Science.gov

Sample records for aircraft systems dates

  1. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  2. Aircraft noise synthesis system

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.; Grandle, Robert E.

    1987-02-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  3. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  4. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  5. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  6. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  7. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  8. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  9. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  10. Aircraft roll steering command system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    Aircraft roll command signals are generated as a function of the Microwave Landing System based azimuth, groundtrack, groundspeed and azimuth rate or range distance input parameters. On initial approach, roll command signals are inhibited until a minimum roll command requirement is met. As the aircraft approaches the centerline of the runway, the system reverts to a linear track control.

  11. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  12. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    NASA Technical Reports Server (NTRS)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  13. Aircraft hydraulic systems. Third edition

    SciTech Connect

    Neese, W.A.

    1991-12-31

    The first nine chapters concern hydraulic components including: tubing, hoses, fittings, seals, pumps, valves, cylinders, and motors. General hydraulic system considerations are included in chapters five and nine, while pneumatic systems are covered in chapter ten. Chapters eleven through fifteen are devoted to aircraft-specific systems such as: landing gear, flight controls, brakes, etc. The material is rounded out with excerpts from the Canadair Challenger 601 training guide to illustrate the use of hydraulic systems in a specific aircraft application.

  14. 76 FR 9495 - Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Administration 14 CFR Part 1 RIN 2120-AJ81 Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders..., 2011. The final rule amends the definition of light-sport aircraft by removing ``auto'' from the term... propeller operation for powered gliders that qualify as light-sport aircraft. DATES: The effective date...

  15. 75 FR 26321 - Seventeenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...: Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 203: Unmanned Aircraft Systems. DATES: The meeting will be held June 8-10, 2010... given for a Special Committee 203: Unmanned Aircraft Systems meeting. The agenda will include:...

  16. Promising Electric Aircraft Drive Systems

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    2010-01-01

    An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.

  17. Effect of Date and Location on Maximum Achievable Altitude for a Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1997-01-01

    The maximum altitude attainable for a solar powered aircraft without any energy storage capability is examined. Mission profiles for a solar powered aircraft were generated over a range of latitudes and dates. These profiles were used to determine which latitude-date combinations produced the highest achieavable altitude. Based on the presented analysis the results have shown that for a given time of year lower latitudes produced higher maximum altitudes. For all the cases examined the time and date which produced the highest altitude was around March at the equator.

  18. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  19. Aircraft maneuver envelope warning system

    NASA Technical Reports Server (NTRS)

    Bivens, Courtland C. (Inventor); Rosado, Joel M. (Inventor); Lee, Burnett (Inventor)

    1994-01-01

    A maneuver envelope warning system for an aircraft having operating limits, operating condition sensors and an indicator driver. The indicator driver has a plurality of visual indicators. The indicator driver determines a relationship between sensed operating conditions and the operating limits; such as, a ratio therebetween. The indicator driver illuminates a number of the indicators in proportion to the determined relationship. The position of the indicators illuminated represents to a pilot in an easily ascertainable manner whether the operational conditions are approaching operational limits of the aircraft, and the degree to which operational conditions lie within or exceed operational limits.

  20. Unmanned Aircraft Systems at NASA Dryden

    NASA Video Gallery

    NASA Dryden has a heritage of developmental and operational experience with unmanned aircraft systems. Work on Boeing's sub-scale X-36 Tailless Fighter Agility Research Aircraft, X-48 Blended Wing ...

  1. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  2. Small Aircraft Data Distribution System

    NASA Technical Reports Server (NTRS)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  3. An aircraft sensor fault tolerant system

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Lancraft, R. E.

    1982-01-01

    The design of a sensor fault tolerant system which uses analytical redundancy for the Terminal Configured Vehicle (TCV) research aircraft in a Microwave Landing System (MLS) environment was studied. The fault tolerant system provides reliable estimates for aircraft position, velocity, and attitude in the presence of possible failures in navigation aid instruments and onboard sensors. The estimates, provided by the fault tolerant system, are used by the automated guidance and control system to land the aircraft along a prescribed path. Sensor failures are identified by utilizing the analytic relationship between the various sensor outputs arising from the aircraft equations of motion.

  4. System Safety in Aircraft Acquisition

    DTIC Science & Technology

    1984-01-01

    principal purpose is the prevention of accidents or deaths/ injuries related thereto. Until a recent meeting cosponsored by SOHP and OUSDRE, communication...results in preventing the loss of a single aircraft ML.214/9OV 83 ($15 million for the AH-64, $25 million for the F-18, $200 million for the B-1B). - An...acquisition program. There- fore, it is essential to have interest and support of system safety by "off-line" management at levels high enough to be effective

  5. Aircraft Fuel Systems Career Ladder.

    DTIC Science & Technology

    1985-09-01

    type fittings remove and install fuel cells clean work areas inspect aircraft for safety pin installation purge tanks or cells using blow purge method...INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 84 H254 PURGE TANKS OR CELLS USING BLOW PURGE METHOD 83 H227 CHECK AIRCRAFT FOR LIQUID OXYGEN (LOX...H243 INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 52 M483 MIX SEALANTS BY HAND 48 K372 CONNECT OR DISCONNECT WIGGINS TYPE FITTINGS 48 H236 DISCONNECT

  6. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  7. Personnel Selection Influences on Remotely-Piloted Aircraft Human-System Integration

    DTIC Science & Technology

    2015-01-30

    Journal Article 3. DATES COVERED (From - To) 1 February 2015 – 31 May 2015 4. TITLE AND SUBTITLE Personnel Selection Influences on Remotely- Piloted ...HSI process in the context of remotely- piloted aircraft systems. 15. SUBJECT TERMS Remotely- piloted aircraft, human-system integration, personnel...Selection Influences on Remotely- Piloted Aircraft Human-System Integration Thomas R. Carretta; Raymond E. King Introduction: Human-system integration

  8. Comparison of Mars Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2003-01-01

    The propulsion system is a critical aspect of the performance and feasibility of a Mars aircraft. Propulsion system mass and performance greatly influence the aircraft s design and mission capabilities. Various propulsion systems were analyzed to estimate the system mass necessary for producing 35N of thrust within the Mars environment. Three main categories of propulsion systems were considered: electric systems, combustion engine systems and rocket systems. Also, the system masses were compared for mission durations of 1, 2, and 4 h.

  9. Unmanned aircraft systems as wingmen

    NASA Astrophysics Data System (ADS)

    Garcia, Richard; Barnes, Laura; Fields, MaryAnne

    2010-04-01

    This paper introduces a concept towards integrating manned and Unmanned Aircraft Systems (UASs) into a highly functional team though the design and implementation of 3-D distributed formation/flight control algorithms with the goal to act as wingmen for a manned aircraft. This method is designed to minimize user input for team control, dynamically modify formations as required, utilize standard operating formations to reduce pilot resistance to integration, and support splinter groups for surveillance and/or as safeguards between potential threats and manned vehicles. The proposed work coordinates UAS members by utilizing artificial potential functions whose values are based on the state of the unmanned and manned assets including the desired formation, obstacles, task assignments, and perceived intentions. The overall unmanned team geometry is controlled using weighted potential fields. Individual UAS utilize fuzzy logic controllers for stability and navigation as well as a fuzzy reasoning engine for flight path intention prediction. Approaches are demonstrated in simulation using the commercial simulator X-Plane and controllers designed in Matlab/Simulink. Experiments include trail and right echelon formations as well as splinter group surveillance.

  10. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  11. Aircraft flight path angle display system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1991-01-01

    A display system for use in an aircraft control wheel steering system provides the pilot with a single, quickened flight path angle display to overcome poor handling qualities due to intrinsic flight path angle response lags, while avoiding multiple information display symbology. The control law for the flight path angle control system is designed such that the aircraft's actual flight path angle response lags the pilot's commanded flight path angle by a constant time lag .tau., independent of flight conditions. The synthesized display signal is produced as a predetermined function of the aircraft's actual flight path angle, the time lag .tau. and command inputs from the pilot's column.

  12. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    The key materials question is addressed concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled transport aircraft fire. Technical opportunities are examined which are available through the modification of aircraft interior subsystem components, modifications that may reasonably be expected to provide improvements in aircraft fire safety. Subsystem components discussed are interior panels, seats, and windows. By virtue of their role in real fire situations and as indicated by the results of large scale simulation tests, these components appear to offer the most immediate and highest payoff possible by modifying interior materials of existing aircraft. These modifications have the potential of reducing the rate of fire growth, with a consequent reduction of heat, toxic gas, and smoke emission throughout the habitable interior of an aircraft, whatever the initial source of the fire.

  13. Aircraft system modeling error and control error

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  14. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  15. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  16. Smart Camera System for Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Delgado, Frank; White, Janis; Abernathy, Michael F.

    2003-01-01

    This paper describes a new approach to situation awareness that combines video sensor technology and synthetic vision technology in a unique fashion to create a hybrid vision system. Our implementation of the technology, called "SmartCam3D" (SC3D) has been flight tested by both NASA and the Department of Defense with excellent results. This paper details its development and flight test results. Windshields and windows add considerable weight and risk to vehicle design, and because of this, many future vehicles will employ a windowless cockpit design. This windowless cockpit design philosophy prompted us to look at what would be required to develop a system that provides crewmembers and awareness. The system created to date provides a real-time operations personnel an appropriate level of situation 3D perspective display that can be used during all-weather and visibility conditions. While the advantages of a synthetic vision only system are considerable, the major disadvantage of such a system is that it displays the synthetic scene created using "static" data acquired by an aircraft or satellite at some point in the past. The SC3D system we are presenting in this paper is a hybrid synthetic vision system that fuses live video stream information with a computer generated synthetic scene. This hybrid system can display a dynamic, real-time scene of a region of interest, enriched by information from a synthetic environment system, see figure 1. The SC3D system has been flight tested on several X-38 flight tests performed over the last several years and on an ARMY Unmanned Aerial Vehicle (UAV) ground control station earlier this year. Additional testing using an assortment of UAV ground control stations and UAV simulators from the Army and Air Force will be conducted later this year.

  17. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  18. Aircraft anti-insect system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Fric, Thomas Frank (Inventor); Leon, Ross Michael (Inventor)

    1997-01-01

    Insect debris is removed from or prevented from adhering to insect impingement areas of an aircraft, particularly on an inlet cowl of an engine, by heating the area to 180.degree.-500.degree. C. An apparatus comprising a means to bring hot air from the aircraft engine to a plenum contiguous to the insect impingement area provides for the heating of the insect impingement areas to the required temperatures. The plenum can include at least one tube with a plurality of holes contained in a cavity within the inlet cowl. It can also include an envelope with a plurality of holes on its surface contained in a cavity within the inlet cowl.

  19. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    This paper presents an overview of certain aspects of the evaluation of the fireworthiness of transport aircraft interiors. First, it addresses the key materials question concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled fire. Second, it examines some technical opportunities that are available today through the modification of aircraft interior subsystem components, modifications that may reasonably by expected to provide improvements in aircraft fire safety. Cost and risk benefits still remain to be determined.

  20. Aircraft Hydraulic Systems Dynamic Analysis

    DTIC Science & Technology

    1977-10-01

    technical report has been reviewed and is approved for publication. Project Engineer 0 Acting Technical Area Manager FOR THE COMMANDER STEPHEN P...by the McDonnell Aircraft Company, Design Engineering Power and Fluid Subsystem Department, McDonnell Douglas Corporation under contract F33615-74-C...34 (Pennsylvania State University Graduate School of Mechanical Engineering , June 1970), gave predicted variation in the fluid velocity at three different

  1. Affordable MMW aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    Almsted, Larry D.; Becker, Robert C.; Zelenka, Richard E.

    1997-06-01

    Collision avoidance is of concern to all aircraft, requiring the detection and identification of hazardous terrain or obstacles in sufficient time for clearance maneuvers. The collision avoidance requirement is even more demanding for helicopters, as their unique capabilities result in extensive operations at low-altitude, near to terrain and other hazardous obstacles. TO augment the pilot's visual collision avoidance abilities, some aircraft are equipped with 'enhanced-vision' systems or terrain collision warning systems. Enhanced-vision systems are typically very large and costly systems that are not very covert and are also difficult to install in a helicopter. The display is typically raw images from infrared or radar sensors, and can require a high degree of pilot interpretation and attention. Terrain collision warning system that rely on stored terrain maps are often of low resolution and accuracy and do not represent hazards to the aircraft placed after map sampling. Such hazards could include aircraft parked on runway, man- made towers or buildings and hills. In this paper, a low cost dual-function scanning pencil-beam, millimeter-wave radar forward sensor is used to determine whether an aircraft's flight path is clear of obstructions. Due to the limited space and weight budget in helicopters, the system is a dual function system that is substituted in place of the existing radar altimeter. The system combines a 35 GHz forward looking obstacle avoidance radar and a 4.3 GHz radar altimeter. The forward looking 35 GHz 3D radar's returns are used to construct a terrain and obstruction database surrounding an aircraft, which is presented to the pilot as a synthetic perspective display. The 35 GHz forward looking radar and the associated display was evaluated in a joint NASA Honeywell flight test program in 1996. The tests were conducted on a NASA/Army test helicopter. The test program clearly demonstrated the systems potential usefulness for collision avoidance.

  2. An advanced maintenance free aircraft battery system

    SciTech Connect

    Beutler, J.; Green, J.; Kulin, T.

    1996-11-01

    This paper describes an advanced aircraft battery system designed to provide 20 years of maintenance free operation with the flexibility for use on all US Air Force aircraft. System, battery, and charger/analyzer requirements are identified. The final design approach and test results are also presented. There are two general approaches to reduce the maintenance cost of batteries. One approach is to develop a disposable battery system, such that after some time interval the battery is simply replaced. The other approach, the subject of this paper, is to develop a battery that does not require any scheduled maintenance for the design life of the aircraft. This approach is currently used in spacecraft applications where battery maintenance is not practical.

  3. Reconfiguration control system for an aircraft wing

    NASA Technical Reports Server (NTRS)

    Wakayama, Sean R. (Inventor)

    2008-01-01

    Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.

  4. Aircraft body-axis rotation measurement system

    NASA Technical Reports Server (NTRS)

    Cowdin, K. T. (Inventor)

    1983-01-01

    A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.

  5. Aircraft Environmental Systems Mechanic. Part 1.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This packet contains learning modules for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Each learning module consists of some or all of the following: objectives, instructions, equipment, procedures, information sheets, handouts, self-tests with answers, review section, tests, and response…

  6. Aircraft Environmental Systems Mechanic. Part 2.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This packet contains learning modules designed for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Learning modules consist of some or all of the following materials: objectives, instructions, equipment, procedures, information sheets, handouts, workbooks, self-tests with answers, review…

  7. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  8. Aircraft signal definition for flight safety system monitoring system

    NASA Technical Reports Server (NTRS)

    Gibbs, Michael (Inventor); Omen, Debi Van (Inventor)

    2003-01-01

    A system and method compares combinations of vehicle variable values against known combinations of potentially dangerous vehicle input signal values. Alarms and error messages are selectively generated based on such comparisons. An aircraft signal definition is provided to enable definition and monitoring of sets of aircraft input signals to customize such signals for different aircraft. The input signals are compared against known combinations of potentially dangerous values by operational software and hardware of a monitoring function. The aircraft signal definition is created using a text editor or custom application. A compiler receives the aircraft signal definition to generate a binary file that comprises the definition of all the input signals used by the monitoring function. The binary file also contains logic that specifies how the inputs are to be interpreted. The file is then loaded into the monitor function, where it is validated and used to continuously monitor the condition of the aircraft.

  9. Optoelectronic date acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Xin; Liu, Chunyang; Song, De; Tong, Zhiguo; Liu, Xiangqing

    2015-11-01

    An optoelectronic date acquisition system is designed based on FPGA. FPGA chip that is EP1C3T144C8 of Cyclone devices from Altera corporation is used as the centre of logic control, XTP2046 chip is used as A/D converter, host computer that communicates with the date acquisition system through RS-232 serial communication interface are used as display device and photo resistance is used as photo sensor. We use Verilog HDL to write logic control code about FPGA. It is proved that timing sequence is correct through the simulation of ModelSim. Test results indicate that this system meets the design requirement, has fast response and stable operation by actual hardware circuit test.

  10. Advanced Battery System for Aircraft.

    DTIC Science & Technology

    1995-06-01

    of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE...OBLIGATIONS, OR NOTICE ON A SPECIFIC DOCUMENT. TABLE OF CONTENTS SECTION DESCRIPTION PAGE 1.0 Introduction 1 2.0 Program Objective 1 2.1 Discussion 1...Nic’,el Baterv. Aircrarz Power Ccrve-sior ýZSvZems TABLE OF CONTENTS SECTION DESCRIPTION PAGE 1 INTRODUCTION 1 2 SUMMARY 1 3 GENERAL OBSERVATIONS 1 3.1

  11. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  12. Control technology for future aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.

    1984-01-01

    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.

  13. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1976-01-01

    A learning control system is developed which blends the gain scheduling and adaptive control into a single learning system that has the advantages of both. An important feature of the developed learning control system is its capability to adjust the gain schedule in a prescribed manner to account for changing aircraft operating characteristics. Furthermore, if tests performed by the criteria of the learning system preclude any possible change in the gain schedule, then the overall system becomes an ordinary gain scheduling system. Examples are discussed.

  14. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  15. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  16. Ride quality systems for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Downing, D. R.; Hammond, T. A.; Amin, S. P.

    1983-01-01

    The state-of-the-art in Active Ride Augmentation, specifically in terms of its feasibility for commuter aircraft applications. A literature survey was done, and the principal results are presented here through discussion of different Ride Quality Augmentation System (RQAS) designs and advances in related technologies. Recommended follow-on research areas are discussed, and a preliminary RQAS configuration for detailed design and development is proposed.

  17. Emergency Control Aircraft System Using Thrust Modulation

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  18. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  19. Aircraft Fuel Tank Inerting System

    DTIC Science & Technology

    1983-07-01

    replacement of materials lost In eiactrostatically induced fuel tank fires for systems that use blue foam. During the program, funding cuts eliminated the...with a diameter of 40 microns and a 6-micron wall thickness. The structure of the polymethylpentene material permits the oxygen to permeate through the...auxiliary studies and manufacture of permeable membrane modules, which were subcontracted as follows: Boeing Aerospace Company, Wichita , Ka., for

  20. A system approach to aircraft optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1991-01-01

    Mutual couplings among the mathematical models of physical phenomena and parts of a system such as an aircraft complicate the design process because each contemplated design change may have a far reaching consequence throughout the system. Techniques are outlined for computing these influences as system design derivatives useful for both judgemental and formal optimization purposes. The techniques facilitate decomposition of the design process into smaller, more manageable tasks and they form a methodology that can easily fit into existing engineering organizations and incorporate their design tools.

  1. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  2. Fires in P-3 Aircraft Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel

    2006-01-01

    Fires in three P3 aircraft oxygen systems have occurred: one in the Royal Australian Air Force (RAAF) in 1984 and two in the U.S. Navy in 1998 and 2003. All three fires started in the aluminum manifold and check valve (MCV) assembly and produced similar damages to the aircraft in which they occurred. This paper discusses a failure analysis conducted by the NASA Johnson Space Center White Sands Test Facility (WSTF) Oxygen Hazards and Testing Team on the 2003 U.S. Navy VP62 fire. It was surmised that the fire started due to heat generated by an oxygen leak past a silicone check valve seal or possibly because of particle impact near the seat of one of the MCV assembly check valves. An additional analysis of fires in several check valve poppet seals from other aircraft is discussed. These burned poppet seals came from P3 oxygen systems that had been serviced at the Naval Air Station (NAS) in Jacksonville following standard fill procedures. It was concluded that these seal fires occurred due to the heat from compression heating, particle impact, or the heat generated by an oxygen leak past the silicone check valve seal. The fact that catastrophic fires did not occur in the case of each check valve seal fire was attributed to the protective nature of the aluminum oxide layer on the check valve poppets. To prevent future fires of this nature, the U.S. and Canadian fleets of P3 aircraft have been retrofitted with MCV assemblies with an upgraded design and more burn-resistant materials.

  3. Turboprop Cargo Aircraft Systems study, phase 1

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.

    1980-01-01

    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

  4. Power system characteristics for more electric aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1993-01-01

    It should not be suprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considereed when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requiirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lighting tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.

  5. Jet aircraft fuel system deposits

    SciTech Connect

    Hazlett, R.N.; Hall, J.M.

    1981-03-01

    Deposits samples were from the valve cavity of a fuel nozzle of a CF6-50A engine, from the fuel manifold adjacent to the combustor nozzles of a TR-30 engine, fuel test devices, and heat exchange tubes, operated in the laboratories of the Naval Air Propulsion Center and the Air Force Aero Propulsion Laboratory. Carbon, hydrogen, nitrogen and oxygen in the deposits were determined with a Perkin Elmer Elemental Analyzer. Sulfur was determined on a separate sample by modifying ASTM method D3120-75. The high amount of oxygen, nitrogen and sulfur found in the deposits is noteworthy. The data reported generally corroborates the information from the literature. All of the deposits from the engines and the test devices point to the importance of compounds containing hereto atoms. The importance of oxidation in triggering solids formation has been reviewed. It would appear that the trace primary oxidation reactions occurring in a fuel system would be insufficient to give the high concentration of oxygen in the deposit. However, if the compounds undergoing oxidation were oxygen-containing compounds rather than hydrocarbons the high oxygen concentrations in the deposit would be more reasonable. The high enhancement factors observed, causes one to conclude that some nitrogen and sulfur compounds found in fuels are very susceptible to oxidation and subsequent deposit formation. The high concentrations of hereto atoms implies that the deposits have highly polar characteristics. Since such material would have little attraction for the non-polar fuel, the insolubility of deposits may be due primarily to polarity differences rather than high molecular weight.

  6. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  7. Cryogenic system options for a superconducting aircraft propulsion system

    NASA Astrophysics Data System (ADS)

    Berg, F.; Palmer, J.; Bertola, L.; Miller, Paul; Dodds, Graham

    2015-12-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution.

  8. An Immunized Aircraft Maneuver Selection System

    NASA Technical Reports Server (NTRS)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  9. Deicing System Protects General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  10. Radiocarbon dating in groundwater systems: Chapter 4

    USGS Publications Warehouse

    Plummer, L.N.; Glynn, P.D.

    2013-01-01

    The radioactive isotope of carbon, radiocarbon (14C), was first produced artificially in 1940 by Martin Kamen and Sam Ruben, who bombarded graphite in a cyclotron at the Radiation Laboratory at Berkeley, CA, in an attempt to produce a radioactive isotope of carbon that could be used as a tracer in biological systems (Kamen (1963) [101]; Ruben and Kamen (1941) [102]). Carbon-14 of cosmogenic origin was discovered in atmospheric CO2 in 1946 by Willard F. Libby, who determined a half-life of 5568 a. Libby and his co-workers (Anderson et al. (1947) [103]; Libby et al. (1949) [104]) developed radiocarbon dating of organic carbon of biological origin, which revolutionized research in a number of fields, including archaeology and quaternary geology/climatology, by establishing ages and chronologies of events that have occurred over the past approximately 45 ka.

  11. 76 FR 5 - Feathering Propeller Systems for Light-Sport Aircraft Powered Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Federal Aviation Administration 14 CFR Part 1 RIN 2120-AJ81 Feathering Propeller Systems for Light-Sport... for comments. SUMMARY: This final rule with request for comments amends the definition of light-sport... light-sport aircraft. DATES: This rule becomes effective on March 4, 2011. Submit comments on or...

  12. The analysis on nonlinear control of the aircraft arresting system

    NASA Astrophysics Data System (ADS)

    Song, Jinchun; Du, Tianrong

    2005-12-01

    The aircraft arresting system is a complicated nonlinear system. This paper analyzes the mechanical-hydraulic structure of aircraft arresting system composed of electro hydraulic valve and establishes the dynamic equation of the aircraft arresting system. Based on the state-feedback linearization of nonlinear system, a PD-based controller is synthesized. Simulation studies indicate, while arresting the different type aircraft, the proposed controller has fast response, good tracking performance and strong robustness. By tuning the parameters of the PD controller, a satisfactory control performance can be guaranteed.

  13. A parametric analysis of transport aircraft system weights and costs

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1974-01-01

    In determining unit and operating costs for advanced aircraft, it has been found that by having first-order weight and performance approximations for the aircraft systems and structural components, a step increase in cost prediction accuracy results. This paper presents first-order approximation equations for these systems and components. These equations were developed from data for most current jet transports, and they have been ordered to use a minimum number of performance parameters such as aircraft style, number of passengers, empty and gross weight, cargo load, and operating range. A NASA Ames Research Center aircraft cost program has been used to compare calculated and actual weights for the same aircraft. Good aircraft cost correlation is shown to exist between calculated first-order and actual aircraft weight data.

  14. Aircraft engine mathematical model - linear system approach

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ

    2016-06-01

    This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.

  15. A Systems Engineering Approach to Aircraft Kinetic Kill Countermeasures Technology: Development of an Active Aircraft Defense System for the C/KC-135 Aircraft. Volume 1

    DTIC Science & Technology

    1995-12-01

    AFIT/GSE/ENY/95D-01 A SYSTEMS ENGINEERING APPROACH TO AIRCRAFT KINETIC KILL COUNTERMEASURE TECHNOLOGY: DEVELOPMENT OF AN ACTIVE AIR DEFENSE SYSTEM...AFIT/GSE/ENY/95D-01 A SYSTEMS ENGINEERING APPROACH TO AIRCRAFT KINETIC KILL COUNTERMEASURE TECHNOLOGY: DEVELOPMENT OF AN ACTIVE AIR DEFENSE SYSTEM FOR...THE C/KC-135 AIRCRAFT THESIS (1 of2) Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology Air

  16. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  17. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  18. Coexistence Analysis of Civil Unmanned Aircraft Systems at Low Altitudes

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhe

    2016-11-01

    The requirement of unmanned aircraft systems in civil areas is growing. However, provisioning of flight efficiency and safety of unmanned aircraft has critical requirements on wireless communication spectrum resources. Current researches mainly focus on spectrum availability. In this paper, the unmanned aircraft system communication models, including the coverage model and data rate model, and two coexistence analysis procedures, i. e. the interference and noise ratio criterion and frequency-distance-direction criterion, are proposed to analyze spectrum requirements and interference results of the civil unmanned aircraft systems at low altitudes. In addition, explicit explanations are provided. The proposed coexistence analysis criteria are applied to assess unmanned aircraft systems' uplink and downlink interference performances and to support corresponding spectrum planning. Numerical results demonstrate that the proposed assessments and analysis procedures satisfy requirements of flexible spectrum accessing and safe coexistence among multiple unmanned aircraft systems.

  19. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  20. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Site Program AGENCY: Federal... Administration and the Department of Defense, develop a test site program for the integration of unmanned aircraft systems in to the National Airspace System. The overall purpose of this test site program is...

  1. 77 FR 14319 - Unmanned Aircraft System Test Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Sites AGENCY: Federal... test ranges/sites to integrate unmanned aircraft systems (UAS) into the National Airspace System (NAS... of such UAS test sites will assist in the effort to safely and efficiently integrate UAS into the...

  2. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  3. STBC AF relay for unmanned aircraft system

    NASA Astrophysics Data System (ADS)

    Adachi, Fumiyuki; Miyazaki, Hiroyuki; Endo, Chikara

    2015-01-01

    If a large scale disaster similar to the Great East Japan Earthquake 2011 happens, some areas may be isolated from the communications network. Recently, unmanned aircraft system (UAS) based wireless relay communication has been attracting much attention since it is able to quickly re-establish the connection between isolated areas and the network. However, the channel between ground station (GS) and unmanned aircraft (UA) is unreliable due to UA's swing motion and as consequence, the relay communication quality degrades. In this paper, we introduce space-time block coded (STBC) amplify-and-forward (AF) relay for UAS based wireless relay communication to improve relay communication quality. A group of UAs forms single frequency network (SFN) to perform STBC-AF cooperative relay. In STBC-AF relay, only conjugate operation, block exchange and amplifying are required at UAs. Therefore, STBC-AF relay improves the relay communication quality while alleviating the complexity problem at UAs. It is shown by computer simulation that STBC-AF relay can achieve better throughput performance than conventional AF relay.

  4. Algorithm of Unmanned Aircraft Systems Displacement in Airspace

    NASA Astrophysics Data System (ADS)

    Gugała, Tomasz

    Despite the fact Unmanned Aerial Vehicles have been used for more than 70 years and their uncommon development has taken place in the first decade of the 21st Century, there is still no elaboration of "Uniform Concept of the Unmanned Aircraft Systems Displacement in Airspace". The indispensable condition of the above mentioned concept has to be flight safety of all airspace users. To achieve this goal, it is necessary to work out the adequate procedures and regulations in the scope of airspace usage taking into consideration this upto- date means of air transport. Therefore, elaboration of the algorithm by the author, can be a reason of achievement for the above mentioned object in the near future. Under such circumstances, the author has taken the trial to perform this challenging task.

  5. Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  6. Laser beacon system for aircraft collision hazard determination.

    PubMed

    Miles, R B

    1980-07-01

    A laser beacon collision hazard determination system is capable of simultaneously determining range, bearing, and heading of threat aircraft. Calculations demonstrate that threat aircraft may be observed at > 10 km under good visibility conditions. When the visibility is limited to 5.6 km (3 nautical miles), the shortest possible warning time for aircraft below 3000 m (10,000 ft) can be > 15 sec. A wide variety of detection systems may be chosen based on cost, detection range, and sophistication. Traffic saturation is not a problem since closer aircraft produce easily distinguishable signals so traffic may be prioritized. Preliminary tests demonstrate that accurate range measurements are possible under daylight conditions.

  7. 78 FR 68360 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Site Program AGENCY: Federal... unmanned aircraft system (``UAS'') test site program; response to comments. SUMMARY: On February 22, 2013... Privacy Requirements'') for UAS test sites (the ``Test Sites'') that the FAA will establish pursuant...

  8. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  9. Life prediction of aging aircraft wiring systems

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1995-01-01

    The program goal is to develop a computerized life prediction model capable of identifying present aging progress and predicting end of life for aircraft wiring. A summary is given in viewgraph format of progress made on phase 1 objectives, which were to identify critical aircraft wiring problems; relate most common failures identified to the wire mechanism causing the failure; assess wiring requirments, materials, and stress environment for fighter aircraft; and demonstrate the feasibility of a time-temperature-environment model.

  10. Unmanned Carrier-based Aircraft System: Navy Needs to Demonstrate Match between Its Requirements and Available Resources

    DTIC Science & Technology

    2015-05-01

    UNMANNED CARRIER-BASED AIRCRAFT SYSTEM Navy Needs to Demonstrate Match between Its Requirements and Available...for reviewing instructions, searching existing data sources, gathering and maintaining the data needed , and completing and reviewing the collection of...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Unmanned Carrier-based Aircraft System: Navy Needs to Demonstrate Match between Its

  11. National Unmanned Aircraft Systems Project Office

    USGS Publications Warehouse

    Goplen, Susan E.; Sloan, Jeff L.

    2015-01-01

    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  12. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  13. Application of dynamical systems theory to nonlinear aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Jahnke, Craig C.

    1990-01-01

    A continuation method has been used to determine the steady states of three nonlinear aircraft models: a general aviation aircraft with a canard configuration, a generic jet fighter, and the F-14. The continuation method calculated the steady states of the aircraft as functions of the control surface deflections. Bifurcations of these steady states were determined and shown to cause instabilities which resulted in qualitative changes in the state of the aircraft. A longitudinal instability which resulted in a deep stall was determined for the general aviation aircraft. Roll-coupling and high angle of attack instabilities were determined for the generic jet fighter, and wing rock, directional divergence and high angle of attack instabilities were determined for the F-14.Knowledge of the control surface deflections at which bifurcations occurred was used to either put limits on the control surface deflections or to program the control surface deflections such that a combination of control surface deflections at which bifurcations occur could not be attained. Simple control systems were included in the aircraft models to determine the effects of control systems on the instabilities of each aircraft. Steady spin modes were determined for each aircraft. A successful recovery technique was determined for the general aviation aircraft, but no successful recovery technique could be found for the F-14.

  14. Pneumatic system structure for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Krauss, Timothy A. (Inventor); Roman, Stephan (Inventor); Beurer, Robert J. (Inventor)

    1986-01-01

    A plenum for a circulation control rotor aircraft which surrounds the rotor drive shaft (18) and is so constructed that the top (32), outer (38) and bottom (36) walls through compressed air is admitted are fixed to aircraft structure and the inner wall (34) through which air passes to rotor blades (14) rotates with the drive shaft and rotor blades.

  15. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  16. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  17. Commercial Aircraft Airframe Fuel Systems Survey and Analysis.

    DTIC Science & Technology

    1982-02-01

    Fairchild Swearingen Corporation Pratt & Whitney Aircraft of Canada Ltd. P.O. Box 894 Box 10 San Antonio, Texas 78284 Longueuil , Quebec J4K 4X9 Mr...Antimisting Fuel Engineering and Development Plan, FAA-ED-18-4. The objective was to study the fuel systems of a representative sample of commercial aircraft

  18. Automatic Aircraft Collision Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Skoog, Mark (Inventor); Hook, Loyd (Inventor); McWherter, Shaun (Inventor); Willhite, Jaimie (Inventor)

    2014-01-01

    The invention is a system and method of compressing a DTM to be used in an Auto-GCAS system using a semi-regular geometric compression algorithm. In general, the invention operates by first selecting the boundaries of the three dimensional map to be compressed and dividing the three dimensional map data into regular areas. Next, a type of free-edged, flat geometric surface is selected which will be used to approximate terrain data of the three dimensional map data. The flat geometric surface is used to approximate terrain data for each regular area. The approximations are checked to determine if they fall within selected tolerances. If the approximation for a specific regular area is within specified tolerance, the data is saved for that specific regular area. If the approximation for a specific area falls outside the specified tolerances, the regular area is divided and a flat geometric surface approximation is made for each of the divided areas. This process is recursively repeated until all of the regular areas are approximated by flat geometric surfaces. Finally, the compressed three dimensional map data is provided to the automatic ground collision system for an aircraft.

  19. Systems integration studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1975-01-01

    Technical progress in each of the disciplinary research areas affecting the design of supersonic cruise aircraft is discussed. The NASA AST/SCAR Program supported the integration of these technical advances into supersonic cruise aircraft configuration concepts. While the baseline concepts reflect differing design philosophy, all reflect a level of economic performance considerably above the current foreign aircraft as well as the former U.S. SST. Range-payload characteristics of the study configurating show significant improvement, while meeting environmental goals such as takeoff and landing noise and upper atmospheric pollution.

  20. Dating violence and girls in the juvenile justice system.

    PubMed

    Kelly, Patricia J; Cheng, An-Lin; Peralez-Dieckmann, Esther; Martinez, Elisabeth

    2009-09-01

    The purpose of this study is to explore the prevalence and associated behaviors of dating violence among a population of girls in the juvenile justice system. A sample of 590 girls from an urban juvenile justice system completed a questionnaire assessing attitudes and self-efficacy about and occurrence of dating violence. The analysis developed a random effect model to determine a risk profile for dating violence. The strongest predictors of dating violence were (a) initial sexual experience at age 13 or earlier, (b) unwillingness of initial sexual experience, (c) drug use, and (d) low self-efficacy about preventing dating violence. The high prevalence of dating violence and associated behaviors among participants suggests the importance of implementing primary prevention programs to assist preteen girls in delaying initial sexual intercourse and in learning techniques to prevent dating violence.

  1. Application of active controls technology to aircraft bide smoothing systems

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Jacobson, I. D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade offs involving sensor types, choice of feedback loops, human comfort, and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL aircraft and an executive transport are considered. Theoretically predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  2. Application of Active Controls Technology to Aircraft Ride Smoothing Systems

    NASA Technical Reports Server (NTRS)

    Lapins, Maris; Jacobson, Ira D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade-offs involving sensor types, choice of feedback loops, human comfort and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL-class aircraft and an executive transport are considered. Theoretically-predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  3. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  4. Aircraft Survivability: Unmanned Aircraft Systems Survivability. Fall 2008

    DTIC Science & Technology

    2008-01-01

    SURVIAC Satellite Office Promotional Director Christina P. McNemar Creative Director K. Ahnie Jenkins Art Director Donald Rowe Technical Editor...Satellite Office Attn: Christina McNemar 13200 Woodland Park Road, Suite 6047 Herndon, VA 20171 COMMANDER NAVAL AIR SYSTEMS COMMAND (4.1.8J) 47123 BUSE ROAD

  5. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  6. F100 engine diagnostic system status to date

    NASA Technical Reports Server (NTRS)

    Boyless, J. A.

    1981-01-01

    An engine diagnostic system, proposed for the F100 engine, was tested in five specially modified Tactical Air Command F-15 aircraft during a 16-month flight evaluation. After more than 3300 engine operating hours encompassing almost 900 flights during the flight evaluation, these aircraft provided a data base, still being analyzed, that has shown successful demonstration of the original functional characteristics. Four general design requirements, recording engine operating time/low cycle fatigue event detection, engine trim, and trend and performance data collection were demonstrated. Also, validation of maintenance actions taken and indicated needed maintenance were successfully demonstrated.

  7. Potential capabilities of aircraft laser landing systems.

    PubMed

    Kaloshin, G A; Matvienko, G G; Shishkin, S A; Anisimov, V I; Butuzov, V V; Zhukov, V V; Stolyarov, G V; Pasyuk, V P

    2016-10-20

    We present calculations of the efficiency of the laser landing system (LLS), based on determining the minimum required fluxes of scattered radiation from fixed extended landmarks (FELs), which are LLS indicators in the case of visual FEL detection under real operation conditions. It is shown that, when the meteorological visibility range Sm=800  m, for reliable detection of laser beams from the glissade slope group at ranges L∼1.0-1.6  km under nighttime conditions, the minimum required powers are Pmin=0.5  W for λ=0.52 and 0.64 μm, given deviations from the glissade path by the angle ϕ=0°-5°. The green and red rays are visible at distances L=1-1.2  km under twilight conditions. Our calculations corroborated the possibility of creating a new-generation laser-based LLS capable of ensuring aircraft landing under the conditions of International Civil Aviation Organization category 1 (decision height of 60 m at the minimum visibility equal 800 m).

  8. Dating Violence and Girls in the Juvenile Justice System

    ERIC Educational Resources Information Center

    Kelly, Patricia J.; Cheng, An-Lin; Peralez-Dieckmann, Esther; Martinez, Elisabeth

    2009-01-01

    The purpose of this study is to explore the prevalence and associated behaviors of dating violence among a population of girls in the juvenile justice system. A sample of 590 girls from an urban juvenile justice system completed a questionnaire assessing attitudes and self-efficacy about and occurrence of dating violence. The analysis developed a…

  9. Aircraft earth station for experimental mobile satellite system

    NASA Astrophysics Data System (ADS)

    Ohmori, S.; Hase, Y.; Kosaka, K.; Tanaka, M.

    A mobile satellite communication system, which can provide high quality service for small ships and aircraft, has been studied in Japan. This system is scheduled to be carried into experimental and evaluation phase in 1987, when a geostationary satellite (ETS-V) is launched by a Japanese rocket. This paper describes an aircraft earth station, which can establish telephone communication links for passengers on board the aircraft. The new technologies, especially an airborne phased array antenna, are developed. This is the first development in the world in mobile satellite communication areas.

  10. Parametric study of transport aircraft systems cost and weight

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Trapp, D. L.; Kimoto, B. W.; Marsh, D. P.

    1977-01-01

    The results of a NASA study to develop production cost estimating relationships (CERs) and weight estimating relationships (WERs) for commercial and military transport aircraft at the system level are presented. The systems considered correspond to the standard weight groups defined in Military Standard 1374 and are listed. These systems make up a complete aircraft exclusive of engines. The CER for each system (or CERs in several cases) utilize weight as the key parameter. Weights may be determined from detailed weight statements, if available, or by using the WERs developed, which are based on technical and performance characteristics generally available during preliminary design. The CERs that were developed provide a very useful tool for making preliminary estimates of the production cost of an aircraft. Likewise, the WERs provide a very useful tool for making preliminary estimates of the weight of aircraft based on conceptual design information.

  11. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  12. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  13. Preliminary Considerations for Classifying Hazards of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Miner, Paul S.; Szatkowski, George N.; Ulrey, Michael L.; DeWalt, Michael P.; Spitzer, Cary R.

    2007-01-01

    The use of unmanned aircraft in national airspace has been characterized as the next great step forward in the evolution of civil aviation. To make routine and safe operation of these aircraft a reality, a number of technological and regulatory challenges must be overcome. This report discusses some of the regulatory challenges with respect to deriving safety and reliability requirements for unmanned aircraft. In particular, definitions of hazards and their classification are discussed and applied to a preliminary functional hazard assessment of a generic unmanned system.

  14. Overview of Propulsion Systems for a Mars Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Miller, Christopher J.; Reed, Brian D.; Kohout, Lisa L.; Loyselle, Patricia L.

    2001-01-01

    The capabilities and performance of an aircraft depends greatly on the ability of the propulsion system to provide thrust. Since the beginning of powered flight, performance has increased in step with advancements in aircraft propulsion systems. These advances in technology from combustion engines to jets and rockets have enabled aircraft to exploit our atmospheric environment and fly at altitudes near the Earth's surface to near orbit at speeds ranging from hovering to several times the speed of sound. One of the main advantages of our atmosphere for these propulsion systems is the availability of oxygen. Getting oxygen basically "free" from the atmosphere dramatically increases the performance and capabilities of an aircraft. This is one of the reasons our present-day aircraft can perform such a wide range of tasks. But this advantage is limited to Earth; if we want to fly an aircraft on another planetary body, such as Mars, we will either have to carry our own source of oxygen or use a propulsion system that does not require it. The Mars atmosphere, composed mainly of carbon dioxide, is very thin. Because of this low atmospheric density, an aircraft flying on Mars will most likely be operating, in aerodynamical terms, within a very low Reynolds number regime. Also, the speed of sound within the Martian environment is approximately 20 percent less than it is on Earth. The reduction in the speed of sound plays an important role in the aerodynamic performance of both the aircraft itself and the components of the propulsion system, such as the propeller. This low Reynolds number-high Mach number flight regime is a unique flight environment that is very rarely encountered here on Earth.

  15. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  16. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  17. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  18. Study of aircraft in intraurban transportation systems, volume 1

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, H. C.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas.

  19. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  20. Propulsion system study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Hirschkron, R.; Warren, R. E.

    1981-01-01

    Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).

  1. Some wear studies on aircraft brake systems

    NASA Technical Reports Server (NTRS)

    Ho, T. L.

    1975-01-01

    An initial investigation of worn surfaces in friction pads and steel rotors used in current aircraft brakes was carried out using electron microprobe and X-ray diffraction analysis. It consists of the topographical study and the analysis of chemical element distribution. Based upon this initial examination, two approaches, microscopic and macroscopic have been conducted to interpret and formulate the wear mechanism of the aircraft brake materials. Microscopically, the wear particles were examined. The initiation and growth of surface cracks and the oxidation were emphasized in this investigation. Macroscopically, it has been found that, for the current copper based brake material sliding against 17-22 AS steel in a caliper brake, the surface temperature raised due to frictional heat is nonlinearly proportional to the load applied and slide time with speed at 1750 rpm. The wear of brake materials is then proportional to this temperature and is also a function of the melting temperature for copper.

  2. The Automated Aircraft Rework System (AARS): A system integration approach

    NASA Technical Reports Server (NTRS)

    Benoit, Michael J.

    1994-01-01

    The Mercer Engineering Research Center (MERC), under contract to the United States Air Force (USAF) since 1989, has been actively involved in providing the Warner Robins Air Logistics Center (WR-ALC) with a robotic workcell designed to perform rework automated defastening and hole location/transfer operations on F-15 wings. This paper describes the activities required to develop and implement this workcell, known as the Automated Aircraft Rework System (AARS). AARS is scheduled to be completely installed and in operation at WR-ALC by September 1994.

  3. Automated Routing of Unmanned Aircraft Systems (UAS)

    DTIC Science & Technology

    2009-09-01

    environments than manned aircraft. Weather effects thus become a crucial part of both operational planning and execution of UAS missions. The U.S. Army...and observed and predicted meteorological (Met) parameters to plan routes through weather and other hazards to carry out missions with maximum...4  4.  Route Planning : Avoiding Adverse Weather Impacts 5  4.1  Manual Routing

  4. Wiring System Diagnostic Techniques for Legacy Aircraft

    DTIC Science & Technology

    2003-02-01

    hydrolysis) and ultra- violet radiation Alternative wire insulation materials include cross-linked TefzelTM (MIL-W- 22759 /33- 44) which is a cross-linked...with conductor corrosion in silver plated wire (red plague). Another widely used type of insulation in Air Force aircraft is Teflon (MIL- W- 22759 ...primarily Teflon with a small percentage of a modified aromatic polyimide (MIL-W- 22759 /88-). Much of the original development and testing was part of an

  5. Project ADIOS: Aircraft Deployable Ice Observation System

    NASA Astrophysics Data System (ADS)

    Gudmundsson, G. H.

    2013-12-01

    Regions of the Antarctic that are of scientific interest are often too heavily crevassed to enable a plane to land, or permit safe access from a field camp. We have developed an alternative strategy for instrumenting these regions: a sensor that can be dropped from an overflying aircraft. Existing aircraft deployable sensors are not suitable for long term operations in areas where snow accumulates, as they are quickly buried. We have overcome this problem by shaping the sensor like an aerodynamic mast with fins and a small parachute. After being released from the aircraft, the sensor accelerates to 42m/s and stabilizes during a 10s descent. On impact with the snow surface the sensor package buries itself to a depth of 1m then uses the large surface area of the fins to stop it burying further. This leaves a 1.5m mast protruding high above the snow surface to ensure a long operating life. The high impact kinetic energy and robust fin braking mechanism ensure that the design works in both soft and hard snow. Over the past two years we have developed and tested our design with a series of aircraft and wind tunnel tests. Last season we used this deployment strategy to successfully install a network of 31 single band GPS sensors in regions where crevassing has previously prevented science operations: Pine Island Glacier, West Antarctica, and Scar Inlet, Antarctic Peninsula. This season we intend to expand on this network by deploying a further 25 single and dual band GPS sensors on Thwaites Glacier, West Antarctica.

  6. Personal Electronic Devices and Their Interference with Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Ross, Elden; Ely, Jay J. (Technical Monitor)

    2001-01-01

    A compilation of data on personal electronic devices (PEDs) attributed to having created anomalies with aircraft systems. Charts and tables display 14 years of incidents reported by pilots to the Aviation Safety Reporting System (ASRS). Affected systems, incident severity, sources of anomaly detection, and the most frequently identified PEDs are some of the more significant data. Several reports contain incidents of aircraft off course when all systems indicated on course and of critical events that occurred during landings and takeoffs. Additionally, PEDs that should receive priority in testing are identified.

  7. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  8. Sun sensing guidance system for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. D. (Principal Investigator)

    1982-01-01

    A sun sensing guidance system for high altitude aircraft is described. The system is characterized by a disk shaped body mounted for rotation aboard the aircraft in exposed relation to solar radiation. The system also has a plurality of mutually isolated chambers; each chamber being characterized by an opening having a photosensor disposed therein and arranged in facing relation with the opening for receiving incident solar radiation and responsively providing a voltage output. Photosensors are connected in paired relation through a bridge circuit for providing heading error signals in response to detected imbalances in intensities of solar radiation.

  9. Fire blocking systems for aircraft seat cushions

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A. (Inventor)

    1984-01-01

    A configuration and method for reducing the flammability of bodies of organic materials that thermally decompose to give flammable gases comprises covering the body with a flexible matrix that catalytically cracks the flammable gases to less flammable species. Optionally, the matrix is covered with a gas impermeable outer layer. In a preferred embodiment, the invention takes the form of an aircraft seat in which the body is a poly(urethane) seat cushion, the matrix is an aramid fabric or felt and the outer layer is an aluminum film.

  10. Matrix Interconnection System for Aircraft Wiring

    DTIC Science & Technology

    1975-07-01

    Aircraft Wiring, ECOM-0102-1, Feb. I973 mmmmMam "" \\:.-JLl.- *"’" " ’^nf--’--^7 -w .mm-m .mm BSU! (2) obtain due to the classified nature of the...steps 2 and 3 of MODE 2 to operate the intercoms. 2’ TTpe gtpp 1 of MODE 3 tn opprnte the compass. Do not rotate the SITS, MODE 10 This test is to be...TABLE II TABLE III TABLE IV MODES OF OPERATION MATRIX OH- GA HELICOPTER EMC EVALUATION OH- GA HELICOPTER EMC EVALUATION TEST SUMMARY GROUND TEST

  11. An efficient navigation-control system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Girwar-Nath, Jonathan Alejandro

    Unmanned Aerial Vehicles have been research in the past decade for a broad range of tasks and application domains such as search and rescue, reconnaissance, traffic control, pipe line inspections, surveillance, border patrol, and communication bridging. This work describes the design and implementation of a lightweight Commercial-Off-The-Shelf (COTS) semi-autonomous Fixed-Wing Unmanned Aerial Vehicle (UAV). Presented here is a methodology for System Identification utilizing the Box-Jenkins model estimator on recorded flight data to characterize the system and develop a mathematical model of the aircraft. Additionally, a novel microprocessor, the XMOS, is utilized to navigate and maneuver the aircraft utilizing a PD control system. In this thesis is a description of the aircraft and the sensor suite utilized, as well as the flight data and supporting videos for the benefit of the UAV research community.

  12. Aircraft Vortex Spacing System (AVOSS) Concept and Development

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1997-01-01

    The AVOSS goal is to: (1) Support TAP goal of improving instrument operations capacity 12-15% while maintaining safety; (2) Provide dynamical aircraft wake vortex spacing criteria to ATC systems at capacity limited facilities with required lead time and stability for use in establishing aircraft arrival scheduling; and (3) System development and concept demonstration. The AVOSS system concept is to separate aircraft from encounters with wake vortices of an operationally unacceptable strength. In doing so, define protected corridor from outer marker to runway and predict time for vortex to clear ("Transport Time"), define operationally unacceptable wake strength and predict time to decay ("Decay Time"), combine and provide to ATC automation ("Residence Time"), and monitor safety and provide predictor feedback with wake vortex detection subsystem.

  13. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  14. Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1994-01-01

    This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

  15. Top-mounted inlet system feasibility for transonic-supersonic fighter aircraft. [V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Williams, T. L.; Hunt, B. L.; Smeltzer, D. B.; Nelms, W. P.

    1981-01-01

    The more salient findings are presented of recent top inlet performance evaluations aimed at assessing the feasibility of top-mounted inlet systems for transonic-supersonic fighter aircraft applications. Top inlet flow field and engine-inlet performance test data show the influence of key aircraft configuration variables-inlet longitudinal position, wing leading-edge extension planform area, canopy-dorsal integration, and variable incidence canards-on top inlet performance over the Mach range of 0.6 to 2.0. Top inlet performance data are compared with those or more conventional inlet/airframe integrations in an effort to assess the viability of top-mounted inlet systems relative to conventional inlet installations.

  16. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  17. Aircraft Detection System Ensures Free-Space Laser Safety

    NASA Technical Reports Server (NTRS)

    Smithgall, Brian; Wilson, Keith E.

    2004-01-01

    As scientists continue to explore our solar system, there are increasing demands to return greater volumes of data from smaller deep-space probes. Accordingly, NASA is studying advanced strategies based on free-space laser transmissions, which offer secure, high-bandwidth communications using smaller subsystems of much lower power and mass than existing ones. These approaches, however, can pose a danger to pilots in the beam path because the lasers may illuminate aircraft and blind them. Researchers thus are investigating systems that will monitor the surrounding airspace for aircraft that could be affected. This paper presents current methods for safe free space laser propagation.

  18. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  19. Systems and Methods for Collaboratively Controlling at Least One Aircraft

    NASA Technical Reports Server (NTRS)

    Estkowski, Regina I. (Inventor)

    2016-01-01

    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  20. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  1. The Small Aircraft Transportation System Project: An Update

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.

    2006-01-01

    To all peoples in all parts of the world throughout history, the ability to move about easily is a fundamental element of freedom. The American people have charged NASA to increase their freedom and that of their children knowing that their quality of life will improve as our nation s transportation systems improve. In pursuit of this safe, reliable, and affordable personalized air transportation option, in 2000 NASA established the Small Aircraft Transportation System (SATS) Project. As the name suggests personalized air transportation would be built on smaller aircraft than those used by the airlines. Of course, smaller aircraft can operate from smaller airports and 96% of the American population is within thirty miles of a high-quality, underutilized community airport as are the vast majority of their customers, family members, and favorite vacation destinations.

  2. Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft VOrtex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    OConnor, Cornelius J.; Rutishauser, David K.

    2001-01-01

    An aspect of airport terminal operations that holds potential for efficiency improvements is the separation criteria applied to aircraft for wake vortex avoidance. These criteria evolved to represent safe spacing under weather conditions conducive to the longest wake hazards, and are consequently overly conservative during a significant portion of operations. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft Vortex Spacing System (AVOSS). Successfully operated in a real-time field demonstration during July 2000 at the Dallas Ft. Worth International Airport, AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. Gains in airport throughput using AVOSS spacing as compared to the current criteria averaged 6%, with peak values approaching the theoretical maximum of 16%. The average throughput gain translates to 15-40% reductions in delay when applied to realistic capacity ratios at major airports.

  3. Aircraft noise synthesis system: Version 4 user instructions

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Sullivan, Brenda M.; Grandle, Robert E.

    1987-01-01

    A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.

  4. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  5. Deployment of a wireless corrosion monitoring system for aircraft applications

    NASA Astrophysics Data System (ADS)

    Demo, J.; Andrews, C.; Friedersdorf, F.; Morgan, A.; Jostes, L.

    With its extremely negative effects on critical military assets, corrosion continues to be one of the top maintenance cost drivers for the Department of Defense. As of 2010, an estimated $22.9B was required to cover the costs associated with corrosion in the DoD annually. Proper management of corrosion on high value military assets such as aircraft can significantly reduce costs associated with maintenance, component removal, and aircraft availability. This paper will discuss the design, validation, and deployment of a wireless, flight qualified corrosion monitoring system as well as analysis of data collected during field trials.

  6. Application of dynamical systems theory to nonlinear aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Culick, Fred E. C.; Jahnke, Craig C.

    1988-01-01

    Dynamical systems theory has been used to study nonlinear aircraft dynamics. A six degree of freedom model that neglects gravity has been analyzed. The aerodynamic model, supplied by NASA, is for a generic swept wing fighter and includes nonlinearities as functions of the angle of attack. A continuation method was used to calculate the steady states of the aircraft, and bifurcations of these steady states, as functions of the control deflections. Bifurcations were used to predict jump phenomena and the onset of periodic motion for roll coupling instabilities and high angle of attack maneuvers. The predictions were verified with numerical simulations.

  7. Integrated numerical methods for hypersonic aircraft cooling systems analysis

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1992-01-01

    Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.

  8. Canada's first fixed-site aircraft noise monitoring system

    SciTech Connect

    Standen, N.M.

    1982-01-01

    The nature of aircraft noise management in Canada as it is presently evolving is discussed. The population of aircraft operating in Canada is similar to most western nations with regard to aircraft type. Canada's airport system includes major airports owned and operated by the federal Department of Transport (Transport Canada), airports owned and operated by provinces, municipalities or local commissions, and privately owned and operated airports, largely catering to general aviation. In addition, there are airports which are owned by Transport Canada, but operated by another agency. The consequence of this arrangement is that the major jet transport traffic is handled by airports which are owned and operated by either Transport Canada or another government agency.

  9. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  10. Detection of nitrogen deficiency in potatoes using unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. We set up a nitrogen rate experiment in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized...

  11. MQ-9 Reaper Unmanned Aircraft System (MQ-9 Reaper)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-424 MQ-9 Reaper Unmanned Aircraft System (MQ-9 Reaper) As of FY 2017 President’s Budget...POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To

  12. Sense and avoid technology for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    McCalmont, John; Utt, James; Deschenes, Michael; Taylor, Michael; Sanderson, Richard; Montgomery, Joel; Johnson, Randal S.; McDermott, David

    2007-04-01

    The Sensors Directorate of the Air Force Research Laboratory (AFRL), in conjunction with the Global Hawk Systems Group, the J-UCAS System Program Office and contractor Defense Research Associates, Inc. (DRA) is conducting an Advanced Technology Demonstration (ATD) of a sense-and-avoid capability with the potential to satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aircraft Systems (UAS) to provide "an equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for UAS operations within the national airspace. The Sense-and-Avoid, Phase I (Man-in-the-Loop) and Phase II (Autonomous Maneuver) ATD demonstrated an on-board, wide field of regard, multi-sensor visible imaging system operating in real time and capable of passively detecting approaching aircraft, declaring potential collision threats in a timely manner and alerting the human pilot located in the remote ground control station or autonomously maneuvered the aircraft. Intruder declaration data was collected during the SAA I & II Advanced Technology Demonstration flights conducted during December 2006. A total of 27 collision scenario flights were conducted and analyzed. The average detection range was 6.3 NM and the mean declaration range was 4.3 NM. The number of false alarms per engagement has been reduced to approximately 3 per engagement.

  13. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  14. 77 FR 65148 - Airworthiness Directives; Intertechnique Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... Intertechnique Aircraft Systems oxygen mask regulators. This proposed AD was prompted by a report of a... suspect batches may have become installed on an Oxygen Mask Regulator, the serial number (s/n) or P/N of... widens the Applicability of this AD to extend beyond the individual Oxygen Mask Regulators identified...

  15. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key…

  16. An interactive system for aircraft design and optimization

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan M.

    1992-01-01

    A system for aircraft design utilizing a unique analysis architecture, graphical interface, and suite of numerical optimization methods is described in this paper. The non-procedural architecture provides extensibility and efficiency not possible with conventional programming techniques. The interface for analysis and optimization, developed for use with this method, is described and its application to example problems is discussed.

  17. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  18. Loss-of-Control-Inhibitor Systems for Aircraft

    NASA Technical Reports Server (NTRS)

    AHarrah, Ralph C.

    2007-01-01

    Systems to provide improved tactile feedback to aircraft pilots are being developed to help the pilots maintain harmony between their control actions and the positions of aircraft control surfaces, thereby helping to prevent loss of control. A system of this type, denoted a loss-of-control-inhibitor system (LOCIS) can be implemented as a relatively simple addition to almost any pre-existing flight-control system. The LOCIS concept offers at least a partial solution to the problem of (1) keeping a pilot aware of the state of the control system and the aircraft and (2) maintaining sufficient control under conditions that, as described below, have been known to lead to loss of control. Current commercial aircraft exhibit uneven responses of primary flight-control surfaces to aggressive pilot control commands, leading to deterioration of pilots ability to control their aircraft. In severe cases, this phenomenon can result in loss of control and consequent loss of aircraft. For an older aircraft equipped with a purely mechanical control system, the loss of harmony between a pilot s command action and the control- surface response can be attributed to compliance in the control system (caused, for example, by stretching of control cables, flexing of push rods, or servo-valve distortion). In a newer aircraft equipped with a fly-by-wire control system, the major contributions to loss of harmony between the pilot and the control surfaces are delays attributable to computer cycle time, control shaping, filtering, aliasing, servo-valve distortion, and actuator rate limiting. In addition, a fly-by-wire control system provides no tactile feedback that would enable the pilot to sense such features of the control state as surface flutter, surface jam, position limiting, actuator rate limiting, and control limiting imposed by the aircraft operational envelope. Hence, for example, when a pilot is involved in aggressive closed-loop maneuvering, as when encountering a wake

  19. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase.

  20. Secondary Wing System for Use on an Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Brian E. (Inventor)

    1999-01-01

    A secondary wing system for use on an aircraft augments the lift, stability, and control of the aircraft at subsonic speeds. The secondary wing system includes a mechanism that allows the canard to be retracted within the contour of the aircraft fuselage from an operational position to a stowed position. The top surface of the canard is exposed to air flow in the stowed position, and is contoured to integrate aerodynamically and smoothly within the contour of the fuselage when the canard is retracted for high speed flight. The bottom portion of the canard is substantially flat for rotation into a storage recess within the fuselage. The single canard rotates about a vertical axis at its spanwise midpoint. The canard can be positioned between a range of sweep angles during flight and a stowed position in which its span is substantially parallel to the aircraft fuselage. The canard can be deployed and retracted during flight. The deployment mechanism includes a circular mounting ring and drive mechanism that connects the canard with the fuselage and permits it to rotate and to change incidence. The deployment mechanism further includes retractable fairings which serve to streamline the wing when it is retracted into the top of the fuselage.

  1. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  2. An atom trap system for practical {sup 81}Kr dating

    SciTech Connect

    Du, X.; Bailey, K.; Lu, Z.-T.; Mueller, P.; O'Connor, T.P.; Young, L.

    2004-10-01

    {sup 81}Kr (t{sub 1sol2}=2.3x10{sup 5} yr, {sup 81}Kr/Kr{approx}6x10{sup -13}) is a long-lived cosmogenic isotope, which is ideal for dating old groundwater and ice in the age range of 50,000 years to 1 million years. Here, we describe the apparatus and performance of an atom-counting system for practical {sup 81}Kr dating. This system is based upon the atom trap trace analysis method that was first demonstrated in 1999. Since then, significant improvements have been made to increase the system efficiency and to reduce the required krypton sample size. For a modern krypton gas sample of 100 {mu}l STP, which contains 1.2x10{sup 6} {sup 81}Kr atoms, the system can accumulate approximately 240 {sup 81}Kr counts in 20 h, thereby reaching a counting efficiency of 2x10{sup -4}. Detailed studies have been conducted to characterize the performance of this system. This system has been calibrated with a low-level counting method and has been used for {sup 81}Kr dating of ancient groundwater from the Nubian Aquifer (Egypt). It can also be used to measure the isotopic abundance of a fission-produced isotope {sup 85}Kr (t{sub 1sol2}=10.76 year,{sup 85}Kr/Kr{approx}2x10{sup -11})

  3. Aircraft optimization by a system approach: Achievements and trends

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1992-01-01

    Recently emerging methodology for optimal design of aircraft treated as a system of interacting physical phenomena and parts is examined. The methodology is found to coalesce into methods for hierarchic, non-hierarchic, and hybrid systems all dependent on sensitivity analysis. A separate category of methods has also evolved independent of sensitivity analysis, hence suitable for discrete problems. References and numerical applications are cited. Massively parallel computer processing is seen as enabling technology for practical implementation of the methodology.

  4. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  5. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  6. All weather collision avoidance for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Contarino, Mark

    2010-04-01

    For decades, military and other national security agencies have been denied unfettered access to the National Air Space (NAS) because their unmanned aircraft lack a highly reliable and effective collision avoidance capability. The controlling agency, the Federal Aviation Administration, justifiably demands "no harm" to the safety of the NAS. To overcome the constraints imposed on Unmanned Aircraft Systems (UAS) use of the NAS, a new, complex, conformable collision avoidance system has been developed - one that will be effective in all flyable weather conditions, overcoming the shortfalls of other sensing systems, including radar, lidar, acoustic, EO/IR, etc., while meeting form factor and cost criteria suitable for Tier II UAS operations. The system also targets Tier I as an ultimate goal, understanding the operational limitations of the smallest UASs may require modification of the design that is suitable for Tier II and higher. The All Weather Sense and Avoid System (AWSAS) takes into account the FAA's plan to incorporate ADS-B (out) for all aircraft by 2020, and it is intended to make collision avoidance capability available for UAS entry into the NAS as early as 2013. When approved, UASs can fly mission or training flights in the NAS free of the constraints presently in place. Upon implementation this system will achieve collision avoidance capability for UASs deployed for national security purposes and will allow expansion of UAS usage for commercial or other civil purposes.

  7. Low-cost aircraft collision-avoidance system

    NASA Astrophysics Data System (ADS)

    Richard, Herbert L.

    1993-10-01

    There exists a need for a low-cost aircraft collision-avoidance system suitable, and affordable, for general aviation use. The fact that most of all of mid-air collisions occur under high visibility conditions, and many in and near terminal airspace, allows the consideration of optical means such as a LIDAR system for ranging and tracking to other aircraft to determine if a collision threat exists. This paper presents a system parametric analysis and discusses the LIDAR design tradeoffs with consideration of atmospheric attention, false target discrimination, threat scenario, scanning dynamics, wide FOV retroreflector array performance, and sizing for airframe ease of mounting and minimal aerodynamic effects. Further, concepts for the optical design and mechanization of the scanner are presented as well as a pilot warning/display means for evasive maneuver consideration.

  8. Environmental fog/rain visual display system for aircraft simulators

    NASA Technical Reports Server (NTRS)

    Chase, W. D. (Inventor)

    1982-01-01

    An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.

  9. Systems Analysis Developed for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  10. Design of an infrared camera based aircraft detection system for laser guide star installations

    SciTech Connect

    Friedman, H.; Macintosh, B.

    1996-03-05

    There have been incidents in which the irradiance resulting from laser guide stars have temporarily blinded pilots or passengers of aircraft. An aircraft detection system based on passive near infrared cameras (instead of active radar) is described in this report.

  11. Development of Longitudinal Equivalent System Models for Selected U.S. Navy Tactical Aircraft

    DTIC Science & Technology

    1981-08-01

    revaraa side II nacaaaary and Identlly by block number) Aircraft Longitudinal Flying Qualities Equivalent Systems Frequency Response Matching...is a twin turbofan powered, land and carrier based, subsonic, anti- submarine warfare aircraft . Longitudinal control is accomplished via a...based, supersonic fighter aircraft . Longitudinal control is accomplished via an irreversible mechanical flight control system which transmits

  12. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aircraft water system operations...

  13. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aircraft water system operations...

  14. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Aircraft water system operations...

  15. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aircraft water system operations...

  16. 40 CFR 141.804 - Aircraft water system operations and maintenance plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system operations and maintenance plan. (a) Each air carrier must develop and... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aircraft water system operations...

  17. Direct strike lightning measurement system. [for aircraft

    NASA Technical Reports Server (NTRS)

    Thomas, M. E.

    1981-01-01

    A research data system developed for in-flight measurement of direct and nearby lightning-strike characteristics is described. The measurement system consists of a wide-band analog recorder which records the continuous lightning scenario and fast sample-rate digital transient recorders with augmented memory capacity for increased time resolution of specific times of interest. Electromagnetic sensors with bandwidths exceeding 100 MHz are used which respond to rates of change of the quantities being measured. Data system immunity from electromagnetic interference is accomplished by the use of a dynamotor for power isolation, shielded system enclosure and fiber-optic data links.

  18. Unmanned aircraft system sense and avoid integrity and continuity

    NASA Astrophysics Data System (ADS)

    Jamoom, Michael B.

    This thesis describes new methods to guarantee safety of sense and avoid (SAA) functions for Unmanned Aircraft Systems (UAS) by evaluating integrity and continuity risks. Previous SAA efforts focused on relative safety metrics, such as risk ratios, comparing the risk of using an SAA system versus not using it. The methods in this thesis evaluate integrity and continuity risks as absolute measures of safety, as is the established practice in commercial aircraft terminal area navigation applications. The main contribution of this thesis is a derivation of a new method, based on a standard intruder relative constant velocity assumption, that uses hazard state estimates and estimate error covariances to establish (1) the integrity risk of the SAA system not detecting imminent loss of '"well clear," which is the time and distance required to maintain safe separation from intruder aircraft, and (2) the probability of false alert, the continuity risk. Another contribution is applying these integrity and continuity risk evaluation methods to set quantifiable and certifiable safety requirements on sensors. A sensitivity analysis uses this methodology to evaluate the impact of sensor errors on integrity and continuity risks. The penultimate contribution is an integrity and continuity risk evaluation where the estimation model is refined to address realistic intruder relative linear accelerations, which goes beyond the current constant velocity standard. The final contribution is an integrity and continuity risk evaluation addressing multiple intruders. This evaluation is a new innovation-based method to determine the risk of mis-associating intruder measurements. A mis-association occurs when the SAA system incorrectly associates a measurement to the wrong intruder, causing large errors in the estimated intruder trajectories. The new methods described in this thesis can help ensure safe encounters between aircraft and enable SAA sensor certification for UAS integration into

  19. A measurement system for aircraft/weapon electromagnetic compatibility

    SciTech Connect

    Mounteer, T.D.; Scott, L.D.; Stevenson, L.E.

    1991-01-01

    An electromagnetic measurement system (EMMS) was designed and constructed to provide essential data relating to electromagnetic compatibility (EMC) of modern weapons carried on military aircraft. This system measures the equivalent plane wave electric and magnetic fields impinging on a weapon's exterior surface arising from electromagnetic radiators on board host or nearby aircraft. To relate practical sensor responses to specified equivalent plane wave EMC field levels, a modern weapon shape was used as the primary sensor element which responds with a simple dipole antenna response at the lower frequencies and is instrumented with local skin current sensors. At higher frequencies, the locally induced currents can be related to the incident fields by simple scattering theory. Finally, an error analysis that catalogs all measurement path elements was performed to provide an error bound on the equivalent free electric field measurements reported by the EMMS. 6 refs., 9 figs.

  20. Study of aircraft in intraurban transportation systems, volume 3

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, D. E.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An investigation of three aircraft concepts, deflected slipstream STOL, helicopter VTOL, and fixed wing STOL, is presented. An attempt was made to determine the best concept for the intraurban transportation system. Desirability of the concept was based on ease of maintenance, development timing, reliability, operating costs, and the noise produced. Indications are that the deflected slipstream STOL is best suited for intraurban transportation. Tables and graphs are included.

  1. Applicability of Fiber Optics to Aircraft Fire Detection Systems

    DTIC Science & Technology

    1978-10-01

    in aircraft, such as elevated temperatures, chemical contamination, acoustic noise, vibration, shock, altitude and reliability/maintainability...in and fan-out techniques - and their optical, mechanical, and chemical characteristics relevant to air- craft fire detection system applications...the acceptance half-angle (0NA) of optical fibers is a property of the fibers themselves (ranging from 8’ for fluorocarbon resin clad quartz fibers that

  2. Peripheral Jet Air Cushion Landing System Spanloader Aircraft. Volume I

    DTIC Science & Technology

    1979-12-01

    the Lockheed-Georgia Company attempted to solve the airport problem by use of a pressurized, trunk- type , air- cushi* landing system (ACLS) on its...which result from span distributed load type aircraft. To accomplish this objective the following study steps are performed: 1) A revised Spanloader...The fan performance characteristics, which are shown on Figure 25, were estimated by sealing an off-the-shelf Industrial type fan in accordance with

  3. Supportability in Aircraft Systems through Technology and Acquisition Strategy Applications.

    DTIC Science & Technology

    1987-09-01

    A 7D-Aif 465 SUPPOTABILITY IN AIRCRAFT SYSTEMS THROUGH TECHNOLOGYi / All) ACGUISITION STE .(U) AIR FORCE INST OF TECH HEIGHT-PATTERSOU AFD ON SCHOOL...the area of R&M: 1. Increase warfighting capability. 2. Increase survivability of the combat support structure. 3. Decrease mobility requirements per...cost manpower; operations from large, fixed industrialized main operating base.3; and importance of massed force over force mobility . 4P- Those things

  4. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  5. Application of stochastic robustness to aircraft control systems

    NASA Technical Reports Server (NTRS)

    Ryan, Laura E.

    1990-01-01

    Guaranteeing robustness has long been an important design objective of control system analysis. Stochastic robustness is a simple numerical procedure that can be used to measure and gain insight into robustness properties associated with linear control systems. In the realm of aircraft control systems, problems such as the effects of flight condition perturbations and model-order uncertainties on robustness are easily and effectively analyzed using stochastic robustness. The concept of stochastic robustness is reviewed and examples are presented demonstrating its use in flight control system analysis.

  6. Computerized ultrasonic test inspection enhancement system for aircraft components

    NASA Astrophysics Data System (ADS)

    Parent, R. G.

    Attention is given to the computerized ultrasonic test inspection enhancement (CUTIE) system which was designed to meet the following program goals: (1) automation of the inspection technique and evaluation of the discontinuities for aircraft components while maintaining reasonable implementation costs and reducing the overall inspection costs; and (2) design of a system which would allow for easy modification so that new concepts could be implemented. The system's ultrasonic test bridge, C-scan recorder, computer control, and ultrasonic flaw detector are described. Consideration is also given to the concurrent development of an eight element array transducer (for increasing the inspection rate) and a high-speed data acquisition system (for signature analysis).

  7. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  8. A Small Aircraft Transportation System (SATS) Demand Model

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.

  9. On the safety of aircraft systems: A case study

    SciTech Connect

    Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

    1997-05-14

    An airplane is a highly engineered system incorporating control- and feedback-loops which often, and realistically, are non-linear because the equations describing such feedback contain products of state variables, trigonometric or square-root functions, or other types of non-linear terms. The feedback provided by the pilot (crew) of the airplane also is typically non-linear because it has the same mathematical characteristics. An airplane is designed with systems to prevent and mitigate undesired events. If an undesired triggering event occurs, an accident may process in different ways depending on the effectiveness of such systems. In addition, the progression of some accidents requires that the operating crew take corrective action(s), which may modify the configuration of some systems. The safety assessment of an aircraft system typically is carried out using ARP (Aerospace Recommended Practice) 4761 (SAE, 1995) methods, such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA). Such methods may be called static because they model an aircraft system on its nominal configuration during a mission time, but they do not incorporate the action(s) taken by the operating crew, nor the dynamic behavior (non-linearities) of the system (airplane) as a function of time. Probabilistic Safety Assessment (PSA), also known as Probabilistic Risk Assessment (PRA), has been applied to highly engineered systems, such as aircraft and nuclear power plants. PSA encompasses a wide variety of methods, including event tree analysis (ETA), FTA, and common-cause analysis, among others. PSA should not be confused with ARP 4761`s proposed PSSA (Preliminary System Safety Assessment); as its name implies, PSSA is a preliminary assessment at the system level consisting of FTA and FMEA.

  10. Aircraft concepts for advanced short haul systems

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1975-01-01

    The results of recent NASA-sponsored high-density and medium-density short-haul (less than 500 miles) air transportation systems studies are summarized. Trends in vehicle characteristics, in particular of RTOL and STOL concepts, are noted, and their economic suitability and impact on the community are examined.

  11. ADWICE - Advanced Diagnosis and Warning system for aircraft ICing Environments

    NASA Astrophysics Data System (ADS)

    Leifeld, C.; Hauf, T.; Tafferner, A.; Leykauf, H.

    2003-04-01

    Inflight icing is a serious hazard, as attested by recent crashes of aircraft. The number of world-wide known accidents and serious incidents in which icing played a major role exceeds 800. Obviously current protection systems and icing forecasting, the latter relying mostly on reported icing by pilots and the evaluation of radiosonde ascents, are inadequate to control the threat. Aircraft inflight icing occurs when areas of supercooled liquid cloud droplets or precipitation are traversed. Ice accumulation on aerodynamic surfaces causes modification of the aerodynamics of the aircraft up to the point of uncontrolled flight. The safest way and the recommended practise would be to avoid the icing conditions. This however requires the forecast of supercooled liquid water (SLWC) in clouds and complete ice microphysics model scheme. Since the forecast quality of SLWC still is insufficient to completely rely on that quality for forecasting aircraft icing, other methods are under development. They rely on algorithms which deduce the potential icing threat from measured (mainly radiosonde ascents) or forecast (numerical models) distributions of temperature and humidity. ADWICE, the Advanced Diagnosis and Warning System for aircraft ICing Environments, has been developed since 1998 in a joint cooperation between the Institut für Physik der Atmosphäre at DLR, the Deutscher Wetterdienst (DWD) and the Institut für Meteorologie und Klimatologie (IMUK) at the University of Hannover. To identify icing environments, ADWICE merges forecast model data of the Local Model of the DWD with SYNOP and radar data. Using a slightly modified version of the NCAR/RAP algorithm, which is based on temperature and humidity fields, a first guess icing volume is calculated. Under certain conditions radar and SYNOP data allow corrections of the icing volume. Other data e.g. from satellites may be used in future, too. Since January 2001 ADWICE is running in a testing phase at the DWD. Using PIREPs

  12. Aircraft Fiber-Optic Interconnect Systems Project.

    DTIC Science & Technology

    1980-08-15

    Clad, Fused-Silica Design Case ........................ 2-22 2.3.14 Optical System Selections .......... 2-26 2.4 Optical Modulation Studies... selected almost immediately. The initial optical losses estimated for the data bus virtually guaranteed an adequate design. The only available LEDs capable...recommends sources of the double hetero-junction cavity type only for communications. Their product line is merely a selection of quality and size of

  13. Weapon System Availabilities for Aircraft Replenishment Spares

    DTIC Science & Technology

    1988-06-01

    Attached is the final report which includes recommended weapon system targets for the initial AAM implementation and a method to set future targets. 2...However, we can again safely say the 84.7 percent figure represents an improvement over VSL. We recommend the Air Force continue to use 814.7 percent...of prioritizing warfighting units. e. We should investigate using a similar optimization algorithom to determine limited funding buy levels for Other

  14. Real-Time Minimization of Tracking Error for Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John

    2013-01-01

    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  15. Aircraft and satellite thermographic systems for wildfire mapping and assessment

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Myers, J. S.

    1987-01-01

    Two complementary sensors, the DAEDALUS DEI-1260 Multispectral Scanner aboard the NASA U-2 aircraft and the Advanced Very High Resolution Radiometer aboard National Oceanographic and Atmospheric Administration orbiting satellites were tested for their applicability in monitoring and predicting parameters such as fire location, temperature and rate of spread, soil heating and cooling rates, and plume characteristics and dimensions. In addition, the satellite system was tested for its ability to extend the relationships found between fire characteristics and biospheric consequences to regional and global scales. An overall system design is presented, and special requirements are documented for the application of this system for fire research and management.

  16. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  17. Future Data Communication Architectures for Safety Critical Aircraft Cabin Systems

    NASA Astrophysics Data System (ADS)

    Berkhahn, Sven-Olaf

    2012-05-01

    The cabin of modern aircraft is subject to increasing demands for fast reconfiguration and hence flexibility. These demands require studies for new network architectures and technologies of the electronic cabin systems, which consider also weight and cost reductions as well as safety constraints. Two major approaches are in consideration to reduce the complex and heavy wiring harness: the usage of a so called hybrid data bus technology, which enables the common usage of the same data bus for several electronic cabin systems with different safety and security requirements and the application of wireless data transfer technologies for electronic cabin systems.

  18. RADAR Based Collision Avoidance for Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Moses, Allistair A.

    Unmanned Aircraft Systems (UAS) have become increasingly prevalent and will represent an increasing percentage of all aviation. These unmanned aircraft are available in a wide range of sizes and capabilities and can be used for a multitude of civilian and military applications. However, as the number of UAS increases so does the risk of mid-air collisions involving unmanned aircraft. This dissertation aims to present one possible solution for addressing the mid-air collision problem in addition to increasing the levels of autonomy of UAS beyond waypoint navigation to include preemptive sensor-based collision avoidance. The presented research goes beyond the current state of the art by demonstrating the feasibility and providing an example of a scalable, self-contained, RADAR-based, collision avoidance system. The technology described herein can be made suitable for use on a miniature (Maximum Takeoff Weight < 10kg) UAS platform. This is of paramount importance as the miniature UAS field has the lowest barriers to entry (acquisition and operating costs) and consequently represents the most rapidly increasing class of UAS.

  19. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  20. A Microcomputer Based Aircraft Flight Control System.

    DTIC Science & Technology

    1980-04-01

    GRANT NUMSEiI(se) AFOSR-78-3633 VIKRAM RAJ SAKSENA N00014-79-C-0424 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGAM ELEMENT PROJECT. TASK AREA...being highly nonlinear , rthe direct application of these techniques is computationally involved. No closed form solution is available for such problems...2.7) yields the fifth-order nonlinear system below l -4 11- [7 PX2S(Co +C axl +C fu2)-Wcos (x3-x1)] M 1 2 2 CdfU1) 2 M[-W sin (x3 x Px2S(Cdo+Cdc (Co

  1. Role of commercial aircraft in global monitoring systems.

    PubMed

    Steinberg, R

    1973-04-27

    The role of commercial aircraft in monitoring meteorological parameters and atmospheric constituents has been limited in the former case and virtually nonexistent in the latter. I have tried to point out that this situation can and should be changed now. The new family of wide-bodied jets such as the 747, DC-10, and L-1011 aircraft can be used to supply important global atmospheric and tropical meteorological data for which there is a pressing need. While scientists are not in total agreement on the magnitude of the effect of particulates and gases on the atmosphere, there is almost unanimous concurrence that we are severely limited in information, and that global baseline concentrations must be established for particulates and gases in the troposphere and lower stratosphere as soon as possible. Also, more synoptic meteorological information from the tropical troposphere is highly desirable. In the final analysis, commercial aircraft may offer the most inexpensive way to monitor our atmosphere in the near future. Much of the instrumentation technology is here and the rest is certainly within our grasp. The fact of the matter is that there are now over 220 Boeing 747's and Douglas DC-10's in service, flying an average of 10 hours a day. Long-range flights, such as those from Tokyo to Anchorage to London in the Northern Hemisphere and from Hawaii to Pago Pago to Sydney in the Southern Hemisphere, are commonplace. These aircraft are equipped with inertial navigation systems and central air data computers coupled to advanced data storage systems which can readily be interrogated by satellite. This means that there is now a large amount of snyoptic weather information which can be obtained with a minimum of effort and cost. Likewise, a start at obtaining measurements of atmospheric constituents on a global basis can be made now. All we need to do is make the effort.

  2. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    NASA Technical Reports Server (NTRS)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  3. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  4. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  5. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  6. Analysis of Small Aircraft as a Transportation System

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.

  7. Unmanned Aircraft Systems for Rapid Near Surface Geophysical Measurements

    NASA Astrophysics Data System (ADS)

    Stoll, J. B.

    2013-08-01

    This paper looks at some of the unmanned aircraft systems (UAS) options and deals with a magnetometer sensor system which might be of interest in conducting rapid near surface geophysical measurements. Few of the traditional airborne geophysical sensors are now capable of being miniaturized to sizes and payload within mini UAS limits (e.g. airborne magnetics, gamma ray spectrometer). Here the deployment of a fluxgate magnetometer mounted on an UAS is presented demonstrating its capability of detecting metallic materials that are buried in the soil. The effectiveness in finding ferrous objects (e.g. UXO, landslides) is demonstrated in two case studies.

  8. Aircraft wire system laboratory development : phase I progress report.

    SciTech Connect

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  9. Aircraft battery state of charge and charge control system

    NASA Astrophysics Data System (ADS)

    Viswanathan, S.; Charkey, A.

    1986-02-01

    This Interim Report describes work done in developing an aircraft battery state of charge and charge control system. The basis for this system developed by ERC is a nickel-oxygen (NiO2) Pilot cell (0.374 Ah). This pilot cell is cycled in tandem with a nickel-cadmium battery. The oxygen pressure of the pilot cell is utilized to determine and control the state of charge of the nickel-cadmium battery. The NiO2 pilot cell baseline performance was determined during this period. The effect of using different nickel electrodes (ERC, SAFT, MARATHON) was also performed.

  10. The StarBooster System: A Cargo Aircraft for Space

    NASA Technical Reports Server (NTRS)

    Davis, Hubert P.; Dula, Arthur M.; McLaughlin, Don; Frassanito, John; Andrews, Jason (Editor)

    1999-01-01

    Starcraft Boosters has developed a different approach for lowering the cost of access to space. We propose developing a new aircraft that will house an existing expendable rocket stage. This vehicle, termed StarBooster, will be the first stage of a family of launch vehicles. By combining these elements, we believe we can reduce the cost and risk of fielding a new partially reusable launch system. This report summarizes the work performed on the StarBooster concept since the company's inception in 1996. Detailed analyses are on-going and future reports will focus on the maturation of the vehicle and system design.

  11. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  12. Control law system for X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Lawrence, Thomas H. (Inventor); Gold, Phillip J. (Inventor)

    1990-01-01

    Control law system for the collective axis, as well as pitch and roll axes, of an X-Wing aircraft and for the pneumatic valving controlling circulation control blowing for the rotor. As to the collective axis, the system gives the pilot single-lever direct lift control and insures that maximum cyclic blowing control power is available in transition. Angle-of-attach de-coupling is provided in rotary wing flight, and mechanical collective is used to augment pneumatic roll control when appropriate. Automatic gain variations with airspeed and rotor speed are provided, so a unitary set of control laws works in all three X-Wing flight modes. As to pitch and roll axes, the system produces essentially the same aircraft response regardless of flight mode or condition. Undesirable cross-couplings are compensated for in a manner unnoticeable to the pilot without requiring pilot action, as flight mode or condition is changed. A hub moment feedback scheme is implemented, utilizing a P+I controller, significantly improving bandwidth. Limits protect aircraft structure from inadvertent damage. As to pneumatic valving, the system automatically provides the pressure required at each valve azimuth location, as dictated by collective, cyclic and higher harmonic blowing commands. Variations in the required control phase angle are automatically introduced, and variations in plenum pressure are compensated for. The required switching for leading, trailing and dual edge blowing is automated, using a simple table look-up procedure. Non-linearities due to valve characteristics of circulation control lift are linearized by map look-ups.

  13. A self-reorganizing digital flight control system for aircraft

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Caglayan, A. K.

    1974-01-01

    This paper presents a design method for digital self-reorganizing control systems which is optimally tolerant of failures in aircraft sensors. The functions of this system are accomplished with software instead of the popular and costly technique of hardware duplication. The theoretical development, based on M-ary hypothesis testing, results in a bank of M Kalman filters operating in parallel in the failure detection logic. A moving window of the innovations of each Kalman filter drives the detection logic to decide the failure state of the system. The detection logic also selects the optimal state estimate (for control logic) from the bank of Kalman filters. The design process is applied to the design of a self-reorganizing control system for a current configuration of the space shuttle orbiter at Mach 5 and 120,000 feet. The failure detection capabilities of the system are demonstrated using a real-time simulation of the system with noisy sensors.

  14. Pilot-aircraft system reponse to wind shear

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Frost, W.

    1980-01-01

    The nonlinear aircraft motion and automatic control model is expanded to incorporate the human pilot into simulations of aircraft response to wind to wind shear. The human pilot is described by a constant gains lag filter. Two runs are carried out using pilot transfer functions. Fixed-stick, autopilot, and manned computer simulations are made with an aircraft having characteristics of a small commuter type aircraft flown through longitudinal winds measured by a Doppler radar beamed along the glide slope. Simulations are also made flying an aircraft through sinusoidal head wind and tail wind shears at the phugoid frequency to evaluate the response of manned aircraft in thunderstorm wind environments.

  15. Multi-level systems modeling and optimization for novel aircraft

    NASA Astrophysics Data System (ADS)

    Subramanian, Shreyas Vathul

    This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission

  16. Radiocarbon dating of open systems with bomb effect

    SciTech Connect

    McKay, C.P.; Long, A.; Friedmann, E.I.

    1986-03-10

    The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3% for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.

  17. Radiocarbon dating of open systems with bomb effect

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Long, A.; Friedmann, E. I.

    1986-01-01

    The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3 percent for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.

  18. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    NASA Technical Reports Server (NTRS)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  19. Autonomous Robotic Refueling System (ARRS) for rapid aircraft turnaround

    NASA Astrophysics Data System (ADS)

    Williams, O. R.; Jackson, E.; Rueb, K.; Thompson, B.; Powell, K.

    An autonomous robotic refuelling system is being developed to achieve rapid aircraft turnaround, notably during combat operations. The proposed system includes a gantry positioner with sufficient reach to position a robotic arm that performs the refuelling tasks; a six degree of freedom manipulator equipped with a remote center of compliance, torque sensor, and a gripper that can handle standard tools; a computer vision system to locate and guide the refuelling nozzle, inspect the nozzle, and avoid collisions; and an operator interface with video and graphics display. The control system software will include components designed for trajectory planning and generation, collision detection, sensor interfacing, sensory processing, and human interfacing. The robotic system will be designed so that upgrading to perform additional tasks will be relatively straightforward.

  20. Navigation, guidance, and control systems for V/STOL aircraft.

    NASA Technical Reports Server (NTRS)

    Osder, S. S.; Rouse, W. E.; Young, L. S.

    1973-01-01

    The development of digital autopilots and integrated avionics systems, applicable to many classes of vehicles and missions, was undertaken by Sperry Flight Systems in the mid-sixties. The first application of the system was planned for automatic flight control in the U.S. supersonic transport; the termination of that program, however, thwarted any flight experience. The second application, which has additional navigation and energy management functions, is an airborne simulator of the space shuttle vehicle. The latter system underwent a series of successful flight tests in a CV-990 aircraft under contract with NASA. The third application, which has new electronic displays, air data computation, and time-constrained guidance (i.e., specified position and altitude at a specified time), is in the DOT/NASA STOLAND test program. The STOLAND system is described specifically in this paper.

  1. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  2. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    NASA Technical Reports Server (NTRS)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  3. A Fully Coupled, Automated Formation Control System for Dissimilar Aircraft in Maneuvering Formation Flight

    DTIC Science & Technology

    1991-03-01

    computer simulation. The project entails both qualitative and quantitative aspects. Qualitatively, basic control strategy and system structure are...mathematical and computer models of the aircraft, formations and overall formation control system are developed. Standard control system design...dissimilar aircraft in maneuvering, formation flight, and to evaluate system operation and performance through computer simulation. In support of this goal

  4. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  5. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  6. Validation of Safety-Critical Systems for Aircraft Loss-of-Control Prevention and Recovery

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2012-01-01

    Validation of technologies developed for loss of control (LOC) prevention and recovery poses significant challenges. Aircraft LOC can result from a wide spectrum of hazards, often occurring in combination, which cannot be fully replicated during evaluation. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of hazardous and uncertain conditions, and the validation framework must provide some measure of assurance that the new vehicle safety technologies do no harm (i.e., that they themselves do not introduce new safety risks). This paper summarizes a proposed validation framework for safety-critical systems, provides an overview of validation methods and tools developed by NASA to date within the Vehicle Systems Safety Project, and develops a preliminary set of test scenarios for the validation of technologies for LOC prevention and recovery

  7. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  8. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  9. Aircraft voice intercommunications system design for Project Oculus

    NASA Astrophysics Data System (ADS)

    Wilhelm, Jay; Smith, James E.

    2006-05-01

    Project Oculus, an ongoing research platform for deploying airborne sensors on a C-130 aircraft, is currently in its pre-flight testing phase. The sensor platform is divided into two systems that rest on standard 463L pallets; a sensor deployment pallet and an operator station. The sensor pallet consists of a deployment arm and a pod, which can contain various sensors. The operator station houses power control equipment, data acquisition, and operators who control the sensors. Oculus is designed to fly on a C-130 aircraft, which has very high internal audible noise. Although Oculus' operator station contains noise-deadening material, a headset intercommunication system needs to be designed. This system must comply with different headset standards, communicate with the C-130 intercom, and be expandable to accommodate various audio sources like radios and satellites receivers. Throughout the years, intercom systems and headsets have evolved from the original standard consisting of an impedance rating of a speaker and a microphone. Early intercom systems were highly limited in functionality and quality due to simple electronics and common grounding. Advances in electronics allowed for the evolution of headset standards and intercom equipment, which permitted a multitude of new configurations and improved sound quality. With these advances, multiple headset standards and intercom interfaces have become popular among the military and civilian aviation. Due to the different standards for headsets, impedance matching plays a major role in the design of an intercom system. Oculus is a multi-mission platform and therefore must be designed to support a variety of standards including civilian and military headsets. This paper outlines the intercom units and parts considered for use in Oculus, and a design criteria for an extendable intercom system for Oculus.

  10. Demand for large freighter aircraft as projected by the NASA cargo/logistics airlift systems studies

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.; Kuhlman, W. H.

    1979-01-01

    This paper examines the market conditions up through the year 2008 to provide a preliminary assessment of the potential for and the characteristics of an advanced, all-cargo transport aircraft. Any new freighter must compete with current wide-body aircraft and their derivatives. Aircraft larger than the wide-bodies may incur economic penalties and operational problems. A lower direct operating cost is not a sufficient criterion to base a decision for the initiation of a new aircraft development or to select aircraft characteristics. Other factors of equal importance that are reviewed in this paper include considerations of the system infrastructure, the economics of the airlines, and the aircraft manufacturer return on investment. The results of the market forecast and a computer simulation show that an advanced long range aircraft with a payload between 68 to 181 tonnes (75 to 200 tons) could generate a solid foothold beginning around 1994.

  11. Demand for large freighter aircraft as projected by the NASA cargo/logistics airlift system studies

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.; Kuhlman, W. H.

    1979-01-01

    The market conditions are examined up through the year 2008 to provide a preliminary assessment of the potential for and the characteristics of an advanced, all-cargo transport aircraft. Any new freighter must compete with current wide-body aircraft and their derivatives. Aircraft larger than the wide-bodies may incur economic penalties and operational problems. A lower direct operating cost is not a sufficient criterion to base a decision for the initiation of a new aircraft development or to select aircraft characteristics. Other factors of equal importance that are reviewed in this paper include considerations of the system infrastructure, the economics of the airlines, and the aircraft manufacturer return on investment. The results of the market forecast and a computer simulation show that an advanced long range aircraft with a payload between 68 to 181 tonnes (75 to 200 tons) could generate a solid foothold beginning around 1994.

  12. Fan Noise Prediction with Applications to Aircraft System Noise Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.

  13. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  14. System Synthesis in Preliminary Aircraft Design using Statistical Methods

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically design of experiments (DOE) and response surface methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an overall evaluation criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in a innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting a solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a high speed civil transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabalistic designs (and eventually robust ones).

  15. Modeling Pilot State in Next Generation Aircraft Alert Systems

    NASA Technical Reports Server (NTRS)

    Carlin, Alan S.; Alexander, Amy L.; Schurr, Nathan

    2011-01-01

    The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot This "alert decision" becomes very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated with the state of potential hazards as well as pilot slate , and 3) the limited time to make safely-critical decisions. In this paper, we focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task demands. and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

  16. Design of aircraft turbine fan drive gear transmission system

    NASA Technical Reports Server (NTRS)

    Dent, E.; Hirsch, R. A.; Peterson, V. W.

    1970-01-01

    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts.

  17. Systems study for an Integrated Digital-Electric Aircraft (IDEA)

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.; Irish, L. A.; Bailey, A. R.

    1985-01-01

    The results of the Integrated Digital/Electric Aircraft (IDEA) Study are presented. Airplanes with advanced systems were, defined and evaluated, as a means of identifying potential high payoff research tasks. A baseline airplane was defined for comparison, typical of a 1990's airplane with advanced active controls, propulsion, aerodynamics, and structures technology. Trade studies led to definition of an IDEA airplane, with extensive digital systems and electric secondary power distribution. This airplane showed an improvement of 3% in fuel use and 1.8% in DOC relative to the baseline configuration. An alternate configuration, an advanced technology turboprop, was also evaluated, with greater improvement supported by digital electric systems. Recommended research programs were defined for high risk, high payoff areas appropriate for implementation under NASA leadership.

  18. Fault tolerant architectures for integrated aircraft electronics systems, task 2

    NASA Technical Reports Server (NTRS)

    Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.

    1984-01-01

    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.

  19. Pilot-aircraft system response to wind shear

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Frost, W.; Camp, D. W.

    1980-01-01

    The nonlinear aircraft motion and automatic control computer model of Frost and Reddy has been expanded to incorporate the human pilot into simulations of aircraft response to wind shear. Fixed-stick, autopilot, and manned computer simulations are made with an aircraft having characteristics of a Queen Air (small commuter-type aircraft) flown through longitudinal winds measured by a Doppler radar beamed along the glide slope during the SESAME '79 experiments in Oklahoma. Simulations are also made flying a model Boeing 727 through sinusoidal head wind to tail wind shears at the phugoid frequency to evaluate the response of manned aircraft in thunderstorm wind environments.

  20. Wide field of view laser beacon system for three dimensional aircraft range measurements

    NASA Technical Reports Server (NTRS)

    Wong, E. Y.

    1982-01-01

    A system that measures accurately the distance from an aircraft to a helicoper for rotor noise flight testing was developed. The system measures the range and angles between two aircraft using laser optics. This system can be applied in collision avoidance, robotics and other measurement critical tasks.

  1. Aircraft Electrical Systems Specialist (AFSC 42350), Volumes 1-3, and Change Supplement, Volume 3.

    ERIC Educational Resources Information Center

    Savage, Leslie R.

    This three-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for aircraft electrical systems specialists. Covered in the individual volumes are career field fundamentals, electrical systems and test equipment, and aircraft control and warning systems. Each volume in the set contains a series…

  2. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  3. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    NASA Technical Reports Server (NTRS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-01-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  4. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be

  5. The Pilatus unmanned aircraft system for lower atmospheric research

    SciTech Connect

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru -Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as

  6. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; ...

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  7. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  8. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  9. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1974-01-01

    A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.

  10. TRUSS: An intelligent design system for aircraft wings

    NASA Technical Reports Server (NTRS)

    Bates, Preston R.; Schrage, Daniel P.

    1989-01-01

    Competitive leadership in the international marketplace, superiority in national defense, excellence in productivity, and safety of both private and public systems are all national defense goals which are dependent on superior engineering design. In recent years, it has become more evident that early design decisions are critical, and when only based on performance often result in products which are too expensive, hard to manufacture, or unsupportable. Better use of computer-aided design tools and information-based technologies is required to produce better quality United States products. A program is outlined here to explore the use of knowledge based expert systems coupled with numerical optimization, database management techniques, and designer interface methods in a networked design environment to improve and assess design changes due to changing emphasis or requirements. The initial structural design of a tiltrotor aircraft wing is used as a representative example to demonstrate the approach being followed.

  11. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  12. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  13. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  14. European activities in civil applications of drones: an overview of remotely piloted aircraft systems (RPAS)

    NASA Astrophysics Data System (ADS)

    Creutzburg, Reiner

    2015-05-01

    The aim of this paper is to give an overview of recent research, development and civil application of remotely piloted aircraft systems (RPAS) in Europe. It describes a European strategy for the development of civil applications of Remotely Piloted Aircraft Systems (RPAS) and reflects most of the contents of the European staff working document SWD(2012) 259 final.

  15. Portable device to assess dynamic accuracy of global positioning systems (GPS) receivers used in agricultural aircraft

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...

  16. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  17. Rotor systems research aircraft predesign study. Volume 3: Predesign report

    NASA Technical Reports Server (NTRS)

    Schmidt, S. A.; Linden, A. W.

    1972-01-01

    The features of two aircraft designs were selected to be included in the single RSRA configuration. A study was conducted for further preliminary design and a more detailed analysis of development plans and costs. An analysis was also made of foreseeable technical problems and risks, identification of parallel research which would reduce risks and/or add to the basic capability of the aircraft, and a draft aircraft specification.

  18. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  19. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems

    NASA Technical Reports Server (NTRS)

    Dietz, Anthony

    2014-01-01

    Hybrid turboelectric aircraft-with gas turbines driving electric generators connected to electric propulsion motors-have the potential to transform aircraft design. Decoupling power generation from propulsion enables innovative aircraft designs, such as blended-wing bodies, with distributed propulsion. These hybrid turboelectric aircraft have the potential to significantly reduce emissions, decrease fuel burn, and reduce noise, all of which are required to make air transportation growth projections sustainable. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers.

  20. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Elliott, Kathryn A.; Huebner, Steven R.

    2003-01-01

    In this study, new technology engines were defined in two power classes: a 200 hp class, for a light, 4-place personal aircraft, and a 1500 pound thrust class for a twin-engined, 6 place business jet type aircraft. The engines were evaluated for retrofitting suitable current production aircraft for comparison to the existing engines. The engines were evaluated for performance using a typical mission for each aircraft, as well as a variant mission to further appraise performance.Issues of cost, safety, maintenance, and reliability were also addressed. Manufacturing plans were then constructed.

  1. 78 FR 75451 - Special Conditions: Cessna Model 750 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... systems and networks. Connectivity to, or access by, external systems and networks may result in security... configuration may allow the exploitation of network security vulnerabilities resulting in intentional or...; Aircraft Electronic System Security Protection From Unauthorized External Access AGENCY: Federal...

  2. Conceptual design of an aircraft automated coating removal system

    SciTech Connect

    Baker, J.E.; Draper, J.V.; Pin, F.G.; Primm, A.H.; Shekhar, S.

    1996-05-01

    Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which is semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).

  3. A conceptual study of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The analytical comparison of the two candidate Rotor Systems Research Aircraft (RSRA) configurations selected by the Government at the completion of Part 1 of the RSRA Conceptual Predesign Study is presented. The purpose of the comparison was to determine the relative suitability of both vehicles for the RSRA missions described in the Government Statement of Work, and to assess their versatility in the testing of new rotor concepts. The analytical comparison was performed primarily with regard to performance and stability and control. A weights, center-of-gravity, and inertia computation was performed for each iteration in the analysis process. The dynamics investigation was not concerned so much with a comparison of the two vehicles, but explored the dynamic problems attending operation of any RSRA operating with large rotor RPM and diameter ranges over large forward speed ranges. Several means of isolating in- and out-of-plane rotor vibrations were analyzed. An optimum isolation scheme was selected.

  4. Accurate dating of fluvial deposits in the Lateglacial Niers Valley system (Germany) using a multiple dating strategy

    NASA Astrophysics Data System (ADS)

    Hoek, W. Z.; Kasse, C.; Peeters, J.; Wallinga, J.

    2009-04-01

    grains of the fluvial deposits were not completely reset at the time of deposition, advanced statistical methods were used to determine the burial dose from the equivalent dose distribution. We conclude that by combining several dating techniques we increase insight in the dynamics of the fluvial system during its last stages of activity and during abandonment.

  5. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  6. Aircraft Alerting Systems Criteria Study. Volume 1. Collation and Analysis of Aircraft Alerting Systems Data

    DTIC Science & Technology

    1977-05-01

    and ()provide recommendations for standardization of alerting functions/ methods. The output includes a collation of human factors data pertinent to...alerting sys- tems, cursory test plans for obtaining missing human factors data required to complete definition of and validate the standards...Warning, Warning Systems, Dlocument is available to the U,S. . * Stimulus Response, Human Factors Alerting public through the National Technical Systems

  7. FLIGHT EVALUATION OF A PILOT-ASSIST STABILITY AUGMENTATION SYSTEM FOR LIGHT AIRCRAFT.

    DTIC Science & Technology

    The purpose of the study was to evaluate the utility of a light aircraft pilot-assist stability augmentation system in extricating the noninstrument...visual flight and instrument flight conditions. The aircraft was equipped with the pilot-assist system and a conventional stability augmentation system . The... augmentation system demonstrated that the utility of the pilot-assist system exceeded that of the conventional system. This relative utility was

  8. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project FY16 Annual Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Hackenberg, Davis

    2016-01-01

    This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS FY16 progress and future directions.

  9. Understanding electrostatic charge behaviour in aircraft fuel systems

    NASA Astrophysics Data System (ADS)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  10. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  11. Design of a digital ride quality augmentation system for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Hammond, T. A.; Amin, S. P.; Paduano, J. D.; Downing, D. R.

    1984-01-01

    Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs.

  12. Coyote unmanned aircraft system observations in Hurricane Edouard (2014)

    NASA Astrophysics Data System (ADS)

    Cione, J. J.; Kalina, E. A.; Uhlhorn, E. W.; Farber, A. M.; Damiano, B.

    2016-09-01

    Horizontal wind, temperature, and moisture observations are presented from two Coyote unmanned aircraft system (UAS) flights in the boundary layer of Hurricane Edouard (2014). The first flight sampled the meteorological conditions in the eye and eyewall at altitudes from 900 to 1500 m while Edouard was a major hurricane (105 kt) on 16 September 2014. The following day, a second Coyote sampled the inflow layer outside of the storm core at 760 m altitude, when Edouard had weakened to an 80-kt hurricane. These flights represent the first deployments of a UAS from an airborne manned aircraft into a tropical cyclone. Comparisons between the Coyote data and the Lockheed WP-3D Orion (WP-3D) flight-level measurements and analyses constructed from dropsonde data are also provided. On 16 September 2014, the Coyote-measured horizontal wind speeds agree, on average, to within 1 m s-1 of the wind speeds observed by the WP-3D and reproduce the shape of the radial wind profile from the WP-3D measurements. For the inflow layer experiment on 17 September, the mean wind speeds from the Coyote and the dropsonde analysis differ by only 0.5 m s-1, while the Coyote captured increased variability (σ = 3.4 m s-1) in the horizontal wind field compared to the dropsonde analysis (σ = 2.2 m s-1). Thermodynamic data from the Coyote and dropsondes agree well for both flights, with average discrepancies of 0.4°C and 0.0°C for temperature and 0.7°C and 1.3°C for dew point temperature on 16 and 17 September, respectively

  13. Effects of cable geometry and aircraft attitude on the accuracy of a magnetic leader cable system for aircraft guidance during rollout and turnoff

    NASA Technical Reports Server (NTRS)

    Bundick, W. T.

    1982-01-01

    A theoretical analysis of a single wire magnetic leader cable system for aircraft rollout and turnoff guidance was performed to determine the errors produced by the leader cable installation geometry and aircraft attitude. It was found that errors in the measurement of lateral displacement from the cable are smaller than errors in the measurement of aircraft heading and that both errors are smallest at or near the cable.

  14. Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad

    2015-01-01

    Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.

  15. Aircraft as adaptive nonlinear system which must be in the adaptational maximum zone for safety

    SciTech Connect

    Ignative, M.; Simatos, N.; Sivasundaram, S.

    1994-12-31

    Safety is a main problem in aircraft. We are considering this problem from the point of view related to existence of the adaptational maximum in complex developing systems. Safety space of aircraft parameters are determined. This space is transformed to different regimes of flight, when one engine malfunctions etc., are considered. Also it is shown that maximum safety is in adaptational maximum zone.

  16. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  17. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    SciTech Connect

    Patt, R.F.

    1980-06-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  18. An investigation of separate surface stability augmentation systems for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The status of a project to develop and evaluate separate surface stability augmentation systems for general aviation aircraft is discussed. The electrical design, roll heading hold is described and schematic diagrams and an operational description are provided. The flight tests program is explained. Various failure conditions are proposed and the effects on the stability of the aircraft are analyzed.

  19. Detailed design of a Ride Quality Augmentation System for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent E.; Downing, David R.

    1989-01-01

    The design of a Ride Quality Augmentation System (RQAS) for commuter aircraft is documented. The RQAS is designed for a Cessna 402B, an 8 passenger prop twin representative to this class of aircraft. The purpose of the RQAS is the reduction of vertical and lateral accelerations of the aircraft due to atmospheric turbulence by the application of active control. The detailed design of the hardware (the aircraft modifications, the Ride Quality Instrumentation System (RQIS), and the required computer software) is examined. The aircraft modifications, consisting of the dedicated control surfaces and the hydraulic actuation system, were designed at Cessna Aircraft by Kansas University-Flight Research Laboratory. The instrumentation system, which consist of the sensor package, the flight computer, a Data Acquisition System, and the pilot and test engineer control panels, was designed by NASA-Langley. The overall system design and the design of the software, both for flight control algorithms and ground system checkout are detailed. The system performance is predicted from linear simulation results and from power spectral densities of the aircraft response to a Dryden gust. The results indicate that both accelerations are possible.

  20. Nonflammable Hydraulic Power System for Tactical Aircraft. Volume 1. Aircraft System Definition, Design and Analysis

    DTIC Science & Technology

    1989-05-01

    200- 00400 8.00 12.00 16.00 20.00 24.100 28.00 32.00 36.00 40.00 44.00 48.00 Distance - in. Figure 54. Abex - Pump Staning Wave Pressure Plot at 3350...37,100 lb)’ 33,000 lb TENSION pecification LOAD -. Performance0 (lbs) -10.. Test System Performance(1,5 lb Neutral LOAD (lbs) 3.92 in.3.2i. 0...ALIF RIchrgoTub* WmWr. Oierrido | F V .Poi bon 7~ Ir.icutct ( RED ) 2225u Figure 97. Parker Metal Bellows - Reservoir Detail Drawing 5.5.3 Hydraulic

  1. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  2. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  3. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  4. Flight control systems research. [optimization of F-8 aircraft control system

    NASA Technical Reports Server (NTRS)

    Whitaker, H. P.; Baram, Y.; Cheng, Y.

    1973-01-01

    Theoretical development is reported for the parameter optimization design technique needed for digital flight control system design. The results of an example case study applying the optimization technique for continuous systems to an F-8 aircraft feedback control system are presented. The concept of evolving the simplest system configuration that is capable of meeting a specified set of performance requirements is illustrated in this work.

  5. Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Wilkerson, Joseph B.; Smith, Roger L.

    2008-01-01

    An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was

  6. Future Air Force aircraft propulsion control systems: The extended summary paper

    NASA Technical Reports Server (NTRS)

    Skira, C. A.

    1980-01-01

    Hydromechanical control technology simply cannot compete against the performance benefits offered by electronics. Future military aircraft propulsion control systems will be full authority, digital electronic, microprocessor base systems. Anticipating the day when microprocessor technology will permit the integration and management of aircraft flight control, fire control and propulsion control systems, the Air Force Aero Propulsion Laboratory is developing control logic algorithms for a real time, adaptive control and diagnostic information system.

  7. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1982-01-01

    Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.

  8. National Geothermal Data System: State Geological Survey Contributions to Date

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.

    2012-12-01

    In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a

  9. A low cost maritime control aircraft-ship-weapons system. [antiship missile defense

    NASA Technical Reports Server (NTRS)

    Fluk, H.

    1981-01-01

    It is pointed out that the long-range antiship standoff missile is emerging as the foremost threat on the seas. Delivered by high speed bombers, surface ships, and submarines, a missile attack can be mounted against selected targets from any point on the compass. An investigation is conducted regarding the configuration of a system which could most efficiently identify and destroy standoff threats before they launch their weapons. It is found that by using ships for carrying and launching missiles, and employing aircraft with a powerful radar only for search and missile directing operations, aircraft cost and weight can be greatly reduced. The employment of V/STOL aircraft in preference to other types of aircraft makes it possible to use ships of smaller size for carrying the aircraft. However, in order to obtain an all-weather operational capability for the system, ships are selected which are still big enough to display the required stability in heavy seas.

  10. Flight test of ARINC 741 configuration low gain SATCOM system on Boeing 747-400 aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Timothy A.; Stapleton, Brian P.

    1990-01-01

    The Boeing company conducted a flight test of a SATCOM system similar to the ARINC 741 configuration on a production model 747-400. A flight plan was specifically designed to test the system over a wide variety of satellite elevations and aircraft attitudes as well as over land and sea. Interface bit errors, signal quality and aircraft position and navigational inputs were all recorded as a function of time. Special aircraft maneuvers were performed to demonstrate the potential for shadowing by aircraft structures. Both a compass rose test and the flight test indicated that shadowing from the tail is insignificant for the 747-400. However, satellite elevation angles below the aircraft horizon during banking maneuvers were shown to have a significant deleterious effect on SATCOM communications.

  11. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  12. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    NASA Technical Reports Server (NTRS)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  13. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  14. Theoretical linear approach to the combined man-manipulator system in manual control of an aircraft

    NASA Technical Reports Server (NTRS)

    Brauser, K.

    1981-01-01

    An approach to the calculation of the dynamic characteristics of the combined man manipulator system in manual aircraft control was derived from a model of the neuromuscular system. This model combines the neuromuscular properties of man with the physical properties of the manipulator system which is introduced as pilot manipulator model into the manual aircraft control. The assumption of man as a quasilinear and time invariant control operator adapted to operating states, depending on the flight phases, of the control system gives rise to interesting solutions of the frequency domain transfer functions of both the man manipulator system and the closed loop pilot aircraft control system. It is shown that it is necessary to introduce the complete precision pilot manipulator model into the closed loop pilot aircraft transfer function in order to understand the well known handling quality criteria, and to derive these criteria directly from human operator properties.

  15. Problems related to the integration of fault tolerant aircraft electronic systems

    NASA Technical Reports Server (NTRS)

    Bannister, J. A.; Adlakha, V.; Triyedi, K.; Alspaugh, T. A., Jr.

    1982-01-01

    Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included.

  16. Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)

    DTIC Science & Technology

    1996-04-01

    for enhancing aircrew performance at high sustained +GZ accelerations. Finally, increasing attention has been paid over the last two decades to the...comprehensive published review of the design and performance of Advanced Oxygen Systems. It has been written principally by present and past members... performance required of Advanced Oxygen Systems and with the design and assessment of the first and later generations of these systems. The monograph

  17. Unmanned Aircraft Systems: A Logical Choice for Homeland Security Support

    DTIC Science & Technology

    2011-12-01

    than moored balloons, kites, unmanned rockets, unmanned free balloons, and ultra -light vehicles. It prescribes that for any aircraft to fly legally in...These vehicles include moored balloons, unmanned rockets, unmanned balloons, and ultra -light aircraft. Although these aerial vehicles may proceed...experienced in the Deepwater Horizon oil spill in 2010. This critical infrastructure is dispersed throughout the U.S. and its territorial waters leaving it

  18. Artificial Icing Test, Utility Tactical Transport Aircraft System (UTTAS), Boeing Vertol YUH-61A Helicopter

    DTIC Science & Technology

    1977-01-01

    Tactical Transport Aircraft System," 10 November 1975. 2. Letter, AVSCOM, DRSAV-EQI, 25 May 1976, subject: Utility Tactical Tranport Aircraft System...Parts, Helicopter Icing Spray System (HISS). 12 November 1973, with Change 1, 15 July 1976. 8. Technical Report. Environmental Research and Technology ...and static air temperature was obtained from table 3. Relative humidity was then computed using the values obtained from table 2 and equation 1: PS

  19. More Effective Aircraft Stability and Control Flight Testing through Use of System Identification Technology.

    DTIC Science & Technology

    1976-11-04

    The development of system identification technology was undertaken to provide for more effective aircraft flight testing by reducing the time...parameters. Presentation of S-3A and EA-6B system identification results demonstrate that this technology can be successfully used to update the...aerodynamic data bases of modern jet aircraft from flight test data. These system identification results are compared with wind tunnel data and flight

  20. Ride Quality Design Criteria for Aircraft with Active Mode Control Systems

    DTIC Science & Technology

    1972-10-01

    comfort or effectiveness level. Nearly all modern aircraft have a stability augmentation system . These systems are designed primarily for rigid body... Augmentation System Design for Low Altitude, High Speed Flexible Aircraft, AFFDL-rR-67-49, February 1968. 4. C. B. Notess, A Triangle-Flexible Airplanes...Structural Design Criteria by Statistical Methods, AFFDL-TR-67-107, June 1968. 3. J. H. Wykes, et al, A Gust Alleviatlon and Structural Dynamic Stability

  1. Evaluating the Handling Qualities of Flight Control Systems Including Nonlinear Aircraft and System Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Raymond Chao

    The handling qualities evaluation of nonlinear aircraft systems is an area of concern in loss-of-control (LOC) prevention. The Get Transfer Function (GetTF) method was demonstrated for evaluating the handling qualities of flight control systems and aircraft containing nonlinearities. NASA's Generic Transport Model (GTM), a nonlinear model of a civilian jet transport aircraft, was evaluated. Using classical techniques, the stability, control, and augmentation (SCAS) systems were designed to control pitch rate, roll rate, and airspeed. Hess's structural pilot model was used to model pilot dynamics in pitch and roll-attitude tracking. The simulated task was simultaneous tracking of, both, pitch and roll attitudes. Eight cases were evaluated: 1) gain increase of pitch-attitude command signal, 2) gain increase of roll-attitude command signal, 3) gain reduction of elevator command signal, 4) backlash in elevator actuator, 5) combination 3 and 4 in elevator actuator, 6) gain reduction of aileron command signal, 7) backlash in aileron actuator, and 8) combination of 6 and 7 in aileron actuator. The GetTF method was used to estimate the transfer function approximating a linear relationship between the proprioceptive signal of the pilot model and the command input. The transfer function was then used to predict the handling qualities ratings (HQR) and pilot-induced oscillation ratings (PIOR). The HQR is based on the Cooper-Harper rating scale. In pitch-attitude tracking, the nominal aircraft is predicted to have Level 2* HQRpitch and 2 < PIORpitch < 4. The GetTF method generally predicted degraded handling qualities for cases with impaired actuators. The results demonstrate GetTF's utility in evaluating the handling qualities during the design phase of flight control and aircraft systems. A limited human-in-the-loop pitch tracking exercise was also conducted to validate the structural pilot model.

  2. Unmanned Aircraft Systems complement biologging in spatial ecology studies.

    PubMed

    Mulero-Pázmány, Margarita; Barasona, Jose Ángel; Acevedo, Pelayo; Vicente, Joaquín; Negro, Juan José

    2015-11-01

    The knowledge about the spatial ecology and distribution of organisms is important for both basic and applied science. Biologging is one of the most popular methods for obtaining information about spatial distribution of animals, but requires capturing the animals and is often limited by costs and data retrieval. Unmanned Aircraft Systems (UAS) have proven their efficacy for wildlife surveillance and habitat monitoring, but their potential contribution to the prediction of animal distribution patterns and abundance has not been thoroughly evaluated. In this study, we assess the usefulness of UAS overflights to (1) get data to model the distribution of free-ranging cattle for a comparison with results obtained from biologged (GPS-GSM collared) cattle and (2) predict species densities for a comparison with actual density in a protected area. UAS and biologging derived data models provided similar distribution patterns. Predictions from the UAS model overestimated cattle densities, which may be associated with higher aggregated distributions of this species. Overall, while the particular researcher interests and species characteristics will influence the method of choice for each study, we demonstrate here that UAS constitute a noninvasive methodology able to provide accurate spatial data useful for ecological research, wildlife management and rangeland planning.

  3. The NASA aircraft noise prediction program improved propeller analysis system

    NASA Technical Reports Server (NTRS)

    Nguyen, L. Cathy

    1991-01-01

    The improvements and the modifications of the NASA Aircraft Noise Prediction Program (ANOPP) and the Propeller Analysis System (PAS) are described. Comparisons of the predictions and the test data are included in the case studies for the flat plate model in the Boundary Layer Module, for the effects of applying compressibility corrections to the lift and pressure coefficients, for the use of different weight factors in the Propeller Performance Module, for the use of the improved retarded time equation solution, and for the effect of the number grids in the Transonic Propeller Noise Module. The DNW tunnel test data of a propeller at different angles of attack and the Dowty Rotol data are compared with ANOPP predictions. The effect of the number of grids on the Transonic Propeller Noise Module predictions and the comparison of ANOPP TPN and DFP-ATP codes are studied. In addition to the above impact studies, the transonic propeller noise predictions for the SR-7, the UDF front rotor, and the support of the enroute noise test program are included.

  4. Exploring Science Applications for Unmanned Aircraft Systems Aboard UNOLS Ships

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Lachenmeier, T.; Hatfield, M. C.

    2014-12-01

    The University of Alaska Fairbanks has been expanding the use of small Unmanned Aircraft Systems (UAS) for science support from a variety of ships for several years. The ease and safety of flying from research vessels offers the science community lower cost access to overhead surveys of marine mammals without impact on sensitive populations, monitoring of AUV operations and collection of transmitted data, extensive surveys of sea ice during formation, melt, and sea temperatures through multiple seasons. As FAA expands access to the Arctic airspace over the Chukchi, Beaufort, and Bering Seas, the opportunities to employ UAS in science applications will become easier to exploit. This presentation describes the changes coming through new FAA rules, through the Alaska FAA Test Site, the Pan-Pacific UAS Test Range Complex which includes Oregon and Hawaii, and even Iceland. Airspace access advances associated with recent operations including the NASA-sponsored MIZOPEX, whale detection, and forming sea ice work in October will be presented, as well as a glider UAS connected to very high altitude balloons collecting atmospheric data. Development of safety procedures for use of UAS on UNOLS ships will be discussed.

  5. Analysis of LPFG sensor systems for aircraft wing drag optimization

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Ishihara, Abe

    2014-09-01

    In normal fiber, the refractive indices of the core and cladding do not change along the length of the fiber; however, by inducing a periodic modulation of refractive index along the length in the core of the optical fiber, the optical fiber grating is produced. This exhibits very interesting spectral properties and for this reason we propose to develop and integrate a distributed sensor network based on long period fiber gratings (LPFGs) technology which has grating periods on the order of 100 μm to 1 mm to be embedded in the wing section of aircraft to measure bending and torsion in real-time in order to measure wing deformation of commercial airplanes resulting in extensive benefits such as reduced structural weight, mitigation of induced drag and lower fuel consumption which is fifty percent of total cost of operation for airline industry. Fiber optic sensors measurement capabilities are as vital as they are for other sensing technologies, but optical measurements differ in important ways. In this paper we focus on the testing and aviation requirements for LPFG sensors. We discuss the bases of aviation standards for fiber optic sensor measurements, and the quantities that are measured. Our main objective is to optimize the design for material, mechanical, optical and environmental requirements. We discuss the analysis and evaluation of extensive testing of LPFG sensor systems such as attenuation, environmental, humidity, fluid immersion, temperature cycling, aging, smoke, flammability, impact resistance, flexure endurance, tensile, vitiation and shock.

  6. Wide field of view laser beacon system for three-dimensional aircraft position measurement

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.; Miles, R. B.; Webb, S. G.; Wong, E. Y.

    1981-01-01

    This paper presents a new wide field of view laser beacon system for measurement, in three dimensions, of aircraft or other remote objects. The system is developed for aircraft collision hazard warning independent of ground-based hardware, as well as for flight research, helicopter-assisted construction and rescue, and robotic manipulation applications. Accurate information describing the relative range, elevation, and azimuth of the aircraft are generated by the sweep of a low-power fan-shaped rotating laser beacon past an array of optical detectors. The system achieves a wide angle of acceptance of laser beacon light through use of compound parabolic concentrators, which collimate the light for spectral filtering to minimize solar interference. An on-board microprocessor system converts the pulse sequence to aircraft position in real time. System reliability and performance are enhanced through narrow pass filtering of the pulse signals, digital logic design to mask spurious signals, and adaptive modulation of trigger threshold levels.

  7. Development of the multi-mode external lighting system for aircraft (M2ESA)

    NASA Astrophysics Data System (ADS)

    Martin, John J.

    2005-08-01

    This paper documents the development of the Multi-Mode External Lighting System for Aircraft (M2ESA), a solid-state near-IR and visible light emitting diode-based programmable system designed to replace existing incandescent navigation lights on the exterior of military aircraft, and tailored for use with night vision goggles. Integrated systems of optics, electronics and mechanical structures were designed that were compatible with legacy aircraft systems, and which thus conformed to rigid configuration requirements and severe volume constraints. The genesis of the concept, evolution and general architecture of the system, top-level performance and environmental requirements, integration on the designated aircraft platform (the F-15), and general results of flight demonstration assessments are described.

  8. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  9. Recent developments in aircraft protection systems for laser guide star operations

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J.; Murphy, Thomas W.; Campbell, Randy

    2012-07-01

    The astronomical community's use of high power laser guide star adaptive optics (LGS-AO) systems presents a potential hazard to aviation. Historically, the most common and trusted means of protecting aircraft and their occupants has been the use of safety observers (aka spotters) armed with shut-off switches. These safety observers watch for aircraft at risk and terminate laser propagation before the aircraft can be adversely affected by the laser. Efforts to develop safer and more cost-effective automated aircraft protection systems for use by the astronomical community have been inhibited by both technological and regulatory challenges. This paper discusses recent developments in these two areas. Specifically, with regard to regulation and guidance we discuss the 2011 release of AS-6029 by the SAE as well as the potential impact of RTCA DO-278A. With regard to the recent developments in the technology used to protect aircraft from laser illumination, we discuss the novel Transponder Based Aircraft Detection (TBAD) system being installed at W. M. Keck Observatory (WMKO). Finally, we discuss our strategy for evaluating TBAD compliance with the regulations and for seeking appropriate approvals for LGS operations at WMKO using a fully automated, flexibly configured, multi-tier aircraft protection system incorporating this new technology.

  10. 78 FR 73696 - Extension of Expiration Date for Mental Disorders Body System Listings; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... ADMINISTRATION 20 CFR Part 404 RIN 0960-AH62 Extension of Expiration Date for Mental Disorders Body System... date of the Mental Disorders body system in the Listing of Impairments (listings) in our regulations... Mental Disorders body system in the Listing of Impairments (listings) in our regulations. In this...

  11. 78 FR 72571 - Extension of Expiration Date for Mental Disorders Body System Listings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ...)) and respiratory system disorders (78 FR 7968 (2013)), and provide criteria for evaluating growth... ADMINISTRATION 20 CFR Part 404 RIN 0960-AH49 Extension of Expiration Date for Mental Disorders Body System... expiration date of the Mental Disorders body system in the Listing of Impairments (listings) in...

  12. Unmanned Aircraft Systems for Monitoring Department of the Interior Lands

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.; Quirk, B.

    2013-12-01

    Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.

  13. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    NASA Technical Reports Server (NTRS)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  14. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  15. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  16. Nonlinear control design for slightly nonminimum phase systems - Application to V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Hauser, John; Sastry, Shankar; Meyer, George

    1992-01-01

    The paper describes the application of techniques of exact I/O linearization of nonlinear control systems to the flight control of V/STOL aircraft. It is seen that the application of the theory to this example is not straightforward; in particular, the direct application of the theory yielded an undesirable controller. The situation was remedied by neglecting the coupling between the rolling moment input to the aircraft dynamics and the dynamics along the y-axis. An approximate I/O linearization procedure developed for slightly nonminimum phase nonlinear systems is shown to be effective for V/STOL aircraft.

  17. 76 FR 75565 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting....

  18. 78 FR 25100 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting....

  19. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  20. 78 FR 38076 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the purpose... and Space Administration Headquarters, Washington, DC 20546, (202) 358-1578, or...

  1. 78 FR 75453 - Special Conditions: Cessna Model 750 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... data network and design integration may result in security vulnerabilities from intentional or... than previous airplane models. This may allow the exploitation of network security vulnerabilities and... Airplanes; Aircraft Electronic System Security Isolation or Protection From Internal Access AGENCY:...

  2. The NATO Unmanned Aircraft System Human Systems Integration Guidebook

    DTIC Science & Technology

    2012-11-01

    training, refresher training, and core competency-based training • Teamwork /crew resource management • Balance of live flying training, embedded...architecture framework. Its purpose is to visualize and facilitate understanding of the human dimension in relation to operational demands and system...anthropometric/medical data; reach data; range of motion data; physical strength data; human sensory (e.g., visual , auditory, tactile, propioceptive

  3. Sense-and-Avoid Equivalent Level of Safety Definition for Unmanned Aircraft Systems. Revision 9

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a pilot on-board the aircraft, they cannot literally comply with the "see and avoid" requirement beyond a short distance from the location of the unmanned pilot. No performance standards are presently defined for unmanned Sense and Avoid systems, and the FAA has no published approval criteria for a collision avoidance system. Before the FAA can develop the necessary guidance (rules / regulations / policy) regarding the see-and-avoid requirements for Unmanned Aircraft Systems (UAS), a concise understanding of the term "equivalent level of safety" must be attained. Since this term is open to interpretation, the UAS industry and FAA need to come to an agreement on how this term can be defined and applied for a safe and acceptable collision avoidance capability for unmanned aircraft. Defining an equivalent level of safety (ELOS) for sense and avoid is one of the first steps in understanding the requirement and developing a collision avoidance capability. This document provides a functional level definition of see-and-avoid as it applies to unmanned aircraft. The sense and avoid ELOS definition is intended as a bridge between the see and avoid requirement and the system level requirements for unmanned aircraft sense and avoid systems. Sense and avoid ELOS is defined in a rather abstract way, meaning that it is not technology or system specific, and the definition provides key parameters (and a context for those parameters) to focus the development of cooperative and non-cooperative sense and avoid system requirements.

  4. Medium and High Altitude Unmanned Aircraft System Acquisition: An Efficiency Study of Magnitude and Capability

    DTIC Science & Technology

    2009-06-12

    measures associated with a single entity acquisition authority for the selection of medium and high altitude UAS programs. Secondly, there will be no...MEDIUM AND HIGH ALTITUDE UNMANNED AIRCRAFT SYSTEM ACQUISITION : AN EFFICIENCY STUDY OF MAGNITUDE AND CAPABILITY A thesis...To) AUG 2009 – JUN 2009 4. TITLE AND SUBTITLE MEDIUM AND HIGH ALTITUDE UNMANNED AIRCRAFT SYSTEM (UAS) ACQUISITION : AN EFFICIENCY STUDY OF

  5. Development of a Finite State Machine for a Small Unmanned Aircraft System Using Experimental Design

    DTIC Science & Technology

    2015-03-26

    Figure 2: Simple Finite State Machine Example 2.4 APM:Plane Firmware Parameters The APM:Plane firmware has more than 300 configurable parameters...DEVELOPMENT OF A FINITE STATE MACHINE FOR A SMALL UNMANNED AIRCRAFT SYSTEM USING EXPERIMENTAL DESIGN...protection in the United States. AFIT-ENS-MS-15-M-146 DEVELOPMENT OF A FINITE STATE MACHINE FOR A SMALL UNMANNED AIRCRAFT SYSTEM USING

  6. Modeling, design and energy management of fuel cell systems for aircraft

    NASA Astrophysics Data System (ADS)

    Bradley, Thomas Heenan

    Fuel cell powered aircraft have been of long term interest to the aviation community because of their potential for improved performance and environmental compatibility. Only recently have improvements in the technological readiness of fuel cell powerplants enabled the first aviation applications of fuel cell technology. Based on the results of conceptual design studies and a few technology demonstration projects, there has emerged a widespread understanding of the importance of fuel cell powerplants for near-term and future aviation applications. Despite this, many aspects of the performance, design and construction of robust and optimized fuel cell powered aircraft have not been fully explored. This goal of this research then is to develop an improved understanding of the performance, design characteristics, design tradeoffs and viability of fuel cell powerplants for aviation applications. To accomplish these goals, new modeling, design, and experimental tools are developed, validated and applied to the design of fuel cell powered unmanned aerial vehicles. First, a general sub-system model of fuel cell powerplant performance, mass and geometry is derived from experimental and theoretical investigations of a fuel cell powerplant that is developed in hardware. These validated fuel cell subsystem models are then incorporated into a computer-based, application-integrated, parametric, and optimizeable design environment that allows for the concurrent design of the aircraft and fuel cell powerplant. The advanced modeling and design techniques required for modern aircraft design (including multi-disciplinary analysis, performance optimization under uncertainty and system performance validation), are applied at the fuel cell subsystem level and are linked to aircraft performance and design metrics. These tools and methods are then applied to the analysis and design of fuel cell powered aircraft in a series of case studies and design experiments. Based on the results of

  7. Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.

  8. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  9. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor

    NASA Astrophysics Data System (ADS)

    Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.

    2016-10-01

    Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.

  10. Airbag system and method for facilitating emergency egress from an aircraft

    NASA Technical Reports Server (NTRS)

    Rawdon, Blaine K. (Inventor); Hawley, Arthur V. (Inventor)

    2002-01-01

    An airbag system for elevating the fuselage of an aircraft off a landing surface a sufficient degree to allow for emergency egress of passengers and crew through ventral emergency exit doors. An airbag assembly made up of a plurality of independent airbags is disposed within the aircraft. When activated, the airbag system deploys the airbags external of the aircraft that elevate the fuselage of the aircraft a sufficient degree to allow for utilizing the ventral emergency exit doors on the fuselage to enable evacuating the passengers and crew. An activation mechanism is connected to the inflation.devices associated with each of the airbags. The activation mechanism generates an electrical signal which activates the inflation devices, which in turn fill the airbags with a compressed fluid, thus expanding the airbags and lifting the fuselage. A crew member initiates the activation of the airbag system through one or more switches.

  11. A knowledge based application of the extended aircraft interrogation and display system

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Larson, Richard R.

    1991-01-01

    A family of multiple-processor ground support test equipment was used to test digital flight-control systems on high-performance research aircraft. A unit recently built for the F-18 high alpha research vehicle project is the latest model in a series called the extended aircraft interrogation and display system. The primary feature emphasized monitors the aircraft MIL-STD-1553B data buses and provides real-time engineering units displays of flight-control parameters. A customized software package was developed to provide real-time data interpretation based on rules embodied in a highly structured knowledge database. The configuration of this extended aircraft interrogation and display system is briefly described, and the evolution of the rule based package and its application to failure modes and effects testing on the F-18 high alpha research vehicle is discussed.

  12. Effect of broadened-specification fuels on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.

  13. Registration and Marking Requirements for UAS. Unmanned Aircraft System (UAS) Registration

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The registration of an aircraft is a prerequisite for issuance of a U.S. certificate of airworthiness by the FAA. The procedures and requirements for aircraft registration, and the subsequent issuance of registration numbers, are contained in FAR Part 47. However, the process/method(s) for applying the requirements of Parts 45 & 47 to Unmanned Aircraft Systems (UAS) has not been defined. This task resolved the application of 14 CFR Parts 45 and 47 to UAS. Key Findings: UAS are aircraft systems and as such the recommended approach to registration is to follow the same process for registration as manned aircraft. This will require manufacturers to comply with the requirements for 14 CFR 47, Aircraft Registration and 14 CFR 45, Identification and Registration Marking. In addition, only the UA should be identified with the N number registration markings. There should also be a documentation link showing the applicability of the control station and communication link to the UA. The documentation link can be in the form of a Type Certificate Data Sheet (TCDS) entry or a UAS logbook entry. The recommended process for the registration of UAS is similar to the manned aircraft process and is outlined in a 6-step process in the paper.

  14. Auralization of Hybrid Wing Body Aircraft Flyover Noise from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Aumann, Aric R.; Lopes, Leonvard V.; Burley, Casey L.

    2013-01-01

    System noise assessments of a state-of-the-art reference aircraft (similar to a Boeing 777-200ER with GE90-like turbofan engines) and several hybrid wing body (HWB) aircraft configurations were recently performed using NASA engine and aircraft system analysis tools. The HWB aircraft were sized to an equivalent mission as the reference aircraft and assessments were performed using measurements of airframe shielding from a series of propulsion airframe aeroacoustic experiments. The focus of this work is to auralize flyover noise from the reference aircraft and the best HWB configuration using source noise predictions and shielding data based largely on the earlier assessments. For each aircraft, three flyover conditions are auralized. These correspond to approach, sideline, and cutback operating states, but flown in straight and level flight trajectories. The auralizations are performed using synthesis and simulation tools developed at NASA. Audio and visual presentations are provided to allow the reader to experience the flyover from the perspective of a listener in the simulated environment.

  15. Transport Aircraft System Identification from Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2008-01-01

    Recent studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and rotary dynamic terms but replace conventional acceleration terms with more general indicial functions. In the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced controls technology. This paper describes initial application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle.

  16. Aircraft State Estimation for a Ground Directed Bombing System.

    DTIC Science & Technology

    1982-12-01

    respond 9 I . .°- . . - to maneuvers, yet settle quickly to an accurate solution as the pilot steadies the aircraft. These conflicting requirements are ...the center of the earth. All radar measurem4nts of aircraft position, however, are obtained in spherical polar coordinates, i.e. slant range (R...bomb :rajctory ,ballistic winds, coriolis forces, and a number of other factors, ill of which are important to z I R E7 Y A North px x - R Cos(E) sin(A

  17. Aircraft-store Electrical Interconnection System (AEIS) functional requirements

    NASA Astrophysics Data System (ADS)

    Perkins, J. R.; Lautner, D. E.

    1982-11-01

    This paper provides a summary of the work performed under an A2I2 (Aircraft Armament Interoperable Interface) contract sponsored by the Naval Weapon Center and Air Force Armament Laboratory for developing the aircraft-store electrical functional requirements which will be principally implemented by MIL-STD-1760. The paper provides an overview of the overall requirement drivers and then focuses on three principal electrical areas of the AEIS: The power interface, high bandwidth signaling, and digital data transfer. The paper provides insight on derivation of these requirements and supporting rationale in terms of drivers from existing store requirements, developmental store and technology trends, and traditional engineering approaches.

  18. Evaluation of a Damage Accumulation Monitoring System as an Individual Aircraft Tracking Concept

    DTIC Science & Technology

    1982-05-01

    Report MONITORING SYSTEM AS AN INDIVIDUAL 9 1 (1- -20, AIRCRAFT TRACKING CONCEPT •. PERFORMINS ODG. RLpoy "UMmeR NOR 82- 58 7. AUJTNH)R(’q) -S CONTRACT OR...LIST OF ILLUSTRATIONS (Continued) FIGURE PAGE 17 Major IAT and Force Management Data Item Classes 89 18 Comparison of Individual Aircraft Crack...months or years at which time the critical crack length will be reached. L The full fatigue life of the aircraft or component (either based on test or

  19. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    NASA Technical Reports Server (NTRS)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  20. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 6: Systems analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems analysis of the quiet turbofan aircraft for short-haul transportation was conducted. The purpose of the study was to integrate the representative data generated by aircraft, market, and economic analyses. Activities of the study were to develop the approach and to refine the methodologies for analytic tradeoff, and sensitivity studies of propulsive lift conceptual aircraft and their performance in simulated regional airlines. The operations of appropriate airlines in each of six geographic regions of the United States were simulated. The offshore domestic regions were evaluated to provide a complete domestic evaluation of the STOL concept applicability.

  1. Systems analysis of the installation, mounting, and activation of emergency locator transmitters in general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Hall, D. S.

    1980-01-01

    A development program was developed to design and improve the Emergency Locator Transmitter (ELT) transmitter and to improve the installation in the aircraft and its activation subsystem. There were 1135 general aviation fixed wing aircraft accident files reviewed. A detailed description of the damage to the aircraft was produced. The search aspects of these accidents were studied. As much information as possible about the ELT units in these cases was collected. The data should assist in establishing installation and mounting criteria, better design standards for activation subsystems, and requirements for the new ELT system design in the area of crashworthiness.

  2. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  3. Design of high performance multivariable control systems for supermaneuverable aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Valavani, Lena

    1995-01-01

    The main motivation for the work under the present grant was to use nonlinear feedback linearization methods to further enhance performance capabilities of the aircraft, and robustify its response throughout its operating envelope. The idea was to use these methods in lieu of standard Taylor series linearization, in order to obtain a well behaved linearized plant, in its entire operational regime. Thus, feedback linearization was going to constitute an 'inner loop', which would then define a 'design plant model' to be compensated for robustness and guaranteed performance in an 'outer loop' application of modern linear control methods. The motivation for this was twofold; first, earlier work had shown that by appropriately conditioning the plant through conventional, simple feedback in an 'inner loop', the resulting overall compensated plant design enjoyed considerable enhancement of performance robustness in the presence of parametric uncertainty. Second, the nonlinear techniques did not have any proven robustness properties in the presence of unstructured uncertainty; a definition of robustness (and performance) is very difficult to achieve outside the frequency domain; to date, none is available for the purposes of control system design. Thus, by proper design of the outer loop, such properties could still be 'injected' in the overall system.

  4. The Advanced Orbiting Systems Testbed Program: Results to date

    NASA Technical Reports Server (NTRS)

    Otranto, John F.; Newsome, Penny A.

    1994-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.

  5. Integrated aerodynamic and control system design of oblique wing aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Morris, Stephen James

    1990-01-01

    An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission

  6. Applying reliability analysis to design electric power systems for More-electric aircraft

    NASA Astrophysics Data System (ADS)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  7. A Sliding Mode Control with Optimized Sliding Surface for Aircraft Pitch Axis Control System

    NASA Astrophysics Data System (ADS)

    Lee, Sangchul; Kim, Kwangjin; Kim, Youdan

    A sliding mode controller with an optimized sliding surface is proposed for an aircraft control system. The quadratic type of performance index for minimizing the angle of attack and the angular rate of the aircraft in the longitudinal motion is used to design the sliding surface. For optimization of the sliding surface, a Hamilton-Jacobi-Bellman (HJB) equation is formulated and it is solved through a numerical algorithm using a Generalized HJB (GHJB) equation and the Galerkin spectral method. The solution of this equation denotes a nonlinear sliding surface, on which the trajectory of the system approximately satisfies the optimality condition. Numerical simulation is performed for a nonlinear aircraft model with an optimized sliding surface and a simple linear sliding surface. The simulation result demonstrates that the proposed controller can be effectively applied to the longitudinal maneuver of an aircraft.

  8. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  9. Numerical and classical analysis of V/STOL aircraft using selected propulsion systems

    NASA Technical Reports Server (NTRS)

    Wilson, S. B., III; Kidwell, G. H., Jr.; Christiansen, R. S.

    1981-01-01

    The development needed for the evolution of selected V/STOL research vehicles into optimized antisubmarine warfare (ASW) aircraft configurations, using numerical procedures and traditional analytical methods, has been examined. Three propulsion systems, which represent state-of-the-art development aimed at solving the thrust-vectoring and attitude-control problems of V/STOL aircraft, are analyzed. The use of NASA computer programs for aircraft synthesis (ACSYNT), and for optimizing configurations (COMMIN), coupled with contractor-supplied propulsion system data provides for accurate performance prediction of the selected ASW configurations. Particular emphasis on the transition phase between the research vehicle and the optimized configuration demonstrates the strengths and weaknesses of using generic research aircraft instead of building prototypes to demonstrate new technology

  10. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  11. Study of aircraft in intraurban transportation systems, San Francisco Bay area

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The nine-county San Francisco Bay area is examined in two time periods (1975-1980 and 1985-1990) as a scenario for analyzing the characteristics of an intraurban, commuter-oriented aircraft transportation system. Aircraft have dominated the long-haul passenger market for some time, but efforts to penetrate the very-short-haul intraurban market have met with only token success. Yet, the characteristics of an aircraft transportation system-speed and flexibility-are very much needed to solve the transportation ills of our major urban areas. This study attempts to determine if the aircraft can contribute toward solving the transportation problems of major metropolitan areas and be economically viable in such an environment.

  12. Aircraft Environmental System Mechanic, 2-9. Block III--Aircraft Environmental Systems Units. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-paced and/or…

  13. Classification of Unmanned Aircraft Systems. UAS Classification/Categorization for Certification

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Category, class, and type designations are primary means to identify appropriate aircraft certification basis, operating rules/limitations, and pilot qualifications to operate in the National Airspace System (NAS). The question is whether UAS fit into existing aircraft categories or classes, or are unique enough to justify the creation of a new category/class. In addition, the characteristics or capabilities, which define when an UAS becomes a regulated aircraft, must also be decided. This issue focuses on UAS classification for certification purposes. Several approaches have been considered for classifying UAS. They basically group into either using a weight/mass basis, or a safety risk basis, factoring in the performance of the UAS, including where the UAS would operate. Under existing standards, aircraft must have a Type Certificate and Certificate of Airworthiness, in order to be used for "compensation or hire", a major difference from model aircraft. Newer technologies may make it possible for very small UAS to conduct commercial services, but that is left for a future discussion to extend the regulated aircraft to a lower level. The Access 5 position is that UAS are aircraft and should be regulated above the weight threshold differentiating them from model airplanes. The recommended classification grouping is summarized in a chart.

  14. Wavelength-multiplexed fiber-optic position encoder for aircraft control systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Krasowski, Michael J.; Sotomayor, Jorge L.; Fritsch, Klaus; Flatico, Joseph M.; Bathurst, Richard L.; Eustace, John G.; Anthan, Donald J.

    1991-01-01

    NASA-Lewis has developed wavelength-multiplexed digital position fiber-optics transducers for use in aircraft control systems. A prototype LED-powered rotary encoder for a commercial aircraft turbofan engine is under construction which will have 8-bit resolution and an operational temperature in the 90 C range. A compact electrooptics module is also under development which will be able to withstand gas turbine environments. A second-generation device will incorporate integrated photonics technologies to increase optical power margin.

  15. Transonic propulsion system integration analysis at McDonnell Aircraft Company

    NASA Technical Reports Server (NTRS)

    Cosner, Raymond R.

    1989-01-01

    The technology of Computational Fluid Dynamics (CFD) is becoming an important tool in the development of aircraft propulsion systems. Two of the most valuable features of CFD are: (1) quick acquisition of flow field data; and (2) complete description of flow fields, allowing detailed investigation of interactions. Current analysis methods complement wind tunnel testing in several ways. Herein, the discussion is focused on CFD methods. However, aircraft design studies need data from both CFD and wind tunnel testing. Each approach complements the other.

  16. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  17. The advanced orbiting systems testbed program: Results to date

    NASA Technical Reports Server (NTRS)

    Newsome, Penny A.; Otranto, John F.

    1993-01-01

    The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.

  18. Application of a cost/performance measurement system on a research aircraft project

    NASA Technical Reports Server (NTRS)

    Diehl, J. J.

    1978-01-01

    The fundamentals of the cost/performance management system used in the procurement of two tilt rotor aircraft for a joint NASA/Army research project are discussed. The contractor's reporting system and the GPO's analyses are examined. The use of this type of reporting system is assessed. Recommendations concerning the use of like systems on future projects are included.

  19. Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Chen, Yushu; Cao, Qingjie

    2014-01-01

    This paper focuses on the nonlinear vibration phenomenon caused by aircraft hovering flight in a rub-impact rotor system supported by two general supports with cubic stiffness. The effect of aircraft hovering flight on the rotor system is considered as a maneuver load to formulate the equations of motion, which might result in periodic response instability to the rotor system even the eccentricity is small. The dynamic responses of the system under maneuver load are presented by bifurcation diagrams and the corresponding Lyapunov exponent spectrums. Numerical analyses are carried out to detect the periodic, sub-harmonic and quasi-periodic motions of the system, which are presented by orbit diagrams, phase trajectories, Poincare maps and amplitude power spectrums. The results obtained in this paper will contribute an understanding of the nonlinear dynamic behaviors of aircraft rotor systems in maneuvering flight.

  20. Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery

    NASA Astrophysics Data System (ADS)

    Chu, Tianxing; Chen, Ruizhi; Landivar, Juan A.; Maeda, Murilo M.; Yang, Chenghai; Starek, Michael J.

    2016-07-01

    This paper explores the potential of using unmanned aircraft system (UAS)-based visible-band images to assess cotton growth. By applying the structure-from-motion algorithm, the cotton plant height (ph) and canopy cover (cc) information were retrieved from the point cloud-based digital surface models (DSMs) and orthomosaic images. Both UAS-based ph and cc follow a sigmoid growth pattern as confirmed by ground-based studies. By applying an empirical model that converts the cotton ph to cc, the estimated cc shows strong correlation (R2=0.990) with the observed cc. An attempt for modeling cotton yield was carried out using the ph and cc information obtained on June 26, 2015, the date when sigmoid growth curves for both ph and cc tended to decline in slope. In a cross-validation test, the correlation between the ground-measured yield and the estimated equivalent derived from the ph and/or cc was compared. Generally, combining ph and cc, the performance of the yield estimation is most comparable against the observed yield. On the other hand, the observed yield and cc-based estimation produce the second strongest correlation, regardless of the complexity of the models.

  1. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  2. Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system

    NASA Astrophysics Data System (ADS)

    Sigmond, M.; Reader, M. C.; Flato, G. M.; Merryfield, W. J.; Tivy, A.

    2016-12-01

    The need for skillful seasonal forecasts of Arctic sea ice is rapidly increasing. Technology to perform such forecasts with coupled atmosphere-ocean-sea ice systems has only recently become available, with previous skill evaluations mainly limited to area-integrated quantities. Here we show, based on a large set of retrospective ensemble model forecasts, that a dynamical forecast system produces skillful seasonal forecasts of local sea ice retreat and advance dates - variables that are of great interest to a wide range of end users. Advance dates can generally be skillfully predicted at longer lead times ( 5 months on average) than retreat dates ( 3 months). The skill of retreat date forecasts mainly stems from persistence of initial sea ice anomalies, whereas advance date forecasts benefit from longer time scale and more predictable variability in ocean temperatures. These results suggest that further investments in the development of dynamical seasonal forecast systems may result in significant socioeconomic benefits.

  3. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  4. Conflict Prevention and Separation Assurance Method in the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Carreno, Victor A.; Williams, Daniel M.; Munoz, Cesar

    2005-01-01

    A multilayer approach to the prevention of conflicts due to the loss of aircraft-to-aircraft separation which relies on procedures and on-board automation was implemented as part of the SATS HVO Concept of Operations. The multilayer system gives pilots support and guidance during the execution of normal operations and advance warning for procedure deviations or off-nominal operations. This paper describes the major concept elements of this multilayer approach to separation assurance and conflict prevention and provides the rationale for its design. All the algorithms and functionality described in this paper have been implemented in an aircraft simulation in the NASA Langley Research Center s Air Traffic Operation Lab and on the NASA Cirrus SR22 research aircraft.

  5. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  6. A system safety model for developmental aircraft programs

    NASA Technical Reports Server (NTRS)

    Amberboy, E. J.; Stokeld, R. L.

    1982-01-01

    Basic tenets of safety as applied to developmental aircraft programs are presented. The integration of safety into the project management aspects of planning, organizing, directing and controlling is illustrated by examples. The basis for project management use of safety and the relationship of these management functions to 'real-world' situations is presented. The rationale which led to the safety-related project decision and the lessons learned as they may apply to future projects are presented.

  7. MQ-9 Reaper Unmanned Aircraft System (MQ-9 Reaper)

    DTIC Science & Technology

    2013-12-01

    Base Year DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of Defense DSN - Defense...Milestone C ACAT II Block 1 FEB 2008 FEB 2008 FEB 2008 FEB 2008 IOT &E for Block 1 MAY 2008 MAY 2008 MAY 2008 MAY 2008 RAA SEP 2010 JUN 2012 JUN 2012 JUN...Control Station IOT &E - Initial Operational Test and Evaluation PMAI - Primary Mission Aircraft Inventory PO - Program Office RAA - Required Assets

  8. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    DTIC Science & Technology

    2011-03-18

    of Remotely-Piloted Aircraft (RPA) stems from the pioneering work of Elmer Sperry, Charles Kettering, and even Orville Wright himself. Charles ...applications [2]. Since 9/11 the conflicts in Afghanistan and Iraq have created the most widespread use of unmanned vehicles. Though Charles Kettering and...Company, Pilot’s Operating Handbook and Flight Training Supplement Skycatcher, September 2010. [54] K. Manson , "Jane’s Unmannes Aerial Vehicles and

  9. A review and update of the NASA aircraft noise prediction program propeller analysis system

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Nguyen, L. Cathy

    1989-01-01

    The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.

  10. Control-system techniques for improved departure/spin resistance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Gilbert, W. P.; Ogburn, M. E.

    1980-01-01

    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability.

  11. ANOPP programmer's reference manual for the executive System. [aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.; Brown, C. G.; Bartlett, R. W.; Baucom, P. H.

    1977-01-01

    Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers.

  12. Unmanned Aircraft Systems: Additional Actions Needed to Improve Management and Integration of DOD Efforts to Support Warfighter Needs

    DTIC Science & Technology

    2008-11-01

    Services, House of Representatives UNMANNED AIRCRAFT SYSTEMS Additional Actions Needed to Improve Management and Integration of DOD Efforts to...Armed Services, House of Representatives The Department of Defense’s (DOD) use of unmanned aircraft systems (UAS) continues to increase. In 2000...unmanned aircraft systems This is a work of the U.S. government and is not subject to copyright protection in the United States. It may be reproduced

  13. Mountain Search and Rescue with Remotely Piloted Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Silvagni, Mario; Tonoli, Andrea; Zenerino, Enrico; Chiaberge, Marcello

    2016-04-01

    Remotely Piloted Aircraft Systems (RPAS) also known as Unmanned Aerial Systems (UAS) are nowadays becoming more and more popular in several applications. Even though a complete regulation is not yet available all over the world, researches, tests and some real case applications are wide spreading. These technologies can bring many benefits also to the mountain operations especially in emergencies and harsh environmental conditions, such as Search and Rescue (SAR) and avalanche rescue missions. In fact, during last decade, the number of people practicing winter sports in backcountry environment is increased and one of the greatest hazards for recreationists and professionals are avalanches. Often these accidents have severe consequences leading, mostly, to asphyxia-related death, which is confirmed by the hard drop of survival probability after ten minutes from the burying. Therefore, it is essential to minimize the time of burial. Modern avalanche beacon (ARTVA) interface guides the rescuer during the search phase reducing its time. Even if modern avalanche beacons are valid and reliable, the seeking range influences the rescue time. Furthermore, the environment and morphologic conditions of avalanches usually complicates the rescues. The recursive methodology of this kind of searching offers the opportunity to use automatic device like drones (RPAS). These systems allow performing all the required tasks autonomously, with high accuracy and without exposing the rescuers to additional risks due to secondary avalanches. The availability of highly integrated electronics and subsystems specifically meant for the applications, better batteries, miniaturized payload and, in general, affordable prices, has led to the availability of small RPAS with very good performances that can give interesting application opportunities in unconventional environments. The present work is one of the outcome from the experience made by the authors in RPAS fields and in Mechatronics

  14. NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is part 3 of the conference proceedings on rotorcraft technology. This volume is divided into areas on systems integration, research aircraft, and industry. Representative titles from each area are: system analysis in rotorcraft design, the past decade; rotorcraft flight research with emphasis on rotor systems; and an overview of key technology thrusts at Bell Helicopter Textron.

  15. Unmanned Aircraft Systems in the National Airspace System: A Formal Methods Perspective

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Dutle, Aaron; Narkawicz, Anthony; Upchurch, Jason

    2016-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) have grown, so too have international efforts to integrate UAS into civil airspace. However, one of the major concerns that must be addressed in realizing this integration is that of safety. For example, UAS lack an on-board pilot to comply with the legal requirement that pilots see and avoid other aircraft. This requirement has motivated the development of a detect and avoid (DAA) capability for UAS that provides situational awareness and maneuver guidance to UAS operators to aid them in avoiding and remaining well clear of other aircraft in the airspace. The NASA Langley Research Center Formal Methods group has played a fundamental role in the development of this capability. This article gives a selected survey of the formal methods work conducted in support of the development of a DAA concept for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations.

  16. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  17. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  18. Development and experimental characterization of a fuel cell powered aircraft

    NASA Astrophysics Data System (ADS)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E.

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers.

  19. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.

  20. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  1. 46. OUTLET WORKS: ELECTRICAL SYSTEM NO. 1. Sheet H1, date ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OUTLET WORKS: ELECTRICAL SYSTEM NO. 1. Sheet H-1, date stamped May, 1939. File no. SA 342/9. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  2. 47. OUTLET WORKS: ELECTRICAL SYSTEM NO. 2. Sheet H2, date ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. OUTLET WORKS: ELECTRICAL SYSTEM NO. 2. Sheet H-2, date stamped May, 1939. File no. SA 342/10. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  3. Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.

    2010-02-01

    A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.

  4. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  5. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  6. Fiber Optic Experience with the Smart Actuation System on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Zavala, Eddie

    1997-01-01

    High bandwidth, immunity to electromagnetic interference, and potential weight savings have led to the development of fiber optic technology for future aerospace vehicle systems. This technology has been incorporated in a new smart actuator as the primary communication interface. The use of fiber optics simplified system integration and significantly reduced wire count. Flight test results showed that fiber optics could be used in aircraft systems and identified critical areas of development of fly-by-light technology. This paper documents the fiber optic experience gained as a result of this program, and identifies general design considerations that could be used in a variety of specific applications of fiber optic technology. Environmental sensitivities of fiber optic system components that significantly contribute to optical power variation are discussed. Although a calibration procedure successfully minimized the effect of fiber optic sensitivities, more standardized calibration methods are needed to ensure system operation and reliability in future aerospace vehicle systems.

  7. Predesign report for the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A conceptual predesign of a compound helicopter for conducting rotor research is presented. The aircraft was selected by the Government as the better of two concepts submitted. The helicopter is a three place vehicle in the 24,000 pound gross weight class. It has been determined that the helicopter satisfies the requirements for the rotor research mission. The model has been predesigned sufficiently to allow an assessment of its performance and stability and control characteristics. A brief treatment of these subjects is included.

  8. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  9. Airborne Performance Measurement System Design: C-5 Aircraft

    DTIC Science & Technology

    1984-08-01

    simulator to the aircraft. In addition, these data may be utilized to predict or test the effects of training program *. modifications. The AFHRL...equipment diagnostic for the magnetic tape unit and controller. The second involves modification of the Confidence program to test only the equipment...IND 3 C: 57 S: 01 25-L-OXYGEN-QTY-LOW-LT 1 C: 57 25-L-OXYGEN--QTY- TEST -SW 1 C: 57 75-L-OXYGEN-QTY-IND 3 C: 57 S: 02 75-L-OXYGEN-QTY-LOW-LT 1 C: 57 75-L

  10. Advanced Aircraft Electrical System (AAES). Definition and Prototype Design for F-14 Aircraft (GPMS)

    DTIC Science & Technology

    1977-09-01

    display HVDC High voltage dc vii ICS Intercommunication system IDENT Identification IDG Integrated drive generator IFF Identification friend or foe IFU...system utilizes a new electrical generator (High Voltage DC ( HVDC )) for primary electrical power. It utilizes the Solid State Electric Logic (SOSTEL

  11. Overview of the Small Aircraft Transportation System Project Four Enabling Operating Capabilities

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Brooks, Frederick M.; Johnson, Sally C.

    2005-01-01

    It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand still steadily increasing. NASA, FAA, and the National Consortium for Aviation Mobility (NCAM) have partnered to aid in increasing the mobility throughout the United States through the Small Aircraft Transportation System (SATS) project. The SATS project has been a five-year effort to provide the technical and economic basis for further national investment and policy decisions to support a small aircraft transportation system. The SATS vision is to enable people and goods to have the convenience of on-demand point-to-point travel, anywhere, anytime for both personal and business travel. This vision can be obtained by expanding near all-weather access to more than 3,400 small community airports that are currently under-utilized throughout the United States. SATS has focused its efforts on four key operating capabilities that have addressed new emerging technologies, procedures, and concepts to pave the way for small aircraft to operate in nearly all weather conditions at virtually any runway in the United States. These four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. The SATS project culminated with the 2005 SATS Public Demonstration in Danville, Virginia on June 5th-7th, by showcasing the accomplishments achieved throughout the project and demonstrating that a small aircraft transportation system could be viable. The technologies, procedures, and concepts were successfully demonstrated to show that they were safe, effective, and affordable for small aircraft in near all weather conditions. The focus of this paper is to provide an overview of the technical and operational feasibility of the

  12. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  13. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  14. A Radio System for Avoiding Illuminating Aircraft with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Coles, W. A.; Murphy, T. W.; Melser, J. F.; Tu, J. K.; White, G. A.; Kassabian, K. H.; Bales, K.; Baumgartner, B. B.

    2012-01-01

    When scientific experiments require transmission of powerful laser or radio beams through the atmosphere, the Federal Aviation Administration (FAA) requires that precautions be taken to avoid inadvertent illumination of aircraft. At present, the FAA requires that laser operators use human spotters to protect against accidental illumination. Here, we describe a simple, inexpensive, and highly reliable electronic system for detecting aircraft entering the vicinity of a laser beam that makes use of the air traffic control (ATC) radio transponders required on most aircraft. The radio system uses two antennas, both aligned with the laser beam. One antenna has a broad beam and the other has a narrow beam. The ratio of the transponder power received in the narrow beam to that received in the broad beam gives a measure of the angular distance of the aircraft from the axis that is independent of the range or the transmitter power. This ratio is easily measured and can be used to shutter the laser when the aircraft is too close to the beam. Comparisons of prototype systems operating at both the Apache Point and W. M. Keck Observatory with an FAA database indicate successful identification of commercial airplanes passing near the telescope boresight.

  15. Analysis of Complexity Evolution Management and Human Performance Issues in Commercial Aircraft Automation Systems

    NASA Technical Reports Server (NTRS)

    Vakil, Sanjay S.; Hansman, R. John

    2000-01-01

    Autoflight systems in the current generation of aircraft have been implicated in several recent incidents and accidents. A contributory aspect to these incidents may be the manner in which aircraft transition between differing behaviours or 'modes.' The current state of aircraft automation was investigated and the incremental development of the autoflight system was tracked through a set of aircraft to gain insight into how these systems developed. This process appears to have resulted in a system without a consistent global representation. In order to evaluate and examine autoflight systems, a 'Hybrid Automation Representation' (HAR) was developed. This representation was used to examine several specific problems known to exist in aircraft systems. Cyclomatic complexity is an analysis tool from computer science which counts the number of linearly independent paths through a program graph. This approach was extended to examine autoflight mode transitions modelled with the HAR. A survey was conducted of pilots to identify those autoflight mode transitions which airline pilots find difficult. The transitions identified in this survey were analyzed using cyclomatic complexity to gain insight into the apparent complexity of the autoflight system from the perspective of the pilot. Mode transitions which had been identified as complex by pilots were found to have a high cyclomatic complexity. Further examination was made into a set of specific problems identified in aircraft: the lack of a consistent representation of automation, concern regarding appropriate feedback from the automation, and the implications of physical limitations on the autoflight systems. Mode transitions involved in changing to and leveling at a new altitude were identified across multiple aircraft by numerous pilots. Where possible, evaluation and verification of the behaviour of these autoflight mode transitions was investigated via aircraft-specific high fidelity simulators. Three solution

  16. Insect vision based collision avoidance system for Remotely Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James; Bevilacqua, Andrew

    2012-06-01

    Remotely Piloted Aircraft (RPA) are designed to operate in many of the same areas as manned aircraft; however, the limited instantaneous field of regard (FOR) that RPA pilots have limits their ability to react quickly to nearby objects. This increases the danger of mid-air collisions and limits the ability of RPA's to operate in environments such as terminals or other high-traffic environments. We present an approach based on insect vision that increases awareness while keeping size, weight, and power consumption at a minimum. Insect eyes are not designed to gather the same level of information that human eyes do. We present a novel Data Model and dynamically updated look-up-table approach to interpret non-imaging direction sensing only detectors observing a higher resolution video image of the aerial field of regard. Our technique is a composite hybrid method combining a small cluster of low resolution cameras multiplexed into a single composite air picture which is re-imaged by an insect eye to provide real-time scene understanding and collision avoidance cues. We provide smart camera application examples from parachute deployment testing and micro unmanned aerial vehicle (UAV) full motion video (FMV).

  17. AN ASSESSMENT OF HIGH-VOLTAGE DC ELECTRICAL POWER IN AIRCRAFT ELECTRICAL SYSTEMS.

    DTIC Science & Technology

    If the presently installed three-phase ac transmission system on aircraft were replaced by a higher voltage dc ( HVDC ) transmission using a ground...from one- to two-thirds of the total electrical system weight. HVDC may have some disadvantages such as higher short-circuit currents, some increase in

  18. Generation of a multi-component aircraft grid system using NGP and Begger

    SciTech Connect

    Lijewski, L.E.; Belk, D.M.

    1996-12-31

    Generation of a multiple component aircraft grid system is presented. A hybrid system of blocked and overset grids axe generated using NGP and overlap communications established with the Beggar code. Techniques for gridding wing-flap and fuselage-flap gap regions axe discussed. Steady-state subsonic flow solutions are presented.

  19. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  20. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    NASA Technical Reports Server (NTRS)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  1. Study of fail-safe abort system for an actively cooled hypersonic aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Herring, R. L.

    1976-01-01

    Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.

  2. An artificial intelligence-based structural health monitoring system for aging aircraft

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  3. Flight evaluation of advanced flight control systems and cockpit displays for powered-lift STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Smith, D. W.; Watson, D. M.; Warner, D. N., Jr.; Innis, R. C.; Hardy, G. H.

    1976-01-01

    A flight research program was conducted to assess the improvements, in longitudinal path control during a STOL approach and landing, that can be achieved with manual and automatic control system concepts and cockpit displays with various degrees of complexity. NASA-Ames powered-lift Augmentor Wing Research Aircraft was used in the research program. Satisfactory flying qualities were demonstrated for selected stabilization and command augmentation systems and flight director combinations. The ability of the pilot to perform precise landings at low touchdown sink rates with a gentle flare maneuver was also achieved. The path-control improvement is considered to be applicable to other powered-lift aircraft configurations.

  4. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  5. Analysis of technology requirements and potential demand for general aviation avionics systems in the 1980's. [technology assessment and technological forecasting of the aircraft industry

    NASA Technical Reports Server (NTRS)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    The trend for the increasing need for aircraft-in-general as a major source of transportation in the United States is presented (military and commercial aircraft are excluded). Social, political, and economic factors that affect the aircraft industry are considered, and cost estimates are given. Aircraft equipment and navigation systems are discussed.

  6. Development of a maintenance free lead acid battery for inertial navigation systems in large military aircraft

    SciTech Connect

    Johnson, W.R.; Vutetakis, D.G.

    1995-07-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The US Navy and Air Force developed separate systems during their respective INS Developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66% of the systems sold.

  7. Maintenance-free lead acid battery for inertial navigation systems aircraft

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  8. 78 FR 54756 - Extension of Expiration Dates for Two Body System Listings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... genitourinary disorders (78 FR 7695) (2013)) and respiratory system disorders (78 FR 7968 (2013)), and revised... ADMINISTRATION 20 CFR Part 404 RIN 0960-AH60 Extension of Expiration Dates for Two Body System Listings AGENCY... following body systems in the Listing of Impairments (listings) in our regulations:...

  9. Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob

    2005-02-01

    Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.

  10. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M. T. S.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.

  11. Comparative Assessment of Aircraft-to-Weapon Communication Systems

    DTIC Science & Technology

    1971-12-01

    44 0 w w r-4 -4...4 -r4 Z LU w p 004 a 0 0 %V r-f LU 4 0 .r 0. 0 r4 -4 , 44 .0 -W -r4 0 0- W -4 r4 $4 - 0U w ,4 J 04., Ř r4 0c -W "J W ,. -4 rM 4W LU...Q-4HWg0 440Ŕ 0 . 0 LUw Ř Z LU 0 LU LU P 0 p LU LU w LU 0 0 0 Z 00u 0 -4L W ’ C4 C*4 C1 4 M~ CqJ CqJ M~ MU M C 4 ~ - 04j an U) -4- -4 E - 0 L u -4L...Confidential). Final Report Gontract N60162-68-C-0077 Industrial Nucleonics February 1969 6 A. P . Morgan Aircraft/weapon digital fuze selection sys ter. TTCP

  12. Development of an adaptive failure detection and identification system for detecting aircraft control element failures

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1990-01-01

    A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.

  13. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2015-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  14. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.

  15. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  16. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  17. System Noise Assessment of Blended-Wing-Body Aircraft With Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Thomas, Russell H.

    2015-01-01

    An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations of a possible Stage 5 in the next decade or so, the design will likely meet stiff competitions from aircraft with turbofan engines. It is shown that the noise levels of the BWB design are held up by the inherently high noise levels of the open rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the BWB design has high levels of noise from the main landing gear, due to their exposure to high speed flow at the junction between the center body and outer wing. These are also the reasons why this baseline BWB design does not meet the NASA N+2 noise goal of 42 dB below Stage 4. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise but they are only at the conceptual stage.

  18. Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Knuth, S. L.; Cassano, J. J.; Maslanik, J. A.; Herrmann, P. D.; Kernebone, P. A.; Crocker, R. I.; Logan, N. J.

    2012-11-01

    In September 2009, a series of long-range unmanned aircraft system (UAS) flights collected basic atmospheric data over the Terra Nova Bay polynya in Antarctica. Air temperature, wind, pressure, relative humidity, radiation, skin temperature, GPS, and operational aircraft data were collected and quality controlled for scientific use. The data has been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC) for free access (doi:10.1594/USAP/0739464).

  19. Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Knuth, S. L.; Cassano, J. J.; Maslanik, J. A.; Herrmann, P. D.; Kernebone, P. A.; Crocker, R. I.; Logan, N. J.

    2013-02-01

    In September 2009, a series of long-range unmanned aircraft system (UAS) flights collected basic atmospheric data over the Terra Nova Bay polynya in Antarctica. Air temperature, wind, pressure, relative humidity, radiation, skin temperature, GPS, and operational aircraft data were collected and quality controlled for scientific use. The data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC) for free access (doi:10.1594/USAP/0739464).

  20. Design of a digital ride quality augmentation system for a commuter aircraft

    NASA Technical Reports Server (NTRS)

    Hammond, T. A.; Downing, D. R.; Amin, S. P.; Paduano, J.

    1984-01-01

    Commuter aircraft with low wing loading that operate at low altitudes are particularly susceptible to unwanted accelerations caused by atmospheric gusts. This paper describes the design and analysis of a longitudinal digital Ride Quality Augmentation System (RQAS). The RQAS designs were conducted for a Cessna 402B aircraft using the flaps and the elevator as the control surfaces. The designs are generated using linear quadratic Gaussian theory and analyzed in both the time and frequency domains. Nominal designs are presented at five flight conditions that cover a total mission. Trade-off studies are conducted to investigate the effect of sample time, computational delay time, servo bandwidth and control power.

  1. Airborne antenna coverage requirements for the TCV B-737 aircraft. [for operation with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Southall, W. A., Jr.; White, W. F.

    1978-01-01

    The airborne antenna line of sight look angle requirement for operation with a Microwave Landing System (MLS) was studied. The required azimuth and elevation line of sight look angles from an antenna located on an aircraft to three ground based antenna sites at the Wallops Flight Center (FPS-16 radar, MLS aximuth, and MLS elevation) as the aircraft follows specific approach paths selected as representative of MLS operations at the Denver, Colorado, terminal area are presented. These required azimuth and elevation look angles may be interpreted as basic design requirements for antenna of the TCV B-737 airplane for MLS operations along these selected approach paths.

  2. The Attributes of a Variable-Diameter Rotor System Applied to Civil Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Brender, Scott; Mark, Hans; Aguilera, Frank

    1996-01-01

    The attributes of a variable diameter rotor concept applied to civil tiltrotor aircraft are investigated using the V/STOL aircraft sizing and performance computer program (VASCOMP). To begin, civil tiltrotor viability issues that motivate advanced rotor designs are discussed. Current work on the variable diameter rotor and a theoretical basis for the advantages of the rotor system are presented. The size and performance of variable diameter and conventional tiltrotor designs for the same baseline mission are then calculated using a modified NASA Ames version of VASCOMP. The aircraft are compared based on gross weight, fuel required, engine size, and autorotative performance for various hover disk loading values. Conclusions about the viability of the resulting designs are presented and a program for further variable diameter rotor research is recommended.

  3. An evaluation of a real-time fault diagnosis expert system for aircraft applications

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Abbott, Kathy H.; Palmer, Michael T.; Ricks, Wendell R.

    1987-01-01

    A fault monitoring and diagnosis expert system called Faultfinder was conceived and developed to detect and diagnose in-flight failures in an aircraft. Faultfinder is an automated intelligent aid whose purpose is to assist the flight crew in fault monitoring, fault diagnosis, and recovery planning. The present implementation of this concept performs monitoring and diagnosis for a generic aircraft's propulsion and hydraulic subsystems. This implementation is capable of detecting and diagnosing failures of known and unknown (i.e., unforseeable) type in a real-time environment. Faultfinder uses both rule-based and model-based reasoning strategies which operate on causal, temporal, and qualitative information. A preliminary evaluation is made of the diagnostic concepts implemented in Faultfinder. The evaluation used actual aircraft accident and incident cases which were simulated to assess the effectiveness of Faultfinder in detecting and diagnosing failures. Results of this evaluation, together with the description of the current Faultfinder implementation, are presented.

  4. [Structural-functional reserves of the vegetative nervous system in pilots flying high maneuver aircrafts].

    PubMed

    Sukhoterin, A F; Pashchenko, P S

    2014-01-01

    Purpose of the work was to analyze morbidity among pilots of different categories of aircraft, and to investigate reactivity of the vegetative nervous system (VNS) in pilots flying high maneuver aircrafts varying in age and flying time. Morbidity was deduced from the data of aviation medical exams. The VNS investigation involved 56 pilots of fighter and assault aircrafts both in the inter-flight periods and during duty shifts. Cytochemistry was used to measure glycogen in peripheral blood neutrophils in 77 pilots. It was shown that the pre-stress condition in pilots with the flying time more than 1000 hours may transform to chronic stress, provided that the flight duties remain heavy. According to the cytochemical data, concentration of neutrophilic glycogen indicating the energy potential of peripheral blood leukocytes is controlled by hormones secreted by the VNS sympathetic and parasympathetic components.

  5. Application of precomputed control laws in a reconfigurable aircraft flight control system

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.

    1989-01-01

    A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.

  6. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  7. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Astrophysics Data System (ADS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-04-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  8. Application experience with the NASA aircraft interrogation and display system - A ground-support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1983-01-01

    The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.

  9. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    NASA Astrophysics Data System (ADS)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  10. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with d...

  11. Detection of nitrogen deficiency in potatoes using small unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. However, research is required to determine which sensors and data processing methods are required to use sUAS in an efficient and cost-effective manner. We set up a ni...

  12. Development and Evaluation of an Airborne Separation Assurance System for Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.

    2004-01-01

    NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.

  13. MQ-8 Fire Scout Unmanned Aircraft System (MQ-8 Fire Scout)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-253 MQ-8 Fire Scout Unmanned Aircraft System (MQ-8 Fire Scout) As of FY 2017 President’s...Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position

  14. MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-420 MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle) As of FY 2017 President’s...Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service

  15. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  16. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  17. 78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ...The FAA will be holding a public engagement session on Wednesday, April 3, 2013, on the proposed privacy policy approach for the unmanned aircraft systems (UAS) test site program. The FAA is seeking the views from the public with respect to proposed privacy language to be included in agreements with each test site...

  18. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  19. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation No. 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... SUPPLEMENTAL OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation No. 106—Rules for use...

  20. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation No. 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... SUPPLEMENTAL OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation No. 106—Rules for use...

  1. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  2. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  3. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  4. Pivoting output unit control systems activated by jacks. [for controlling aircraft flaps

    NASA Technical Reports Server (NTRS)

    Belliere, P.

    1978-01-01

    An invention to be used for controlling aircraft flaps is described. It is applicable to control systems with two coaxial output units which pivot simultaneously with respect to two fixed units and which are activated by two opposed, straight coaxial jacks.

  5. Changes in Structural Health Monitoring System Capability Due to Aircraft Environmental Factors

    DTIC Science & Technology

    2009-09-01

    A design of experiments approach is used to build and execute an experiment to determine the effect of one aircraft envi- ronmental factor (cyclic...Monitoring . . . . . . . . . . . . . . . . 6 2.1.2 Designing a SHM System . . . . . . . . . . . . . 8 2.1.3 General Structural Health Monitoring Require...and Data Collection Equipment . . . . . . 58 3.6 Experimental Design . . . . . . . . . . . . . . . . . . . . 58 3.6.1 Defining Experimental Factors

  6. 78 FR 7816 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... of the Aeronautics Committee of the NASA Advisory Council. The meeting will be held for the purpose..., Washington, DC 20546, (202) 358-1578, or brenda.l.mulac@nasa.gov . SUPPLEMENTARY INFORMATION: The...

  7. 77 FR 59020 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems... of the Aeronautics Committee of the NASA Advisory Council (NAC). The meeting will be held for the..., Washington, DC 20546, (202) 358-1578, or brenda.l.mulac@nasa.gov . SUPPLEMENTARY INFORMATION: The...

  8. The NASA Aircraft VOrtex Spacing System (AVOSS): Concept Demonstration Results and Future Direction

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; OConnor, Cornelius J.

    2004-01-01

    Since the late 1990s the national airspace system has been recognized as approaching a capacity crisis. In the light of this condition, industry, government, user organizations, and educational institutions have been working on procedural and technological solutions to the problem. One aspect of system operations that holds potential for improvement is the separation criteria applied to aircraft for wake vortex avoidance. These criteria, applied when operations are conducted under instrument flight rules (IFR), were designed to represent safe spacing under weather conditions conducive to the longest wake hazards. It is well understood that wake behavior is dependent on meteorological conditions as well as the physical parameters of the generating aircraft. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft VOrtex Spacing System (AVOSS). Successfully demonstrated in a realtime field demonstration during July 2000 at the Dallas Ft. Worth International Airport (DFW), AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. AVOSS provides dynamic wake separation criteria that are a function of the ambient weather conditions for a particular airport, and the predicted wake behavior under those conditions. Wake sensing subsystems provide safety checks and validation for the predictions. The AVOSS was demonstrated in shadow mode; no actual spacing changes were applied to aircraft. This paper briefly reviews the system architecture and operation, reports the latest performance results from the DFW deployment, and describes the future direction of the project.

  9. National General Aviation Roadmap Definition for a Small Aircraft Transportation System Concept

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2000-01-01

    This paper presents trends and forces that shape 21 st century demand for higher-speed personal air transportation and outlines guidance developed by NASA in partnership with other federal and state government and industry partners, for Small Aircraft Transportation System (SATS) investment and partnership planning.

  10. Optimization via CFD of aircraft hot-air anti-icing systems

    NASA Astrophysics Data System (ADS)

    Pellissier, Mathieu Paul Constantin

    In-flight icing is a major concern in aircraft safety and a non-negligible source of incidents and accidents, and is still a serious hazard today. It remains consequently a design and certification challenge for aircraft manufacturers. The aerodynamic performance of an aircraft can indeed degrade rapidly when flying in icing conditions, leading to incidents or accidents. In-flight icing occurs when an aircraft passes through clouds containing supercooled water droplets at or below freezing temperature. Droplets impinge on its exposed surfaces and freeze, causing roughness and shape changes that increase drag, decrease lift and reduce the stall angle of attack, eventually inducing flow separation and stall. This hazardous ice accretion is prevented by the use of dedicated anti-icing systems, among which hot-air-types are the most common for turbofan aircraft. This work presents a methodology for the optimization of such aircraft hot-air-type anti-icing systems, known as Piccolo tubes. Having identified through 3D Computational Fluid Dynamics (CFD) the most critical in-flight icing conditions, as well as determined thermal power constraints, the objective is to optimize the heat distribution in such a way to minimize power requirements, while meeting or exceeding all safety regulation requirements. To accomplish this, an optimization method combining 3D CFD, Reduced-Order Models (ROM) and Genetic Algorithms (GA) is constructed to determine the optimal configuration of the Piccolo tube (angles of jets, spacing between holes, and position from leading edge). The methodology successfully results in increasingly optimal configurations from three up to five design variables.

  11. Integrated propulsion/energy transfer control systems for lift-fan V/STOL aircraft. [reduction of total propulsion system and control system installation requirements

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Rolls, L. S.

    1974-01-01

    An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.

  12. Evaluation of a new JMA aircraft flask sampling system and laboratory trace gas analysis system

    NASA Astrophysics Data System (ADS)

    Tsuboi, K.; Matsueda, H.; Sawa, Y.; Niwa, Y.; Nakamura, M.; Kuboike, D.; Saito, K.; Ohmori, H.; Iwatsubo, S.; Nishi, H.; Hanamiya, Y.; Tsuji, K.; Baba, Y.

    2013-05-01

    We established and evaluated a flask air sampling system on a cargo C-130H aircraft, as well as a trace gas measurement system for the flask samples, as part of a new operational monitoring program of the Japan Meteorological Agency (JMA). Air samples were collected during each flight, between Kanagawa Prefecture (near Tokyo) and Minamitorishima (an island located nearly 2000 km southeast of Tokyo), from the air-conditioning system on the aircraft. Prior to the operational employment of the sampling system, a quality assurance test of the sampled air was made by specially coordinated flights at a low altitude of 1000 ft over Minamitorishima and comparing the flask values with those obtained at the surface. Based on our storage tests, the flask samples remained nearly stable until analyses. The trace gas measurement system has, in addition to the nondispersive infrared (NDIR) and vacuum ultraviolet resonance fluorescence (VURF) analyzers, two laser-based analyzers using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) and off-axis integrated cavity output spectroscopy (ICOS). Laboratory tests of the laser-based analyzers for measuring flask samples indicated relatively high reproducibility with overall precisions of less than ±0.06 ppm for CO2, ±0.68 ppb for CH4, ±0.36 ppb for CO, and ±0.03 ppb for N2O. Flask air sample measurements, conducted concurrently on different analyzers were compared. These comparisons showed a negligible bias in the averaged measurements between the laser-based measurement techniques and the other methods currently in use. We also estimated that there are no significant isotope effects for CH4, CO and N2O using standard gases with industrial isotopic compositions to calibrate the laser-based analyzers, but CO2 was found to possess isotope effects larger than its analytical precision.

  13. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    NASA Technical Reports Server (NTRS)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  14. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  15. Advanced Propulsion Systems Study for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Mount, R.

    2003-01-01

    This study defines a family of advanced technology Stratified Charge Rotary Engines (SCRE) appropriate for the enablement of the development of a new generation of general aviation aircraft. High commonality, affordability, and environmental compatibility are considerations influencing the family composition and ratings. The SCRE family is comprised of three engines in the 70 Series (40 cu in. displacement per rotor), i.e. one, two, and four rotor and two engines in the 170 Series (105 cu in. displacement per rotor), i.e., two and four rotor. The two rotor engines are considered the primary engines in each series. A wide power range is considered covering 125 to 2500 HP through growth and compounding/dual pac considerations. Mission requirements, TBO, FAA Certification, engine development cycles, and costs are examined. Comparisons to current and projected reciprocating and turbine engine configurations in the 125 to 1000 HP class are provided. Market impact, estimated sales, and U.S. job creation (R&D, manufacturing and infractures) are examined.

  16. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  17. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  18. Fault tolerant architectures for integrated aircraft electronics systems

    NASA Technical Reports Server (NTRS)

    Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.

    1983-01-01

    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered.

  19. Simulative Analysis of an Inter-aircraft Optical Wireless Communication System Using Amplifier

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-03-01

    In this paper, the simulative analysis of an inter-aircraft optical wireless communication (IaOWC) system has been presented using different system parameters and the performance of the system has been enhanced by the application of EDFA amplifier at the receiver end. A link range of 110 km at 2.5 Gbps has been achieved with same BER performance resulting in the performance enhancement of 47 % when compared to previous detection mechanism.

  20. Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions

    DTIC Science & Technology

    1974-10-01

    practical one. The advantages of optical exhaust gas measurements versus probing systems has been demonstrated. It now remains to solve the remaining...Raman system NOVA digital data processor has the capability to service such additional measurements. If velocity information is desired a study should be...AD/A-003 648 FIELD TESTS OF A LASER RAMAN MEASURE- MENT SYSTEM FOR AIRCRAFT ENGINE EXHAUST EMISSIONS Donald A. Leunard Avoo Everett Researoh

  1. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  2. Aircraft developments that hold promise for increased compatability with an advanced ATC system

    NASA Technical Reports Server (NTRS)

    Hodge, K. E.

    1978-01-01

    In terms of an advanced air traffic control environment, consideration is given to a wake vortex advisory system and V/STOL aircraft. The terminal configured vehicle program is described. Procedures for all-weather operations are reviewed and the search and rescue satellite system is described. Predictions are made concerning an advanced national aviation system, digital communications, integrated control technology, and cockpit avionics. Human factors in both general and civil aviation are discussed.

  3. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  4. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  5. Due-date assignment for multi-server multi-stage assembly systems

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Saeed

    2015-05-01

    In this paper, we attempt to present a constant due-date assignment policy in a multi-server multi-stage assembly system. This system is modelled as a queuing network, where new product orders are entered into the system according to a Poisson process. It is assumed that only one type of product is produced by the production system and multi-servers can be settled in each service station. Each operation of every work is operated at a devoted service station with only one of the servers located at a node of the network based on first come, first served (FCFS) discipline, while the processing times are independent random variables with exponential distributions. It is also assumed that the transport times between each pair of service stations are independent random variables with generalised Erlang distributions. Each product's end result has a penalty cost that is some linear function of its due date and its actual lead time. The due date is calculated by adding a constant to the time that the order enters into the system. Indeed, this constant value is decided at the beginning of the time horizon and is the constant lead time that a product might expect between the time of placing the order and the time of delivery. For computing the due date, we first convert the queuing network into a stochastic network with exponentially distributed arc lengths. Then, by constructing an appropriate finite-state continuous-time Markov model, a system of differential equations is created to find the manufacturing lead-time distribution for any particular product, analytically. Finally, the constant due date for delivery time is obtained by using a linear function of its due date and minimising the expected aggregate cost per product.

  6. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  7. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  8. Abnormal/Emergency Situations. Impact of Unmanned Aircraft Systems Emergency and Abnormal Events on the National Airspace System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Access 5 analyzed the differences between UAS and manned aircraft operations under five categories of abnormal or emergency situations: Link Failure, Lost Communications, Onboard System Failures, Control Station Failures and Abnormal Weather. These analyses were made from the vantage point of the impact that these operations have on the US air traffic control system, with recommendations for new policies and procedures included where appropriate.

  9. Evaluating the compliance of Keck's LGSAO automated aircraft protection system with FAA adopted criteria

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J.; Campbell, Randy; Murphy, Thomas W.

    2014-07-01

    The W. M. Keck Observatory (WMKO) applied for and received a determination of no-objection from the Federal Aviation Administration (FAA) for laser guide star adaptive optics (LGS-AO) operations using an automated aircraft protection system (APS) in late 2013. WMKO's APS, named AIRSAFE, uses transponder based aircraft detection (TBAD) to replace human aircraft spotters. The FAA required WMKO to self-certify AIRSAFE compliance with SAE Aerospace Standard 6029A: "Performance Criteria for Laser Control Measures Used for Aviation Safety"[1] (AS- 6029A). AS-6029A prescribes performance and administrative criteria for an APS; essentially, requiring AIRSAFE to adequately protect all types of aircraft, traveling at any speed, altitude, distance and direction reasonably expected in the operating environment. A description of the analysis that comprises this compliance evaluation is the main focus of this paper. Also discussed is the AIRSAFE compliance with AS-6029A administrative criteria that includes characterization of site specific air traffic, failure modes, limitations, operating procedures, preventative maintenance procedures, and periodic system test procedures.

  10. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  11. Alaskan flight trials of a synthetic vision system for instrument landings of a piston twin aircraft

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew K.; Alter, Keith W.; Jennings, Chad W.; Powell, J. D.

    1999-07-01

    Stanford University has developed a low-cost prototype synthetic vision system and flight tested it onboard general aviation aircraft. The display aids pilots by providing an 'out the window' view, making visualization of the desired flight path a simple task. Predictor symbology provides guidance on straight and curved paths presented in a 'tunnel- in-the-sky' format. Based on commodity PC hardware to achieve low cost, the Tunnel Display system uses differential GPS (typically from Stanford prototype Wide Area Augmentation System hardware) for positioning and GPS-aided inertial sensors for attitude determination. The display has been flown onboard Piper Dakota and Beechcraft Queen Air aircraft at several different locations. This paper describes the system, its development, and flight trials culminating with tests in Alaska during the summer of 1998. Operational experience demonstrated the Tunnel Display's ability to increase flight- path following accuracy and situational awareness while easing the task instrument flying.

  12. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  13. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  14. Definition and analytical evaluation of a power management system for tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Morris, J. J.; Alexander, H. R.

    1978-01-01

    The paper reviews the special design criteria which apply to power management in a tilt-rotor aircraft. These include the need for accurate and fast control of rpm and thrust, while accounting for the dynamic interactions between rotor systems caused by cross-shafting and aircraft lateral/directional response. The power management system is also required to provide acceptable high speed sensitivity to longitudinal turbulence. It is shown that the criteria can best be met using a single governor adjusting the collective pitch by an amount proportional to a combination of the average rpm and the integral of the average rpm of the two rotors. This system is evaluated and compared with other candidate systems in hover and cruise flight.

  15. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    NASA Technical Reports Server (NTRS)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  16. Sense and avoid requirements for unmanned aircraft systems using a target level of safety approach.

    PubMed

    Melnyk, Richard; Schrage, Daniel; Volovoi, Vitali; Jimenez, Hernando

    2014-10-01

    One of the most critical challenges to full integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS) is the requirement to comply with CFR 14 Part 91.113 to "see and avoid" other aircraft. Various attempts have been made to develop systems to "sense and avoid" other aircraft so UAS can comply with the intent of the regulation. This article proposes a framework to develop effectiveness requirements for any SAA system by linking UAS characteristics and operating environments to midair collision risk quantified by a fatality rate. The framework consists of a target level of safety (TLS) approach using an event tree format. Safety has been identified as the most important consideration in the UAS integration process. While safety can be defined in many ways, the authors propose using a fatality rate metric that follows other statistics used in the industry. This metric allows for the use of a TLS approach to the development of SAA requirements for system certification. Failure to adequately link system requirements to safety could result in the implementation of SAA systems that either do not adequately mitigate the risk associated with UAS operations or are overdesigned, resulting in increased cost and complexity. This article demonstrates the use of the proposed framework to develop specific SAA effectiveness standards based on UAS weight and airspace class combinations.

  17. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  18. Demonstration of Four Operating Capabilities to Enable a Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Brooks, Frederick M.

    2005-01-01

    The Small Aircraft Transportation System (SATS) project has been a five-year effort fostering research and development that could lead to the transformation of our country s air transportation system. It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand keeps steadily increasing. The SATS vision is to increase mobility in our nation s transportation system by expanding access to more than 3400 small community airports that are currently under-utilized. The SATS project has focused its efforts on four key operating capabilities that have addressed new emerging technologies and procedures to pave the way for a new way of air travel. The four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. These four capabilities are key to enabling low-cost, on-demand, point-to-point transportation of goods and passengers utilizing small aircraft operating from small airports. The focus of this paper is to discuss the technical and operational feasibility of the four operating capabilities and demonstrate how they can enable a small aircraft transportation system.

  19. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 1

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  20. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    DTIC Science & Technology

    2003-06-01

    in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural...Fault identification, isolation. and accommodation have become critical issues in the overall performance of advanced aircraft systems. Neural ... Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The

  1. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Brines, G. L.

    1972-01-01

    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  2. The Enforcer Aircraft Program: A Lower-Cost Alternative Weapon System.

    DTIC Science & Technology

    1984-03-01

    BUREAU OF STANDARDS-19o3-A NAVAL POSTGRADUATE SCHOOL Monterey, California In ID THESIS THE ENFORCER AIRCRAFT PROGRAM: A LOWER-COST ALTERNATIVE WEAPON...SYSTEM _by Robert P. Holt and Robert D. Dolan March 1984 Thesis Advisor% P. M. Carrick Approved for public release; distribution unlimited. 04 5 29...Master’s Thesis ; Cost Alternative Weapon System March 1984 6. PERFORMING ORG. REPORT NUMBER 7- AUTHOR() S. CONTRACT ORt GRANT NUNIER-() Robert P. Holt

  3. Analysis of aeroelastic model stability augmentation systems. [for application to supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1971-01-01

    An analytical and mechanization study was conducted for two flutter stability augmentation systems. One concept uses only the wing trailing edge control surface. Another concept uses leading and trailing edge control surfaces operating simultaneously. The combined use of leading and trailing edge control surfaces should improve the surface coupling (controllability) with vertical bending and torsional structural modes and decrease the coupling between bending and torsional modes. The study was directed toward stability augmentation systems characteristics for the supersonic transport aircraft.

  4. Identifying Critical Manned-Unmanned Teaming Skills for Unmanned Aircraft System Operators

    DTIC Science & Technology

    2012-09-01

    Provide the target location 3-36 Select the best weapon systems to engage the target 3-27 Switch roles of laser designator and missile... Deconflict munition trajectories from airframes • Aircraft are outside the minimum safety zones for friendly direct and indirect fire... LASER , talk-on) to get manned system onto target Understands ROE Understands differences among Detect, Recognize, and Identify a target Uses

  5. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  6. An investigation of an active landing gear system to reduce aircraft vibrations caused by landing impacts and runway excitations

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Xing, J. T.; Price, W. G.; Li, Weiji

    2008-10-01

    A mathematical model is developed to control aircraft vibrations caused by runway excitation using an active landing gear system. Equations are derived to describe the integrated aircraft-active system. The nonlinear characteristics of the system are modelled and it is actively controlled using a Proportional Integral Derivative (PID) strategy. The performance of this system and its corresponding passive system are compared using numerical simulations. It is demonstrated that the impact loads and the vertical displacement of the aircraft's centre of gravity caused by landing and runway excitations are greatly reduced using the active system, which result in improvements to the performance of the landing gear system, benefits the aircraft's fatigue life, taxiing performance, crew/passenger comfort and reduces requirements on the unevenness of runways.

  7. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  8. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    PubMed Central

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  9. A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Tatnall, Chris R.

    1997-01-01

    A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.

  10. Optimizing Airspace System Capacity Through a Small Aircraft Transportation System: An Analysis of Economic and Operational Considerations

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.

    2001-01-01

    America's air transport system is currently faced with two equally important dilemmas. First, congestion and delays associated with the overburdened hub and spoke system will continue to worsen unless dramatic changes are made in the way air transportation services are provided. Second, many communities and various regions of the country have not benefited from the air transport system, which tends to focus its attention on major population centers. An emerging solution to both problems is a Small Aircraft Transportation System (SATS), which will utilize a new generation of advanced small aircraft to provide air transport services to those citizens who are poorly served by the hub and spoke system and those citizens who are not served at all. Using new innovations in navigation, communication, and propulsion technologies, these aircraft will enable users to safely and reliably access the over 5,000 general aviation landing facilities around the United States. A small aircraft transportation system holds the potential to revolutionize the way Americans travel and to greatly enhance the use of air transport as an economic development tool in rural and isolated communities across the nation.

  11. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  12. Auralization of NASA N+2 Aircraft Concepts from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Burley, Casey L.; Thomas, Russel H.

    2016-01-01

    Auralization of aircraft flyover noise provides an auditory experience that complements integrated metrics obtained from system noise predictions. Recent efforts have focused on auralization methods development, specifically the process by which source noise information obtained from semi-empirical models, computational aeroacoustic analyses, and wind tunnel and flight test data, are used for simulated flyover noise at a receiver on the ground. The primary focus of this work, however, is to develop full vehicle auralizations in order to explore the distinguishing features of NASA's N+2 aircraft vis-à-vis current fleet reference vehicles for single-aisle and large twin-aisle classes. Some features can be seen in metric time histories associated with aircraft noise certification, e.g., tone-corrected perceived noise level used in the calculation of effective perceived noise level. Other features can be observed in sound quality metrics, e.g., loudness, sharpness, roughness, fluctuation strength and tone-to-noise ratio. A psychoacoustic annoyance model is employed to establish the relationship between sound quality metrics and noise certification metrics. Finally, the auralizations will serve as the basis for a separate psychoacoustic study aimed at assessing how well aircraft noise certification metrics predict human annoyance for these advanced vehicle concepts.

  13. Automatic carrier landing system for V/STOL aircraft using L1 adaptive and optimal control

    NASA Astrophysics Data System (ADS)

    Hariharapura Ramesh, Shashank

    This thesis presents a framework for developing automatic carrier landing systems for aircraft with vertical or short take-off and landing capability using two different control strategies---gain-scheduled linear optimal control, and L1 adaptive control. The carrier landing sequence of V/STOL aircraft involves large variations in dynamic pressure and aerodynamic coefficients arising because of the transition from aerodynamic-supported to jet-borne flight, descent to the touchdown altitude, and turns performed to align with the runway. Consequently, the dynamics of the aircraft exhibit a highly non-linear dynamical behavior with variations in flight conditions prior to touchdown. Therefore, the implication is the need for non-linear control techniques to achieve automatic landing. Gain-scheduling has been one of the most widely employed techniques for control of aircraft, which involves designing linear controllers for numerous trimmed flight conditions, and interpolating them to achieve a global non-linear control. Adaptive control technique, on the other hand, eliminates the need to schedule the controller parameters as they adapt to changing flight conditions.

  14. Signal set standardization for the aircraft-store electrical interconnection system

    NASA Astrophysics Data System (ADS)

    Lautner, D. E.; Perkins, J. R.

    1982-11-01

    The Air Force and Navy are conducting a joint program (Aircraft Armament Interoperable Interface A2I2) to standardize interfaces between aircraft and stores. One product of this joint A2I2 program is a military standard for the Aircraft-Store Electrical Interconnection System (AEIS). This standard, released in July 1981 as MIL-STD-1760, defines the electrical interface between aircraft and stores. As mentioned in the MIL-STD-1760 foreword, the complete AEIS is comprised of electrical, logical, and physical elements. The present MIL-STD-1760 issue addresses only the electrical signal set element. This paper provides an overview on the background for the selected MIL-STD-1760 electrical signal set. Following this overview, application restrictions, application guidelines and various technical issues are discussed for each of the power, digital, high bandwidth and discrete signals of MIL-STD-1760. The discussion covers the electrical signal set characteristics presently defined in MIL-STD-1760 plus clarifications and more rigorous definitions of the electrical signal characteristics expected in a future revision to MIL-STD-1760.

  15. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  16. Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method

    NASA Astrophysics Data System (ADS)

    Mamonova, T.; Syryamkin, V.; Vasilyeva, T.

    2016-04-01

    The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.

  17. Modeling of the Mode S tracking system in support of aircraft safety research

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.

  18. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  19. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  20. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.