Sample records for aircraft technology pegasus

  1. A candidate V/STOL research aircraft design concept using an S-3A aircraft and 2 Pegasus 11 engines

    NASA Technical Reports Server (NTRS)

    Lampkin, B. A.

    1980-01-01

    A candidate V/STOL research aircraft concept which uses an S-3A airframe and two Pegasus 11 engines was studied to identify a feasible V/STOL national flight facility that could be obtained at the lowest possible cost for the demonstration of V/STOL technology, inflight simulation, and flight research. The rationale for choosing the configuration, a description of the configuration, and the capability of a fully developed aircraft are discussed.

  2. Pegasus ICON Fin Installation

    NASA Image and Video Library

    2017-07-08

    Technicians install the starboard fin on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch on June 15 from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  3. Pegasus ICON Fin Installation

    NASA Image and Video Library

    2017-07-08

    Technicians install the rudder on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch on June 15 from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  4. Pegasus ICON Fin Installation

    NASA Image and Video Library

    2017-07-08

    Technicians prepare the rudder for installation on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch on June 15 from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  5. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    The payload fairing for Orbital ATK's Pegasus XL rocket arrives by flatbed truck Aug. 4, 2017, at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  6. Moments after release from NASA's B-52 carrier aircraft, the X-43A/Pegasus "stack" is seen before ignition of the Pegasus rocket motor on

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  7. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    Technicians move the first half of the payload fairing for the Orbital ATK Pegasus XL rocket inside Building 1555 at Vandenberg Air Force Base in California on Aug. 4, 2018. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  8. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    Orbital ATK technicians remove the first half of the payload fairing for the Orbital ATK Pegasus XL rocket from its shipping container Aug. 4, 2017, at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  9. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    Orbital ATK technicians remove the second half of the payload fairing for the Orbital ATK Pegasus XL rocket from its shipping container Aug. 4, 2017, at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  10. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    The first half of the payload fairing for the Orbital ATK Pegasus XL rocket is inside Building 1555 at Vandenberg Air Force Base in California on Aug. 4, 2018. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  11. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft descends toward the Skid Strip at Cape Canaveral Air Force Station in Florida. The aircraft carried a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, for launch. With the aircraft flying off shore, the Pegasus rocket was released. Five seconds later, the solid propellant engine ignited and boosted the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. Release of the Pegasus XL rocket occurred at 8:37 a.m. EST.

  12. Pegasus ICON Starboard Black Light Inspection

    NASA Image and Video Library

    2018-05-22

    A technician performs a black light inspection of the Orbital ATK Pegasus starboard on May 22, 2018, prior to fully mating NASA's Ionospheric Connection Explorer (ICON) to Pegasus inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  13. Pegasus ICON Starboard Black Light Inspection

    NASA Image and Video Library

    2018-05-22

    A technician begins a black light inspection of the Orbital ATK Pegasus starboard on May 22, 2018, prior to mating NASA's Ionospheric Connection Explorer (ICON) to Pegasus inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  14. Pegasus ICON Spacecraft Mate

    NASA Image and Video Library

    2018-05-21

    NASA's Ionospheric Connection Explorer (ICON) spacecraft is partially mated to the starboard faring of Orbital ATK's Pegasus XL rocket on May 21, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  15. Pegasus ICON Aft Skirt Installation

    NASA Image and Video Library

    2017-07-08

    A technician installs the aft skirt on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. When the aft skirt is installed, the rudder and fins can be installed. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATKS's Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  16. Pegasus ICON Aft Skirt Installation

    NASA Image and Video Library

    2017-07-08

    Technician install the aft skirt on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. When the aft skirt is installed, the rudder and fins can be installed. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATKS's Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  17. Pegasus ICON Aft Skirt Installation

    NASA Image and Video Library

    2017-07-08

    Technicians install the aft skirt on the Orbital ATK Pegasus XL rocket July 8, 2017, inside Building 1555 at Vandenberg Air Force Base in California. When the aft skirt is installed, the rudder and fins can be installed. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATKS's Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  18. Pegasus XL CYGNSS Rollout

    NASA Image and Video Library

    2016-11-28

    At Vandenberg Air Force Base in California, an Orbital ATK Pegasus XL rocket is transported from the hangar at Building 1555 to be mated to L-1011 carrier aircraft near Vandenberg's runway. On board Pegasus are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the L-1011/Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  19. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, soars high after takeoff from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. Release of the Pegasus XL rocket is scheduled for 8:40 a.m. EST.

  20. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The payload fairing halves for Orbital ATK's Pegasus XL rocket are staged inside Building 1555 at Vandenberg Air Force Base in California on Aug. 23, 2017. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer (ICON) mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  1. Pegasus air-launched space booster

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert E.; Mosier, Marty R.

    The launching of small satellites with the mother- aircraft-launched Pegasus booster yields substantial cost improvements over ground launching and enhances operational flexibility, since it allows launches to be conducted into any orbital inclination. The Pegasus launch vehicle is a three-stage solid-rocket-propelled system with delta-winged first stage. The major components of airborne support equipment, located on the mother aircraft, encompass a launch panel operator console, an electronic pallet, and a pylon adapter. Alternatives to the currently employed B-52 launch platform aircraft have been identified for future use. Attention is given to the dynamic, thermal, and acoustic environments experienced by the payload.

  2. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft gains altitude after takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  3. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft begins its takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  4. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft takes off from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  5. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft soars high after takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  6. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The Orbital ATK Pegasus XL rocket, with NASA's Ionospheric Connection Explorer (ICON) spacecraft attached, is moved on an assembly integration trailer from one high bay to another Aug. 23, 2017, at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for the ICON mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  7. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The Orbital ATK Pegasus XL rocket, with NASA's Ionospheric Connection Explorer (ICON) spacecraft attached, is secured on an assembly integration trailer Aug. 23, 2017, inside Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for the ICON mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  8. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The Orbital ATK Pegasus XL rocket, with NASA's Ionospheric Connection Explorer (ICON) spacecraft attached, is being moved on an assembly integration trailer from one high bay to another Aug. 23, 2017, at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for the ICON mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  9. Pegasus ICON Lift onto Assembly Integration Trailer (AIT)

    NASA Image and Video Library

    2017-08-23

    The Orbital ATK Pegasus XL rocket, with NASA's Ionospheric Connection Explorer (ICON) spacecraft attached, is moved on an assembly integration trailer into another high bay Aug. 23, 2017, at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for the ICON mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.

  10. he second X-43A and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 7.

  11. Pegasus XL CYGNSS Departure from VAFB

    NASA Image and Video Library

    2016-12-02

    At Vandenberg Air Force Base in California, the Orbital ATK L-1011 Stargazer, with a Pegasus XL rocket mated to the underside of the aircraft, is prepared for takeoff. On board Pegasus XL are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the /Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  12. Pegasus XL CYGNSS Departure from VAFB

    NASA Image and Video Library

    2016-12-02

    An Orbital ATK Pegasus XL rocket is mated to the underside of the company's L-1011 Stargazer aircraft. The Stargazer is being prepared for takeoff from Vandenberg Air Force Base in California. On board Pegasus XL are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the /Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  13. Pegasus XL CYGNSS Departure from VAFB

    NASA Image and Video Library

    2016-12-02

    The Orbital ATK L-1011 Stargazer, with a Pegasus XL rocket mated to the underside of the aircraft, takes off at sunrise from Vandenberg Air Force Base in California. On board Pegasus XL are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS/Pegasus XL combination is being flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  14. Pegasus XL CYGNSS Departure from VAFB

    NASA Image and Video Library

    2016-12-02

    The Orbital ATK L-1011 Stargazer, with a Pegasus XL rocket mated to the underside of the aircraft, has just taken off from Vandenberg Air Force Base in California. On board Pegasus XL are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS/Pegasus XL combination is being flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  15. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft, at left, prepares for takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft, in view at right, carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  16. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft touches down at the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane provided photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket was released at 8:37 a.m. EST. Five seconds later, the solid propellant engine ignited and boosted the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  17. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    A pathfinder aircraft descends for touchdown at the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane provided photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket was released at 8:37 a.m. EST. Five seconds later, the solid propellant engine ignited and boosted the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  18. X-43A hypersonic research aircraft mated to its modified Pegasus booster rocket.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. FIRST X-43A MATED TO BOOSTER -- The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer of 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  19. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer touches down at the Skid Strip at Cape Canaveral Air Force Station in Florida. The aircraft carried a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, for launch. With the aircraft flying off shore, the Pegasus rocket was released at 8:37 a.m. EST. Five seconds later, the solid propellant engine ignited and boosted the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  20. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft is being readied for takeoff from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  1. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  2. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft is ready for takeoff from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  3. Pegasus Mated to B-52 Mothership - First Flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Pegasus air-launched space booster is carried aloft under the right wing of NASA's B-52 carrier aircraft on its first captive flight from the Dryden Flight Research Center, Edwards, California. The first of two scheduled captive flights was completed on November 9, 1989. Pegasus is used to launch satellites into low-earth orbits cheaply. In 1997, a Pegasus rocket booster was also modified to test a hypersonic experiment (PHYSX). An experimental 'glove,' installed on a section of its wing, housed hundreds of temperature and pressure sensors that sent hypersonic flight data to ground tracking facilities during the experiment's flight. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering

  4. Pegasus XL CYGNSS Move to AIT

    NASA Image and Video Library

    2016-11-17

    At Vandenberg Air Force Base in California, an Orbital ATK Pegasus XL rocket is placed on an assembly integration transporter for the move from the hangar at Building 1555 to be mated to L-1011 carrier aircraft near Vandenberg's runway. On board Pegasus are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the L-1011/Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  5. Pegasus XL CYGNSS Mate to L-1011

    NASA Image and Video Library

    2016-11-28

    At Vandenberg Air Force Base in California, an Orbital ATK Pegasus XL rocket is transported to be mated to the company's L-1011 carrier aircraft near Vandenberg's runway. On board Pegasus are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the L-1011/Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  6. Pegasus XL CYGNSS Mate to L-1011

    NASA Image and Video Library

    2016-11-28

    At Vandenberg Air Force Base in California, an Orbital ATK Pegasus XL rocket is mated to the company's L-1011 carrier aircraft near Vandenberg's runway. On board Pegasus are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the L-1011/Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  7. Pegasus XL CYGNSS Mate to L-1011

    NASA Image and Video Library

    2016-11-28

    At Vandenberg Air Force Base in California, the Orbital ATK L-1011 Stargazer awaits a Pegasus XL rocket to be mated to the aircraft. On board Pegasus XL are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the /Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  8. NASA's B-52B launch aircraft takes off carrying the second X-43A hypersonic research vehicle attached to a modified Pegasus rocket, on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket left the runway, carried aloft by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif., on March 27, 2004. About an hour later the Pegasus booster was launched from the B-52 to accelerate the X-43A to its intended speed of Mach 7.

  9. NASA's B-52B launch aircraft takes off carrying the third X-43A hypersonic research vehicle attached to a modified Pegasus rocket, on November 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket left the runway, carried aloft by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, California, on November 16, 2004. About an hour later the Pegasus booster was launched from the B-52 to accelerate the X-43A to its intended speed of Mach 10.

  10. Pegasus XL CYGNSS First Launch Attempt

    NASA Image and Video Library

    2016-12-12

    Photographed from the F-18 pathfinder aircraft, the Orbital ATK L-1011 Stargazer aircraft is seen flying over the Atlantic Ocean offshore from Daytona Beach, Florida. Attached beneath the aircraft is the Pegasus XL rocket with eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes. NOTE: The Dec. 12, 2016 launch attempt was postponed due to a hydraulic pump aboard the Orbital ATK L-1011 aircraft which is required to release the latches holding Pegasus in place, is not receiving power.

  11. Pegasus first mission - Flight results

    NASA Astrophysics Data System (ADS)

    Mosier, Marty; Harris, Gary; Richards, Bob; Rovner, Dan; Carroll, Brent

    On April 5, 1990, after release from a B-52 aircraft at 43,198 ft, the three-stage Pegasus solid-propellant rocket successfully completed its maiden flight by injecting its 423-lb payload into a 273 x 370-nmi 94-deg-inclination orbit. The first flight successfully achieved all mission objectives, validating Pegasus's unique air-launched concept, the vehicle's design, and its straightforward ground processing, integration and test methods.

  12. L-1011 aircraft carrying a Pegasus XL (SORCE)

    NASA Image and Video Library

    2003-01-25

    The L-1011 aircraft carrying a Pegasus XL rocket with NASA's Solar Radiation and Climate Experiment (SORCE) attached takes off from Cape Canaveral Air Force Station, Fla. The L-1011 will release the rocket over the Atlantic Ocean at 39,000 feet. After separation from the rocket, initial contact with the satellite will be made and the mission team will insure that the spacecraft is functioning properly. The SORCE science instruments will then be turned on and their health verified. Approximately 21 days after launch, if all is going well, the instruments will start initial science data collection and calibration will begin. The spacecraft will study the Sun's influence on our Earth and will measure from space how the Sun affects the Earth's ozone layer, atmospheric circulation, clouds, and oceans. This mission is a joint partnership between NASA and the University of Colorado's Laboratory for Atmospheric and Space Physics in Boulder, Colorado.

  13. Pegasus - Winged workhorse

    NASA Astrophysics Data System (ADS)

    Furniss, Tim

    1988-08-01

    DARPA has initiated the development of a three-stage, solid-propellant air-launched booster for the lofting of small military satellites, or 'lightsats'. This vehicle, designated 'Pegasus', will because of its substantial endoatmospheric mission segment serve as a testbed for the validation of the CFD codes used by NASA as analytical tools in the design of the National Aerospace Plane. The three rocket stages are novel designs, incorporating such features as three-dimensionally woven carbon-carbon integral throat inserts and carbon-phenolic nozzles. The aircraft that will take Pegasus to launch altitude will be the B-52 previously used to launch the X-15.

  14. Pegasus XL CYGNSS Launch Attempt - Prepared for Takeoff - Scrubb

    NASA Image and Video Library

    2016-12-12

    A pathfinder aircraft prepares for takeoff from the Skid Strip at Cape Canaveral Air Force Station in Florida. The airplane will provide photographic and video imagery of the Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  15. Pegasus XL CYGNSS Launch Attempt; Scrubbed - Take Off

    NASA Image and Video Library

    2016-12-12

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  16. Pegasus XL CYGNSS Fairing Installation

    NASA Image and Video Library

    2016-11-11

    At Vandenberg Air Force Base in California, an Orbital ATK Pegasus XL rocket is seen during payload fairing installation in Building 1555. On board Pegasus are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the L-1011/Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  17. Pegasus XL CYGNSS Fairing Installation

    NASA Image and Video Library

    2016-11-11

    In Building 1555 at Vandenberg Air Force Base in California, the payload fairing is being installed on an Orbital ATK Pegasus XL rocket. On board Pegasus are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the L-1011/Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  18. NASA's B-52B launch aircraft cruises to a test range over the Pacific Ocean carrying the third X-43A vehicle attached to a Pegasus rocket on November 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft, attached to a modified Pegasus booster rocket, was taken to launch altitude by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, California, on November 16, 2004. About an hour later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 10.

  19. Pegasus XL CYGNSS

    NASA Image and Video Library

    2016-09-15

    Inside Building 1555 at Vandenberg Air Force Base in California, technicians and engineers install the first stage aft skirt on the Orbital ATK Pegasus XL rocket which will launch eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are completed at Vandenberg, the rocket, with CYGNSS in its payload fairing, will be attached to the Orbital ATK L-1011 carrier aircraft and transported to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  20. Pegasus XL CYGNSS Launch Attempt - Prepared for Takeoff - Scrubb

    NASA Image and Video Library

    2016-12-12

    An Orbital ATK L-1011 Stargazer aircraft carrying a Pegasus XL Rocket with eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft is ready for takeoff from the Skid Strip at Cape Canaveral Air Force Station, Florida. With the aircraft flying off shore, the Pegasus rocket will be released. Five seconds later, the solid propellant engine will ignite and boost the eight hurricane observatories to orbit. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  1. Pegasus Mated to B-52 Mothership - First Flight

    NASA Image and Video Library

    1989-11-09

    The Pegasus air-launched space booster is carried aloft under the right wing of NASA's B-52 carrier aircraft on its first captive flight from the Dryden Flight Research Center, Edwards, California. The first of two scheduled captive flights was completed on November 9, 1989. Pegasus is used to launch satellites into low-earth orbits cheaply. In 1997, a Pegasus rocket booster was also modified to test a hypersonic experiment (PHYSX). An experimental "glove," installed on a section of its wing, housed hundreds of temperature and pressure sensors that sent hypersonic flight data to ground tracking facilities during the experiment’s flight.

  2. Pegasus Mated to B-52 Mothership - Front View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's B-52 launch aircraft takes off with the second Pegasus vehicle under its wing from the Dryden Flight Research Facility (now the Dryden Flight Research Center), Edwards, California. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air

  3. Pegasus XL CYGNSS Fairing Mate Complete

    NASA Image and Video Library

    2016-11-15

    In Building 1555 at Vandenberg Air Force Base in California, an Orbital ATK Pegasus XL rocket is seen after payload fairing installation. On board Pegasus are eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are competed at Vandenberg, the L-1011/Pegasus XL combination will be flown to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  4. Pegasus Rocket Model

    NASA Technical Reports Server (NTRS)

    1996-01-01

    data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  5. Pegasus XL CYGNSS Fairing Arrival

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK move the first half of the Pegasus payload fairing for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) from into Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  6. Maintenance problems associated with the operation of the F402 /Pegasus/ engine in the AV-8A /Harrier/ aircraft

    NASA Technical Reports Server (NTRS)

    Stanley, C. W.; Hood, W. E.

    1981-01-01

    The U.S. Marine Corp (USMC) has been operating the only V/STOL attack aircraft in the western world since 1971. Some of the maintenance problems experienced are related to the unique V/STOL design criteria of the Pegasus engine. However, the major part of the required maintenance effort is found to involve the more conventional engine problems. A description of the aircraft engine is provided and the problems resulting from V/STOL design demands are examined. Attention is given to the fuel system control, the engine air bleed, foreign object damage to the hp compressor, and the engine exhaust system.

  7. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) for lift and transfer to a work stand on May 1, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  8. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    A crane lifts and moves NASA's Ionospheric Connection Explorer (ICON) to a work stand on May 1, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  9. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    A technician operates a crane that lifts the shipping container up from NASA's Ionospheric Connection Explorer (ICON) on May 1, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  10. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON) arrives by truck on May 1, 2018, at Vandenberg Air Force Base in California. ICON will be offloaded and transported to Building 1555. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  11. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON), inside its shipping container, is moved inside Building 1555 on May 1, 2018, at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  12. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON) is uncrated from its shipping container on May 1, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  13. Pegasus XL CYGNSS Fairing Arrival

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK remove the first half of the Pegasus payload fairing for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) from its shipping container and prepare it for the move to nearby Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  14. Ignition of the Pegasus rocket moments after release from the B-52 signaled acceleration of the X-43A/Pegasus combination over the Pacific Ocean

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  15. Pegasus ICON Spacecraft Move Into Cleanroom

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON) is moved to a clean room on May 4, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  16. Pegasus ICON Spacecraft Move Into Cleanroom

    NASA Image and Video Library

    2018-05-01

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) for its move to a clean room on May 4, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  17. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  18. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    The wing for the Orbital ATK Pegasus XL rocket arrives by truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  19. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    Photographed from the F-18 pathfinder aircraft, the Orbital ATK L-1011 Stargazer aircraft is seen flying over the Atlantic Ocean offshore from Daytona Beach, Florida. Attached beneath the aircraft is the Pegasus XL rocket with eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  20. Pegasus XL CYGNSS Final Wing Installation

    NASA Image and Video Library

    2016-09-28

    Inside Building 1555 at Vandenberg Air Force Base in California, technicians and engineers perform final wing installations on the Orbital ATK Pegasus XL rocket which will launch eight NASA Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. When preparations are completed at Vandenberg, the rocket, with CYGNSS in its payload fairing, will be attached to the Orbital ATK L-1011 carrier aircraft and transported to NASA’s Kennedy Space Center in Florida. On Dec. 12, 2016, the carrier aircraft is scheduled to take off from the Skid Strip at Cape Canaveral Air Force Station and CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  1. Pegasus XL CYGNSS - "Days to Launch" Sign

    NASA Image and Video Library

    2016-12-05

    A sign just inside the gate to NASA's Kennedy Space Center in Florida notes that in seven days a Pegasus XL rocket is scheduled to launch with eight agency Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. On Dec. 12, 2016, the Orbital ATK L-1011 Stargazer, with a Pegasus XL rocket mated to the underside of the aircraft, will take off from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will launch on the Pegasus XL rocket with the L-1011 flying off shore. CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will help scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  2. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) to be attached to the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  3. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    Technicians secure NASA's Ionospheric Connection Explorer (ICON) on the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  4. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent c

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  5. Pegasus XL CYGNSS Spacecraft Arrival

    NASA Image and Video Library

    2016-09-28

    Parts for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) arrive in shipping containers and are stacked inside Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida in the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  6. Pegasus XL CYGNSS Spacecraft Arrival

    NASA Image and Video Library

    2016-09-28

    Parts for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) arrive in a shipping container at Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida in the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  7. Pegasus XL CYGNSS Fairing Inspection

    NASA Image and Video Library

    2016-10-20

    The payload fairing for an Orbital ATK Pegasus XL rocket is inspected in Building 1555 at Vandenberg Air Force Base in California. The fairing will protect NASA's Cyclone Global Navigation Satellite System (CYGNSS) spacecraft during launch. The rocket and spacecraft are being prepared at Vandenberg, then will be attached to the Orbital ATK L-1011 carrier aircraft and transported to NASA's Kennedy Space Center in Florida. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  8. Pegasus XL CYGNSS Spacecraft Arrival

    NASA Image and Video Library

    2016-09-28

    Parts for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) arrive in shipping containers at Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida in the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  9. NASA's B-52B launch aircraft cruises to a test range over the Pacific Ocean carrying the second X-43A vehicle attached to a Pegasus rocket on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft, attached to a modified Pegasus booster rocket and followed by a chase F-18, was taken to launch altitude by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif., on March 27, 2004. About an hour later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. In a combined research effort involving Dryden, Langley, and several industry partners, NASA demonstrated the value of its X-43A hypersonic research aircraft, as it became the first air-breathing, unpiloted, scramjet-powered plane to fly freely by itself. The March 27 flight, originating from NASA's Dryden Flight Research Center, began with the Agency's B-52B launch aircraft carrying the X-43A out to the test range over the Pacific Ocean off the California coast. The X-43A was boosted up to its test altitude of about 95,000 feet, where it separated from its modified Pegasus booster and flew freely under its own power. Two very significant aviation milestones occurred during this test flight: first, controlled accelerating flight at Mach 7 under scramjet power, and second, the successful stage separation at high dynamic pressure of two non-axisymmetric vehicles. To top it all off, the flight resulted in the setting of a new aeronautical speed record. The X-43A reached a speed of over Mach 7, or about 5,000 miles per hour faster than any known aircraft powered by an air-breathing engine has ever flown.

  10. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    A solar array illumination test is performed on NASA's Ionospheric Connection Explorer (ICON) in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  11. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    A solar array illumination test is performed on NASA's Ionospheric Connection Explorer (ICON) in a clean room on May 4, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  12. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    NASA's Ionospheric Connection Explorer (ICON) is prepared for a solar array illumination test in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  13. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) for a solar array illumination test in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  14. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    A crane is used to move and lower NASA's Ionospheric Connection Explorer (ICON) onto the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  15. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket nestled under the wi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-43A hypersonic research aircraft and its modified Pegasus booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  16. Pegasus XL CYGNSS Arrival at CCAFS

    NASA Image and Video Library

    2016-12-02

    The Orbital ATK L-1011 Stargazer aircraft has arrived at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's Cyclone Global Navigation Satellite System (CYGNSS) on board. CYGNSS was processed and prepared for its mission at Vandenberg Air Force Base in California. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 12. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  17. Pegasus XL CYGNSS Arrival at CCAFS

    NASA Image and Video Library

    2016-12-02

    The Orbital ATK L-1011 Stargazer aircraft begins its descent to the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's Cyclone Global Navigation Satellite System (CYGNSS) on board. CYGNSS was processed and prepared for its mission at Vandenberg Air Force Base in California. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 12. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  18. Pegasus Mated under Wing of B-52 Mothership - Close-up

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A close-up view of the Pegasus space-booster attached to the wing pylon of NASA's B-52 launch aircraft at NASA's Dryden Flight Research Center, Edwards, California. The Pegasus rocket booster was designed as a way to get small payloads into space orbit more easily and cost-effectively. It has also been used to gather data on hypersonic flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences

  19. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket arrives by truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  20. Pegasus XL CYGNSS Arrival at CCAFS

    NASA Image and Video Library

    2016-12-02

    The Orbital ATK L-1011 Stargazer aircraft touches down at 3:57 p.m. EST at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's Cyclone Global Navigation Satellite System (CYGNSS) on board. CYGNSS was processed and prepared for its mission at Vandenberg Air Force Base in California. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 12. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  1. Pegasus XL CYGNSS Fairing Mate and Black Light Test

    NASA Image and Video Library

    2016-11-14

    Technicians with Orbital ATK perform a black light test on the Pegasus XL fairing inside Building 1555 at Vandenberg Air Force Base in California. NASA’s Cyclone Global Navigation Satellite System (CYGNSS) is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 Stargazer aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  2. Pegasus XL CYGNSS Fairing Mate and Black Light Test

    NASA Image and Video Library

    2016-11-14

    Technicians with Orbital ATK install the first half of the Pegasus XL fairing around NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  3. Pegasus XL CYGNSS Spacecraft Mate

    NASA Image and Video Library

    2016-10-28

    Inside Building 1555 at Vandenberg Air Force Base in California, the eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft installed on their deployment module undergo inspections prior to NASA’s Kennedy Space Center in Florida. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to Kennedy attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  4. Pegasus XL CYGNSS Fin Installation

    NASA Image and Video Library

    2016-09-21

    Technicians prepare to install one of the fins on the Orbital ATK Pegasus XL rocket inside Building 1555 at Vandenberg Air Force Base in California. The fins will provide aerodynamic stability during flight. The rocket is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida, attached to the Orbital ATK L-1011 carrier aircraft with NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  5. Pegasus XL CYGNSS Fin Installation

    NASA Image and Video Library

    2016-09-21

    Technicians prepare one of the fins for installation on the Orbital ATK Pegasus XL rocket inside Building 1555 at Vandenberg Air Force Base in California. The fins will provide aerodynamic stability during flight. The rocket is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida, attached to the Orbital ATK L-1011 carrier aircraft with NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  6. Pegasus XL CYGNSS Fin Installation

    NASA Image and Video Library

    2016-09-21

    Technicians prepare to install one of the fins on the Orbital ATK Pegasus XL rocket inside Building 1555 at Vandenberg Air Force Base in California. The fins will provide aerodynamic stability during flight. The rocket is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  7. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket is offloaded from a truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  8. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    Workers unload the wing for the Orbital ATK Pegasus XL rocket from a truck at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  9. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    The wing for the Orbital ATK Pegasus XL rocket was offloaded from a truck and transporter to Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  10. Pegasus XL CYGNSS Fairing Mate and Black Light Test

    NASA Image and Video Library

    2016-11-14

    Technicians with Orbital ATK have installed the first half of the Pegasus XL fairing around NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. The second half of the fairing is being installed. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  11. Pegasus XL CYGNSS Fairing Mate and Black Light Test

    NASA Image and Video Library

    2016-11-14

    Technicians with Orbital ATK have installed the first half of the Pegasus XL fairing around NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. Work is underway to install the second half of the fairing. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  12. Upper Management Visits Pegasus ICON

    NASA Image and Video Library

    2017-06-06

    Managers of NASA's Launch Services Program (LSP) at Kennedy Space Center visit the processing facility for the Pegasus XL rocket at Vandenberg Air Force Base in California. From left, are Chuck Dovale, deputy manager; Amanda Mitskevich, manager; Eric Denbrook, launch vehicle processing at VAFB; and Tim Dunn, NASA assistant launch manager for ICON. The Pegasus XL rocket is being prepared for the agency's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  13. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    Workers transfer the wing for the Orbital ATK Pegasus XL rocket from a truck to a forklift at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  14. PEGASUS 5: An Automated Pre-Processor for Overset-Grid CFD

    NASA Technical Reports Server (NTRS)

    Suhs, Norman E.; Rogers, Stuart E.; Dietz, William E.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    An all new, automated version of the PEGASUS software has been developed and tested. PEGASUS provides the hole-cutting and connectivity information between overlapping grids, and is used as the final part of the grid generation process for overset-grid computational fluid dynamics approaches. The new PEGASUS code (Version 5) has many new features: automated hole cutting; a projection scheme for fixing gaps in overset surfaces; more efficient interpolation search methods using an alternating digital tree; hole-size optimization based on adding additional layers of fringe points; and an automatic restart capability. The new code has also been parallelized using the Message Passing Interface standard. The parallelization performance provides efficient speed-up of the execution time by an order of magnitude, and up to a factor of 30 for very large problems. The results of three example cases are presented: a three-element high-lift airfoil, a generic business jet configuration, and a complete Boeing 777-200 aircraft in a high-lift landing configuration. Comparisons of the computed flow fields for the airfoil and 777 test cases between the old and new versions of the PEGASUS codes show excellent agreement with each other and with experimental results.

  15. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft

    NASA Image and Video Library

    2001-03-15

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  16. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket mounted to NASA's NB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  17. Pegasus air-launched space booster flight test program

    NASA Astrophysics Data System (ADS)

    Elias, Antonio L.; Knutson, Martin A.

    1995-03-01

    Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.

  18. A real time Pegasus propulsion system model for VSTOL piloted simulation evaluation

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Roth, S. P.; Creekmore, R.

    1981-01-01

    A real time propulsion system modeling technique suitable for use in man-in-the-loop simulator studies was developd. This technique provides the system accuracy, stability, and transient response required for integrated aircraft and propulsion control system studies. A Pegasus-Harrier propulsion system was selected as a baseline for developing mathematical modeling and simulation techniques for VSTOL. Initially, static and dynamic propulsion system characteristics were modeled in detail to form a nonlinear aerothermodynamic digital computer simulation of a Pegasus engine. From this high fidelity simulation, a real time propulsion model was formulated by applying a piece-wise linear state variable methodology. A hydromechanical and water injection control system was also simulated. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model was programmed for interfacing with a Harrier aircraft simulation. Typical propulsion system simulation results are presented.

  19. Ignition of the Pegasus rocket moments after release from the B-52 signaled acceleration of the X-43

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A 'stack' lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing 'scramjet' engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or 'scramjet' engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean.

  20. The X-43A/Pegasus combination dropped into the Pacific Ocean after losing control early in the first

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A 'stack' lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing 'scramjet' engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or 'scramjet' engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean.

  1. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Inside Building 1555 at Vandenberg Air Force Base in California, one of eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft is inspected. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  2. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare to install the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  3. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    A technician with Orbital ATK prepares to install another micro satellite on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  4. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK install the first two sets of micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  5. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK prepares the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) for micro satellites installation in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  6. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK checks out the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  7. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-13

    All of the micro satellites have been fully installed on the deployment module by Orbital ATK for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  8. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare the micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  9. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    Technicians with Orbital ATK continue to install the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  10. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    Technicians with Orbital ATK continue to install micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  11. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK assembles the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  12. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK check assemble the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  13. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare a set of micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  14. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK check out the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  15. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare to install micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  16. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    A technician with Orbital ATK checks the installation of the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  17. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK install the first set of micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  18. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK prepares a set of micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  19. A modified Pegasus rocket drops steadily away after release from NASA's B-52B, before accelerating the X-43A over the Pacific Ocean on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket drop away from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Moments later the Pegasus booster ignited to accelerate the X-43A to its intended speed of Mach 7.

  20. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing

    NASA Image and Video Library

    2001-03-15

    The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  1. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket is moved into Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  2. Pegasus XL CYGNSS Blacklight Test and Thermal Ring Installation

    NASA Image and Video Library

    2016-10-25

    NASA's Cyclone Global Navigation Satellite System (CYGNSS) spacecraft undergoes a black light test in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA's Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  3. A modified Pegasus rocket drops away after release from NASA's B-52B before accelerating the X-43A over a Pacific Ocean test range on Nov. 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket drop away from NASA's B-52B launch aircraft over the Pacific Ocean on November 16, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, California. Moments later the Pegasus booster ignited to accelerate the X-43A to its intended speed of Mach 10.

  4. Pegasus Engine Ignites after Drop from B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  5. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Inside Building 1555 at Vandenberg Air Force Base in California, technicians and engineers install one of eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft on its deployment module. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  6. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Inside Building 1555 at Vandenberg Air Force Base in California, NASA’s Cyclone Global Navigation Satellite System (CYGNSS) deployment module is inspected prior to installation of eight spacecraft that will be part of the program’s constellation of spacecraft. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  7. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Inside Building 1555 at Vandenberg Air Force Base in California, one of eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft is installed on its deployment module. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  8. Pegasus XL CYGNSS Prepared for Launch Aboard Orbital ATK's L-101

    NASA Image and Video Library

    2016-12-10

    At Cape Canaveral Air Force Station's Skid Strip the Orbital ATK L-1011 Stargazer aircraft is being prepared to launch NASA's Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The eight micro satellites are aboard an Orbital ATK Pegasus XL rocket strapped to the underside of the Stargazer. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 12. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  9. A modified Pegasus rocket ignites moments after release from the B-52B, beginning the acceleration of the X-43A over the Pacific Ocean on Nov. 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on November 16, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, California. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 10.

  10. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket is moved inside Building 1555 at Vandenberg Air Force Base in California. In the background are the second and third stage segments. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  11. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket was moved inside Building 1555 at Vandenberg Air Force Base in California. In the background are the second and third stage segments. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  12. The X-43A/Pegasus combination dropped into the Pacific Ocean after losing control early in the first free-flight attempt

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  13. Pegasus XL CYGNSS Payload Adapter Installation to Deployment Mod

    NASA Image and Video Library

    2016-10-17

    Technicians with Orbital ATK install the payload adapter to the deployment module that contains the micro satellites for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  14. Pegasus hypersonic flight research

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  15. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  16. Pegasus ICON Stage 2 & 3 Motor Offload

    NASA Image and Video Library

    2017-05-05

    The third stage of the Orbital ATK Pegasus XL rocket is offloaded from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  17. Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  18. Pegasus XL CYGNSS Solar Panel Deployment and Illumination Test

    NASA Image and Video Library

    2016-10-02

    Inside Building 1555 at Vandenberg Air Force Base in California, solar panels for one of eight NASA's Cyclone Global Navigation Satellite System (CYGNSS) spacecraft has been deployed for illumination testing. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are completed at Vandenberg, the rocket will be transported to NASA's Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft within its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  19. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this three-foot-long model at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43

  20. Can advanced technology improve future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Snow, D. B.

    1981-01-01

    The short-haul service abandoned by the trunk and local airlines is being picked up by the commuter airlines using small turboprop-powered aircraft. Most of the existing small transport aircraft currently available represent a relatively old technology level. However, several manufacturers have initiated the development of new or improved commuter transport aircraft. These aircraft are relatively conservative in terms of technology. An examination is conducted of advanced technology to identify those technologies that, if developed, would provide the largest improvements for future generations of these aircraft. Attention is given to commuter aircraft operating cost, aerodynamics, structures and materials, propulsion, aircraft systems, and technology integration. It is found that advanced technology can improve future commuter aircraft and that the largest of these improvements will come from the synergistic combination of technological advances in all of the aircraft disciplines. The most important goals are related to improved fuel efficiency and increased aircraft productivity.

  1. Pegasus ICON Stage 2 & 3 Motor Offload

    NASA Image and Video Library

    2017-05-05

    Workers prepare to offload the second and third stages of the Orbital ATK Pegasus XL rocket from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  2. Pegasus ICON Stage 2 & 3 Motor Offload

    NASA Image and Video Library

    2017-05-05

    The second and third stages of the Orbital ATK Pegasus XL rocket are offloaded from a transport vehicle at Building 1555 at Vandenberg Air Force Base in California. The rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  3. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  4. Pegasus Rocket Wing and PHYSX Glove Being Prepared for Stress Loads Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.)

  5. NASA's NB-52B carrier aircraft rolls down a taxiway with the X-43A hypersonic research aircraft and its modified Pegasus® booster rocket attached to a pylon under its right wing.

    NASA Image and Video Library

    2001-03-15

    As part of a combined systems test conducted by NASA Dryden Flight Research Center, NASA's NB-52B carrier aircraft rolls down a taxiway at Edwards Air Force Base with the X-43A hypersonic research aircraft and its modified Pegasus® booster rocket attached to a pylon under its right wing. The taxi test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  6. KSC-20161214-JBS-MH-01-0001-L_1011_Pegasus_XL_CYGNSS-3139565_HEVC

    NASA Image and Video Library

    2016-12-14

    The Orbital ATK L-1011 Stargazer aircraft is at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's Cyclone Global Navigation Satellite System (CYGNSS) on board. CYGNSS was processed and prepared for its mission at Vandenberg Air Force Base in California. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 15. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  7. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this side view of a three-foot-long model of the vehicle/booster combination at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry

  8. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2001-03-13

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  9. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  10. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  11. Progress in supersonic cruise aircraft technology

    NASA Technical Reports Server (NTRS)

    Driver, C.

    1978-01-01

    The supersonic cruise aircraft research program identified significant improvements in the technology areas of propulsion, aerodynamics, structures, takeoff and landing procedures, and advanced configuration concepts. Application of these technology areas to a commercial aircraft is discussed. An advanced SST family of aircraft which may be environmentally acceptable, have flexible range-payload capability, and be economically viable is projected.

  12. NASA's NB-52B carrier aircraft rolls down a taxiway with the X-43A hypersonic research aircraft and its modified Pegasus® booster rocket slung from a pylon under its right wing

    NASA Image and Video Library

    2001-03-15

    NASA's NB-52B carrier aircraft rolls down a taxiway at Edwards Air Force Base with the X-43A hypersonic research aircraft and its modified Pegasus® booster rocket slung from a pylon under its right wing. Part of a combined systems test conducted by NASA's Dryden Flight Research Center at Edwards, the taxi test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10, with the first tentatively scheduled for late spring to early summer, 2001.

  13. NASA's aircraft icing technology program

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1991-01-01

    NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.

  14. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  15. A modified Pegasus rocket ignites moments after release from the B-52B, beginning the acceleration of the X-43A over the Pacific Ocean on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 7. In a combined research effort involving Dryden, Langley, and several industry partners, NASA demonstrated the value of its X-43A hypersonic research aircraft, as it became the first air-breathing, unpiloted, scramjet-powered plane to fly freely by itself. The March 27 flight, originating from NASA's Dryden Flight Research Center, began with the Agency's B-52B launch aircraft carrying the X-43A out to the test range over the Pacific Ocean off the California coast. The X-43A was boosted up to its test altitude of about 95,000 feet, where it separated from its modified Pegasus booster and flew freely under its own power. Two very significant aviation milestones occurred during this test flight: first, controlled accelerating flight at Mach 7 under scramjet power, and second, the successful stage separation at high dynamic pressure of two non-axisymmetric vehicles. To top it all off, the flight resulted in the setting of a new aeronautical speed record. The X-43A reached a speed of over Mach 7, or about 5,000 miles per hour faster than any known aircraft powered by an air-breathing engine has ever flown.

  16. PEGASUS User's Guide. 5.1c

    NASA Technical Reports Server (NTRS)

    Suhs, Norman E.; Dietz, William E.; Rogers, Stuart E.; Nash, Steven M.; Onufer, Jeffrey T.

    2000-01-01

    PEGASUS 5.1 is the latest version of the PEGASUS series of mesh interpolation codes. It is a fully three-dimensional code. The main purpose for the development of this latest version was to significantly decrease the number of user inputs required and to allow for easier operation of the code. This guide is to be used with the user's manual for version 4 of PEGASUS. A basic description of methods used in both versions is described in the Version 4 manual. A complete list of all user inputs used in version 5.1 is given in this guide.

  17. Advanced structures technology and aircraft safety

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.

    1983-01-01

    NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.

  18. Pegasus XL CYGNSS Second Launch Attempt, Drop & Launch of Rocket

    NASA Image and Video Library

    2016-12-15

    The Orbital ATK Pegasus XL rocket carrying NASA's Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft is released and the first stage ignites at 8:37 a.m. EST. The rocket was released from the Orbital ATK L-1011 Stargazer aircraft flying over the Atlantic Ocean offshore from Daytona Beach, Florida following takeoff from the Skid Strip at Cape Canaveral Air Force Station. This image was taken from a NASA F-18 chase plane provided by Armstrong Flight Research Center in California. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes.

  19. Role of research aircraft in technology development

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1984-01-01

    The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.

  20. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  1. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A close-up view of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, portion of a three-foot-long model of the vehicle/booster combination at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is

  2. Pegasus Workflow Management System: Helping Applications From Earth and Space

    NASA Astrophysics Data System (ADS)

    Mehta, G.; Deelman, E.; Vahi, K.; Silva, F.

    2010-12-01

    Pegasus WMS is a Workflow Management System that can manage large-scale scientific workflows across Grid, local and Cloud resources simultaneously. Pegasus WMS provides a means for representing the workflow of an application in an abstract XML form, agnostic of the resources available to run it and the location of data and executables. It then compiles these workflows into concrete plans by querying catalogs and farming computations across local and distributed computing resources, as well as emerging commercial and community cloud environments in an easy and reliable manner. Pegasus WMS optimizes the execution as well as data movement by leveraging existing Grid and cloud technologies via a flexible pluggable interface and provides advanced features like reusing existing data, automatic cleanup of generated data, and recursive workflows with deferred planning. It also captures all the provenance of the workflow from the planning stage to the execution of the generated data, helping scientists to accurately measure performance metrics of their workflow as well as data reproducibility issues. Pegasus WMS was initially developed as part of the GriPhyN project to support large-scale high-energy physics and astrophysics experiments. Direct funding from the NSF enabled support for a wide variety of applications from diverse domains including earthquake simulation, bacterial RNA studies, helioseismology and ocean modeling. Earthquake Simulation: Pegasus WMS was recently used in a large scale production run in 2009 by the Southern California Earthquake Centre to run 192 million loosely coupled tasks and about 2000 tightly coupled MPI style tasks on National Cyber infrastructure for generating a probabilistic seismic hazard map of the Southern California region. SCEC ran 223 workflows over a period of eight weeks, using on average 4,420 cores, with a peak of 14,540 cores. A total of 192 million files were produced totaling about 165TB out of which 11TB of data was saved

  3. B-52/Pegasus with X-43A departing on first captive flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  4. B-52/Pegasus with X-43A in flight over Pacific Ocean.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  5. Close view of B-52/Pegasus with X-43A in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  6. Stealth Aircraft Technology. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning design, manufacture, and history of aircraft incorporating stealth technology. Citations focus on construction materials, testing, aircraft performance, and technology assessment. Fighter aircraft, bombers, missiles, and helicopters represent coverage. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Aerodynamic analysis of Pegasus - Computations vs reality

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan

    1993-01-01

    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  8. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Coomes, Edmund P.; Dagle, Jeffery E.

    1991-01-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI.

  9. Aircraft technology opportunities for the 21st Century

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry.

  10. B-52/Pegasus with X-43A landing after first captive carry flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  11. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  12. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  13. Fiber-optic technology for transport aircraft

    NASA Astrophysics Data System (ADS)

    1993-07-01

    A development status evaluation is presented for fiber-optic devices that are advantageously applicable to commercial aircraft. Current developmental efforts at a major U.S. military and commercial aircraft manufacturer encompass installation techniques and data distribution practices, as well as the definition and refinement of an optical propulsion management interface system, environmental sensing systems, and component-qualification criteria. Data distribution is the most near-term implementable of fiber-optic technologies aboard commercial aircraft in the form of onboard local-area networks for intercomputer connections and passenger entertainment.

  14. Propulsion system study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Hirschkron, R.; Warren, R. E.

    1981-01-01

    Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).

  15. Technology Advancements Enhance Aircraft Support of Experiment Campaigns

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques J.

    2009-01-01

    For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.

  16. KSC-06pd0556

    NASA Image and Video Library

    2006-03-10

    VANDENBERG AIR FORCE BASE, CALIF. - On the ramp adjacent to the runway at Vandenberg Air Force Base in California, a worker positions the vertical fin within the Orbital Sciences L-1011 aircraft. The fin will then be attached to the Space Technology 5's Pegasus rocket which will be mated to the underside of the carrier aircraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft from Vandenberg Air Force Base.

  17. Propulsion Study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  18. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.; Doulgeris, Georgios; Singh, Riti

    2011-07-01

    This paper highlights the role of distributed propulsion technology for future commercial aircraft. After an initial historical perspective on the conceptual aspects of distributed propulsion technology and a glimpse at numerous aircraft that have taken distributed propulsion technology to flight, the focal point of the review is shifted towards a potential role this technology may entail for future commercial aircraft. Technological limitations and challenges of this specific technology are also considered in combination with an all electric aircraft concept, as means of predicting the challenges associated with the design process of a next generation commercial aircraft.

  19. Applications of advanced electric/electronic technology to conventional aircraft

    NASA Technical Reports Server (NTRS)

    Heimbold, R. L.

    1980-01-01

    The desirability of seven advanced technologies as applied to three commercial aircraft of 1985 to 1995 was investigated. Digital fly by wire, multiplexing, ring laser gyro, integrated avionics, all electric airplane, electric load management, and fiber optics were considered for 500 passenger, 50 passenger, and 30 passenger aircraft. The major figure of merit used was Net Value of Technology based on procurement and operating cost over the life of the aircraft. An existing computer program, ASSET, was used to resize the aircraft and evalute fuel usage and maintenance costs for each candidate configuration. Conclusions were that, for the 500 passenger aircraft, all candidates had a worthwhile payoff with the all electric airplane having a large payoff.

  20. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  1. Variable stars in the Pegasus dwarf galaxy (DDO 216)

    NASA Technical Reports Server (NTRS)

    Hoessel, J. G.; Abbott, Mark J.; Saha, A.; Mossman, Amy E.; Danielson, G. Edward

    1990-01-01

    Observations obtained over a period of five years of the resolved stars in the Pegasus dwarf irregular galaxy (DDO 216) have been searched for variable stars. Thirty-one variables were found, and periods established for 12. Two of these variable stars are clearly eclipsing variables, seven are very likely Cepheid variables, and the remaining three are probable Cepheids. The period-luminosity relation for the Cepheids indicates a distance modulus for Pegasus of m - M = 26.22 + or - 0.20. This places Pegasus very near the zero-velocity surface of the Local Group.

  2. NASA's Quiet Aircraft Technology Project

    NASA Technical Reports Server (NTRS)

    Whitfield, Charlotte E.

    2004-01-01

    NASA's Quiet Aircraft Technology Project is developing physics-based understanding, models and concepts to discover and realize technology that will, when implemented, achieve the goals of a reduction of one-half in perceived community noise (relative to 1997) by 2007 and a further one-half in the far term. Noise sources generated by both the engine and the airframe are considered, and the effects of engine/airframe integration are accounted for through the propulsion airframe aeroacoustics element. Assessments of the contribution of individual source noise reductions to the reduction in community noise are developed to guide the work and the development of new tools for evaluation of unconventional aircraft is underway. Life in the real world is taken into account with the development of more accurate airport noise models and flight guidance methodology, and in addition, technology is being developed that will further reduce interior noise at current weight levels or enable the use of lighter-weight structures at current noise levels.

  3. Control technology for future aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.

    1984-01-01

    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.

  4. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  5. 14 CFR Appendix A to Subpart U of... - GCNP Quiet Aircraft Technology Designation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false GCNP Quiet Aircraft Technology Designation... to Subpart U of Part 93—GCNP Quiet Aircraft Technology Designation This appendix contains procedures for determining the GCNP quiet aircraft technology designation status for each aircraft subject to...

  6. 14 CFR Appendix A to Subpart U of... - GCNP Quiet Aircraft Technology Designation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false GCNP Quiet Aircraft Technology Designation... to Subpart U of Part 93—GCNP Quiet Aircraft Technology Designation This appendix contains procedures for determining the GCNP quiet aircraft technology designation status for each aircraft subject to...

  7. 14 CFR Appendix A to Subpart U of... - GCNP Quiet Aircraft Technology Designation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false GCNP Quiet Aircraft Technology Designation... to Subpart U of Part 93—GCNP Quiet Aircraft Technology Designation This appendix contains procedures for determining the GCNP quiet aircraft technology designation status for each aircraft subject to...

  8. 14 CFR Appendix A to Subpart U of... - GCNP Quiet Aircraft Technology Designation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false GCNP Quiet Aircraft Technology Designation... to Subpart U of Part 93—GCNP Quiet Aircraft Technology Designation This appendix contains procedures for determining the GCNP quiet aircraft technology designation status for each aircraft subject to...

  9. 14 CFR Appendix A to Subpart U of... - GCNP Quiet Aircraft Technology Designation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false GCNP Quiet Aircraft Technology Designation... to Subpart U of Part 93—GCNP Quiet Aircraft Technology Designation This appendix contains procedures for determining the GCNP quiet aircraft technology designation status for each aircraft subject to...

  10. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  11. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  12. Dryden B-52 Launch Aircraft on Dryden Ramp

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  13. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  14. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  15. Dryden B-52 Launch Aircraft in Flight over Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of

  16. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft is secured onto a transporter at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  17. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft leaves Building 1655 at Vandenberg Air Force Base in California. The rocket will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  18. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  19. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  20. Dryden B-52 Launch Aircraft on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable workhorse, the B-52 mothership, rolls out on the Edwards AFB runway after a test flight in 1996. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  1. Economics of technological change - A joint model for the aircraft and airline industries

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Taneja, N. K.

    1981-01-01

    The principal focus of this econometric model is on the process of technological change in the U.S. aircraft manufacturing and airline industries. The problem of predicting the rate of introduction of current technology aircraft into an airline's fleet during the period of research, development, and construction for new technology aircraft arises in planning aeronautical research investments. The approach in this model is a statistical one. It attempts to identify major factors that influence transport aircraft manufacturers and airlines, and to correlate them with the patterns of delivery of new aircraft to the domestic trunk carriers. The functional form of the model has been derived from several earlier econometric models on the economics of innovation, acquisition, and technological change.

  2. Wind tunnel technology for the development of future commercial aircraft

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  3. The mated Pegasus XL rocket - AIM spacecraft leaves Building 165

    NASA Image and Video Library

    2007-04-16

    The mated Pegasus XL rocket - AIM spacecraft is moved onto a transporter in Building 1655 at Vandenberg Air Force Base in California. The launch vehicle will be transferred to a waiting Orbital Sciences Stargazer L-1011 aircraft for launch. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.

  4. PEGASUS 5: An Automated Pre-Processor for Overset-Grid CFD

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Suhs, Norman; Dietz, William; Rogers, Stuart; Nash, Steve; Chan, William; Tramel, Robert; Onufer, Jeff

    2006-01-01

    This viewgraph presentation reviews the use and requirements of Pegasus 5. PEGASUS 5 is a code which performs a pre-processing step for the Overset CFD method. The code prepares the overset volume grids for the flow solver by computing the domain connectivity database, and blanking out grid points which are contained inside a solid body. PEGASUS 5 successfully automates most of the overset process. It leads to dramatic reduction in user input over previous generations of overset software. It also can lead to an order of magnitude reduction in both turn-around time and user expertise requirements. It is also however not a "black-box" procedure; care must be taken to examine the resulting grid system.

  5. Pegasus, the 'atypical' Ikaros family member, influences left-right asymmetry and regulates pitx2 expression.

    PubMed

    John, Liza B; Trengove, Monique C; Fraser, Fiona W; Yoong, Simon H; Ward, Alister C

    2013-05-01

    Members of the Ikaros family of zinc-finger transcription factors have been shown to be critical for immune and blood cell development. However, the role of the most divergent family member, Pegasus, has remained elusive, although it shows conservation to invertebrate Hunchback proteins that influence embryonic patterning through regulation of homeodomain genes. Zebrafish was employed as a relevant model to investigate the function of Pegasus since it possesses a single pegasus orthologue with high homology to its mammalian counterparts. During zebrafish embryogenesis pegasus transcripts were initially maternally-derived and later replaced by zygotic expression in the diencephalon, tectum, hindbrain, thymus, eye, and ultimately the exocrine pancreas and intestine. Morpholino-mediated knockdown of the zebrafish pegasus gene resulted in disrupted left-right asymmetry of the gut and pancreas. Molecular analysis indicated that zebrafish Pegasus localised to the nucleus in discrete non-nucleolar structures and bound the 'atypical' DNA sequence GN3GN2G, confirming its presumed role as a transcriptional regulator. In vivo transcriptome analysis identified candidate target genes, several of which encoded homeodomain transcription factors. One of these, pitx2, implicated in left-right asymmetry, possessed appropriate 'atypical' Pegasus binding sites in its promoter. Knockdown of Pegasus affected both the level and asymmetry of pitx2 expression, as well as disrupting the asymmetry of the lefty2 and spaw genes, explaining the perturbed left-right patterning in pegasus morphants. Collectively these results provide the first definitive insights into the in vivo role of Pegasus, supporting the notion that it acts as a broader regulator of development, with potential parallels to the related invertebrate Hunchback proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. KSC-06pd0555

    NASA Image and Video Library

    2006-03-10

    VANDENBERG AIR FORCE BASE, CALIF. - On the ramp adjacent to the runway at Vandenberg Air Force Base in California, the Space Technology 5's Pegasus rocket is placed in position to be mated to the underside of an Orbital Sciences L-1011 carrier aircraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft from Vandenberg Air Force Base.

  7. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  8. Hydrogen aircraft technology

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  9. PEGASUS - A Flexible Launch Solution for Small Satellites with Unique Requirements

    NASA Astrophysics Data System (ADS)

    Richards, B. R.; Ferguson, M.; Fenn, P. D.

    The financial advantages inherent in building small satellites are negligible if an equally low cost launch service is not available to deliver them to the orbit they require. The weight range of small satellites puts them within the capability of virtually all launch vehicles. Initially, this would appear to help drive down costs through competition since, by one estimate, there are roughly 75 active space launch vehicles around the world that either have an established flight record or are planning to make an inaugural launch within the year. When reliability, budget constraints, and other issues such as inclination access are factored in, this list of available launch vehicles is often times reduced to a very limited few, if any at all. This is especially true for small satellites with unusual or low inclination launch requirements where the cost of launching on the heavy-lift launchers that have the capacity to execute the necessary plane changes or meet the mission requirements can be prohibitive. For any small satellite, reducing launch costs by flying as a secondary or even tertiary payload is only advantageous in the event that a primary payload can be found that either requires or is passing through the same final orbit and has a launch date that is compatible. If the satellite is able to find a ride on a larger vehicle that is only passing through the correct orbit, the budget and technical capability must exist to incorporate a propulsive system on the satellite to modify the orbit to that required for the mission. For these customers a launch vehicle such as Pegasus provides a viable alternative due to its proven flight record, relatively low cost, self- contained launch infrastructure, and mobility. Pegasus supplements the existing world-wide launch capability by providing additional services to a targeted niche of payloads that benefit greatly from Pegasus' mobility and flexibility. Pegasus can provide standard services to satellites that do not

  10. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  11. Historical overview of V/STOL aircraft technology

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.

    1981-01-01

    The requirements for satisfactory characteristics in several key technology areas are discussed and a review is made of various V/STOL aircraft for the purpose of assessing the success or failure of each design in meeting design requirements. Special operating techniques were developed to help circumvent deficiencies. For the most part performance and handling qualities limitations restricted operational evaluations. Flight operations emphasized the need for good STOL performance, good handling qualities, and stability and control augmentation. The majority of aircraft suffered adverse ground effects.

  12. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  13. VANDENBERG AIR FORCE BASE, CALIF. - The Pegasus transporter, with its cargo of the SciSat-1 payload and Pegasus launch vehicle, moves under the L-1011 carrier aircraft for matting. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The Pegasus transporter, with its cargo of the SciSat-1 payload and Pegasus launch vehicle, moves under the L-1011 carrier aircraft for matting. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  14. Sense and avoid technology for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    McCalmont, John; Utt, James; Deschenes, Michael; Taylor, Michael; Sanderson, Richard; Montgomery, Joel; Johnson, Randal S.; McDermott, David

    2007-04-01

    The Sensors Directorate of the Air Force Research Laboratory (AFRL), in conjunction with the Global Hawk Systems Group, the J-UCAS System Program Office and contractor Defense Research Associates, Inc. (DRA) is conducting an Advanced Technology Demonstration (ATD) of a sense-and-avoid capability with the potential to satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aircraft Systems (UAS) to provide "an equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for UAS operations within the national airspace. The Sense-and-Avoid, Phase I (Man-in-the-Loop) and Phase II (Autonomous Maneuver) ATD demonstrated an on-board, wide field of regard, multi-sensor visible imaging system operating in real time and capable of passively detecting approaching aircraft, declaring potential collision threats in a timely manner and alerting the human pilot located in the remote ground control station or autonomously maneuvered the aircraft. Intruder declaration data was collected during the SAA I & II Advanced Technology Demonstration flights conducted during December 2006. A total of 27 collision scenario flights were conducted and analyzed. The average detection range was 6.3 NM and the mean declaration range was 4.3 NM. The number of false alarms per engagement has been reduced to approximately 3 per engagement.

  15. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  16. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, the three stages of the Orbital Sciences Pegasus XL are being mated for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  17. A study of the cost-effective markets for new technology agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.; Clyne, F.

    1979-01-01

    A previously developed data base was used to estimate the regional and total U.S. cost-effective markets for a new technology agricultural aircraft as incorporating features which could result from NASA-sponsored aerial applications research. The results show that the long-term market penetration of a new technology aircraft would be near 3,000 aircraft. This market penetration would be attained in approximately 20 years. Annual sales would be about 200 aircraft after 5 to 6 years of introduction. The net present value of cost savings benefit which this aircraft would yield (measured on an infinite horizon basis) would be about $35 million counted at a 10 percent discount rate and $120 million at a 5 percent discount rate. At both discount rates the present value of cost savings exceeds the present value of research and development (R&D) costs estimated for the development of the technology base needed for the proposed aircraft. These results are quite conservative as they have been derived neglecting future growth in the agricultural aviation industry, which has been averaging about 12 percent per year over the past several years.

  18. NASA Examines Technology To Fold Aircraft Wings In Flight

    NASA Image and Video Library

    2018-01-17

    NASA conducts a flight test series to investigate the ability of an innovative technology to fold the outer portions of wings in flight as part of the Spanwise Adaptive Wing project, or SAW. Flight tests took place at NASA Armstrong Flight Research Center in California, using a subscale UAV called Prototype Technology-Evaluation Research Aircraft, or PTERA, provided by Area-I. NASA Glenn Research Center in Cleveland developed the alloy material, and worked with Boeing Research & Technology to integrate the material into an actuator. The alloy is triggered by temperature to move the outer portions of wings up or down in flight. The ability to fold wings to the ideal position of various flight conditions may produce several aerodynamic benefits for both subsonic and supersonic aircraft.

  19. Experimental Aerodynamic Characteristics of the Pegasus Air-Launched Booster and Comparisons with Predicted and Flight Results

    NASA Technical Reports Server (NTRS)

    Rhode, M. N.; Engelund, Walter C.; Mendenhall, Michael R.

    1995-01-01

    Experimental longitudinal and lateral-directional aerodynamic characteristics were obtained for the Pegasus and Pegasus XL configurations over a Mach number range from 1.6 to 6 and angles of attack from -4 to +24 degrees. Angle of sideslip was varied from -6 to +6 degrees, and control surfaces were deflected to obtain elevon, aileron, and rudder effectiveness. Experimental data for the Pegasus configuration are compared with engineering code predictions performed by Nielsen Engineering & Research, Inc. (NEAR) in the aerodynamic design of the Pegasus vehicle, and with results from the Aerodynamic Preliminary Analysis System (APAS) code. Comparisons of experimental results are also made with longitudinal flight data from Flight #2 of the Pegasus vehicle. Results show that the longitudinal aerodynamic characteristics of the Pegasus and Pegasus XL configurations are similar, having the same lift-curve slope and drag levels across the Mach number range. Both configurations are longitudinally stable, with stability decreasing towards neutral levels as Mach number increases. Directional stability is negative at moderate to high angles of attack due to separated flow over the vertical tail. Dihedral effect is positive for both configurations, but is reduced 30-50 percent for the Pegasus XL configuration because of the horizontal tail anhedral. Predicted longitudinal characteristics and both longitudinal and lateral-directional control effectiveness are generally in good agreement with experiment. Due to the complex leeside flowfield, lateral-directional characteristics are not as well predicted by the engineering codes. Experiment and flight data are in good agreement across the Mach number range.

  20. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, the second and third stages of the Orbital Sciences Pegasus XL rocket wait for mating. The rocket is the launch vehicle for the NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  1. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a technician on the work stand prepares the second stage of the Orbital Sciences Pegasus XL rocket to be mated to the first stage, at left, for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  2. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a technician on the work stand prepares the first stage of the Orbital Sciences Pegasus XL rocket, at left, to be mated to the second stage, at right, for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  3. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a technician on the work stand (center) prepares the second stage of the Orbital Sciences Pegasus XL rocket to be mated to the first stage, at left, for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  4. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a technician checks the final step in mating of the first and second stages of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  5. Orbital Sciences Pegasus XL Mate

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, technicians discuss the process for mating the first and second stages of the Orbital Sciences Pegasus XL rocket in front of them. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  6. Some inadequacies of the current human factors certification process of advanced aircraft technologies

    NASA Technical Reports Server (NTRS)

    Paries, Jean

    1994-01-01

    Automation related accidents or serious incidents are not limited to advanced technology aircraft. There is a full history of such accidents with conventional technology aircraft. However, this type of occurrence is far from sparing the newest 'glass cockpit' generation, and it even seems to be a growing contributor to its accident rate. Nevertheless, all these aircraft have been properly certificated according to the relevant airworthiness regulations. Therefore, there is a growing concern that with the technological advancement of air transport aircraft cockpits, the current airworthiness regulations addressing cockpit design and human factors may have reached some level of inadequacy. This paper reviews some aspects of the current airworthiness regulations and certification process related to human factors of cockpit design and focuses on questioning their ability to guarantee the intended safety objectives.

  7. Payload Technologies for Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steve

    2000-01-01

    Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.

  8. Payload Technologies For Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Condon, Estelle (Technical Monitor)

    2001-01-01

    Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.

  9. Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.

    2012-10-01

    Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.

  10. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  11. Conceptual/preliminary design study of subsonic v/stol and stovl aircraft derivatives of the S-3A

    NASA Technical Reports Server (NTRS)

    Kidwell, G. H., Jr.

    1981-01-01

    A computerized aircraft synthesis program was used to examine the feasibility and capability of a V/STOL aircraft based on the Navy S-3A aircraft. Two major airframe modifications are considered: replacement of the wing, and substitution of deflected thrust turbofan engines similar to the Pegasus engine. Three planform configurations for the all composite wing were investigated: an unconstrained span design, a design with the span constrained to 64 feet, and an unconstrained span oblique wing design. Each design was optimized using the same design variables, and performance and control analyses were performed. The oblique wing configuration was found to have the greatest potential in this application. The mission performance of these V/STOL aircraft compares favorably with that of the CTOL S-3A.

  12. A NASA study of the impact of technology on future carrier based tactical aircraft - Overview

    NASA Technical Reports Server (NTRS)

    Wilson, S. B., III

    1992-01-01

    This paper examines the impact of technology on future carrier based tactical aircraft. The results were used in the Center for Naval Analysis Future Carrier Study. The NASA Team designed three classes of aircraft ('Fighter', 'Attack', and 'Multimission') with two different technology levels. The Multimission aircraft were further analyzed by examining the penalty on the aircraft for both catapult launch/arrested landing recovery (Cat/trap) and short take-off/vertical landing (STOVL). The study showed the so-called STOVL penalty was reduced by engine technology and the next generation Strike Fighter will pay more penalty for Cat/trap than for STOVL capability.

  13. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket undergoes its second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  14. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a worker monitors the Orbital Sciences Pegasus XL rocket after a second flight simulation. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  15. Technology for aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  16. Aircraft Maintenance Engineering: Factors Impacting Airlines E-Maintenance Technologies, Authoring and Illustrations

    NASA Astrophysics Data System (ADS)

    Karayianes, Frank

    The purpose of this research was to evaluate factors influencing acceptance and use of technologies in the field of aircraft maintenance authoring, graphics, and documentation. Maintenance engineering authors convert complex engineering used in aircraft production and transform that data using technology (tools) into usable technical publications data. While the current literature includes a large volume of research in technology acceptance in various domains of industry and business, the problem is that no such studies exist with respect to the aircraft maintenance engineering authoring, allowing any number of tools to be used and acceptance to be unsure. The study was based on theoretical approaches of the Technology Acceptance Model and the associated hypothesis related to eight research questions. A survey questionnaire was developed for data collection from a selected population of aircraft maintenance engineering authors. Data collected from 148 responses were exposed to a range of statistical methods and analyses. Analysis of data were performed within the structural equation model using exploratory factor analysis, confirmatory factor analysis, and a range of regression methods. The analyses generally provided results consistent with prior literature. Two survey questions yielded unexpected results contrary to similar studies. The relationship between prior experience and job level did not show a significant relationship with perceived usefulness or perceived ease of use. Other results included the significant relationship between Perceived Usefulness and Perceived Ease of Use with Technology acceptance. Recommendations include understanding how Technology Acceptance can be improved for the industry and the need for further research not covered to refine recommendations for technology acceptance related to the aviation industry.

  17. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Dryden Experimental Fabrication Shop's Andy Blua and Jeff Doughty make sure the new pylon for the X-38 fits precisely during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California in 1997. The 1,200-pound steel pylon, fabricated at Dryden, was an 'adapter' to allow the X-38 research vehicle to be carried aloft and launched from the bomber. The X-38 was a designed as a technology demonstrator to help develop an emergency Crew Return Vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research

  18. Aviation Maintenance Technology. General. G102 Fundamentals of Aircraft Maintenance. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    These instructor materials for an aviation maintenance technology course contain four instructional modules. The modules cover the following topics: identifying basic components of aircraft, performing aircraft cleaning and corrosion control, interpreting blueprints and drawing sketches, identifying structural materials, and performing basic…

  19. KSC-06pd0554

    NASA Image and Video Library

    2006-03-10

    VANDENBERG AIR FORCE BASE, CALIF. - Workers prepare to transport the Space Technology 5 (ST5) spacecraft from Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California to the L-1011 carrier aircraft in position on the ramp adjacent to the Vandenberg runway. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft from Vandenberg Air Force Base.

  20. Evaluation of active control technology for short haul aircraft. [cost effectiveness

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bennett, J. A.; Harris, O. C.; Honrath, J. F.; Patterson, R. W.

    1975-01-01

    An evaluation of the economics of short-haul aircraft designed with active controls technology and low wing-loading to achieve short field performance with good ride quality is presented. Results indicate that for such a system incorporating gust load alleviation and augmented stability the direct operating cost is better than for aircraft without active controls.

  1. Research Pilot Milt Thompson in M2-F2 Aircraft Attached to B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA research pilot Milt Thompson sits in the M2-F2 'heavyweight' lifting body research vehicle before a 1966 test flight. The M2-F2 and the other lifting-body designs were all attached to a wing pylon on NASA's B-52 mothership and carried aloft. The vehicles were then drop-launched and, at the end of their flights, glided back to wheeled landings on the dry lake or runway at Edwards AFB. The lifting body designs influenced the design of the Space Shuttle and were also reincarnated in the design of the X-38 in the 1990s. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft

  2. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Majjigi, Rudramuni K.

    1992-01-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  3. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  4. Airframe technology for aircraft energy efficiency. [economic factors

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    The economic factors that resulted in the implementation of the aircraft energy efficiency program (ACEE) are reviewed and airframe technology elements including content, progress, applications, and future direction are discussed. The program includes the development of laminar flow systems, advanced aerodynamics, active controls, and composite structures.

  5. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    Seen at Vandenberg Air Force Base in California is the fairing (foreground) for the Orbital Sciences Pegasus XL rocket. In the background is the third stage, under the clean room tent. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  6. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, workers monitor the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  7. Orbital Sciences Pegasus XL Flight Simulation

    NASA Image and Video Library

    2007-02-28

    At Vandenberg Air Force Base in California, a worker monitors the data produced by the second flight simulation of the Orbital Sciences Pegasus XL rocket. The rocket is the launch vehicle for NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  8. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A.

    2012-03-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 ± 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  9. Aircraft production technology

    NASA Astrophysics Data System (ADS)

    Horne, Douglas Favel

    Current aircraft-production techniques are surveyed and illustrated with extensive drawings, diagrams, and photographs. The history of the British aircraft industry is reviewed, and individual chapters are devoted to Al alloys; steels, Ni alloys, and Ti alloys; metal-cutting machinery; welding and brazing; surface treatments; protective treatments; sheet-metal working; nonmetallic materials; assembly; inspection and testing; and production estimates, production planning, and CAD/CAM.

  10. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  11. The benefits of improved technologies in agricultural aviation. [economic impact and aircraft configurations

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The economic benefits attributable to a variety of potential technological improvements in agricultural aviation are discussed. Topics covered include: the ag-air industry, the data base used to estimate the potential benefits and a summary of the potential benefits from technological improvements; ag-air activities in the United States; foreign ag-air activities; major ag-air aircraft is use and manufacturers' sales and distribution networks; and estimates of the benefits to the United States of proposed technological improvements to the aircraft and dispersal equipment. A bibliography of references is appended.

  12. BICARBONATE OF SODA BLASTING TECHNOLOGY FOR AIRCRAFT WHEEL PAINTING

    EPA Science Inventory

    This evaluation addressed product quality, waste reduction/pollution prevention and economics in replacing chemical solvent strippers with a bicarbonate of soda blasting technology for removal of paint from aircraft wheels. The evaluation was conducted in the Paint Stripping Sho...

  13. Effect of aircraft technology improvements on intercity energy use

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An examination of the growth or decline in energy consumption in short haul, high density intercity transportation is made in relation to changes in aeronautical technology. Improvements or changes in the technology of competitive modes are also included. Certain improvements in air traffic control procedures were included to determine their effectiveness in saving energy along with a fuel efficient turboprop short haul aircraft concept.

  14. Divertor Coil Design and Implementation on Pegasus

    NASA Astrophysics Data System (ADS)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  15. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  16. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  17. Control and automation of the Pegasus multi-point Thomson scattering system

    DOE PAGES

    Bodner, Grant M.; Bongard, Michael W.; Fonck, Raymond J.; ...

    2016-08-12

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. In addition, the system has been upgraded with a set of fast (~1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  18. B-52/Pegasus with X-43A in flight over Pacific Ocean

    NASA Image and Video Library

    2001-04-28

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden.

  19. Close view of B-52/Pegasus with X-43A in flight

    NASA Image and Video Library

    2001-04-28

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden.

  20. B-52/Pegasus with X-43A departing on first captive flight

    NASA Image and Video Library

    2001-04-28

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden.

  1. Pegasus Rocket Booster Being Prepared for X-43A/Hyper-X Flight Test

    NASA Image and Video Library

    1999-08-25

    Technicians prepare a Pegasus rocket booster for flight tests with the X-43A "Hypersonic Experimental Vehicle," or "Hyper-X." The X-43A, which will be attached to the Pegasus booster and drop launched from NASA's B-52 mothership, was developed to research dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude).

  2. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  3. Non-Solenoidal Startup via Helicity Injection in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Research on the A 1 . 2 Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with Ip <= 200 kA, Δtpulse 20 ms and BT <= 0 . 15 T are produced to date, sustained by two injectors with Ainj = 4 cm2 , Vinj 1 . 5 kV, and Iinj 8 kA, facilitated by improvements to the injectors, limiters, and divertor plates that mitigate deleterious PMI. These plasmas feature anomalous, reconnection-driven ion heating with Ti >=Te >= 50 - 100 eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized Ip , and suggesting short-wavelength modes may relate to the current drive mechanism. The high IN >= 10 , ion heating, and low li driven by LHI, and the favorable stability of A 1 STs allows access to record βt 100 % and high βN 6 . 5 . Such high-βt plasmas have a minimum | B | well spanning 50 % of the plasma volume. Enhancements to the Pegasus facility are considered to increase BT towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  4. Pegasus XL GALEX

    NASA Image and Video Library

    2003-03-13

    In the Multi-Payload Processing Facility, the Pegasus XL launch vehicle is in position for mating of the Galaxy Evolution Explorer (GALEX) satellite. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.

  5. Pegasus XL GALEX

    NASA Image and Video Library

    2003-03-13

    In the Multi-Payload Processing Facility, the Pegasus XL launch vehicle waits for mating of the Galaxy Evolution Explorer (GALEX) satellite. The GALEX, set to launch April 2 from Cape Canaveral Air Force Station, will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.

  6. Multidisciplinary optimization in aircraft design using analytic technology models

    NASA Technical Reports Server (NTRS)

    Malone, Brett; Mason, W. H.

    1991-01-01

    An approach to multidisciplinary optimization is presented which combines the Global Sensitivity Equation method, parametric optimization, and analytic technology models. The result is a powerful yet simple procedure for identifying key design issues. It can be used both to investigate technology integration issues very early in the design cycle, and to establish the information flow framework between disciplines for use in multidisciplinary optimization projects using much more computational intense representations of each technology. To illustrate the approach, an examination of the optimization of a short takeoff heavy transport aircraft is presented for numerous combinations of performance and technology constraints.

  7. A Hero’s Dark Horse: Discovery of an Ultra-faint Milky Way Satellite in Pegasus

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon; Jerjen, Helmut; Mackey, Dougal; Da Costa, Gary S.; Milone, Antonino P.

    2015-05-01

    We report the discovery of an ultra-faint Milky Way satellite galaxy in the constellation of Pegasus. The concentration of stars was detected by applying our overdensity detection algorithm to the SDSS-DR 10 and confirmed with deeper photometry from the Dark Energy Camera at the 4 m Blanco telescope. Fitting model isochrones indicates that this object, Pegasus III, features an old and metal-poor stellar population ([Fe/H] ˜ -2.1) at a heliocentric distance of 205 ± 20 kpc. The new stellar system has an estimated half-light radius of {{r}h}=78-24+30 pc and a total luminosity of {{M}V}˜ -4.1+/- 0.5 that places it into the domain of dwarf galaxies on the size-luminosity plane. Pegasus III is spatially close to the MW satellite Pisces II. It is possible that the two might be physically associated, similar to the Leo IV and Leo V pair. Pegasus III is also well aligned with the Vast Polar Structure, which suggests a possible physical association.

  8. Potential benefits for propfan technology on derivatives of future short- to medium-range transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.; Bowles, J. V.

    1980-01-01

    It is noted that several NASA-sponsored studies have identified a substantial potential fuel savings for high subsonic speed aircraft utilizing the propfan concept compared to the equivalent technology turbofan aircraft. Attention is given to a feasibility study for propfan-powered short- to medium-haul commercial transport aircraft conducted to evaluate potential fuel savings and identify critical technology requirements using the latest propfan performance data. An analysis is made of the design and performance characteristics of a wing-mounted and two-aft-mounted derivative propfan aircraft configurations, based on a DC-9 Super 80 airframe, which are compared to the baseline turbofan design. Finally, recommendations for further research efforts are also made.

  9. Annotated Bibliography of Enabling Technologies for the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    ONeil, Patrick D.; Tarry, Scott E.

    2002-01-01

    The following collection of research summaries are submitted as fulfillment of a request from NASA LaRC to conduct research into existing enabling technologies that support the development of the Small Aircraft Transportation System aircraft and accompanying airspace management infrastructure. Due to time and fiscal constraints, the included studies focus primarily on visual systems and architecture, flight control design, instrumentation and display, flight deck design considerations, Human-Machine Interface issues, and supporting augmentation technologies and software. This collation of summaries is divided in sections in an attempt to group similar technologies and systems. However, the reader is advised that many of these studies involve multiple technologies and systems that span across many categories. Because of this fact, studies are not easily categorized into single sections. In an attempt to help the reader more easily identify topics of interest, a SATS application description is provided for each summary. In addition, a list of acronyms provided at the front of the report to aid the reader.

  10. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Andy Blua and Jeff Doughty of Dryden's Experimental Fabrication Shop, along with B-52 Crew Chief Dan Bains and assistant Mark Thompson, all eye the new X-38 pylon during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California. The fit-check was the first time the 1,200-pound steel pylon, which was fabricated at Dryden, was mated to the B-52. The pylon served as an 'adapter' that allowed the X-38 to be attached to the B-52's wing. Earlier flight research vehicles had used the X-15 pylon for attachment to and launch from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the Hi

  11. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Tom McMullen, Chief of Dryden's Experimental Fabrication Shop, makes adjustments to the new pylon for NASA's X-38 during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California, in 1997. The fit-check was the first time the 1,200-pound steel pylon was mated to the B-52 following fabrication at Dryden by the Center's Experimental Fabrication Shop. The pylon was built as an 'adapter' to allow the X-38 to be attached to and launched from the B-52's wing. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST

  12. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The new pylon for the X-38 following a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California, in 1997. The fit-check was the first time the 1,200-pound steel pylon was mated to the B-52 following fabrication at Dryden by the Center's Experimental Fabrication Shop. The pylon was built as an 'adapter' to allow the X-38 research vehicle to be carried aloft and launched from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the

  13. Application of advanced technologies to small, short-haul transport aircraft (STAT)

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Mall, O. D.; Awker, R. W.; Scholl, J. W.

    1982-01-01

    The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length.

  14. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  15. Small transport aircraft technology. A report for the committee on commerce, science, and transportation, United States Senate

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary assessment of the research and technology that NASA could undertake to improve small transport aircraft is presented. The advanced technologies currently under study for potential application to the small transport aircraft of the future are outlined. Background information on the commuter and shorthaul local service air carriers, the regulations pertaining to their aircraft and operations, and the overall airline system interface is included.

  16. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  17. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  18. B-52/Pegasus with X-43A landing after first captive carry flight

    NASA Image and Video Library

    2001-04-28

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden.

  19. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  20. Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.

    1979-01-01

    The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.

  1. Future regional transport aircraft market, constraints, and technology stimuli

    NASA Technical Reports Server (NTRS)

    Harvey, W. Don; Foreman, Brent

    1992-01-01

    This report provides updated information on the current market and operating environment and identifies interlinking technical possibilities for competitive future commuter-type transport aircraft. The conclusions on the market and operating environment indicate that the regional airlines are moving toward more modern and effective fleets with greater passenger capacity and comfort, reduced noise levels, increased speed, and longer range. This direction leads to a nearly 'seamless' service and continued code-sharing agreements with the major carriers. Whereas the benefits from individual technologies may be small, the overall integration in existing and new aircraft designs can produce improvements in direct operating cost and competitiveness. Production costs are identified as being equally important as pure technical advances.

  2. Pegasus Rocket Booster Being Prepared for X-43A/Hyper-X Flight Test

    NASA Image and Video Library

    1999-08-25

    A close-up view of the front end of a Pegasus rocket booster being prepared by technicians at the Dryden Flight Research Center for flight tests with the X-43A "Hypersonic Experimental Vehicle," or "Hyper-X." The X-43A, which will be attached to the Pegasus booster and drop launched from NASA's B-52 mothership, was developed to research dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude).

  3. Design, cost, and advanced technology applications for a military trainer aircraft

    NASA Technical Reports Server (NTRS)

    Hill, G. C.; Harper, M.

    1975-01-01

    The potential impact is examined of advanced aerodynamic and propulsive technologies in terms of operating and acquisition costs on conceptual mission and performance requirements for a future undergraduate jet pilot trainer aircraft.

  4. Non-solenoidal Startup via Local Helicity Injection on Pegasus: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Schlossberg, D. J.

    2015-11-01

    Non-solenoidal plasma startup via local helicity injection (LHI) at the Pegasus toroidal experiment now provides routine operation at Ip ~ 0.17MA with Iinj ~ 5kA and Vinj ~ 1kV from four active arc injectors. Experiments in the past year have advanced the understanding of the governing physics of LHI and its supporting technology. Injector impedance scales as Vinj3/ 2 and is governed by two effects: a quasineutrality constraint on electron beam propagation, related to the tokamak edge density, and double-layer sheath expansion, related to narc. Injector design improvements permit operation at Vinj >= 1 kV without deleterious PMI or impurity generation. Discharges with varied shape, Ip(t), and helicity input test a predictive 0D power-balance model for LHI startup. Anomalous, reconnection-driven Ti >800 eV and strong MHD activity localized near the injectors are observed during LHI. Preliminary core Thomson scattering measurements indicate surprisingly high Te >300 eV, which if verified may indicate the dominance of high-energy electron fueling from the injector current streams. A new divertor injector system has been designed to substantially increase the available helicity input rate and support critical studies of confinement during LHI and reconnection activity at high Ip. A proposed upgrade to the Pegasus experiment will extend these studies to NSTX-U relevant parameters. Support: US DOE grants DE-FG02-96ER54375; and DE-SC0006928.

  5. Modeling the impact of improved aircraft operations technologies on the environment and airline behavior

    NASA Astrophysics Data System (ADS)

    Foley, Ryan Patrick

    The overall goal of this thesis is to determine if improved operations technologies are economically viable for US airlines, and to determine the level of environmental benefits available from such technologies. Though these operational changes are being implemented primarily with the reduction of delay and improvement of throughput in mind, economic factors will drive the rate of airline adoption. In addition, the increased awareness of environmental impacts makes these effects an important aspect of decision-making. Understanding this relationship may help policymakers make decisions regarding implementation of these advanced technologies at airports, and help airlines determine appropriate levels of support to provide for these new technologies. In order to do so, the author models the behavior of a large, profit-seeking airline in response to the introduction of advanced equipage allowing improved operations procedures. The airline response included changes in deployed fleet, assignment of aircraft to routes, and acquisition of new aircraft. From these responses, changes in total fleet-level CO2 emissions and airline profit were tallied. As awareness of the environmental impact of aircraft emissions has grown, several agencies (ICAO, NASA) have moved to place goals for emissions reduction. NASA, in particular, has set goals for emissions reduction through several areas of aircraft technology. Among these are "Operational Improvements," technologies available in the short-term through avionics and airport system upgrades. The studies in this thesis make use of the Fleet-Level Environmental Evaluation Tool (FLEET), a simulation tool developed by Purdue University in support of a NASA-sponsored research effort. This tool models the behavior of a large, profit-seeking airline through an allocation problem. The problem is contained within a systems dynamics type approach that allows feedback between passenger demand, ticket price, and the airline fleet composition

  6. Cost/benefit analysis of advanced material technologies for small aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Comey, D. H.

    1977-01-01

    Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.

  7. Research and technology program perspectives for general aviation and commuter aircraft

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Simpson, W. E.

    1982-01-01

    The uses, benefits, and technology needs of the U.S. general aviation industry were studied in light of growing competition from foreign general aviation manufacturers, especially in the commuter and business jet aircraft markets.

  8. KENNEDY SPACE CENTER, FLA. - Orbital Sciences’ L-1011 aircraft takes off from Cape Canaveral Air Force Station carrying the Pegasus XL rocket/Galaxy Evolution Explorer (GALEX) under its belly. Release of the Pegasus was scheduled for about 8 a.m. over the Atlantic Ocean at an altitude of 39,000 feet at a location approximately 100 nautical miles offshore east-northeast of Cape Canaveral. Spacecraft separation from the Pegasus occurs 11 minutes later. At that time the satellite will be in a circular orbit of 431 statute miles (690 km) at a 29-degree inclination. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.

    NASA Image and Video Library

    2003-04-28

    KENNEDY SPACE CENTER, FLA. - Orbital Sciences’ L-1011 aircraft takes off from Cape Canaveral Air Force Station carrying the Pegasus XL rocket/Galaxy Evolution Explorer (GALEX) under its belly. Release of the Pegasus was scheduled for about 8 a.m. over the Atlantic Ocean at an altitude of 39,000 feet at a location approximately 100 nautical miles offshore east-northeast of Cape Canaveral. Spacecraft separation from the Pegasus occurs 11 minutes later. At that time the satellite will be in a circular orbit of 431 statute miles (690 km) at a 29-degree inclination. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.

  9. Sensitivity of transport aircraft performance and economics to advanced technology and cruise Mach number

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1974-01-01

    Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.

  10. Pegasus Engine Ignites after Drop from B-52 Mothership

    NASA Image and Video Library

    1991-07-17

    Against the midnight blue of a high-altitude sky, Orbital Sciences’ Pegasus winged rocket booster ignites after being dropped from NASA’s B-52 mothership on a July 1991 flight. A NASA chase plane for the flight is also visible above the rocket and below the B-52.

  11. Line of sight pointing technology for laser communication system between aircrafts

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Liu, Yunqing; Song, Yansong

    2017-12-01

    In space optical communications, it is important to obtain the most efficient performance of line of sight (LOS) pointing system. The errors of position (latitude, longitude, and altitude), attitude angles (pitch, yaw, and roll), and installation angle among a different coordinates system are usually ineluctable when assembling and running an aircraft optical communication terminal. These errors would lead to pointing errors and make it difficult for the LOS system to point to its terminal to establish a communication link. The LOS pointing technology of an aircraft optical communication system has been researched using a transformation matrix between the coordinate systems of two aircraft terminals. A method of LOS calibration has been proposed to reduce the pointing error. In a flight test, a successful 144-km link was established between two aircrafts. The position and attitude angles of the aircraft have been obtained to calculate the pointing angle in azimuth and elevation provided by using a double-antenna GPS/INS system. The size of the field of uncertainty (FOU) and the pointing accuracy are analyzed based on error theory, and it has been also measured using an observation camera installed next to the optical LOS. Our results show that the FOU of aircraft optical communications is 10 mrad without a filter, which is the foundation to acquisition strategy and scanning time.

  12. Airborne-Fiber Optics Manufacturing Technology, Aircraft Installation Processes.

    DTIC Science & Technology

    1980-08-19

    but the impact is minor. With simpler equipment and techniques there may be a J’ 1 -, long- term savings potential. Overall costs and benefits of...4/72 1 * lh427 ,. . . ... .. - - . .. . 4.0 ASSEMBLY OF FIBER OPTIC CABLES AND HARNESSES 4.1 CABLE IDENTIFICATION (Marking) 4.1.1 Physically identify...FIBER OPTICS MANUFACTURING TECHNOLOGY Aircraft Installation Processes G Kosmos ~ ~ 19 August 1980 I 2 Final Report: May 1978 - June 1980 . 1 Prepared for

  13. The deployable, inflatable wing technology demonstrator experiment aircraft looks good during a flig

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The deployable, inflatable wing technology demonstrator experiment aircraft looks good during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  14. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  15. Advanced technology payoffs for future rotorcraft, commuter aircraft, cruise missile, and APU propulsion systems

    NASA Technical Reports Server (NTRS)

    Turk, M. A.; Zeiner, P. K.

    1986-01-01

    In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.

  16. Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Wilkerson, Joseph B.; Smith, Roger L.

    2008-01-01

    An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was

  17. VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is ready for flight after undergoing a Combined Systems Test, an integrated test involving the Pegasus launch vehicle, SciSat-1 spacecraft and L-1011 aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-08-09

    VANDENBERG AIR FORCE BASE, CALIF. - The L-1011 carrier aircraft is ready for flight after undergoing a Combined Systems Test, an integrated test involving the Pegasus launch vehicle, SciSat-1 spacecraft and L-1011 aircraft. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  18. Integrated Taxonomy Reveals Hidden Diversity in Northern Australian Fishes: A New Species of Seamoth (Genus Pegasus)

    PubMed Central

    Osterhage, Deborah; Pogonoski, John J.; Appleyard, Sharon A.; White, William T.

    2016-01-01

    Fishes are one of the most intensively studied marine taxonomic groups yet cryptic species are still being discovered. An integrated taxonomic approach is used herein to delineate and describe a new cryptic seamoth (genus Pegasus) from what was previously a wide-ranging species. Preliminary mitochondrial DNA barcoding indicated possible speciation in Pegasus volitans specimens collected in surveys of the Torres Strait and Great Barrier Reef off Queensland in Australia. Morphological and meristic investigations found key differences in a number of characters between P. volitans and the new species, P. tetrabelos. Further mt DNA barcoding of both the COI and the slower mutating 16S genes of additional specimens provided strong support for two separate species. Pegasus tetrabelos and P. volitans are sympatric in northern Australia and were frequently caught together in trawls at the same depths. PMID:26934529

  19. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  20. NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is part 3 of the conference proceedings on rotorcraft technology. This volume is divided into areas on systems integration, research aircraft, and industry. Representative titles from each area are: system analysis in rotorcraft design, the past decade; rotorcraft flight research with emphasis on rotor systems; and an overview of key technology thrusts at Bell Helicopter Textron.

  1. Microstability Properties of the Local Minimum | B | Regime in Pegasus

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rhodes, A. T.

    2017-10-01

    A local minimum | B | region, or ``magnetic well,'' was recently observed in the low-aspect-ratio Pegasus device in high- β scenarios with strong edge current peaking. The ∇B reversal within the magnetic well alters particle drifts, orbits, fast ion losses, and instability drives. Here, we report on the microstability properties of the magnetic well region with calculations from the GENE gyrokinetic code. In particular, we explore the dependence on magnetic well depth and the role of electromagnetic effects. Preliminary results from local electromagnetic calculations indicate unstable electron modes exist in the magnetic well region. Connections to NSTX-U and MAST-U operational scenarios are also discussed. Finally, probe measurements of electrostatic and magnetic fluctuations in the Pegasus magnetic well region are presented in Ref. 3. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-SC0001288 and DE-FG02-96ER54375.

  2. GBAS GAST D availability analysis for business aircraft

    NASA Astrophysics Data System (ADS)

    Dvorska, J.; Lipp, A.; Podivin, L.; Duchet, D.

    This paper analyzes Initial GBAS GAST D availability at a set of current ILS CAT III airports. Eurocontrol Pegasus Availability Tool, designed for SESAR projects is used for the assessment. Overall availability of the GBAS GAST D system is considered, focusing on business aircraft specifics where applicable. Nominal as well as adverse scenarios are presented in order to determine whether GAST D can reach the required availability for business aircraft at CAT III airport locations and under which conditions. The availability target was set at 99.9% availability when considering satellite outages in a given constellation and 99.997% when no outages are included. Sensitivity simulations were run for different scenarios and impacts of geometry screening thresholds, scale heights, aircraft mask, ground mask, sigma pseudorange ground, sigma ionospheric gradient, simulated year and different approach point (decision height) were analyzed. Some were run for a limited set of ILS CAT III airports and most of them for an almost complete set of nominal airports. Business aircraft specific assumptions, as well as aircraft type independent parameters (constellations, satellite outages, etc.) are examined in the paper. Conclusion summarizes the overall outcome of the simulations, showing that Initial GBAS CAT II/III can provide sufficient availability for all or almost all ILS CAT III capable airports considered in this study; and under which conditions. Recommendations for parameters that can be influenced (e.g. antenna location) if necessary are provided. It can also be expected that the availability will increase with the increasing amount of GNSS satellites. The work shows how different parameters impact availability of initial GBAS GAST D service for business aircraft, and that sufficient availability of GAST D service can be expected at most airports.

  3. Cost benefit study of advanced materials technology for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Johnston, R. P.

    1977-01-01

    The cost/benefits of eight advanced materials technologies were evaluated for two aircraft missions. The overall study was based on a time frame of commercial engine use of the advanced material technologies by 1985. The material technologies evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, shrouds and combustor liners, tungsten composite FeCrAly blades, gamma prime oxide dispersion strengthened (ODS) alloy blades, and no coat ODS alloy combustor liners. They were evaluated in two conventional takeoff and landing missions, one transcontinental and one intercontinental.

  4. Using Fly-By-Wire Technology in Future Models of the UH-60 and Other Rotary Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Solem, Courtney K.

    2011-01-01

    Several fixed-winged airplanes have successfully used fly-by-wire (FBW) technology for the last 40 years. This technology is now beginning to be incorporated into rotary wing aircraft. By using FBW technology, manufacturers are expecting to improve upon the weight, maintenance time and costs, handling and reliability of the aircraft. Before mass production of this new system begins in new models such as the UH-60MU, testing must be conducted to insure the safety of this technology as well as to reassure others it will be worth the time and money to make such a dramatic change to a perfectly functional machine. The RASCAL JUH-60A has been modified for these purposes. This Black Hawk helicopter has already been equipped with the FBW technology and can be configured as a near perfect representation of the UH-60MU. Because both machines have very similar qualities, the data collected from the RASCAL can be used to make future decisions about the UH-60MU. The U.S. Army AFDD Flight Project Office oversees all the design modifications for every hardware system used in the RASCAL aircraft. This project deals with specific designs and analyses of unique RASCAL aircraft subsystems and their modifications to conduct flight mechanics research.

  5. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  6. Studies of aerodynamic technology for VSTOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1978-01-01

    The paper summarizes several studies to develop aerodynamic technology for high performance VSTOL aircraft anticipated after 1990. A contracted study jointly sponsored by NASA-Ames and David Taylor Naval Ship Research and Development Center is emphasized. Four contractors analyzed two vertical-attitude and three horizontal-attitude takeoff and landing concepts with gross weights ranging from about 10433 kg (23,000 lb) to 17236 kg (38,000 lb). The aircraft have supersonic capability, high maneuver performance (sustained load factor 6.2 at Mach 0.6, 3048 m (10,000 ft)) and a 4536 kg (10,000-lb) STO overload capability. The contractors have estimated the aerodynamics and identified aerodynamic uncertainties associated with their concept. Example uncertainties relate to propulsion-induced flows, canard-wing interactions, and top inlets. Wind-tunnel research programs were proposed to investigate these uncertainties.

  7. The I2000, a deployable, inflatable wing technology demonstrator experiment aircraft, leaves the gro

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The deployable, inflatable wing technology demonstrator experiment aircraft leaves the ground during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  8. KSC-06pd0446

    NASA Image and Video Library

    2006-02-15

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers adjust the first half of the fairing around the Space Technology 5 (ST5) spacecraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft on March 14 from Vandenberg Air Force Base.

  9. KSC-06pd0449

    NASA Image and Video Library

    2006-02-16

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers check the placement of the second half of the fairing around the Space Technology 5 (ST5) spacecraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft on March 14 from Vandenberg Air Force Base.

  10. KSC-06pd0448

    NASA Image and Video Library

    2006-02-16

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers position the second half of the fairing into place around the Space Technology 5 (ST5) spacecraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft on March 14 from Vandenberg Air Force Base.

  11. KSC-06pd0447

    NASA Image and Video Library

    2006-02-16

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers move the second half of the fairing into position around the Space Technology 5 (ST5) spacecraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft on March 14 from Vandenberg Air Force Base.

  12. A design support simulation of the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Rumsey, P. C.; Spitzer, R. E.; Glende, W. L. B.

    1972-01-01

    The modification of a C-8A (De Havilland Buffalo) aircraft to a STOL configuration is discussed. The modification consisted of the installation of an augmentor-wing jet flap system. System design requirements were investigated for the lateral and directional flight control systems, the lateral and directional axes stability augmentation systems, the engine and Pegasus nozzle control systems, and the hydraulic systems. Operational techniques for STOL landings, control of engine failures, and pilot techniques for improving engine-out go-around performance were examined. Design changes have been identified to correct deficiencies in areas of the airplane control sytems and to improve the airplane flying qualities.

  13. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  14. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  15. Adapting Strategic Aircraft Assets to a Changing World: Technology Insertion to Provide Flexibility

    DTIC Science & Technology

    1994-09-01

    Distributed Processing ............................ 67 Unembedded Expansions ............................ 71 Concepts for, and Impacts on, Preflight...capabilities through the use of unembedded expansions to the existing avionics complex. But, before we explore these technology insertion concepts, we must... Unembedded Expansions The final hardware technology insertion area focuses on the concept of expanding the aircraft’s capabilities by inserting, or perhaps

  16. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, the Orbital Sciences Pegasus XL rocket is ready for mating to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  17. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, a technician mates the AIM spacecraft, at left, to the Orbital Sciences Pegasus XL rocket, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  18. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  19. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    NASA Technical Reports Server (NTRS)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  20. Status of Duct Liner Technology for Application to Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Watson, Willie R.

    2005-01-01

    Grazing flows and high acoustic intensities impose unusual design requirements on acoustic liner treatments used in aircraft engine nacelles. Increased sound absorption efficiency (requiring increased accuracy of liner impedance specification) is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern, high-bypass ratio engines. This paper reviews the strategy developed at Langley Research Center for achieving a robust measurement technology that is crucial for validating impedance models for aircraft liners. Specifically, the paper describes the current status of computational and data acquisition technologies for reducing impedance in a flow duct. Comparisons of reduced impedances for a "validation liner" using 1980's and 2000's measurement technology are consistent, but show significant deviations (up to 0.5 c exclusive of liner anti-resonance region) from a first principles impedance prediction model as grazing flow centerline Mach numbers increase up to 0.5. The deviations, in part, are believed related to uncertainty in the choice of grazing flow parameters (e.g. cross-section averaged, core-flow averaged, or centerline Mach number?). Also, there may be an issue with incorporating the impedance discontinuities corresponding to the hard wall to liner interface (i.e. leading and trailing edge of test liner) within the discretized finite element model.

  1. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  2. Jet aircraft hydrocarbon fuels technology

    NASA Technical Reports Server (NTRS)

    Longwell, J. P. (Editor)

    1978-01-01

    A broad specification, referee fuel was proposed for research and development. This fuel has a lower, closely specified hydrogen content and higher final boiling point and freezing point than ASTM Jet A. The workshop recommended various priority items for fuel research and development. Key items include prediction of tradeoffs among fuel refining, distribution, and aircraft operating costs; combustor liner temperature and emissions studies; and practical simulator investigations of the effect of high freezing point and low thermal stability fuels on aircraft fuel systems.

  3. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  4. Pegasus XL CYGNSS Prelaunch News Conference

    NASA Image and Video Library

    2016-12-10

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: Tim Dunn, NASA launch director at Kennedy; and Bryan Baldwin, Pegasus launch vehicle program manager for Orbital ATK, Dulles, Virginia. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  5. Gas Stripping in the Simulated Pegasus Galaxy

    NASA Astrophysics Data System (ADS)

    Mercado, Francisco Javier; Samaniego, Alejandro; Wheeler, Coral; Bullock, James

    2017-01-01

    We utilize the hydrodynamic simulation code GIZMO to construct a non-cosmological idealized dwarf galaxy built to match the parameters of the observed Pegasus dwarf galaxy. This simulated galaxy will be used in a series of tests in which we will implement different methods of removing the dwarf’s gas in order to emulate the ram pressure stripping mechanism encountered by dwarf galaxies as they fall into more massive companion galaxies. These scenarios will be analyzed in order to determine the role that the removal of gas plays in rotational vs. dispersion support (Vrot/σ) of our galaxy.

  6. KSC-02pd1946

    NASA Image and Video Library

    2002-12-17

    KENNEDY SPACE CENTER, FLA. - An Orbital Sciences L-1011 aircraft arrives at the Cape Canaveral Air Force Station Skid Strip. Attached underneath the aircraft is the Pegasus XL Expendable Launch Vehicle, which will be transported to the Multi-Payload Processing Facility for testing and verification. The Pegasus will undergo three flight simulations prior to its scheduled launch in late January 2003. The Pegasus XL will carry NASA's Solar Radiation and Climate Experiment (SORCE) into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. .

  7. Nickel-metal hydride (Ni-MH) technology evaluation for aircraft battery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeber, G.; Vukson, S.P.; Erbacher, J.K.

    1996-12-31

    Available cylindrical and prismatic commercial Ni-MH batteries using AB{sub 5} and AB{sub 2} cathodes were evaluated for possible application to military aircraft batteries. Commercial AB{sub 5} technology is further advanced than AB{sub 2} technology and would require less alloy, electrolyte and single cell/battery development for near term (3--5 years) applications. Tested AB{sub 2} technology appears inadequate to meet the near term military requirements and would require a major development in the alloy to overcome the irreversible capacity loss at temperatures above 49 C. In addition, significant advances in alloy, electrolyte and single cell/battery development would also be needed.

  8. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  9. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 2: Aircraft

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study of the quiet turbofan STOL aircraft for short haul transportation was conducted. The objectives of the study were as follows: (1) to determine the relationships between STOL characteristics and economic and social viability of short haul air transportation, (2) to identify critical technology problems involving introduction of STOL short haul systems, (3) to define representative aircraft configurations, characteristics, and costs, and (4) to identify high payoff technology areas to improve STOL systems. The analyses of the aircraft designs which were generated to fulfill the objectives are summarized. The baseline aircraft characteristics are documented and significant trade studies are presented.

  10. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.

    2005-01-01

    Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.

  11. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, the third stage of the Orbital Sciences Pegasus XL rocket is being mated to the AIM spacecraft, at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  12. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  13. The impact of fuels on aircraft technology through the year 2000

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Reck, G. M.

    1980-01-01

    The impact that the supply, quality, and processing costs of future fuels may have on aircraft technology is assessed. The potential range of properties for future jet fuels is discussed along with the establishment of a data base of fuel property effects on propulsion system components. Also, the evolution and evaluation of advanced component technology that would permit the use of broader property fuels and the identification of technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties are examined.

  14. Utilization of sonar technology and microcontroller towards reducing aviation hazards during ground handling of aircraft

    NASA Astrophysics Data System (ADS)

    Khanam, Mosammat Samia; Biswas, Debasish; Rashid, Mohsina; Salam, Md Abdus

    2017-12-01

    Safety is one of the most important factors in the field of aviation. Though, modern aircraft are equipped with many instruments/devices to enhance the flight safety but it is seen that accidents/incidents are never reduced to zero. Analysis of the statistical summary of Commercial Jet Airplane accidents highlights that fatal accidents that occurred worldwide from 2006 through 2015 is 11% during taxing, loading/unloading, parking and towing. Human, handling the aircrafts is one of the most important links in aircraft maintenance and hence play a significant role in aviation safety. Effort has been made in this paper to obviate human error in aviation and outline an affordable system that monitors the uneven surface &obstacles for safe "towing in" and "towing out" of an aircraft by the ground crew. The system revolves around implementation of sonar technology by microcontroller. Ultrasonic sensors can be installed on aircraft wings and tail section to identify the uneven surface &obstacles ahead and provide early warning to the maintenance ground crews.

  15. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    NASA Astrophysics Data System (ADS)

    Becker, Keith Frederick

    Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post

  16. Coupled Loads Analysis of the Modified NASA Barge Pegasus and Space Launch System Hardware

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2015-01-01

    A Coupled Loads Analysis (CLA) has been performed for barge transport of Space Launch System hardware on the recently modified NASA barge Pegasus. The barge re-design was facilitated with detailed finite element analyses by the ARMY Corps of Engineers - Marine Design Center. The Finite Element Model (FEM) utilized in the design was also used in the subject CLA. The Pegasus FEM and CLA results are presented as well as a comparison of the analysis process to that of a payload being transported to space via the Space Shuttle. Discussion of the dynamic forcing functions is included as well. The process of performing a dynamic CLA of NASA hardware during marine transport is thought to be a first and can likely support minimization of undue conservatism.

  17. Advancing Non-Solenoidal Startup on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.

    2016-10-01

    The Pegasus experiment utilizes compact, edge-localized current sources (Ainj 2 - 4 cm2, Iinj 10 kA, Vinj 1 kV) for non-solenoidal local helicity injection (LHI) startup. Recent campaigns are comparing two injector geometries that vary the differing relative contributions of DC helicity input and non-solenoidal inductive voltages. A predictive 0-D model that treats the plasma as a resistive element with time-varying inductance and enforces Ip limits from Taylor relaxation was tested with inward growth of the plasma current channel using injectors on the outboard midplane. Strong inductive drive arises from plasma shape evolution and poloidal field (PF) induction. A major unknown in the model is the resistive dissipation, and hence the electron confinement. Te (R) profile measurements in LHI show centrally-peaked Te > 100 eV while the plasma is coupled to the injectors, suggesting LHI confinement is not strongly stochastic. A second campaign utilizes new injectors in the lower divertor region. This geometry trades subtler relaxation field programming and reduced PF induction for higher HI rates. Present efforts are developing relaxation methods at high BT, with relaxation at BT , inj > 0.15 T achieved to date via higher Iinj and PF manipulation. Conceptual design studies of coaxial helicity injection (CHI) and ECH heating systems for Pegasus have been initiated to explore direct comparison of LHI to CHI with and without ECH assist. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.

  18. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    USGS Publications Warehouse

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne

    2016-01-01

    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  19. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  20. The third stage of the Orbital Sciences Pegasus XL rocket is bei

    NASA Image and Video Library

    2007-04-03

    At Vandenberg Air Force Base in California, technicians prepare to mate the AIM spacecraft (at left) to the SoftRide isolation system on the Orbital Sciences Pegasus XL rocket. The Cosmic Dust Experiment surfaces can be clearly seen as 12 rectangular areas on the aft portion of the spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch from the Pegasus XL rocket is scheduled for April 25.

  1. Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.

    Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into 'tokamak-like' plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from themore » driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.« less

  2. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  3. KSC-06pd0436

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. -Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California is the Pegasus XL launch vehicle and the Space Technology 5 (ST5) spacecraft being prepared for encapsulation before launch. The ST5, mated to Orbital Sciences' Pegasus XL launch vehicle, contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  4. High-Fidelity Aerostructural Design Optimization of Transport Aircraft with Continuous Morphing Trailing Edge Technology

    NASA Astrophysics Data System (ADS)

    Burdette, David A., Jr.

    Adaptive morphing trailing edge technology offers the potential to decrease the fuel burn of transonic commercial transport aircraft by allowing wings to dynamically adjust to changing flight conditions. Current configurations allow flap and aileron droop; however, this approach provides limited degrees of freedom and increased drag produced by gaps in the wing's surface. Leading members in the aeronautics community including NASA, AFRL, Boeing, and a number of academic institutions have extensively researched morphing technology for its potential to improve aircraft efficiency. With modern computational tools it is possible to accurately and efficiently model aircraft configurations in order to quantify the efficiency improvements offered by mor- phing technology. Coupled high-fidelity aerodynamic and structural solvers provide the capability to model and thoroughly understand the nuanced trade-offs involved in aircraft design. This capability is important for a detailed study of the capabilities of morphing trailing edge technology. Gradient-based multidisciplinary design opti- mization provides the ability to efficiently traverse design spaces and optimize the trade-offs associated with the design. This thesis presents a number of optimization studies comparing optimized config- urations with and without morphing trailing edge devices. The baseline configuration used throughout this work is the NASA Common Research Model. The first opti- mization comparison considers the optimal fuel burn predicted by the Breguet range equation at a single cruise point. This initial singlepoint optimization comparison demonstrated a limited fuel burn savings of less than 1%. Given the effectiveness of the passive aeroelastic tailoring in the optimized non-morphing wing, the singlepoint optimization offered limited potential for morphing technology to provide any bene- fit. To provide a more appropriate comparison, a number of multipoint optimizations were performed. With a 3

  5. Study on Construction Technology Standardization of Primary Guide Rope Laying by Multi-rotor Aircraft in Stringing Construction of Transmission Line

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Tang, Guang-Rui; Jiang, Ming; Dong, Yu-Ming

    2017-09-01

    According to the practical situation of stringing construction for Ultra High Voltage (UHV) overhead transmission line, construction technology standardization of primary guide rope laying by multi-rotor aircraft is studied. This paper mainly focuses on the construction preparation, test flight and technology of laying primary guide rope. The summary of the construction technology standardization of primary guide rope laying by multi-rotor aircraft in stringing construction are useful in further guiding practical construction of transmission line.

  6. Pegasus5 is Co-Winner of NASA's 2016 Software of the Year Award

    NASA Image and Video Library

    2016-11-04

    Shareable video highlighting the Pegasus5 software, which was the co-winner of the NASA's 2016 Software of the Year award. Developed at NASA Ames, it helps in the simulation of air flow around space vehicles during launch and re-entry.

  7. Survey of Applications of Active Control Technology for Gust Alleviation and New Challenges for Lighter-weight Aircraft

    NASA Technical Reports Server (NTRS)

    Regan, Christopher D.; Jutte, Christine V.

    2012-01-01

    This report provides a historical survey and assessment of the state of the art in the modeling and application of active control to aircraft encountering atmospheric disturbances in flight. Particular emphasis is placed on applications of active control technologies that enable weight reduction in aircraft by mitigating the effects of atmospheric disturbances. Based on what has been learned to date, recommendations are made for addressing gust alleviation on as the trend for more structurally efficient aircraft yields both lighter and more flexible aircraft. These lighter more flexible aircraft face two significant challenges reduced separation between rigid body and flexible modes, and increased sensitivity to gust encounters due to increased wing loading and improved lift to drag ratios. The primary audience of this paper is engineering professionals new to the area of gust load alleviation and interested in tackling the multifaceted challenges that lie ahead for lighter-weight aircraft.

  8. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  9. Impact of environmental constraints and aircraft technology on airline fleet composition

    NASA Astrophysics Data System (ADS)

    Moolchandani, Kushal A.

    This thesis models an airline's decisions about fleet evolution in order to maintain economic and regulatory viability. The aim is to analyze the fleet evolution under different scenarios of environmental policy and technology availability in order to suggest an optimal fleet under each case. An understanding of the effect of aircraft technologies, fleet size and age distribution, and operational procedures on airline performance may improve the quality of policies to achieve environmental goals. Additionally, the effect of decisions about fleet evolution on air travel is assessed as the change in market demand and profits of an abstracted, benevolent monopolist airline. Attention to the environmental impact of aviation has grown, and this has prompted several organizations such as ICAO (and, in response, NASA) to establish emissions reduction targets to reduce aviation's global climate impact. The introduction of new technology, change in operational procedures, etc. are some of the proposed means to achieve these targets. Of these, this thesis studies the efficacy of implementation of environmental policies in form of emissions constraints as a means to achieve these goals and assesses their impact on an airline's fleet evolution and technology use (along with resulting effects on air travel demand). All studies in this thesis are conducted using the Fleet-level Environmental Evaluation Tool (FLEET), a NASA sponsored simulation tool developed at Purdue University. This tool models airline operational decisions via a resource allocation problem and uses a system dynamics type approach to mimic airline economics, their decisions regarding retirement and acquisition of aircraft and evolution of market demand in response to the economic conditions. The development of an aircraft acquisition model for FLEET is a significant contribution of the author. Further, the author conducted a study of various environmental policies using FLEET. Studies introduce constraints on

  10. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  11. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  12. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  13. Predictive Power-balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Local helicity injection (LHI) with outer poloidal-field (PF) induction for solenoid-free startup is being studied on PEGASUS, reaching Ip <= 0 . 175 MA with 6 kA of injected current. A lumped-parameter circuit model for predicting the performance of LHI initiated plasmas is under development. The model employs energy and helicity balance, and includes applied PF ramping and the inductive effects of shape evolution. Low- A formulations for both the plasma external inductance and a uniform equilibrium-field are used to estimate inductive voltages. PEGASUS LHI plasmas are created near the outboard injectors with aspect ratio (A) ~ 5-6.5 and grow inward to fill the confinement region at A <= 1 . 3 . Initial results match experimental Ip (t) trajectories within 15 kA with a prescribed geometry evolution. Helicity injection is the largest driving term in the initial phase, but in the later phase is reduced to 20-45% of the total drive as PF induction and decreasing plasma inductance become dominant. In contrast, attaining ~1 MA non-solenoidal startup via LHI on NSTX-U will require operation in the regime where helicity injection drive exceeds inductive and geometric changes at full size. A large-area multi-injector array will increase available helicity injection by 3-4 times and allow exploration of this helicity-dominated regime at Ip ~ 0 . 3 MA in PEGASUS. Comparison of model predictions with time-evolving magnetic equilibria is in progress for model validation. Work supported by US DOE Grant DE-FG02-96ER54375.

  14. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-17

    In a clean-room environment at North Vandenberg Air Force Base, technicians look at part of the AIM spacecraft. AIM will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  15. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-17

    In a clean-room environment at North Vandenberg Air Force Base, technicians look at an area of the AIM spacecraft. AIM will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  16. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-17

    In a clean-room environment at North Vandenberg Air Force Base, technicians work on the AIM spacecraft. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  17. SLS Intertank Transported to NASA's Barge Pegasus for Shipment, Testing

    NASA Image and Video Library

    2018-02-22

    A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.

  18. SLS Intertank Transported to NASA's Barge Pegasus for Shipment, testing

    NASA Image and Video Library

    2018-02-22

    A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.

  19. Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.

    2017-10-01

    The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. Implementation and Evaluation of Multiple Adaptive Control Technologies for a Generic Transport Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.

    2010-01-01

    Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies

  1. Pegasus delivers SLS engine section

    NASA Image and Video Library

    2017-03-03

    NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.

  2. Pegasus delivers SLS engine section

    NASA Image and Video Library

    2017-05-18

    NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.

  3. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  4. Design feasibility of an advanced technology supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rowe, W. T.

    1976-01-01

    Research and development programs provide confidence that technology is in-hand to design an economically attractive, environmentally sound supersonic cruise aircraft for commercial operations. The principal results of studies and tests are described including those which define the selection of significant design features. These typically include the results of: (1) wind-tunnel tests, both subsonic and supersonic, (2) propulsion performance and acoustic tests on noise suppressors, including forward-flight effects, (3) studies of engine/airframe integration, which lead to the selection of engine cycles/sizes to meet future market, economic, and social requirements; and (4) structural testing.

  5. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  6. Future Carrier-Based Tactical Aircraft Study

    DOT National Transportation Integrated Search

    1996-03-01

    This report describes an aircraft database which was developed to identify technology trends for several classes of tactical naval aircraft, including subsonic attack, supersonic fighter, and supersonic multimission aircraft classes. This study used ...

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 59: Japanese Technological Innovation. Implications for Large Commercial Aircraft and Knowledge Diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kotler, Mindy L.

    1997-01-01

    This paper explores three factors-public policy, the Japanese (national) innovation system, and knowledge-that influence technological innovation in Japan. To establish a context for the paper, we examine Japanese culture and the U.S. and Japanese patent systems in the background section. A brief history of the Japanese aircraft industry as a source of knowledge and technology for other industries is presented. Japanese and U.S. alliances and linkages in three sectors-biotechnology, semiconductors, and large commercial aircraft (LCA)-and the importation, absorption, and diffusion of knowledge and technology are examined next. The paper closes with implications for diffusing knowledge and technology, U.S. public policy, and LCA.

  8. Public Data Set: Control and Automation of the Pegasus Multi-point Thomson Scattering System

    DOE Data Explorer

    Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-08-12

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in G.M. Bodner et al., 'Control and Automation of the Pegasus Multi-point Thomson Scattering System,' Rev. Sci. Instrum. 87, 11E523 (2016).

  9. KSC-08pd3111

    NASA Image and Video Library

    2008-10-06

    VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB

  10. KSC-08pd3109

    NASA Image and Video Library

    2008-10-06

    VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB

  11. KSC-08pd3110

    NASA Image and Video Library

    2008-10-06

    VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB

  12. KSC-08pd3112

    NASA Image and Video Library

    2008-10-06

    VANDENBERG AIR FORCE BASE, Fla. -- NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft and mated Pegasus XL rocket are being attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB

  13. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment at North Vandenberg Air Force Base, a technician begins the illumination testing of the AIM spacecraft at left. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  14. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment at North Vandenberg Air Force Base, a technician prepares the lights for illumination testing of the AIM spacecraft at left. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  15. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment at North Vandenberg Air Force Base, a technician monitors the AIM spacecraft after illumination testing on the spacecraft's solar array panels. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  16. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment at North Vandenberg Air Force Base, lights are reflected on the solar array panels of the AIM spacecraft during illumination testing. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  17. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-17

    In a clean-room environment at North Vandenberg Air Force Base, technicians remove covers from instruments in the AIM spacecraft while solar panels are partially deployed. AIM will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  18. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-17

    In a clean-room environment at North Vandenberg Air Force Base, technicians remove covers from instruments in the AIM spacecraft while solar panels are partially deployed. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  19. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  20. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be

  1. Aircraft Energy Efficiency (ACEE) status report

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  2. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  3. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  4. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  5. 2002 Industry Studies: Aircraft

    DTIC Science & Technology

    2002-01-01

    aircraft to a defense electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime...between the military and civil market . Though also upgrading the H-1 helicopter series for the USMC, Bell has mortgaged its future on tiltrotor technology ...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  6. Price Determination of General Aviation, Helicopter, and Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1978-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for general aviation, helicopter, and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly as to how new technologies, aircraft complexity and inflation have affected these.

  7. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In Building 1555 at North Vandenberg Air Force Base, workers roll the AIM spacecraft into the "tent" where a partial deployment of the solar arrays on the spacecraft will take place. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  8. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In Building 1555 at North Vandenberg Air Force Base, workers prepare the area where a partial deployment of the solar arrays on the AIM spacecraft will take place. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  9. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In a clean-room environment containing the AIM spacecraft (background) at North Vandenberg Air Force Base, a technician studies results of illumination testing on the spacecraft's solar array panels. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  10. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians in bunny suits prepare for the solar array deployment on the AIM spacecraft. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  11. Pegasus power system facility upgrades

    NASA Astrophysics Data System (ADS)

    Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.

    2008-11-01

    Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.

  12. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  13. KSC-08pd3105

    NASA Image and Video Library

    2008-10-06

    VANDENBERG AIR FORCE BASE, Fla. -- On the ramp on Vandenberg Air Force Base in California, the Orbital Sciences’ L-1011 aircraft is being prepared to receive the Pegasus XL rocket and NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB

  14. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  15. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  16. Unmanned reconnaissance aircraft, Predator B in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. ALTAIR/PREDATOR B -- General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator testbed aircraft to validate a variety of command and control technologies for unmanned aerial vehicles (UAV), as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Ten-foot extensions have been added to each wing, giving the Altair an overall wingspan of 84 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of those basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  17. Quiet turbofan STOL aircraft for short haul transportation, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.

    1973-01-01

    The characteristics for a quiet turbofan short takeoff aircraft for short haul transportation applications are discussed. The following subjects are examined: (1) representative aircraft configurations, characteristics, and costs associated with the short haul aircraft development and operation, (2) critical technology and technology related problems to be resolved in successful introduction of representative short haul aircraft, (3) relationships between quiet short takeoff aircraft and the economic and social viability of short haul, and (4) identification of high payoff technology areas. In order to properly evaluate the candidate aircraft designs and to determine their economic viability and community acceptance, a real world scenario was developed and projected to 1990.

  18. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  19. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  20. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  1. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  2. Flight test techniques for the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Cooper, James M., Jr.; Sefic, Walter J.

    1987-01-01

    The X-29A advanced technology demonstrator is a single-seat, single-engine aircraft with a forward-swept wing. The aircraft incorporates many advanced technologies being considered for this country's next generation of aircraft. This unusual aircraft configuration, which had never been flown before, required a precise approach to flight envelope expansion. This paper describes the real-time analysis methods and flight test techniques used during the envelope expansion of the x-29A aircraft, including new and innovative approaches.

  3. Study of aerodynamic technology for VSTOL fighter attack aircraft

    NASA Technical Reports Server (NTRS)

    Burhans, W., Jr.; Crafta, V. J., Jr.; Dannenhoffer, N.; Dellamura, F. A.; Krepski, R. E.

    1978-01-01

    Vertical short takeoff aircraft capability, supersonic dash capability, and transonic agility were investigated for the development of Fighter/attack aircraft to be accommodated on ships smaller than present aircraft carriers. Topics covered include: (1) description of viable V/STOL fighter/attack configuration (a high wing, close-coupled canard, twin-engine, control configured aircraft) which meets or exceeds specified levels of vehicle performance; (2) estimates of vehicle aerodynamic characteristics and the methodology utilized to generate them; (3) description of propulsion system characteristics and vehicle mass properties; (4) identification of areas of aerodynamic uncertainty; and (5) a test program to investigate the areas of aerodynamic uncertainty in the conventional flight mode.

  4. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; DeFelice, Tom P.

    2016-09-01

    Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.

  5. Aircraft

    DTIC Science & Technology

    2002-01-01

    electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime contractor/integrator of fixed...of the spares procurement and distribution processes. Finally, they recognize that excellence in Information Technology (IT) is a strategic advantage...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  6. Study of quiet turbofan STOL aircraft for short haul transportation

    NASA Technical Reports Server (NTRS)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    A study of quiet turbofan short takeoff aircraft for short haul air transportation was conducted. The objectives of the study were to: (1) define representative aircraft configurations, characteristics, and costs associated with their development, (2) identify critical technology and technology related problems to be resolved in successful introduction of representative short haul aircraft, (3) determine relationships between quiet short takeoff aircraft and the economic and social viability of short haul, and (4) identify high payoff technology areas.

  7. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, a technician places a star tracker cover on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  8. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In Building 1555 at North Vandenberg Air Force Base, workers lift the AIM spacecraft from its stand in order to move it into an area where a partial deployment of the solar arrays on the spacecraft will take place. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  9. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, two of the solar array panels on the AIM spacecraft are deployed for testing. Inside are the instruments that will study polar mesospheric clouds located at the edge of space. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  10. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-10

    Inside a clean room at Vandenberg Air Force Base in California, NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft is weighed. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  11. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In Building 1555 at North Vandenberg Air Force Base, workers lower the AIM spacecraft onto a moveable base. AIM will be moved into an area where a partial deployment of the solar arrays on the spacecraft will take place.The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  12. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    In Building 1555 at North Vandenberg Air Force Base, workers get ready to attach the overhead crane to the AIM spacecraft. AIM will be moved into an area where a partial deployment of the solar arrays on the spacecraft will take place. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  13. Orbital Sciences Pegasus XL AIM Arrival

    NASA Image and Video Library

    2007-03-10

    NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft arrives in a clean room at Vandenberg Air Force Base in California. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  14. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, technicians place a star tracker cover on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  15. Orbital Sciences Pegasus XL AIM Processing

    NASA Image and Video Library

    2007-03-16

    Inside the clean-room "tent" of Building 1555 at North Vandenberg Air Force Base, a star tracker cover is ready for placement on the AIM spacecraft during testing of the solar array panel deployment. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  16. Pegasus XL CYGNSS Prelaunch News Conference

    NASA Image and Video Library

    2016-12-10

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: George Diller of NASA Communications; Christine Bonniksen, CYGNSS program executive in the Earth Science Division of the Science Mission Directorate at NASA Headquarters in Washington, D.C.; Tim Dunn, NASA launch director at Kennedy; Bryan Baldwin, Pegasus launch vehicle program manager for Orbital ATK, Dulles, Virginia; and John Scherrer, CYGNSS project manager for the Southwest Research Institute in San Antonio, Texas. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  17. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  18. Rating aircraft on energy

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1974-01-01

    Questions concerning the energy efficiency of aircraft compared to ground transport are considered, taking into account as energy intensity the energy consumed per passenger statute mile. It is found that today's transport aircraft have an energy intensity potential comparable to that of ground modes. Possibilities for improving the energy density are also much better in the case of aircraft than in the case of ground transportation. Approaches for potential reductions in aircraft energy consumption are examined, giving attention to steps for increasing the efficiency of present aircraft and to reductions in energy intensity obtainable by the introduction of new aircraft utilizing an advanced technology. The use of supercritical aerodynamics is discussed along with the employment of composite structures, advances in propulsion systems, and the introduction of very large aircraft. Other improvements in fuel economy can be obtained by a reduction of skin-friction drag and a use of hydrogen fuel.

  19. A study protocol of the effectiveness of PEGASUS: a multi-centred study comparing an intervention to promote shared decision making about breast reconstruction with treatment as usual.

    PubMed

    Harcourt, Diana; Paraskeva, Nicole; White, Paul; Powell, Jane; Clarke, Alex

    2017-10-02

    Increasingly, women elect breast reconstruction after mastectomy. However, their expectations of surgery are often not met, and dissatisfaction with outcome and ongoing psychosocial concerns and distress are common. We developed a patient-centered intervention, PEGASUS:(Patients' Expectations and Goals: Assisting Shared Understanding of Surgery) which supports shared decision making by helping women clarify their own, individual goals about reconstruction so that they can discuss these with their surgeon. Our acceptability/feasibility work has shown it is well received by patients and health professionals alike. We now need to establish whether PEGASUS improves patients' experiences of breast reconstruction decision making and outcomes. The purpose of this study is, therefore, to examine the effectiveness of PEGASUS, an intervention designed to support shared decision making about breast reconstruction. A multi-centered sequential study will compare the impact of PEGASUS with usual care, in terms of patient reported outcomes (self-reported satisfaction with the outcome of surgery, involvement in decision making and in the consultation) and health economics. Initially we will collect data from our comparison (usual care) group (90 women) who will complete standardized measures (Breast-Q, EQ5D -5 L and ICECAP- A) at the time of decision making, 3, 6 and 12 months after surgery. Health professionals will then be trained to use PEGASUS, which will be delivered to the intervention group (another 90 women completing the same measures at the time of decision making, and 3, 6 and 12 months after surgery). Health professionals and a purposefully selected sample of participants will be interviewed about whether their expectations of reconstruction were met, and their experiences of PEGASUS (if appropriate). PEGASUS may have the potential to provide health professionals with an easily accessible tool aiming to support shared decision making and improve patients

  20. Aircraft Loss of Control: Problem Analysis for the Development and Validation of Technology Solutions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Newman, Richard L.; Crider, Dennis A.; Klyde, David H.; Foster, John V.; Groff, Loren

    2016-01-01

    Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes. LOC can result from a wide spectrum of precursors (or hazards), often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and the validation process must provide a means of assessing system effectiveness and coverage of these hazards. This paper provides a detailed description of a methodology for analyzing LOC as a dynamics and control problem for the purpose of developing effective technology solutions. The paper includes a definition of LOC based on several recent publications, a detailed description of a refined LOC accident analysis process that is illustrated via selected example cases, and a description of planned follow-on activities for identifying future potential LOC risks and the development of LOC test scenarios. Some preliminary considerations for LOC of Unmanned Aircraft Systems (UAS) and for their safe integration into the National Airspace System (NAS) are also discussed.

  1. PTERA - Modular Aircraft Flight Test

    NASA Image and Video Library

    2016-01-13

    Aerospace testing can be costly and time consuming but a new modular, subscale remotely piloted aircraft offers NASA researchers more affordable options for developing a wide range of cutting edge aviation and space technologies. The Prototype-Technology Evaluation and Research Aircraft (PTERA), developed by Area-I, Inc., of Kennesaw, Georgia, is an extremely versatile and high quality, yet inexpensive, flying laboratory bridging the gap between wind tunnels and crewed flight testing.

  2. KSC-02pd1949

    NASA Image and Video Library

    2002-12-17

    KENNEDY SPACE CENTER, FLA. -- Workers at the Cape Canaveral Air Force Station Skid Strip get ready to remove the Pegasus XL Expendable Launch Vehicle attached underneath the Orbital Sciences L-1011 aircraft. The Pegasus will be transported to the Multi-Payload Processing Facility for testing and verification. The Pegasus will undergo three flight simulations prior to its scheduled launch in late January 2003. The Pegasus XL will carry NASA's Solar Radiation and Climate Experiment (SORCE) into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. .

  3. KSC-02pd1951

    NASA Image and Video Library

    2002-12-17

    KENNEDY SPACE CENTER, FLA. -- Workers at the Cape Canaveral Air Force Station Skid Strip stand next to the Pegasus XL Expendable Launch Vehicle underneath the Orbital Sciences L-1011 aircraft. The Pegasus will be transported to the Multi-Payload Processing Facility for testing and verification. The Pegasus will undergo three flight simulations prior to its scheduled launch in late January 2003. The Pegasus XL will carry NASA's Solar Radiation and Climate Experiment (SORCE) into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. .

  4. Pegasus Airfield Repair and Protection: Laboratory Trials of White Ice Paint to Improve the Energy Reflectance Properties of the Glacial-Ice Runway Surface

    DTIC Science & Technology

    2015-01-01

    1 Introduction The Pegasus White Ice Runway at McMurdo Station, Antarctica , has expe- rienced significant melting during the past two austral...Laboratory Trials of White Ice Paint to Improve the Energy Reflectance Properties of the Glacial- Ice Runway Surface Co ld R eg io ns R es ea rc h...ERDC/CRREL TN-15-1 January 2015 Pegasus Airfield Repair and Protection Laboratory Trials of White Ice Paint to Improve the Energy Reflectance

  5. Quiet aircraft design and operational characteristics

    NASA Technical Reports Server (NTRS)

    Hodge, Charles G.

    1991-01-01

    The application of aircraft noise technology to the design and operation of aircraft is discussed. Areas of discussion include the setting of target airplane noise levels, operational considerations and their effect on noise, and the sequencing and timing of the design and development process. Primary emphasis is placed on commercial transport aircraft of the type operated by major airlines. Additionally, noise control engineering of other types of aircraft is briefly discussed.

  6. Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison; Oak Ridge Associated Universities] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-09-30

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment,' Nucl. Fusion 57, 022018 (2017).

  7. KSC-08pd3108

    NASA Image and Video Library

    2008-10-06

    VANDENBERG AIR FORCE BASE, Fla. -- A closeup of Orbital Sciences’ Pegasus XL rocket for NASA’s Interstellar Boundary Explorer, or IBEX, spacecraft as it is enroute to the ramp on Vandenberg Air Force Base in California. There, the rocket will be attached to Orbital Sciences’ L-1011 aircraft for launch. IBEX is targeted for launch from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean, on Oct. 19. IBEX will be launched aboard the Pegasus rocket dropped from under the wing of the L-1011 aircraft flying over the Pacific Ocean. The Pegasus will carry the spacecraft approximately 130 miles above Earth and place it in orbit. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. Photo credit: NASA/Mark Mackley, VAFB

  8. Examination of the costs, benefits and enery conservation aspects of the NASA aircraft fuel conservation technology program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The costs and benefits of the NASA Aircraft Fuel Conservation Technology Program are discussed. Consideration is given to a present worth analysis of the planned program expenditures, an examination of the fuel savings to be obtained by the year 2005 and the worth of this fuel savings relative to the investment required, a comparison of the program funding with that planned by other Federal agencies for energy conservation, an examination of the private industry aeronautical research and technology financial posture for the period FY 76 - FY 85, and an assessment of the potential impacts on air and noise pollution. To aid in this analysis, a computerized fleet mix forecasting model was developed. This model enables the estimation of fuel consumption and present worth of fuel expenditures for selected commerical aircraft fleet mix scenarios.

  9. Non-inductively driven tokamak plasmas at near-unity βt in the Pegasus toroidal experiment

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Rhodes, A. T.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Weberski, J. D.

    2018-05-01

    A major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓi, high elongation κ, and high toroidal and normalized beta ( βt and βN) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓi. The low aspect ratio ( R0/a ˜1.2 ) of Pegasus allows access to high κ and high normalized plasma currents ( IN=Ip/a BT>14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high βt plasmas. Equilibrium analyses indicate that βt up to ˜100% is achieved. These high βt discharges disrupt at the ideal no-wall β limit at βN˜7.

  10. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  11. Design definition study of a life/cruise fan technology V/STOL aircraft. Volume 2, addendum 2: Program risk assessment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results are presented of a risk assessment study conducted on two technology aircraft. The aircraft system components were reviewed and assessed for risk based on: (1) complexity relative to state-of-the-art, (2) manufacturing and qualification testing, (3) availability and delays, and (4) cost/schedule impact. These assessments were based on five risk nomenclatures: low, minor, moderate, high, and extreme. Each aircraft system was assigned an overall risk rating depending upon its contribution to the capability of the aircraft to achieve the performance goals. The slightly lower Sabreliner performance margin is due to the restricted flight envelope, the fixed landing gear, and internal fuel capacity. The Sabreliner with retractable gear and allowed to fly at its best speed and altitude would reflect performance margins similar to the New Airframe. These significant margins, inherent with the MCAIR three gas generator/three fan propulsion system, are major modifiers to risk assessment of both aircraft. The estimated risk and the associated key system and performance areas are tabulated.

  12. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  13. Overview of Non-Solenoidal Startup Studies in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Reusch, J. A.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.

    2016-10-01

    Local helicity injection (LHI) is a non-solenoidal startup method pursued on Pegasus utilizing compact, high power current sources (Ainj 2 - 4 cm2, Iinj 10 kA, Vinj 1 kV) at the plasma edge. Outboard injectors (Ninj = 4 , Ainj = 8 cm2) produce Ip 170 kA plasmas compatible with Ohmic drive. A 0-D model that treats the plasma as a resistive element with time-varying inductance and enforces Ip limits from Taylor relaxation is used to interpret experimental Ip(t) in several scenarios. Strong inductive drive arises from the plasma shape evolution, in addition to poloidal field induction. A new injector system has recently been installed in the lower divertor region (Ninj = 2 , Ainj = 8 cm2) to explore the implications of geometric placement of the helicity injectors on LHI startup. This geometry supports tests of reconnection dynamics seen in NIMROD simulations, high-BT effects expected in larger devices, and LHI electron confinement with and without inductive assist. Plasmas with Ip > 130 kA, Vinj 0.5 kV, Δtpulse 8 ms and BT /BT , max <= 50 % are produced with the inboard system to date, consistent with performance expectations. Higher Ip is expected with increased BT, Vinj, and Δtpulse . Thomson scattering data in both geometries indicate high Te >= 100 eV during LHI, suggesting the confinement is not strongly stochastic. Conceptual design work is exploring the feasibility of coaxial helicity injection and ECH heating on Pegasus in addition to LHI. Work supported by US DOE Grant DE-FG02-96ER54375.

  14. Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III

    2005-01-01

    Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.

  15. KSC-02pd0117

    NASA Image and Video Library

    2002-01-10

    VANDENBERG AFB, CALIF. -- A worker helps guide the second half of the encapsulation around the High Energy Solar Spectroscopic Imager (HESSI) atop the Pegasus XL rocket before its transport to Florida. The Pegasus is the vehicle that will launch HESSI on its primary mission to explore the basic physics of particle acceleration and energy release in solar flares. The launch of PegasusXL/HESSI is scheduled for Feb. 5, 2002, from beneath an Orbital Sciences Corp. L-1011 aircraft over the Atlantic Ocean

  16. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    NASA Technical Reports Server (NTRS)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  17. Integrated controls for a new aircraft generation

    NASA Technical Reports Server (NTRS)

    Mace, W. D.; Howell, W. E.

    1978-01-01

    Many of the commercial aircraft now flying will have to be phased out in the early 1980s because of fuel inefficiency and unacceptable noise levels. This paper discusses the role of new digital technology in making aircraft more fuel efficient, more reliable, and quieter. Attention is given to the integration of sensing and control functions in an aircraft in order to provide a simple, lightweight, and high-redundancy system. Technology under development now is expected to come on-line in the 1990s.

  18. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  19. Veff Scaling of Te and ne Measurements During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.

    2017-10-01

    Understanding the electron confinement of local helicity injection (LHI) is critical in order to evaluate its scalability as a startup technique to MA-class devices. Electron confinement in the Pegasus Toroidal Experiment is investigated using multi-point Thomson scattering (TS). The Pegasus TS system utilizes a set of high-throughput transmission gratings and intensified CCDs to measure Te and ne profiles. Previous TS measurements indicated peaked Te profiles 120 eV in outboard injector discharges characterized by strong inductive drive and low LHI drive. Injectors designed to have dominant non-inductive drive have recently been installed in the divertor region of Pegasus to understand the relationship between effective drive voltage, Veff, and plasma performance. At low Veff and reduced plasma current, Ip 60 kA, TS measurements reveal a flat Te profile 50 eV, with a peaked ne profile 1 ×1019 m-3, resulting in a slightly peaked pe profile. As current drive is increased, the Te profiles become hollow with a core Te 50 eV and an edge Te 120 -150 eV. These hollow profiles appear after the start of the Ip flattop and are sustained until the discharge terminates. The ne profiles drop in magnitude to < 1 ×1019 m-3 but remain somewhat peaked. Initial results suggest a weak scaling between input power and core Te. Additional studies are planned to identify the mechanisms behind the anomalous profile features. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. KSC-04pd1636

    NASA Image and Video Library

    2004-07-27

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is raised to a vertical position. It will be lifted onto a test stand for launch processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.

  1. KSC-04pd1638

    NASA Image and Video Library

    2004-07-27

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is placed on a work stand for processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.

  2. KSC-04pd1637

    NASA Image and Video Library

    2004-07-27

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is raised to a vertical position. It will be lifted onto a test stand for launch processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.

  3. KSC-04pd1639

    NASA Image and Video Library

    2004-07-27

    KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is on a work stand waiting for processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.

  4. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M

    2008-10-01

    Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10(7)-10(8) electrons packed in bunches of approximately 100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.

  5. KSC-03pd0506

    NASA Image and Video Library

    2003-02-18

    KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft sits on the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry into space the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  6. KSC-03pd0505

    NASA Image and Video Library

    2003-02-18

    KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft arrives at the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry into space the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission, GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  7. KSC-03pd0504

    NASA Image and Video Library

    2003-02-18

    KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft arrives at the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry ito orbit the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission, GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  8. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  9. Enhanced Control for Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.

    2017-10-01

    Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.

  10. Variable pitch fan system for NASA/Navy research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, W. P.; Black, D. M.; Yates, A. F.

    1977-01-01

    Preliminary design of a shaft driven, variable-pitch lift fan and lift-cruise fan was conducted for a V/STOL Research and Technology Aircraft. The lift fan and lift-cruise fan employed a common rotor of 157.5 cm diameter, 1.18 pressure ratio variable-pitch fan designed to operate at a rotor-tip speed of 284 mps. Fan performance maps were prepared and detailed aerodynamic characteristics were established. Cost/weight/risk trade studies were conducted for the blade and fan case. Structural sizing was conducted for major components and weights determined for both the lift and lift-cruise fans.

  11. Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.

  12. Remotely piloted aircraft in the civil environment

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.

    1977-01-01

    Remotely piloted aircraft (RPA's) are of increasing interest to the military and others, as evidenced by a number of technology and development programs that are currently funded or planned. These programs have led to a number of test aircraft with significant capabilities, and future remotely piloted aircraft are forecast to become even more capable as the technology in a number of important subsystem areas is progressing at a rapid rate. As the size, weight and cost of RPA's is reduced, the prospect of using them for civilian applications becomes more likely.

  13. NASA's Research in Aircraft Vulnerability Mitigation

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    2005-01-01

    Since its inception in 1958, the National Aeronautics and Space Administration s (NASA) role in civil aeronautics has been to develop high-risk, high-payoff technologies to meet critical national aviation challenges. Following the events of Sept. 11, 2001, NASA recognized that it now shared the responsibility for improving homeland security. The NASA Strategic Plan was modified to include requirements to enable a more secure air transportation system by investing in technologies and collaborating with other agencies, industry, and academia. NASA is conducting research to develop and advance innovative and commercially viable technologies that will reduce the vulnerability of aircraft to threats or hostile actions, and identify and inform users of potential vulnerabilities in a timely manner. Presented in this paper are research plans and preliminary status for mitigating the effects of damage due to direct attacks on civil transport aircraft. The NASA approach to mitigation includes: preventing loss of an aircraft due to a hit from man-portable air defense systems; developing fuel system technologies that prevent or minimize in-flight vulnerability to small arms or other projectiles; providing protection from electromagnetic energy attacks by detecting directed energy threats to aircraft and on/off-board systems; and minimizing the damage due to high-energy attacks (explosions and fire) by developing advanced lightweight, damage-resistant composites and structural concepts. An approach to preventing aircraft from being used as weapons of mass destruction will also be discussed.

  14. An assessment of the benefits of the use of NASA developed fuel conservative technology in the US commercial aircraft fleet

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.

  15. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  16. Jet aircraft emissions during cruise: Present and future

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1975-01-01

    Forecasts of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are compared to cruise emission for present day aircraft. The forecasts are based on: (1) knowledge of emission characteristics of combustors and augmentors; (2) combustion research in emission reduction technology, and (3) trends in projected engine designs for advanced subsonic or supersonic commercial aircraft. Recent progress that was made in the evolution of emissions reduction technology is discussed.

  17. Pseudosatellite technologies based on the use of functionally stable complexes of remote-piloted aircrafts

    NASA Astrophysics Data System (ADS)

    Mashkov, O. A.; Samborskiy, I. I.

    2009-10-01

    A bundle of papers dealing with functionally stable systems requires the necessity of analyzing of obtained results and their understanding in a general context of cybernetic's development and applications. Description of this field of science, main results and perspectives of the new theory of functionally stability of dynamical systems concerning the problem of remote-piloted aircrafts engineering using pseudosatellite technologies are proposed in the paper.

  18. Pegasus International, Inc. coating removal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    The Pegasus Coating Removal System (PCRS) was demonstrated at Florida International University (FIU) where it was being evaluated for efficiency and cost. In conjunction with the FIU testing demonstration, a human factors assessment was conducted to assess the hazards and associated safety and health issues of concern for workers utilizing this technology. The PCRS is a chemical paste that is applied to the surface using a brush, roller, or airless sprayer. After the type of PCRS, thickness, and dwell time have been determined, a laminated backed material is placed on top of the chemical paste to slow down the dryingmore » process and to provide a mechanism to strip-off the chemical. After the dwell time is reached, the chemical substrate can be removed. Scrapers may be used to break-loose the layers as necessary or to break-loose the layers that are not removed when the laminated paper is picked up. Residue may also be cleaned off of the surface with a damp sponge with an agitating motion, absorbent sponges, or a vacuum, as needed. The paint and removal agent is then placed in drums for disposal at a later time. During the assessment sampling was conducted for organic vapors and general observational techniques were conducted for ergonomics. Recommendations for improved worker safety and health during application and removal of the PCRS include: (1) work practices that reflect avoidance of exposure or reducing the risk of exposure; (2) assuring all PPE and equipment are compatible with the chemicals being used; (3) work practices that reduce the worker`s need to walk on the slippery surface caused by the chemical or the use of special anti-slip soles; (4) careful control of overspray (if a spray application is used); and (5) the use of ergonomically designed long-handled tools to apply and remove the chemical (to alleviate some of the ergonomic concerns).« less

  19. KSC-02pd1947

    NASA Image and Video Library

    2002-12-17

    KENNEDY SPACE CENTER, FLA. -- Attached underneath the Orbital Sciences L-1011 aircraft is the Pegasus XL Expendable Launch Vehicle, which will be transported to the Multi-Payload Processing Facility for testing and verification. The Pegasus will undergo three flight simulations prior to its scheduled launch in late January 2003. The Pegasus XL will carry NASA's Solar Radiation and Climate Experiment (SORCE) into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. .

  20. KSC-02pd1952

    NASA Image and Video Library

    2002-12-17

    KENNEDY SPACE CENTER, FLA. -- Attached underneath the Orbital Sciences L-1011 aircraft is the Pegasus XL Expendable Launch Vehicle, which will be transported to the Multi-Payload Processing Facility for testing and verification. The Pegasus will undergo three flight simulations prior to its scheduled launch in late January 2003. The Pegasus XL will carry NASA's Solar Radiation and Climate Experiment (SORCE) into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere. .

  1. Price-Weight Relationships of General Aviation, Helicopters, Transport Aircraft and Engines

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1981-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's cost to manufacture, economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for sailplanes, general aviation, agriculture, helicopter, business and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly how new technologies, aircraft complexity and inflation have affected these.

  2. Technologies and Concepts for Reducing the Fuel Burn of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.

  3. The Pegasus-Upgrade Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Barr, J. L.; Frerichs, H. G.; Lewicki, B. T.; Reusch, J. A.; Schmitz, O.; Winz, G. R.

    2015-11-01

    Tokamak operation at near-unity aspect ratio provides access to advanced tokamak physics at modest parameters. High plasma current is accessible at very low toroidal field. This offers H-mode performance at Te levels that allow use of electrostatic and magnetic probe arrays through the edge pedestal region into the plasma core. An upgrade to the Pegasus ST is planned to exploit these features and pursue unique studies in three areas: local measurements of pedestal and ELM dynamics at Alfvenic timescales; direct measurement of the local plasma response to application of 3D magnetic perturbations with high spectral flexibility; and extension of Local Helicity Injection for nonsolenoidal startup to NSTX-U-relevant confinement and stability regimes. Significant but relatively low-cost upgrades to the facility are proposed: a new centerstack with larger solenoid and 2x the number of toroidal field conductors; a new TF power supply and conversion of the 200 MVA OH power supply to a cascaded multilevel inverter configuration; and installation of an extensive 3D-magnetic perturbation coil system for ELM mitigation and suppression studies. The upgraded facility will provide 0.3 MA plasmas with pulse lengths of 50-100 msec flattop, aspect ratio <1.25, and toroidal field up to 0.4 T. These research activities will be integrated into related efforts on DIII-D and NSTX-U. Work supported by US DOE grant DE-FG02-96ER54375.

  4. Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highly productive example

    NASA Astrophysics Data System (ADS)

    A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.

  5. Flexible manufacturing of aircraft engine parts

    NASA Astrophysics Data System (ADS)

    Hassan, Ossama M.; Jenkins, Douglas M.

    1992-06-01

    GE Aircraft Engines, a major supplier of jet engines for commercial and military aircraft, has developed a fully integrated manufacturing facility to produce aircraft engine components in flexible manufacturing cells. This paper discusses many aspects of the implementation including process technologies, material handling, software control system architecture, socio-technical systems and lessons learned. Emphasis is placed on the appropriate use of automation in a flexible manufacturing system.

  6. Design definition study of NASA/Navy lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Assessed are the risks associated with the lift/cruise fan technology V/STOL aircraft program. Three candidate concepts for the technology aircraft design approach are considered: the lowspeed only modification, the full performance modification, and the all new aircraft concepts. Survey results indicate that the lift/cruise fan technology aircraft program is feasible, from the standpoint of technical risk, with some evidence of uncertainty of meeting the planned schedule and relatively minor impact on estimated program costs.

  7. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  8. Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment

    DOE PAGES

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.; ...

    2018-03-14

    Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less

  9. Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.

    Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less

  10. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  11. SLS Engine Section Test Article Loaded on Barge Pegasus at NASA's Michoud Assembly Facility

    NASA Image and Video Library

    2017-04-27

    A NASA move team loaded the engine section structural qualification test article for the Space Launch System into the barge Pegasus docked in the harbor at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from Building 103, Michoud’s 43-acre rocket factory, to the barge where it was loaded for a river trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The barge Pegasus will travel 1,240 miles by river to Marshall and endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  12. Longitudinal Static Stability and wake visualization of high altitude long endurance aircraft developed in Bandung institute of technology

    NASA Astrophysics Data System (ADS)

    Irsyad Lukman, E.; Agoes Moelyadi, M.

    2018-04-01

    A High Altitude Long Endurance (HALE) Unamanned Aerial Vehicle (UAV) is currently being researched in Bandung Institute of Technology. The HALE is designed to be a pseudo-sattelite for information and communication purpose in Indonesia. This paper would present the longitudinal static stability of the aircraft that was analysed using DATCOM as well as simulation of the wing using ANSYS CFX. Result shows that the aircraft has acceptable stability and the wake from the wing at climbing condition cannot be ignored, however it does not affect the horizontal tail.

  13. Design optimization of high-speed proprotor aircraft

    NASA Technical Reports Server (NTRS)

    Schleicher, David R.; Phillips, James D.; Carbajal, Kevin B.

    1993-01-01

    NASA's high-speed rotorcraft (HSRC) studies have the objective of investigating technology for vehicles that have both low downwash velocities and forward flight speed capability of up to 450 knots. This paper investigates a tilt rotor, a tilt wing, and a folding tilt rotor designed for a civil transport mission. Baseline aircraft models using current technology are developed for each configuration using a vertical/short takeoff and landing (V/STOL) aircraft design synthesis computer program to generate converged vehicle designs. Sensitivity studies and numerical optimization are used to illustrate each configuration's key design tradeoffs and constraints. Minimization of the gross takeoff weight is used as the optimization objective function. Several advanced technologies are chosen, and their relative impact on future configurational development is discussed. Finally, the impact of maximum cruise speed on vehicle figures of merit (gross weight, productivity, and direct operating cost) is analyzed. The three most important conclusions from the study are payload ratios for these aircraft will be commensurate with current fixed-wing commuter aircraft; future tilt rotors and tilt wings will be significantly lighter, more productive, and cheaper than competing folding tilt rotors; and the most promising technologies are an advanced-technology proprotor for both tilt rotor and tilt wing and advanced structural materials for the folding tilt rotor.

  14. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  15. Hydrogen Storage for Aircraft Applications Overview

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  16. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  17. Aerodynamics/ACEE: Aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  18. Public Data Set: A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586)

    2016-09-16

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in D.J. Schlossberg et. al., 'A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment,' Rev. Sci. Instrum. 87, 11E403 (2016).

  19. The DGPS based navigation and positioning system of the Helsinki University of Technology Short SC7 Skyvan research aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauriainen, S.; Ahola, P.; Hallikainen, M.

    1996-10-01

    The typical airborne remote sensing measurements conducted by the Helsinki University of Technology laboratory of space technology require very precise navigation over the selected measurement sites. This means that both system performance as far as positioning is concerned and the actual flight track of the aircraft has to be within 10 meters. To meet these requirements, a custom made navigation system was designed and installed in the SHORT SC7 Skyvan research aircraft of the Helsinki University of Technology. The system is based on the Finnish national Differential GPS network providing positioning accuracy within a few meters within Finland. For pilotmore » guidance, a graphical user interface with mission specific software is used to give the pilots an overview of the relative position and orientation to the measurement target. In addition, the system is used to synchronize the scientific instruments and record the actual flight track. 2 refs., 2 figs.« less

  20. User Guide to the Aircraft Cumulative Probability Chart Template

    DTIC Science & Technology

    2009-07-01

    Technology Organisation *AeroStructures Technologies DSTO-TR-2332 ABSTRACT To ensure aircraft structural integrity is maintained to an acceptable level...cracking (or failure) which may be used to assess the life of aircraft structures . RELEASE LIMITATION Approved for public release Report...ADDRESS(ES) DSTO Defence Science and Technology Organisation ,506 Lorimer St,Fishermans Bend Victoria 3207 Australia, , , 8. PERFORMING ORGANIZATION