupants received radiation injury without complications due to blast and thermal effects. In order to correlate the radiation dose with physiological effects, the dose to each individual must be calculated. Enough information about the construction of the buildings was available after the war to allow a radiation transport model to be constructed, but the accurate calculation of penetration into such large, thick-walled three dimensional structures was beyond the scope of computing technology until recently. Now, the availability of Cray vector computers and the development of a specially-constructed discrete ordinates transport code, TORT, have combined to allow the successful completion of such a study. This document describes the radiation transport calculations and tabulates the resulting doses by source component and individual case location. An extensive uncertainty analysis is also included. These data are to be used in another study as input to a formal statistical analysis, resulting in a new value for the LD50 dose, i.e., the dose at which the mortality risk is 50%. 55 refs., 67 figs., 70 tabs.

  12. Is Exposure to Low Radiation Levels Good For You?

    NASA Astrophysics Data System (ADS)

    Dimitroyannis, Dimitri

    1996-05-01

    Little is known about the biological effects of very low levels of ionizing radiation. We propose an experiment to compare cell response to such low radiation levels, using fast replicating yeast cells. Saccharomyces Cerevisae (SC), a type of yeast, is an eukariotic unicellular microorganism with a mean cell generation time of 90 min. Its genetic organization is similar to that of superior organisms, but at the same time is very easy to handle, with special reference to its genetic analysis. Certain CS strains are widely employed for mutagenesis studies. We propose to expose simultaneously three indentical CS cultures for a period of up to a few weeks (100s of cell generations): to natural backgroung (NB) ionizing radiation (at a ground level lab), to sub-NB level (underground) and to supra-NB level (at a high altitude). At the end of the exposure we will chemically challenge the cultured cells with methyl-methane-sulphonate (MMS), a standard chemical mutagen. Mitotic recombination frequency in the MMS exposed cultures is an index of early DNA damage induction at high survival levels (ie at very low radiation levels). This experiment can be handsomely and inexpensively accomodated in one of the existing underground laboratories.

  13. On the Use of SRIM for Computing Radiation Damage Exposure

    SciTech Connect

    Stoller, Roger E.; Toloczko, Mychailo B.; Was, Gary S.; Certain, Alicia G.; Dwaraknath, S.; Garner, Frank A.

    2013-09-01

    The SRIM (formerly TRIM) Monte Carlo simulation code is widely used to compute a number of parameters relevant to ion beam implantation and ion beam processing of materials. It also has the capability to compute a common radiation damage exposure unit known as atomic displacements per atom (dpa). Since dpa is a standard measure of primary radiation damage production, most researchers who employ ion beams as a tool for inducing radiation damage in materials use SRIM to determine the dpa associated with their irradiations. The use of SRIM for this purpose has been evaluated and comparisons have been made with an internationally-recognized standard definition of dpa, as well as more detailed atomistic simulations of atomic displacement cascades. Differences between the standard and SRIM-based dpa are discussed and recommendations for future usage of SRIM in radiation damage studies are made. In particular, it is recommended that when direct comparisons between ion and neutron data are intended, the Kinchin-Pease option of SRIM should be selected.

  14. A comparison of a laboratory and field study of annoyance and acceptability of aircraft noise exposures. [human reactions and tolerance

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1977-01-01

    Residents living in close, middle and distant areas from JFK Airport were included in a field interview and laboratory study. Judgments were made of simulated aircraft noise exposures of comparable community indoor noise levels and mixes of aircraft. Each group of subjects judged the levels of noise typical for its distance area. Four different numbers of flyovers were tested: less than average for each area, the approximate average, the peak number, or worst day, and above peak number. The major findings are: (1) the reported integrated field annoyance is best related to the annoyance reported for the simulated approximate worst day exposure in the laboratory; (2) annoyance is generally less when there are fewer aircraft flyovers, and the subject has less fear of crashes and more favorable attitudes toward airplanes; (3) beliefs in harmful health effects and misfeasance by operators of aircraft are also highly correlated with fear and noise annoyance; (4) in direct retrospective comparisons of number of flights, noise levels and annoyance, subjects more often said the worst day laboratory exposured more like their usual home environments; and (5) subjects do not expect an annoyance-free environment. Half of the subjects can accept an annoyance level of 5 to 6 from a possible annoyance range of 0 to 9, 28% can live with an annoyance intensity of 7, and only 5% can accept the top scores of 8 to 9.

  15. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    PubMed

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P < 0.05 and P < 0.05, respectively). We successfully developed a dog model of acute radiation enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis.

  16. Prenatal exposure to ionizing radiation and subsequent development of seizures

    SciTech Connect

    Dunn, K.; Yoshimaru, H.; Otake, M.; Annegers, J.F.; Schull, W.J. )

    1990-01-01

    Seizures are a frequent sequela of impaired brain development and can be expected to affect more children with radiation-related brain damage than children without such damage. This report deals with the incidence and type of seizures among survivors prenatally exposed to the atomic bombing of Hiroshima and Nagasaki, and their association with specific stages of prenatal development at the time of irradiation. Fetal radiation dose was assumed to be equal to the dose to the maternal uterus. Seizures here include all references in the clinical record to seizure, epilepsy, or convulsion. Histories of seizures were obtained at biennial routine clinical examinations starting at about the age of 2 years. These clinical records were used to classify seizures as febrile or unprovoked (without precipitating cause). No seizures were ascertained among subjects exposed 0-7 weeks after fertilization at doses higher than 0.10 Gy. The incidence of seizures was highest with irradiation at the eighth through the 15th week after fertilization among subjects with doses exceeding 0.10 Gy and was linearly related to the level of fetal exposure. This obtains for all seizures without regard to the presence of fever or precipitating causes, and for unprovoked seizures. When the 22 cases of severe mental retardation were excluded, the increase in seizures was only suggestively significant and only for unprovoked seizures. After exposure at later stages of development, there was no increase in recorded seizures.

  17. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  18. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under...

  19. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  20. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under...

  1. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain...

  2. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  3. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and...

  4. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and...

  5. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  6. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under...

  7. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under...

  8. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain...

  9. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and...

  10. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  11. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. Link to an... execution, or 952.223-72, Radiation protection and nuclear criticality: Preservation of...

  12. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain...

  13. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and...

  14. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain...

  15. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under...

  16. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain...

  17. TRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gases

    NASA Astrophysics Data System (ADS)

    Stordal, F.; Gauss, M.; Myhre, G.; Mancini, E.; Hauglustaine, D. A.; Köhler, M. O.; Berntsen, T.; . G Stordal, E. J.; Iachetti, D.; Pitari, G.; Isaksen, I. S. A.

    2006-10-01

    We have estimated impacts of alternative aviation routings on the radiative forcing. Changes in ozone and OH have been estimated in four Chemistry Transport Models (CTMs) participating in the TRADEOFF project. Radiative forcings due to ozone and methane have been calculated accordingly. In addition radiative forcing due to CO2 is estimated based on fuel consumption. Three alternative routing cases are investigated; one scenario assuming additional polar routes and two scenarios assuming aircraft cruising at higher (+2000 ft) and lower (-6000 ft) altitudes. Results from the base case in year 2000 are included as a reference. Taking first a steady state backward looking approach, adding the changes in the forcing from ozone, CO2 and CH4, the ranges of the models used in this work are -0.8 to -1.8 and 0.3 to 0.6 m Wm-2 in the lower (-6000 ft) and higher (+2000 ft) cruise levels, respectively. In relative terms, flying 6000ft lower reduces the forcing by 5-10% compared to the current flight pattern, whereas flying higher, while saving fuel and presumably flying time, increases the forcing by about 2-3%. Taking next a forward looking approach we have estimated the integrated forcing (m Wm-2 yr) over 20 and 100 years time horizons. The relative contributions from each of the three climate gases are somewhat different from the backward looking approach. The differences are moderate adopting 100 year time horizon, whereas under the 20 year horizon CO2 naturally becomes less important relatively. Thus the forcing agents impact climate differently on various time scales. Also, we have found significant differences between the models for ozone and methane. We conclude that we are not yet at a point where we can include non-CO2 effects of aviation in emission trading schemes. Nevertheless, the rerouting cases that have been studied here yield relatively small changes in the radiative forcing due to the radiatively active gases.

  18. Radiation exposures for DOE contractor employees-1988. Twenty-first annual report

    SciTech Connect

    Merwin, S. E.; Millet, W. H.; Traub, R. J.

    1990-12-01

    This report is one of a series of annual reports provided by the U.S. Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year and identify trends in exposures being experienced over the years.

  19. Radiation exposures for DOE and DOE contractor employees, 1987. Twentieth annual report

    SciTech Connect

    none,

    1989-10-01

    This report is one of series of annual reports provided by the US Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year, as well as identification of trends in exposures being experienced over the years. 5 figs., 30 tabs.

  20. Radiation Exposures for DOE and DOE Contractor Employees - 1989. Twenty-second annual report

    SciTech Connect

    Smith, M. H.; Eschbach, P. A.; Harty, R.; Millet, W. H.; Scholes, V. A.

    1992-12-01

    This report is one of a series of annual reports provided by the U.S. Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year and identify trends in exposures being experienced over the years.

  1. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  2. Real-Time Cloud, Radiation, and Aircraft Icing Parameters from GOES over the USA

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Nguyen, Louis; Smith, William, Jr.; Young, David; Khaiyer, Mandana; Palikonda, Rabindra; Spangenberg, Douglas; Doelling, Dave; Phan, Dung; Nowicki, Greg

    2004-01-01

    A preliminary new, physically based method for realtime estimation of the probability of icing conditions has been demonstrated using merged GOES-10 and 12 data over the continental United States and southern Canada. The algorithm produces pixel-level cloud and radiation properties as well as an estimate of icing probability with an associated intensity rating Because icing depends on so many different variables, such as aircraft size or air speed, it is not possible to achieve 100% success with this or any other type of approach. This initial algorithm, however, shows great promise for diagnosing aircraft icing and putting it at the correct altitude within 0.5 km most of the time. Much additional research must be completed before it can serve as a reliable input for the operational CIP. The delineation of the icing layer vertical boundaries will need to be improved using either the RUC or balloon soundings or ceilometer data to adjust the cloud base height, a change that would require adjustment of the cloud-top altitude also.

  3. Radiobiologic effect of intermittent radiation exposure in murine tumors

    SciTech Connect

    Sugie, Chikao . E-mail: chikao@bg8.so-net.ne.jp; Shibamoto, Yuta; Ito, Masato; Ogino, Hiroyuki; Miyamoto, Akihiko; Fukaya, Nobuyuki; Niimi, Hiroshige; Hashizume, Takuya

    2006-02-01

    Purpose: In stereotactic irradiation using a linear accelerator, the effect of radiation may be reduced during intermittent exposures owing to recovery from sublethal damage in tumor cells. After our previous in vitro study suggesting this phenomenon, we investigated the issue in murine tumors. Methods and Materials: We used EMT6 and SCCVII tumors approximately 1 cm in diameter growing in the hind legs of syngeneic mice. Three schedules of intermittent radiation were investigated. First, 2 fractions of 10 Gy were given at an interval of 15-360 min to investigate the pattern of recovery from sublethal damage. Second, 5 fractions of 4 Gy were given with interfraction intervals of 2.5-15 min each. Third, 10 fractions of 2 Gy were given with interfraction intervals of 1-7 min each. Doses of 15-20 Gy were also given without interruption to estimate the dose-modifying factors. Tumors were excised 20 h later, and tumor cell survival was determined by an in vivo-in vitro assay. Results: In the 2-fraction experiment, the increase in cell survival with elongation of the interval was much less than that observed in our previous in vitro study. In the 5- and 10-fraction experiments, no significant increase in cell survival was observed after the intermittent exposures. Moreover, cell survival decreased at most points of the 5-fraction experiments by interruption of radiation in both EMT6 and SCCVII tumors. In the 10-fraction experiment, cell survival also decreased when the interruption was 3 or 7 min in EMT6 tumors. Conclusion: The results of the present in vivo studies were different from those of our in vitro studies in which cell survival increased significantly when a few minutes or longer intervals were posed between fractions. This suggests that recovery from sublethal damage in vivo may be counterbalanced by other phenomena such as reoxygenation that sensitizes tumor cells to subsequent irradiation.

  4. Blue Light and Ultraviolet Radiation Exposure from Infant Phototherapy Equipment.

    PubMed

    Pinto, Iole; Bogi, Andrea; Picciolo, Francesco; Stacchini, Nicola; Buonocore, Giuseppe; Bellieni, Carlo V

    2015-01-01

    Phototherapy is the use of light for reducing the concentration of bilirubin in the body of infants. Although it has become a mainstay since its introduction in 1958, a better understanding of the efficacy and safety of phototherapy applications seems to be necessary for improved clinical practices and outcomes. This study was initiated to evaluate workers' exposure to Optical Radiation from different types of phototherapy devices in clinical use in Italy. During infant phototherapy the staff monitors babies periodically for around 10 min every hour, and fixation of the phototherapy beam light frequently occurs: almost all operators work within 30 cm of the phototherapy source during monitoring procedures, with most of them commonly working at ≤25 cm from the direct or reflected radiation beam. The results of this study suggest that there is a great variability in the spectral emission of equipments investigated, depending on the types of lamps used and some phototherapy equipment exposes operators to blue light photochemical retinal hazard. Some of the equipment investigated presents relevant spectral emission also in the UVA region. Taking into account that the exposure to UV in childhood has been established as an important contributing factor for melanoma risk in adults and considering the high susceptibility to UV-induced skin damage of the newborn, related to his pigmentary traits, the UV exposure of the infant during phototherapy should be "as low as reasonably achievable," considering that it is unnecessary to the therapy. It is recommended that special safety training be provided for the affected employees: in particular, protective eyewear can be necessary during newborn assistance activities carried out in proximity of some sources. The engineering design of phototherapy equipment can be optimized. Specific requirements for photobiological safety of lamps used in the phototherapy equipment should be defined in the safety product standard for such

  5. Radiation exposure: Hot legacy of the Cold War

    SciTech Connect

    Marshall, E.

    1990-08-03

    The article tells about the routine management of nuclear safety in the U.S.S.R. and, more specifically, about the hazards of long-term exposure to big doses of radiation. Half the workers at the Cheliabinsk site in the Ural Mountains east of Moscow were routinely receiving 100 rem per year in the late 1940s and early 1950s. For comparison, this is about 20 times the maximum annual dose a worker is allowed to get in the United States today. The consequences of the very large doses to workers in the U.S.S.R. are not fully revealed. But the report mentions that 8 to 9% of the staff who began work before 1958 and received high radiation doses (more than 100 rem) die of cancer. In addition, the report says that nearly a quarter of the workers between 1950 and 1952 were suffering from chronic radiation disease. Cancer mortality among severely exposed workers (100 rem and above) was 88% higher than among those who received less than 100 rem.

  6. Radiation exposure and breast cancer: lessons from Chernobyl.

    PubMed

    Ogrodnik, Aleksandra; Hudon, Tyler W; Nadkarni, Prakash M; Chandawarkar, Rajiv Y

    2013-04-01

    The lessons learned from the Chernobyl disaster have become increasingly important after the second anniversary of the Fukushima, Japan nuclear accident. Historically, data from the Chernobyl reactor accident 27 years ago demonstrated a strong correlation with thyroid cancer, but data on the radiation effects of Chernobyl on breast cancer incidence have remained inconclusive. We reviewed the published literature on the effects of the Chernobyl disaster on breast cancer incidence, using Medline and Scopus from the time of the accident to December of 2010. Our findings indicate limited data and statistical flaws. Other confounding factors, such as discrepancies in data collection, make interpretation of the results from the published literature difficult. Re-analyzing the data reveals that the incidence of breast cancer in Chernobyl-disaster-exposed women could be higher than previously thought. We have learned little of the consequences of radiation exposure at Chernobyl except for its effects on thyroid cancer incidence. Marking the 27th year after the Chernobyl event, this report sheds light on a specific, crucial and understudied aspect of the results of radiation from a gruesome nuclear power plant disaster.

  7. Mitigation of Lung Injury after Accidental Exposure to Radiation

    PubMed Central

    Mahmood, J.; Jelveh, S.; Calveley, V.; Zaidi, A.; Doctrow, S. R.; Hill, R. P.

    2011-01-01

    There is a serious need to develop effective mitigators against accidental radiation exposures. In radiation accidents, many people may receive nonuniform whole-body or partial-body irradiation. The lung is one of the more radiosensitive organs, demonstrating pneumonitis and fibrosis that are believed to develop at least partially because of radiation-induced chronic inflammation. Here we addressed the crucial questions of how damage to the lung can be mitigated and whether the response is affected by irradiation to the rest of the body. We examined the widely used dietary supplement genistein given at two dietary levels (750 or 3750 mg/kg) to Fischer rats irradiated with 12 Gy to the lung or 8 Gy to the lung + 4 Gy to the whole body excluding the head and tail (whole torso). We found that genistein had promising mitigating effects on oxidative damage, pneumonitis and fibrosis even at late times (36 weeks) when drug treatment was initiated 1 week after irradiation and stopped at 28 weeks postirradiation. The higher dose of genistein showed no greater beneficial effect. Combined lung and whole-torso irradiation caused more lung-related severe morbidity resulting in euthanasia of the animals than lung irradiation alone. PMID:22013884

  8. The impact of aircraft noise exposure on South African children's reading comprehension: the moderating effect of home language.

    PubMed

    Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul; Greyling, Mike

    2012-01-01

    Given the limited studies conducted within the African continent, the purpose of this study was to investigate the impact of chronic aircraft noise exposure and the moderating effect of home language on the learners' reading comprehension. The sample comprised 437 (52%) senior primary learners exposed to high levels of aircraft noise (Experimental group) and 337 (48%) learners residing in a quieter area (Control group). Of these, 151 learners in the Experimental group spoke English as a first language (EFL) and 162 spoke English as a second language (ESL). In the Control group, the numbers were similarly divided (EFL n = 191; ESL n = 156). A univariate General Linear Model was used to investigate the effects of aircraft noise exposure and language on reading comprehension, while observing for the possible impact of intellectual ability, gender, and socioeconomic status on the results. A significant difference was observed between ESL and EFL learners in favor of the latter (F 1,419 = 21.95, P =.000). In addition a substantial and significant interaction effect was found between the experimental and control groups for the two language groups. For the EFL speakers there was a strong reduction in reading comprehension in the aircraft noise group. By contrast this difference was not significant for the ESL speakers. Implications of the findings and suggestions for further research are made in the article.

  9. Sensitivity of cerebellar glutathione system to neonatal ionizing radiation exposure.

    PubMed

    Di Toro, C G; Di Toro, P A; Zieher, L M; Guelman, L R

    2007-05-01

    Reactive oxygen species (ROS) are relevant components of living organisms that, besides their role in the regulation of different important physiological functions, when present in excess are capable to affect cell oxidative status, leading to damage of cellular molecules and disturbance of normal cell function. ROS accumulation has been associated with a variety of conditions such as neurodegenerative diseases and ionizing radiation exposure. Cell ability to counteract ROS overproduction depends on the capacity of the endogenous antioxidant defenses--which includes the glutathione (GSH) system--to cope with. Since developing central nervous system (CNS) is especially sensitive to ROS-induced damage, the aim of the present work was to evaluate ROS, reduced GSH and oxidized glutathione (GSSG) levels in the cerebellum at different developmental ages after irradiation, in order to test if any changes were induced on these key oxidative stress-related cellular markers that might explain the high cerebellar vulnerability to radiation-induced injury. Since intracellular levels of GSH are maintained by glutathione reductase (GSHr), this enzymatic activity was also evaluated. Newborn Wistar rats were irradiated in their cephalic ends and the different parameters were measured, from 1h to 90 days post-irradiation. Results showed that an early transient increase in ROS levels followed by a decrease in cerebellar weight at 3-5 days post-irradiation were induced. An increase in cerebellar GSH levels was induced at 30 days after irradiation, together with a decrease in GSHr activity. These results support the hypothesis that ROS may represent a marker of damage prior to radiation-induced cell death. In contrast, it would be suggested that GSH system might play a role in the compensatory mechanisms triggered to counteract radiation-induced cerebellar damage.

  10. Aircraft measured atmospheric momentum, heat and radiation fluxes over Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Hartmann, Jörg; Kottmeier, Christoph; Wamser, Christian; Augstein, Ernst

    The vertical turbulent momentum, sensible and latent heat fluxes and the surface radiation balance are derived from measurements of low level flights (<50 m height) with a highly instrumented aircraft over Fram Strait in September/October 1991. High resolution information on the sea ice cover is obtained with a digital line scan camera. It is found that the drag coefficient for neutral static stability at 10 m height can be composed of a skin drag (cdns = 1.1 . 10-3), which coincides with the open water value, and a form drag which linearly increases with the mean ice area perpendicular to the surface wind vector per unit surface area. The ratio of the generally small sensible and latent heat fluxes (both ≤ 20 Wm-2) is close to unity for near neutral atmospheric stratification and no dependence of these fluxes on sea ice concentration can be detected, at least for the encountered ice concentrations larger than 50%. Measurements at about 40 m height are not sufficient to study cases with stable stratification since the flight level seems to be fully decoupled from the surface processes. In this autumn measurements 50% to 90% of the net energy flux at the surface is made up by the radiation balance. Therefore, radiative fluxes form important components in polar air-sea exchange processes. The long wave downward radiation can be parameterised using the ɛσT4 law with the near surface air temperature and the empirically determined values for the emissivity ɛ = 0.71 and ɛ = 0.90 for clear and cloudy skies, respectively. The standard deviations of our measurements from this parameterisation are 4.6 Wm-2 for clear and 8.6 Wm-2 for cloudy skies. These values fall into the range ofthe instrumental uncertainty.

  11. Radiation exposures for DOE and DOE contractor employees - 1991. Twenty-fourth annual report

    SciTech Connect

    Smith, M.H.; Hui, T.E.; Millet, W.H.; Scholes, V.A.

    1994-11-01

    This is the 24th annual radiation exposure report published by US DOE and its predecessor agencies. This report summarizes the radiation exposures received by both employees and visitors at DOE and COE contractor facilities during 1991. Trends in radiations exposures are evaluated. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimates from expert groups.

  12. ADVISORY ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION

    EPA Science Inventory

    The National Academy of Sciences (NAS) published the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in 2006. The Committee analyzed the most recent epidemiology from the important exposed cohorts and factor...

  13. 38 CFR 1.17 - Evaluation of studies relating to health effects of radiation exposure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... health effects of radiation exposure. (a) From time to time, the Secretary shall publish evaluations of... studies affecting epidemiological assessments including case series, correlational studies and...

  14. Human performance analysis of industrial radiography radiation exposure events

    SciTech Connect

    Reece, W.J.; Hill, S.G.

    1995-12-01

    A set of radiation overexposure event reports were reviewed as part of a program to examine human performance in industrial radiography for the US Nuclear Regulatory Commission. Incident records for a seven year period were retrieved from an event database. Ninety-five exposure events were initially categorized and sorted for further analysis. Descriptive models were applied to a subset of severe overexposure events. Modeling included: (1) operational sequence tables to outline the key human actions and interactions with equipment, (2) human reliability event trees, (3) an application of an information processing failures model, and (4) an extrapolated use of the error influences and effects diagram. Results of the modeling analyses provided insights into the industrial radiography task and suggested areas for further action and study to decrease overexposures.

  15. [Solar radiation exposure in agriculture: an underestimated risk].

    PubMed

    Gobba, F

    2012-01-01

    Solar Radiation (SR) is a major occupational risk in agriculture, mainly related to its ultraviolet (UV) component. Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma and squamous cell carcinoma of the skin, and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in agriculture. The role of the Occupational Physician in prevention is fundamental.

  16. 21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke; Clowdsley, Martha; Wilson, John; Nealy, John; Luetke, Nathan

    2006-01-01

    On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.

  17. Changes in Liver Metabolic Gene Expression after Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2012-01-01

    The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments.

  18. Occupational Radiation Exposure Analysis of US ITER DCLL TBM

    SciTech Connect

    Merrill, Brad J; Cadwallader, Lee C; Dagher, Mohamad

    2007-08-01

    This report documents an Occupational Radiation Exposure (ORE) analysis that was performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This analysis was performed with the QADMOD dose code for anticipated maintenance activities for this TBM concept and its ancillary systems. The QADMOD code was used to model the PbLi cooling loop of this TBM concept by specifying gamma ray source terms that simulated radioactive material within the piping, valves, heat exchanger, permeator, pump, drain tank, and cold trap of this cooling system. Estimates of the maintenance tasks that will have to be performed and the time required to perform these tasks where developed based on either expert opinion or on industrial maintenance experience for similar technologies. This report details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  19. Effects of forward velocity on sound radiation from convecting monopole and dipole sources in jet flow. [subsonic aircraft model

    NASA Technical Reports Server (NTRS)

    Dash, R.

    1979-01-01

    A theoretical model is presented of the effects of forward velocity of an aircraft at arbitrary subsonic speed on sound radiated from convecting monopole and dipole sources embedded in the jet flow. It is found that with increasing forward velocity there is a steadily increasing amplification (over the static case) of the sound radiated into the forward arc and a large reduction of the sound which is radiated into the rearward arc. The same trend is also shown to result when there is a reduction in the exhaust velocity, with, however, a further rise in amplification in the forward quadrant and a drop in attenuation in the aft quadrant.

  20. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  1. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    PubMed

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  2. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    SciTech Connect

    Malchow, Russell L.; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela; Marsac, Kara; Hausrath, Elisabeth; Adcock, Christopher

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the

  3. Modeling of secondary radiation damage in LIGA PMMA resist exposure

    NASA Astrophysics Data System (ADS)

    Ting, Aili

    2003-01-01

    Secondary radiation during LIGA PMMA resist exposure adversely affects feature definition, sidewall taper and overall sidewall offset. Additionally, it can degrade the resist adjacent to the substrate, leading to the loss of free-standing features through undercutting during resist development or through mechanical failure of the degraded material. The source of this radiation includes photoelectrons, Auger electrons, fluorescence photons, etc. Sandia"s Integrated Tiger Series (ITS), a coupled electron/photon Monte Carlo transport code, was used to compute dose profiles within 1 to 2 microns of the absorber edge and near the interface of the resist with a metallized substrate. The difficulty of sub-micron resolution requirement was overcome by solving a few local problems having carefully designed micron-scale geometries. The results indicate a 2-μm dose transition region near the absorber edge resulting from PMMA"s photoelectrons. This region leads to sidewall offset and to tapered sidewalls following resist development. The results also show a dose boundary layer of around 1 μm near the substrate interface due to electrons emitted from the substrate metallization layer. The maximum dose at the resist bottom under the absorber can be very high and can lead to feature loss during development. This model was also used to investigate those resist doses resulting from multi-layer substrate.

  4. Personalized Cancer Risk Assessments for Space Radiation Exposures

    PubMed Central

    Locke, Paul A.; Weil, Michael M.

    2016-01-01

    Individuals differ in their susceptibility to radiogenic cancers, and there is evidence that this inter-individual susceptibility extends to HZE ion-induced carcinogenesis. Three components of individual risk: sex, age at exposure, and prior tobacco use, are already incorporated into the NASA cancer risk model used to determine safe days in space for US astronauts. Here, we examine other risk factors that could potentially be included in risk calculations. These include personal and family medical history, the presence of pre-malignant cells that could undergo malignant transformation as a consequence of radiation exposure, the results from phenotypic assays of radiosensitivity, heritable genetic polymorphisms associated with radiosensitivity, and postflight monitoring. Inclusion of these additional risk or risk reduction factors has the potential to personalize risk estimates for individual astronauts and could influence the determination of safe days in space. We consider how this type of assessment could be used and explore how the provisions of the federal Genetic Information Non-discrimination Act could impact the collection, dissemination and use of this information by NASA. PMID:26942127

  5. Elevated blood lead levels from exposure via a radiator workshop.

    PubMed

    Treble, R G; Thompson, T S; Morton, D N

    1998-04-01

    Elevated lead levels were discovered in blood samples collected from family members where both the father and the mother worked in a radiator repair workshop. The father and mother were found to have blood lead levels of 2.0 and 0.5 mumol/L (41.7 and 10.4 micrograms/dL), respectively. The father's blood lead level was just below the Canadian occupational health and safety intervention level (2.5 mumol/L or 52.1 micrograms/dL). The two children had blood lead levels of 1.0 and 0.8 mumol/L (20.8 and 16.7 micrograms/dL), both of which are in excess of the recommended guideline for intervention in the case of children (0.5 mumol/L or 10.4 micrograms/dL). The exposure of the two children was possibly due to a combination of pathways including exposure at the workshop itself during visits and also the transportation of lead-containing dust to the home environment.

  6. Radiation Exposure in Nonvascular Fluoroscopy-Guided Interventional Procedures

    SciTech Connect

    Kloeckner, Roman; Bersch, Anton; Santos, Daniel Pinto dos; Schneider, Jens; Dueber, Christoph; Pitton, Michael Bernhard

    2012-06-15

    Purpose: To investigate the radiation exposure in non-vascular fluoroscopy guided interventions and to search strategies for dose reduction. Materials and Methods: Dose area product (DAP) of 638 consecutive non-vascular interventional procedures of one year were analyzed with respect to different types of interventions; gastrointestinal tract, biliary interventions, embolizations of tumors and hemorrhage. Data was analyzed with special focus on the fluoroscopy doses and frame doses. The third quartiles (Q3) of fluoroscopy dose values were defined in order to set a reference value for our in-hospital practice. Results: Mean fluoroscopy times of gastrostomy, jejunostomy, right and left sided percutaneous biliary drainage, chemoembolization of the liver and embolization due to various hemorrhages were 5.9, 8.6, 13.5, 16.6, 17.4 and 25.2 min, respectively. The respective Q3 total DAP were 52.9, 73.3, 155.1, 308.4, 428.6 and 529.3 Gy*cm{sup 2}. Overall, around 66% of the total DAP originated from the radiographic frames with only 34% of the total DAP applied by fluoroscopy (P < 0.001). The investigators experience had no significant impact on the total DAP applied, most likely since there was no stratification to intervention-complexity. Conclusion: To establish Diagnostic Reference Levels (DRLs), there is a need to establish a registry of radiation dose data for the most commonly performed procedures. Documentation of interventional procedures by fluoroscopy 'grabbing' has the potential to considerably reduce radiation dose applied and should be used instead of radiographic frames whenever possible.

  7. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure.

    PubMed

    Cheema, Amrita K; Suman, Shubhankar; Kaur, Prabhjit; Singh, Rajbir; Fornace, Albert J; Datta, Kamal

    2014-01-01

    Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy γ radiation and results were compared to an equitoxic ⁵⁶Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the ⁵⁶Fe radiation preferentially altered dipeptide metabolism. Furthermore, ⁵⁶Fe radiation caused upregulation of 'prostanoid biosynthesis' and 'eicosanoid signaling', which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but also as a radiation

  8. Long-Term Differential Changes in Mouse Intestinal Metabolomics after γ and Heavy Ion Radiation Exposure

    PubMed Central

    Kaur, Prabhjit; Singh, Rajbir; Fornace, Albert J.; Datta, Kamal

    2014-01-01

    Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy γ radiation and results were compared to an equitoxic 56Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the 56Fe radiation preferentially altered dipeptide metabolism. Furthermore, 56Fe radiation caused upregulation of ‘prostanoid biosynthesis’ and ‘eicosanoid signaling’, which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but also as a radiation

  9. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation...

  10. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation...

  11. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation...

  12. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation...

  13. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation...

  14. [Two-step exposure of biological objects to infrared laser and microwave radiation].

    PubMed

    Kol'tsov, Iu V; Korolev, V N; Kusakin, S A

    1999-01-01

    The effect of two-step exposure of bacterial objects to infrared laser and microwave pulse radiations was studied. The effect is determined by the time interval between two excitation steps and pulse duration. It was shown that the biologically active dose of microwave radiation is much lower than that of infrared laser radiation; however, laser radiation induces a stronger cellular response. It was found that microwaves enhance the efficiency of infrared laser radiation.

  15. Radiation Exposure in X-Ray and CT Examinations

    MedlinePlus

    ... page Measuring radiation dosage The scientific unit of measurement for radiation dose, commonly referred to as effective dose, is the millisievert (mSv) . Other radiation dose measurement units include rad, rem, roentgen, sievert, and gray. ...

  16. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  17. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  18. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  19. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  20. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  1. Radiation exposure of the hands and thyroid gland during percutaneous wiring of wrist and hand procedures.

    PubMed

    Bahari, Syah; Morris, Seamus; Broe, David; Taylor, Colm; Lenehan, Brian; McElwain, John

    2006-04-01

    The aim of this study was to investigate the radiation exposure of the hands and thyroid glands of orthopaedic surgeon and assistant during procedures involving percutaneous wiring of the hand and wrist. The radiation dose to the hand and thyroid glands was prospectively studied from a total of 30 percutaneous hand and wrist procedures. Four thermolucent densitometers were used to measure the radiation exposure. Cases were divided depending on fracture location (ie. wrist, metacarpal, phalangeal) and surgical experience (i.e. Senior House Officer, Registrar, Consultant). Mean radiation exposure in the hand for the surgeon was 0.80 mSv and 0.87 mSv for the assistant. There was a significant difference in the unshielded thyroid group compared to the shielded thyroid group (p < 0.05). The duration and number of exposure decreases with increasing experience. We also found a trend whereas we operate from proximal to distal (wrist to phalangeal), the total direct hand exposure increases. Radiation exposure in the hands and thyroid glands during percutaneous wiring of hand and wrist procedures were within the recommended limit. However, for the junior orthopaedic trainee, the risk of over radiating oneself is higher as the duration and number of exposure increases. We recommended the use of thyroid shield and adherence to the ALARA principle in any fluoroscopic assisted procedures. Routine monitoring of radiation exposure is essential in preventing radiation related disease.

  2. Diagnostic medical imaging radiation exposure and risk of development of solid and hematologic malignancy.

    PubMed

    Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A

    2012-05-01

    Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice.

  3. Cytokine and chemokine responses after exposure to ionizing radiation: Implications for the astronauts

    NASA Astrophysics Data System (ADS)

    Laiakis, Evagelia C.; Baulch, Janet E.; Morgan, William F.

    For individuals traveling in space, exposure to space radiation is unavoidable. Since adequate shielding against radiation exposure is not practical, other strategies for protecting the astronauts must be developed. Radiation is also an important therapeutic and diagnostic tool, and evidence from the clinical and experimental settings now shows a firm connection between radiation exposure and changes in cytokine and chemokine levels. These small proteins can be pro- or anti-inflammatory in nature and the balance between those two effects can be altered easily because of exogenous stresses such as radiation. The challenge to identify a common perpetrator, however, lies in the fact that the cytokines that are produced vary based on radiation dose, type of radiation, and the cell types that are exposed. Based on current knowledge, special treatments have successfully been designed by implementing administration of proteins, antibodies, and drugs that counteract some of the harmful effects of radiation. Although these treatments show promising results in animal studies, it has been difficult to transfer those practices to the human situation. Further understanding of the mechanisms by which cytokines are triggered through radiation exposure and how those proteins interact with one another may permit the generation of novel strategies for radiation protection from the damaging effects of radiation. Here, we review evidence for the connection between cytokines and the radiation response and speculate on strategies by which modulating cytokine responses may protect astronauts against the detrimental effects of ionizing radiations.

  4. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Diffenderfer, Eric S.; Hagan, Sarah; Billings, Paul C.; Gridley, Daila S.; Seykora, John T.; Kennedy, Ann R.; Cengel, Keith A.

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed.

  5. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.

    PubMed

    Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed.

  6. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model

    PubMed Central

    Sanzari, Jenine K.; Diffenderfer, Eric S.; Hagan, Sarah; Billings, Paul C.; Gridley, Daila S.; Seykora, John T.; Kennedy, Ann R.; Cengel, Keith A.

    2015-01-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the dermis upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. PMID:26256624

  7. Polonium in cigarette smoke and radiation exposure of lungs

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando P.; Oliveira, João M.

    2006-01-01

    Polonium (210Po), the most volatile of naturally-occurring radionuclides in plants, was analysed in three common brands of cigarettes produced in Portugal. The analyses were carried out on the unburned tobacco contained in cigarettes, on the ashes and butts of smoked cigarettes and on the mainstream smoke. 210Po in tobacco displays concentrations ranging from 3 to 37 mBq g-1, depending upon the cigarette brand. The 210Po activity remaining in the solid residue of a smoked cigarette varied from 0.3 to 4.9 mBq per cigarette, and the 210Po in the inhaled smoke varied from 2.6 to 28.9 mBq. In all brands of cigarettes tested, a large fraction of the 210Po content is not inhaled by the smoker and it is released into the atmosphere. Part of it may be inhaled by passive smokers. Depending upon the commercial brand and upon the presence or absence of a filter in the cigarette, 5 to 37 % of the 210Po in the cigarette can be inhaled by the smoker. Taking into account the average 210Po in surface air, the smoker of one pack of twenty cigarettes per day may inhale 50 times 210Po than a non smoker. Cigarette smoke contributes with 1.5 % to the daily rate of 210Po absorption into the blood, 0.39 Bq d-1, and, after systemic circulation it gives rise to a whole body radiation dose in the same proportion. However, in the smoker the deposition of 210Po in the lungs is much more elevated than normal and may originate an enhanced radiation exposure. Estimated dose to the lungs is presented and radiobiological effects of cigarette smoke are discussed.

  8. Monitoring exposure to atomic bomb radiation by somatic mutation

    SciTech Connect

    Akiyama, Mitoshi; Kyoizumi, Seishi; Kusunoki, Yoichiro

    1996-05-01

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in females and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. 27 refs., 2 figs.

  9. Monitoring exposure to atomic bomb radiation by somatic mutation.

    PubMed Central

    Akiyama, M; Kyoizumi, S; Kusunoki, Y; Hirai, Y; Tanabe, K; Cologne, J B

    1996-01-01

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in females and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. PMID:8781371

  10. Radiation exposure to human trachea from Xenon-133 procedures

    SciTech Connect

    Prohovnik, I.; Metz, C.D.; Atkins, H.L. ||

    1995-08-01

    The general dosimetry of {sup 133}Xe for human studies is well documented, but the resultant radiation exposure to tracheal tissue is poorly known. This organ is of central relevance because the tracer is primarily eliminated through exhalation. We report actual {sup 133}Xe concentrations in respiratory air during measurement of regional cerebral blood flow (rCBF), when the tracer is administered both by inhalation and intravenous injection. Data were collected from 102 patients, with equal gender representation and an age range of 18-82 yr. Most of the patients had subarachnoid hemorrhage or Alzheimer`s disease or were normal control subjects. Average administered doses were 18 {plus_minus} 4 mCi by inhalation and 15 {plus_minus} 3 intravenously. We found average respiratory concentrations of about 1.80 mCi/liter during a 1-min inhalation and 0.74 mCi/liter following intravenous injection of standard doses. These activities drop rapidly: average respiratory concentrations during the second minute are 0.70 mCi/liter for inhalation and 0.19 mCi/liter for intravenous injection and reach negligible levels thereafter. We calculate that the tracheal absorbed dose from {sup 133}Xe procedures is approximately 28 mrad following inhalation and about 11 mrad following intravenous injection. These values reflect the full 11-min exposure, but most of the activity is only present initially. These values will agree with previous estimates and indicate an excellent safety margin. 6 refs., 2 figs., 1 tab.

  11. Assessing unregulated ionizing radiation exposures of U.S. populations from conventional industries.

    PubMed

    Pennington, Charles W

    2006-08-15

    During the latter twentieth century, the public learned to fear perceived threats from emerging technologies. Concern about ionizing radiation became a persistent fear, causing protracted and often pointless debate. The twenty-first century offers new opportunities for this fear to cause public and political upset. Citizens and politicians know little about "normal" radiation exposures caused by conventional industries. This paper summarizes ionizing radiation exposure assessments of several such industries, showing they deliver multiples of background radiation annually to millions of people, with even higher subpopulation doses due to lognormally distributed exposures. Such information may be useful in educating the public and in supporting comparative assessments or other forms of research on potential sources of public radiation exposure in the twenty-first century. By exposing people to information about normal radiation, we may hope to avoid some unfortunate policies and unnecessary regulatory responses, while abating needless public fear during this technologically challenging century.

  12. Effects of exposure to different types of radiation on behaviors mediated by peripheral or central systems

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Erat, S.

    1998-01-01

    The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.

  13. Effects of exposure to different types of radiation on behaviors mediated by peripheral or central systems

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Erat, S.

    The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (^56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (^60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to ^56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.

  14. Lead exposure in radiator repair workers: a survey of Washington State radiator repair shops and review of occupational lead exposure registry data.

    PubMed

    Whittaker, Stephen G

    2003-07-01

    Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.

  15. Is ultraviolet radiation a synergistic stressor in combined exposures? The case study of Daphnia magna exposure to UV and carbendazim.

    PubMed

    Ribeiro, Fabianne; Ferreira, Nuno C G; Ferreira, Abel; Soares, Amadeu M V M; Loureiro, Susana

    2011-03-01

    The toxicological assessment of chemical compounds released to the environment is more accurate when mixtures of chemicals and/or interactions between chemicals and natural stressors are considered. Ultraviolet radiation can be taken as a natural stressor since the levels of UV are increasing due to the decrease of its natural filter, the stratospheric ozone concentration. Therefore, a combination of chemical exposures and increasing UV irradiance in aquatic environments is likely to occur. In the current study, combined effects of carbendazim and ultraviolet radiation were evaluated, using selected life traits as endpoints on Daphnia magna. To design combined exposures, first single chemical and natural stressor bioassays were performed: a reproduction test with carbendazim and a reproduction, feeding inhibition and Energy budget test with ultraviolet radiation. Following single exposures, the combinations of stressors included exposures to UV radiation and carbendazim for a maximum exposure time of 4h, followed by a post-exposure period in chemically contaminated medium for a maximum of 15 days, depending on the endpoint, where the effects of the combined exposures were investigated. Statistical analyses of the data set were performed using the MixTox tool and were based on the conceptual model of Independent Action (IA) and possible deviations to synergism or antagonism, dose-ratio or dose-level response pattern. Both ultraviolet radiation and carbendazim as single stressors had negative impacts on the measured life traits of daphnids, a decrease on both feeding rates and reproduction was observed. Feeding rates and reproduction of D. magna submitted to combined exposures of ultraviolet radiation and carbendazim showed a dose-ratio deviation from the conceptual model as the best description of the data set, for both endpoints. For feeding inhibition, antagonism was observed when the UV radiation was the dominant item in combination, and for reproduction

  16. Emesis in Ferrets Following Exposure to Different Types of Radiation: A Dose-Response Study

    DTIC Science & Technology

    1992-08-01

    SR92-34 Emesis in Ferrets Following Exposure to Different Types of Radiation: N A Dose -Response Study L51 BERNARD M. RABIN, Ph.D., WALTER A. HUNT...fission neutrons (1500-2000 following exposure to different types o" radiation: a dose -response cGy), Young (13) reported that increasing the propor...order to establish the dose -response relationships monkey, but did not produce an increase in the total for emesis following exposure to different types

  17. 41 CFR 50-204.21 - Exposure of individuals to radiation in restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to radiation in restricted areas. 50-204.21 Section 50-204.21 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.21 Exposure of individuals to radiation in restricted areas. (a) Except as provided in paragraph (b) of this section, no employer...

  18. 41 CFR 50-204.21 - Exposure of individuals to radiation in restricted areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to radiation in restricted areas. 50-204.21 Section 50-204.21 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.21 Exposure of individuals to radiation in restricted areas. (a) Except as provided in paragraph (b) of this section, no employer...

  19. 41 CFR 50-204.21 - Exposure of individuals to radiation in restricted areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to radiation in restricted areas. 50-204.21 Section 50-204.21 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.21 Exposure of individuals to radiation in restricted areas. (a) Except as provided in paragraph (b) of this section, no employer...

  20. 41 CFR 50-204.21 - Exposure of individuals to radiation in restricted areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to radiation in restricted areas. 50-204.21 Section 50-204.21 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.21 Exposure of individuals to radiation in restricted areas. (a) Except as provided in paragraph (b) of this section, no employer...

  1. 41 CFR 50-204.21 - Exposure of individuals to radiation in restricted areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to radiation in restricted areas. 50-204.21 Section 50-204.21 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.21 Exposure of individuals to radiation in restricted areas. (a) Except as provided in paragraph (b) of this section, no employer...

  2. Combined Injury: Radiation in Combination with Trauma, Infectious Disease, or Chemical Exposures

    DTIC Science & Technology

    2005-01-01

    radiation are highly likely. At Hiroshima and Nagasaki, 60% to 70% of radiation victims sustained traumatic injury. In the 1986 Chernobyl reactor inci...victims sustained traumatic injuries in addition to radiation exposure. In the 1986 Chernobyl re- actor incident, 10% of the 237 accident victims received

  3. Radiation exposure in body computed tomography examinations of trauma patients

    NASA Astrophysics Data System (ADS)

    Kortesniemi, M.; Kiljunen, T.; Kangasmäki, A.

    2006-06-01

    Multi-slice CT provides an efficient imaging modality for trauma imaging. The purpose of this study was to provide absorbed and effective dose data from CT taking into account the patient size and compare such doses with the standard CT dose quantities based on standard geometry. The CT examination data from abdominal and thoracic scan series were collected from 36 trauma patients. The CTDIvol, DLPw and effective dose were determined, and the influence of patient size was applied as a correction factor to calculated doses. The patient size was estimated from the patient weight as the effective radius based on the analysis from the axial images of abdominal and thoracic regions. The calculated mean CTDIvol, DLPw and effective dose were 15.2 mGy, 431 mGy cm and 6.5 mSv for the thorax scan, and 18.5 mGy, 893 mGy cm and 14.8 mSv for the abdomen scan, respectively. The doses in the thorax and abdomen scans taking the patient size into account were 34% and 9% larger than the standard dose quantities, respectively. The use of patient size in dose estimation is recommended in order to provide realistic data for evaluation of the radiation exposure in CT, especially for paediatric patients and smaller adults.

  4. Measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    Only two of the fecal specimens collected inflight during the Apollo 15 mission were returned for analysis. Difficulty in obtaining reasonably accurate radiation dose estimates based on the cosmogenic radionuclide content of the specimens was encountered due to the limited sampling. The concentrations of Na-22, K-40, Cr-51, Fe-59, and Cs-137 are reported. The concentrations of 24 major, minor, and trace elements in these two specimens were determined. Most concentrations are typical of those observed previously. Major exceptions are extremely low values for selenium and extraordinarily high values for rare earth elements. The net Po-210 activities in the Apollo 11 and 12 Solar Wind Composition foils and in the Apollo 8 and 12 spacecraft reflective coatings due to lunar exposure have been determined. Equilibrium concentrations of 0.082 + or - 0.012 disintegrations /sq cm sec of Rn-222 in the lunar atmosphere and 0.0238 + or - 0.0035 disintegrations /sq cm sec of Po-210 on the lunar surface have been calculated for Oceanus Procellarum.

  5. Organ radiation exposure with EOS: GATE simulations versus TLD measurements

    NASA Astrophysics Data System (ADS)

    Clavel, A. H.; Thevenard-Berger, P.; Verdun, F. R.; Létang, J. M.; Darbon, A.

    2016-03-01

    EOS® is an innovative X-ray imaging system allowing the acquisition of two simultaneous images of a patient in the standing position, during the vertical scan of two orthogonal fan beams. This study aimed to compute organs radiation exposure to a patient, in the particular geometry of this system. Two different positions of the patient in the machine were studied, corresponding to postero-anterior plus left lateral projections (PA-LLAT) and antero-posterior plus right lateral projections (AP-RLAT). To achieve this goal, a Monte-Carlo simulation was developed based on a GATE environment. To model the physical properties of the patient, a computational phantom was produced based on computed tomography scan data of an anthropomorphic phantom. The simulations provided several organs doses, which were compared to previously published dose results measured with Thermo Luminescent Detectors (TLD) in the same conditions and with the same phantom. The simulation results showed a good agreement with measured doses at the TLD locations, for both AP-RLAT and PA-LLAT projections. This study also showed that the organ dose assessed only from a sample of locations, rather than considering the whole organ, introduced significant bias, depending on organs and projections.

  6. Does iodinated contrast medium amplify DNA damage during exposure to radiation

    PubMed Central

    2015-01-01

    There is a recognized increased risk of cancer following exposure of humans to ionizing radiation; this is felt to be most likely due to damage to DNA strands during exposure. Damage to DNA strands can be demonstrated microscopically following exposure to X-rays, and new evidence is emerging that this effect may be compounded by administration of iodinated contrast agents. PMID:26234959

  7. Pre-Exposure Gene Expression in Baboons with and without Pancytopenia after Radiation Exposure

    PubMed Central

    Port, Matthias; Hérodin, Francis; Valente, Marco; Drouet, Michel; Ullmann, Reinhard; Majewski, Matthäus; Abend, Michael

    2017-01-01

    Radiosensitivity differs in humans and likely among primates. The reasons are not well known. We examined pre-exposure gene expression in baboons (n = 17) who developed haematologic acute radiation syndrome (HARS) without pancytopenia or a more aggravated HARS with pancytopenia after irradiation. We evaluated gene expression in a two stage study design where stage I comprised a whole genome screen for messenger RNAs (mRNA) (microarray) and detection of 667 microRNAs (miRNA) (real-time quantitative polymerase chain reaction (qRT-PCR) platform). Twenty candidate mRNAs and nine miRNAs were selected for validation in stage II (qRT-PCR). None of the mRNA species could be confirmed during the validation step, but six of the nine selected candidate miRNA remained significantly different during validation. In particular, miR-425-5p (receiver operating characteristic = 0.98; p = 0.0003) showed nearly complete discrimination between HARS groups with and without pancytopenia. Target gene searches of miR-425-5p identified new potential mRNAs and associated biological processes linked with radiosensitivity. We found that one miRNA species examined in pre-exposure blood samples was associated with HARS characterized by pancytopenia and identified new target mRNAs that might reflect differences in radiosensitivity of irradiated normal tissue. PMID:28257102

  8. Pre-Exposure Gene Expression in Baboons with and without Pancytopenia after Radiation Exposure.

    PubMed

    Port, Matthias; Hérodin, Francis; Valente, Marco; Drouet, Michel; Ullmann, Reinhard; Majewski, Matthäus; Abend, Michael

    2017-03-02

    Radiosensitivity differs in humans and likely among primates. The reasons are not well known. We examined pre-exposure gene expression in baboons (n = 17) who developed haematologic acute radiation syndrome (HARS) without pancytopenia or a more aggravated HARS with pancytopenia after irradiation. We evaluated gene expression in a two stage study design where stage I comprised a whole genome screen for messenger RNAs (mRNA) (microarray) and detection of 667 microRNAs (miRNA) (real-time quantitative polymerase chain reaction (qRT-PCR) platform). Twenty candidate mRNAs and nine miRNAs were selected for validation in stage II (qRT-PCR). None of the mRNA species could be confirmed during the validation step, but six of the nine selected candidate miRNA remained significantly different during validation. In particular, miR-425-5p (receiver operating characteristic = 0.98; p = 0.0003) showed nearly complete discrimination between HARS groups with and without pancytopenia. Target gene searches of miR-425-5p identified new potential mRNAs and associated biological processes linked with radiosensitivity. We found that one miRNA species examined in pre-exposure blood samples was associated with HARS characterized by pancytopenia and identified new target mRNAs that might reflect differences in radiosensitivity of irradiated normal tissue.

  9. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    SciTech Connect

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J.

    2015-07-01

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  10. Handler, bystander and reentry exposure to TCDD from application of Agent Orange by C-123 aircraft during the Vietnam War.

    PubMed

    Ross, John H; Hewitt, Andrew; Armitage, James; Solomon, Keith; Watkins, Deborah K; Ginevan, Michael E

    2015-02-01

    Using validated models and methods routinely employed by pesticide regulatory agencies, the absorbed dosages of Agent Orange (AO) herbicide contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were estimated for mixer/loaders, applicators, and individuals in the vicinity of applications of AO by C-123 aircraft during the Vietnam War. Resulting dosages of TCDD were then transformed to estimates of adipose residues, and compared to population biomonitoring of known mixer/loaders and applicators as well as ground troops in Vietnam and civilians in the U.S. Results demonstrate that mixer/loaders and applicators had the greatest exposures and their measured residues of TCDD in adipose were consistent with the estimated exposures. Further, the potentially exposed ground troops, including those who could have been directly sprayed during aerial defoliation, had measured adipose residues that were consistent with those in civilian U.S. populations with no defined source of exposure exposures and both of those cohorts had orders of magnitude less exposure than the mixer/loaders or applicators. Despite the availability of validated exposure modeling methods for decades, the quantitative TCDD dose estimates presented here are the first of their kind for the Vietnam conflict.

  11. Jet-engine combustor spectral radiation measurements using fiberoptic instrumentation system. Radiant energy power source for jet aircraft. Final report

    SciTech Connect

    Doellner, O.L.

    1986-02-01

    This report is a summary of spectral radiation measurements made at Williams Air Force Base, Chandler, Arizona on a General Electric J-85-5 engine. The spectral radiation measurements consisted of a complete axial profile down the combustor and are directed toward the application of Radiant Energy Power Source for Jet Aircraft. Radiant Energy Power Source for Jet Aircraft relates to the use of photovoltaic cells to generate the electrical power demands of the aircraft. The photovoltaic cells are mounted inside the casing of the jet engine, are thermally insulated from the normally hot engine casing, and are appropriately cooled. The photovoltaic cells receive their required radiant energy from the combustion flame by holes in the combustion liner. The instrumentation system used to make these measurements employed fiberoptic probes - entering the engine by way of an existing (modified) access plate - to obtain the radiation measurements. Such an instrumentation system has the strong advantage of being able to measure radiation from all the holes running axially down the combustor without making any holes in the plenum/engine casing - as would be necessary if sapphire observation windows were used. This report is thus more than a discussion of spectral radiation measurements made on a jet engine: it is also a report of the design and evolution of the fiberoptic instrumentation system used to make these measurements. The instrumentation system was designed and built from fundamental first principles, as described in detail in this report. It is believed that this fiberoptic instrumentation system will find application with gas-turbine manufacturers.

  12. MicroRNA expression profiling altered by variant dosage of radiation exposure.

    PubMed

    Lee, Kuei-Fang; Chen, Yi-Cheng; Hsu, Paul Wei-Che; Liu, Ingrid Y; Wu, Lawrence Shih-Hsin

    2014-01-01

    Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE) is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs) have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  13. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    PubMed Central

    Lee, Kuei-Fang; Hsu, Paul Wei-Che; Liu, Ingrid Y.; Wu, Lawrence Shih-Hsin

    2014-01-01

    Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE) is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs) have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury. PMID:25313363

  14. Proposed alternatives for a DOE-wide occupational radiation exposure information system

    SciTech Connect

    Murphy, B.L.; Murphy, D.W.; Fix, J.J.; Selby, J.M.; Vallario, E.J.

    1984-02-01

    The Radiation Exposure Information Reporting System (REIRS) was initiated by the Atomic Energy Commission (AEC) in 1968. While the system has provided a general overview of radiation exposures associated with AEC/ERDA/DOE operations and has satisfied the original intent for a central information system, the need for more detailed information has become evident. The alternatives addressed for a radiation exposure information system were no change in current system, clarification of DOE Order for current system, increased summary information from sites, centralized annual individual dose (exposure) system, and annual dose summary and locator files. A majority of the DOE Ad Hoc Committee has concurred to recommend the annual dose summary and locator files (ADSLF). The acceptance of the ADSLF alternative as the DOE-wide radiation exposure system would give DOE added capability and flexibility in responding to requests for information and would reduce the impact on the sites of special survey requests.

  15. Recording of external radiation exposures at Oak Ridge National Laboratory: implications for epidemiological studies.

    PubMed

    Wing, S; West, C M; Wood, J L; Tankersley, W

    1994-01-01

    Accurate measurements of radiation exposure for individuals are critical to assessing radiation-mortality associations. This paper is based on a study of changes in recorded doses and in radiation monitoring programs at Oak Ridge National Laboratory, a U.S. Department of Energy facility where whole body external penetrating radiation exposures have been of primary epidemiological interest. External radiation monitoring data from 1943-1984 are analyzed for a group of white males (N = 8,318). The proportion of workers monitored for external radiation increased from about 50% in 1943 to over 80% in 1944 to above 98% after 1948. Mean radiation doses showed maxima in 1944 and 1957, followed by steady and long-term declines. Numerous changes in monitoring programs occurred during the study period, including changes in the types of dosimeters used, the frequency of reading dosimeters, methods of calculating doses, and practices of recording doses. Temporal patterns of doses in the lower range of the distribution showed some changes suggestive of changes in policies and practices for recording doses, which would influence dose values used in epidemiological studies. Reliable and accurate exposure measurements are especially important in studies of low level exposures due to small differences in outcomes between exposure groups. Evidence of changes in recorded doses due to monitoring and recording practices, rather than to actual changes in exposures in this well-monitored population, suggests the importance of comparable studies of other populations used for epidemiological studies of radiation-mortality associations.

  16. Radiation exposure to the pediatric patient during cardiac catheterization and angiocardiography. Emphasis on the thyroid gland

    SciTech Connect

    Martin, E.C.; Olson, A.P.; Steeg, C.N.; Casarella, W.J.

    1981-07-01

    Thermoluminescent dosimetry was used to measure the radiation exposure to the skin, thyroid and gonads in 50 consecutive pediatric patients undergoing cardiac catheterization and angiocariography using cine photofluorography. Average exposures were 17.1 R to the skin, 2.3 R to the thyroid and 0.1 R to the gonads. Fluoroscopy accounted for approximately 80% of the skin and thyroid exposure and cine photofluorography for 20 to 25%. Occasional primary-beam irradiation was the major contributor to gonad exposure. Internal scatter of the incident x-ray beam was primarily responsible for thyroid exposure, so that infants received relatively high exposures; one receiving 7.3 R. The thyroid was not frequently in the primary beam. The significance of high radiation exposure to the thyroid, and in particular its relationship to thyroid carcinoma, are discussed. The results are compared with other series in the literature and relative exposures of cine photofluorography and serial filming are contrasted.

  17. Radiation exposure to the pediatric patient during cardiac catheterization and angiocardiography. Emphasis on the thyroid gland

    SciTech Connect

    Martin, E.C.; Olson, A.P.; Steeg, C.N.; Casarella, W.J.

    1981-07-01

    Thermoluminescent dosimetry was used to measure the radiation exposure to the skin, thyroid and gonads in 50 consecutive pediatric patients undergoing cardiac catheterization and angiocardiography using cine photofluorography. Average exposures were 17.1 R to the skin, 2.3 R to the thyroid and 0.1 R to the gonads. Fluoroscopy accounted for approximately 80% of the skin and thyroid exposure and cine photofluorography for 20-25%. Occasional primary-beam irradiation was the major contributor to gonad exposure. Internal scatter of the incident x-ray beam was primarily responsible for thyroid exposure, so that infants received relatively high exposures; one receiving 7.3 R. The thyroid was not frequently in the primary beam. The significance of high radiation exposure to the thyroid, and in particular its relationship to thyroid carcinoma, are discussed. The results are compared with other series in the literature and relative exposures of cine photofluorography and serial filming are contrasted.

  18. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    NASA Technical Reports Server (NTRS)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  19. Cosmic Radiation and Aircrew Exposure: Implementation of European Requirements in Civil Aviation, Dublin, 1-3 July 1998

    NASA Astrophysics Data System (ADS)

    Talbot, Lee

    1999-03-01

    The European Union's Basic Safety Standards Directive (96/29/Euratom) lays down safety standards for the protection of workers and the general public against the effects of ionising radiations. Article 42 of the Directive deals with the protection of aircrew. It states that for crew of jet aircraft who are likely to be subject to exposure to more than 1 mSv y-1 appropriate measures must be taken, in particular: to assess the exposure of the crew concerned, to take into account the assessed exposure when organising working schedules with a view to reducing the doses of highly exposed aircrew, to inform concerned workers of the health risks involved in their work, to apply Article 10 to female aircrew. (The unborn child shall be treated like a member of the public.) This Directive must be transformed into national law of the 15 member states of the European Union by 13 May 2000. The European Commission and the Radiological Protection Institute of Ireland sponsored this International Conference. The objective of this conference was to assist both the airline industry and the national regulatory organisations in identifying the means available to comply with the requirements of the Directive. Over 200 delegates attended the conference from more than 25 countries. The welcoming addresses were made by Mary Upton (Director of the Radiological Protection Institute of Ireland), Joe Jacob (Minister for State responsible for Nuclear Safety) and James Currie (Director-General for the Environment, Nuclear Safety and Civil Protection). Mr Currie stated that there was a need for political decisions to be based on good science, and that technological trends will lead to higher and longer flights, and therefore higher radiation doses. The first day concentrated on the scientific basis of measurement, calculation and monitoring of cosmic radiation. The first speaker, Dr Heinrich from the University of Siegen, Germany, talked about the physics of cosmic radiation fields. He pointed

  20. Computer subroutines for estimation of human exposure to radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1985-01-01

    Computer subroutines to calculate human exposure to trapped radiations in low Earth orbit (LEO) on the basis of a simple approximation of the human geometry by spherical shell shields of varying thickness are presented and detailed. The subroutines calculate the dose to critical body organs and the fraction of exposure limit reached as a function of altitude of orbit, degree of inclination, shield thickness, and days in mission. Exposure rates are compared with current exposure limits.

  1. Occupational Radiation Exposure from C Arm Fluoroscopy During Common Orthopaedic Surgical Procedures and its Prevention

    PubMed Central

    Samuel, Sumant; Saran, Atul K; Mahajan, M K; Mam, M K

    2015-01-01

    Background: Image intensifiers have become popular due to the concept of minimally invasive surgeries leading to decreasing invasiveness, decreased operative time, and less morbidity. The drawback, however, is an increased risk of radiation exposure to surgeon, patient and theatre staff. These exposures have been of concern due to their potential ability to produce biological effects. The present study was embarked upon to analyse the amount of radiation received by orthopedic surgeons in India using standard precautionary measures and also to bring awareness about the use of image intensifier safety in everyday practice. Materials and Methods: Twelve right-handed male orthopedic surgeons (4 senior consultants, 5 junior consultants and 3 residents) were included in a three month prospective study for radiation exposure measurement with adequate protection measures in all procedures requiring C Arm fluoroscopy. Each surgeon was provided with 5 Thermo Luminescent Dosimeter (TLD) badges which were tagged at the level of neck, chest, gonads and both wrists. Operative time and exposure time of each procedure was recorded. Exposure dose of each badge at the end of the study was obtained and the results were analysed. Results: Mean radiation exposure to all the parts were well within permissible limits. There was a significantly positive correlation between the exposure time and the exposure dose for the left wrist (r=0.735, p<0.01) and right wrist (r=0.58, p<0.05). The dominant hand had the maximum exposure overall. Conclusion: Orthopaedic surgeons are not classified radiation workers. The mean exposure doses to all parts of the body were well within permissible limits. Nothing conclusive, however, can be said about the stochastic effects (chance effects like cancers). Any amount of radiation taken is bound to pose an additional occupational hazard. It is thus desirable that radiation safety precautions should be taken and exposures regularly monitored with at least one

  2. Aircraft observations of the physical and radiative properties of biomass aerosol particles during SAFARI-2000.

    NASA Astrophysics Data System (ADS)

    Osborne, S. R.; Haywood, J. M.

    2001-12-01

    An initial analysis will be shown from the ~80 h of data collected between 2--18 September 2000 by the UK Met Office C-130 aircraft during the dry season campaign of the Southern African Regional Science Initiative (SAFARI-2000). The talk will concentrate on the physical and optical properties of the biomass aerosol. The evolution of the particle size spectrum and its optical properties at emission and after ageing will be shown. The vertical distribution of the biomass plume over the land and sea will be compared in view of the local meteorology. A generalised three log-normal model is shown to represent aged biomass aerosol over the sea areas, both in terms of the number and mass particle size spectra, but also derived optical properties (e.g. asymmetry factor, single scatter albedo (ω 0) and extinction coefficient) as calculated using Mie theory and appropriate refractive indices. ω 0 was determined independently using a particle soot absorption photometer (giving the absorption coefficient at a wavelength of 0.567 μ m) and a nephelometer (giving the scattering coefficients at 0.45, 0.55 and 0.65 μ m). Good agreement was found between the measurements and those obtained from the Mie calculations and observed size distributions. A typical value of ω 0 at 0.55 μ m for aged biomass aerosol was 0.90. The radiative properties of the biomass aerosol over both land and sea will be summarised. Stratocumulus cloud was present on some of the days over the sea and the surprising lack of interaction between the elevated biomass plume (containing significant levels of cloud condensation nuclei) and the cloud capping the marine boundary layer will be illustrated. Using the cloud-free and cloudy case studies we can begin to elucidate the levels of direct and indirect forcing of the biomass aerosol on a regional scale. >http://www.mrfnet.demon.co.uk/africa/SAFARI2000.htm

  3. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure.

    PubMed

    Sproull, Mary; Camphausen, Kevin

    2016-11-01

    With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.

  4. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery

    SciTech Connect

    Herman, M.W.; Mak, H.K.; Lachman, R.S.

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  5. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery.

    PubMed

    Herman, M W; Mak, H K; Lachman, R S

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  6. Occupational Exposure to Diagnostic Radiology in Workers without Training in Radiation Safety

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique; Enríquez, Jesús G. Franco

    2004-09-01

    The physicians, technicians, nurses, and others involved in radiation areas constitute the largest group of workers occupationally exposed to man-made sources of radiation. Personnel radiation exposure must be monitored for safety and regulatory considerations, this assessment may need to be made over a period of one month or several months. The purpose of this study was to carry out an exploratory survey of occupational exposures associated with diagnostic radiology. The personnel dosimeters used in this study were thermoluminiscent dosimeters (TLDs). The reported number of monitored workers was 110 of different departments of radiology of the Mexican Republic without education in radiation safety, included general fluoscopic/radiographic imaging, computed tomography and mammography procedures. Physicians and X-ray technologist in diagnostic radiology receive an average annual effective dose of 2.9 mSv with range from 0.18 to 5.64 mSv. The average level of occupational exposures is generally similar to the global average level of natural radiation exposure. The annual global per capita effective dose due to natural radiation sources is 2.4 mSv (UNSCEAR 2000 Report). There is not significant difference between average occupational exposures and natural radiation exposure for p < 0.05.

  7. Ionising radiation exposure in patients with circular frame treatment of distal tibial fractures.

    PubMed

    Bryant, H; Dearden, P M C; Harwood, P J; Wood, T J; Sharma, H K

    2015-08-01

    Total radiation exposure accumulated during circular frame treatment of distal tibial fractures was quantified in 47 patients treated by a single surgeon from February 2007 until Oct 2010. The radiation exposures for all relevant radiology procedures for the distal tibial injury were included to estimate the radiation risk to the patient. The median time of treatment in the frame was 169 days (range 105-368 days). Patients underwent a median of 13 sets of plain radiographs; at least one intra operative exposure and 16 patients underwent CT scanning. The median total effective dose per patient from time of injury to discharge was 0.025mSv (interquartile range 0.013-0.162 and minimum to maximum 0.01-0.53). The only variable shown to be an independent predictor of cumulative radiation dose on multivariate analysis was the use of CT scanning. This was associated with a 13-fold increase in overall exposure. Radiation exposure during treatment of distal tibial fractures with a circular frame in this group was well within accepted safe limits. The fact that use of CT was the only significant predictor of overall exposure serves as a reminder to individually assess the risk and utility of radiological investigations on an individual basis. This is consistent with the UK legal requirements for justification of all X-ray imaging, as set out in the Ionising Radiation (Medical Exposure) Regulations 2000 [1].

  8. A new diagnostic method for separating airborne and structureborne noise radiated by plates with applications for propeller driven aircraft

    NASA Technical Reports Server (NTRS)

    Mcgary, Michael C.

    1988-01-01

    The anticipated application of advanced turboprop propulsion systems is expected to increase the interior noise of future aircraft to unacceptably high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a prime obstacle in the development of efficient noise control treatments for propeller-driven aircraft. A new diagnostic method that permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on an aluminum plate. The results of the study indicate that the proposed method could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available.

  9. Tidewater and Weather-exposure Tests on Metals Used in Aircraft

    NASA Technical Reports Server (NTRS)

    Mutchler, Willard; Galvin, W G

    1939-01-01

    Tidewater and weather-exposure tests on various aluminum alloys, magnesium alloys, and stainless steels are now being conducted by the National Bureau of Standards. Exposures were begun in June 1938 and, according to present plans, are to continue over a 3-year period. The methods of exposure and the materials being investigated are described and the more important results obtained up to the conclusion of the first year's exposure are reported.

  10. MALE REPRODUCTIVE EFFECTS OF SOLVENT AND FUEL EXPOSURE DURING AIRCRAFT MAINTENANCE

    EPA Science Inventory

    Few studies have addressed the effects of mixed, low level exposures to complex mixtures on a man's reproductive potential. In this prospective study, each subject was evaluated prior to first exposure and at 15 and 30 weeks after exposures had begun. A total of 50 men working ...

  11. Absorption of solar radiation by the atmosphere as determined using satellite, aircraft, and surface data during the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE)

    SciTech Connect

    Valero, Francisco P. J.; Minnis, Patrick; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett C.; Doelling, David R.; Smith, William L. Jr.; Dong, Xiquan

    2000-02-27

    Data sets acquired during the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) using simultaneous measurements from five independent platforms (GOES 8 geostationary satellite, ER-2, Egrett and Twin Otter aircraft, and surface) are analyzed and compared. A consistent data set can be built for selected days during ARESE on the basis of the observations from these platforms. The GOES 8 albedos agree with the ER 2, Egrett, and Twin Otter measured instantaneous albedos within 0.013{+-}0.016, 0.018{+-}0.032, and 0.006{+-}0.011, respectively. It is found that for heavy overcast conditions the aircraft measurements yield an absorptance of 0.32{+-}0.03 for the layer between the aircraft (0.5-13 km), while the GOES 8 albedo versus surface transmittance analysis gives an absorptance of 0.33{+-}0.04 for the total atmosphere (surface to top). The absorptance of solar radiation estimated by model calculations for overcast conditions varies between 0.16 and 0.24, depending on the model used and on cloud and aerosol implementation. These results are in general agreement with recent findings for cloudy skies, but here a data set that brings together independent simultaneous observations (satellite, surface, and aircraft) is used. Previous ARESE results are reexamined in light of the new findings, and it is concluded that the overcast absorptance in the 0.224-0.68 {mu}m spectral region ranges between 0.04{+-}0.06 and 0.08{+-}0.06, depending on the particular case analyzed. No evidence of excess clear-sky absorption beyond model and experimental errors is found. (c) 2000 American Geophysical Union.

  12. Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation

    SciTech Connect

    Thomson, S.N.; Carson, R.; Muirhead, C.; Li, H.; Castillo, I.; Boniface, H.; Suppiah, S.; Ratnayake, A.; Robinson, J.

    2015-03-15

    Proton Exchange Membrane (PEM) type electrolysis cells have a potential use for tritium removal and heavy water upgrading. AECL is currently exposing various commercial PEM materials to both gamma (Cobalt-60 source) and beta (tritiated water) radiation to study the effects of radiation on these materials. This paper summarizes the testing methods and results that have been collected to date. The PEM materials that are or have been exposed to radiation are: Nafion 112, 212, 117 and 1110. Membrane characterization pre- and post- exposure consists of non-destructive inspection (FTIR, SEM/XPS), mechanical (tensile strength, percentage elongation, and modulus), electrical (resistance), or chemical (ion-exchange capacity - IEC). It has appeared that the best characterization techniques to compare exposed versus unexposed membranes were IEC, ultimate tensile strength and percent elongation. These testing techniques are easy and cheap to perform. The non-destructive tests, such as SEM and FTIR did not provide particularly useful information on radiation-induced degradation. Where changes in material properties were measured after radiation exposure, they would be expected to result in poorer cell performance. However, for modest γ-radiation exposure, all membranes showed a slight decrease in cell voltage (better performance). In contrast, the one β-radiation exposed membrane did show the expected increase in cell voltage. The counterintuitive trend for γ-radiation exposed membranes is not yet understood. Based on these preliminary results, it appears that γ- and β-radiation exposures have different effects.

  13. Effect of Radiation Exposure on the Retention of Commercial NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Chen, D.; Friendlich, M.; Carts, M. A.; Seidleck, C. M.; LaBel, K. A.

    2011-01-01

    We have compared the data retention of irradiated commercial NAND flash memories with that of unirradiated controls. Under some circumstanc es, radiation exposure has a significant effect on the retention of f lash memories.

  14. Factors modifying the response of large animals to low-intensity radiation exposure

    NASA Technical Reports Server (NTRS)

    Page, N. P.; Still, E. T.

    1972-01-01

    In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.

  15. Atomic oxygen and ultraviolet radiation mission total exposures for LDEF experiments

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.; Rousslang, Ken W.

    1992-01-01

    Atomic oxygen and solar radiation exposures were determined analytically for rows, longerons, and end bays of the LDEF. Calculated atomic oxygen exposures are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation. Results also incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the six year flight of the spacecraft. Solar radiation exposure calculations are based on the form factors reported in the Solar Illumination Data Package prepared by NASA Langley. The earth albedo value for these calculations was based on the Nimbus 7 earth radiation data set. Summary charts for both atomic oxygen and solar radiation exposure are presented to facilitate the use of the data generated by LDEF experimenters.

  16. IONIZING RADIATION EXPOSURE OF THE POPULATION OF THE U.S.

    EPA Science Inventory

    This report updates information published by the National Council on Radiation Protection and Measurements (NCRP) in 1987. NCRP reports are considered the authoritative reference for the sources and magnitude of average background exposure to the U.S. population.

  17. 75 FR 79033 - Proposed Extension of Existing Information Collection; Radiation Sampling and Exposure Records...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Mine Safety and Health Administration Proposed Extension of Existing Information Collection; Radiation Sampling and Exposure Records (Pertains to Underground Metal and Nonmetal Mines) AGENCY: Mine Safety...

  18. Non-ionising radiation human exposure assessment near telecommunication devices in Croatia.

    PubMed

    Simunić, Dina

    2006-03-01

    This paper gives an overview of the regulatory acts in non-ionising radiation in the world, with a special emphasis on basic guidelines issued by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). ICNIRP Guidelines are implemented in many countries worldwide. Croatia has also implemented them indirectly through the European Recommendation 1999/519/EC. The Croatian regulatory acts include the Non-lonising Radiation Protection Act, Ordinance on Electromagnetic Fields (EMF) Protection, and the Ordinance on Basic Requirements for Devices which produce Optical Radiation and Measures for Optical Radiation Protection. Dosimetry and densitometry are compliant with relevant international and European standards. The paper presents an example of densitometric human exposure assessment in complex indoor exposure conditions. In spite of a high number of indoor and outdoor sources and the "worst-case exposure assessment", the results are within the limits defined by the Croatian EMF Ordinance.

  19. Nuclear Emulsion Measurements of the Astronauts’ Radiation Exposures on Skylab Missions 2, 3 and 4,

    DTIC Science & Technology

    1975-12-10

    AD-AO19 804 NUCLEAR EMULSION MEASUREMENTS OF THE ASTRONAUTS’ RADIATION EXPOSURES ON SKYLAB MISSIONS 2, 3 AND 4 Hermann J. Schaefer, et al Naval...N/A NUCLEAR EMULSION MEASUREMENTS OF THE ASTRONAUTS’ RADIATION EXPOSURES ON SKYLAB MISSIONS 2, 3, AND 4. N/ ___ _ _ ANZ Hermann J. Schaefer and...corresponding shield distribution of the entire vehicle tesi alirections ofetionable whether the very large effort involved in this eask isd• ~~really

  20. Unfinished business: Radiation Exposure Compensation Act (RECA) for post-1971 U.S. uranium underground miners.

    PubMed

    Madsen, Gary E; Dawson, Susan E

    2004-01-01

    Congress enacted the Radiation Exposure Compensation Act (RECA) in 1990 and amended it in 2000. Included for compensation were underground uranium miners who developed health problems related to radiation exposures. Neither the 1990 Act nor the 2000 Amendments covered post-1971 workers. In this article, we will examine regulatory history and scientific evidence used for the passage of RECA for the pre-1972 miners and will present evidence supporting the inclusion of the post-1971 workers.

  1. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure

    PubMed Central

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-01-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  2. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    PubMed

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism.

  3. New biological insights on the link between radiation exposure and breast cancer risk.

    PubMed

    Barcellos-Hoff, Mary Helen

    2013-03-01

    Radiation exposure is a well-documented risk factor for breast cancer in women. Compelling epidemiological evidence in different exposed populations around the world demonstrate that excess breast cancer increases with radiation doses above 10 cGy. Both frequency and type of breast cancer are affected by prior radiation exposure. Many epidemiological studies suggest that radiation risk is inversely related to age at exposure; exposure during puberty poses the greatest risk while exposures past the menopause appear to carry very low risk. These observations are supported by experimental studies in mice and rats, which together provide the basis for the pubertal 'window of susceptibility' hypothesis for carcinogenic exposure. One line of experimental investigation suggests that the pubertal epithelium is more sensitive because DNA damage responses are less efficient, an other suggests that radiation affects stem cells self-renewal. A recent line of investigation suggests that the irradiated microenvironment mediates cancer risk. Studying the biological basis for radiation effects provides potential routes for protection in vulnerable populations, which include survivors of childhood cancers, as well as insights into the biology for certain types of sporadic cancer.

  4. Minimization of Radiation Exposure due to Computed Tomography in Inflammatory Bowel Disease

    PubMed Central

    Mc Laughlin, Patrick D.; O'Connor, Owen J.; O'Neill, Siobhán B.; Shanahan, Fergus; Maher, Michael M.

    2012-01-01

    Patient awareness and concern regarding the potential health risks from ionizing radiation have peaked recently (Coakley et al., 2011) following widespread press and media coverage of the projected cancer risks from the increasing use of computed tomography (CT) (Berrington et al., 2007). The typical young and educated patient with inflammatory bowel disease (IBD) may in particular be conscious of his/her exposure to ionising radiation as a result of diagnostic imaging. Cumulative effective doses (CEDs) in patients with IBD have been reported as being high and are rising, primarily due to the more widespread and repeated use of CT (Desmond et al., 2008). Radiologists, technologists, and referring physicians have a responsibility to firstly counsel their patients accurately regarding the actual risks of ionizing radiation exposure; secondly to limit the use of those imaging modalities which involve ionising radiation to clinical situations where they are likely to change management; thirdly to ensure that a diagnostic quality imaging examination is acquired with lowest possible radiation exposure. In this paper, we synopsize available evidence related to radiation exposure and risk and we report advances in low-dose CT technology and examine the role for alternative imaging modalities such as ultrasonography or magnetic resonance imaging which avoid radiation exposure. PMID:22577571

  5. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells

    PubMed Central

    Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon

    2014-01-01

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. PMID:24105709

  6. Effects of combined radiofrequency radiation exposure on the cell cycle and its regulatory proteins.

    PubMed

    Lee, Kwan-Yong; Kim, Bong Cho; Han, Na-Kyung; Lee, Yun-Sil; Kim, Taehong; Yun, Jae-Hoon; Kim, Nam; Pack, Jeong-Ki; Lee, Jae-Seon

    2011-04-01

    The aim of this study was to investigate whether single or combined radio frequency (RF) radiation exposure has effects on the cell cycle and its regulatory proteins. Exposure of MCF7 cells to either single (837 MHz) or combined (837 and 1950 MHz) RF radiation was conducted at specific absorption rate values of 4 W/kg for 1 h. During the exposure period, the chamber was made isothermal by circulating water through the cavity. After RF radiation exposure, DNA synthesis rate and cell cycle distribution were assessed. The levels of cell cycle regulatory proteins, p53, p21, cyclins, and cyclin-dependent kinases were also examined. The positive control group was exposed to 0.5 and 4 Gy doses of ionizing radiation (IR) and showed changes in DNA synthesis and cell cycle distribution. The levels of p53, p21, cyclin A, cyclin B1, and cyclin D1 were also affected by IR exposure. In contrast to the IR-exposed group, neither the single RF radiation- nor the combined RF radiation-exposed group elicited alterations in DNA synthesis, cell cycle distribution, and levels of cell cycle regulatory proteins. These results indicate that neither single nor combined RF radiation affect cell cycle progression.

  7. Direct modification of bioactive phenothiazines by exposure to laser radiation.

    PubMed

    Pascu, Mihail-Lucian; Nastasa, Viorel; Smarandache, Adriana; Militaru, Andra; Martins, Ana; Viveiros, Miguel; Boni, Mihai; Andrei, Ionut Relu; Pascu, Alexandru; Staicu, Angela; Molnar, Joseph; Fanning, Seamus; Amaral, Leonard

    2011-05-01

    Whereas exposure of combinations of a phenothiazine and bacterium to incoherent UV increases the activity of the phenothiazine, exposure of the phenothiazine alone does not yield an increase of its activity. Because the laser beam energy is greater than that produced by the incoherent UV sources, exposure of phenothiazines to specific lasers may yield molecules with altered activities over that of the unexposed parent. Chlorpromazine, thioridazine and promethazine active against bacteria were exposed to two distinct lasers for varying periods of time. Absorption and fluorescence spectra were conducted prior to and post-exposure and the products of laser exposure evaluated for activity against a Staphylococcus aureus ATCC strain via a disk susceptibility assay. Exposure to lasers alters the absorption/fluorescence spectra of the phenothiazines; reduces the activity of thioridazine against the test bacterium; produces a highly active chlorpromazine compound against the test organism. Exposure of phenothiazines to lasers alters their structure that results in altered activity against a bacterium. This is the first report that lasers can alter the physico-chemico characteristics to the extent that altered bioactivity results. Exposure to lasers is expected to yield compounds that are difficult to make via chemical manipulation methods. A survey of selected patents of interest, even co-lateral for the subject of this article is shortly made.

  8. Effective Patient Education in Medical Imaging: Public Perceptions of Radiation Exposure Risk.

    ERIC Educational Resources Information Center

    Ludwig, Rebecca L.; Turner, Lori W.

    2002-01-01

    In a cross-sectional survey of 200 adults, less than half agreed with experts on the risks of radiation exposure; 75-90% thought that medical imaging providers should be highly regulated; and less than one-quarter knew that most radiation damage is not permanent. (SK)

  9. Quantifying lifetime exposure to ultraviolet radiation in the epidemiology of cutaneous malignant melanoma: A pilot study

    SciTech Connect

    Lea, C.S.; Selvin, S. . Dept. of Biomedical and Environmental Health Sciences Lawrence Berkeley Lab., CA ); Buffler, P.A. . Dept. of Biomedical and Environmental Health Sciences); Scotto, J. . Biostatistics Branch); Berwick, M. (Cancer Pre

    1992-10-01

    This pilot study uses a unique method to calculate cumulative lifetime exposure to, ultraviolet radiation-b to determine if this refined method would indicate differences in lifetime cumulative UVB exposure between age and sex matched controls. Forty-four age and sex matched cases and controls demonstrated no significant difference in mean cumulative lifetime UVB exposure based on the duration and location of residence. This pilot study suggests that further analysis of the dataset should be conducted to determine if the cumulative lifetime exposure hypothesis is of primary importance regarding the association between UVB exposure and development of cutaneous malignant melanoma.

  10. 38 CFR 3.311 - Claims based on exposure to ionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radiation and shall include the following: (i) All forms of leukemia except chronic lymphatic (lymphocytic) leukemia; (ii) Thyroid cancer; (iii) Breast cancer; (iv) Lung cancer; (v) Bone cancer; (vi) Liver cancer... years after exposure; (ii) Leukemia may become manifest at any time after exposure; (iii)...

  11. Nrf2 promotes survival following exposure to ionizing radiation.

    PubMed

    Sekhar, Konjeti R; Freeman, Michael L

    2015-11-01

    Nrf2 is a transcription factor that promotes antioxidant and drug-metabolizing gene expression. It also regulates the transcription of genes involved in carbohydrate and lipid metabolism, NADPH regeneration, and heme and iron metabolism, as well as proteasome metabolism. Emerging research has identified Nrf2 as a critical factor for promoting survival of mammalian cells subjected to ionizing radiation. At a mechanistic level, Nrf2 promotes the repair of DNA damage and drives detoxification of superoxide that is generated hours to days after irradiation. This review summarizes research in these areas and discusses targeting of Nrf2 in radiation-resistant cancer and Nrf2׳s role in mitigating acute radiation syndrome.

  12. Report on radiation exposure of lead-scintillator stack

    SciTech Connect

    Underwood, D.G.

    1990-11-08

    A stack of lead and scintillator was placed in a neutral beam obtained from targeting 800 GeV protons. Small pieces of film containing radiochromic dye were placed adjacent to the layers of scintillator for the purpose of measuring the radiation dose to the scintillator. Our motivation was to calibrate the radiation dose obtainable in this manner for future tests of scintillator for SSC experiments and to relate dose to flux to check absolute normalization for calculations. We also observed several other radiation effects which should be considered for both damage and compensation in a calorimeter.

  13. Radiation Exposure to the Hand of a Spinal Interventionalist during Fluoroscopically Guided Procedures

    PubMed Central

    Ikuma, Hisanori; Tokashiki, Takuya; Maehara, Takashi; Nagamachi, Akihiro; Takata, Yoichiro; Sakai, Toshinori; Higashino, Kosaku; Sairyo, Koichi

    2017-01-01

    Study Design Prospective study. Purpose During fluoroscopically guided spinal procedure, the hands of spinal surgeons are placed close to the field of radiation and may be exposed to ionizing radiation. This study directly measured the radiation exposure to the hand of a spinal interventionalist during fluoroscopically guided procedures. Overview of Literature Fluoroscopically guided spinal procedures have been reported to be a cause for concern due to the radiation exposure to which their operators are exposed. Methods This prospective study evaluated the radiation exposure of the hand of one spinal interventionalist during 52 consecutive fluoroscopic spinal procedures over a 3-month period. The interventionalist wore three real-time dosimeters secured to the right forearm, under the lead apron over the chest, and outside the lead apron over the chest. Additionally, one radiophotoluminescence glass dosimeter was placed under the lead apron over the left chest and one ring radiophotoluminescence glass dosimeter was worn on the right thumb. The duration of exposure and radiation dose were measured for each procedure. Results The average radiation exposure dose per procedure was 14.9 µSv, 125.6 µSv, and 200.1 µSv, inside the lead apron over the chest, outside the lead apron over the chest, and on the right forearm, respectively. Over the 3-month period, the protected radiophotoluminescence glass dosimeter over the left chest recorded less than the minimum reportable dose, whereas the radiophotoluminescence glass ring dosimeter recorded 368 mSv for the thumb. Conclusions Our findings indicated that the cumulative radiation dose measured at the dominant hand may exceed the annual dose limit specified by the International Commission on Radiological Protection. Spinal interventionalists should take special care to limit the duration of fluoroscopy and radiation exposure. PMID:28243373

  14. Visual Risk Assessment of Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hussein, Hesham F.; Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Protecting astronauts from space radiation exposure during an interplanetary mission is an important challenge for mission design and operations. If sufficient protection is not provided near solar maximum, the risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). Polyethylene shielded "storm shelters" inside spacecraft have been shown to limit total exposure from a large SPE to a permissible level, preventing acute risks and providing a potential approach to fulfill the ALARA (as low as reasonably achievable) requirement. For accurate predictions of radiation dose to astronauts involved in future space exploration missions, detailed variations of radiation shielding properties are required. Radiation fluences and doses vary considerably across both the spacecraft geometry and the body-shielding distribution. A model using a modern CAD tool ProE(TradeMark), which is the leading engineering design platform at NASA, has been developed to account for these local variations in the radiation distribution. Visual assessment of radiation distribution at different points inside a spacecraft module and in the human body for a given radiation environment are described. Results will ultimately guide in developing requirements for maximal protection for astronauts from space radiation.

  15. Actual and Potential Radiation Exposures in Digital Radiology: Analysis of Cumulative Data, Implications to Worker Classification and Occupational Exposure Monitoring.

    PubMed

    Kortesniemi, Mika; Siiskonen, Teemu; Kelaranta, Anna; Lappalainen, Kimmo

    2016-04-21

    Radiation worker categorization and exposure monitoring are principal functions of occupational radiation safety. The aim of this study was to use the actual occupational exposure data in a large university hospital to estimate the frequency and magnitude of potential exposures in radiology. The additional aim was to propose a revised categorization and exposure monitoring practice based on the potential exposures. The cumulative probability distribution was calculated from the normalized integral of the probability density function fitted to the exposure data. Conformity of the probabilistic model was checked against 16 years of national monitoring data. The estimated probabilities to exceed annual effective dose limits of 1 mSv, 6 mSv and 20 mSv were 1:1000, 1:20 000 and 1:200 000, respectively. Thus, it is very unlikely that the class A categorization limit of 6 mSv could be exceeded, even in interventional procedures, with modern equipment and appropriate working methods. Therefore, all workers in diagnostic and interventional radiology could be systematically categorized into class B. Furthermore, current personal monitoring practice could be replaced by use of active personal dosemeters that offer more effective and flexible means to optimize working methods.

  16. Radiation exposure and uterine artery embolization: current risks and risk reduction.

    PubMed

    Tse, Gary; Spies, James B

    2010-09-01

    Uterine embolization has become accepted into the mainstream of fibroid therapies and now is among the most common interventions for the condition. Because the procedure is based on angiographic techniques, it requires fluoroscopic and angiographic imaging, both dependent on exposure to ionizing radiation. Given the increasing popularity of this procedure, it is important to understand the potential impacts of this exposure on both individual patients and also the population as a whole. This review is intended to summarize the our current knowledge of the potential risks associated with the radiation exposure from procedure and how those risks might be controlled and reduced by adjusting techniques used during the procedure.

  17. Cumulative effects from repeated exposures to ultraviolet radiation

    SciTech Connect

    Kaidbey, K.H.; Kligman, A.M.

    1981-05-01

    Repeated exposures to subliminal doses of UVR, given at 24-hr intervals, resulted in a lowering of the erythema threshold dose. At erythemogenically equivalent doses, UV-A was the most effective and UV-C the least. A similar and more pronounced effect was observed following repeated exposures to subthreshold doses of UV-A and topically applied 8-methoxypsoralen. These findings provide quantitative evidence for the cumulative nature of acute UVR damage in human skin.

  18. Aircraft noise-induced awakenings are more reasonably predicted from relative than from absolute sound exposure levels.

    PubMed

    Fidell, Sanford; Tabachnick, Barbara; Mestre, Vincent; Fidell, Linda

    2013-11-01

    Assessment of aircraft noise-induced sleep disturbance is problematic for several reasons. Current assessment methods are based on sparse evidence and limited understandings; predictions of awakening prevalence rates based on indoor absolute sound exposure levels (SELs) fail to account for appreciable amounts of variance in dosage-response relationships and are not freely generalizable from airport to airport; and predicted awakening rates do not differ significantly from zero over a wide range of SELs. Even in conjunction with additional predictors, such as time of night and assumed individual differences in "sensitivity to awakening," nominally SEL-based predictions of awakening rates remain of limited utility and are easily misapplied and misinterpreted. Probabilities of awakening are more closely related to SELs scaled in units of standard deviates of local distributions of aircraft SELs, than to absolute sound levels. Self-selection of residential populations for tolerance of nighttime noise and habituation to airport noise environments offer more parsimonious and useful explanations for differences in awakening rates at disparate airports than assumed individual differences in sensitivity to awakening.

  19. Open-source radiation exposure extraction engine (RE3) for dose monitoring

    NASA Astrophysics Data System (ADS)

    Weisenthal, Samuel; Folio, Les; Derderian, Vana; Summers, Ronald M.; Yao, Jianhua

    2015-03-01

    Our goal was to investigate the feasibility of an open-source, PACS-integrated, DICOM header-based tool that automatically provides granular data for monitoring of CT radiation exposure. To do so, we constructed a radiation exposure extraction engine (RE3) that is seamlessly connected to the PACS using the digital imaging and communications in medicine (DICOM) toolkit (DCMTK) and runs on the fly within the workflow. We evaluated RE3's ability to determine the number of acquisitions and calculate the exposure metric dose length product (DLP) by comparing its output to the vendor dose pages. RE3 output closely correlated to the dose pages for both contiguously acquired exams (R2 =0.9987) and non-contiguously acquired exams (R2 =0.9994). RE3 is an open-source, automated radiation monitoring program to provide study-, series-, and slice-level radiation data.

  20. A novel dosimeter for measuring the amount of radiation exposure of surgeons during percutaneous nephrolithotomy: Instadose™

    PubMed Central

    Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim

    2016-01-01

    Introduction The aim of this study was to demonstrate the efficacy of Instadose™, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose™ on the outer part of their lead aprons during the PNL procedures performed between December 2013 and July 2014. Patient demographics and stone characteristics were noted. Factors affecting radiation dose were determined. Fluoroscopic screening time was compared with the amount of radiation in order to validate the measurements of Instadose™. Results Overall, 51 patients with a mean age of 43.41 ±18.58 (range 1–75) years were enrolled. Male to female ratio was 35/16. The amount of radiation was greater than 0.01mSv in only 19 (37.25%) cases. Stone location complexity (p = 0.380), dilation type (p = 0.584), stone size (p = 0.565), dilation size (p = 0.891) and access number (p = 0.268) were not associated with increased radiation exposure. Instadose™ measurements were correlated with fluoroscopic screening time (r = 0.519, p = 0.001). Conclusions Instadose™ is a useful tool for the measurement of radiation exposure during PNL. The advantage of measuring the amount of radiation exposure after each PNL operation is that it may aid urologists in taking appropriate precautions to minimize the risk of radiation related complications. PMID:27551558

  1. An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.

    2015-01-01

    The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.

  2. Estimates of Carrington-class solar particle event radiation exposures on Mars

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Pourarsalan, M.; Hall, M. I.; Anderson, J. A.; Bhatt, S.; Delauder, N.; Adamczyk, A. M.

    2011-09-01

    Radiation exposure estimates for crew members on the surface of Mars are made for solar particle event proton radiation environments comparable to the Carrington event of 1859. We assume that the proton energy distributions for these Carrington-type events are similar to those measured for other, more recent large events. The fluence levels of these hypothetical events are normalized to the value for the Carrington event, as reported from measurements in ice core data. In this work, we use the BRYNTRN radiation transport code, originally developed at NASA Langley Research Center, and the Computerized Anatomical Male and Female human geometry models to estimate exposures for aluminum shield areal densities similar to those provided by a spacesuit, a surface lander, and a permanent habitat located at various altitudes in the Mars atmosphere. Comparisons of the predicted organ exposures with current NASA Permissible Exposure Limits are made.

  3. Assessment of potential radiation exposures by uncontrolled recycle or reuse of radioactive scrap metals

    SciTech Connect

    Lee, S.Y.; Lee, K.J.

    1999-07-01

    With current waste monitoring technology it is reasonable to assume that much of the material designated as low-level waste, generated within nuclear facilities, is in fact uncontaminated. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective dose of 10 {micro}Sv as a limit for the individual radiation dose and derived the initial control levels of residual radioactivity based on the Publication 30 of the International Commission on Radiological Protection (ICRP). In 1990, new recommendations on radiation protection standards were developed by ICRP to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30. This study summarizes the potential radiation exposure from valuable scrap metal considered for uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people were analyzed and concentrations leading to an individual dose of 10 {micro}Sv/year were calculated for 14 key radionuclides. These potential radiation doses are compared with the results of previous study.

  4. Inferring ultraviolet anatomical exposure patterns while distinguishing the relative contribution of radiation components

    NASA Astrophysics Data System (ADS)

    Vuilleumier, Laurent; Milon, Antoine; Bulliard, Jean-Luc; Moccozet, Laurent; Vernez, David

    2013-05-01

    Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.

  5. Inferring ultraviolet anatomical exposure patterns while distinguishing the relative contribution of radiation components

    SciTech Connect

    Vuilleumier, Laurent; Milon, Antoine; Vernez, David; Bulliard, Jean-Luc; Moccozet, Laurent

    2013-05-10

    Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.

  6. Initiation-promotion model of tumor prevalence in mice from space radiation exposures

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1995-01-01

    Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.

  7. A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation

    PubMed Central

    Schubauer-Berigan, M K

    2010-01-01

    Context More than 400 000 workers annually receive a measurable radiation dose and may be at increased risk of radiation-induced leukaemia. It is unclear whether leukaemia risk is elevated with protracted, low-dose exposure. Objective We conducted a meta-analysis examining the relationship between protracted low-dose ionising radiation exposure and leukaemia. Data sources Reviews by the National Academies and United Nations provided a summary of informative studies published before 2005. PubMed and Embase databases were searched for additional occupational and environmental studies published between 2005 and 2009. Study selection We selected 23 studies that: (1) examined the association between protracted exposures to ionising radiation and leukaemia excluding chronic lymphocytic subtype; (2) were a cohort or nested case–control design without major bias; (3) reported quantitative estimates of exposure; and (4) conducted exposure–response analyses using relative or excess RR per unit exposure. Methods Studies were further screened to reduce information overlap. Random effects models were developed to summarise between-study variance and obtain an aggregate estimate of the excess RR at 100 mGy. Publication bias was assessed by trim and fill and Rosenthal's file drawer methods. Results We found an ERR at 100 mGy of 0.19 (95% CI 0.07 to 0.32) by modelling results from 10 studies and adjusting for publication bias. Between-study variance was not evident (p=0.99). Conclusions Protracted exposure to low-dose gamma radiation is significantly associated with leukaemia. Our estimate agreed well with the leukaemia risk observed among exposed adults in the Life Span Study (LSS) of atomic bomb survivors, providing increased confidence in the current understanding of leukaemia risk from ionising radiation. However, unlike the estimates obtained from the LSS, our model provides a precise, quantitative summary of the direct estimates of excess risk from studies of

  8. Health Profile of U.S. Navy Pilots of Electronically Modified Aircraft.

    DTIC Science & Technology

    cardiovascular disease and alcoholism in the control group whereas no significant increases were noted for pilots of electronic models. Pilots in the latter group had low rates for conditions postulated as related to radiation exposure. Such results indicated that pilots of electronically modified aircraft were not at increased risk for illness or injury because of the aircraft models they primarily flew.

  9. Urinary metabolic signatures and early triage of acute radiation exposure in rat model.

    PubMed

    Zhao, Mingxiao; Lau, Kim Kt; Zhou, Xian; Wu, Jianfang; Yang, Jun; Wang, Chang

    2017-03-28

    After a large-scale radiological accident, early-response biomarkers to assess radiation exposure over a broad dose range are not only the basis of rapid radiation triage, but are also the key to the rational use of limited medical resources and to the improvement of treatment efficiency. Because of its high throughput, rapid assays and minimally invasive sample collection, metabolomics has been applied to research into radiation exposure biomarkers in recent years. Due to the complexity of radiobiological effects, most of the potential biomarkers are both dose-dependent and time-dependent. In reality, it is very difficult to find a single biomarker that is both sensitive and specific in a given radiation exposure scenario. Therefore, a multi-parameters approach for radiation exposure assessment is more realistic in real nuclear accidents. In this study, untargeted metabolomic profiling based on gas chromatography-mass spectrometry (GC-MS) and targeted amino acid profiling based on LC-MS/MS were combined to investigate early urinary metabolite responses within 48 h post-exposure in a rat model. A few of the key early-response metabolites for radiation exposure were identified, which revealed the most relevant metabolic pathways. Furthermore, a panel of potential urinary biomarkers was selected through a multi-criteria approach and applied to early triage following irradiation. Our study suggests that it is feasible to use a multi-parameters approach to triage radiation damage, and the urinary excretion levels of the relevant metabolites provide insights into radiation damage and repair.

  10. Relationship between radiation exposure and risk of second primary cancers among atomic bomb survivors.

    PubMed

    Li, Christopher I; Nishi, Nobuo; McDougall, Jean A; Semmens, Erin O; Sugiyama, Hiromi; Soda, Midori; Sakata, Ritsu; Hayashi, Mikiko; Kasagi, Fumiyoshi; Suyama, Akihiko; Mabuchi, Kiyohiko; Davis, Scott; Kodama, Kazunori; Kopecky, Kenneth J

    2010-09-15

    Radiation exposure is related to risk of numerous types of cancer, but relatively little is known about its effect on risk of multiple primary cancers. Using follow-up data through 2002 from 77,752 Japanese atomic bomb survivors, we identified 14,048 participants diagnosed with a first primary cancer, of whom 1,088 were diagnosed with a second primary cancer. Relationships between radiation exposure and risks of first and second primary cancers were quantified using Poisson regression. There was a similar linear dose-response relationship between radiation exposure and risks of both first and second primary solid tumors [excess relative risk (ERR)/Gy = 0.65; 95% confidence interval (CI), 0.57-0.74 and ERR/Gy = 0.56; 95% CI, 0.33-0.80, respectively] and risk of both first and second primary leukemias (ERR/Gy = 2.65; 95% CI, 1.78-3.78 and ERR/Gy = 3.65; 95% CI, 0.96-10.70, respectively). Background incidence rates were higher for second solid cancers, compared with first solid cancers, until about age 70 years for men and 80 years for women (P < 0.0001), but radiation-related ERRs did not differ between first and second primary solid cancers (P = 0.70). Radiation dose was most strongly related to risk of solid tumors that are radiation-sensitive including second primary lung, colon, female breast, thyroid, and bladder cancers. Radiation exposure confers equally high relative risks of second primary cancers as first primary cancers. Radiation is a potent carcinogen and those with substantial exposures who are diagnosed with a first primary cancer should be carefully screened for second primary cancers, particularly for cancers that are radiation-sensitive.

  11. Measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1973-01-01

    A cosmic radiation dose to the Apollo 16 crew of 180 + or - 100 mR was calculated from the specific activities of Na-22 and Na-24 in pre and postflight urine specimens. The specific activities of Cr-51 and Co-60 are higher in postflight specimens than in preflight specimens, presumably due to a postflight injection of radiochromium. The Fe-59 and Cs-137 specific activities are also reported and appear to be normal. The radiation doses received by a pilot and a navigator flying a high altitude mission during the solar flare of August 4 to 9, 1972 were calculated from the specific activity of Na-24 in their urine. These values are compared with the expected radiation dose calculated form the known shape and intensity of the proton spectrum. They demonstrate the magnitude of atmospheric shielding.

  12. Occupational exposure to natural UV radiation and premature skin ageing.

    PubMed

    Lastowiecka-Moras, Elżbieta; Bugajska, Joanna; Młynarczyk, Beata

    2014-01-01

    The skin is the part of the human body most vulnerable to ultraviolet (UV) radiation. The spectrum of the negative effects of UV radiation on the skin ranges from acute erythema to carcinogenesis. Between these extreme conditions, there are other common skin lesions, e.g., photoageing. The aim of this study was to assess the skin for signs of photoageing in a group of 52 men occupationally exposed to natural UV radiation. There were 2 types of examinations: an examination of skin condition (moisture, elasticity, sebum, porosity, smoothness, discolourations and wrinkles) with a device for diagnosing the skin, and a dermatological examination. The results of both examinations revealed a higher percentage of skin characteristics typical for photoageing in outdoor workers compared to the general population.

  13. REAL-TIME AND INTEGRATED MEASUREMENT OF POTENTIAL HUMAN EXPOSURE TO PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) FROM AIRCRAFT EXHAUST

    EPA Science Inventory

    Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...

  14. A NEW SEMI-EMPIRICAL AMBIENT TO EFFECTIVE DOSE CONVERSION MODEL FOR THE PREDICTIVE CODE FOR AIRCREW RADIATION EXPOSURE (PCAIRE).

    PubMed

    Dumouchel, T; McCall, M; Lemay, F; Bennett, L; Lewis, B; Bean, M

    2016-12-01

    The Predictive Code for Aircrew Radiation Exposure (PCAIRE) is a semi-empirical code that estimates both ambient dose equivalent, based on years of on-board measurements, and effective dose to aircrew. Currently, PCAIRE estimates effective dose by converting the ambient dose equivalent to effective dose (E/H) using a model that is based on radiation transport calculations and on the radiation weighting factors recommended in International Commission on Radiological Protection (ICRP) 60. In this study, a new semi-empirical E/H model is proposed to replace the existing transport calculation models. The new model is based on flight data measured using a tissue-equivalent proportional counter (TEPC). The measured flight TEPC data are separated into a low- and a high-lineal-energy spectrum using an amplitude-weighted (137)Cs TEPC spectrum. The high-lineal-energy spectrum is determined by subtracting the low-lineal-energy spectrum from the measured flight TEPC spectrum. With knowledge of E/H for the low- and high-lineal-energy spectra, the total E/H is estimated for a given flight altitude and geographic location. The semi-empirical E/H model also uses new radiation weighting factors to align the model with the most recent ICRP 103 recommendations. The ICRP 103-based semi-empirical effective dose model predicts that there is a ∼30 % reduction in dose in comparison with the ICRP 60-based model. Furthermore, the ambient dose equivalent is now a more conservative dose estimate for jet aircraft altitudes in the range of 7-13 km (FL230-430). This new semi-empirical E/H model is validated against E/H predicted from a Monte Carlo N-Particle transport code simulation of cosmic ray propagation through the Earth's atmosphere. Its implementation allows PCAIRE to provide an accurate semi-empirical estimate of the effective dose.

  15. Exposure and temperature dependence of elongated blister formation in complex radiation environments

    SciTech Connect

    McDonell, W.R.

    1981-01-01

    Blistering of platinum alloy surfaces by /sup 252/Cf alpha particle and fission fragment radiations occurred at relatively low concentrations of implanted helium during exposures at room temperature as well as at 1000/sup 0/C. Distinctive configurations of the blisters resulting from transport of atoms displaced by the fission fragments persisted during the high temperature exposures. Post-exposure heating of specimens exposed at room-temperature produced no additional blistering until temperatures of 1300/sup 0/C were reached. Post-exposure heating of 1000/sup 0/C blistered specimens produced only thermal etching effects. The low helium concentrations required for blistering and the distinctive blister configurations produced by /sup 252/Cf exposures suggest a unique mode of surface distortion resulting from the large number and highly localized distributions of atom displacements generated by /sup 252/Cf fission fragments. Such conditions may not be duplicated in the He-ion and fast neutron radiation environments of fusion reactors.

  16. Modeling of Space Radiation Exposure Estimation Program for Pilots, Crew and Passengers on Commercial Flights

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Dokgo, Kyunghwan; Choi, Enjin; Park, Jong-Sun; Kim, Kyung-Chan; Kim, Hang-Pyo

    2014-03-01

    There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O¡¯Neill 2010.

  17. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Adamczyk, Anne; Clowdsley, Martha; Qualls, Garry; Blattnig, Steve; Lee, Kerry; Fry, Dan; Stoffle, Nicholas; Simonsen, Lisa; Slaba, Tony; Walker, Steven; Zapp, Edward

    2011-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. For short missions, radiation risk is dominated by the possibility of a large Solar Particle Event (SPE). Longer duration missions have both SPE and Galactic Cosmic Ray (GCR) risks. SPE exposure can contribute significantly toward cancer induction in combination with GCR. As mission duration increases, mitigation strategies must address the combined risks from SPE and GCR exposure. In this paper, full mission exposure assessments were performed for the proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, previously developed radiation shielding models for a proposed lunar habitat and rover were utilized. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during Extra-Vehicular Activities (EVA). Subsequently, total mission exposures were evaluated for the proposed timelines. Mission exposure results, assessed in terms of effective dose, are presented for the proposed timelines and recommendations are made for improved astronaut shielding and safer operational practices.

  18. Radiation effects in concrete for nuclear power plants Part I: Quantification of radiation exposure and radiation effects

    SciTech Connect

    Field, Kevin G; Pape, Yann Le; Remec, Igor

    2015-01-01

    A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation.

  19. Risk equivalent of exposure versus dose of radiation

    SciTech Connect

    Bond, V.P.

    1986-01-01

    This report describes a risk analysis study of low-dose irradiation and the resulting biological effects on a cell. The author describes fundamental differences between the effects of high-level exposure (HLE) and low-level exposure (LLE). He stresses that the concept of absorbed dose to an organ is not a dose but a level of effect produced by a particular number of particles. He discusses the confusion between a linear-proportional representation of dose limits and a threshold-curvilinear representation, suggesting that a LLE is a composite of both systems. (TEM)

  20. Limited internal radiation exposure associated with resettlements to a radiation-contaminated homeland after the Fukushima Daiichi nuclear disaster.

    PubMed

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12-30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers' resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309-1050 Bq/kg), and 5.3 Bq/kg (range, 5.1-18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10(-2) mSv/y (range, 1.0 x 10(-2)-4.1 x 10(-2) mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure.

  1. Natural Sources of Radiation Exposure and the Teaching of Radioecology

    ERIC Educational Resources Information Center

    Anjos, R. M.; Veiga, R.; Carvalho, C.; Sanches, N.; Estellita, L.; Zanuto, P.; Queiroz, E.; Macario, K.

    2008-01-01

    We have developed an experimental activity that introduces concepts of the natural ionizing radiation and its interaction with our contemporary environment that can be used with students from secondary to college level. The experiment is based on the use of traditional and cheap portable Geiger-Muller detectors as survey meters for "in situ"…

  2. Assessing exposure to granite countertops--Part 1: Radiation.

    PubMed

    Myatt, Theodore A; Allen, Joseph G; Minegishi, Taeko; McCarthy, William B; Stewart, James H; Macintosh, David L; McCarthy, John F

    2010-05-01

    Humans are continuously exposed to low levels of ionizing radiation. Known sources include radon, soil, cosmic rays, medical treatment, food, and building products such as gypsum board and concrete. Little information exists about radiation emissions and associated doses from natural stone finish materials such as granite countertops in homes. To address this knowledge gap, gross radioactivity, gamma ray activity, and dose rate were determined for slabs of granite marketed for use as countertops. Annual effective radiation doses were estimated from measured dose rates and human activity patterns while accounting for the geometry of granite countertops in a model kitchen. Gross radioactivity, gamma activity, and dose rate varied significantly among and within slabs of granite with ranges for median levels at the slab surface of ND to 3000 cpm, ND to 98,000 cpm, and ND to 1.5E-4 mSv/h, respectively. The maximum activity concentrations of the (40)K, (232)Th, and (226)Ra series were 2715, 231, and 450 Bq/kg, respectively. The estimated annual radiation dose from spending 4 h/day in a hypothetical kitchen ranged from 0.005 to 0.18 mSv/a depending on the type of granite. In summary, our results show that the types of granite characterized in this study contain varying levels of radioactive isotopes and that their observed emissions are consistent with those reported in the scientific literature. We also conclude from our analyses that these emissions are likely to be a minor source of external radiation dose when used as countertop material within the home and present a negligible risk to human health.

  3. Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea

    PubMed Central

    Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina

    2015-01-01

    Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 (137Cs) in Seoul. Methods Using information regarding the frequency and duration of passing via the 137Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of 137Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline. PMID:26184047

  4. The risk of childhood cancer from intrauterine and preconceptional exposure to ionizing radiation.

    PubMed Central

    Wakeford, R

    1995-01-01

    The findings of studies investigating whether exposures to ionizing radiation before birth, either pre- or post-conception, increase the risk of childhood cancer have provoked much scientific controversy. An epidemiological association between the abdominal exposure of pregnant women to diagnostic X-rays and childhood cancer was first reported in the 1950s, while an association between the recorded dose of radiation received occupationally by fathers before the conception of their offspring and childhood leukemia was reported only recently in 1990. The scientific interpretation of these particular statistical associations is by no means straightforward, but the latest analyses of intrauterine irradiation and childhood cancer indicate that a causal inference is likely. Scientific committees have adopted risk coefficients for the intrauterine exposure of somatic tissues, which for childhood leukemia are comparable to those accepted for exposure in infancy, although questions remain about the level of risk of childhood solid tumors imparted by exposure to radiation in utero and shortly after birth. In contrast, the association between paternal preconceptional radiation dose and childhood leukemia has not been confirmed by studies using objectively determined doses. The original association has been found to be restricted to children born in one village, it does not extend to cancers other than leukemia, and it is markedly inconsistent with the established body of knowledge on radiation-induced hereditary disease. A causal interpretation of this association has effectively been abandoned by scientific authorities. Images p1018-a PMID:8605850

  5. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Sections 17.4.1, 17.4.1.1, 17.4.2... Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,”...

  6. Approximating the Probability of Mortality Due to Protracted Radiation Exposures

    DTIC Science & Technology

    2016-06-01

    for prompt doses to determine the probability of mortality for the protracted exposure. MARCELL is a physiologically based, cell-kinetics model of...characteristic time constants associated with the physiological processes modeled in MARCELL. These characteristic times are associated with cell...describe experimental toxicity data when a suitable physiologically based model of response (either human or animal) is not available. Because

  7. Indoor exposure to radiation in the case of an outdoorrelease

    SciTech Connect

    Price, Phillip N.; Jayaraman, Buvana

    2006-06-01

    This report quantifies the effectiveness of ''sheltering in place'' in a commercial building in the event of an outdoor radiological release. The indoor exposure to airborne particles is calculated by solving the mass balance equation that accounts for the loss of particles due to deposition, filtration and exhaust. Quantitative estimates of shelter-inplace effectiveness are provided for typical commercial buildings.

  8. Radiation exposure from CT-guided ablation of renal masses: effects on life expectancy.

    PubMed

    Eisenberg, Jonathan D; Gervais, Debra A; Singh, Sarabjeet; Kalra, Mannudeep K; Sabir, Sharjeel H; Paul, Aaron B; Pandharipande, Pari V

    2015-02-01

    OBJECTIVE. The purpose of this article is to project the effects of radiation exposure on life expectancy (LE) in patients who opt for CT-guided radiofrequency ablation (RFA) instead of surgery for renal cell carcinoma (RCC). MATERIALS AND METHODS. We developed a decision-analytic Markov model to compare LE losses attributable to radiation exposure in hypothetical 65-year-old patients who undergo CT-guided RFA versus surgery for small (≤ 4 cm) RCC. We incorporated mortality risks from RCC, radiation-induced cancers (for procedural and follow-up CT scans), and all other causes; institutional data informed the RFA procedural effective dose. Radiation-induced cancer risks were generated using an organ-specific approach. Effects of varying model parameters and of dose-reduction strategies were evaluated in sensitivity analysis. RESULTS. Cumulative RFA exposures (up to 305.2 mSv for one session plus surveillance) exceeded those from surgery (up to 87.2 mSv). In 65-year-old men, excess LE loss from radiation-induced cancers, comparing RFA to surgery, was 11.7 days (14.6 days for RFA vs 2.9 days for surgery). Results varied with sex and age; this difference increased to 14.6 days in 65-year-old women and to 21.5 days in 55-year-old men. Dose-reduction strategies that addressed follow-up rather than procedural exposure had a greater impact. In 65-year-old men, this difference decreased to 3.8 days if post-RFA follow-up scans were restricted to a single phase; even elimination of RFA procedural exposure could not achieve equivalent benefits. CONCLUSION. CT-guided RFA remains a safe alternative to surgery, but with decreasing age, the higher burden of radiation exposure merits explicit consideration. Dose-reduction strategies that target follow-up rather than procedural exposure will have a greater impact.

  9. Radiation Exposure to Staff in Intensive Care Unit with Portable CT Scanner.

    PubMed

    Xie, Zhichao; Liao, Xuelian; Kang, Yan; Zhang, Jiangqian; Jia, Lingli

    2016-01-01

    Background. Bedside radiological procedures pose a risk of radiation exposure to ICU staff. The perception of risk may increase the degree of caution among the health care staff and raise new barriers preventing patients from obtaining prompt care. Objective. The aim of this study was to estimate the annual cumulative radiation dose to individual ICU staff. Methods. In this prospective study, forty subjects were required to wear thermoluminescent dosimeter badges during their working hours. The badges were analyzed to determine the exposure after 3 months. Results. A total of 802 radiological procedures were completed at bedside during the study period. The estimated annual dosage to doctors and nurses on average was 0.99 mSv and 0.88 mSv (p < 0.001), respectively. Residents were subjected to the highest radiation exposure (1.04 mSv per year, p = 0.002). The radiation dose was correlated with day shift working hours (r = 0.426; p = 0.006) and length of service (r = -0.403; p < 0.01). Conclusions. With standard precautions, bedside radiological procedures-including portable CT scans-do not expose ICU staff to high dose of ionizing radiation. The level of radiation exposure is related to the daytime working hours and length of service.

  10. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  11. Plasma miRNA as biomarkers for assessment of total-body radiation exposure dosimetry.

    PubMed

    Cui, Wanchang; Ma, Jinfang; Wang, Yulei; Biswal, Shyam

    2011-01-01

    The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles can accurately reflect prior radiation exposure. We demonstrated using a murine model that plasma miRNA expression signatures could distinguish mice that received total body irradiation doses of 0.5 Gy, 2 Gy, and 10 Gy (at 6 h or 24 h post radiation) with accuracy, sensitivity, and specificity of above 90%. Taken together, these data demonstrate that plasma miRNA profiles can be highly predictive of different levels of radiation exposure. Thus, plasma-based biomarkers can be used to assess radiation exposure after mass-casualty incidents, and it may provide a valuable tool in developing and implementing effective countermeasures.

  12. Radiation Exposure to Staff in Intensive Care Unit with Portable CT Scanner

    PubMed Central

    Xie, Zhichao; Liao, Xuelian; Zhang, Jiangqian; Jia, Lingli

    2016-01-01

    Background. Bedside radiological procedures pose a risk of radiation exposure to ICU staff. The perception of risk may increase the degree of caution among the health care staff and raise new barriers preventing patients from obtaining prompt care. Objective. The aim of this study was to estimate the annual cumulative radiation dose to individual ICU staff. Methods. In this prospective study, forty subjects were required to wear thermoluminescent dosimeter badges during their working hours. The badges were analyzed to determine the exposure after 3 months. Results. A total of 802 radiological procedures were completed at bedside during the study period. The estimated annual dosage to doctors and nurses on average was 0.99 mSv and 0.88 mSv (p < 0.001), respectively. Residents were subjected to the highest radiation exposure (1.04 mSv per year, p = 0.002). The radiation dose was correlated with day shift working hours (r = 0.426; p = 0.006) and length of service (r = −0.403; p < 0.01). Conclusions. With standard precautions, bedside radiological procedures—including portable CT scans—do not expose ICU staff to high dose of ionizing radiation. The level of radiation exposure is related to the daytime working hours and length of service. PMID:27556036

  13. Body radiation exposure in breast cancer radiotherapy: Impact of breast IMRT and virtual wedge compensation techniques

    SciTech Connect

    Woo, Tony; Pignol, Jean-Philippe . E-mail: Jean-Philippe.Pignol@sw.ca; Rakovitch, Eileen; Vu, Toni; Hicks, Deanna; O'Brien, Peter; Pritchard, Kathleen

    2006-05-01

    Purpose: Recent reports demonstrate a dramatically increased rate of secondary leukemia for breast cancer patients receiving adjuvant high-dose anthracycline and radiotherapy, and that radiation is an independent factor for the development of leukemia. This study aimed to evaluate the radiation body exposure during breast radiotherapy and to characterize the factors associated with an increased exposure. Patients and Methods: In a prospective cohort of 120 women, radiation measurements were taken from four sites on the body at the time of adjuvant breast radiotherapy. Multiple regression analysis was performed to analyze patient and treatment factors associated with the amount of scattered radiation. Results: For standard 50 Gy breast radiotherapy, the minimal dose received by abdominal organs is on average 0.45 Gy, ranging from 0.06 to 1.55 Gy. The use of physical wedges as a compensation technique was the most significant factor associated with increased scattered dose (p < 0.001), resulting in approximately three times more exposure compared with breast intensity-modulated radiation therapy (IMRT) and dynamic wedge. Conclusions: The amount of radiation that is scattered to a patient's body is consistent with exposure reported to be associated with excess of leukemia. In accordance with the As Low As Reasonably Achievable (ALARA) principle, we recommend using breast IMRT or virtual wedging for the radiotherapy of breast cancer receiving high-dose anthracycline chemotherapy.

  14. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  15. An experimental measurement of galactic cosmic radiation dose in conventional aircraft between San Francisco and London compared to theoretical values for conventional and supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Wallace, R.; Boyer, M. F.

    1972-01-01

    These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.

  16. Adhesive bonding via exposure to variable frequency microwave radiation

    SciTech Connect

    Paulauskas, F.L.; McMillan, A.D.; Warren, C.D.

    1996-05-01

    Adhesive bonding through the application of variable frequency microwave (VFM) radiation has been evaluated as an alternative curing method for joining composite materials. The studies showed that the required cure time of a thermosetting epoxy adhesive is substantially reduced by the use of VFM when compared to conventional (thermal) curing methods. Variable frequency microwave processing appeared to yield a slight reduction in the required adhesive cure time when compared to processing by the application of single frequency microwave radiation. In contrast to the single frequency processing, the variable frequency methodology does not readily produce localized overheating (burnt or brown spots) in the adhesive or the composite. This makes handling and location of the sample in the microwave oven less critical for producing high quality bonds and allows for a more homogeneous distribution of the cure energy. Variable frequency microwave processing is a valuable alternative method for rapidly curing thermoset adhesives at low input power levels.

  17. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    The principal gamma-ray emitting radioisotopes, produced in the body of astronauts by cosmic-ray bombardment, which have half-lives long enough to be useful for radiation dose evaluation, are Be-7, Na-22, and Na-24. The sodium isotopes were measured in the preflight and postflight urine and feces, and those feces specimens collected during the manned Apollo missions, by analysis of the urine salts and the raw feces in large crystal multidimensional gamma-ray spectrometers. The Be-7 was chemically separated, and its concentration measured in an all NaI (TL), anticoincidence shielded, scintillation well crystal. The astronaut radiation dose in millirads, as determined for the Apollo 7, 8, 9, 10, 11, 12, and 13 missions, was 330, 160, smaller than 315, 870 plus or minus 550, 31, 110, and smaller than 250, respectively.

  18. Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Arrigo, Kevin R.; van Dijken, Gert L.

    2004-05-01

    Satellite remote sensing of both surface solar ultraviolet radiation (UVR) and chlorophyll over two decades shows that biologically significant ultraviolet radiation increases began to occur over the Southern Ocean three years before the ozone ``hole'' was discovered. Beginning in October 1983, the most frequent occurrences of enhanced UVR over phytoplankton-rich waters occurred in the Weddell Sea and Indian Ocean sectors of the Southern Ocean, impacting 60% of the surface biomass by the late 1990s. These results suggest two reasons why more serious impacts to the base of the marine food web may not have been detected by field experiments: (1) the onset of UVR increases several years before dedicated field work began may have impacted the most sensitive organisms long before such damage could be detected, and (2) most biological field work has so far not taken place in Antarctic waters most extensively subjected to enhanced UVR.

  19. Outdoor Exposure to Solar Ultraviolet Radiation and Legislation in Brazil.

    PubMed

    Silva, Abel A

    2016-06-01

    The total ozone column of 265 ± 11 Dobson Units in the tropical-equatorial zones and 283 ± 16 Dobson Units in the subtropics of Brazil are among the lowest on Earth, and as a result, the prevalence of skin cancer due to solar ultraviolet radiation is among the highest. Daily erythemal doses in Brazil can be over 7,500 J m. Erythemal dose rates on cloudless days of winter and summer are typically about 0.147 W m and 0.332 W m, respectively. However, radiation enhancement events yielded by clouds have been reported with erythemal dose rates of 0.486 W m. Daily doses of the diffuse component of erythemal radiation have been determined with values of 5,053 J m and diffuse erythemal dose rates of 0.312 W m. Unfortunately, Brazilians still behave in ways that lead to overexposure to the sun. The annual personal ultraviolet radiation ambient dose among Brazilian youths can be about 5.3%. Skin cancer in Brazil is prevalent, with annual rates of 31.6% (non-melanoma) and 1.0% (melanoma). Governmental and non-governmental initiatives have been taken to increase public awareness of photoprotection behaviors. Resolution #56 by the Agência Nacional de Vigilância Sanitária has banned tanning devices in Brazil. In addition, Projects of Law (PL), like PL 3730/2004, propose that the Sistema Único de Saúde should distribute sunscreen to members of the public, while PL 4027/2012 proposes that employers should provide outdoor workers with sunscreen during professional outdoor activities. Similar laws have already been passed in some municipalities. These are presented and discussed in this study.

  20. Radiation dose assessment of exposure to depleted uranium.

    PubMed

    Li, Wei Bo; Gerstmann, Udo C; Höllriegl, Vera; Szymczak, Wilfried; Roth, Paul; Hoeschen, Christoph; Oeh, Uwe

    2009-07-01

    Depleted uranium (DU) is claimed to contribute to human health problems, known as the Gulf War Syndrome and the Balkan Syndrome. Quantitative radiation dose is required to estimate the health risk of DU materials. The influences of the solubility parameters in the human alimentary tract and the respiratory tract systems and the aerosol particles size on the radiation dose of DU materials were evaluated. The dose conversion factor of daily urinary excretion of DU is provided. The retention and excretion of DU in the human body after a contamination at a wound site were predicted. Dose coefficients of DU after ingestion and inhalation were calculated using the solubility parameters of the DU corrosion products in simulated gastric and simulated lung fluid, which were determined in the Helmholtz Zentrum München. (238)U is the main radiation dose contributor per 1 Bq of DU materials. The dose coefficients of DU materials were estimated to be 3.5 x 10(-8) and 2.1 x 10(-6) Sv Bq(-1) after ingestion and inhalation for members of the public. The ingestion dose coefficient of DU materials is about 75% of the natural uranium value. The inhalation dose coefficient of DU material is in between those for Type M and Type S according to the category for inhaled materials defined by the International Commission on Radiological Protection. Radiation dose possibly received from DU materials can directly be estimated by using the dose conversion factor provided in this study, if daily urinary excretion of DU is measured.

  1. Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard; Armendariz, Lupita (Technical Monitor)

    2002-01-01

    Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.

  2. Physics of Radiation Exposure and Characterization for Future Electronic Materials

    DTIC Science & Technology

    2014-12-01

    emerging electronic materials: complex oxides, graphene, and diamond . Our work used advanced materials probes to understand the basic mechanisms of...materials. • Examine the following 3 advanced emerging electronic materials:  Graphene  Complex metal oxides  Diamond • Develop new radiation-damage...graphene, complex metal oxides, and diamond . The program has examined these materials via the following instrumentation: STM, aberration-corrected TEM, ion

  3. Effects of fetal microwave radiation exposure on offspring behavior in mice.

    PubMed

    Zhang, Yanchun; Li, Zhihui; Gao, Yan; Zhang, Chenggang

    2015-03-01

    The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5-18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects.

  4. Effects of fetal microwave radiation exposure on offspring behavior in mice

    PubMed Central

    Zhang, Yanchun; Li, Zhihui; Gao, Yan; Zhang, Chenggang

    2015-01-01

    The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5–18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects. PMID:25359903

  5. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    Cosmic radiation doses to the crews of the Apollo 14, 15, and 16 missions of 142 + or - 80, 340 + or - 80, and 210 + or - 130 mR respectively were calculated from the specific activities of Na-22 and Na-24 in the postflight urine specimens of the astronauts. The specific activity of Fe-59 was higher in the urine than in the feces of the Apollo 14 and 15 astronauts, and a possible explanation is given. The concentrations of K-40, K-42, Cr-51, Co-60, and Cs-137 in the urine are also reported for these astronauts. The radiation doses received by pilots and navigators flying high altitude missions during the solar flare of March 27 to 30, 1972 were calculated from the specific activity of Na-24 in their urine. These values are compared with the expected radiation dose calculated from the known shape and intensity of the proton spectrum and demonstrate the magnitude of atmospheric shielding. The concentrations of Na, K, Rb, Cs, Fe, Co, Ag, Zn, Hg, As, Sb, Se, and Br were measured in the urine specimens from the Apollo 14 and 15 astronauts by neutron activation analysis. The mercury and arsenic levels were much higher than expected.

  6. Extracellular Vesicles and Vascular Injury: New Insights for Radiation Exposure

    PubMed Central

    Flamant, Stéphane; Tamarat, Radia

    2016-01-01

    This article reviews our current knowledge about cell-derived extracellular vesicles (EVs), including microparticles and exosomes, and their emergence as mediators of a new important mechanism of cell-to-cell communication. Particular emphasis has been given to the increasing involvement of EVs in the field of radiation-induced vascular injury. Although EVs have been considered for a long time as cell “dust”, they in fact precisely reflect the physiological state of the cells. The role of microparticles and exosomes in mediating vascular dysfunction suggests that they may represent novel pathways in short- or long-distance paracrine intercellular signaling in vascular environment. In this article, the mechanisms involved in the biogenesis of microparticles and exosomes, their composition and participation in the pathogenesis of vascular dysfunction are discussed. Furthermore, this article highlights the concept of EVs as potent vectors of biological information and protagonists of an intercellular communication network. Special emphasis is made on EV-mediated microRNA transfer and on the principal consequences of such signal exchange on vascular injury and radiation-induced non-targeted effect. The recent progress in elucidating the biology of EVs has provided new insights for the field of radiation, advancing their use as diagnostic biomarkers or in therapeutic interventions. PMID:27459703

  7. Expression of P53 protein after exposure to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.

    2001-10-01

    One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.

  8. [Occupational radiation exposures during maintenance activities at nuclear power plants].

    PubMed

    Imahori, A

    1987-11-01

    Occupational exposures at nuclear power plants occur mostly during maintenance activities rather than during routine reactor operation. In this paper, statistical summaries of occupational exposures during routine maintenance activities for the years 1982-84 at nuclear power plants in Japan are presented, including comparison of the exposure levels by reactor type and by plant age. Average annual collective doses per reactor for BWRs and PWRs are 7.30 man-Sv and 2.84 man-Sv, respectively, and 78% and 89% of annual doses are incurred during maintenance activities. Average annual outage days of BWRs and PWRs for routine maintenance are 102 d and 97 d. Annual collective doses per reactor, most of which occur during maintenance activities, usually increase with plant age. Higher collective doses are observed for routine maintenance performed on older reactors as compared to newer reactors, especially in BWRs. Collective doses accrued during respective routine maintenance activities have a significant correlation with duration of maintenance and number of workers involved in maintenance.

  9. Lead exposure among automobile radiator repair workers and their children in New York City.

    PubMed

    Nunez, C M; Klitzman, S; Goodman, A

    1993-05-01

    Despite a comprehensive Occupational Safety and Health Administration lead standard, exposure to lead continues in many industries. This paper describes a blood lead screening and education program for automobile radiator repair workers and their families in New York City. Results showed that 67% of automobile radiator repair workers (n = 62) in 89% of the shops tested (n = 24) had blood lead levels in excess of 25 micrograms/dl. The vast majority of workers had never been tested previously, and none had received health and safety training regarding occupational lead exposure. Although none of the workers' children's blood lead levels were in excess of then-current guidelines, several had levels which may be associated with subclinical toxicity and in excess of the revised Centers for Disease Control guidelines of 10 micrograms/dl. This project demonstrates that lead exposure in the automotive radiator repair industry continues to be widespread and that local health departments can assist in hazard identification and remediation.

  10. The effect of exposure duration on the subjective discomfort of aircraft cabin noise.

    PubMed

    Huang, Yu; Jiang, Weikang

    2017-01-01

    The time dependency for subjective responses to noise has been a controversial question over many years. For durations of up to 10 min, the discomfort produced by three levels of noise (ie 60, 70 and 80 dBA) was investigated in this experimental study to determine the relation of discomfort to the time duration of noise. The rate of increase in discomfort with increasing duration was 1.5 dB per doubling of exposure duration, whereas it is currently assumed to be 3 dB per doubling of exposure duration. The sound dose level (SDL) was proposed to predict the discomfort caused by noise of long duration. The combination of SDL and vibration dose value (VDV) provided more consistent estimates of the equivalent comfort contours between noise and vibration over durations from 2 to 32 s than the combination of sound exposure level and VDV or that of sound pressure level and r.m.s. acceleration. Practitioner Summary: The discomfort produced by noise of long duration can be well predicted from a new definition of sound dose level, where the discomfort increases at 1.5 dB per doubling of exposure duration.

  11. Radiometric gains of satellite sensors of reflected solar radiation - Results from NASA ER-2 aircraft measurements

    NASA Technical Reports Server (NTRS)

    Abel, Peter; Galimore, Reginald; Cooper, John

    1992-01-01

    A method for using congruent aircraft-satellite observations to calibrate a satellite sensor is presented. A calibrated spectroradiometer at an altitude of 19 km above White Sands, NM, is oriented to view White Sands at the satellite overpass time along the same view vector as the satellite sensor. Collected data are transformed into corresponding estimates of sensor band radiance at the satellite (derived from the aircraft measurements), and average count (from the sensor measurements). These are both averaged across the footprint of the spectroradiometer. Results are presented for the evolution of NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) (Bands 1 and 2) gain between November 1988 and October 1990, and for GOES-6 and GOES-7 VISSR/VAS visible bands during the same period. Estimates of uncertainty in the results are presented, as well as ideas for their reduction in future flights.

  12. Research on reducing radiation exposure for clinical applications of X-ray attenuation

    NASA Astrophysics Data System (ADS)

    Jeon, Min-Cheol; Han, Man-Seok; So, Woon-Young; Lee, Hyeon-Guck; Kim, Yong-Kyun; Lee, Seung-Yeol

    2014-02-01

    This study was aimed at identifing areas with low radiation exposure where workers could be taken in the examination room in case that they had to hold the patients by estimating the attenuation of primary radiation and measuring the spatial distribution of scattered radiation. The laboratory equipment included on the X-ray generator, a phantom (human phantom), and a dosimeter. The experiment measured the performance of the examination system (dose reproducibility), the dose of primary radiation (X-rays), and the dose of scattered radiation (secondary radiation). Both the primary and the scattered radiation were attenuated by a factor of tube in vacuum experimental tests of the inverse square law. In this study, the attenuation was 2 ˜ 2.246 for primary radiation and 2 ˜ 2.105 for secondary radiation. Natural attenuation occurred as the X-rays passed through air, and an attenuation equation was established in this study. The equation for primary radiation (1st dose) was y = A1* exp(- x/t1)+ y0. The high-intensity contour of the direction for the cathode was wider than that of the direction for the anode, showing a wide range on the rear side of the cathode and on the rear side of the anode. We tried to find the positions where the workers' radiation exposure could be reduced. When the medical radiation workers have to hold the patient for an abdominal examination, they should be placed towards the tube anode and on the left side of the patient. For a lumbar-spine lateral examination, they should be placed towards the tube anode and behind the patient, and for a femur AP (anterior-posterior) examination, they should be placed towards the tube anode and on the right side of the patient.

  13. Effects of Repeated Exposure to Filtered and Unfiltered Broadband Light Radiation on Escherichia coli Growth and Propagation

    DTIC Science & Technology

    2012-08-01

    probability biological organisms will become inactive after exposure to non -ionizing radiation. Although continuous wave, low-pressure Hg lamps that...The objective of the experiments conducted during this study was to measure the inactivation efficiency of pulsed non -ionizing radiation on...Broadband spectrum UV radiation Decontamination Escherichia coli Non -ionizing radiation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  14. Effects of radiation exposure from cardiac imaging: how good are the data?

    PubMed

    Einstein, Andrew J

    2012-02-07

    Concerns about medical exposure to ionizing radiation have become heightened in recent years as a result of rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This paper summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, this paper will address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher-dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac dose-level studies, albeit with exceptions. Using risk projection models developed by the U.S. National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared with the benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks.

  15. Effects of Radiation Exposure From Cardiac Imaging: How Good Are the Data?

    PubMed Central

    Einstein, Andrew J.

    2012-01-01

    Concerns about medical exposure to ionizing radiation have become heightened in recent years due to rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This article summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, I address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac-dose-level studies, albeit with exceptions. Using risk projection models developed by the US National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared to benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. PMID:22300689

  16. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening

    SciTech Connect

    Kimme-Smith, C.; Bassett, L.W.; Gold, R.H.; Chow, S. )

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  17. Increased radiation dose at mammography due to prolonged exposure, delayed processing, and increased film darkening.

    PubMed

    Kimme-Smith, C; Bassett, L W; Gold, R H; Chow, S

    1991-02-01

    Four single-emulsion films introduced over the past 2 years--Du Pont Microvision, Fuji MiMa, Konica CM, and Eastman Kodak OM--were compared with Eastman Kodak OM SO-177 (Min-RE) film to evaluate their varying effects on mean glandular dose of reciprocity law failure due to prolonged exposure, delayed processing, and increased film darkening as a result of increased radiation exposure to improve penetration of glandular tissue. Exposures over 1.3 seconds led to increased radiation doses of 20%-30%. Delays in processing of 6 hours decreased processing speed by 11%-32% for all films except Du Pont Microvision. Optical density increases of 0.40 required 20%-30% more skin exposure for all five films. Optimal viewing densities were also evaluated and found to be different for each of the five films. Mammographers need to be aware of these differences in mammographic films to achieve maximum contrast at mammography.

  18. Mathematical Models of Human Hematopoiesis Following Acute Radiation Exposure

    DTIC Science & Technology

    2014-05-01

    thermochemical) 1.054 350 × 103 joule (J) foot-pound-force (ft lbf) 1.355 818 joule (J) calorie (cal) (thermochemical) 4.184 joule (J) Pressure...approaches zero , τ2I approaches (1 − δmax/2δ0)/δmax = τ2I,min. Thus, the total MK transit time approaches τ2I,min + τ2M = (τmin − τ0/2) + τ0/2 = τmin...Treatment of victims at the zero -energy reactor accident in Vinca,” Diagnosis and Treatment of Acute Radiation Injury: Proceedings of a Scientific Meet

  19. Analysis of Radiation Exposure for Naval Personnel at Operation CASTLE.

    DTIC Science & Technology

    1984-02-28

    identify by block number) -Fi lm badle doses ;ire reconstructed for sixteen ships and thle residence islands- of Enewetak anid Kwa ile in Atolls ...2.1.4 Shot UNION 23 2.1.5 Shot YANKEE 24 2.1.6 Shot NECTAR 25 2.2 RADIATION ENVIRONMENTS 26 2.2.1 Enewetak Atoll 34 2.2.2 Kwajalein Atoll 40 2.2.3 USS...Section Page S3 DOSE CALCULATIONS 117 3.1 PERSONNEL ACTIVITIES 117 3.2 CALCULATED PERSONNEL FILM BADGE DOSES 118 3.2.1 Enewetak Atoll Dose

  20. Radiation sensitivity of quartz crystal oscillators experiment for the Long Duration Exposure Facility (LDEF), part 2

    NASA Technical Reports Server (NTRS)

    Ahearn, J. S.; Venables, J. D.

    1993-01-01

    The stability of high precision quartz crystal oscillators exposed to the radiation environment of NASA's Long Duration Exposure Facility (LDEF) was studied. Comparisons between pre-flight and post-flight frequency drift rates indicate that oscillators made from swept premium Q quartz exhibited a significantly greater post-flight drift rate than before exposure, but that the effect annealed after five months aging at 75 C (the operating temperature). The result that six years worth of radiation damage annealed out in less than six months suggests that if the oscillators had been powered during the LDEF mission, no net change in drift rate beyond their normal baseline value would have occurred.