Science.gov

Sample records for aircraft remote sensing

  1. Remote sensing of potential aircraft icing areas

    NASA Astrophysics Data System (ADS)

    Zuev, Vladimir V.; Nakhtigalova, Daria P.; Shelekhov, Alexander P.; Shelekhova, Evgeniya A.; Baranov, Nikolay A.; Kizhner, Lubov I.

    2015-11-01

    Remote sensing technique of detection of potential aircraft icing areas based on temperature profile measurements, using meteorological temperature profiler, and the data of the Airfield Measuring and Information System (AMIS-RF), was proposed, theoretically described and experimentally validated during the field project in 2012 - 2013 in the Tomsk Bogashevo Airport. Spatial areas of potential aircraft icing were determined using the RAP algorithm and Godske formula. The equations for the reconstruction of profiles of relative humidity and dew point using data from AMIS-RF are given. Actual data on the aircraft icing for the Tomsk Bogashevo Airport on 11 October 2012 and 17 March 2013 are presented in this paper. The RAP algorithm and Godske formula show similar results for the location of spatial areas of potential icing. Though, the results obtained using the RAP algorithm are closer to the actual data on the icing known from aircraft crew reports.

  2. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  3. Remote sensing of ocean color from aircraft

    NASA Technical Reports Server (NTRS)

    Clarke, G. L.; Ewing, G. C.

    1970-01-01

    Over 3000 ocean spectra of sunlight backscattered from the upper layers of the sea have been obtained at flight altitudes to 10,000 feet together with detailed ground truth. These spectra are from stations which include a wide range of water masses differing as to biological and physical condition. This data bank and the analysis already performed demonstrates the probable feasibility of using ocean color as a parameter to locate areas of special significance to physical oceanographers and marine biologists from aircraft and satellites.

  4. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  5. Airborne FTIR remote sensing of methane from the FAAM aircraft

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Illingworth, Samuel; Mead, Iq; Harlow, Chawn; Newman, Stuart; Vance, Alan

    2015-04-01

    This paper presents the first campaign results for retrievals of methane (and other gases and thermodynamic parameters) from the Airborne Research Interferometer Evaluation System (ARIES) FTIR instrument on the UK Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft. The ARIES is a thermal infrared BOMEM FTS tailored for airborne use and has an unapodised spectral resolution of 1 cm-1. It was developed as an IASI analogue for radiometric calibration of its satellite countepart. We will discuss the technical and theoretical assessment of the ARIES retrieval processor and present retrievals and interpretation of remote sampling over several years of campaign data in the tropics, around the UK, and in the high Arctic, during the Jaivex, GAUGE and MAMM campaigns respectively. Validation studies against airborne in situ data have shown that ARIES can achieve accuracties of ~2% in partial column retrievals of methane, while providing simultaneous information on a wide range of other trace gases typical of FTIR measurement. The ARIES has now beein in operation on the FAAM aircraft for a range of campaigns around the world and represents a useful validation bridge between high precision in situ point measurements (on the ground and by aircraft) and satellite remote sensing.

  6. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  7. MARS: A New Retrieval Scheme for Aircraft Remote Sensing Measurements

    NASA Astrophysics Data System (ADS)

    Illingworth, Samuel; Allen, Grant; Gallagher, Martin; O'Shea, Sebastian; Newman, Stuart; Vance, Alan; Remedios, John; Moore, David

    2013-04-01

    The importance of aircraft in-situ measurements of GreenHouse Gases (GHG) and trace gases is well understood, providing not only spatially resolved and accurate concentration data for these gases, but also essential validation for many other types of measurement, the most common being that from ground-based and satellite remote sensing instrumentation. The role of airborne remote sensing instruments is equally important in building up an accurate understanding of the composition of the atmosphere, providing far greater spatial coverage than their ground-based equivalents, whilst in the thermal infrared, the opportunity to fly at relatively low altitudes allows for a greater sensitivity towards the surface than that provided by any current satellite measurements. The UK Met Office Airborne Research Interferometer Evaluation System (ARIES) is a Fourier transform spectrometer that is mounted on the NERC Facility for Airborne Atmospheric Measurements (FAAM) aircraft, and which measures incoming radiation over a large wavenumber range (550-3000 cm-1), at high spectral resolution (~0.7 cm-1 unapodised). This level of precision, combined with a low NEDT (0.2 K for 1-minute averaged spectra) allows for the detection of a wide variety of important GHG and trace gases, the concentrations of which can be derived from the measured spectra by use of retrieval theory. This work presents a new Optimal Estimation Method (OEM) retrieval of GHG and trace gas vertically resolved profiles in the mid-troposphere and planetary boundary layer, from observations of the ARIES instrument. The Manchester ARIES Retrieval Scheme (MARS) utilizes a large subset of high-accuracy and high-precision auxiliary datasets to produce a well-characterized retrieval product. First retrieval results, as well as a validation of these results with in-situ measurements are to be presented, with error characterization suggesting that the retrieval bias is of the order of 1-2%. As well as presenting the results

  8. Multispectral remote sensing from unmanned aircraft: image processing workflows and applications for rangeland environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...

  9. Progress Towards the Remote Sensing of Aircraft Icing Hazards

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David; Politovich, Marcia; Serke, David; Ryerson, Charles; Pazmany, Andrew; Solheim, Fredrick

    2009-01-01

    NASA has teamed with the FAA, DoD, industry, and academia for research into the remote detection and measurement of atmospheric conditions leading to aircraft icing hazards. The ultimate goal of this effort is to provide pilots, controllers, and dispatchers sufficient information to allow aircraft to avoid or minimize their exposure to the hazards of in-flight icing. Since the hazard of in-flight icing is the outcome of aircraft flight through clouds containing supercooled liquid water and strongly influenced by the aircraft s speed and configuration and by the length of exposure, the hazard cannot be directly detected, but must be inferred based upon the measurement of conducive atmospheric conditions. Therefore, icing hazard detection is accomplished through the detection and measurement of liquid water in regions of measured sub-freezing air temperatures. The icing environment is currently remotely measured from the ground with a system fusing radar, lidar, and multifrequency microwave radiometer sensors. Based upon expected ice accretion severity for the measured environment, a resultant aircraft hazard is then calculated. Because of the power, size, weight, and view angle constraints of airborne platforms, the current ground-based solution is not applicable for flight. Two current airborne concepts are based upon the use of either multifrequency radiometers or multifrequency radar. Both ground-based and airborne solutions are required for the future since groundbased systems can provide hazard detection for all aircraft in airport terminal regions while airborne systems will be needed to provide equipped aircraft with flight path coverage between terminal regions.

  10. Remote sensing as a research tool. [sea ice surveillance from aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Zwally, H. J.

    1986-01-01

    The application of aircraft and spacecraft remote sensing techniques to sea ice surveillance is evaluated. The effects of ice in the air-sea-ice system are examined. The measurement principles and characteristics of remote sensing methods for aircraft and spacecraft surveillance of sea ice are described. Consideration is given to ambient visible light, IR, passive microwave, active microwave, and laser altimeter and sonar systems. The applications of these systems to sea ice surveillance are discussed and examples are provided. Particular attention is placed on the use of microwave data and the relation between ice thickness and sea ice interactions. It is noted that spacecraft and aircraft sensing techniques can successfully measure snow cover; ice thickness; ice type; ice concentration; ice velocity field; ocean temperature; surface wind vector field; and air, snow, and ice surface temperatures.

  11. Small unmanned aircraft systems for remote sensing and Earth science research

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken

    2012-06-01

    To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).

  12. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with d...

  13. Aircraft target onboard detecting technology via Circular Information Matching method for remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Xiao, Huachao; Zhou, Quan; Li, Li

    2015-10-01

    Image information onboard processing is one o f important technology to rapidly achieve intelligence for remote sensing satellites. As a typical target, aircraft onboard detection has been getting more attention. In this paper, we propose an efficient method of aircraft detection for remote sensing satellite onboard processing. According to the feature of aircraft performance in remote sensing image, the detection algorithm consists of two steps: First Salient Object Detection (SOD) is employed to reduce the amount of calculation on large remote sensing image. SOD uses Gabor filtering and a simple binary test between pixels in a filtered image. White points are connected as regions. Plane candidate regions are screened from white regions by area, length and width of connected region. Next a new algorithm, called Circumferential Information Matching method, is used to detect aircraft on candidate regions. The results of tests show circumference curve around the plane center is stable shape, so the candidate region can be accurately detecting with this feature. In order to rotation invariant, we use circle matched filter to detect target. And discrete fast Fourier transform (DFFT) is used to accelerate and reduce calculation. Experiments show the detection accuracy rate of proposed algorithm is 90% with less than 0.5s processing time. In addition, the calculation of the proposed method through quantitative anglicized is very small. Experimental results and theoretical analysis show that the proposed method is reasonable and highly-efficient.

  14. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  15. THE SPATIAL DISTRIBUTION OF PHYTOPLANKTON CHLOROPHYLL CONCENTRATIONS IN NARRAGANSETT BAY USING AIRCRAFT REMOTE SENSING

    EPA Science Inventory

    During the summer of 2002, phytoplankton chlorophyll concentrations were determined in Narragansett Bay, Rhode Island using a light aircraft equipped with the MicroSAS remote sensing system. From an altitude of 300 m, the three sensor system measured sea surface radiance (Lt), sk...

  16. Aircraft emission measurements by remote sensing methodologies at airports

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Jahn, Carsten; Sturm, Peter; Lechner, Bernhard; Bacher, Michael

    The emission indices of aircraft engine exhausts from measurements taken under operating conditions, to calculate precisely the emission inventories of airports, are not available up to now. To determine these data, measurement campaigns were performed on idling aircraft at major European airports using non-intrusive spectroscopic methods like Fourier transform infrared spectrometry and differential optical absorption spectroscopy. Emission indices for CO and NO x were calculated and compared to the values given in the International Civil Aviation Organisation (ICAO) database. The emission index for CO for 36 different aircraft engine types and for NO x (24 different engine types) were determined. It was shown that for idling aircraft, CO emissions are underestimated using the ICAO database. The emission indices for NO x determined in this work are lower than given in the ICAO database. In addition, a high variance of emission indices in each aircraft family and from engine to engine of the same engine type was found. During the same measurement campaigns, the emission indices for CO and NO of eight different types of auxilliary power units were investigated.

  17. Quantitative suspended sediment mapping using aircraft remotely sensed multispectral data. [in Virginia

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1975-01-01

    Suspended sediment is an important environmental parameter for monitoring water quality, water movement, and land use. Quantitative suspended sediment determinations were made from analysis of aircraft remotely sensed multispectral digital data. A statistical analysis and derived regression equation were used to determine and plot quantitative suspended sediment concentration contours in the tidal James River, Virginia, on May 28, 1974. From the analysis, a single band, Band 8 (0.70-0.74 microns), was adequate for determining suspended sediment concentrations. A correlation coefficient of 0.89 was obtained with a mean inaccuracy of 23.5 percent for suspended sediment concentrations up to about 50 mg/l. Other water quality parameters - secchi disc depth and chlorophyll - also had high correlations with the remotely sensed data. Particle size distribution had only a fair correlation with the remotely sensed data.

  18. Measurements of aircraft emissions indices at airports passive remote sensing

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Jahn, Carsten; Sturm, Peter J.; Lechner, Bernhard; Bacher, Michael

    2003-04-01

    The emission indices of aircraft engine exhausts to calculate precisely the emissions inventories of airports are not available up to now from measurements taken under operating conditions. To determine these data no installations nearby or behind the aircraft are possible at airports. That's why measurements by FTIR emission spectrometry were performed by the IMK-IFU with a spectrometer installed in a van and with total measurement time at one thrust level of about 1 minute to determine CO, NO and CO2. The FTIR instrument telescope was aligned to the engine nozzle exit of standing aircraft. A DOAS and a FTIR spectrometer with globar were used for simultaneous open-path measurements of NO, NO2, CO, CO2 and speciated hydrocarbons behind the aircraft by the TUG-VKMB. Measurement results at the airports Frankfurt/Main, London-Heathrow and Vienna are presented. The methods are evaluated by comparing CO emission indices from passive measurements with open-path data. The measured emission indices of CO show slightly higher values than the International Civil Aviation Organisation data sheets but less values for NOx emissions. A fruitful co-operation with the airlines AUA, BA and DLH as well as the airport authorities in Vienna and London-Heathrow supported this work which is financed from EC.

  19. Determination of phytoplankton chlorophyll concentrations in the Chesapeake Bay with aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Itsweire, Eric C.; Esaias, Wayne E.

    1992-01-01

    Remote sensing measurements of the distribution of phytoplankton chlorophyll concentrations in Chesapeake Bay during 1989 are described. It is shown that remote sensing from light aircraft can complement and extend measurements made from traditional platforms and provide data of improved temporal and spatial resolution, leading to a better understanding of phytoplankton dynamics in the estuary. The developments of the winter-spring diatom bloom in the polyhaline to mesohaline regions of the estuary and of the late-spring and summer dinoflagellate blooms in oligohaline and mesohaline regions are traced. The study presents the local chlorophyll algorithm developed using the NASA Ocean Data Acquisition System data and in situ chlorophyll data, interpolated maps of chlorophyll concentration generated by applying the algorithm to aircraft radiance data, ancillary in situ data on nutrients, turbidity, streamflow, and light availability, and an interpretation of phytoplankton dynamics in terms of the chlorophyll distribution in Chesapeake Bay during 1989.

  20. Instrumentation for remote sensing solar radiation from light aircraft.

    PubMed

    Howard, J A; Barton, I J

    1973-10-01

    The paper outlines the instrumentation needed to study, from a light aircraft, the solar radiation reflected by ground surfaces and the incoming solar radiation. A global shortwave radiometer was mounted on the roof of the aircraft and a specially designed mount was used to support a downward pointing 70-mm aerial camera, a downward pointing narrow-beam pyranometer, and, sometimes, a downward pointing global shortwave pyranometer. Calibration factors were determined for the three pyranometers by comparison with a standard Angstrom compensation pyrheliometer. Results have indicated trends in the albedos of major plant communities and have shown that the calculated albedo values vary according to whether the downward pointing instrument is narrow-beam or global. Comparisons were also made with albedos measured on the ground.

  1. Trophic Status, Ecological Condition and Cyanobacteria Risk of New England Lakes and Ponds Based on Aircraft Remote Sensing.

    EPA Science Inventory

    Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...

  2. Multispectral remote sensing from unmanned aircraft: development of workflows and comparison with WorldView-2 data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aircraft systems (UAS) have seen increasing use in remote sensing of natural resources in recent years. Relatively low operation costs, ability to rapidly revisit the same location, and very high resolution imagery offer new opportunities for remote sensing applications and comparison with ...

  3. High altitude aircraft remote sensing during the 1988 Yellowstone National Park wildfires

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.

    1990-01-01

    An overview is presented of the effects of the wildfires that occurred in the Yellowstone National Park during 1988 and the techniques employed to combat these fires with the use of remote sensing. The fire management team utilized King-Air and Merlin aircraft flying night missions with a thermal IR line-scanning system. NASA-Ames Research Center assisted with an ER-2 high altitude aircraft with the ability to down-link active data from the aircraft via a teledetection system. The ER-2 was equipped with a multispectral Thematic Mapper Simulator scanner and the resultant map data and video imagery was provided to the fire command personnel for field evaluation and fire suppression activities. This type of information proved very valuable to the fire control management personnel and to the continuing ecological research goals of NASA-Ames scientists analyzing the effects of burn type and severity on ecosystem recovery and development.

  4. Concurrent remote sensing of Arctic sea ice from submarine and aircraft

    NASA Technical Reports Server (NTRS)

    Wadhams, P.; Davis, N. R.; Comiso, J. C.; Kutz, R.; Crawford, J.; Jackson, G.; Krabill, W.; Sear, C. B.; Swift, R.; Tucker, W. B., III

    1991-01-01

    In May 1987 a concurrent remote sensing study of Arctic sea ice from above and below was carried out. A submarine equipped with sidescan and upward looking sonar collaborated with two remote sensing aircraft equipped with passive microwave, synthetic aperture radar (SAR), a laser profilometer and an infrared radiometer. By careful registration of the three tracks it has been possible to find relationships between ice type, ice morphology and thickness, SAR backscatter and microwave brightness temperatures. The key to the process has been the sidescan sonar's ability to identify ice type through differences in characteristic topography. Over a heavily ridged area of mainly multiyear ice there is a strong positive correlation between SAR backscatter and ice draft or elevation. It was also found that passive and active microwave complement each other in that SAR has a high contrast between open water and multiyear ice, while passive microwave has a high contrast between open water and first-year ice.

  5. REMOTE SENSING IN OCEANOGRAPHY.

    DTIC Science & Technology

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  6. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  7. Aircraft remote sensing of soil moisture and hydrologic parameters, Taylor Creek, Florida, and Little River, Georgia, 1979 data report

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Schmugge, T. J.; Allen, L. H., Jr.; Oneill, P.; Slack, R.; Wang, J.; Engman, E. T.

    1981-01-01

    Experiments were conducted to evaluate aircraft remote sensing techniques for hydrology in a wide range of physiographic and climatic regions using several sensor platforms. The data were collected in late 1978 and during 1979 in two humid areas--Taylor Creek, Fla., and Little River, Ga. Soil moisture measurements and climatic observations are presented as well as the remote sensing data collected using thermal infrared, passive microwave, and active microwave systems.

  8. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  9. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    PubMed

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  10. Applications of Remote Sensing to Emergency Management.

    DTIC Science & Technology

    1980-02-15

    Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.

  11. Methods and costs associated with outfitting light aircraft for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Rhodes, O. L.; Zetka, E. F.

    1973-01-01

    This document was designed to provide the potential user of a light aircraft remote sensor platform/data gathering system with general information on aircraft definition, implementation complexity, costs, scheduling and operational factors involved in this type of activity. Most of the subject material was developed from actual situations and problem areas encountered during the build-up cycle and early phases of flight operations.

  12. Monitoring water transparency and diver visibility in ports and harbors using aircraft hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Trees, Charles C.; Bissett, Paul W.; Dierssen, Heidi; Kohler, David D. R.; Moline, Mark A.; Mueller, James L.; Pieper, Richard E.; Twardowski, Michael S.; Zaneveld, J. Ronald V.

    2005-05-01

    Diver visibility analyses and predictions, and water transparency in general, are of significant military and commercial interest. This is especially true in our current state, where ports and harbors are vulnerable to terrorist attacks from a variety of platforms both on and below the water (swimmers, divers, AUVs, ships, submarines, etc.). Aircraft hyperspectral imagery has been previously used successfully to classify coastal bottom types and map bathymetry and it is time to transition this observational tool to harbor and port security. Hyperspectral imagery is ideally suited for monitoring small-scale features and processes in these optically complex waters, because of its enhanced spectral (1-3 nm) and spatial (1-3 meters) resolutions. Under an existing NOAA project (CICORE), a field experiment was carried out (November 2004) in coordination with airborne hyperspectral ocean color overflights to develop methods and models for relating hyperspectral remote sensing reflectances to water transparency and diver visibility in San Pedro and San Diego Bays. These bays were focused areas because: (1) San Pedro harbor, with its ports of Los Angeles and Long Beach, is the busiest port in the U.S. and ranks 3rd in the world and (2) San Diego Harbor is one of the largest Naval ports, serving a diverse mix of commercial, recreational and military traffic, including more than 190 cruise ships annual. Maintaining harbor and port security has added complexity for these Southern California bays, because of the close proximity to the Mexican border. We will present in situ optical data and hyperspectral aircraft ocean color imagery from these two bays and compare and contrast the differences and similarities. This preliminary data will then be used to discuss how water transparency and diver visibility predictions improve harbor and port security.

  13. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Hunt, E. Raymond; Rondon, Silvia I.; Hamm, Philip B.; Turner, Robert W.; Bruce, Alan E.; Brungardt, Josh J.

    2016-05-01

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with different platforms and sensors to assess advantages and disadvantages of sUAS for precision farming. In 2013, we conducted an experiment with 4 levels of N fertilizer, and followed the changes in the normalized difference vegetation index (NDVI) over time. In late June, there were no differences in chlorophyll content or leaf area index (LAI) among the 3 higher application rates. Consistent with the field data, only plots with the lowest rate of applied N were distinguished by low NDVI. In early August, N deficiency was determined by NDVI, but it was too late to mitigate losses in potato yield and quality. Populations of the Colorado potato beetle (CPB) may rapidly increase, devouring the shoots, thus early detection and treatment could prevent yield losses. In 2014, we conducted an experiment with 4 levels of CPB infestation. Over one day, damage from CPB in some plots increased from 0 to 19%. A visual ranking of damage was not correlated with the total number of CPB or treatment. Plot-scale vegetation indices were not correlated with damage, although the damaged area determined by object-based feature extraction was highly correlated. Methods based on object-based image analysis of sUAS data have potential for early detection and reduced cost.

  14. Aircraft remote sensing of phytoplankton spatial patterns during the 1989 Joint Global Ocean Flux Study (JGOFS) North Atlantic bloom experiment

    NASA Technical Reports Server (NTRS)

    Yoder, James A.; Hoge, Frank E.

    1991-01-01

    Mesoscale phytoplankton chlorophyll variability near the Joint Global Ocean Flux study sites along the 20 W meridian at 34 N, 47 N, and 59 N is discussed. The NASA P-3 aircraft and the Airborne Oceanographic Lidar (AOL) system provides remote sensing support for the North Atlantic Bloom Experiment. The principal instrument of the AOL system is the blue-green laser that stimulates fluorescence from photoplankton chlorophyll, the principal photosynthetic pigment. Other instruments on the NASA P-3 aircraft include up- and down-looking spectrometers, PRT-5 for infrared measurements to determine sea surface temperature, and a system to deploy and record AXBTs to measure subsurface temperature structure.

  15. Using Hyperspectral Aircraft Remote Sensing to Support Ecosystems Services Research in New England Lakes and Ponds

    NASA Astrophysics Data System (ADS)

    Keith, D. J.; Milstead, B.; Walker, H.; Worthy, D.; Szykman, J.; Wusk, M.; Kagey, L.; Howell, C.; Snook, H.; Drueke, C.

    2010-12-01

    Northeastern lakes and ponds provide important ecosystem services to New England residents and visitors. These include the provisioning of abundant, clean water for consumption, agriculture, and industry as well as cultural services (recreation, aesthetics, and wilderness experiences) which enhance local economies and quality of life. Less understood, but equally important, are the roles that these lakes play in protecting all life through supportive services such as nutrient cycling. Nitrogen and phosphorus have a direct impact on the condition of fresh water lakes. Excesses of these nutrients can lead to eutrophication, toxic cyanobacteria blooms, decreased biodiversity, and loss of ecosystem function leading to a reduction in the availability and delivery of ecosystem services. In this study, we examined how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlated with changes in the potential to provide cultural ecosystem services. Using a NASA Cessna 206 aircraft, hyperspectral data were collected during late summer 2009 from 55 lakes in New Hampshire, Massachusetts, Connecticut, and Rhode Island over a 2 day period. From the spectral data, algorithms were created which estimated concentrations of chlorophyll a, phycocyanin, and colored dissolved organic matter. The remotely sensed estimates were supplemented by in situ chlorophyll a, total nitrogen, total phosphorus and lake color data from 43 lakes sampled by field crews from the New England states. The purpose of this research is to understand how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlate with changes in availability of cultural ecosystem services in the surveyed lakes. This dataset will be combined with information from the EPA National Lake Survey (2007), the EPA New England Lakes and Ponds Survey (2008) and the USGS SPARROW model to explore the association between lake condition and the provisioning of ecosystem

  16. Validation of Remotely Sensed Fire Detections Using Ground and Aircraft Reports

    NASA Astrophysics Data System (ADS)

    Ruminski, M. G.; Hanna, J.

    2008-12-01

    A daily fire analysis for North America is prepared by NOAA/NESDIS utilizing seven NOAA and NASA geostationary and polar orbiting satellites. The analysis incorporates automated fire detections into an analyst quality control procedure. Limited validation on the analysis has been performed to date. One effort utilized high resolution ASTER sensor data on the NASA Terra spacecraft and another used ground reports from Montana and Idaho. Owing to inherent limitations in both approaches further validation has been performed. The current study expands on the ground report method. Daily ground reports (authorizations) have been obtained from the Florida Division of Forestry. Additional data from Montana/Idaho has been obtained as well as a small set of ground reports from Washington state. Aircraft data was also obtained for agricultural burns in Manitoba. The use of these additional data sets has expanded the validation to include a greater variety of land types/uses as well as geographic locations that have varying geostationary sensor viewing angles. The results are consistent with the previous ground based validation that only included Montana/Idaho and indicate a probability of detection (POD) of 20-25%. This low POD is at least partly due to cloud cover obscuring reported fires during active burning and also due to the small size of many fires. The analyst quality controlled product for each data set had a higher POD than for the automated detections only. The nature of the data sets precludes the determination of commission errors. POD information combined with fire size estimates are important considerations for emission modeling. These results suggest that emission estimates based on remotely sensed fire detections may be too low.

  17. Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications

    USGS Publications Warehouse

    Hunt, E. Raymond; Daughtry, Craig S.T.; Mirsky, Steven B.; Hively, W. Dean

    2014-01-01

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare information obtained from two different pixel sizes, one about a meter (the size of a small vegetation plot) and one about a millimeter. Cereal rye (Secale cereale) was planted at the Beltsville Agricultural Research Center for a winter cover crop with fall and spring fertilizer applications, which produced differences in biomass and leaf chlorophyll content. UAS imagery was simulated by placing a Fuji IS-Pro UVIR digital camera at 3-m height looking nadir. An external UV-IR cut filter was used to acquire true-color images; an external red cut filter was used to obtain color-infrared-like images with bands at near-infrared, green, and blue wavelengths. Plot-scale Green Normalized Difference Vegetation Index was correlated with dry aboveground biomass ( ${mbi {r}} = 0.58$ ), whereas the Triangular Greenness Index (TGI) was not correlated with chlorophyll content. We used the SamplePoint program to select 100 pixels systematically; we visually identified the cover type and acquired the digital numbers. The number of rye pixels in each image was better correlated with biomass ( ${mbi {r}} = 0.73$ ), and the average TGI from only leaf pixels was negatively correlated with chlorophyll content ( ${mbi {r}} = -0.72$ ). Thus, better information for crop requirements may be obtained using very small pixel sizes, but new algorithms based on computer vision are needed for analysis. It may not be necessary to geospatially register large numbers of photographs with very small pixel sizes. Instead, images could be analyzed as single plots along field transects.

  18. Unmanned aircraft missions for rangeland remote sensing applications in the US National Airspace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  19. Coordinated aircraft and ship surveys for determining impact of river inputs on great lakes waters. Remote sensing results

    NASA Technical Reports Server (NTRS)

    Raquet, C. A.; Salzman, J. A.; Coney, T. A.; Svehla, R. A.; Shook, D. F.; Gedney, R. T.

    1980-01-01

    The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Michigan, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery.

  20. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  1. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  2. A study of extractive and remote-sensing sampling and measurement of emissions from military aircraft engines

    NASA Astrophysics Data System (ADS)

    Cheng, Meng-Dawn; Corporan, Edwin

    2010-12-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (PM) that plays an important role in air quality, human health, visibility, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for engine and fuel certification remains challenging, as no agency-certified method is available. In this paper we summarize the results of three recent field studies devoted to investigate the consistency and applicability of "extractive" and "optical remote-sensing" (ORS) technologies in the sampling and measurement of gaseous and PM emitted by a number of military aircraft engines. Three classes of military engines were investigated; these include T56, TF33, and T700 & T701C types of engines, which consume 70-80% of the military aviation fuel each year. JP-8 and Fischer-Tropsch (FT)-derived paraffinic fuels were used to study the effect of fuels. It was found that non-volatile particles in the engine emissions were in the 20 nm range for the low power condition of new helicopter engines to 80 nm for the high power condition of legacy engines. Elemental analysis indicated little metals were present on particles, while most of the materials on the exhaust particles were carbon and sulfate based. Alkanes, carbon monoxide, carbon dioxide, nitrogen oxides, sulfur dioxide, formaldehyde, ethylene, acetylene and propylene were detected. The last five species were most noticeable only under low engine power. The emission indices calculated based on the ORS data deviate significantly from those based on the extractive data. Nevertheless, the ORS techniques were useful in the sense that it provided non-intrusive real-time detection of species in the exhaust plume, which warrants further development. The results obtained in this program help validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR6037 (2009).

  3. Remote sensing solution using 3-D flash LADAR for automated control of aircraft

    NASA Astrophysics Data System (ADS)

    Neff, Brian J.; Fuka, Jennifer A.; Burwell, Alan C.; Gray, Stephen W.; Hubbard, Mason J.; Schenkel, Joseph W.

    2015-09-01

    The majority of image quality studies in the field of remote sensing have been performed on systems with conventional aperture functions. These systems have well-understood image quality tradeoffs, characterized by the General Image Quality Equation (GIQE). Advanced, next-generation imaging systems present challenges to both post-processing and image quality prediction. Examples include sparse apertures, synthetic apertures, coded apertures and phase elements. As a result of the non-conventional point spread functions of these systems, post-processing becomes a critical step in the imaging process and artifacts arise that are more complicated than simple edge overshoot. Previous research at the Rochester Institute of Technology's Digital Imaging and Remote Sensing Laboratory has resulted in a modeling methodology for sparse and segmented aperture systems, the validation of which will be the focus of this work. This methodology has predicted some unique post-processing artifacts that arise when a sparse aperture system with wavefront error is used over a large (panchromatic) spectral bandpass. Since these artifacts are unique to sparse aperture systems, they have not yet been observed in any real-world data. In this work, a laboratory setup and initial results for a model validation study will be described. Initial results will focus on the validation of spatial frequency response predictions and verification of post-processing artifacts. The goal of this study is to validate the artifact and spatial frequency response predictions of this model. This will allow model predictions to be used in image quality studies, such as aperture design optimization, and the signal-to-noise vs. post-processing artifact tradeoff resulting from choosing a panchromatic vs. multispectral system.

  4. Advanced laser remote sensing

    SciTech Connect

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  5. Remote Sensing of Aircraft Contrails Using a Field Portable Digital Array Scanned Interferometer

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden

    1997-01-01

    With a Digital Array Scanned Interferometer (DASI), we have obtained proof-of-concept observations with which we demonstrate DASI capabilities for the determination of contrail properties. These include the measurement of the cloud and soot microphysical parameters, as well, the abundances of specific pollutant species such as SO(sub x) or NO(sub x). From high quality hyperspectral data and using radiative transfer methods and atmospheric chemistry analysis in the data reduction and interpretation, powerful inferences concerning cloud formation, evolution and dissipation can be made. Under this sub-topic, we will integrate DASI with computer controlled scanning of the field-of-view to direct the sensor towards contrails and exhaust plumes for tracking the emitting vehicles. The optimum DASI wavelength sensitivity range for sensing contrails is 0.35 - 2.5 micron. DASI deploys on the ground or from aircraft to observe contrails in the vicinity. This enables rapid, accurate measurement of the temporal, spatial, and chemical evolution of contrails (or other plumes or exhaust sources) with a low cost, efficient sensor.

  6. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  7. Applications of remote sensing to watershed management

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  8. Remote sensing of environmental disturbance

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    Color, color infrared, and minus-blue films obtained by RB-57 remote sensing aircraft at an altitude of 60,000 feet over Boca Raton and Southeast Florida Earth Resources Test Site were analyzed for nine different types of photographic images of the geographic patterns of the surface. Results of these analyses are briefly described.

  9. Remote sensing for site characterization

    USGS Publications Warehouse

    Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.

    2000-01-01

    This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.

  10. A STUDY OF EXTRACTIVE AND REMOTE-SENSING SAMPLING AND MEASUREMENT OF EMISSIONS FROM MILITARY AIRCRAFT ENGINES

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.

    2010-01-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (e.g., black carbon and secondary organic compounds) that plays a role in air quality, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for to engine and fuel certification remains a daunting task, no agency-certified method is available for the task. In this paper we summarize the results of a recent study that was devoted to investigate both extractive and optical remote-sensing (ORS) technologies in sampling and measurement of gaseous and particulate matter (PM) emitted by a number of military aircraft engines operated with JP-8 and a Fischer-Tropsch (FT) fuel at various engine conditions. These engines include cargo, bomber, and helicopter types of military aircraft that consumes 70-80% of the military aviation fuel each year. The emission indices of selected pollutants are discussed as these data may be of interest for atmospheric modeling and for design of air quality control strategies around the airports and military bases. It was found that non-volatile particles in the engine emissions were all in the ultrafine range. The mean diameter of particles increased as the engine power increased; the mode diameters were in the 20nm range for the low power condition of a new helicopter engine to 80nm for the high power condition of a newly maintained bomber engine. Elemental analysis indicated little metals were present on particles in the exhaust, while most of the materials on the exhaust particles were based on carbon and sulfate. Carbon monoxide, carbon dioxide, nitrogen oxide, sulfur dioxide, formaldehyde, ethylene, acetylene, propylene, and alkanes were detected using both technologies. The last five species (in the air toxics category) were most noticeable only under the low engine power. The emission indices calculated based on the ORS data were however observed to differ significantly (up to

  11. An analysis of aircraft requirements to meet United States Department of Agriculture remote sensing goals

    NASA Technical Reports Server (NTRS)

    Arno, R. D.

    1977-01-01

    The survey needs of the U.S. Department of Agriculture are immense, ranging from individual crop coverage at specific intervals to general land use classification. The aggregate of all desirable resolutions and sensor types applicable to airborne platforms yields an annual survey coverage rate equivalent to about 6 times the U.S. land area. An intermediate annual survey level equal to the U.S. area can meet all currently perceived crop survey needs and provide sample imagery over many other resource areas. This decreased survey level can be accomplished with one or two high altitude aircraft or medium altitude aircraft. Survey costs range from about 25 cents to several dollars per square nautical mile depending primarily on resolution requirements and the aircraft used.

  12. An Analysis of Aircraft Requirements to Meet United States Department of Agriculture Remote Sensing Goals

    NASA Technical Reports Server (NTRS)

    Arno, R. D.

    1977-01-01

    The survey needs of the U.S. De pa rtment of Agriculture are immense, ranging from individual crop coverage at specific intervals to general land use classification. The aggregate of all desirable resolutions and sensor types applicable to airborne platforms yields an annual survey coverage rate eqivalent to about 6 times the U.S. land area. An intermediate annual survey level equal to the U. S. area can meet all currently perceived crop survey needs and provide sample imagery over many other resource areas. This decreased survey level can be accomplished with one or two high altitude aircraft (e.g., U-2 or WB-57) or medium altitude aircraft ( such as the Learjet or Jetstar). Survey costs range from about 25 cents to several dollars per square nautical mile depending primarily on resolution requirements and the aircraft used.

  13. Remote sensing of algal blooms by aircraft and satellite in Lake Erie and Utah Lake

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1974-01-01

    During late summer, when the surface waters of Lake Erie reach their maximum temperature, an algal bloom is likely to develop. Such phenomena, which characterize eutrophic conditions, have been noticed on other shallow lakes using the Earth Resources Technology Satellite (ERTS-1). The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS Multispectral Scanner Subsystem data of Lake Erie, an aircraft was used to obtain correlative thermal-IR and additional multiband photographs. A large bloom of Aphanizomenon flos-aquae observed in Utah Lake together with recent bloom history in Lake Erie is used to verify the Great Lakes bloom.

  14. Remote sensing of aircraft exhaust temperature and composition by passive Fourier Transform Infrared (FTIR)

    NASA Astrophysics Data System (ADS)

    Flores, Edgar; Schäfer, Klaus; Black, John; Harig, Roland; Jahn, Carsten

    2007-10-01

    The scanning infrared gas imaging system (SIGIS-HR) and the quantitative gas analysis software MAPS (Multicomponent Air Pollution Software) are applied to investigate the spatial distribution of the temperature and gas concentrations (CO, NO) within the plume of aircraft engines at airports. The system integrates an infrared camera also. It is used for the localisation of the hot source that additionally suggests the best measurement position of the SIGIS-HR. The application of emission FTIR spectrometry for the measurement of temperature and gas emission index of CO and NO is presented for the exhaust of a small turbojet based on a helicopter turbine. In these measurements the emitted infrared radiation from the exhaust gas stream was collected by the SIGIS-HR at different spectral resolution (56 cm -1 and 0.2 cm -1). The software MAPS includes the Instrumental Line Shape (ILS) of the OPAG- 22 FTIR spectrometer obtained by active gas cell measurements and ILS modelling. The rough concept of the system will be presented and operational applications will be discussed. The results of the investigation of the temperature and gas concentrations (CO, NO) within the aircraft engine plumes will be shown. The limitations and of the systems will be discussed.

  15. Correlation between aircraft MSS and LIDAR remotely sensed data on a forested wetland in South Carolina

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Hodgson, Michael E.; Mackey, Halkard E., Jr.; Krabill, William

    1987-01-01

    Wetlands in a portion of the Savannah River swamp forest, the Steel Creek Delta, were mapped using April 26, 1985 high-resolution aircraft multispectral scanner (MSS) data. Due to the complex spectral characteristics of the wetland vegetation, it was necessary to implement several techniques in the classification of the MSS imagery of the Steel Creek Delta. In particular, when performing unsupervised classification, an iterative cluster busting technique was used which simplified the cluster labeling process. In addition to the MSS data, light detecting and ranging (LIDAR) data were acquired by National Aeronautics and Space Administration (NASA) personnel along two flightlines over the Steel Creek Delta. These data were registered with the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly correlated with the Steel Creek Delta wetland classes encountered along the profiling transect of the LIDAR data.

  16. Remote sensing applications program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.

  17. Land Remote Sensing Overview

    NASA Technical Reports Server (NTRS)

    Byrnes, Ray

    2007-01-01

    A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.

  18. Spectral ratio imaging methods for geological remote sensing from aircraft and satellites

    NASA Technical Reports Server (NTRS)

    Vincent, R. K. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The production of ratio images from multispectral scanner data is described and several examples of ratio images from aircraft and ERTS-1 data are given for visible, reflective infrared, and thermal infrared wavelengths. The application of photogrammetric techniques to ratio images, defined for this paper as ratio scannergrammetry, is considerably aided by the lesser dependence of ratio images on atmospheric and solar illumination variations, compared with single channel scanner imagery or aerial photos. Ratio scannergrammetry is further aided by the proportionality between ratios of a target deduced from ratio images and ratios of reflectances calculated from laboratory spectra of samples from the target area. Consequently, ratios calculated from laboratory data can be used to predict which ratios are best for discriminating a given rock or mineral, to predict what other rocks or minerals will be confused with it, and finally, to place ratio scannergrammetry on an absolute basis, within an estimated standard error on the order of 5% to 10%. Examples of relative agreement between laboratory data and ratio images are given from two iron oxides, hematite and magnetite.

  19. Overview: Small Aircraft Transportation System Airborne Remote Sensing Fuel Droplet Evaporation

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Holmes, Bruce; Gogos, George; Narayanan, Ram; Smith, Russell; Woods, Sara

    2004-01-01

    , Codes, and Strategic Enterprises. During the first year of funding, Nebraska established open and frequent lines of communication with university affairs officers and other key personnel at all NASA Centers and Enterprises, and facilitated the development of collaborations between and among junior faculty in the state and NASA researchers. As a result, Nebraska initiated a major research cluster, the Small Aircraft Transportation System Nebraska Implementation Template.

  20. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  1. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator)

    1983-01-01

    Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.

  2. Remote Sensing Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The applications are reported of new remote sensing techniques for earth resources surveys and environmental monitoring. Applications discussed include: vegetation systems, environmental monitoring, and plant protection. Data processing systems are described.

  3. Remote Sensing Information Classification

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  4. Remote hydrogen sensing techniques

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1992-01-01

    The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.

  5. Remote Sensing Information Gateway

    EPA Pesticide Factsheets

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  6. APPLIED REMOTE SENSING

    EPA Science Inventory

    Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote se...

  7. Survey of remote sensing applications

    USGS Publications Warehouse

    Deutsch, Morris

    1974-01-01

    Data from the first earth resources technology satellite (ERTS) as well as from NASA and other aircraft, contain much of the information indicative of the distribution of groundwater and the extent of its utilization. Thermal infrared imagery from aircraft is particularly valuable in studying groundwater discharge to the sea and other surface water bodies. Color infrared photography from aircraft and space is also used to locate areas of potential groundwater development. Anomalies in vegetation, soils, moisture, and their pattern of distribution may be indicative of underlying groundwater conditions. Remote sensing may be used directly or indirectly to identify stream reaches for test holes or production wells. Similarly, location of submarine springs increase effectiveness of groundwater exploration in the coastal zone.

  8. Remote sensing of natural resources: Quarterly literature review

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.

  9. Use of change detection in assessing development plans - A Philippine example. [aircraft/Landsat remote sensing information system for regional planning

    NASA Technical Reports Server (NTRS)

    Coiner, J. C.; Bruce, R. C.

    1978-01-01

    An aircraft/Landsat change-detection study conducted 1948-1972 on Marinduque Province, Republic of the Philippines, is discussed, and a procedure using both remote sensing and information systems for collection, spatial analysis, and display of periodic data is described. Each of the 4,008 25-hectare cells representing Marinduque were observed, and changes in and between variables were measured and tested using nonparametric statistics to determine the effect of specific land cover changes. Procedures using Landsat data to obtain a more continuous updating of the data base are considered. The system permits storage and comparison of historical and current data.

  10. Application of remote sensing for planning purposes

    NASA Technical Reports Server (NTRS)

    Hughes, T. H. (Editor)

    1977-01-01

    Types of remotely sensed data are many and varied but, all are primarily dependent on the sensor platform and the kind of sensing system used. A sensor platform is the type of aircraft or satellite to which a sensing system is attached; each platform has its own inherent advantages and disadvantages. Selected attributes of several current or recently used platforms are outlined. Though sensing systems are highly varied, they may be divided into various operational categories such as cameras, electromechanical scanners, and radars.

  11. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  12. Geophysical aspects of remote sensing

    NASA Technical Reports Server (NTRS)

    Watson, K.

    1971-01-01

    Results obtained through the NASA Earth Resources Aircraft Program at Mill Creek, Oklahoma, provide a case history example of the application of remote sensing to the identification of geologic rock units. Thermal infrared images are interpreted by means of a sequence of models of increasing complexity. The roles of various parameters are examined: rock properties (thermal inertia, albedo, emissivity), site location (latitude), season (sun's declination), atmospheric effects (cloud cover, transmission, air temperature), and topographic orientation (slope, azimuth). The results obtained at this site also illustrate the development of an important application of remote sensing in geologic identification. Relatively pure limestones and dolomites of the Mill Creek test area can be differentiated in nighttime infrared images, and facies changes between them can be detected along and across strike. The predominance on the earth's surface of sedimentary rocks, of which limestone and dolomite are major members, indicates the importance of this discrimination.

  13. Remote measurement of pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Reichle, H. G., Jr.

    1976-01-01

    This paper discusses the problem of the remote measurement of tropospheric air pollution from aircraft platforms. Following a discussion of the energy sources available for passive remote sensing and the location of the absorption bands of the gases, it describes the spectral resolution that would be required and the relative merits of the shorter and longer infrared wavelengths. It then traces the evolution of one instrument concept (the gas filter correlation radiometer) to its present state, and describes flight results that show the technique to be capable of measuring carbon monoxide over water. A new instrument is described that will allow the measurements to be extended to areas over land.

  14. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  15. Surface energy balance estimates at local and regional scales using optical remote sensing from an aircraft platform and atmospheric data collected over semiarid rangelands

    USGS Publications Warehouse

    Kustas, W.P.; Moran, M.S.; Humes, K.S.; Stannard, D.I.; Pinter, P. J.; Hipps, L.E.; Swiatek, E.; Goodrich, D.C.

    1994-01-01

    Remotely sensed data in the visible, near-infrared, and thermal-infrared wave bands were collected from a low-flying aircraft during the Monsoon '90 field experiment. Monsoon '90 was a multidisciplinary experiment conducted in a semiarid watershed. It had as one of its objectives the quantification of hydrometeorological fluxes during the “monsoon” or wet season. The remote sensing observations along with micrometeprological and atmospheric boundary layer (ABL) data were used to compute the surface energy balance over a range of spatial scales. The procedure involved averaging multiple pixels along transects flown over the meteorological and flux (METFLUX) stations. Average values of the spectral reflectance and thermal-infrared temperatures were computed for pixels of order 10−1 to 101 km in length and were used with atmospheric data for evaluating net radiation (Rn), soil heat flux (G), and sensible (H) and latent (LE) heat fluxes at these same length scales. The model employs a single-layer resistance approach for estimating H that requires wind speed and air temperature in the ABL and a remotely sensed surface temperature. The values of Rn and G are estimated from remote sensing information together with near-surface observations of air temperature, relative humidity, and solar radiation. Finally, LE is solved as the residual term in the surface energy balance equation. Model calculations were compared to measurements from the METFLUX network for three days having different environmental conditions. Average percent differences for the three days between model and the METFLUX estimates of the local fluxes were about 5% for Rn, 20% for G and H, and 15% for LE. Larger differences occurred during partly cloudy conditions because of errors in interpreting the remote sensing data and the higher spatial and temporal variation in the energy fluxes. Minor variations in modeled energy fluxes were observed when the pixel size representing the remote sensing inputs

  16. Applied remote sensing

    SciTech Connect

    Lo, C.P.

    1986-01-01

    The author presents selected case studies to demonstrate theories and practices of remote sensing and its value to the study of the terrestrial environment. Begins with an overview of sensor types and electromagnetic remote sensing, continuing with an examination of photographic and non-photographic systems in the study of the radiation budget, temperature structure and weather conditions of the atmosphere. Includes thorough coverage of the lithosphere, biosphere and hydrosphere, as well as the cartographic problems involved in land use/land cover and topographic mapping. Concludes with a discussion of the impact of electromagnetic computers in the development of geographic information systems.

  17. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  18. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  19. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  20. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  1. EPA REMOTE SENSING RESEARCH

    EPA Science Inventory

    The 2006 transgenic corn imaging research campaign has been greatly assisted through a cooperative effort with several Illinois growers who provided planting area and crop composition. This research effort was designed to evaluate the effectiveness of remote sensed imagery of var...

  2. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  3. Remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1976-01-01

    The surface emissivity and reflectivity of soil are strong functions of its moisture content. Changes in emissivity, observed by passive microwave techniques (radiometry), and changes in reflectivity, observed by active microwave techniques (radar), can provide information on the moisture content of the 0 to 5 cm surface layer. In addition, the thermal inertia of the surface layer, which can be remotely sensed by observing the diurnal range of surface temperature, is an indicator of soil moisture content. The thermal infrared approach to remote sensing of soil moisture has little utility in the presence of cloud cover, but provides soil moisture data at high spatial resolutions and thermal data which are a potentially useful indicator of crop status. Microwave techniques can penetrate cloud covers. The passive technique has been demonstrated by both aircraft and spacecraft instruments, but spatial resolution is limited by the size of the antenna which can be flown. Active microwave systems offer the possibility of better spatial resolution, but have yet to be demonstrated from aircraft or spacecraft platforms.

  4. Remote Sensing and the Earth

    NASA Technical Reports Server (NTRS)

    Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.

    1977-01-01

    A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.

  5. THE EPA REMOTE SENSING ARCHIVE

    EPA Science Inventory

    What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...

  6. Indicators of international remote sensing activities

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1977-01-01

    The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.

  7. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  8. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2016-07-12

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  9. Remote Sensing Laboratory - RSL

    SciTech Connect

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  10. Airborne Hyperspectral Remote Sensing

    DTIC Science & Technology

    2016-06-07

    conducted studies of the sediments, seagrass and corals . The objective is to correlate the hyperspectral imagery with the detailed in-situ measurements...seagrass and coral reefs (Mazel, 1998). In addition to the basic science there is a directed effort in remote sensing for seafloor imaging and...area includes different bottom types – coral , sand, seagrass – sometimes within the same local area, at a variety of depths. Most of the region is quite

  11. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  12. Practical application of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Phelps, R. A.

    1975-01-01

    Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.

  13. Remote Sensing: A Film Review.

    ERIC Educational Resources Information Center

    Carter, David J.

    1986-01-01

    Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…

  14. Remote Sensing and the Earth.

    ERIC Educational Resources Information Center

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  15. Large scale, regional, CH4 and net CO2 fluxes using nested chamber, tower, aircraft flux, remote sensing, and modeling approaches in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Oechel, Walter; Moreaux, Virginie; Kalhori, Aram; Losacco, Salvatore; Murphy, Patrick; Wilkman, Eric; Zona, Donatella

    2014-05-01

    The topographic, environmental, biotic, and metabolic heterogeneity of terrestrial ecosystems and landscapes can be large even despite a seemingly homogeneous landscape. The error of estimating and simulating fluxes due to extant heterogeneity is commonly overlooked in regional and global estimates. We evaluate the pattern and controls on spatial heterogeneity on GHG fluxes over varying spatial scales and compare to standard estimates of NEE and other greenhouse gas fluxes. Data from the north slope of Alaska from up to a 16 year flux record from up to 7 permanent towers, over 20 portable tower locations, and hundreds of hours of aircraft fluxes, are used to evaluate the spatial variability of fluxes and to better estimate regional fluxes. Significant heterogeneity of fluxes is identified at varying scales from sub-meter scale to >100km. A careful consideration of the effect that heterogeneity causes when estimating ecosystem fluxes is critical to reliable regional and global estimates. The combination of tower, flux aircraft, remote sensing, and modeling can be used to provide reliable, accurate, regional assessments of CH4and CO2 fluxes or large areas of heterogeneous landscape.

  16. Evaluating NO2 Variability of In-Situ and Remote Sensing Observations from Aircraft and Ground Sites During DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Silverman, M. L.; Szykman, J.; Chen, G.; Crawford, J. H.; Janz, S. J.; Kowalewski, M. G.; Lamsal, L. N.; Long, R.; Beaver, M. R.

    2014-12-01

    Spatial variability of NO2 has largely been examined from satellite NO2 column measurements. Understanding this variability is important for emission controls, health impacts, and photochemistry. However, due the short lifetime of NO2, its variability is difficult to capture. Ground based monitors are extremely important to evaluate satellite column measurements and provide more detailed spatial information. Unfortunately, ground monitors are limited in number and geographically sparse. The DISCOVER-AQ campaign provides a unique dataset that allows for the assessment of spatial variability from aircraft in-situ measurements on the NASA P-3B, remote sensing measurements from the Airborne Compact Atmospheric Mapper (ACAM) on the NASA UC-12 and NASA B200, and ground site measurements over the same area. We use first order structure functions to provide an analysis of spatial gradients over a given distance seen by the P-3B in-situ instruments and ACAM. The spatial variability of these measurements are then compared to ground measurements across the flight domain. Column densities are also calculated from the DISCOVER-AQ vertical profiles to assess the variability of a column within the aircraft profile. Results show that spatial variability depends on the airmass being sampled, polluted versus background conditions.

  17. Energy and remote sensing applications

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  18. Remote sensing of coastal wetlands

    NASA Technical Reports Server (NTRS)

    Hardisky, M. A.; Klemas, V.; Gross, M. F.

    1986-01-01

    Various aircraft and satellite sensors for detecting and mapping wetlands properties are examined. The uses of color IR photography to map coastal vegetation, and of Landsat MSS and TM and SPOT data to quantify biomass and productivity for large wetland areas are discussed. For spectral estimation of biomass and productivity, the relation between radiance and biomass needs to be studied; the quantity and orientation of dead biomass and the amount of soil reflectance in comparison with vegetation reflectance in a given target area affect the spectral estimation of biomass. The radiometric evaluation of brackish wetland, and remote sensing in mangroves are described. The collection of images in narrow, contiguous spectral band using imaging spectrometry is considered.

  19. Remote Sensing and the Environment.

    ERIC Educational Resources Information Center

    Osmers, Karl

    1991-01-01

    Suggests using remote sensing technology to help students make sense of the natural world. Explains that satellite information allows observation of environmental changes over time. Identifies possible student projects based on remotely sensed data. Recommends obtaining the assistance of experts and seeking funding through effective project…

  20. Applications of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  1. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  2. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Whitmore, R. A., Jr. (Principal Investigator)

    1980-01-01

    A syllabus and training materials prepared and used in a series of one-day workshops to introduce modern remote sensing technology to selected groups of professional personnel in Vermont are described. Success in using computer compatible tapes, LANDSAT imagery and aerial photographs is reported for the following applications: (1) mapping defoliation of hardwood forests by tent caterpillar and gypsy moth; (2) differentiating conifer species; (3) mapping ground cover of major lake and pond watersheds; (4) inventorying and locating artificially regenerated conifer forest stands; (5) mapping water quality; (6) ascertaining the boat population to quantify recreational activity on lakes and waterways; and (7) identifying potential aquaculture sites.

  3. Physical fundamentals of remote sensing

    NASA Astrophysics Data System (ADS)

    Schanda, E.

    The physical principles describing the propagation of EM waves in the atmosphere and their interactions with matter are discussed as they apply to remote sensing, in an introductory text intended for graduate science students, environmental-science researchers, and remote-sensing practitioners. The emphasis is on basic effects rather than an specific remote-sensing techniques or observational results. Chapters are devoted to basic relations, the spectral lines of atmospheric gases, the spectral properties of condensed matter, and radiative transfer.

  4. Sense and Avoid Safety Analysis for Remotely Operated Unmanned Aircraft in the National Airspace System. Version 5

    NASA Technical Reports Server (NTRS)

    Carreno, Victor

    2006-01-01

    This document describes a method to demonstrate that a UAS, operating in the NAS, can avoid collisions with an equivalent level of safety compared to a manned aircraft. The method is based on the calculation of a collision probability for a UAS , the calculation of a collision probability for a base line manned aircraft, and the calculation of a risk ratio given by: Risk Ratio = P(collision_UAS)/P(collision_manned). A UAS will achieve an equivalent level of safety for collision risk if the Risk Ratio is less than or equal to one. Calculation of the probability of collision for UAS and manned aircraft is accomplished through event/fault trees.

  5. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  6. A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    José Granados-Muñoz, María; Bravo-Aranda, Juan Antonio; Baumgardner, Darrel; Guerrero-Rascado, Juan Luis; Pérez-Ramírez, Daniel; Navas-Guzmán, Francisco; Veselovskii, Igor; Lyamani, Hassan; Valenzuela, Antonio; José Olmo, Francisco; Titos, Gloria; Andrey, Javier; Chaikovsky, Anatoli; Dubovik, Oleg; Gil-Ojeda, Manuel; Alados-Arboledas, Lucas

    2016-03-01

    In this work we present an analysis of aerosol microphysical properties during a mineral dust event taking advantage of the combination of different state-of-the-art retrieval techniques applied to active and passive remote sensing measurements and the evaluation of some of those techniques using independent data acquired from in situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak at the Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on 27 June 2011. Column-integrated properties are provided by sun- and star-photometry, which allows for a continuous evaluation of the mineral dust optical properties during both day and nighttime. Both the linear estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during nighttime. LIRIC retrievals reveal the presence of dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 µm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in situ measurements. This study presents for the first time a comparison of the total volume concentration retrieved with LIRIC with independent in situ measurements, obtaining agreement within

  7. The use of aircraft and satellite remote sensing of phytoplankton chlorophyll concentrations in case 2 estuarine waters of the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.

    1989-01-01

    Two projects using remote sensing of phytoplankton chlorophyll concentrations in the Chesapeake Bay estuary were proposed. The first project used aircraft remote sensing with a compact radiometer system developed at NASA's Goddard Space Flight Center (GSFC), the Ocean Data Acquisition System (ODAS). ODAS includes three radiometers at 460, 490, and 520 nm, an infrared temperature sensor (PRT-5), Loran-C for navigation, and a data acquisition system using a PC and mass storage device. This instrument package can be flown in light aircraft at relatively low expense, permitting regular and frequent flights. Sixteen flights with ODAS were completed using the Virginia Institute of Marine Science's De Havilland 'Beaver'. The goal was to increase spatial and temporal resolution in assaying phytoplankton pigment concentrations in the Chesapeake. At present, analysis is underway of flight data collected between March and July 1989. The second project focused on satellite data gathered with the Nimbus-7 Coastal Zone Color Scanner (CZSC) between late 1978 and mid 1986. The problem in using CZSC data for the Chesapeake Bay is that the optical characteristics of this (and many) coastal and estuarine waters are distinct from those of the open ocean for which algorithms for computing pigment concentrations were developed. The successful use of CZCS data for the estuary requires development of site-specific algorithms and analytical approaches. Of principal importance in developing site-specific procedures is the availability of in-situ data on pigment concentrations. A significant data set was acquired from EPA's Chesapeake Bay Program in Annapolis, Maryland, and clear satellite scenes are being analyzed for which same-day sea truth measurements of pigment were obtained. Both the University of Miami and GSFC Seapak systems are being used in this effort. The main finding to date is an expected one, i.e., the algorithms developed for oceanic waters are inadequate to compute pigment

  8. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  9. A Remote-Sensing Mission

    ERIC Educational Resources Information Center

    Hotchkiss, Rose; Dickerson, Daniel

    2008-01-01

    Sponsored by NASA and the JASON Education Foundation, the remote Sensing Earth Science Teacher Education Program (RSESTeP) trains teachers to use state-of-the art remote-sensing technology with the idea that participants bring back what they learn and incorporate it into Earth science lessons using technology. The author's participation in the…

  10. Polarimetric Interferometry - Remote Sensing Applications

    DTIC Science & Technology

    2007-02-01

    This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it

  11. Remote sensing for cotton farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...

  12. THE REMOTE SENSING DATA GATEWAY

    EPA Science Inventory

    The EPA Remote Sensing Data Gateway (RSDG) is a pilot project in the National Exposure Research Laboratory (NERL) to develop a comprehensive data search, acquisition, delivery and archive mechanism for internal, national and international sources of remote sensing data for the co...

  13. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Yueh, Herng-Aung; Shin, Robert T.

    1991-01-01

    Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others.

  14. The availability of conventional forms of remotely sensed data

    USGS Publications Warehouse

    Sturdevant, James A.; Holm, Thomas M.

    1982-01-01

    For decades Federal and State agencies have been collecting aerial photographs of various film types and scales over parts of the United States. More recently, worldwide Earth resources data acquired by orbiting satellites have inundated the remote sensing community. Determining the types of remotely sensed data that are publicly available can be confusing to the land-resource manager, planner, and scientist. This paper is a summary of the more commonly used types of remotely sensed data (aircraft and satellite) and their public availability. Special emphasis is placed on the National High-Altitude Photography (NHAP) program and future remote-sensing satellites.

  15. Commerical Remote Sensing Data Contract

    USGS Publications Warehouse

    ,

    2005-01-01

    The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.

  16. Combining active and passive remote sensing from research aircraft with atmospheric models to evaluate NOx emission fluxes and O3 formation in the Los Angeles Megacity

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer

    2013-04-01

    Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.

  17. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  18. Teaching Geologic/Earth Science Remote Sensing at the Collegiate and the Secondary School Level

    ERIC Educational Resources Information Center

    Fisher, John J.

    1977-01-01

    Describes util satellite photography, satellite remote sensing, and high altitude aircraft photography for teaching environmental and ecological aspects of earth science at the secondary or college levels. (SL)

  19. Studies related to ocean dynamics. Task 3.2: Aircraft Field Test Program to investigate the ability of remote sensing methods to measure current/wind-wave interactions

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Flood, W. A.; Brown, G. S.

    1975-01-01

    The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.

  20. Remote sensing of thermal radiation from an aircraft - An analysis and evaluation of crop-freeze protection methods

    NASA Technical Reports Server (NTRS)

    Sutherland, R. A.; Hannah, H. E.; Cook, A. F.; Martsolf, J. D.

    1981-01-01

    Thermal images from an aircraft-mounted scanner are used to evaluate the effectiveness of crop-freeze protection devices. Data from flights made while using fuel oil heaters, a wind machine and an undercanopy irrigation system are compared. Results show that the overall protection provided by irrigation (at approximately 2 C) is comparable to the less energy-efficient heater-wind machine combination. Protection provided by the wind machine alone (at approximately 1 C) was found to decrease linearly with distance from the machine by approximately 1 C/100 m. The flights were made over a 1.5 hectare citrus grove at an altitude of 450 m with an 8-14 micron detector. General meteorological conditions during the experiments, conducted during the nighttime, were cold (at approximately -6 C) and calm with clear skies.

  1. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  2. Remote sensing at Savannah River

    SciTech Connect

    Corey, J.C.

    1986-01-01

    The paper discusses remote sensing systems used at the Savannah River Plant. They include three ground-based systems: ground penetrating radar, sniffers, and lasers; and four airborne systems: multispectral photography, lasers, thermal imaging, and radar systems. (ACR)

  3. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1992-01-01

    Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  4. Physical Principles of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rees, W. G.

    2001-09-01

    Substantially revised and expanded, this new edition includes a discussion of the radiative transfer equation, atmospheric sounding techniques and interferometric radar, an expanded list of problems (with solutions), and a discussion of the Global Positioning System (GPS). This book forms the basis of an introductory course in remote sensing. The main readership will be students and researchers in remote sensing, geography, cartography, surveying, meteorology, earth sciences and environmental sciences generally, as well as physicists, mathematicians and engineers.

  5. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Johnson, J. D.; Foster, K. E.

    1977-01-01

    Descriptions of projects engaged by the Applied Remote Sensors Program in the state of Arizona are contained in an annual report for the fiscal year 1976-1977. Remote sensing techniques included thermal infrared imagery in analog and digital form and conversion of data into thermograms. Delineation of geologic areas, surveys of vegetation and inventory of resources were also presented.

  6. The NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.

    2005-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.

  7. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  8. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  9. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  10. Remote Sensing of Environmental Pollution

    NASA Technical Reports Server (NTRS)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  11. Photogrammetry - Remote Sensing and Geoinformation

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  12. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  13. Remote sensing for urban planning

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan

    1994-01-01

    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.

  14. Remote sensing aids geologic mapping

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1972-01-01

    Remote sensing techniques were applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area.

  15. Agricultural applications of remote sensing: A true life adventure

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.

    1975-01-01

    A study of agricultural applications of remote sensing with a major US agricultural firm was undertaken in mid-1973. The study continued for eighteen months, and covered the areas of crop monitoring and management as well as large scale crop inventories. Pilot programs in the application of aircraft remote sensing and LANDSAT data were conducted. An operational aircraft survey program for ranch management has subsequently been implemented by the agricultural firm. LANDSAT data was successfully used to produce a ninety-seven percent accurate inventory of cotton over 4.8 million acres of California's San Joaquin Valley.

  16. Remote sensing procurement package: Remote Sensing Industry Directory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A directory of over 140 firms and organizations which contains detailed information in the types of products, services and equipment which they offer is presented. Also included for each firm or organization are addresses, phone numbers, contact person(s), and experience in the remote sensing field.

  17. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Liang, T.

    1973-01-01

    Research projects concerning the development and application of remote sensors are discussed. Some of the research projects conducted are as follows: (1) aerial photographic inventory of natural resources, (2) detection of buried river channels, (3) delineation of interconnected waterways, (4) plant indicators of atmospheric pollution, and (5) techniques for data transfer from photographs to base maps. On-going projects involving earth resources analyses are described.

  18. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  19. Remote Sensing of Water Pollution

    NASA Technical Reports Server (NTRS)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  20. Remote sensing of Italian volcanos

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Casacchia, R.; Coradini, A.; Duncan, A. M.; Guest, J. E.; Kahle, A.; Lanciano, P.; Pieri, D. C.; Poscolieri, M.

    1990-01-01

    The results of a July 1986 remote sensing campaign of Italian volcanoes are reviewed. The equipment and techniques used to acquire the data are described and the results obtained for Campi Flegrei and Mount Etna are reviewed and evaluated for their usefulness for the study of active and recently active volcanoes.

  1. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  2. Remote Sensing in Environmental Education.

    ERIC Educational Resources Information Center

    Huber, Thomas P.

    1983-01-01

    Describes general concepts of remote sensing and provides three examples of how its techniques have been used in the context of environmental issues. Examples focus on the use of this data gathering technique in the visible (aerial photography), near infrared, and thermal infrared ranges. (JN)

  3. Remote sensing and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing need for global food production in the presence of dwindling productive acres, the business of modern agriculture needs to use all possible information available to maximize production. One tool that is being used to obtain this information is remote sensing. Any crop disease o...

  4. Payload Technologies for Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steve

    2000-01-01

    Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.

  5. Payload Technologies For Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Condon, Estelle (Technical Monitor)

    2001-01-01

    Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.

  6. Mississippi Sound remote sensing study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.; Thomann, G. C.

    1972-01-01

    Remote sensing techniques are being developed to study near shore marine waters in the Mississippi Sound. Specific elements of the investigation include: (1) evaluation of existing techniques and instrument capabilities for remote measurement of parameters which characterize near shore water; (2) integration of these parameters into a system which will make possible the definition of circulation characteristics; (3) conduct of applications experiments; and (4) definition of hardware development requirements and/or system specifications. Efforts have emphasized: (1) development of a satisfactory system of gathering ground truth over the entire area of Mississippi Sound to aid in evaluating remotely sensed data; (2) conduct of two data acquisition experiments; (3) analysis of individual sensor data from completed flights; and (4) pursuit of methods which will allow interrelations between data from individual sensors in order to add another dimension to the study.

  7. Operational Use of Remote Sensing within USDA

    NASA Technical Reports Server (NTRS)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  8. Microwave remote sensing of snowpack properties

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1980-01-01

    Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.

  9. Remote sensing data handbook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A digest of information on remote sensor data systems is given. It includes characteristics of spaceborne sensors and the supportive systems immediately associated therewith. It also includes end-to-end systems information that will assist the user in appraising total data system impact produced by a sensor. The objective is to provide a tool for anticipating the complexity of systems and potential data system problems as new user needs are generated. Materials in this handbook span sensor systems from the present to those planned for use in the 1990's. Sensor systems on all planned missions are presented in digest form, condensed from data as available at the time of compilation. Projections are made of anticipated systems.

  10. Quarterly literature review of the remote sensing of natural resources

    NASA Technical Reports Server (NTRS)

    Fears, C. B. (Editor); Inglis, M. H. (Editor)

    1977-01-01

    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports.

  11. Remote-Sensing Practice and Potential

    DTIC Science & Technology

    1974-05-01

    Six essential processes that must be accomplished if use of a remote - sensing system is to result in useful information are defined as problem...to be useful in remote - sensing projects are described. An overview of the current state-of-the-art of remote sensing is presented.

  12. Remote sensing for agriculture, ecosystems, and hydrology

    SciTech Connect

    Engman, E.T.

    1998-12-31

    This volume contains the proceedings of SPIE`s remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires.

  13. The use of remote sensing in mosquito control

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The technology of remote sensing, developed by the space program for identification of surface features from the vantage point of an aircraft or satellite, has substantial application in precisely locating mosquito breeding grounds. Preliminary results of the NASA technology working cooperatively with a city government agency in solving this problem are discussed.

  14. UAS remote sensing for precision agriculture: An independent assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. However, research is required to determine which sensors and data processing methods are required to use sUAS in an efficient and cost-effective manner. Oregon State U...

  15. Solar powered multipurpose remotely powered aircraft

    NASA Technical Reports Server (NTRS)

    Alexandrou, A. N.; Durgin, W. W.; Cohn, R. F.; Olinger, D. J.; Cody, Charlotte K.; Chan, Agnes; Cheung, Kwok-Hung; Conley, Kristin; Crivelli, Paul M.; Javorski, Christian T.

    1992-01-01

    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as an attractive alternative source of power. The focus was to design and construct a solar powered, remotely piloted vehicle to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design included minimizing the power requirements and maximizing the strength-to-weight and lift-to-drag ratios. Given the design constraints, Surya (the code-name given to the aircraft), is a lightweight aircraft primarily built using composite materials and capable of achieving level flight powered entirely by solar energy.

  16. Literature review of the remote sensing of natural resources. [bibliography

    NASA Technical Reports Server (NTRS)

    Fears, C. B. (Editor); Inglis, M. H. (Editor)

    1977-01-01

    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided.

  17. Remote Sensing of Aquatic Plants.

    DTIC Science & Technology

    1979-10-01

    remote sensing methods for identification and assessment of expanses of aquatic plants. Both materials and techniques are examined for cost effectiveness and capability to sense aquatic plants on both the local and regional scales. Computer simulation of photographic responses was employed; Landsat, high-altitude photography, side-looking airborne radar, and low-altitude photography were examined to determine the capabilities of each for identifying and assessing aquatic plants. Results of the study revealed Landsat to be the most cost effective for regional surveys,

  18. Remote sensing of foliar chemistry

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.

    1989-01-01

    Remotely sensed data are being used to estimate foliar chemical content. This paper reviews how stepwise multiple regression and deconvolution have been used to extract chemical information from foliar spectra, and concludes that both methods are useful, but neither is ideal. It is recommended that the focus of research be modeling in the long term and experimentation in the short term. Long-term research should increase our understanding of the interaction between radiation and foliar chemistry so that the focus of research can move from leaf model to canopy model to field experiment. Short-term research should aim to design experiments in which remotely sensed data are used to generate unambiguous and accurate estimates of foliar chemical content.

  19. Technology Trends and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The science and application of remote sensing is flourishing in the digital age. Geographical information systems can provide a broad range of information tailored to the specific needs of disaster managers. Recent advances in airborne platforms, sensors and information technologies have come together provide the ability to put geo-registered, multispectral imagery on the web in near real-time. Highlights of a demonstration of NASA's First Response Experiment (FiRE) will be presented.

  20. Remote Sensing Information Science Research

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  1. Satellite remote sensing. An introduction

    SciTech Connect

    Harris, R.

    1987-01-01

    Satellite remote sensing, which is the monitoring, evaluation and prediction of the resources and features of the Earth's surface and its atmosphere from satellites, is an exciting, fast-growing technique used by environmental scientists to improve their knowledge of our planet. The non-military and non-communications satellites launched by the US, USSR, and the European Community produce digital images of the Earth's surface and its atmosphere. These images are used to search for undiscovered mineral resources, to conduct population, land use and resource censuses, to control pests and pollution, to illustrate weather movements on television and much more. This introductory book examines the physical basis of remote sensing-the sensors and satellites used to collect data, and the methods used to process these data as well as the application of satellite remote sensing in the study of vegetation, land use, geology, soils, the atmosphere and the hydrosphere. The last chapter looks at the future: space stations, international coordination, etc.

  2. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Yueh, Herng-Aung; Han, Hsiu C.; Lim, Harold H.; Arnold, David V.

    1990-01-01

    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images.

  3. An overview of GNSS remote sensing

    NASA Astrophysics Data System (ADS)

    Yu, Kegen; Rizos, Chris; Burrage, Derek; Dempster, Andrew G.; Zhang, Kefei; Markgraf, Markus

    2014-12-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.

  4. Remote Sensing of Volcanic ASH at the Met Office

    NASA Astrophysics Data System (ADS)

    Marenco, F.; Kent, J.; Adam, M.; Buxmann, J.; Francis, P.; Haywood, J.

    2016-06-01

    The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM) research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA), has been set up to enable a rapid response, and a network of ground-based remote sensing sites with lidars and sunphotometers is currently being developed. Thanks to these efforts, the United Kingdom (UK) will be much better equipped to deal with such a crisis, should it happen in the future.

  5. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote

  6. Remote sensing for land management and planning

    NASA Astrophysics Data System (ADS)

    Woodcock, Curtis E.; Strahler, Alan H.; Franklin, Janet

    1983-05-01

    The primary role of remote sensing in land management and planning has been to provide information concerning the physical characteristics of the land which influence the management of individual land parcels or the allocation of lands to various uses These physical characteristics have typically been assessed through aerial photography, which is used to develop resource maps and to monitor changing environmental conditions These uses are well developed and currently well integrated into the planning infrastructure at local, state, and federal levels in the United States. Many newly emerging uses of remote sensing involve digital images which are collected, stored, and processed automatically by electromechanical scanning devices and electronic computers Some scanning devices operate from aircraft or spacecraft to scan ground scenes directly; others scan conventional aerial transparencies to yield digital images. Digital imagery offers the potential for computer-based automated map production, a process that can significantly increase the amount and timeliness of information available to land managers and planners. Future uses of remote sensing in land planning and management will involve geographic information systems, which store resource information in a geocoded format. Geographic information systems allow the automated integration of disparate types of resource data through various types of spatial models so that with accompanying sample ground data, information in the form of thematic maps and/ or aerially aggregated statistics can be produced Key issues confronting the development and integration of geographic information systems into planning pathways are restoration and rectification of digital images, automated techniques for combining both quantitative and qualitative types of data in information-extracting procedures, and the compatibility of alternative data storage modes

  7. NASA Icing Remote Sensing System Comparisons From AIRS II

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.

    2005-01-01

    NASA has an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Individual remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Comparisons between the remote sensing system s fused icing product and in-situ measurements from the research aircraft are reviewed here. While there are areas where improvement can be made, the cases examined indicate that the fused sensor remote sensing technique appears to be a valid approach.

  8. Remote sensing of some sedimentary rocks.

    NASA Technical Reports Server (NTRS)

    Brennan, P. A.; Lintz, J., Jr.

    1971-01-01

    Sedimentary rocks including varying sized clastics and carbonates were overflown by aircraft between 1966 and 1971 producing data in the ultraviolet to microwave regions of the electromagnetic spectrum. This paper reports that multispectral analysis increases the ease and rapidity of discrimination of rock types having subtle differences in physical characteristics, but fails to enhance and may degrade distinctions where physical characteristics are significantly different. Brief resumes of color and color IR photographic data are presented. Thermal infrared is found to be useful in the mapping of rock units, but limitations such as moisture variation, soil cover, and vegetation may exceed in one formation the distinction between differing lithologies. A brief review of previously published SLAR data is included for completeness. Remote sensing techniques should reduce field geological effort by as much as 50%.

  9. Remote sensing with laser spectrum radar

    NASA Astrophysics Data System (ADS)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  10. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  11. Progress in remote sensing (1972-1976)

    USGS Publications Warehouse

    Fischer, W. A.; Hemphill, W.R.; Kover, Allan

    1976-01-01

    This report concerns the progress in remote sensing during the period 1972–1976. Remote sensing has been variously defined but is basically the art or science of telling something about an object without touching it. During the past four years, the major research thrusts have been in three areas: (1) computer-assisted enhancement and interpretation systems; (2) earth science applications of Landsat data; (3) and investigations of the usefulness of observations of luminescence, thermal infrared, and microwave energies. Based on the data sales at the EROS Data Center, the largest users of the Landsat data are industrial companies, followed by government agencies (both national and foreign), and academic institutions. Thermal surveys from aircraft have become largely operational, however, significant research is being undertaken in the field of thermal modeling and analysis of high altitude images. Microwave research is increasing rapidly and programs are being developed for satellite observations. Microwave research is concentrating on oil spill detection, soil moisture measurement, and observations of ice distributions. Luminescence investigations offer promise for becoming a quantitative method of assessing vegetation stress and pollutant concentrations.

  12. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  13. Passive Remote Sensing of Cloud Ice Particles

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Wang, James R.

    2004-01-01

    Hurricanes, blizzards and other weather events are important to understand not only for disaster preparation, but also to track the global energy balance and to improve weather and climate forecasts. For several decades, passive radiometers and active radars on aircraft and satellites have been employed to remotely sense rain rates and the properties of liquid particles. In the past few years the relationships between frozen particles and millimeter-wave observations have become understood well enough to estimate the properties of ice in clouds. A brief background of passive remote sensing of precipitation will be presented followed by a focused discussion of recent research at NASA Goddard Space Flight Center estimating the properties of frozen particles in clouds. The retrievals are for (1) ice that will eventually melt into rain, (2) for solid precipitation falling in northern climates, and (3) cirrus ice clouds. The electromagnetic absorption and scattering properties and differences of liquid rain versus frozen particles will be summarized for frequencies from 6 to 340+ GHz. Challenges of this work including surface emissivity variability, non-linear and under-constrained relationships, and frozen particle unknowns will be discussed. Retrieved cloud particle contents and size distributions for ice above the melting layer in hurricanes, retrieved snowfall rates for a blizzard, and cirrus ice estimates will be presented. Future directions of this work will also be described.

  14. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  15. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  16. The global troposphere - Biogeochemical cycles, chemistry, and remote sensing

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Allario, F.

    1982-01-01

    The chemical composition of the troposphere is controlled by various biogeochemical cycles that couple the atmosphere with the oceans, the solid earth and the biosphere, and by atmospheric photochemical/chemical reactions. These cycles and reactions are discussed and a number of key questions concerning tropospheric composition and chemistry for the carbon, nitrogen, oxygen and sulfur species are identified. Next, various remote sensing techniques and instruments capable of measuring and monitoring tropospheric species from the ground, aircraft and space to address some of these key questions are reviewed. Future thrusts in remote sensing of the troposphere are also considered.

  17. Remote Sensing Wind and Wind Shear System.

    DTIC Science & Technology

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  18. Airborne Remote Sensing for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, Andrew

    2013-01-01

    Topics covered include: Passive Remote Sensing Methods, Imaging Spectroscopy Approach, Remote Measurement via Spectral Fitting, Imaging Spectroscopy Mapping Wetland Dominants 2010 LA (AVIRIS), Deepwater Horizon Response I, Deepwater Horizon Response II, AVIRIS Ocean Color Studies.

  19. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Yueh, Herng-Aung; Kong, Jin AU

    1991-01-01

    In remote sensing, the encountered geophysical media such as agricultural canopy, forest, snow, or ice are inhomogeneous and contain scatters in a random manner. Furthermore, weather conditions such as fog, mist, or snow cover can intervene the electromagnetic observation of the remotely sensed media. In the modelling of such media accounting for the weather effects, a multi-layer random medium model has been developed. The scattering effects of the random media are described by three-dimensional correlation functions with variances and correlation lengths corresponding to the fluctuation strengths and the physical geometry of the inhomogeneities, respectively. With proper consideration of the dyadic Green's function and its singularities, the strong fluctuation theory is used to calculate the effective permittivities which account for the modification of the wave speed and attenuation in the presence of the scatters. The distorted Born approximation is then applied to obtain the correlations of the scattered fields. From the correlation of the scattered field, calculated is the complete set of scattering coefficients for polarimetric radar observation or brightness temperature in passive radiometer applications. In the remote sensing of terrestrial ecosystems, the development of microwave remote sensing technology and the potential of SAR to measure vegetation structure and biomass have increased effort to conduct experimental and theoretical researches on the interactions between microwave and vegetation canopies. The overall objective is to develop inversion algorithms to retrieve biophysical parameters from radar data. In this perspective, theoretical models and experimental data are methodically interconnected in the following manner: Due to the complexity of the interactions involved, all theoretical models have limited domains of validity; the proposed solution is to use theoretical models, which is validated by experiments, to establish the region in which

  20. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  1. Fully Engaging Students in the Remote Sensing Process through Field Experience

    ERIC Educational Resources Information Center

    Rundquist, Bradley C.; Vandeberg, Gregory S.

    2013-01-01

    Field data collection is often crucial to the success of investigations based upon remotely sensed data. Students of environmental remote sensing typically learn about the discipline through classroom lectures, a textbook, and computer laboratory sessions focused on the interpretation and processing of aircraft and satellite data. The importance…

  2. The Use of Commercial Remote Sensing Systems in Predicting Helicopter Brownout Conditions

    DTIC Science & Technology

    2009-09-01

    REMOTE SENSING IN PREDICTING HELICOPTER BROWNOUT CONDITIONS by Christine Kay Rabaja September 2009 Thesis Advisor: Richard C. Olsen...Master’s Thesis 4. TITLE AND SUBTITLE The Use of Commercial Remote Sensing Systems in Predicting Helicopter Brownout Conditions 6. AUTHOR...soils susceptible to helicopter brownout . Helicopter brownout occurs when downwash disturbs the dust and sand beneath the aircraft during takeoff

  3. Basic Remote Sensing Investigations for Beach Reconnaissance.

    DTIC Science & Technology

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  4. LWIR Microgrid Polarimeter for Remote Sensing Studies

    DTIC Science & Technology

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  5. Ocean Optical Remote Sensing Capability Statement.

    DTIC Science & Technology

    1984-03-01

    illustrated in relation toIother oceanographic parameters. > reevavy programs which have supported the Remote Sensing Branch’s developments in water ...optics are described. The Navy relevance of water optics to these programs is indicated.’ "I 1 ’ ( ;j "IJl: ,t n ! /H i.i OCEAN OPTICAL REMOTE SENSING...Development Activity (NORDA) Remote Sensing Branch (Code 321) has been conducting investigative programs in water optics since 1977. The major thrust of

  6. Advanced and applied remote sensing of environmental conditions

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    "Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.

  7. Sea surface and remotely sensed temperatures off Cape Mendocino, California

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.

    1985-01-01

    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.

  8. Analysis of remote sensing data

    NASA Astrophysics Data System (ADS)

    Guiness, E. A.; Sultan, M.; Arvidson, R. E.

    1985-08-01

    A brief assessment of remote sensing applied to geological studies is given. An analysis of thematic mapping data on oak-hickory forests in southern Missouri is discussed. It was found that there is a control on the infrared reflectance (bands 4, 5, and 7 of the Thematic Mapper (TM) of the forests that correlates with rock and soil types. During the growing season, soils with low water retention capacities correlate with high infrared (band 4, lesser with band 5 and 7) signatures. A metamorphic core complex called the Meatiq located in the Eastern Desert of Egypt was studied. The dome provides exposure of most of the rock units of the Arabian-Nubian Precambrian Shield. The dome bears many resemblances to Cordilleran metamorphic complexes. LANDSAT TM data was used to improve on reconnaissance maps of the dome. The remote sensing data was interpreted in the context of field observations, petrographic, and chemical analysis of rock units in the dome, in order to map similar domes in the Eastern Desert from TM data. Mapping projects such as the one just described will help constrain the geologic evolution of the Arabian-Nubian Shield. Two particular hypotheses that researchers hope to test for the development of the shield are: (1) closure of a proto-Red Sea; and (2) accretion of a primitive island arc system onto the shield.

  9. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  10. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.; Newhouse, M. E.

    1974-01-01

    Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.

  11. Instrumentation for optical ocean remote sensing

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1991-01-01

    Instruments used in ocean color remote sensing algorithm development, validation, and data acquisition which have the potential for further commercial development and marketing are discussed. The Ocean Data Acquisition System (ODAS) is an aircraft-borne radiometer system suitable for light aircraft, which has applications for rapid measurement of chlorophyll pigment concentrations along the flight line. The instrument package includes a three channel radiometer system for upwelling radiance, an infrared temperature sensor, a three-channel downwelling irradiance sensor, and Loran-C navigation. Data are stored on a PC and processed to transects or interpolated 'images' on the ground. The instrument has been in operational use for two and one half years. The accuracy of pigment concentrations from the instrument is quite good, even in complex Chesapeake Bay waters. To help meet the requirement for validation of future satellite missions, a prototype air-deployable drifting buoy for measurement of near-surface upwelled radiance in multiple channnels is undergoing test deployment. The optical drifter burst samples radiance, stores and processes the data, and uses the Argos system as a data link. Studies are underway to explore the limits to useful lifetime with respect to power and fouling.

  12. Airborne remote sensing combating marine pollution in the United Kingdom

    SciTech Connect

    Goodman, C.; Small, J.; Mason, D.

    1996-10-01

    The Marine Pollution Control Unit (MPCU) is a small command, control and rapid response Organization set up to exercise the responsibility accepted by the United Kingdom Government for counter pollution operations at sea when spilled oil (or other dangerous substances) from ships threatens major pollution of the UK coast. Resources used by WCU to respond to pollution incidents include two surveillance aircraft fitted with side-looking radar (SLAR), and infrared (IR) and ultra-violet (UV) Remote Sensing equipment. The paper will describe the use of Airborne Remote Sensing in an operational role and demonstrate how the United Kingdom Government responds to pollution incidents. The paper will also explain how Airborne Remote Sensing is used to patrol the waters surrounding the United Kingdom. Reference will be made to coordinated flights carried out under the Bonn Agreement, a non-mandatory support Organization involving all states bordering the North Sea, and the EU. 2 refs.

  13. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  14. Human Factors of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan Neville

    2014-01-01

    The civilian use of remotely piloted, or unmanned aircraft is expected to increase rapidly in the years ahead. Despite being referred to as unmanned some of the major challenges confronting this emerging sector relate to human factors. As unmanned aircraft systems (UAS) are introduced into civil airspace, a failure to adequately consider human factors could result in preventable accidents that may not only result in loss of life, but may also undermine public confidence in remotely piloted operations. Key issues include pilot situational awareness, collision avoidance in the absence of an out-the-window view, the effects of time delays in communication and control systems, control handovers, the challenges of very long duration flights, and the design of the control station. Problems have included poor physical layout of controls, non-intuitive automation interfaces, an over-reliance on text displays, and complicated sequences of menu selection to perform routine tasks. Some of the interface problems may have been prevented had an existing regulation or cockpit design principle been applied. In other cases, the design problems may indicate a lack of suitable guidance material.

  15. Review of oil spill remote sensing

    SciTech Connect

    Fingas, M.F.; Brown, C.E.

    1996-12-31

    Remote-sensors for application to oil spills are reviewed. The capability of sensors to detect oil and to discriminate oil from background targets is the most important assessment criterion. A common sensor is an infrared camera or an IR/UV system. This sensor class can detect oil under a variety of conditions, discriminate oil from some backgrounds and has the lowest cost of any sensor. The inherent weaknesses include the inability to discriminate oil on beaches, among weeds or debris and under certain lighting conditions oil is not detected. The laser fluorosensor is recommended because of its unique capability to identify oil on most backgrounds. Radar, although low in priority for purchase, offers the only potential for large area searches and foul weather remote sensing. Radar is costly and requires a dedicated aircraft. Radar is prone to many interferences. Equipment operating in the visible spectrum, such as a camera or scanner, is useful for documentation or providing a basis for the overlay of other data. It is not useful beyond this, because oil shows no spectral characteristics in the visible region.

  16. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  17. NASA remote sensing programs: Overview

    NASA Technical Reports Server (NTRS)

    Raney, W. P.

    1981-01-01

    In the Earth remote sensing area, NASA's three functions are to understand the basic mechanics and behavior of the Earth, evaluate what resources are available (in the way of minerals, and hydrocarbons on a general scale), and to arrange a scheme for managing our national assets. The capabilities offered by LANDSAT D and technology improvements needed are discussed. The French SPOT system, its orbits, possibilities for stereo imagery, and levels of preprocessing and processing with several degrees of radiometric and geometric corrections are examined. Progress in the AgRISTARS project is mentioned as well as future R & D programs in the use of fluorescence, microwave measurements, and synthetic aperture radar. Other areas of endeaver include studying man environment interactions and Earth radiation budgets, and the establishment of data systems programs.

  18. Geological remote sensing in Africa

    NASA Technical Reports Server (NTRS)

    Sabins, Floyd F., Jr.; Bailey, G. Bryan; Abrams, Michael J.

    1987-01-01

    Programs using remote sensing to obtain geologic information in Africa are reviewed. Studies include the use of Landsat MSS data to evaluate petroleum resources in sedimentary rock terrains in Kenya and Sudan and the use of Landsat TM 30-m resolution data to search for mineral deposits in an ophiolite complex in Oman. Digitally enhanced multispectral SPOT data at a scale of 1:62,000 were used to map folds, faults, diapirs, bedding attitudes, and stratigraphic units in the Atlas Mountains in northern Algeria. In another study, SIR-A data over a vegetated and faulted area of Sierra Leone were compared with data collected by the Landsat MSS and TM systems. It was found that the lineaments on the SIR-A data were more easily detected.

  19. Mojave remote sensing field experiment

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Petroy, S. B.; Plaut, J. J.; Shepard, Michael K.; Evans, D.; Farr, T.; Greeley, Ronald; Gaddis, L.; Lancaster, N.

    1991-01-01

    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars.

  20. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  1. Remote sensing in West Virginia

    NASA Technical Reports Server (NTRS)

    Lessing, P.

    1981-01-01

    Low altitude black and white aerial photography is the prinicipal remote sensing tool for geologic investigations in West Virginia, although side looking radar and color infrared photography are also used. The first land use/cover map for the state was produced in color infrared and is being digitized. Linear features in Cabell and Wayne Counties, as revealed by LANDSAT, were evaluated to test the possible correlations with rock fractures and gas production from shales. A LANDSAT linear features map (1:250,000) was prepared for the entire state, also. Presently investigations are being made to understand karst and to predict areas that should not be used for development. Aerial photography and field mapping is being conducted to detect the location and causes of landslides.

  2. Remote sensing of the biosphere

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  3. Lunar remote sensing and measurements

    USGS Publications Warehouse

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  4. Western Regional Remote Sensing Conference Proceedings, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Diverse applications of LANDSAT data, problem solutions, and operational goals are described by remote sensing users from 14 western states. The proposed FY82 federal budget reductions for technology transfer activities and the planned transition of the operational remote sensing system to NOAA's supervision are also considered.

  5. Remote sensing and reflectance profiling in entomology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...

  6. Sandia multispectral analyst remote sensing toolkit (SMART).

    SciTech Connect

    Post, Brian Nelson; Smith, Jody Lynn; Geib, Peter L.; Nandy, Prabal; Wang, Nancy Nairong

    2003-03-01

    This remote sensing science and exploitation work focused on exploitation algorithms and methods targeted at the analyst. SMART is a 'plug-in' to commercial remote sensing software that provides algorithms to enhance the utility of the Multispectral Thermal Imager (MTI) and other multispectral satellite data. This toolkit has been licensed to 22 government organizations.

  7. Conference of Remote Sensing Educators (CORSE-78)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Ways of improving the teaching of remote sensing students at colleges and universities are discussed. Formal papers and workshops on various Earth resources disciplines, image interpretation, and data processing concepts are presented. An inventory of existing remote sensing and related subject courses being given in western regional universities is included.

  8. What does remote sensing do for ecology?

    NASA Technical Reports Server (NTRS)

    Roughgarden, J.; Running, S. W.; Matson, P. A.

    1991-01-01

    The application of remote sensing to ecological investigations is briefly discussed. Emphasis is given to the recruitment problem in marine population dynamics, the regional analysis of terrestrial ecosystems, and the monitoring of ecological changes. Impediments to the use of remote sensing data in ecology are addressed.

  9. Planning and Implementation of Remote Sensing Experiments.

    DTIC Science & Technology

    Contents: TEKTITE II experiment-upwelling detection (NASA Mx 138); Design of oceanographic experiments (Gulf of Mexico, Mx 159); Design of oceanographic experiments (Gulf of Mexico, Mx 165); Experiments on thermal pollution; Remote sensing newsletter; Symposium on remote sensing in marine biology and fishery resources.

  10. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1985-01-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of August 1, 1984...active and passive microwave remote sensing , (2) used the strong fluctuation theory and the fluctuation-dissipation theorem to calculate the brightness

  11. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1997-09-30

    The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime

  12. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1984-09-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of February 1, 1984...the emissivities as functions of viewing angles and polarizations. They are used to interpret the passive microwave remote sensing data from

  13. Natural Resource Information System. Remote Sensing Studies.

    ERIC Educational Resources Information Center

    Leachtenauer, J.; And Others

    A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…

  14. Accommodating Student Diversity in Remote Sensing Instruction.

    ERIC Educational Resources Information Center

    Hammen, John L., III.

    1992-01-01

    Discusses the difficulty of teaching computer-based remote sensing to students of varying levels of computer literacy. Suggests an instructional method that accommodates all levels of technical expertise through the use of microcomputers. Presents a curriculum that includes an introduction to remote sensing, digital image processing, and…

  15. Remote sensing: a tool for park planning and management

    USGS Publications Warehouse

    Draeger, William C.; Pettinger, Lawrence R.

    1981-01-01

    Remote sensing may be defined as the science of imaging or measuring objects from a distance. More commonly, however, the term is used in reference to the acquisition and use of photographs, photo-like images, and other data acquired from aircraft and satellites. Thus, remote sensing includes the use of such diverse materials as photographs taken by hand from a light aircraft, conventional aerial photographs obtained with a precision mapping camera, satellite images acquired with sophisticated scanning devices, radar images, and magnetic and gravimetric data that may not even be in image form. Remotely sensed images may be color or black and white, can vary in scale from those that cover only a few hectares of the earth's surface to those that cover tens of thousands of square kilometers, and they may be interpreted visually or with the assistance of computer systems. This article attempts to describe several of the commonly available types of remotely sensed data, to discuss approaches to data analysis, and to demonstrate (with image examples) typical applications that might interest managers of parks and natural areas.

  16. Airborne remote sensing for Deepwater Horizon oil spill emergency response

    NASA Astrophysics Data System (ADS)

    Kroutil, Robert T.; Shen, Sylvia S.; Lewis, Paul E.; Miller, David P.; Cardarelli, John; Thomas, Mark; Curry, Timothy; Kudaraskus, Paul

    2010-08-01

    On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil rig disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 75 missions that included over 250 hours of flight operation. ASPECT's initial mission responsibility was to provide air quality monitoring (i.e., identification of vapor species) during various oil burning operations. The ASPECT airborne wide-area infrared remote sensing spectral data was used to evaluate the hazard potential of vapors being produced from open water oil burns near the Deepwater Horizon rig site. Other significant remote sensing data products and innovations included the development of an advanced capability to correctly identify, locate, characterize, and quantify surface oil that could reach beaches and wetland areas. This advanced identification product provided the Incident Command an improved capability to locate surface oil in order to improve the effectiveness of oil skimmer vessel recovery efforts directed by the US Coast Guard. This paper discusses the application of infrared spectroscopy and multispectral infrared imagery to address significant issues associated with this national crisis. More specifically, this paper addresses the airborne remote sensing capabilities, technology, and data analysis products developed specifically to optimize the resources and capabilities of the Deepwater Horizon Incident Command structure personnel and their remediation efforts.

  17. Holographic enhanced remote sensing system

    NASA Technical Reports Server (NTRS)

    Iavecchia, Helene P.; Gaynor, Edwin S.; Huff, Lloyd; Rhodes, William T.; Rothenheber, Edward H.

    1990-01-01

    The Holographic Enhanced Remote Sensing System (HERSS) consists of three primary subsystems: (1) an Image Acquisition System (IAS); (2) a Digital Image Processing System (DIPS); and (3) a Holographic Generation System (HGS) which multiply exposes a thermoplastic recording medium with sequential 2-D depth slices that are displayed on a Spatial Light Modulator (SLM). Full-parallax holograms were successfully generated by superimposing SLM images onto the thermoplastic and photopolymer. An improved HGS configuration utilizes the phase conjugate recording configuration, the 3-SLM-stacking technique, and the photopolymer. The holographic volume size is currently limited to the physical size of the SLM. A larger-format SLM is necessary to meet the desired 6 inch holographic volume. A photopolymer with an increased photospeed is required to ultimately meet a display update rate of less than 30 seconds. It is projected that the latter two technology developments will occur in the near future. While the IAS and DIPS subsystems were unable to meet NASA goals, an alternative technology is now available to perform the IAS/DIPS functions. Specifically, a laser range scanner can be utilized to build the HGS numerical database of the objects at the remote work site.

  18. Remote sensing of environmental impact of land use activities

    NASA Technical Reports Server (NTRS)

    Paul, C. K.

    1977-01-01

    The capability to monitor land cover, associated in the past with aerial film cameras and radar systems, was discussed in regard to aircraft and spacecraft multispectral scanning sensors. A proposed thematic mapper with greater spectral and spatial resolutions for the fourth LANDSAT is expected to usher in new environmental monitoring capability. In addition, continuing improvements in image classification by supervised and unsupervised computer techniques are being operationally verified for discriminating environmental impacts of human activities on the land. The benefits of employing remote sensing for this discrimination was shown to far outweigh the incremental costs of converting to an aircraft-satellite multistage system.

  19. Oceanographic Remote Sensing; A Position Paper,

    DTIC Science & Technology

    1979-01-26

    The purpose of a Navy R&D remote sensing plan should be to set forth the requirements and direction of basic and exploratory research in satellite... remote sensing which supports the overall Navy oceanographic research and operational programs. The aim of the plan would be to outline the established...addressed. The plan should help serve as a single technology and program reference for implementation and planning of Navy related satellite remote

  20. Sense and avoid technology for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    McCalmont, John; Utt, James; Deschenes, Michael; Taylor, Michael; Sanderson, Richard; Montgomery, Joel; Johnson, Randal S.; McDermott, David

    2007-04-01

    The Sensors Directorate of the Air Force Research Laboratory (AFRL), in conjunction with the Global Hawk Systems Group, the J-UCAS System Program Office and contractor Defense Research Associates, Inc. (DRA) is conducting an Advanced Technology Demonstration (ATD) of a sense-and-avoid capability with the potential to satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aircraft Systems (UAS) to provide "an equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for UAS operations within the national airspace. The Sense-and-Avoid, Phase I (Man-in-the-Loop) and Phase II (Autonomous Maneuver) ATD demonstrated an on-board, wide field of regard, multi-sensor visible imaging system operating in real time and capable of passively detecting approaching aircraft, declaring potential collision threats in a timely manner and alerting the human pilot located in the remote ground control station or autonomously maneuvered the aircraft. Intruder declaration data was collected during the SAA I & II Advanced Technology Demonstration flights conducted during December 2006. A total of 27 collision scenario flights were conducted and analyzed. The average detection range was 6.3 NM and the mean declaration range was 4.3 NM. The number of false alarms per engagement has been reduced to approximately 3 per engagement.

  1. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  2. Tracking and Monitoring Oil Slicks Using remote Sensing

    NASA Astrophysics Data System (ADS)

    Klemas, V. V.

    2011-12-01

    Tracking and Monitoring Oil Slicks Using Remote Sensing Victor Klemas, Ph.D. , College of Earth, Ocean and Environment, University of Delaware, Newark, DE 19716 Abstract Oil spills can harm marine life in the ocean, estuaries and wetlands. To limit the damage by a spill and facilitate cleanup efforts, emergency managers need information on spill location, size and extent, direction and speed of oil movement, wind, current, and wave information for predicting oil drift and dispersion. The main operational data requirements are fast turn-around time and frequent imaging to monitor the dynamics of the spill. Radar and multispectral remote sensors on satellites and aircraft meet most of these requirements by tracking the spilled oil at various resolutions, over wide areas and at frequent intervals. They also provide key inputs to drift prediction models and facilitate targeting of skimming and booming efforts. Satellite data are frequently supplemented by information provided by aircraft, ships and remotely controlled underwater robots. The Sea Princess tanker grounding off the coast of Wales and the explosion on the Deepwater Horizon rig in the Gulf of Mexico provide two representative, yet different, scenarios for evaluating the effectiveness of remote sensors during oil spill emergencies. Session NH17: Remote Sensing of Natural Hazards Session Chair: Ramesh P. Singh Sponsor: Natural Hazards (NH)

  3. National Aeronautics and Space Administration operations: Remote sensing experiments in the New York Bight, 7-17 April 1975

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Hall, J. B., Jr.

    1975-01-01

    Results are given of remote sensing experiments conducted in the New York Bight between April 7-17, 1975, to evaluate the role of remote sensing technology to aid in monitoring ocean dumping. Remote sensors were flown on the C-54, U-2, and C-130 aircraft while the National Oceanic and Atmospheric Administration obtained concurrent in situ sea truth data using helicopters and surface platforms. The test site, aircraft platforms, experiments, and supporting sensors are described. The operation of each aircraft are discussed and aircraft flight lines, flight parameters, and data identification parameters are presented in figures and tables.

  4. Prediction of health levels by remote sensing

    NASA Technical Reports Server (NTRS)

    Rush, M.; Vernon, S.

    1975-01-01

    Measures of the environment derived from remote sensing were compared to census population/housing measures in their ability to discriminate among health status areas in two urban communities. Three hypotheses were developed to explore the relationships between environmental and health data. Univariate and multiple step-wise linear regression analyses were performed on data from two sample areas in Houston and Galveston, Texas. Environmental data gathered by remote sensing were found to equal or surpass census data in predicting rates of health outcomes. Remote sensing offers the advantages of data collection for any chosen area or time interval, flexibilities not allowed by the decennial census.

  5. Hyperspectral remote sensing for terrestrial applications

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,

    2015-01-01

    Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.

  6. Remote sensing and urban public health

    NASA Technical Reports Server (NTRS)

    Rush, M.; Vernon, S.

    1975-01-01

    The applicability of remote sensing in the form of aerial photography to urban public health problems is examined. Environmental characteristics are analyzed to determine if health differences among areas could be predicted from the visual expression of remote sensing data. The analysis is carried out on a socioeconomic cross-sectional sample of census block groups. Six morbidity and mortality rates are the independent variables while environmental measures from aerial photographs and from the census constitute the two independent variable sets. It is found that environmental data collected by remote sensing are as good as census data in evaluating rates of health outcomes.

  7. Compressive optical remote sensing via fractal classification

    NASA Astrophysics Data System (ADS)

    Sun, Quan-sen; Liu, Ji-xin

    2015-11-01

    High resolution and large field of view are two major development trends in optical remote sensing imaging. But these trends will cause the difficult problem of mass data processing and remote sensor design under the limitation of conventional sampling method. Therefore, we will propose a novel optical remote sensing imaging method based on compressed sensing theory and fractal feature extraction in this study. We could utilize the result of fractal classification to realize the selectable partitioned image recovery with undersampling measurement. The two experiments illustrate the availability and feasibility of this new method.

  8. Active and Passive Remote Sensing of Ice

    DTIC Science & Technology

    1993-01-26

    92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers

  9. Remote sensing and global climate change

    SciTech Connect

    Vaughan, A.; Cracknell, A.P.

    1994-12-31

    This book, based on lectures from the Dundee Summer Schools in Remote Sensing in 1992, focuses on aspects of remote sensing related to climatic change. The organization of the book focuses on particular parts of the climate system and then discusses the different satellite systems relevant to their measurement. The following subject areas are included in the book: background information about the climate system and remote sensing; atmospheric applications in both lower and upper atmosphere; land surface including snow and ice, altimetry in Antarctica, land surface energy budget and albedo; marine science; ecological monitoring in St. Petersburg, Russia.

  10. Remote sensing for exploration - An overview

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Rock, B. N.; Rowan, L. C.

    1983-01-01

    The use of remote sensing in resource exploration is reviewed, with emphasis placed on new developments in high spectral resolution remote-sensing techniques for mineralogic and vegetation mapping. Topics discussed include aerial photography and satellite remote sensing, concepts and principles of spectral data collection, spectral properties of rocks and minerals, spectral properties of vegetation, and botanical aspects of geochemical stress. The discussion also covers applications of Landsat multispectral scanner data to lithologic and geobotanic studies and the future development of data acquisition and data interpretation techniques.

  11. Paleovalleys mapping using remote sensing

    NASA Astrophysics Data System (ADS)

    Baibatsha, A. B.

    2014-06-01

    For work materials used multispectral satellite imagery Landsat (7 channels), medium spatial resolution (14,25-90 m) and a digital elevation model (data SRTM). For interpretation of satellite images and especially their infrared and thermal channels allocated buried paleovalleys pre-paleogene age. Their total length is 228 km. By manifestation of the content of remote sensing paleovalleys distinctly divided into two types, long ribbon-like read in materials and space survey highlights a network of small lakes. By the nature of the relationship established that the second type of river paleovalleys flogs first. On this basis, proposed to allocate two uneven river paleosystem. The most ancient paleovalleys first type can presumably be attributed to karst erosion, blurry chalk and carbon deposits foundation. Paleovalleys may include significant groundwater resources as drinking and industrial purposes. Also we can control the position paleovalleys zinc and bauxite mineralization area and alluvial deposits include uranium mineralization valleys infiltration type and placer gold. Direction paleovalleys choppy, but in general they have a north-east orientation, which is controlled by tectonic zones of the foundation. These zones are defined as the burial place themselves paleovalleys and position of karst cavities in areas interfacing with other structures orientation. The association of mineralization to the caverns in the beds paleovalleys could generally present conditions of formation of mineralization and carry it to the "Niagara" type. The term is obviously best reflects the mechanism of formation of these ores.

  12. Suntracker for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Hawat, Toufic-Michel; Camy-Peyret, Claude; Torguet, Roger J.

    1998-05-01

    A heliostat is designed and built to track the sun for optical remote sensing of the stratosphere from a balloon- borne pointed gondola. The tracking mechanism is controlled by two direct torque motors used to drive a single flat acquisition mirror. A horizontal turntable, rigidly attached to the azimuth drive, supports the elevation assembly. A position sensor receiving a small part of the solar beam reflected off the main acquisition mirror is used for the fine servo control. Using a CCD camera prepointing of the acquisition mirror is achieved when the sun is in the field of view of the heliostat. This system is coupled with a high-resolution (0.02-cm-1) Fourier transform IR spectrometer to retrieve stratospheric trace species concentration profiles. The suntracker directs the solar radiation in a stable direction along the spectrometer optical axis. The pointing precision is 1 arcmin from a stratospheric gondola, which has static and dynamic angular excursions up to 6 deg. The heliostat coupled to the Limb Profile Monitor of the Atmosphere instrument performs successfully on several balloon flights. The description, ground tests, and balloon flight results of the suntracker are presented.

  13. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1988-01-01

    Two monographs and 85 journal and conference papers on remote sensing of earth terrain have been published, sponsored by NASA Contract NAG5-270. A multivariate K-distribution is proposed to model the statistics of fully polarimetric data from earth terrain with polarizations HH, HV, VH, and VV. In this approach, correlated polarizations of radar signals, as characterized by a covariance matrix, are treated as the sum of N n-dimensional random vectors; N obeys the negative binomial distribution with a parameter alpha and mean bar N. Subsequently, and n-dimensional K-distribution, with either zero or non-zero mean, is developed in the limit of infinite bar N or illuminated area. The probability density function (PDF) of the K-distributed vector normalized by its Euclidean norm is independent of the parameter alpha and is the same as that derived from a zero-mean Gaussian-distributed random vector. The above model is well supported by experimental data provided by MIT Lincoln Laboratory and the Jet Propulsion Laboratory in the form of polarimetric measurements.

  14. Enhancement of remote sensing through microwave technology

    NASA Technical Reports Server (NTRS)

    Cehelsky, M.; Kiebler, J.

    1980-01-01

    This overview begins with a brief look at remote sensing to date, focusing on the state of the art and the benefits that have been derived from it. Current and future microwave sensing developments are discussed pointing out special advantages and capabilities and noting the anticipated benefits. The frequency requirements of microwave sensing are outlined and the particular need to both allocate, and when necessary, protect active and passive operational sensing frequencies is emphasized.

  15. EPA Remote Sensing Information Gateway

    NASA Astrophysics Data System (ADS)

    Paulsen, H. K.; Szykman, J. J.; Plessel, T.; Freeman, M.; Dimmick, F.

    2009-12-01

    The Remote Sensing Information Gateway was developed by the U.S. Environmental Protection Agency (EPA) to assist researchers in easily obtaining and combining a variety of environmental datasets related to air quality research. Current datasets available include, but are not limited to surface PM2.5 and O3 data, satellite derived aerosol optical depth , and 3-dimensional output from U.S. EPA's Models 3/Community Multi-scale Air Quality (CMAQ) modeling system. The presentation will include a demonstration that illustrates several scenarios of how researchers use the tool to help them visualize and obtain data for their work; with a particular focus on episode analysis related to biomass burning impacts on air quality. The presentation will provide an overview on how RSIG works and how the code has been—and can be—adapted for other projects. One example is the Virtual Estuary, which focuses on automating the retrieval and pre-processing of a variety of data needed for estuarine research. RSIG’s source codes are freely available to researchers with permission from the EPA principal investigator, Dr. Jim Szykman. RSIG is available to the community and can be accessed online at http://www.epa.gov/rsig. Once the JAVA policy file is configured on your computer you can run the RSIG applet on your computer and connect to the RSIG server to visualize and retrieve available data sets. The applet allows the user to specify the temporal/spatial areas of interest, and the types of data to retrieve. The applet then communicates with RSIG subsetter codes located on the data owners’ remote servers; the subsetter codes assemble and transfer via ordinary Internet protocols only the specified data to the researcher’s computer. This is much faster than the usual method of transferring large files via FTP and greatly reduces network traffic. The RSIG applet then visualizes the transferred data on a latitude-longitude map, automatically locating the data in the correct

  16. Information Processing of Remote-Sensing Data.

    ERIC Educational Resources Information Center

    Berry, P. A. M.; Meadows, A. J.

    1987-01-01

    Reviews the current status of satellite remote sensing data, including problems with efficient storage and rapid retrieval of the data, and appropriate computer graphics to process images. Areas of research concerned with overcoming these problems are described. (16 references) (CLB)

  17. Applications of remote sensing surveys in Texas

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The grant project continues to introduce remote sensing technology to users in Texas and other regions in the South through presentation of papers and briefings at technical and professional meetings.

  18. Remote sensing applications to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Dozier, J.; Estes, J. E.; Simonett, D. S.; Davis, R.; Frew, J.; Marks, D.; Schiffman, K.; Souza, M.; Witebsky, E.

    1977-01-01

    An energy balance snowmelt model for rugged terrain was devised and coupled to a flow model. A literature review of remote sensing applications to hydrologic modeling was included along with a software development outline.

  19. National Satellite Land Remote Sensing Data Archive

    USGS Publications Warehouse

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  20. Remote sensing: An inventory of earth's resources

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N.

    1974-01-01

    The remote sensing capabilities of Landsat are reviewed along with the broad areas of application of the Landsat imagery. The importance of Landsat imagery in urban planning and resources management is stressed.

  1. State remote sensing (LANDSAT) programs catalog

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This directory lists the technical capabilities, personnel, and program structure for remote sensing activities as they existed in each state in late 1980. The institutional framework, participating agencies, applications, status, equipment, software, and funding sources are also indicated.

  2. Scripps Ocean Modeling and Remote Sensing (SOMARS)

    DTIC Science & Technology

    1988-09-20

    Topics in this brief reports include: Kalman filtering of oceanographic data; Remote sensing of sea surface temperature; Altimetry and Surface heat fluxes; Ocean models of the marine mixed layer; Radar altimetry; Mathematical model of California current eddies.

  3. Remote Sensing of the Arctic Seas.

    ERIC Educational Resources Information Center

    Weeks, W. F.; And Others

    1986-01-01

    Examines remote sensing of the arctic seas by discussing: (1) passive microwave sensors; (2) active microwave sensors; (3) other types of sensors; (4) the future deployment of sensors; (5) data buoys; and (6) future endeavors. (JN)

  4. Using GPS Reflections for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Mickler, David

    2000-01-01

    GPS signals that have reflected off of the ocean's surface have shown potential for use in oceanographic and atmospheric studies. The research described here investigates the possible deployment of a GPS reflection receiver onboard a remote sensing satellite in low Earth orbit (LEO). The coverage and resolution characteristics of this receiver are calculated and estimated. This mission analysis examines using reflected GPS signals for several remote sensing missions. These include measurement of the total electron content in the ionosphere, sea surface height, and ocean wind speed and direction. Also discussed is the potential test deployment of such a GPS receiver on the space shuttle. Constellations of satellites are proposed to provide adequate spatial and temporal resolution for the aforementioned remote sensing missions. These results provide a starting point for research into the feasibility of augmenting or replacing existing remote sensing satellites with spaceborne GPS reflection-detecting receivers.

  5. Remote Sensing in Agriculture: An Introductory Review.

    ERIC Educational Resources Information Center

    Curran, Paul J.

    1987-01-01

    Discusses the use of remote sensing techniques to obtain locational, estimated, and mapped information at the scales varying from individual fields and farms, to entire continents and the world. (AEM)

  6. A Teacher's Introduction to Remote Sensing.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1997-01-01

    Defines remote sensing as the examination of something without touching it. Generally, this refers to satellite and aerial photographic images. Discusses how this technology and resulting knowledge can be integrated into geography classes. Includes a sample unit using images. (MJP)

  7. Remote Sensing of Snow and Evapotranspiration

    NASA Technical Reports Server (NTRS)

    Schmugge, T. (Editor)

    1985-01-01

    The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.

  8. Remote sensing, imaging, and signal engineering

    SciTech Connect

    Brase, J.M.

    1993-03-01

    This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.

  9. Laser Remote Sensing of Atmospheric Pollutants.

    DTIC Science & Technology

    1984-09-30

    of Cross-Correlation and Signal Averaging Appendix B: Laser Remote Sensing of Atmospheric Ammonia using a 33 C02 LIDAR System Ac-’,i- n For AVE...of CO2 differential-absorption LIDAR (DIAL) for the remote sensing of atmospheric pollutants was continued during FY84 and consisted of two...individual LIDAR signals and then taking the ratios of the averaged signals in order to deduce the differential-absorption value. This is in contrast to

  10. Pilot interministerial operation for remote sensing

    NASA Technical Reports Server (NTRS)

    Delamare, J. M.; Bied-Charreton, M.; Couzy, A.; Jahan, A.; Ledder, J.; Pasquet, J.

    1979-01-01

    Advantages and disadvantages of traditional methods of obtaining required information for land and resources management and the possibilities of remote sensing are discussed. The services available, organization and objectives of the pilot operation are presented. Emphasis is placed on multidisciplinary dialog among designers, builders, operators, interpreters and users in all phases. The principles, operation and practical applications of remote sensing systems and processing systems under the pilot operation are presented.

  11. Western Regional Remote Sensing Conference Proceedings, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Remote sensing users from the 14 western states explained their diverse applications of LANDSAT data, discussed operational goals, and exchanged problems and solutions. In addition, conference participants stressed the need for increased cooperation among state and local governments, private industry, and universities to aid NASA's objective of transferring to user agencies the ability to operationally use remote sensing technology for resource and environmental quality management.

  12. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    EPA Science Inventory

    I. Remote Sensing Basics
    A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors.
    B. Resolution refers to what a remote sensor can see and how often.
    1. Sp...

  13. Pneumatic distortion compensation for aircraft surface pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Leondes, Cornelius T.

    1991-01-01

    In this paper a technique of compensating for pneumatic distortion in aircraft surface pressure sensing devices is developed. The compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Typically, most of the distortion occurs within the pneumatic tubing used to transmit pressure impulses from the surface of the aircraft to the measurement transducer. This paper develops a second-order distortion model that accurately describes the behavior of the primary wave harmonic of the pneumatic tubing. The model is expressed in state-variable form and is coupled with standard results from minimum-variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data. Covariance selection and filter-tuning examples are presented. Results presented verify that, given appropriate covariance magnitudes, the algorithms accurately reconstruct surface pressure values from remotely sensed pressure measurements.

  14. Remote sensing of natural resources

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Quarterly literature review compiles citations and abstracts from eight major abstracting and indexing services. Each issue contains author/keyword index. Includes data obtained or techniques used from space, aircraft, or ground-based stations.

  15. Laser Remote Sensing at NASA

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA is developing active remote sensors to monitor the health of Planet Earth and for exploration of other planets. Development and deployment of these remote sensors can have a huge economic impact. Lasers for these active remote sensors span the spectral range from the ultraviolet to the mid infrared spectral regions. Development activities range from quantum mechanical modeling and prediction of new laser materials to the design, development, and demonstration be deployed in the field.

  16. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  17. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  18. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  19. Remote sensing-a geophysical perspective.

    USGS Publications Warehouse

    Watson, K.

    1985-01-01

    In this review of developments in the field of remote sensing from a geophysical perspective, the subject is limited to the electromagnetic spectrum from 0.4 mu m to 25cm. Three broad energy categories are covered: solar reflected, thermal infrared, and microwave.-from Authorremote sensing electromagnetic spectrum solar reflected thermal infrared microwave geophysics

  20. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; Van de water, Peter K.; Levetin, Estelle; Crimmins, Theresa

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  1. Role of remote sensing in Bay measurements

    NASA Technical Reports Server (NTRS)

    Mugler, J. P., Jr.; Godfrey, J. P.; Hickman, G. D.; Hovis, W. G.; Pearson, A. O.; Weaver, K. N.

    1978-01-01

    Remote measurements of a number of surface or near surface parameters for baseline definition and specialized studies, remote measurements of episodic events, and remote measurements of the Bay lithosphere are considered in terms of characterizing and understanding the ecology of the Chesapeake Bay. Geologic processes and features best suited for information enhancement by remote sensing methods are identified. These include: (1) rates of sedimentation in the Bay; (2) rates of erosion of Bay shorelines; (3) spatial distribution and geometry of aquifers; (4) mapping of Karst terrain (sinkholes); and (5) mapping of fracture patterns. Recommendations for studying problem areas identified are given.

  2. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  3. Past, present, and future of the INTA airborne remote sensing laboratory

    NASA Astrophysics Data System (ADS)

    Diaz de Aguilar, Javier; Fernandez Renau, Alix; Gomez Sanchez, Jose A.; Gutierrez de la Camara, Oscar

    2003-04-01

    The remote sensing laboratory belongs to the Earth Observation, Remote Sensing and Atmospheric Research division of INTA. INTA is a government research organization of the Spanish Department of Defense. INTA has been performing airborne remote sensing campaigns since 1975. The Remote Sensing Laboratory is devoted to the application and development of both aerial and space remote sensing technqiues. It owns both, personnel and technology suitable to perform flight campaigns in order to acquire remote sensing images and, with the help of precise image processing techniques, extract useful information. Currently has two different airborne platforms, for remote sensing and for atmospheric research, and is in the process of specification of a new platform for generation research. INTA is partner of the Concerted Action 'European Fleet for Airborne Research'. This paper describes the INTA platform, sensors, systems and its integration in the aircraft. The experience in airborne remote sensing campaigns also described. The research campaigns performed show their application in comparison with satellite remote sensing. Some examples of this are, evaluation of future space sensors, calibration and validation of images acquired by operative space platforms, environmental impact of ecological distasters, ocean surfaces characteristics, wetland mapping and fire analysis.

  4. Multiscale and Multitemporal Urban Remote Sensing

    NASA Astrophysics Data System (ADS)

    Mesev, V.

    2012-07-01

    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  5. Insect vision based collision avoidance system for Remotely Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James; Bevilacqua, Andrew

    2012-06-01

    Remotely Piloted Aircraft (RPA) are designed to operate in many of the same areas as manned aircraft; however, the limited instantaneous field of regard (FOR) that RPA pilots have limits their ability to react quickly to nearby objects. This increases the danger of mid-air collisions and limits the ability of RPA's to operate in environments such as terminals or other high-traffic environments. We present an approach based on insect vision that increases awareness while keeping size, weight, and power consumption at a minimum. Insect eyes are not designed to gather the same level of information that human eyes do. We present a novel Data Model and dynamically updated look-up-table approach to interpret non-imaging direction sensing only detectors observing a higher resolution video image of the aerial field of regard. Our technique is a composite hybrid method combining a small cluster of low resolution cameras multiplexed into a single composite air picture which is re-imaged by an insect eye to provide real-time scene understanding and collision avoidance cues. We provide smart camera application examples from parachute deployment testing and micro unmanned aerial vehicle (UAV) full motion video (FMV).

  6. New remote sensing techniques facilitate study of earth's far-flung volcanos

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Pieri, David C.

    1990-01-01

    The study of volcanos using remote sensing is discussed. The dynamics of volcanic eruptions and the interactions between volcanos and the atmosphere and ecosphere are examined. Remote sensing equipment can effectively detect mud flows, pyroclastic falls, debris avalanches, lava flows, and hazards to aircraft from eruption plumes. Consideration is given to the use of thermal IR imaging, weather satellites, and polar-orbiting satellites to study such features as lava flow, silica content, and SO2 distribution.

  7. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  8. The world ozone dilemma; Research and results with remote sensing

    SciTech Connect

    Hurtak, J.J. )

    1991-01-01

    This paper reports that in order to study the chemically perturbed region of the Antarctic and the Arctic, NASA initiated airborne and satellite imaging of the ozone depletion through the specialized ER-2 plane (at {approximately}18 km) and the modified DC-8-72 aircraft (at {approximately}12.5 km) with remote sensing systems onboard. Instruments onboard the ER-2 and DC-8 NASA research aircraft surveyed the atmosphere from various altitudes and instruments on the Nimbus-7 satellite analyzed reflected sunlight. Measurements were designed to gauge not only the extent of ozone depletion over the Antarctic/Arctic, but other chemical changes in the stratosphere. Activities carried out within programs of remote sensing and in situ measurements by aircraft are compared to TOMS onboard the Nimbus-7, as well as Dobson network ground stations. Through these methods, scientists have been extremely successful in mapping the huge hole in the ozone layer that appeared over Antarctica, which is particularly extensive for about two months of each year and to confirm ozone loss in the Arctic area.

  9. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  10. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    PubMed

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  11. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    PubMed Central

    Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432

  12. Practical applications of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Whitmore, Roy A., Jr.

    1990-01-01

    Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.

  13. Remote sensing in Virginia agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Newhouse, M. E.; Dunton, E. M., Jr.; Scott, J. H., Jr.

    1972-01-01

    An experimental investigation, designed to develop and evaluate multispectral sensing techniques used in sensing agricultural crops, is described. Initial studies were designed to detect plant species and associated diseases, soil variations, and cultural practices under natural environment conditions. In addition, crop varieties, age, spacing, plant height, percentage of ground cover, and plant vigor are determined.

  14. A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.

    1974-01-01

    The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.

  15. Soil moisture variability within remote sensing pixels

    SciTech Connect

    Charpentier, M.A.; Groffman, P.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper addresses the question of soil moisture variation within the field of view of a remote sensing pixel. Remote sensing is the only practical way to sense soil moisture over large areas, but it is known that there can be large variations of soil moisture within the field of view of a pixel. The difficulty with this is that many processes, such as gas exchange between surface and atmosphere can vary dramatically with moisture content, and a small wet spot, for example, can have a dramatic impact on such processes, and thereby bias remote sensing data results. Here the authors looked at the impact of surface topography on the level of soil moisture, and the interaction of both on the variability of soil moisture sensed by a push broom microwave radiometer (PBMR). In addition the authors looked at the question of whether variations of soil moisture within pixel size areas could be used to assign errors to PBMR generated soil moisture data.

  16. Remote Sensing May Provide Unprecedented Hydrological Data

    NASA Technical Reports Server (NTRS)

    Koster, R.; Houser, P.; Engman, E.; Kustas, W.

    1999-01-01

    Basic hydrological research and water resources management may reap tremendous benefits from remote sensing technology, studies are showing. Satellite coverage may allow unprecedented accuracy in the quantification of the global hydrological cycle, for example. Yet despite such benefits, few hydrologists currently use such data. This is partly because the needed tools and algorithms are not fully developed. Such development requires field experiments that combine remotely sensed data with detailed in situ observations. AGU's Remote Sensing in Hydrology Committee has constructed a Web site (http://Iand.gsfc.nasa.gov/RSHC.html) that gives an overview of many such experiments. Included on the site is information on each experiment's overall goal, the types of in situ and remotely sensed measurements taken, relevant climate and vegetation conditions, and so forth. Links to additional relevant Web sites are included. The site is designed to be a suitable starting point for those interested in learning more about remote sensing in hydrology. It lists members of the committee who can be contacted for further information. Hydrologists have recognized the potential of remote sensing technology since the 1970s. It offers a way to avoid the logistical and economic difficulties associated with obtaining continuous in situ measurements of various hydrological variables, difficulties that are particularly pronounced in remote regions. Microwave instruments in particular can potentially provide all-weather, areally averaged estimates of certain variables (such as precipitation, soil moisture, and snow water content) that have been essentially unattainable in the past. In remote sensing, the conversion of emitted and reflected radiances into useful hydrological data is a complex problem. The measured radiances, for example, reflect the integrated character of a pixel area, a scale inconsistent with the point measurements of traditional hydrology. To develop the needed algorithms

  17. High resolution derivative spectra in remote sensing

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, Tanvir H.; Steven, Michael D.; Clark, Jeremy A.

    1990-01-01

    The use of derivative spectra is an established technique in analytical chemistry for the elimination of background signals and for resolving overlapping spectral features. Application of this technique for tackling analogous problems such as interference from soil background reflectance in the remote sensing of vegetation or for resolving complex spectra of several target species within individual pixels in remote sensing is proposed. Methods for generating derivatives of high spectral resolution data are reviewed. Results of experiments to test the use of derivatives for monitoring chlorosis in vegetation show that derivative spectral indices are superior to conventional broad-band spectral indices such as the near-infrared/red reflectance ratio. Conventional broad-band indices are sensitive to both leaf cover as well as leaf color. New derivative spectral indices which were able to monitor chlorosis unambiguously were identified. Potential areas for the application of this technique in remote sensing are considered.

  18. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  19. The Remote Sensing of Surface Radiative Temperature over Barbados.

    DTIC Science & Technology

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  20. Sea Ice Remote Sensing Using Surface Reflected GPS Signals

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Maslanik, James; Zavorotny, Valery U.; Axelrad, Penina; Katzberg, Stephen J.

    2000-01-01

    This paper describes a new research effort to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. Our experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and freshwater ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska indicating correlation between forward-scattered GPS returns and RADARSAT backscattered measurements.

  1. Passive microwave remote sensing of salinity in coastal zones

    NASA Technical Reports Server (NTRS)

    Swift, Calvin T.; Blume, Hans-Juergen C.; Kendall, Bruce M.

    1987-01-01

    The theory of measuring coastal-zone salinity from airborne microwave radiometers is developed. The theory, as presented, shows that precision measurements of salinity favor the lower microwave frequencies. To this end, L- and S-Band systems were built, and the flight results have shown that accuracies of at least one part per thousand were achieved.The aircraft results focus on flights conducted over the Chesapeake Bay and the mouth of the Savanna River off the Georgia Coast. This paper presents no new work, but rather summarizes the capabilities of the remote sensing technique.

  2. The remote sensing needs of Arctic geophysics

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.

    1970-01-01

    The application of remote sensors for obtaining geophysical information of the Arctic regions is discussed. Two significant requirements are to acquire sequential, synoptic imagery of the Arctic Ocean during all weather and seasons and to measure the strains in the sea ice canopy and the heterogeneous character of the air and water stresses acting on the canopy. The acquisition of geophysical data by side looking radar and microwave sensors in military aircraft is described.

  3. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  4. Applications of remote sensing in public health.

    NASA Technical Reports Server (NTRS)

    Barnes, C. M.; Fuller, C. E.; Schneider, H. J.; Kennedy, E. E.; Jones, H. G.; Morrison, D. R.

    1973-01-01

    Current research concerning the determination of the habitat of mosquito vectors of disease is discussed. It is shown how advanced interpretative processes have enabled recognition of the breeding areas of salt marsh mosquitoes and the breeding sites of the mosquito responsible for the transmission of St. Louis strain of encephalitis and of human filariasis. In addition, remote sensing data have also been useful in the study of the habitat of endemic strains of Venezuelan encephalitis virus in Florida. The beginning of the application of remote sensing to such public health aspects as air, water, and urban degradation is noted.

  5. Monitoring water quality by remote sensing

    NASA Technical Reports Server (NTRS)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  6. Towards a coherent remote sensing data policy

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa R.; Backlund, Peter

    1990-01-01

    Access to space-based remote sensing data is critical for earth science and the study of global change. This article summarizes a variety of U.S. government earth science data policies and problems. The authors examine current efforts to develop data policies for the next generation of U.S. remote sensing programs, noting likely problems based on past experiences. They argue that the goal of U.S. earth science data policy should be to provide the widest possible dissemination of data. Setting such a goal permits the development of a simple, coherent data policy that serves scientific, commercial, and U.S. government interests.

  7. Interpretation of Airphotos and Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    Ainsworth, Thomas L.; Jansen, Robert

    With the proliferation of easily accessible remotely sensed imagery over the last several years, image analysts from a wide variety of working environments are in high demand. These analysts do not always have advanced technical backgrounds in science. Robert Arnold's useful and timely laboratory manual serves as an adequate introduction to interpreting remotely sensed photographs and imagery. The book poses a graduated set of examples and questions with a generally increasing but low level of sophistication. It is easy to read, and considerable care has been exercised in the layout of the subject index and overall organization of the manual.

  8. Irrigated lands: Monitoring by remote sensing

    NASA Technical Reports Server (NTRS)

    Epiphanio, J. C. N.; Vitorelli, I.

    1983-01-01

    The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.

  9. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1998-01-01

    remote sensing of the ionosphere from orbiting space platforms. Remote sensing of the nighttime ionosphere is a relatively straightforward process due to the absence of the complications brought about by daytime solar radiation. Further, during the nighttime hours, the O(+)-H(+) transition level in both the mid- and low-latitude ionospheres lies around 750 km, which is within the range of accuracy of the path matrix inversion. The intensity of the O(+)-e(-) recombination radiation as observed from orbiting space platforms can now be used to

  10. High-speed spectroradiometer for remote sensing.

    PubMed

    Miyazaki, T; Shimizu, H; Yasuoka, Y

    1987-11-15

    A high-speed spectroradiometer designed for spectral reflectance measurement in remote sensing is described. This instrument uses a monochromatic grating and a photomultiplier system for light detection and sweeps over the 400-850-nm wavelength spectral range with the spectral resolution of 2 nm within 1 s. The instrument has the inherent advantage of portability and speed of operation which make it particularly suitable for field work in the area of fast moving surfaces, e.g., water with wave motion. Some applications of its use in laboratory and field experiments also have been presented. The instrument would seem to be an appropriate instrument for ground data collection in remote sensing.

  11. Remote sensing as a mineral prospecting technique

    NASA Technical Reports Server (NTRS)

    Meneses, P. R. (Principal Investigator)

    1984-01-01

    Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.

  12. Remote Sensing of Body Signs and Signatures

    DTIC Science & Technology

    1985-10-01

    REMOTE SENSING OF BODY SIGNS AND SIGNATURES LPrepared For Naval Medical Research and Development Command National Naval Medical Center, Bethesda...BODY SIGNS AND SIGNATURES S~By James C. Lin and Karen H. Chan Department of Bioengineering University of Illinois at Chicago Chicago, IL 60680 Abstract...Filters Di-t lb io. I AN!ý,z.biiity Codes I’ A.IDist jor p REMOTE SENSING OF BODY SIGNS AND SIGNATURES By James C. Lin and Karen H. Chan Department

  13. Remote sensing of land surface phenology

    USGS Publications Warehouse

    Meier, G.A.; Brown, J.F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  14. Geobotanical Remote Sensing for Geothermal Exploration

    SciTech Connect

    Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

    2001-05-22

    This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

  15. Remote sensing/vegetation classification. [California

    NASA Technical Reports Server (NTRS)

    Parker, I. E.

    1981-01-01

    The CALVEG classification system for identification of vegetation is described. This hierarchical system responds to classification requirements and to interpretation of vegetation at various description levels, from site description to broad identification levels. The system's major strength is its flexibility in application of remote sensing technology to assess, describe and communicate data relative to vegetative resources on a state-wide basis. It is concluded that multilevel remote sensing is a cost effective tool for assessment of the natural resource base. The CLAVEG system is found to be an economically efficient tool for both existing and potential vegetation.

  16. Kite Aerial Photography as a Tool for Remote Sensing

    ERIC Educational Resources Information Center

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  17. Wind Predictability and Remote Sensing Techniques,

    DTIC Science & Technology

    The report presents the unclassified findings from the Investigation of Airborne Wind Sensing Systems conducted under AIRTASK A30303/323/70F17311002. Included is a summary of the current accuracy of wind speed and direction forecasts, a list of possible methods for remote sensing meteorological data, a list of areas of application of the given methods and a list of contacts made for information relevant to this evaluation. (Author)

  18. Towards GPS Surface Reflection Remote Sensing of Sea Ice Conditions

    NASA Technical Reports Server (NTRS)

    Komjathy, A.; Maslanik, J. A.; Zavorotny, V. U.; Axelrad, P.; Katzberg, S. J.

    2000-01-01

    This paper describes the research to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. The characteristics of the GPS signals and equipment afford the possibility of new measurements not possible with existing radar and passive microwave systems. In particular, the GPS receiving systems are small and light-weight, and as such are particularly well suited to be deployed on small aircraft or satellite platforms with minimal impact. Our preliminary models and experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and fresh-water ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska suggesting correlation between forward scattered GPS returns and RADARSAT backscattered signals.

  19. Monitoring wetland changes with remote sensing: An East African example

    NASA Astrophysics Data System (ADS)

    Haack, Barry; Messina, Joe

    1997-01-01

    Environmental managers need current, accurate information upon which to base decisions. Viable information, especially in developing countries, is often unavailable. Satellite remote sensing is an appropriate and effective data source for mapping the surface of the earth including a variety of environmental features. Remote sensing derived information is enhanced by being one component within a Geographic Information System (GIS). These techniques were employed to study an expanding delta in East Africa. The Omo River flows from the Ethiopian Highlands into the northern end of Lake Turkana creating a large delta extending between Ethiopia and Kenya. This isolated and unique wetland feature has expanded by over 500 sq. km in the last fifteen years as measured by spaceborne remote sensing techniques and corroborated by low altitude aircraft reconnaissance flights. The growth of the delta appears to be a function of both increased sedimentation and decreased lake levels and river flows. Within the delta there has been a selective decline in wildlife and an increase in human activity, both pastoral and agricultural. The uniqueness of this isolated delta suggests that consideration be given to its possible protection and management.

  20. Monitoring wetland changes with remote sensing: An East African example

    NASA Astrophysics Data System (ADS)

    Haack, Barry

    1996-05-01

    Environmental managers need current, accurate information upon which to base decisions. Viable information, especially in developing countries, is often unavailable. Satellite remote sensing is an appropriate and effective data source for mapping the surface of the earth, including a variety of environmental features. Remote-sensing-derived information is enhanced by being one component within a geographic information system (GIS). These techniques were employed to study an expanding delta in East Africa. The Omo River flows from the Ethiopian Highlands into the northern end of Lake Turkana, creating a large delta extending between Ethiopia and Kenya. This isolated and unique wetland feature has expanded by over 500 sq km in the last 15 years as measured by space-borne remote sensing techniques and corroborated by low-altitude aircraft reconnaissance flights. The growth of the delta appears to be a function of both increased sedimentation and decreased lake levels and river flows. Within the delta there has been a selective decline in wildlife and an increase in human activity, both pastoral and agricultural. The uniqueness of this isolated delta suggests that consideration be given to its possible protection and management.

  1. Remote Sensing Via Satellite: The Canadian Experience

    ERIC Educational Resources Information Center

    Classen, Hans George

    1974-01-01

    Describes the joint effort of Canada and NASA in monitoring the Canadian environment using remote-sensing techniques. The project involves the Earth Resources Technology Satellite and has been used to observe seasonal changes, extent of snow cover, crop growth, sea ice, and land use patterns. (GS)

  2. Remote sensing and today's forestry issues

    NASA Technical Reports Server (NTRS)

    Sayn-Wittgenstein, L.

    1977-01-01

    The actual and the desirable roles of remote sensing in dealing with current forestry issues, such as national forest policy, supply and demand for forest products and competing demands for forest land are discussed. Topics covered include wood shortage, regional timber inventories, forests in tropical and temperate zones, Skylab photography, forest management and protection, available biomass studies, and monitoring.

  3. Remote Sensing for Climate and Environmental Change

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    2011-01-01

    Remote sensing is being used more and more for decision-making and policy development. Specific examples are: (1) Providing constraints on climate models used in IPCC assessments (2) Framing discussions about greenhouse gas monitoring (3) Providing support for hazard assessment and recovery.

  4. Data compression in remote sensing applications

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid

    1992-01-01

    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches.

  5. Ocean Remote Sensing Using Ambient Noise

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Remote Sensing Using Ambient Noise Michael G...frequency sound propagation in the ocean , and the effects of environmental variability on signal stability and coherence. We seek to understand the...fundamental limits to signal processing imposed by ocean variability to enable advanced signal processing techniques, including matched field processing

  6. Summary of 1971 land remote sensing investigations

    NASA Technical Reports Server (NTRS)

    Mooneyhan, D. W.

    1972-01-01

    Techniques to provide land use up-date information using remotely sensed data and automatic data processing technology are being developed. The approach utilizes multispectral scanners, the associated data analysis station, and the pattern recognition programs to identify and classify land surface characteristics, including wetlands, and to convert these data to demonstration type experiments in the various disciplines.

  7. Satellite Remote Sensing for Monitoring and Assessment

    EPA Science Inventory

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  8. Remote sensing information sciences research group

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1988-01-01

    Research conducted under this grant was used to extend and expand existing remote sensing activities at the University of California, Santa Barbara in the areas of georeferenced information systems, matching assisted information extraction from image data and large spatial data bases, artificial intelligence, and vegetation analysis and modeling. The research thrusts during the past year are summarized. The projects are discussed in some detail.

  9. Microwave remote sensing of natural stratification

    NASA Astrophysics Data System (ADS)

    Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele

    2011-11-01

    The response of natural stratification to electromagnetic wave has received much attention in last decades, due to its crucial role played in the remote sensing arena. In this context, when the superficial structure of the Earth, whose formation is inherently layered, is concerned, the most general scheme that can be adopted includes the characterization of layered random media. Moreover, a key issue in remote sensing of Earth and other Planets is to reveal the content under the surface illuminated by the sensors. For such a purpose, a quantitative mathematical analysis of wave propagation in three-dimensional layered rough media is fundamental in understanding intriguing scattering phenomena in such structures, especially in the perspective of remote sensing applications. Recently, a systematic formulation has been introduced to deal with the analysis of a layered structure with an arbitrary number of rough interfaces. Specifically, the results of the Boundary Perturbation Theory (BPT) lead to polarimetric, formally symmetric and physical revealing closed form analytical solutions. The comprehensive scattering model based on the BPT methodologically permits to analyze the bi-static scattering patterns of 3D multilayered rough media. The aim of this paper is to systematically show how polarimetric models obtainable in powerful BPT framework can be successfully applied to several situations of interest, emphasizing its wide relevance in the remote sensing applications scenario. In particular, a proper characterization of the relevant interfacial roughness is adopted resorting to the fractal geometry; numerical examples are then presented with reference to representative of several situations of interest.

  10. Remote sensing of geobotanical relations in Georgia

    NASA Technical Reports Server (NTRS)

    Arden, D. D., Jr.; Westra, R. N.

    1977-01-01

    The application of remote sensing to geological investigations, with special attention to geobotanical factors, was evaluated. The general areas of investigation included: (1) recognition of mineral deposits; (2) geological mapping; (3) delineation of geological structure, including areas of complex tectonics; and (4) limestone areas where ground withdrawal had intensified surface collapse.

  11. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  12. Remote sensing, a sketch of the technology

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1975-01-01

    Information is provided on how a potential user of remote sensing technology can gain access to all of the products and services he will need to get started. It was envisioned that these include data, training, hardware, and software. A very brief tutorial summary of the fundamentals of the technology is presented.

  13. Remote sensing of volcanos and volcanic terrains

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.

    1989-01-01

    The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.

  14. Optical remote sensing small satellite project

    NASA Astrophysics Data System (ADS)

    Cao, Xibin; Zhang, Fan; Lin, Xiaohui; Sun, Zhaowei; Xu, Guodong

    2004-01-01

    Optical Remote Sensing Small Satellite is for high-tech flight demonstration's test and three dimensions mapping. Its system overview is presented in the paper, and it includes such items as mission objective and mission requirements, satellite system scheme, reliability, cost budget project schedule and management and operation.

  15. Integrated remotely sensed datasets for disaster management

    NASA Astrophysics Data System (ADS)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-10-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  16. Remotely sensing homochirality, a powerful generic biosignature

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Hough, J. H.; Kolokolova, L.; Germer, T.; Robb, F.

    2014-03-01

    A high quality biosignature arises uniquely from biological processes. If a biosignature can additionally be used in remote sensing, then it can be useful for future telescopic studies of extrasolar planets where remote sensing is a necessity. The remarkable phenomenon of homochirality may be such a biosignature. The optical activity of biological molecules, together with their handedness, can yield a unique signature in circular polarization. Photosynthesis, a surface phenomenon relying on strong polarization-sensitive transitions in the visible, where light from the host star is abundant, is a natural remote sensing target for this approach. Both microbial photosynthesis, which has dominated terrestrial life for much of the history of Earth, and macroscopic vegetation, may in principle be observed. Precision polarimetry from space is likely to be needed, and we describe a promising, innovative approach to acquire sensitive full Stokes polarimetry with a compact, robust configuration well-suited to space application. The homochirality phenomenon is likely to be generic to all biochemical life, and pure in that abiotic processes do not result in homochirality nor do abiotic processes produce circular polarization features with similar character to the biological ones. This uniquely powerful biosignature is amenable to remote sensing, in principle, through circular polarization spectroscopy.

  17. Technology transfer of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Smith, A. D.

    1980-01-01

    The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.

  18. Thermal remote sensing: theory, sensors, and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...

  19. Remote Sensing Simulation Activities for Earthlings

    ERIC Educational Resources Information Center

    Krockover, Gerald H.; Odden, Thomas D.

    1977-01-01

    Suggested are activities using a Polaroid camera to illustrate the capabilities of remote sensing. Reading materials from the National Aeronautics and Space Administration (NASA) are suggested. Methods for (1) finding a camera's focal length, (2) calculating ground dimension photograph simulation, and (3) limiting size using film resolution are…

  20. Remote Sensing of Earth and Environment

    ERIC Educational Resources Information Center

    Schertler, Ronald J.

    1974-01-01

    Discusses basic principles of remote sensing applications and five areas of the earth resources survey program: agriculture and forestry production; geography, cartography, cultural resources; geology and mineral resources; hydrology and water resources; and oceanography and marine resources. Indicates that information acquisition is the first…

  1. Wave climate assessment by satellite remote sensing

    SciTech Connect

    Barstow, S.F.; Krogstad, H.E.

    1995-12-31

    Satellite remote sensing is quickly becoming a major information source for wave climate assessments. The present paper surveys various measurement principles and illustrates applications of satellite altimeter wave data from both the GEOSAT, Topex/Poseidon and ERS-1 Exact Repeat missions. The paper also discusses use of Wave Mode and Image Mode SAR data obtained by ERS-1.

  2. Multivariate Density Estimation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1983-01-01

    Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.

  3. Remote Sensing Analysis of Forest Disturbances

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P. (Inventor)

    2015-01-01

    The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.

  4. Remote sensing analysis of forest disturbances

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P. (Inventor)

    2012-01-01

    The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.

  5. Second Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L. (Editor); Witt, R. G. (Editor); Kugelmann, D. (Editor)

    1981-01-01

    Participants from state and local governments share experiences in remote sensing applications with one another and with users in the Federal government, universities, and the private sector during technical sessions and forums covering agriculture and forestry; land cover analysis and planning; surface mining and energy; data processing; water quality and the coastal zone; geographic information systems; and user development programs.

  6. An autonomous expendable data collection device for remote environmental sensing

    SciTech Connect

    DeRoos, B.G. ); Downing, J.P. ); McCoy, K.O. )

    1992-06-01

    An Autonomous Expendable Conductivity-Temperature-Depth Profiler (AXCTD) for profiling temperature, conductivity, pressure, and other parameters in remote oceanic regions was developed. The AXCTD is a microcomputer-controlled sensor package that can be deployed by unskilled operators from ships or aircraft. The AXCID records two CID profiles (one during descent and another during ascent) and CTD times series while on the bottom and adrift at the surface. Recorded data are transmitted to an ARGOS satellite with ground-positioning capabilities. Successful sea tests of a prototype AXCI7D, completed in 1989, are reported in this paper. The AXCTD can provide sea truth'' for remote sensing, perform environmental and military surveillance missions, and acquire time-series and synoptic data for computer models.

  7. An autonomous expendable data collection device for remote environmental sensing

    SciTech Connect

    DeRoos, B.G.; Downing, J.P.

    1992-06-01

    An Autonomous Expendable Conductivity-Temperature-Depth Profiler (AXCTD) for profiling temperature, conductivity, pressure, and other parameters in remote oceanic regions was developed. The AXCTD is a microcomputer-controlled sensor package that can be deployed by unskilled operators from ships or aircraft. The AXCID records two CID profiles (one during descent and another during ascent) and CTD times series while on the bottom and adrift at the surface. Recorded data are transmitted to an ARGOS satellite with ground-positioning capabilities. Successful sea tests of a prototype AXCI7D, completed in 1989, are reported in this paper. The AXCTD can provide ``sea truth`` for remote sensing, perform environmental and military surveillance missions, and acquire time-series and synoptic data for computer models.

  8. Hyperspectral Remote Sensing of Foliar Nitrogen Content

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Moettus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Carmona, Pedro Latorre; Kaufmann, Robert K.; Lewis, Philip; Disney, Mathias I.; Vanderbilt, Vern; Davis, Anthony B.; Baret, Frederic; Jacquemoud, Stephane; Lyapustin, Alexei; Myneni, Ranga B.

    2013-01-01

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact - it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  9. Hyperspectral remote sensing of foliar nitrogen content.

    PubMed

    Knyazikhin, Yuri; Schull, Mitchell A; Stenberg, Pauline; Mõttus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Latorre Carmona, Pedro; Kaufmann, Robert K; Lewis, Philip; Disney, Mathias I; Vanderbilt, Vern; Davis, Anthony B; Baret, Frédéric; Jacquemoud, Stéphane; Lyapustin, Alexei; Myneni, Ranga B

    2013-01-15

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact--it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  10. NASA's Applied Remote Sensing Training (ARSET) Webinar Series

    Atmospheric Science Data Center

    2016-07-12

    NASA's Applied Remote Sensing Training (ARSET) Webinar Series Tuesday, July 12, 2016 ... you of a free training opportunity: Introduction to Remote Sensing for Air Quality Applications Webinar Series Beginning in ...

  11. Remote sensing and snowpack management

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1974-01-01

    The present work describes the use of an airborne electromagnetic sensing system for measuring snowpack depth, density, and water content. A transmitter sends a sequence of pulses of stepped frequencies, and the reflections are measured by a sensitive receiver. The combination of the snowpack and the earth interacts with the electromagnetic wave so as to modify the characteristics of the reflected signals. The variation of the reflected intensity with frequency provides the desired data. A theoretical analysis of return signal and snowpack parameter relationships is given, and the results of experimental verification of the theory are discussed.

  12. Bibliography of Remote Sensing Techniques Used in Wetland Research.

    DTIC Science & Technology

    1993-01-01

    remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,

  13. Superflux I, II, and III experiment design: Remote sensing aspects

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.; Esaias, W. E.; Hypes, W. D.

    1981-01-01

    The Chesapeake Bay plume study called Superflux is described. The study was initiated to incorporate the disciplines of both resources management and remote sensing in accomplishing the following objectives: (1) process oriented research to understand the impact of estuarine outflows on continental shelf ecosystems; (2) monitoring and assessment to delineate the role of remote sensing in future monitoring and assessment programs; and (3) remote sensing research: to advance the state of the art in remote sensing systems as applied to sensing of the marine environment, thereby hastening the day when remote sensing can be used operationally for monitoring and assessment and for process oriented research.

  14. Physiological Indicators of Workload in a Remotely Piloted Aircraft Simulation

    DTIC Science & Technology

    2015-10-01

    AFRL-RH-WP-TR-2015-0092 Physiological Indicators of Workload in a Remotely Piloted Aircraft Simulation Michael Hoepf Oak Ridge...2015-10-07 Interim Report 17 October 2014 – 1 October 2015 4. TITLE AND SUBTITLE Physiological Indicators of Workload in a Remotely Piloted...operations, the current research investigated the feasibility of using physiological measures to assess cognitive workload. Two RPA operators were

  15. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  16. GPS Remote Sensing Measurements Using Aerosonde UAV

    NASA Technical Reports Server (NTRS)

    Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.

    2005-01-01

    In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.

  17. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  18. Remote sensing using MIMO systems

    DOEpatents

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  19. History and future of remote sensing technology and education

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1980-01-01

    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  20. Education in Environmental Remote Sensing: Potentials and Problems.

    ERIC Educational Resources Information Center

    Kiefer, Ralph W.; Lillesand, Thomas M.

    1983-01-01

    Discusses remote sensing principles and applications and the status and needs of remote sensing education in the United States. A summary of the fundamental policy issues that will determine remote sensing's future role in environmental and resource managements is included. (Author/BC)

  1. Reflections on Earth--Remote-Sensing Research from Your Classroom.

    ERIC Educational Resources Information Center

    Campbell, Bruce A.

    2001-01-01

    Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)

  2. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  3. Remote rainfall sensing for landslide hazard analysis

    USGS Publications Warehouse

    Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay

    2001-01-01

    Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.

  4. Role of remote sensing in documenting living resources

    NASA Technical Reports Server (NTRS)

    Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.

    1978-01-01

    Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.

  5. Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing.

    PubMed

    Tan, Songxin; Narayanan, Ram M

    2004-04-10

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  6. Remote sensing for the geobotanical and biogeochemical assessment of environmental contamination

    SciTech Connect

    Wickham, J.; Chesley, M.; Lancaster, J.; Mouat, D.

    1993-01-01

    Under Contract Number DE-AC08-90NV10845, the DOE has funded the Desert Research Institute (DRI) to examine several aspects of remote sensing, specifically with respect to how its use might help support Environmental Restoration and Waste Management (ERWM) activities at DOE sites located throughout the country. This report represents partial fulfillment of DRI`s obligations under that contract and includes a review of relevant literature associated with remote sensing studies and our evaluation and recommendation as to the applicability of various remote sensing techniques for DOE needs. With respect to DOE ERWM activities, remote sensing may be broadly defined as collecting information about a target without actually being in physical contact with the object. As the common platforms for remote sensing observations are aircraft and satellites, there exists the possibility to rapidly and efficiently collect information over DOE sites that would allow for the identification and monitoring of contamination related to present and past activities. As DOE sites cover areas ranging from tens to hundreds of square miles, remote sensing may provide an effective, efficient, and economical method in support of ERWM activities. For this review, remote sensing has been limited to methods that employ electromagnetic (EM) energy as the means of detecting and measuring target characteristics.

  7. Remote Sensing and Remote Control Activities in Europe and America: Part 2--Remote Sensing Ground Stations in Europe,

    DTIC Science & Technology

    2007-11-02

    Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.

  8. Symmetry properties in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.

    1992-01-01

    This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.

  9. Advancing remote sensing of volcanic clouds

    NASA Astrophysics Data System (ADS)

    Rose, William I.

    A second international workshop on the remote sensing of volcanic clouds was recently held to improve and expand the use of satellite-based remote sensing data for hazard mitigation and other research purposes, such as volcano-atmosphere interactions and chemical and meteorological effects on the troposphere and stratosphere. Forty-six researchers attended, representing 11 countries, 10 universities, and several government meteorological and volcanological organizations. Also represented were the Volcanic Ash Aviation Centers in Washington, D.C.; Anchorage; Montreal; Darwin; London; and Tokyo, which monitor volcanic ash plumes and predict their displacement within their areas of responsibility The nine VAACs were established by the International Civil Aviation Organization (ICAO) to address various aviation concerns related to volcanic ash.

  10. Remote sensing of volcanic clouds shows promise

    NASA Astrophysics Data System (ADS)

    Rose, William I.

    An international workshop on the Remote Sensing of Volcanic Clouds was held July 29-August 3, 2001, at Michigan Technological University The workshop's goal was to improve and expand the use of satellite-based remote sensing data for hazard mitigation and other research purposes, such as volcano-atmosphere interactions and chemical and meteorological effects on the troposphere and stratosphere. Forty-six researchers attended, representing 11 countries, 9 universities, and several government meteorological and volcanological organizations, as well as the Volcanic Ash Aviation Centers in Washington, D.C., Anchorage, Montreal, Darwin, London, and Toulouse. (The Volcanic Ash Aviation Centers monitor volcanic ash plumes within their assigned airspace. There are 9 in all and they were created at the request of the International Civil Aviation Organization (ICAO) and other aviation concerns.)

  11. Remote tactile sensing glove-based system.

    PubMed

    Culjat, Martin O; Son, Ji; Fan, Richard E; Wottawa, Christopher; Bisley, James W; Grundfest, Warren S; Dutson, Erik P

    2010-01-01

    A complete glove-based master-slave tactile feedback system was developed to provide users with a remote sense of touch. The system features a force-sensing master glove with piezoresistive force sensors mounted at each finger tip, and a pressure-transmitting slave glove with silicone-based pneumatically controlled balloon actuators, mounted at each finger tip on another hand. A control system translates forces detected on the master glove, either worn by a user or mounted on a robotic hand, to discrete pressure levels at the fingers of another user. System tests demonstrated that users could accurately identify the correct finger and detect three simultaneous finger stimuli with 99.3% and 90.2% accuracy, respectively, when the subjects were located in separate rooms. The glove-based tactile feedback system may have application to virtual reality, rehabilitation, remote surgery, medical simulation, robotic assembly, and military robotics.

  12. Other remote sensing systems: Retrospect and outlook

    SciTech Connect

    Not Available

    1982-01-01

    The history of remote sensing is reviewed and the scope and versatility of the several remote sensing systems already in orbit are discussed, especially those with sensors operating in other EM spectral modes. The multisensor approach is examined by interrelating LANDSAT observations with data from other satellite systems. The basic principles and practices underlying the use of thermal infrared and radar sensors are explored and the types of observations and interpretations emanating from the Nimbus, Heat Capacity Mapping Mission, and SEASAT programs are examined. Approved or proposed Earth resources oriented missions for the 1980's previewed include LANDSAT D, Stereosat, Gravsat, the French satellite SPOT-1, and multimission modular spacecraft launched from space shuttle. The pushbroom imager, the linear array pushbroom radiometer, the multispectral linear array, and the operational LANDSAT observing system, to be designed the LANDSAT-E series are also envisioned for this decade.

  13. The Texas Remote Sensing Training Project

    NASA Technical Reports Server (NTRS)

    Wells, J. B.

    1975-01-01

    The project was designed to train federal, state and regional agency managers, scientists and engineers. A one-week seminar was designed and implemented to build vocabulary, introduce technical subject areas and give students enough training to allow them to relate remote sensing technology to operational agency projects. The seminar was designed to perform the dual function of conveying enough remote sensing information to be of value as a stand-alone and preparing students for detailed pattern recognition training. The LARSYS III portion of the training project was executed exactly as designed in the LARSYS training materials package; the LARSYS package did not contain a LANDSAT training module. Two LANDSAT training modules were developed using Texas LANDSAT data. One module contained central Texas data and the second module contained coastal zone data.

  14. Instrumentation for remote sensing over fiber optics

    NASA Astrophysics Data System (ADS)

    Hirschfeld, T.; Haugen, G.; Milanovich, F. P.

    1983-09-01

    The sensing and analytical abilities of the laser-fluorescence spectrometer was extended beyond the physical confines of the laboratory by means of communications-grade optical fibers. These fiber probes are extremely rugged, compared with sensitive laboratory equipment, and also extremely inexpensive. Sensitive chemical analyses may be performed in hostile environments without risking damage to the laser and the spectrometer. Special-purpose optrodes that are sensitive to selected chemicals were produced. With multiplexing, a number of fibers whose terminals are at widely scattered locations, gathering information in one central instrument without the expense and delay involved in manual sample gathering are scanned. A remote analyzer for monitoring rare earth ion migration in a nuclear-waste repository, an environment too hostile for any previous remote sensing device is being developed. Optrodes sensitive to a wide variety of non-chemical stimuli are being developed.

  15. Computer applications in remote sensing education

    NASA Technical Reports Server (NTRS)

    Danielson, R. L.

    1980-01-01

    Computer applications to instruction in any field may be divided into two broad generic classes: computer-managed instruction and computer-assisted instruction. The division is based on how frequently the computer affects the instructional process and how active a role the computer affects the instructional process and how active a role the computer takes in actually providing instruction. There are no inherent characteristics of remote sensing education to preclude the use of one or both of these techniques, depending on the computer facilities available to the instructor. The characteristics of the two classes are summarized, potential applications to remote sensing education are discussed, and the advantages and disadvantages of computer applications to the instructional process are considered.

  16. Review of oil spill remote sensing.

    PubMed

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing.

  17. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  18. Measurement Strategies for Remote Sensing Applications

    SciTech Connect

    Weber, P.G.; Theiler, J.; Smith, B.; Love, S.P.; LaDelfe, P.C.; Cooke, B.J.; Clodius, W.B.; Borel, C.C.; Bender, S.C.

    1999-03-06

    Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets.

  19. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.

    1975-01-01

    The remote sensing studies of (a) cultivated peanut areas in Southeastern Virginia; (b) studies at the Virginia Truck and Ornamentals Research Station near Painter, Virginia, the Eastern Virginia Research Station near Warsaw, Virginia, the Tidewater Research and Continuing Education Center near Suffolk, Virginia, and the Southern Piedmont Research and Continuing Education Center Blackstone, Virginia; and (c) land use classification studies at Virginia Beach, Virginia are presented. The practical feasibility of using false color infrared imagery to detect and determine the areal extent of peanut disease infestation of Cylindrocladium black rot and Sclerotinia blight is demonstrated. These diseases pose a severe hazard to this major agricultural food commodity. The value of remote sensing technology in terrain analyses and land use classification of diverse land areas is also investigated. Continued refinement of spectral signatures of major agronomic crops and documentation of pertinent environmental variables have provided a data base for the generation of an agricultural-environmental prediction model.

  20. The California Cooperative Remote Sensing Project

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Sheffner, Edwin J.

    1988-01-01

    The USDA, the California Department of Water Resources (CDWR), the Remote Sensing Research Program of the University of California (UCB) and NASA have completed a 4-yr cooperative project on the use of remote sensing in monitoring California agriculture. This report is a summary of the project and the final report of NASA's contribution to it. The cooperators developed procedures that combined the use of LANDSAT Multispectral Scanner imagery and digital data with good ground survey data for area estimation and mapping of the major crops in California. An inventory of the Central Valley was conducted as an operational test of the procedures. The satellite and survey data were acquired by USDA and UCB and processed by CDWR and NASA. The inventory was completed on schedule, thus demonstrating the plausibility of the approach, although further development of the data processing system is necessary before it can be used efficiently in an operational environment.

  1. Flood Management Enhancement Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Romanowski, Gregory J.

    1997-01-01

    SENTAR, Inc., entered into a cooperative agreement with NASA Goddard Space Flight Center (GSFC) in December 1994. The intent of the NASA Cooperative Agreement was to stimulate broad public use, via the Internet, of the very large remote sensing databases maintained by NASA and other agencies, thus stimulating U.S. economic growth, improving the quality of life, and contributing to the implementation of a National Information Infrastructure. SENTAR headed a team of collaborating organizations in meeting the goals of this project. SENTAR's teammates were the NASA Marshall Space Flight Center (MSFC) Global Hydrology and Climate Center (GHCC), the U.S. Army Space and Strategic Defense Command (USASSDC), and the Alabama Emergency Management Agency (EMA). For this cooperative agreement, SENTAR and its teammates accessed remotely sensed data in the Distributed Active Archive Centers, and other available sources, for use in enhancing the present capabilities for flood disaster management by the Alabama EMA. The project developed a prototype software system for addressing prediction, warning, and damage assessment for floods, though it currently focuses on assessment. The objectives of the prototype system were to demonstrate the added value of remote sensing data for emergency management operations during floods and the ability of the Internet to provide the primary communications medium for the system. To help achieve these objectives, SENTAR developed an integrated interface for the emergency operations staff to simplify acquiring and manipulating source data and data products for use in generating new data products. The prototype system establishes a systems infrastructure designed to expand to include future flood-related data and models or to include other disasters with their associated remote sensing data requirements and distributed data sources. This report covers the specific work performed during the seventh, and final, milestone period of the project, which

  2. Remote sensing and geographically based information systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. C.

    1977-01-01

    A structure is proposed for a geographically-oriented computer-based information system applicable to the analysis of remote sensing digital data. The structure, intended to answer a wide variety of user needs, would permit multiple views of the data, provide independent management of data security, quality and integrity, and rely on automatic data filing. Problems in geographically-oriented data systems, including those related to line encoding and cell encoding, are considered.

  3. Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Short, N. M. (Editor)

    1981-01-01

    The roles and activities of NASA and the National Conference of State Legislatures in fostering remote sensing technology utilization by the states and in promoting interstate communication and cooperation are reviewed. The reduction and interpretation of LANDSAT MSS and aerial reconnaissance data for resources management and environment assessment are described as well as resource information systems, and the value of SEASAT synthetic aperture radar and LANDSAT 4 data.

  4. Information mining in remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and

  5. Adaptive Bayes classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Raulston, H. S.; Pace, M. O.; Gonzalez, R. C.

    1975-01-01

    An algorithm is developed for a learning, adaptive, statistical pattern classifier for remotely sensed data. The estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest, and (2) a projection of the parameters in time and space. The results reported are for Gaussian data in which the mean vector of each class may vary with time or position after the classifier is trained.

  6. Photographic Remote Sensing of Sick Citrus Trees

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.

    1971-01-01

    Remote sensing with infrared color aerial photography (Kodak Ektachrome Infrared Aero 8443 film) for detecting citrus tree anomalies is described. Illustrations and discussions are given for detecting nutrient toxicity symptoms, for detecting foot rot and sooty mold fungal diseases, and for distinguishing among citrus species. Also, the influence of internal leaf structure on light reflectance, transmittance, and absorptance are considered; and physiological and environmental factors that affect citrus leaf light reflectance are reviewed briefly and illustrated.

  7. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  8. Laser Remote Sensing of Atmospheric Pollutants.

    DTIC Science & Technology

    1982-09-30

    LIDAR Appendix 8: Limitations of Signal Averaging due to Temporal 26 Correlation in Laser Remote-Sensing Measurements Ac cessiol For ICTAB :16t is et ion...following: (1) the initial development of a heterodyne-detection, differential-absorption LIDAR (DIAL) system, (2) the development of a computerized data...near 10 pm. The outputs from these two lasers were directed out the laboratory window and the LIDAR returns collected with a telescope. Through use of

  9. Post senescent grass canopy remote sensing

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1978-01-01

    Analysis of in situ collected spectral reflectance data from a dormant or senescent grass canopy showed a direct relationship existed between spectral reflectance and biomass for the 0.50-0.80 micron spectral region. The data, collected four weeks after the end of the growing season, indicated that post senescent remote sensing of grass canopy biomass is possible and helps to elucidate the spectral contribution of recently dead vegetation in mixed live/dead canopy situations.

  10. Approaches to remote sensing data analysis

    USGS Publications Warehouse

    Pettinger, Lawrence R.

    1978-01-01

    Objectives: To present an overview of the essential steps in the remote sensing data analysis process, and to compare and contrast manual (visual) and automated analysis methods Rationale: This overview is intended to provide a framework for choosing a manual of digital analysis approach to collecting resource information. It can also be used as a basis for understanding/evaluating invited papers and poster sessions during the Symposium

  11. Remote Sensing of Landscapes with Spectral Images

    NASA Astrophysics Data System (ADS)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  12. Application of Remote Sensing in Agriculture

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Jan

    2014-12-01

    With increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.

  13. Remote sensing application on geothermal exploration

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2013-09-01

    Geothermal energy is produced when water coming down from the surface of the earth and met with magma or hot rocks, which the heat comes from the very high levels of magma rises from the earth. This process produced a heated fluid supplied to a power generator system to finally use as energy. Geothermal field usually associated with volcanic area with a component from igneous rocks and a complex geological structures. The fracture and fault structure are important geological structures associated with geothermal. Furthermore, their geothermal manifestations also need to be evaluated associated their geological structures. The appearance of a geothermal surface manifestation is close to the structure of the fracture and the caldera volcanic areas. The relationship between the fault and geothermal manifestations can be seen in the form of a pattern of alignment between the manifestations of geothermal locations with other locations on the fault system. The use of remote sensing using electromagnetic radiation sensors to record images of the Earth's environment that can be interpreted to be a useful information. In this study, remote sensing was applied to determine the geological structure and mapping of the distribution of rocks and alteration rocks. It was found that remote sensing obtained a better localize areas of geothermal prospects, which in turn could cut the chain of geothermal exploration to reduce a cost of geothermal exploration.

  14. Autofocus method for scanning remote sensing cameras.

    PubMed

    Lv, Hengyi; Han, Chengshan; Xue, Xucheng; Hu, Changhong; Yao, Cheng

    2015-07-10

    Autofocus methods are conventionally based on capturing the same scene from a series of positions of the focal plane. As a result, it has been difficult to apply this technique to scanning remote sensing cameras where the scenes change continuously. In order to realize autofocus in scanning remote sensing cameras, a novel autofocus method is investigated in this paper. Instead of introducing additional mechanisms or optics, the overlapped pixels of the adjacent CCD sensors on the focal plane are employed. Two images, corresponding to the same scene on the ground, can be captured at different times. Further, one step of focusing is done during the time interval, so that the two images can be obtained at different focal plane positions. Subsequently, the direction of the next step of focusing is calculated based on the two images. The analysis shows that the method investigated operates without restriction of the time consumption of the algorithm and realizes a total projection for general focus measures and algorithms from digital still cameras to scanning remote sensing cameras. The experiment results show that the proposed method is applicable to the entire focus measure family, and the error ratio is, on average, no more than 0.2% and drops to 0% by reliability improvement, which is lower than that of prevalent approaches (12%). The proposed method is demonstrated to be effective and has potential in other scanning imaging applications.

  15. National activities in remote sensing: a Canadian perspective

    NASA Astrophysics Data System (ADS)

    Howe, Bruce

    A brief review of the federal government's role in developing remote sensing activities in Canada over the years is given. The struggle to map a large country, together with an interest in space, brought about the Canadian remote sensing program. In particular, the paper focuses on the role of Energy, Mines and Resources Canada in coordinating research activities by all levels of government in remote sensing, thus fostering the growth of the remote sensing industry in Canada. An overview is given of the expanding remote sensing market. In addition, the paper looks at the present applications of remote sensing to agriculture, forestry and the study of ice caps and fresh water, for example, as well as its use in assessing and preventing environmental disasters. The paper concludes by stressing the importance of remote sensing in meeting the "Challenge of the 90's"—making sustainable development a way of life.

  16. Sensing Horizontal Heading in Aircraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Cowdin, K. T.

    1986-01-01

    Modified gyroscopic system indicates geographic heading even in nearly vertical flight. Gyroscopes and gimbals of system assume this configuration when aircraft has pitched into vertical dive. Outer roll gimbal fixed with respect to aircraft frame in this orientation. Now, azimuth signal in modified system indicates what aircraft heading would be if it were to resume level flight from climb or dive.

  17. Remote temperature distribution sensing using permanent magnets

    SciTech Connect

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; Roberts, Christine C.; Van Bloemen Waanders, Bart G.; Nemer, Martin B.

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of nine magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.

  18. Remote Sensing of Arctic Landscape Dynamics

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin M.

    Amplified warming in the Arctic has likely increased the rate of landscape change and disturbances in northern high latitude regions. Remote sensing provides a valuable tool for assessing the spatial and temporal patterns associated with arctic landscape dynamics over annual, decadal, and centennial time scales. In this dissertation, I focused on remote sensing studies associated with four primary components of arctic landscape change and disturbance: (1) permafrost coastline erosion, (2) thermokarst lake dynamics, (3) tundra fires, and (4) using repeat airborne LiDAR for the measurement of vertical deformation in an arctic coastal lowland landscape. By combining observations from several high resolution satellite images for a 9 km segment of the Beaufort Sea Coast between 2008 and 2012, I demonstrated that the report of heightened erosion at the beginning of the 2000s was equaled or exceeded in every year except 2010 and that the mean annual erosion rate was tightly coupled to the number of open water days and the number of storms. By combining historical aerial photographs from the 1950s and 1980s with recent high-resolution satellite imagery from the mid-2000s, I assessed the expansion and drainage of thermokarst lakes on the northern Seward Peninsula. I found that more than half of the lakes in the study area were expanding as a result of permafrost degradation along their margins but that the rate of expansion was fairly consistent (0.35 and 0.39 m/yr) between the 1950s and 1980s and 1980s and mid-2000s, respectively. However, it appeared that in a number of instances that expansion of lakes led to the lateral drainage and that over the 55-year study period the total lake area decreased by 24%. While these studies highlight the utility of quantifying disturbance during the remotely sensed image archive period (~1950s to present) they are inherently limited temporally. Thus, I also demonstrated techniques in which field studies and remote sensing data could be

  19. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  20. The 1994 International Geoscience and Remote Sensing Symposium (IGARSS 1994)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The papers presented at the symposium focus on remote sensing, particularly on global monitoring of the earth with emphasis on the solution of environmental problems. Topics discussed include remote sensing of clouds and earth troposphere, sea ice remote sensing, optical remote sensing, land monitoring and thermal sensing, atmospheric sounding and monitoring, atmospheric correction, and satellite imaging data. Other subject areas are ecosystems and vegetation monitoring; ocean winds and surface scattering; ocean waves, currents and bathymetry; satellite oceanography; SAR for remote sensing; neural nets application to remote sensing; geographical information systems; and electromagnetic wave propagation. Also discussed environmental monitoring using ERS-1; Topex/Poseidon results; spaceborne instruments; image processing and classification algorithms; and future space missions.

  1. The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS)

    NASA Astrophysics Data System (ADS)

    Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.

    2014-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency

  2. Personnel Selection Influences on Remotely-Piloted Aircraft Human-System Integration

    DTIC Science & Technology

    2015-01-30

    Journal Article 3. DATES COVERED (From - To) 1 February 2015 – 31 May 2015 4. TITLE AND SUBTITLE Personnel Selection Influences on Remotely- Piloted ...HSI process in the context of remotely- piloted aircraft systems. 15. SUBJECT TERMS Remotely- piloted aircraft, human-system integration, personnel...Selection Influences on Remotely- Piloted Aircraft Human-System Integration Thomas R. Carretta; Raymond E. King Introduction: Human-system integration

  3. Crop Identification Technology Assessment for Remote Sensing (CITARS)

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Cary, T. K.; Davis, B. J.; Swain, P. H.

    1975-01-01

    The results of classifications and experiments performed for the Crop Identification Technology Assessment for Remote Sensing (CITARS) project are summarized. Fifteen data sets were classified using two analysis procedures. One procedure used class weights while the other assumed equal probabilities of occurrence for all classes. In addition, 20 data sets were classified using training statistics from another segment or date. The results of both the local and non-local classifications in terms of classification and proportion estimation are presented. Several additional experiments are described which were performed to provide additional understanding of the CITARS results. These experiments investigated alternative analysis procedures, training set selection and size, effects of multitemporal registration, the spectral discriminability of corn, soybeans, and other, and analysis of aircraft multispectral data.

  4. Airborne remote sensing applications to coastal wave research

    NASA Astrophysics Data System (ADS)

    Hwang, Paul A.; Walsh, Edward J.; Krabill, William B.; Swift, Robert N.; Manizade, Serdar S.; Scott, John F.; Earle, Marshall D.

    1998-08-01

    Airborne sensors provide effective coverage of a broad region and are suitable for large-scale experiments. In this paper, two scanning sensors that use the direct ranging technique to measure surface wave displacement are described. On a NASA P-3 aircraft the sensors can complete one run across a 100-km continental shelf in 17 min. A case study is presented using radar-measured, two-dimensional surface topography to derive wave damping due to bottom friction. The results are in good agreement with an analytical model based on a quadratic formulation of bottom shear stress. This study demonstrates that remote sensing measurements can be used for rapid characterization of surface waves on the continental shelf and in coastal regions. Examples illustrated in this paper include the derivation of wavenumber spectra and estimation of the dissipation rate of shoaling ocean swell.

  5. Exploration of Marine Resources by Photographic Remote Sensing

    NASA Technical Reports Server (NTRS)

    Duntley, S. Q.; Stevenson, R. E.; Boileau, A. R.

    1971-01-01

    The interpretation of photographs in oceanographic remote sensing is discussed. The photographs were made from spacecraft with two exceptions. Two photographs were made from aircraft. There were three types of film used to make the photographs: black-and-white, color, and color IR. Black and white photography is well known; it presents pictures in various shades of gray from black to white. Color film presents pictures in color, very nearly as the human eye sees them. Color IR film presents pictures in color also but not as seen by the human eye. Blue becomes much deeper blue, green is suppressed to some extent, and red is recorded beyond the visual range of the human eye, out in the near infrared. The most noticeable effect of the use of color IR film is that leaf materials which are highly reflective in the infrared part of the spectrum are presented as red.

  6. Exploitation of commercial remote sensing images: reality ignored?

    NASA Astrophysics Data System (ADS)

    Allen, Paul C.

    1999-12-01

    The remote sensing market is on the verge of being awash in commercial high-resolution images. Market estimates are based on the growing numbers of planned commercial remote sensing electro-optical, radar, and hyperspectral satellites and aircraft. EarthWatch, Space Imaging, SPOT, and RDL among others are all working towards launch and service of one to five meter panchromatic or radar-imaging satellites. Additionally, new advances in digital air surveillance and reconnaissance systems, both manned and unmanned, are also expected to expand the geospatial customer base. Regardless of platform, image type, or location, each system promises images with some combination of increased resolution, greater spectral coverage, reduced turn-around time (request-to- delivery), and/or reduced image cost. For the most part, however, market estimates for these new sources focus on the raw digital images (from collection to the ground station) while ignoring the requirements for a processing and exploitation infrastructure comprised of exploitation tools, exploitation training, library systems, and image management systems. From this it would appear the commercial imaging community has failed to learn the hard lessons of national government experience choosing instead to ignore reality and replicate the bias of collection over processing and exploitation. While this trend may be not impact the small quantity users that exist today it will certainly adversely affect the mid- to large-sized users of the future.

  7. Applications of remote-sensing data in Alaska

    NASA Technical Reports Server (NTRS)

    Miller, J. M. (Principal Investigator)

    1977-01-01

    Public and private agencies were introduced to the use of remotely sensed data obtained by both satellite and aircraft, and benefitted from facilities for data processing enhancement and interpretation as well as from the institute's data library. Cooperative ventures involving the performance of operational activities included assistance to the Bureau of Land Management in the suppression of wildfires; the selection of sites for power line right-of-way; the mapping of leads in sea ice; determination of portions of public lands to be allocated for small scale farming; the identification of areas for large scale farming of barley; the observation of coastal processes and sediment transport near Prudhoe Bay; the establishment of a colar infrared file of the entire state; and photomapping for geological surveys. Monitoring of the outer continental shelf environment and reindeer herds was also conducted. Institutional constraints to full utilization of satellite remote sensing in the state are explored and plans for future activites include the generation of awareness by government agencies, the training of state personnel, and improving coordination and communication with users.

  8. Remote Sensing as a Demonstration of Applied Physics.

    ERIC Educational Resources Information Center

    Colwell, Robert N.

    1980-01-01

    Provides information about the field of remote sensing, including discussions of geo-synchronous and sun-synchronous remote-sensing platforms, the actual physical processes and equipment involved in sensing, the analysis of images by humans and machines, and inexpensive, small scale methods, including aerial photography. (CS)

  9. International Models and Methods of Remote Sensing Education and Training.

    ERIC Educational Resources Information Center

    Anderson, Paul S.

    A classification of remote sensing courses throughout the world, the world-wide need for sensing instruction, and alternative instructional methods for meeting those needs are discussed. Remote sensing involves aerial photointerpretation or the use of satellite and other non-photographic imagery; its focus is to interpret what is in the photograph…

  10. Low-cost remote chemical sensing

    NASA Astrophysics Data System (ADS)

    Holland, Stephen Keith

    The intentional or accidental release of a hazardous chemical, such as a chemical warfare agent (CWA) or a toxic industrial chemical (TIC), could endanger many lives. In domestic chemical release situations, a rapid response, which is critical for casualty minimization, requires that primary and first responders have the ability to rapidly probe the threatened area from a safe distance. First responders require sensors that are portable, remote (stand-off), sensitive, robust, and cost effective. While a number of remote chemical sensors are being developed, none meet the requirements of the first responder community due to their cost, complexity, and size. This work proposes a unique approach to hazardous chemical detection based on low-cost, low-energy, uncooled pyroelectric infrared detectors fitted with narrow bandpass filters. Prototype remote differential absorption radiometers (DARs) based on low-cost pyroelectric detectors fitted with relatively broad (30 cm-1) bandpass filters for sensitivity to hazardous chemical simulants, including methanol, dimethyl methylphosphonate (DMMP), and diisopropyl methylphosphonate (DIMP), were developed and tested. A methanol detection limit of 0.014 atm cm was demonstrated with the prototype sensor. This is well below military prescribed detection limits and demonstrates that sensors based on uncooled pyroelectric detectors can achieve sensitivities exceeding military requirements. Once chemical sensitivity was demonstrated, a prototype multi-spectral sensor comprised of 8 pyroelectric detectors. The measured methanol detection limit for this sensor was 0.033 atm cm. This prototype exhibited a unique response to three hazardous chemical simulants which could be used to detect and to identify the chemical reliably. To improve chemical sensitivity in realistic sensing environments, correction for background effects, such as temperature variations and spectral emissivity characteristics, is required. A simple background

  11. Hyperspectral remote sensing of wild oyster reefs

    NASA Astrophysics Data System (ADS)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  12. Overview of international remote sensing through 2007

    NASA Astrophysics Data System (ADS)

    Glackin, David L.

    1997-12-01

    The field of Earth remote sensing is evolving from one that contains purely governmental and military standalone systems of high complexity and expense to one that includes an increasing number of commercial systems, focused missions using small satellites, and systems of lower complexity and cost. The evolution of the field from 1980 - 2007 is summarized in this paper, with emphasis on the rapid changes of international scope that are taking place in 1997 which will shape the future of the field. As of three years ago, seven counties had built and flown free-flying earth observation satellite systems. Projections are for the number of countries operating such systems to approximately double by three years from now. Rapid changes are taking place in terms of spatial resolution, spectral resolution, proliferation of small satellites, ocean color, commercialization and privatization. Several fully commercial high-resolution systems will be launched over the next three years. Partly commercial synthetic aperture radar (SAR) systems became a reality with the launch of Radarsat in 1995. Only a handful of small satellite remote sensing missions have been launched to date, while a large number will be launched over the next few years, including minisats from Australia, Brazil, Israel, Italy, South Korea, Taiwan, Thailand, and the USA, as well as microsats from many countries including Malaysia, Pakistan and South Africa. Systems with far greater spectral resolution will also become a reality as hyperspectral instruments are launched. In 1997, we truly stand on the cusp of tremendous change in the burgeoning field of Earth remote sensing.

  13. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  14. Perseus High Altitude Remotely Piloted Aircraft on Ramp

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle waits on Rogers Dry Lake in the pre-dawn darkness before a test flight at the Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the

  15. Spatial reasoning in remotely sensed data

    NASA Technical Reports Server (NTRS)

    Campbell, J.; Ehrich, R. W.; Elliott, D.; Haralick, R. M.; Wang, S.

    1981-01-01

    Photointerpreters employ a variety of implicit spatial models to provide interpretations from remotely sensed aerial or satellite imagery. In this paper one application is illustrated: how ridges and valleys can be automatically interpreted from Landsat imagery of a mountainous area, and how a relative elevation terrain model can be constructed from this interpretation. How to examine valleys for the possible presence of streams or rivers is shown, and how a spatial relational model can be set up to make a final interpretation of the river drainage network is explored.

  16. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  17. Applications of remote sensing to estuarine management

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Hennigar, H. F.

    1977-01-01

    Remote sensing was used in the resolution of estuarine problems facing federal and Virginia governmental agencies. A prototype Elizabeth River Surface Circulation Atlas was produced from photogrammetry to aid in oil spill cleanup and source identification. Aerial photo analysis twice led to selection of alternative plans for dredging and spoil disposal which minimized marsh damage. Marsh loss due to a mud wave from a highway dyke was measured on sequential aerial photographs. An historical aerial photographic sequence gave basis to a potential Commonwealth of Virginia legal claim to accreting and migrating coastal islands.

  18. Microwave remote sensing of hydrologic parameters

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1977-01-01

    A perspective on the implementation of microwave sensors in future airborne and spaceborne observations of hydrologic parameters is presented. The rationale is based on a review of the status and future trends of active (radar) and passive (radiometer) microwave research as applied to the remote sensing of soil moisture content, snowpack water equivalent, freeze/thaw boundaries, lake ice thickness, surface water area, and the specification of watershed runoff coefficients. Analyses and observations based on data acquired from ground based, airborne and spaceborne platforms, and an evaluation of advantages and limitations of microwave sensors are included.

  19. Remote sensing and geographically based information systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. C.

    1977-01-01

    The incorporation of remotely sensed digital data in a computer based information system is seen to be equivalent to the incorporation of any other spatially oriented layer of data. The growing interest in such systems indicates a need to develop a generalized geographically oriented data base management system that could be made commercially available for a wide range of applications. Some concepts that distinguish geographic information systems were reviewed, and a simple model which can serve as a conceptual framework for the design of a generalized geographic information system was examined.

  20. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  1. Estimating reforestation by means of remote sensing

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1981-01-01

    LANDSAT imagery at the scale of 1:250.000 and obtained from bands 5 and 7 as well as computer compatible tapes were used to evaluate the effectiveness of remotely sensed orbital data in inventorying forests in a 462,100 area of Brazil emcompassing the cities of Ribeirao, Altinopolis Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Santa Rita do Passa Quatro, and Santa Rosa do Viterbo. Visual interpretation of LANDSAT imagery shows that 37,766 hectares (1977) and 38,003.75 hectares (1979) were reforested areas of pine and eucalyptus species. An increment of 237.5 hectares was found during this two-year time lapse.

  2. Shape saliency for remote sensing image

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Hong, Huo; Fang, Tao; Li, Deren

    2007-11-01

    In this paper, a shape saliency measure for only shape feature of each object in the image is described. Instead biologically-inspired bottom-up Itti model, the dissimilarity is measured by the shape feature. And, Fourier descriptor is used for measuring dissimilarity in this paper. In the model, the object is determined as a salient region, when it is far different from others. Different value of the saliency is ranged to generate a saliency map. It is shown that the attention shift processing can be recorded. Some results from psychological images and remote sensing images are shown and discussed in the paper.

  3. Satellite remote sensing of meteorological parameters

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1983-01-01

    Recent advances in remote atmospheric sensing are briefly reviewed, with particular attention given to vertical temperature and humidity profiles, cloud structure, and wind. Present capabilities and projections of future improvements in accuracy and resolution are given for the Microwave Sounding Unit, High Resolution Infrared Sounder, Defence Meteorological Satellite Project, and VISSR Atmospheric Sounder. It is noted that future sounding systems will require (1) high spectral resolution; (2) multispectral observations of the atmosphere and the surface in order to correct for most of the geophysical processes contaminating the outgoing radiance; and (3) a control algorithm capable of using information from multispectral channels to identify those parameters that have errors larger than a specified value.

  4. Remote Sensing for Farmers and Flood Watching

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Applied Sciences Directorate, part of NASA s Science Mission Directorate, makes use of the Agency s remote-sensing capabilities to acquire detailed information about our home planet. It uses this information for a variety of purposes, ranging from increasing agricultural efficiency to protecting homeland security. Sensors fly over areas of interest to detect and record information that sometimes is not even visible from the ground with the human eye. Scientists analyze these data for a variety of purposes and make maps of the areas. These maps are often used to answer questions about the environment, weather, natural resources, community growth, and natural disasters.

  5. Spectrophotometric remote sensing of planets and satellites

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.; Cruikshank, D. P.

    1981-01-01

    The most recent comprehensive results on spectrophotometric remote sensing of planets and satellites are reviewed. The moon and terrestrial planets are considered in terms of individual surface elements, reflectance spectra being analyzed to show the composition of the soils of these bodies. For more distant, unresolved objects, including the asteroids, the Galilean satellites, the small satellites of Jupiter, the rings and satellites of Saturn and Uranus, as well as Triton and Pluto, the global or hemispheric averages of surface composition are the objects of study. The absorptions due to methane gas and frost are indicated.

  6. Remote Sensing of Inner Heliospheric Plasmas

    DTIC Science & Technology

    1992-12-15

    Colloquium 133 held in Iguazu , Argentina 2-6 August, 1991, Z. Svestka, B.V. Jackson and M.E. Machado, eds. Springer-Verlag, Heidelberg, (1992) (pg. 322 - 328...Physics, 399, the proceedings of IAU Colloquium 133 held in Iguazu , Argentina 2-6 August, 1991, Z. Svestka, B.V. Jackson and M.E. Machado, eds...133 on Eruptive Solar Flares held in Iguazu , Argentina 2-6 Au- gust (1991). 9. Jackson, B.V. "Remote Sensing Observations of Mass Ejections and Shocks

  7. Remote Sensing of Inner Heliospheric Plasmas

    DTIC Science & Technology

    1991-11-14

    Solar Mass Ejection hnager in Low-Earth Orbit", in press in the IAU Colloquium 133 proceedings on Eruptive Solar Flares held in Iguazu , Argentina 2-6...Colloquium 133 proceedings on Eruptive Solar Flares held in Iguazu , Argentina 2-6 August (1991) (10 pages). + Work In Progress 1. Jackson, B.V. and H.R...34, presented at IAU Colloquium 133 on Eruptive Solar Flares held in Iguazu , Argentina 2-6 August (1991). 9. Jackson, B.V. "Remote Sensing Observations of

  8. Evaluation of reforestation using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1982-01-01

    The utilization of remotely sensed orbital data for forestry inventory. The study area (approximately 491,100 ha) encompasses the municipalities of Ribeirao Preto, Altinopolis, Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Sant Rita do Passa Quatro and Santa Rosa do Viterbo (Sao Paulo State). Materials used were LANDSAT data from channels 5 and 7 (scale 1:250,000) and CCT's. Visual interpretation of the imagery showed that for 1977 a total of 37,766.00 ha and for 1979 38,003.75 ha were reforested with Pinus and Eucalyptus within the area under study. The results obtained show that LANDSAT data can be used efficiently in forestry inventory studies.

  9. Minimum distance classification in remote sensing

    NASA Technical Reports Server (NTRS)

    Wacker, A. G.; Landgrebe, D. A.

    1972-01-01

    The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.

  10. Remote sensing for control of tsetse flies

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1976-01-01

    Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.

  11. Branching model for vegetation. [polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Kong, J. A.; Jao, Jen K.; Shin, Robert T.; Le Toan, Thuy

    1992-01-01

    In the present branching model for remote sensing of vegetation, the frequency and angular responses of a two-scale cylinder cluster are calculated to illustrate the importance of vegetation architecture. Attention is given to the implementation of a two-scale branching model for soybeans, where the relative location of soybean plants is described by a pair of distribution functions. Theoretical backscattering coefficients evaluated by means of hole-correction pair distribution are in agreement with extensive data collected from soybean fields. The hole-correction approximation is found to be the more realistic.

  12. Remote sensing of vegetation and soil moisture

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Shin, R. T. (Principal Investigator)

    1983-01-01

    Progress in the investigation of problems related to the remote sensing of vegetation and soil moisture is reported. Specific topics addressed include: (1) microwave scattering from periodic surfaces using a rigorous modal technique; (2) combined random rough surface and volume scattering effects; (3) the anisotropic effects of vegetation structures; (4) the application of the strong fluctuation theory to the the study of electromagnetic wave scattering from a layer of random discrete scatterers; and (5) the investigation of the scattering of a plane wave obliquely incident on a half space of densely distributed spherical dielectric scatterers using a quantum mechanical potential approach.

  13. Non-Imaging Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spectrometric, radiometric and polarimetric remote sensing observations of wavelengths from gamma-rays to microwaves are addressed. The basic form of the data is one dimensional arrays. At the high energy end of the spectrum, data are typically presented as pulse count versus energy, and at lower energies, as intensity versus wavelength. High spectral resolution measurements (better 1% of wavelength) are particularly useful for identifying atomic, molecular, and ionic species while broader band measurements are adequate for identifying minerals and for determining total energy fluxes. Polarization data permit the study of finely divided material such as clouds and surfaces.

  14. Remote sensing evaluation of the Klondike Mining District, Nevada. Part 1: Geology, photography and infrared

    NASA Technical Reports Server (NTRS)

    Brennan, P. A.; Chapman, P. E.; Chipp, E. R.

    1971-01-01

    During August of 1970 Mission 140 was flown with the NASA P3A aircraft over the Klondike Mining District, Nevada. High quality metric photography, thermal infrared imagery, multispectral photography and multichannel microwave radiometry were obtained. Geology and ground truth data are presented and relationships of the physical attributes of geologic materials to remotely sensed data is discussed. It is concluded that remote sensing data was valuable in the geologic evaluation of the Klondike Mining District and would be of value in other mining districts.

  15. Remote sensing of coal mine pollution in the upper Potomac River basin

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A survey of remote sensing data pertinent to locating and monitoring sources of pollution resulting from surface and shaft mining operations was conducted in order to determine the various methods by which ERTS and aircraft remote sensing data can be used as a replacement for, or a supplement to traditional methods of monitoring coal mine pollution of the upper Potomac Basin. The gathering and analysis of representative samples of the raw and processed data obtained during the survey are described, along with plans to demonstrate and optimize the data collection processes.

  16. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1975-01-01

    Specific assistance to state agencies and public bodies on over 15 remote sensing projects concerned with (1) urban and regional analysis, (2) rural development, and (3) habitat management and environmental analysis is discussed. Specific problems of officials are considered and a basis for communication by demonstration is provided. In addition to data products in support of specific agency projects; consultation and training in use of satellite and aircraft imagery is provided to personnel from several state, regional, and county agencies. Effective communication and confidence is established through these efforts and users now routinely seek information and advice about the application of remote sensing technology to solution of their agency problems.

  17. Capabilities of the DOE Remote Sensing Laboratory`s aerial measuring system

    SciTech Connect

    Riedhauser, S.R.

    1995-09-01

    This report describes the capabilities of the Remote Sensing Laboratory`s aircraft for use in environmental radiation surveys, multispectral (visible, near infrared, and thermal infrared) surveys of vegetation and buildings, and photographic documentation of the areas covered by the two other surveys. The report discusses the technical capabilities of the various systems and presents examples of the data from a recent demonstration survey. To provide a view of the types of surveys the Remote Sensing Laboratory has conducted in the past, the appendices describe several of the previous area surveys and emergency search surveys.

  18. Civil Uses of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Aderhold, J. R.; Gordon, G.; Scott, G. W.

    1976-01-01

    The economic, technical, and environmental implications of remotely piloted vehicles (RVP) are examined. The time frame is 1980-85. Representative uses are selected; detailed functional and performance requirements are derived for RPV systems; and conceptual system designs are devised. Total system cost comparisons are made with non-RPV alternatives. The potential market demand for RPV systems is estimated. Environmental and safety requirements are examined, and legal and regulatory concerns are identified. A potential demand for 2,000-11,000 RVP systems is estimated. Typical cost savings of 25 to 35% compared to non-RPV alternatives are determined. There appear to be no environmental problems, and the safety issue appears manageable.

  19. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  20. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  1. Jellyfish monitoring on coastlines using remote piloted aircraft

    NASA Astrophysics Data System (ADS)

    Barrado, C.; Fuentes, J. A.; Salamí, E.; Royo, P.; Olariaga, A. D.; López, J.; Fuentes, V. L.; Gili, J. M.; Pastor, E.

    2014-03-01

    In the last 10 years the number of jellyfish shoals that reach the swimming area of the Mediterranean Sea are increasing constantly. The term "Jellyfish" refers to animals from different taxonomic groups but the Scyphomedusae are within the most significant one. Four species of Scyphomedusae are the most conspicuous ones inhabiting the studied area, the Barcelona metropolitan area. Jellyfish are usually found at the surface waters, forming big swarms. This feature makes possible to detect them remotely, using a visual camera and image processing algorithms. In this paper we present the characteristics of a remote piloted aircraft capable to perform monitoring flights during the whole summer season. The requirements of the aircraft are to be easy to operate, to be able to flight at low altitude (100 m) following the buoy line (200 m from the beach line) and to be save for other users of the seaside. The remote piloted aircraft will carry a vision system and a processing board able to obtain useful information on real-time.

  2. Remote sensing programs and courses in engineering and water resources

    NASA Technical Reports Server (NTRS)

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  3. Remote sensing in operational range management programs in Western Canada

    NASA Technical Reports Server (NTRS)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  4. Remote sensing research in geographic education: An alternative view

    NASA Technical Reports Server (NTRS)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  5. Remote sensing utility in a disaster struck urban environment

    NASA Technical Reports Server (NTRS)

    Rush, M.; Holguin, A.; Vernon, S.

    1974-01-01

    A project to determine the ways in which remote sensing can contribute to solutions of urban public health problems in time of natural disaster is discussed. The objectives of the project are to determine and describe remote sensing standard operating procedures for public health assistance during disaster relief operations which will aid the agencies and organizations involved in disaster intervention. Proposed tests to determine the validity of the remote sensing system are reported.

  6. Experimental Sea Slicks in the Marsen (Maritime Remote Sensing) Exercise.

    DTIC Science & Technology

    1980-10-30

    Experimental slicks with various surface properties were generated in the North Sea as part of the MARSEN (Maritime Remote Sensing ) exercise. The one...with remote sensing instrumentation. Because of the numerous effects of surface films on air-sea interfacial processes, these experiments were designed...information was obtained on the influence of sea surface films on the interpretation of signals received by remote sensing systems. Criteria for the

  7. SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS

    DTIC Science & Technology

    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  8. Methods of Determining Playa Surface Conditions Using Remote Sensing

    DTIC Science & Technology

    1987-10-08

    NO. 11. TITLE (include Security Classification) METHODS OF DETERMINING PLAYA SURFACE CONDITIONS USING REMOTE SENSING 12. PERSONAL AUTHOR(S) J. PONDER...PLAYA SURFACE CONDITIONS USING REMOTE SENSING J. Ponder Henley U. S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060-5546 "ABSTRACT...geochemistry, hydrology and remote sensing but all of these are important to the understanding of these unique geomorphic features. There is a large body

  9. Expedition Earth and Beyond: An Introduction to Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    This slide presentation reviews some of the current usages of remote sensing, and the science of remote sensing. Included as examples of remote sensing, are emissivity (i.e., infrared) and reflectance (i.e., visible to shortwave infrared) graphs of several minerals, and vegetation spectra. Also, there are pictures of several places on Earth from the photographs that were taken by Astronauts during the earliest missions to later missions.

  10. [A review on polarization information in the remote sensing detection].

    PubMed

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

  11. Supercooled large drop detection with NASA's Icing Remote Sensing System

    NASA Astrophysics Data System (ADS)

    Serke, David J.; Reehorst, Andrew L.; Politovich, Marcia K.

    2010-10-01

    In-flight icing occurs when aircraft impact supercooled liquid drops. The supercooled liquid freezes on contact and the accreted ice changes a plane's aerodynamic characteristics, which can lead to dangerous loss of control. NASA's Icing Remote Sensing System consists of a multi-channel radiometer, a laser ceilometer and a vertically-pointing Kaband radar, whos fields are merged with internal software logic to arrive at a hazard classification for in-flight icing. The radiometer is used to derive atmospheric temperature soundings and integrated liquid water and the ceilometer and radar are used to define cloud boundaries. The integrated liquid is then distributed within the determined cloud boundaries and layers to arrive at liquid water content profiles, which if present below freezing are categorized as icing hazards. This work outlines how the derived liquid water content and measured Ka-band reflectivity factor profiles can be used to derive a vertical profile of radar-estimated particle size. This is only possible because NASA's system arrives at independent and non-correlated measures of liquid water and reflectivity factor for a given range volume. The size of the drops significantly effect the drop collection efficiency and the location that icing accretion occurs on the craft's superstructure and thus how a vehicle's performance is altered. Large drops, generally defined as over 50 μm in diameter, tend to accrete behind the normal ice protected areas of the leading edge of the wing and other control surfaces. The NASA Icing Remote Sensing System was operated near Montreal, Canada for the Alliance Icing Research Study II in 2003 and near Cleveland, Ohio from 2006 onward. In this study, we present case studies to show how NASA's Icing Remote Sensing System can detect and differentiate between no icing, small drop and large drop in-flight icing hazards to aircraft. This new product provides crucial realtime hazard detection capabilities which improve

  12. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  13. Support for global science: Remote sensing's challenge

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  14. Foreland Basin Structures and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Paylor, E. D.

    1985-01-01

    Rocky Mountain foreland basins are somewhat unique in that the basins may exhibit a variety of structural styles. It is generally agreed that shortening has occurred in the foreland basement but the cause is controversial: vertical vs compressional horizontal tectonics. Even when shortening is attributed to compression, the attitude (dip) of the fault plane and whether the horizontal or vertical component of movement is dominant is unconstrained. The controversy is difficult to resolve from surface data alone due to the variety of possible interpretations. Detailed surface mapping and geologic modeling are needed to constrain subsurface interpretations. In many areas of the Wind River and Bighorn basins detailed geologic maps do not exist. State-of-the-art remote sensing data could potentially provide an efficient means of mapping surface geology. State-of-the-art remote sensing systems now provide geometrically correct data at 30 meter pixel size and increased spectral coverage, capable of more detailed geologic analyses. These data can be photographically enlarged to 1:24,000 scale and combined with 7 1/2' uses topographic quads to provide an excellent base map for geologic interpretations.

  15. [Hyperspectral remote sensing monitoring of grassland degradation].

    PubMed

    Wang, Huan-jiong; Fan, Wen-jie; Cui, Yao-kui; Zhou, Lei; Yan, Bin-yan; Wu, Dai-hui; Xu, Xi-ru

    2010-10-01

    The distributing of China's grassland is abroad and the status of grassland degradation is in serious condition. So achieving real-time and exactly grassland ecological monitoring is significant for the carbon cycle, as well as for climate and on regional economies. With the field measured spectra data as data source, hyperspectral remote sensing monitoring of grassland degradation was researched in the present article. The warm meadow grassland in Hulunbeier was chosen as a study object. Reflectance spectra of leaves and pure canopies of some dominant grassland species such as Leymus chinensis, Stipa krylovii and Artemisia frigid, as well as reflectance spectra of mixed grass community were measured. Using effective spectral feature parametrization methods, the spectral feature of leaves and pure canopies were extracted, so the constructive species and degenerate indicator species can be exactly distinguished. Verification results showed that the accuracy of spectral identification was higher than 95%. Taking it as the foundation, the spectra of mixed grass community were unmixed using linear mixing models, and the proportion of all the components was calculated, and the errors were less than 5%. The research results of this article provided the evidence of hyperspectral remote sensing monitoring of grassland degradation.

  16. Remote sensing inputs to water demand modeling

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  17. Domestic parking estimation using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Ramzi, Ahmed

    2012-10-01

    Parking is an integral part of the traffic system everywhere. Provision of parking facilities to meet peak of demands parking in cities of millions is always a real challenge for traffic and transport experts. Parking demand is a function of population and car ownership which is obtained from traffic statistics. Parking supply in an area is the number of legal parking stalls available in that area. The traditional treatment of the parking studies utilizes data collected either directly from on street counting and inquiries or indirectly from local and national traffic censuses. Both methods consume time, efforts, and funds. Alternatively, it is reasonable to make use of the eventually available data based on remotely sensed data which might be flown for other purposes. The objective of this work is to develop a new approach based on utilization of integration of remotely sensed data, field measurements, censuses and traffic records of the studied area for studying domestic parking problems in residential areas especially in informal areas. Expected outcomes from the research project establish a methodology to manage the issue and to find the reasons caused the shortage in domestics and the solutions to overcome this problems.

  18. Spatial Inference for Distributed Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Katzfuss, M.; Nguyen, H.

    2014-12-01

    Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.

  19. Land remote sensing commercialization: A status report

    NASA Technical Reports Server (NTRS)

    Bishop, W. P.; Heacock, E. L.

    1984-01-01

    The current offer by the United States Department of Commerce to transfer the U.S. land remote sensing program to the private sector is described. A Request for Proposals (RFP) was issued, soliciting offers from U.S. firms to provide a commercial land remote sensing satellite system. Proposals must address a complete system including satellite, communications, and ground data processing systems. Offerors are encouraged to propose to take over the Government LANDSAT system which consists of LANDSAT 4 and LANDSAT D'. Also required in proposals are the market development procedures and plans to ensure that commercialization is feasible and the business will become self-supporting at the earliest possible time. As a matter of Federal Policy, the solicitation is designed to protect both national security and foreign policy considerations. In keeping with these concerns, an offeror must be a U.S. Firm. Requirements for data quality, quantity, distribution and delivery are met by current operational procedures. It is the Government's desire that the Offeror be prepared to develop and operate follow-on systems without Government subsidies. However, to facilitate rapid commercialization, an offeror may elect to include in his proposal mechanisms for short term government financial assistance.

  20. Microwave remote sensing of flood inundation

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Moller, Delwyn K.

    Flooding is one of the most costly natural disasters and thus mapping, modeling and forecasting flood events at various temporal and spatial scales is important for any flood risk mitigation plan, disaster relief services and the global (re-)insurance markets. Both computer models and observations (ground-based, airborne and Earth-orbiting) of flood processes and variables are of great value but the amount and quality of information available varies greatly with location, spatial scales and time. It is very well known that remote sensing of flooding, especially in the microwave region of the electromagnetic spectrum, can complement ground-based observations and be integrated with flood models to augment the amount of information available to end-users, decision-makers and scientists. This paper aims to provide a concise review of both the science and applications of microwave remote sensing of flood inundation, focusing mainly on synthetic aperture radar (SAR), in a variety of natural and man-made environments. Strengths and limitations are discussed and the paper will conclude with a brief account on perspectives and emerging technologies.

  1. Remote sensing application for property tax evaluation

    NASA Astrophysics Data System (ADS)

    Jain, Sadhana

    2008-02-01

    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  2. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  3. Proceedings of the Conference on Practical Applications of Remote Sensing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conference papers dealing with the principles of remote sensing are summarized. Summaries cover problem solving capabilities within the realms of urbanism, agriculture, forestry, and environmental impact assessment.

  4. Communicating remote sensing concepts in an interdisciplinary environment

    NASA Technical Reports Server (NTRS)

    Chung, R.

    1981-01-01

    Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.

  5. Levee Health Monitoring With Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  6. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to

  7. Runoff simulation sensitivity to remotely sensed initial soil water content

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Schmugge, T. J.; Jackson, T. J.; Unkrich, C. L.; Keefer, T. O.; Parry, R.; Bach, L. B.; Amer, S. A.

    1994-05-01

    A variety of aircraft remotely sensed and conventional ground-based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground-based point methods were used to define prestorm initial SW for a distributed rainfall-runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin-wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite-based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.

  8. Making Sense of Remotely Sensed Ultra-Spectral Infrared Data

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's Jet Propulsion Laboratory (JPL), Pasadena, California, Earth Observing System (EOS) programs, the Deep Space Network (DSN), and various Department of Defense (DOD) technology demonstration programs, combined their technical expertise to develop SEASCRAPE, a software program that obtains data when thermal infrared radiation passes through the Earth's atmosphere and reaches a sensor. Licensed by the California Institute of Technology (Caltech), SEASCRAPE automatically inverts complex infrared data and makes it possible to obtain estimates of the state of the atmosphere along the ray path. Former JPL staff members created a small entrepreneurial firm, Remote Sensing Analysis Systems, Inc., of Altadena, California, to commercialize the product. The founders believed that a commercial version of the software was needed for future U.S. government missions and the commercial monitoring of pollution. With the inversion capability of this software and remote sensing instrumentation, it is possible to monitor pollution sources from safe and secure distances on a noninterfering, noncooperative basis. The software, now know as SEASCRAPE_Plus, allows the user to determine the presence of pollution products, their location and their abundance along the ray path. The technology has been cleared by the Department of Commerce for export, and is currently used by numerous research and engineering organizations around the world.

  9. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  10. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics

    PubMed Central

    McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot

    2016-01-01

    The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation. PMID:27589770

  11. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics.

    PubMed

    McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot

    2016-08-31

    The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  12. Remote temperature distribution sensing using permanent magnets

    DOE PAGES

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less

  13. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education

    NASA Astrophysics Data System (ADS)

    Hayden, L. B.; Johnson, D.; Baltrop, J.

    2012-12-01

    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  14. Remote sensing of ocean color in the Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, N. G.

    1988-01-01

    The main objectives of the research are: to increase the understanding of biological production (and carbon fluxes) along the ice edge, in frontal regions, and in open water areas of the Arctic and the physical factors controlling that production through the use of satellite and aircraft remote sensing techniques; and to develop relationships between measured radiances from the Multichannel Aircraft Radiometer System (MARS) and the bio-optical properties of the water in the Arctic and adjacent seas. Several recent Coastal Zone Color Scanner (CZCS) studies in the Arctic have shown that, despite constraints imposed by cloud cover, satellite ocean color is a useful means of studying mesoscale physical and biological oceanographic phenomena at high latitudes. The imagery has provided detailed information on ice edge and frontal processes such as spring breakup and retreat of the ice edge, influence of ice on ice effects of stratification on phytoplankton production, river sediment transport, effects of spring runoff, water mass boundaries, circulation patterns, and eddy formation in Icelandic waters and in the Greenland, Barents, Norwegian, and Bering Seas.

  15. New horizons in remote sensing for forest range resource management

    USGS Publications Warehouse

    Lauer, D.T.

    1985-01-01

    Forest and range resource scientists were among the first to recognize the potential of aircraft and satellite remote sensing for management of timber, forage, water, and wildlife resource. Today, data from a variety of sensor systems are being put to practical use for inventorying, monitoring, and assessing forest and range resources. In the future, improved sensor systems providing new kinds of data will be available. Likewise, new types of data handling and processing systems can be anticipated. Among the new or anticipated aircraft and satellite systems and/or data are National High-Altitude Photograph II, U. S. Geological Survey-acquired Side-Looking Airborne Radar, the Landsat thematic mapper, the National Oceanic Resolution Radiometer, the French Systeme Probatoire d'Observation de la Terre (SPOT) satellite, the European Space Agency Earth Resources Satellite, the National Aeronautics and Space Administration Large Format Camera and Shuttle Imaging Radar (SIR-A, -B, and -C), and a variety of other systems in existence or planned by the Soviets, Japanese, Canadians, Chinese, Brazilians, Indonesians, and other. Application examples are presented that illustrate uses of 1-kilometer-resolution AVHRR data, 80-meter Landsat multispectral scanner data, 30-meter Landsat thematic mapper data, and 10-meter SPOT-simulator data. These examples address fire fuel monitoring, land cover mapping, rangeland assessment, and soils landscape mapping.

  16. Application of remote sensing to monitoring and studying dispersion in ocean dumping

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Ohlhorst, C. W.

    1981-01-01

    Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.

  17. Mapping of submerged vegetation using remote sensing technology

    NASA Technical Reports Server (NTRS)

    Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.

    1981-01-01

    Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.

  18. Remote sensing of atmospheric greenhouse gases: bridging spatial scales

    NASA Astrophysics Data System (ADS)

    Humpage, N.; Boesch, H.; Parker, R.; Hewson, W.; Sembhi, H.; Somkuti, P.; Webb, A.; Palmer, P. I.; Feng, L.

    2015-12-01

    Observed atmospheric variations of greenhouse gases (GHG) are determined by surface-atmosphere exchange, and atmospheric chemistry and transport. These processes occur over a wide spectrum of spatial and temporal scales. Confronting atmospheric transport models and ultimately improving the fidelity of surface flux estimates demands an integrated observing system that captures these scales. We will discuss using data the role of GHG remote sensing instruments and argue that our ability to deploy them from the ground and to fly them on satellite, aircraft, and unmanned airborne vehicles (UAV) mean that they represent the ideal technology to bridge the observed scales of variability. We will discuss a five-year record of global-scale column observations of CO2 and CH4 from the Japanese GOSAT satellite instrument that is available from University of Leicester as part of the ESA Climate Change Initiative. We will showcase new CO2 and CH4 column data that was collected by our shortwave infrared spectrometer GHOST oboard the NASA Global Hak during a regional survey over the eastern Pacific during early spring 2015, which included coincident overpasses from GOSAT and the NASA OCO-2. These data are being used to test atmospheric transport models over remote regions and to help validate satellite observations over the oceans. We will also discuss GHOST data collected on the UK Dornier 226 research aircraft to measure local-scale measurements over Leicester city centre, a major power plant, and downwind of a controlled Cumbrian heathland fire. Finally, we will report preliminary results from a new ground-based Fourier transform spectrometer station at Harwell (80 km west of London). We anticipate that this site will eventually join the TCCON network, which has been used to validation of satellite observations.

  19. Air Quality Remote Sensing From Space

    NASA Astrophysics Data System (ADS)

    Edwards, David P.

    2006-08-01

    Recent advances in tropospheric remotesensing have opened the way for measuring,monitoring, and understanding processesthat lead to atmospheric pollution.As part of an integrated observing strategy,satellite measurements provide a contextfor localized observations and help toextend these observations to continentaland global scales. The challenge for futurespace-borne missions will be directlyaccessing the local scale and facilitatingthe use of remotely sensed information forimproving local- and regional-scale airquality (AQ) forecasts. Achieving this goalcould provide important societal dividendsfor public health, for policy applicationsrelated to managing national AQ, and forassessing the impact of daily human activityon the distributions of important tracegases and aerosols and their short-timescalevariability-known as `chemicalweather'-as well as on climate.

  20. Remote sensing and characterization of anomalous debris

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  1. Applications of remote sensing to hydrologic planning

    NASA Technical Reports Server (NTRS)

    Loats, H., Jr.; Fowler, T.; Castruccio, P.

    1978-01-01

    The transfer of LANDSAT remote sensing technology from the research sector to user operational applications requires demonstration of the utility and accuracy of LANDSAT data in solving real problems. This report describes such a demonstration project in the area of water resources, specifically the estimation of non-point source pollutant loads. Non-point source pollutants were estimated from land cover data from LANDSAT images. Classification accuracies for three small watersheds were above 95%. Land cover was converted to pollutant loads for a fourth watershed through the use of coefficients relating significant pollutants to land use and storm runoff volume. These data were input into a simulator model which simulated runoff from average rainfall. The result was the estimation of monthly expected pollutant loads for the 17 subbasins comprising the Magothy watershed.

  2. Recent Advances in VLF Remote Sensing

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    In this work, we present a complete analysis of a new signal processing method for MSK-modulated VLF signals with the purpose to produce reliable amplitude and phase measurements for ionospheric remote sensing. We analyze the bit-error rate and the resulting amplitude and phase measurements as a function of signal-to-noise ratio under different background noise environments. We also compare the new method to other methods presently in use. We highlight the transient response characteristics by analyzing naturally occurring ionospheric events observed in the Northern and Southern hemispheres. We apply the method to observations of solar X-ray flares, lightning-induced electron precipitation, and transient luminous events.

  3. Remote Sensing of Parasitic Nematodes in Plants

    NASA Technical Reports Server (NTRS)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  4. Method to analyze remotely sensed spectral data

    SciTech Connect

    Stork, Christopher L.; Van Benthem, Mark H.

    2009-02-17

    A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

  5. Benefits to world agriculture through remote sensing

    NASA Technical Reports Server (NTRS)

    Buffalano, A. C.; Kochanowski, P.

    1976-01-01

    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  6. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  7. Remote sensing application to regional activities

    NASA Technical Reports Server (NTRS)

    Shahrokhi, F.; Jones, N. L.; Sharber, L. A.

    1976-01-01

    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.

  8. Toward interactive search in remote sensing imagery

    SciTech Connect

    Porter, Reid B; Hush, Do; Harvey, Neal; Theile, James

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  9. Biomass Burning Emissions from Fire Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  10. Multisource Data Integration in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    Papers presented at the workshop on Multisource Data Integration in Remote Sensing are compiled. The full text of these papers is included. New instruments and new sensors are discussed that can provide us with a large variety of new views of the real world. This huge amount of data has to be combined and integrated in a (computer-) model of this world. Multiple sources may give complimentary views of the world - consistent observations from different (and independent) data sources support each other and increase their credibility, while contradictions may be caused by noise, errors during processing, or misinterpretations, and can be identified as such. As a consequence, integration results are very reliable and represent a valid source of information for any geographical information system.

  11. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  12. Urban environmental health applications of remote sensing

    NASA Technical Reports Server (NTRS)

    Rush, M.; Goldstein, J.; Hsi, B. P.; Olsen, C. B.

    1974-01-01

    An urban area was studied through the use of the inventory-by-surrogate method rather than by direct interpretation of photographic imagery. Prior uses of remote sensing in urban and public research are examined. The effects of crowding, poor housing conditions, air pollution, and street conditions on public health are considered. Color infrared photography was used to categorize land use features and the grid method was used in photo interpretation analysis. The incidence of shigella and salmonella, hepatitis, meningitis, tuberculosis, myocardial infarction and veneral disease were studied, together with mortality and morbidity rates. Sample census data were randomly collected and validated. The hypothesis that land use and residential quality are associated with and act as an influence upon health and physical well-being was studied and confirmed.

  13. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  14. Land border monitoring with remote sensing technologies

    NASA Astrophysics Data System (ADS)

    Malinowski, Radoslaw

    2010-09-01

    The remote sensing technology has many practical applications in different fields of science and industry. There is also a need to examine its usefulness for the purpose of land border surveillance. This research started with analysis of potential direct use of Earth Observation technology for monitoring migrations of people and preventing smuggling. The research, however, proved that there are still many fields within which the EO technology needs to be improved. From that point the analysis focused on improving Border Permeability Index which utilizes EO techniques as a source of information. The result of BPI analysis with use of high resolution data provides new kind of information which can support and make more effective work of authorities from security domain.

  15. Recent Progresses of Microwave Marine Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  16. Remote sensing of vegetation at regional scales

    NASA Technical Reports Server (NTRS)

    Hall, F. G.

    1984-01-01

    Relations between spectroscopy and the concept of inferring surface cover type and condition from measurements of reflected or emitted radiation are examined, taking into account the observation of 'spectral signatures'. It has now become evident that the paradigm which had provided the basis for the spectroscopic identification of materials, is incomplete when applied to the inference of type and condition of materials in a natural environment. It was found that one could not collect a remote sensing signature from an unknown ground cover class at a particular time and place and match that signature with an a priori catalog value to infer the properties of the unknown cover class. The spectroscopy paradigm was, therefore, largely abandoned in favor of decision theoretic approaches. Attention is given to the temporal greenness profile feature space, the crop stage of development estimation using a temporal greenness profile, the temporal greenness profile for crop yield, and applications to regional scales.

  17. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  18. Remote sensing monitoring of the global ozonosphere

    NASA Astrophysics Data System (ADS)

    Genco, S.; Bortoli, D.; Ravegnani, F.

    2013-10-01

    The use of CFCs, which are the main responsible for the ozone depletion in the upper atmosphere and the formation of the so-called "ozone hole" over Antarctic Region, was phase out by Montreal Protocol (1989). CFCs' concentration is recently reported to decrease in the free atmosphere, but severe episodes of ozone depletion in both Arctic and Antarctic regions are still occurring. Nevertheless the complete recovery of the Ozone layer is expected by about 2050. Recent simulation of perturbations in stratospheric chemistry highlight that circulation, temperature and composition are strictly correlated and they influence the global climate changes. Chemical composition plays an important role in the thermodynamic of the atmosphere, as every gaseous species can absorb and emit in different wavelengths, so their different concentration is responsible for the heating or cooling of the atmosphere. Therefore long-term observations are required to monitor the evolution of the stratospheric ozone layer. Measurements from satellite remote sensing instruments, which provide wide coverage, are supplementary to selective ground-based observations which are usually better calibrated, more stable in time and cover a wider time span. The combination of the data derived from different space-borne instruments calibrated with ground-based sensors is needed to produce homogeneous and consistent long-term data records. These last are required for robust investigations and especially for trend analysis. Here, we perform a review of the major remote-sensing techniques and of the principal datasets available to study the evolution of ozone layer in the past decades and predict future behavio

  19. Acoustic Remote Sensing of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  20. Development of a Miniaturised Remote Sensing Interferometer

    NASA Astrophysics Data System (ADS)

    Mortimer, Hugh; Reininger, F.; Calcutt, S.

    2007-10-01

    A breadboard model of a miniaturised space based Fourier Transform spectrometer, with a mass of 2kgs and spectral resolution of 2cm-1, has been designed and built. This unique imaging spectrometer has been designed for use on a micro-satellite platform and is intended for atmospheric remote sensing applications. In this poster the first results from this instrument are presented, and its potential application and benefits over existing technologies, demonstrated. The "Spatially Modulated Interferometer" (SMI) is a Fourier transform spectrometer with no moving parts. It uses a rigid optical system to shear an input beam into two halves that are recombined to form a spatially modulated interference pattern more commonly referred as an interferogram. The interferogram is produced at the focal plane of the optical system where a detector array is situated. A line of pixels in the array measures a single interferogram, and so by using a two dimensional array multiple interferograms simultaneously be recorded, where each interferogram represents a different image pixel. In the SMI instrument the interferogram is sampled using mid-infrared MCT detector array with 2 x 512 pixels. Since any change in the measured radiation leads to a corresponding change in the interferogram, the SMI can effectively perform "roll out” measurements at a sampling rate limited only by the detector itself. This makes the interferometer time-invariant with respect to a fluctuating target scene or an unstable observation platform, and presents the opportunity to perform measurements with a very high temporal resolution. The SMI has been designed to be a compact and light and highly stable remote sensing instrument. With high spectral and temporal resolution, the instrument is ideally suited for both Earth and planetary based applications. Acknowledgements: This work is funded by the UK Science Technology Facilities Council.

  1. Using Remote Sensing to Understand Climate Variability

    NASA Astrophysics Data System (ADS)

    Green, J.; Gentine, P.

    2014-12-01

    While a major source of uncertainty in global climate model predictions is due to the coarseness of their resolution, a significant amount of error is also generated due to the lack of information regarding the interactions between atmospheric and land parameters over time. When the behavior of a certain parameter is not clearly understood it is frequently estimated as one specific value while in reality it may vary with time and space. Remote sensing is allowing researchers to better estimate each of these parameters so one can see how they change with time. This study is an effort to improve our knowledge of the inter-annual and seasonal variability in radiation, water and the carbon cycle using remote sensing products on a global scale. By examining monthly data over a multi-year period (data parameter and source are listed in Table 1) for fluorescence, groundwater, net radiation, vegetation indices, precipitation, soil moisture and evapotranspiration, we should be able to determine the behavior and interactions between these parameters and better understand how they vary together seasonally, annually and year to year. With this information it is our hope that global climate models can be improved to better understand what is occurring climatologically in the present as well as more accurately make predictions about future conditions. Table 1. Parameters and Sources Parameter Source Fluorescence Greenhouse gases Observing SATellite (GOSAT)1 Groundwater Gravity Recovery and Climate Experiment (GRACE) Net Radiation Clouds and the Earth's Radiant Energy System (CERES) Vegetation Indices Moderate Resolution Imaging Spectroradiometer (MODIS)/ Multiangle Implementation of Atmospheric Correction (MAIAC) Precipitation Global Precipitation Climatology Project (GPCP) Soil Moisture Water Cycle Mutimission Observation Strategy (WACMOS) Evapotranspiration Global Land-surface Evaporation: the Amsterdam Methodology (GLEAM) 1In future work, we hope to use fluorescence data from

  2. Remote sensing of sagebrush canopy nitrogen

    USGS Publications Warehouse

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  3. Data Fusion for Earth Science Remote Sensing

    NASA Technical Reports Server (NTRS)

    Braverman, Amy

    2007-01-01

    Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.

  4. MODIS Direct Broadcast and Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.

  5. Spaceborne Radar Remote Sensing: Radar Interferometry, Scatterometry and Altimetry

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Yueh, Simon H.; Fu, Lee-Lueng

    1997-01-01

    Spaceborne remote sensing instruments allow the acquisition of global and synoptic information for Earth Science investigations. In particular, active microwave remote sensing that have contributed geophysical measurements of a scale and accuracy which surpass what could be accomplished with ariborne or in-situ observations.

  6. All you ever wanted to know about remote sensing. [terminology

    NASA Technical Reports Server (NTRS)

    Mooneyhan, D. W.

    1975-01-01

    A brief review of remote sensing state-of-the-art is presented. Emphasis is placed on an understanding of remote sensing terminology. Passive and active sensors and sensor platforms from the spacecraft program to the ground truth program are described.

  7. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  8. Feasibility study ASCS remote sensing/compliance determination system

    NASA Technical Reports Server (NTRS)

    Duggan, I. E.; Minter, T. C., Jr.; Moore, B. H.; Nosworthy, C. T.

    1973-01-01

    A short-term technical study was performed by the MSC Earth Observations Division to determine the feasibility of the proposed Agricultural Stabilization and Conservation Service Automatic Remote Sensing/Compliance Determination System. For the study, the term automatic was interpreted as applying to an automated remote-sensing system that includes data acquisition, processing, and management.

  9. The small light multi-function integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Lin, Zhaorong; Yao, Yigang

    2015-08-01

    With the development of network information, the era of big data is coming, and this has high demand to the information quantity and the diversity of the remote sensing images. Currently the available remote sensing system focuses on the convenience and the celerity of the acquiring images, and lacking the remote sensing system which can acquire the image with the diversity and large amount of information. In this paper, a new small light multifunction integrated remote sensing and the remote sensing information network system of multi-sensor are proposed to meet the new developing requirements of the current network information. The small light multi-function integrated remote sensing system consists of a load platform, the integrated sensor system, the airborne control system, the stabilized platform, the transmission system and the ground processing system. The components, function and the principle of the system are introduced, and the key technologies of the integrated remote sensing system are analyzed, in the last the applications of the system are described in order to make a contribution to the industrialization of the big data remote sensing.

  10. Remote sensing - A new view for public health

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Barnes, C. M.; Fuller, C. E.

    1973-01-01

    It is shown that the technology of remote sensing can be of great importance to the field of public health. This possibility is based on the deepened understanding of the biologies and ecologies of the vector/organism/host interelationships of arthropod-, soil-, and water-borne diseases to result from the information that remote sensing can provide.

  11. Bringing remote sensing technology to the user community

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Davis, S. M.; Morrison, D. B.

    1975-01-01

    The procedures and services available for educating and training potential users of remote sensing technology are discussed along with approaches for achieving an in-house capability for the analysis of remotely sensed data using numerical techniques based on pattern recognition principles. Cost estimates are provided where appropriate.

  12. A selected bibliography: Remote sensing applications in wildlife management

    USGS Publications Warehouse

    Carneggie, David M.; Ohlen, Donald O.; Pettinger, Lawrence R.

    1980-01-01

    Citations of 165 selected technical reports, journal articles, and other publications on remote sensing applications for wildlife management are presented in a bibliography. These materials summarize developments in the use of remotely sensed data for wildlife habitat mapping, habitat inventory, habitat evaluation, and wildlife census. The bibliography contains selected citations published between 1947 and 1979.

  13. Some Defence Applications of Civilian Remote Sensing Satellite Images

    DTIC Science & Technology

    1993-11-01

    This report is on a pilot study to demonstrate some of the capabilities of remote sensing in intelligence gathering. A wide variety of issues, both...colour images. The procedure will be presented in a companion report. Remote sensing , Satellite imagery, Image analysis, Military applications, Military intelligence.

  14. Passive Polarimetric Remote Sensing of Snow and Ice

    DTIC Science & Technology

    1997-09-30

    In recent years, polarimetric radiometry has shown great potential to revolutionize passive remote sensing of the ocean surface. As a result, several...polarimetric radiometer, in 2001. This project explores the possibility of applying this new technology to remote sensing in the Polar Regions by investigating the polarimetric signature of ice and snow.

  15. Analysis of Coastal Dunes: A Remote Sensing and Statistical Approach.

    ERIC Educational Resources Information Center

    Jones, J. Richard

    1985-01-01

    Remote sensing analysis and statistical methods were used to analyze the coastal dunes of Plum Island, Massachusetts. The research methodology used provides an example of a student project for remote sensing, geomorphology, or spatial analysis courses at the university level. (RM)

  16. Background and principle applications of remote sensing in Mexico

    NASA Technical Reports Server (NTRS)

    Perez, J. A. D.

    1978-01-01

    Remote sensing, or the collection of information from objectives at a distance, crystallizes the interest in implementing techniques which assist in the search for solutions to the problems raised by the detection, exploitation, and conservation of the natural resources of the earth. An attempt is made to present an overview of the studies and achievements which have been obtained with remote sensing in Mexico.

  17. Preprocessing remotely-sensed data for efficient analysis and classification

    SciTech Connect

    Kelly, P.M.; White, J.M.

    1993-02-01

    Interpreting remotely-sensed data typically requires expensive, specialized computing machinery capable of storing and manipulating large amounts of data quickly. In this paper, we present a method for accurately analyzing and categorizing remotely-sensed data on much smaller, less expensive platforms. Data size is reduced in such a way an efficient, interactive method of data classification.

  18. Hydrological Application of Remote Sensing: Surface States -- Snow

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.

    2004-01-01

    Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.

  19. Basic principles, methodology, and applications of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Moreira, M. A. (Principal Investigator); Deassuncao, G. V.

    1984-01-01

    The basic principles of remote sensing applied to agriculture and the methods used in data analysis are described. Emphasis is placed on the importance of developing a methodology that may help crop forecast, basic concepts of spectral signatures of vegetation, the methodology of the LANDSAT data utilization in agriculture, and the remote sensing program application of INPE (Institute for Space Research) in agriculture.

  20. Remote Sensing Data Visualization, Fusion and Analysis via Giovanni

    NASA Technical Reports Server (NTRS)

    Leptoukh, G.; Zubko, V.; Gopalan, A.; Khayat, M.

    2007-01-01

    We describe Giovanni, the NASA Goddard developed online visualization and analysis tool that allows users explore various phenomena without learning remote sensing data formats and downloading voluminous data. Using MODIS aerosol data as an example, we formulate an approach to the data fusion for Giovanni to further enrich online multi-sensor remote sensing data comparison and analysis.