Science.gov

Sample records for aircraft typically fly

  1. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  2. Flying Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is pioneering various Unmanned Aircraft System (UAS) technologies and procedures which may enable routine access to the National Airspace System (NAS), with an aim for Next Gen NAS. These tools will aid in the development of technologies and integrated capabilities that will enable high value missions for science, security, and defense, and open the door to low-cost, extreme-duration, stratospheric flight. A century of aviation evolution has resulted in accepted standards and best practices in the design of human-machine interfaces, the displays and controls of which serve to optimize safe and efficient flight operations and situational awareness. The current proliferation of non-standard, aircraft-specific flight crew interfaces in UAS, coupled with the inherent limitations of operating UAS without in-situ sensory input and feedback (aural, visual, and vestibular cues), has increased the risk of mishaps associated with the design of the "cockpit." The examples of current non- or sub- standard design features range from "annoying" and "inefficient", to those that are difficult to manipulate or interpret in a timely manner, as well as to those that are "burdensome" and "unsafe." A concerted effort is required to establish best practices and standards for the human-machine interfaces, for the pilot as well as the air traffic controller. In addition, roles, responsibilities, knowledge, and skill sets are subject to redefining the terms, "pilot" and "air traffic controller", with respect to operating UAS, especially in the Next-Gen NAS. The knowledge, skill sets, training, and qualification standards for UAS operations must be established, and reflect the aircraft-specific human-machine interfaces and control methods. NASA s recent experiences flying its MQ-9 Ikhana in the NAS for extended duration, has enabled both NASA and the FAA to realize the full potential for UAS, as well as understand the implications of

  3. Grob aircraft construction: The G 110 flies

    NASA Technical Reports Server (NTRS)

    Malzbender, B.

    1982-01-01

    Description, specifications and test flight performance of the G 110 are provided. The G 110 completely incorporates modern GfK construction techniques which heretofore have been developed and perfected for the construction of sailplanes. The G 110 is a prototype of a GfK constructed motorized aircraft and shows much promise for the future of German aviation.

  4. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  5. How to fly an aircraft with control theory and splines

    NASA Technical Reports Server (NTRS)

    Karlsson, Anders

    1994-01-01

    When trying to fly an aircraft as smoothly as possible it is a good idea to use the derivatives of the pilot command instead of using the actual control. This idea was implemented with splines and control theory, in a system that tries to model an aircraft. Computer calculations in Matlab show that it is impossible to receive enough smooth control signals by this way. This is due to the fact that the splines not only try to approximate the test function, but also its derivatives. A perfect traction is received but we have to pay in very peaky control signals and accelerations.

  6. Passive morphing of flying wing aircraft: Z-shaped configuration

    NASA Astrophysics Data System (ADS)

    Mardanpour, Pezhman; Hodges, Dewey H.

    2014-01-01

    High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel that increases the absorption of solar energy by decreasing the angle of incidence of the solar radiation at specific times of the day. In this paper solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft), a computer program that is based on geometrically exact, fully intrinsic beam equations and a finite-state induced flow model, was extended to include the ability to simulate morphing of the aircraft into a "Z" configuration. Because of the "long endurance" feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.

  7. Landing flying qualities evaluation criteria for augmented aircraft

    NASA Technical Reports Server (NTRS)

    Radford, R. C.; Smith, R.; Bailey, R.

    1980-01-01

    The criteria evaluated were: Calspan Neal-Smith; Onstott (Northrop Time Domain); McDonnell-Douglas Equivalent System Approach; R. H. Smith Criterion. Each criterion was applied to the same set of longitudinal approach and landing flying qualities data. A revised version of the Neal-Smith criterion which is applicable to the landing task was developed and tested against other landing flying qualities data. Results indicated that both the revised Neal-Smith criterion and the Equivalent System Approach are good discriminators of pitch landing flying qualities; Neal-Smith has particular merit as a design guide, while the Equivalent System Approach is well suited for development of appropriate military specification requirements applicable to highly augmented aircraft.

  8. The Cognitive Challenges of Flying a Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2016-01-01

    A large variety of Remotely Piloted Aircraft (RPA) designs are currently in production or in development. These aircraft range from small electric quadcopters that are flown close to the ground within visual range of the operator, to larger systems capable of extended flight in airspace shared with conventional aircraft. Before RPA can operate routinely and safely in civilian airspace, we need to understand the unique human factors associated with these aircraft. The task of flying an RPA in civilian airspace involves challenges common to the operation of other highly-automated systems, but also introduces new considerations for pilot perception, decision-making, and action execution. RPA pilots participated in focus groups where they were asked to recall critical incidents that either presented a threat to safety, or highlighted a case where the pilot contributed to system resilience or mission success. Ninety incidents were gathered from focus-groups. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies. Some of these concerns have received significant attention in the literature, or are analogous to human factors of manned aircraft. The presentation will focus on issues that are poorly understood, and have not yet been the subject of extensive human factors study. Although many of the reported incidents were related to pilot error, the participants also provided examples of the positive contribution that humans make to the operation of highly-automated systems.

  9. Conceptual design for a laminar-flying-wing aircraft

    NASA Astrophysics Data System (ADS)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  10. Terahertz-based relative positioning of aircraft flying in formation

    NASA Astrophysics Data System (ADS)

    Parker, John Scott

    This thesis introduces a new method for estimating the relative positions of aircraft flying in formation using terahertz frequency (THz) signals. We look specifically at the military precision airdrop application, where THz signals have two advantages: (1) stealth due to preferential propagation in the horizontal direction at high altitudes and (2) robustness for operations in GPS-denied environments. This thesis presents two system concepts for implementation. The first, dubbed the straight-and-level (SAL) architecture, produces high precision position estimates during straight and level flight, but suffers from systematic biases when the receiving aircraft performs a maneuver. In support of this architecture, we published the first ever paper on THz relative positioning, and introduced a new filtering method inspired by the well-known GPS Hatch Filter. The second, dubbed the refined-for-maneuvers (RFM) architecture, produces position estimates that are less precise than the SAL architecture, but have no systematic bias when the aircraft maneuver. Simulations are used to predict the performance of the architectures.

  11. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information must we give to anyone who flies on our Government aircraft? 301-70.909 Section 301-70.909 Public... give to anyone who flies on our Government aircraft? You must give each person aboard your aircraft a copy of the following disclosure statement: DISCLOSURE FOR PERSONS FLYING ABOARD FEDERAL...

  12. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information must we give to anyone who flies on our Government aircraft? 301-70.909 Section 301-70.909 Public... give to anyone who flies on our Government aircraft? You must give each person aboard your aircraft a copy of the following disclosure statement: DISCLOSURE FOR PERSONS FLYING ABOARD FEDERAL...

  13. Evaluation of XV-15 tilt rotor aircraft for flying qualities research application

    NASA Technical Reports Server (NTRS)

    Radford, R. C.; Schelhorn, A. E.; Siracuse, R. J.; Till, R. D.; Wasserman, R.

    1976-01-01

    The results of a design review study and evaluation of the XV-15 Tilt Rotor Research Aircraft for flying qualities research application are presented. The objectives of the program were to determine the capability of the XV-15 aircraft and the V/STOLAND system as a safe, inflight facility to provide meaningful research data on flying qualities, flight control systems, and information display systems.

  14. Ground and flight test experience with a triple redundant digital fly by wire control system. [installed in F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Jarvis, C. R.; Szalai, K. J.

    1981-01-01

    A triplex digital fly by wire flight control system was developed and installed in an F-8C aircraft to provide fail operative, full authority control. Hardware and software redundancy management techniques were designed to detect and identify failures in the system. Control functions typical of those projected for future actively controlled vehicles were implemented.

  15. The rotor systems research aircraft - A flying wind tunnel

    NASA Technical Reports Server (NTRS)

    Linden, A. W.; Hellyar, M. W.

    1974-01-01

    The Sikorsky Aircraft division of United Aircraft Corporation is constructing two uniquely designed Rotor Systems Research Aircraft (RSRA). These aircraft will be used through the 1980's to comparatively test many different types of rotors - articulated, hingeless, teetering, and gimballed, as well as advanced rotor concepts, such as reverse velocity and variable diameter rotors. The RSRA combines a new airframe with existing Sikorsky H-3 (S-61) dynamic components. A force measurement system is incorporated to permit accurate evaluation of significant rotor characteristics. Both rotor and fixed-wing control systems are provided, appropriately integrated for operation in the pure helicopter mode, compound helicopter mode, and fixed-wing mode. The RSRA is the first rotary wing aircraft designed with a crew escape system, including a pyrotechnic system to sever the main rotor blades.

  16. Design developments for advanced general aviation aircraft. [using Fly By Light Control

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Gomer, Charles

    1991-01-01

    Design study results are presented for two advanced general-aviation aircraft incorporating fly-by-light/fly-by-wire controls and digital avionics and cockpit displays. The design exercise proceeded from a database of information derived from a market survey for the 4-10 passenger aircraft range. Pusher and tractor propeller configurations were treated, and attention was given to the maximization of passenger comfort. 'Outside-in' tooling methods were assumed for the primary structures of both configurations, in order to achieve surface tolerances which maximize the rearward extent of laminar flow.

  17. Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Walko, L. C.

    1974-01-01

    Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.

  18. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  19. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  20. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  1. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  2. Real time aircraft fly-over noise discrimination

    NASA Astrophysics Data System (ADS)

    Genescà, M.; Romeu, J.; Pàmies, T.; Sánchez, A.

    2009-06-01

    A method for measuring aircraft noise time history with automatic elimination of simultaneous urban noise is presented in this paper. A 3 m-long 12-microphone sparse array has been proven to give good performance in a wide range of urban placements. Nowadays, urban placements have to be avoided because their background noise has a great influence on the measurements made by sound level meters or single microphones. Because of the small device size and low number of microphones (that make it so easy to set up), the resolution of the device is not high enough to provide a clean aircraft noise time history by only applying frequency domain beamforming to the spatial cross-correlations of the microphones' signals. Therefore, a new step to the processing algorithm has been added to eliminate this handicap.

  3. Flying Qualities Evaluation of a Commuter Aircraft With an Ice Contaminated Tailplane

    NASA Technical Reports Server (NTRS)

    Ranaudo, Richard J.; Ratvasky, Thomas P.; FossVanZante, Judith

    2000-01-01

    During the NASA/FAA (Federal Aviation Administration) Tailplane Icing Program, pilot evaluations of aircraft flying qualities were conducted with various ice shapes attached to the horizontal tailplane of the NASA Twin Otter Icing Research Aircraft. Initially, only NASA pilots conducted these evaluations, assessing the differences in longitudinal flight characteristics between the baseline or clean aircraft, and the aircraft configured with an Ice Contaminated Tailplane (ICT). Longitudinal tests included Constant Airspeed Flap Transitions, Constant Airspeed Thrust Transitions, zero-G Pushovers, Repeat Elevator Doublets, and Simulated Approach and Go-Around tasks. Later in the program, guest pilots from government and industry were invited to fly the NASA Twin Otter configured with a single full-span artificial ice shape attached to the leading edge of the horizontal tailplane. This shape represented ice formed due to a 'Failed Boot' condition, and was generated from tests in the Glenn Icing Research Tunnel on a full-scale tailplane model. Guest pilots performed longitudinal handling tests, similar to those conducted by the NASA pilots, to evaluate the ICT condition. In general, all pilots agreed that longitudinal flying qualities were degraded as flaps were lowered, and further degraded at high thrust settings. Repeat elevator doublets demonstrated reduced pitch damping effects due to ICT, which is a characteristic that results in degraded flying qualities. Pilots identified elevator control force reversals (CFR) in zero-G pushovers at a 20 deg flap setting, a characteristic that fails the FAR 25 no CFR certification requirement. However, when the same pilots used the Cooper-Harper rating scale to perform a simulated approach and go-around task at the 20 deg flap setting, they rated the airplane as having Level I and Level II flying qualities respectively. By comparison, the same task conducted at the 30 deg flap setting, resulted in Level II flying qualities for

  4. Flying qualities design criteria applicable to supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  5. Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.; Bridges, P.; Brownlee, J. A.; Liningston, W. W.

    1980-01-01

    The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full-scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data.

  6. Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.; Bridges, P. D.; Brownlee, J. A.; Livingston, W. W.

    1980-01-01

    The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data.

  7. A design study for a simple-to-fly, constant attitude light aircraft

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Humphreys, D. E.; Montoya, R. J.; Rickard, W. W.; Wilkinson, I. E.

    1973-01-01

    The activities during a four-year study by doctoral students to evolve in detail a design for a simple-to-fly, constant attitude light airplane are described. The study indicated that such aircraft could materially reduce the hazards to light airplane occupants which arise from the high pilot work load and poor visibility that occur during landing. Preliminary cost studies indicate that in volume production this system would increase the cost of the aircraft in roughly the same fashion that automatic transmission, power steering, power brakes, and cruise control increase the cost of a compact car.

  8. The NASA Earth Research-2 (ER-2) Aircraft: A Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 aircraft has been successfully utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The research missions for the ER-2 aircraft are planned, implemented, and managed by the Dryden Flight Research Center Science Mission Directorate. Maintenance and instrument payload integration is conducted by Dryden personnel. The ER-2 aircraft provides experimenters with a wide array of payload accommodations areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of Dryden or from remote bases worldwide, according to research requirements. The NASA ER-2 aircraft is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 aircraft s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community and other customers.

  9. An experimental radio-controlled model aircraft casts two unique shadows as it flies inside a Dryden

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An experimental radio-controlled model aircraft casts two unique shadows as it flies inside a Dryden hangar using two spotlights as energy sources. This phase of testing was used to develop procedures and operations for 'handing off' the aircraft between different sources of power.

  10. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  11. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  12. Fly in Atmosphere by Drag Force - Easy Thrust Generation Aircraft Engine Based Physics

    NASA Astrophysics Data System (ADS)

    Pierre Celestin, Mwizerwa

    2013-11-01

    This paper aims to present to the science community another way to fly in atmosphere, a way which is much more cheaper, efficient, safe and easy. Over the years scientists have been trying to find a way to built the vertically taking off vehicles but there have been no satisfactory success(what have been found was very expensive), Even aircrafts we know now need very sophisticated and expensive engines and not efficient enough. This way of flying may help our governments to spend less money on technologies and will help people to travel at very low prices so that, it may be a solution to the crisis which the world faces nowadays. In other words, it is my proposal to the next generation technologies we was looking for for years because everything can fly from the car to the trucks, the spaceships and even the hotels maybe constructed and fly as we construct the ships which sail in the oceans. My way of flying will have many applications in all the aspect of travel as it is going to be explained.

  13. Lateral-Directional Eigenvector Flying Qualities Guidelines for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1996-01-01

    This report presents the development of lateral-directional flying qualities guidelines with application to eigenspace (eigenstructure) assignment methods. These guidelines will assist designers in choosing eigenvectors to achieve desired closed-loop flying qualities or performing trade-offs between flying qualities and other important design requirements, such as achieving realizable gain magnitudes or desired system robustness. This has been accomplished by developing relationships between the system's eigenvectors and the roll rate and sideslip transfer functions. Using these relationships, along with constraints imposed by system dynamics, key eigenvector elements are identified and guidelines for choosing values of these elements to yield desirable flying qualities have been developed. Two guidelines are developed - one for low roll-to-sideslip ratio and one for moderate-to-high roll-to-sideslip ratio. These flying qualities guidelines are based upon the Military Standard lateral-directional coupling criteria for high performance aircraft - the roll rate oscillation criteria and the sideslip excursion criteria. Example guidelines are generated for a moderate-to-large, an intermediate, and low value of roll-to-sideslip ratio.

  14. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  15. NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.

  16. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  17. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  18. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icing. Flight data were reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured ""iced'' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower.

  19. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  20. Preliminary system design study for a digital fly-by-wire flight control system for an F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D. K.

    1976-01-01

    The design of a fly-by-wire control system having a mission failure probability of less than one millionth failures per flight hour is examined. Emphasis was placed on developing actuator configurations that would improve the system performance, and consideration of the practical aspects of sensor/computer and computer/actuator interface implementation. Five basic configurations were defined as appropriate candidates for the F-8C research aircraft. Options on the basic configurations were included to cover variations in flight sensors, redundancy levels, data transmission techniques, processor input/output methods, and servo actuator arrangements. The study results can be applied to fly by wire systems for transport aircraft in general and the space shuttle.

  1. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? 39.23 Section 39.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS DIRECTIVES §...

  2. Aircraft Contrails

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Captured in this scene is a series of aircraft contrails in a high traffic region over the northern Gulf of Mexico (27.0N, 85.5W). Contrails are caused by the hot engine exhaust of high flying aircraft interacting with moisture in the cold upper atmosphere and are common occurrances of high flying aircraft.

  3. Simulation evaluation of transition and hover flying qualities of a mixed-flow, remote-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Engelland, Shawn A.; Hardy, Gordon H.; Martin, James L.

    1989-01-01

    Using a generalized simulation model developed for piloted evaluations of STOVL aircraft, an initial fixed-base simulation of a mixed-flow, remote-lift configuration has been completed. Objectives were to evaluate the integration of the aircraft's flight and propulsion controls to achieve good flying qualities throughout the low-speed flight envelope; to determine control power used during transition, hover, and vertical landing; and to evaluate the transition flight envelope considering the influence of thrust deflection of the remote-lift component. Pilots' evaluations indicated that Level 1 flying qualities could be achieved for deceleration to hover in instrument conditions, for airfield landings, and for recovery to a small ship when attitude and velocity stabilization and command augmentation control modes were provided. Level 2 flying qualities were obtained for these same tasks when only the attitude command mode was used, leaving the pilot to perform the task of thrust management required to control the flight-path and speed in transition and the horizontal and vertical translational velocities in hover. Thrust margins were defined for vertical landing as a function of ground effect and hot-gas ingestion.

  4. Using Fly-By-Wire Technology in Future Models of the UH-60 and Other Rotary Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Solem, Courtney K.

    2011-01-01

    Several fixed-winged airplanes have successfully used fly-by-wire (FBW) technology for the last 40 years. This technology is now beginning to be incorporated into rotary wing aircraft. By using FBW technology, manufacturers are expecting to improve upon the weight, maintenance time and costs, handling and reliability of the aircraft. Before mass production of this new system begins in new models such as the UH-60MU, testing must be conducted to insure the safety of this technology as well as to reassure others it will be worth the time and money to make such a dramatic change to a perfectly functional machine. The RASCAL JUH-60A has been modified for these purposes. This Black Hawk helicopter has already been equipped with the FBW technology and can be configured as a near perfect representation of the UH-60MU. Because both machines have very similar qualities, the data collected from the RASCAL can be used to make future decisions about the UH-60MU. The U.S. Army AFDD Flight Project Office oversees all the design modifications for every hardware system used in the RASCAL aircraft. This project deals with specific designs and analyses of unique RASCAL aircraft subsystems and their modifications to conduct flight mechanics research.

  5. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  6. Noise data for a twin-engine commercial jet aircraft flying conventional, steep, and two-segment approaches

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Mueller, A. W.; Hamilton, J. R.

    1977-01-01

    Center-line noise measurements of a twin-engine commercial jet aircraft were made during steep landing approach profiles, and during two-segment approach profiles for comparison with similar measurements made during conventional approaches. The steep and two-segment approaches showed significant noise reductions when compared with the -3 deg base line. The measured noise data were also used to develop a method for estimating the noise under the test aircraft at thrust and altitude conditions typical of current landing procedures and of landing procedures under development for the Advanced Air Traffic Control System.

  7. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  8. Aircraft optical cable plant: the physical layer for fly-by-light control networks

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.

    1996-10-01

    A program was completed with joint industry and government funding to apply fiber optic technologies to aircraft. The technology offers many potential benefits. Among them are increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability by redesigning architectures to use the large bandwidth of fiber optics. Those benefits can be realized if fiber optics meets the unique requirements of aircraft networks. Many independent efforts have been made in the development of the systems, known as cable plants, to link opto-electronic components. The FLASH program built on that work. Over the last two years, FLASH expanded on the cable plant efforts by building components based on a cohesive aircraft plant system concept. The concept was rooted in not just optical performance, but also cost, manufacturing, installation, maintenance, and support. To do that, the FLASH team evaluated requirements, delineated environmental and use conditions, designed, built, and tested components, such as cables, connectors, splices and backplanes for transport aircraft, tactical aircraft, and helicopters. In addition, the FLASH team developed installation and test methods, and support equipment for aircraft optical cable plants. The results of that design, development, and test effort are reported here.

  9. Falcon 20-E5 Aircraft Flies Close Behind NASA DC-8 to Sample Exhaust

    NASA Video Gallery

    This video was taken from a NASA HU-25C Guardian chase plane looking toward NASA's DC-8, with a Falcon 20-E5 from the German Aerospace Agency (DLR) soon to fly into the DC-8's exhaust. The Falcon i...

  10. The Helios Prototype aircraft at approximately 10,000 feet flying above cloud cover northwest of Kau

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios

  11. New development in flying qualities with application to rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.

    1982-01-01

    Some recent considerations and developments in handling quality criteria are reviewed with emphasis on using fixed wing experience gained in developing MIL-F-8785C and the more recent MiL Standard and Handbook. Particular emphasis is placed on the tasks and environmental conditions used to develop the criterion boundaries, SAS failures, and potential fixed wing criteria that are applicable to rotary wing aircraft.

  12. Identification, analysis and monitoring of risks of freezing affecting aircraft flying over the Guadarrama Mountains (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Sergio; Sánchez, José Luis; Gascón, Estíbaliz; Merino, Andrés; Hermida, Lucía; López, Laura; Marcos, José Luis; García-Ortega, Eduardo

    2014-05-01

    Freezing is one of the main causes of aircraft accidents registered over the last few decades. This means it is very important to be able to predict this situation so that aircraft can change their routes to avoid freezing risk areas. Also, by using satellites it is possible to observe changes in the horizontal and vertical extension of cloud cover likely to cause freezing in real time as well as microphysical changes in the clouds. The METEOSAT Second Generation (MSG) makes it possible to create different red-green-blue (RGB) compositions that provide a large amount of information associated with the microphysics of clouds, in order to identify super-cooled water clouds that pose a high risk of freezing to aircraft. During the winter of 2011/12 in the Guadarrama Mountains, in the centre of the Iberian Peninsula, a series of scientific flights (conducted by INTA) were organised in order to study the cloud systems that affected this region during the winter. On the flight of the 1st of February 2012, the aircraft was affected by freezing after crossing over a mountain ridge with supercooled large drops (SLD). Although freezing was not expected during that day's flight, the orography caused a series of mesoscale factors that led to the appearance of localised freezing conditions. By analysing this case, we have been able to conclude that the use of satellite images makes it possible to monitor the risk of freezing, especially under specific mesoscale circumstances. Acknowledgements S. Fernández-González acknowledges the grant supported from the FPU program (AP 2010-2093). This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22). The authors would like to thank the INTA for its scientific flights.

  13. Simulator Investigations of the Problems of Flying a Swept-Wing Transport Aircraft in Heavy Turbulence

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.; Larsen, William E.

    1965-01-01

    An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.

  14. Modeling, simulation, and flight characteristics of an aircraft designed to fly at 100,000 feet

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1991-01-01

    A manned real time simulation of a conceptual vehicle, the stratoplane, was developed to study the problems associated with the flight characteristics of a large, lightweight vehicle. Mathematical models of the aerodynamics, mass properties, and propulsion system were developed in support of the simulation and are presented. The simulation was at first conducted without control augmentation to determine the needs for a control system. The unaugmented flying qualities were dominated by lightly damped dutch roll oscillations. Constant pilot workloads were needed at high altitudes. Control augmentation was studied using basic feedbacks. For the longitudinal axis, flight path angle, and pitch rate feedback were sufficient to damp the phugoid mode and to provide good flying qualities. In the lateral directional axis, bank angle, roll rate, and yaw rate feedbacks were sufficient to provide a safe vehicle with acceptable handling qualities. Intentionally stalling the stratoplane to very high angles of attack (deep stall) was studied as a means of enable safe and rapid descent. It was concluded that the deep stall maneuver is viable for this class of vehicle.

  15. Small- and medium-scale effects of high-flying aircraft exhausts on the atmospheric composition

    NASA Astrophysics Data System (ADS)

    Karol, I. L.; Ozolin, Y. E.

    1994-10-01

    Following numerous model studies of the global impacts of sub- and supersonic aircraft on the atmosphere, this paper assesses the separate aircraft engine exhaust effects of the 45°N cruise flight and at the 10- and 18-km levels of the July atmosphere. A box diffusion photochemical model in the cross-section plane of the flight trajectory is used to compute the effects of gas-phase and heterogeneous reactions on the condensation trail particles in the troposphere, and on the sulphate aerosols in the stratosphere. The enhanced horizontal dispersion of the exhaust plume is considered in the model. A significant but short term depletion of ozone is predicted, which is 99% restored in about 1 h in the wide plume with enhanced horizontal dispersion, but requires more than 24 h in the narrow plume without it. The oxidation rate of NO and NO2 into the HNO3 depends on the OH content in the exhausts and varies in all the cases. The heterogeneous photochemistry has only a small influence on the initial evolution of N2O5 and HO2 in the plume.

  16. Condense Course for Middle School Children to Learn Aerodynamics through Building and Flying Model Aircraft

    NASA Technical Reports Server (NTRS)

    Levine, J. J.

    1999-01-01

    This paper presents the terms of an Educational grant for Model Building 101. The terms of the grant includes the following: 1) 4 Training sessions of one week each (5 days/6 nights) at: Dryden, Langley, Lewis, and the California Museum of Science and Industry; 2) The sessions were to be attended by local educators, solicited and secured by NASA; 3) The cooperative program of MB101 and NASA was to set up a course for middle school students to learn aerodynamics through the building and flying of specialized small model airplanes. This program was already operating successfully on a local level through MB101 in Marietta, Georgia and was published monthly in Model Builder Magazine. MB101 supplies information for schools and groups throughout the country; and 4) Video and art department facilities of NASA were promised to be made available to MB101 for the preparation of instructional videos and preparation of training manuals.

  17. Design of a digital ride quality augmentation system for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Hammond, T. A.; Amin, S. P.; Paduano, J. D.; Downing, D. R.

    1984-01-01

    Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs.

  18. Venous gas bubbles while flying with cabin altitudes of airliners or general aviation aircraft 3 hours after diving.

    PubMed

    Balldin, U I

    1980-07-01

    Decompression venous gas bubbles were detected with the precordial Doppler utrasound technique in humans at simulated altitudes of 1,000-3,000 m 3 h after no-stage decompression dives to 15 or 39 m. Bubbles were detected at 3,000 m in a total of 60% of the subjects: in 90% after the 100-min shallow dives to 15 m with some bubbles present in the first minutes (mean onset 12 min), and in only 30% after the 10-min deeper dives to 39 m with later appearances of bubbles (mean onset 28 min). At both 2,000 and 1,000 m bubbles could also be detected, sometimes in the first minutes. The risk of decompression sickness must be considered high with the amount of gas bubbles found, even though only uncertain symptoms appeared in this study. Thus, a safe interval between ordinary SCUBA-diving and flying in airliners or general aviation aircraft seems to be more than 3 h.

  19. Fly on the wings of the sun - a study of solar-powered aircraft

    SciTech Connect

    Hall, D.W.

    1985-06-01

    Solar High Altitude Powered Platform (Solar HAPP) aircraft are unmanned remote sensing vehicles designed for cruises lasting up to one year at 20-km altitude, while carrying up to 250 pounds of cameras and electrooptic sensors in an underslung payload pod. It is anticipated that real time IR and UV images of earth features may be more inexpensively and accurately obtained by this means than by the conventional geosynchronous earth resources satellites. Solar HAPPs, with wing spans of over 300 ft and weights of only 2000 lb, require ultralight composite structures with external wire bracing. Solar cells will cover both sides of the vertical wing stabilizers and wing tips, which hinge up in daytime to capture the maximum amount of sunlight. A 15-hp electric propulsion unit drives a low-rpm, large diameter propeller; power will be derived from the solar cells diurnally, and from hydrogen-oxygen fuel cells nocturnally. The fuel gases will be generated in a water electrolyzer during the day by excess solar cell output.

  20. The Flying Diamond: A joined aircraft configuration design project, volume 1

    NASA Technical Reports Server (NTRS)

    Ball, Chris; Czech, Joe; Lentz, Bryan; Kobashigawa, Daryl; Oishi, Curtis; Poladian, David

    1988-01-01

    The results of the analysis conducted on the Joined Wing Configuration study are presented. The joined wing configuration employs a conventional fuselage and incorporates two wings joined together near their tips to form a diamond shape in both plan view and front view. The arrangement of the lifting surfaces uses the rear wing as a horizontal tail and as a forward wing strut. The rear wing has its root at the tip of the vertical stabilizer and is structurally attached to the trailing edge of the forward wing. This arrangement of the two wings forms a truss structure which is inherently resistant to the aerodynamic bending loads generated during flight. This allows for a considerable reduction in the weight of the lifting surfaces. With smaller internal wing structures needed, the Joined Wing may employ thinner wings which are more suitable for supersonic and hypersonic flight, having less induced drag than conventional cantilever winged aircraft. Inherent in the Joined Wing is the capability of the generation of direct lift and side force which enhance the performance parameters.

  1. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  2. Determination of the passing efficiency for aerosol chemical species through a typical aircraft-mounted, diffuser-type aerosol inlet system

    NASA Astrophysics Data System (ADS)

    Sheridan, Patrick J.; Norton, Richard B.

    1998-04-01

    To assess the particle transmission efficiency of a conventional aircraft-mounted, diffuser-type inlet (CI), a new design inlet containing an internal filter basket assembly (aerosol filter inlet, or AFI) was constructed. All interior surfaces of the AFI were covered with filter material, and air was actively pulled through these filter walls during aerosol sampling. The AFI was demonstrated in the laboratory to trap nearly all particles entering its nozzle orifice, so it was considered usable as a baseline to judge the performance of other inlets. Wind tunnel studies were conducted at three different wind velocities that approximated typical research aircraft speeds. As wind velocity increased, particle transmission through the CI relative to the AFI decreased, as evidenced by chemical analysis of the filter deposits. Aircraft studies of the two inlets showed that particle transmission varied significantly with the measured species. Typical coarse-particle species such as Ca++, Mg++, Na+ and K+ showed 50-90% mass losses through a conventional diffuser-type inlet/curved intake tube system. Predominantly fine particle species such as SO4= and NH4+ passed the CI system with much higher efficiencies, with aerosol mass losses of 0-26% for most flights. Since the AFI traps nearly all particles aspirated into its nozzle orifice, these values indicate that on average, 80-90% of the SO4= and NH4+ aerosol mass passes through the CI and curved intake tube during airborne sampling. This finding suggests that the capability to sample fine (i.e., submicrometer) aerosols from aircraft is perhaps not as bad as has been previously reported, given that adequate attention is paid to inlet design, location, and orientation issues.

  3. A compilation and analysis of typical approach and landing data for a simulator study of an externally blown flap STOL aircraft

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bergeron, H. P.

    1974-01-01

    A piloted simulation study has been made of typical landing approaches with an externally blown flap STOL aircraft to ascertain a realistic dispersion of parameter values at both the flare window and touchdown. The study was performed on a fixed-base simulator using standard cockpit instrumentation. Six levels of stability and control augmentation were tested during a total of 60 approaches (10 at each level). A detached supplement containing computer printouts of the flare-window and touchdown conditions for all 60 runs has been prepared.

  4. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  5. Aircraft optical cable plant program plan: the approach for the physical layer for fly-by-light control networks

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Murdock, John K.

    1995-05-01

    A program was created with joint industry and government funding to apply fiber optic technologies to aircraft. The technology offers many potential benefits. Among them are increased electromagnetic interference immunity and the possibility of reduced weight, increased reliability, and enlarged capability by redesigning architectures to use the large bandwidth of fiber optics. Those benefits will only be realized if fiber optics meets the unique requirements of aircraft networks. Over the past two decades, considerable effort has been expended on applying photonic technologies to aircraft. Great successes have occurred in optoelectronic components development. In the development of these systems to link those components, known as the cable plant, progress has also been made, but only recently has it been organized in a coordinated, systems-oriented fashion. The FLASH program will expand on the nascent cable plant systems efforts by building upon recent work in individual components, and integrating that work into a cohesive aircraft cable plant. Therefore, the FLASH program will develop the low cost, reliable cables, connectors, splices, backplanes, manufacturing and installation methods, test methods, support equipment, and training systems needed to form a true optical cable plant for transport aircraft, tactical aircraft, and helicopters.

  6. NASA aircraft technician Don Herman completes placement of the first official U.S. Centennial of Fli

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA aircraft technician Don Herman completes placement of the first official U.S. Centennial of Flight Commission logo on an aircraft. The honored recipient is NASA Dryden Flight Research Center's Active Aeroelastic Wing (AAW) F/A-18 research aircraft, which is poised to begin wing-warping research flights harkening back to the Wright brothers. The Centennial of Flight Commission was created by the U.S.Congress in 1999 to serve as a national and international source of information about activities to commemorate the centennial of the Wright Brothers' first powered flight on the sands of Kitty Hawk, North Carolina, on December 17, 1903. Centennial activities are scheduled for 2003 in both North Carolina and Dayton, Ohio, home of the Wrights. In addition to these celebrations, numerous historical and educational projects are anticipated on the subject of aviation and aeronautics that will be an important legacy of the centennial of powered flight.

  7. Evaluation of Flying Qualities and Guidance Displays for an Advanced Tilt-Wing STOL Transport Aircraft in Final Approach and Landing

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.

    2002-01-01

    A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.

  8. Manual flying skills under the influence of performance shaping factors.

    PubMed

    Haslbeck, Andreas; Schubert, Ekkehart; Onnasch, Linda; Hüttig, Gerhard; Bubb, Heiner; Bengler, Klaus

    2012-01-01

    This paper describes an experimental study investigating pilots' manual flying skills. In today's line oriented flight training, basic flying skills are neglected frequently. So, the study examines the manual flying skills of commercial airline pilots under the influence of several performance shaping factors like training, practice or fatigue in a landing scenario. The landing phase shows a disproportionate high percentage of aircraft accidents and it is typically flown by hand. The study is to be undertaken with randomly selected pilots in a full motion flight simulator to ensure a high validity of the results. PMID:22316719

  9. NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Butler, G. F.; Corbin, M. J.; Mepham, S.; Stewart, J. F.; Larson, R. R.

    1983-01-01

    Design procedures are reviewed for variable integral control to optimize response (VICTOR) algorithms and results of preliminary flight tests are presented. The F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a singlestring (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described.

  10. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  11. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  12. Flying Quality Analysis of a JAS 39 Gripen Ministick Controller in an F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Stoliker, P. C.

    2000-01-01

    NASA Dryden conducted a handling qualities experiment using a small displacement centerstick controller that Saab-Scania developed for the JAS 39 Gripen aircraft. The centerstick, or ministick, was mounted in the rear cockpit of an F/A-18 aircraft. Production support flight control computers (PSFCC) provided a pilot-selectable research control system. The objectives for this experiment included determining whether the mechanical characteristics of the centerstick controller had any significant effect on the handling qualities of the F/A-18, and determining the usefulness of the PSFCCs for this kind of experiment. Five pilots evaluated closed-loop tracking tasks, including echelon and column formation flight and target following. Cooper-Harper ratings and pilot comments were collected for each maneuver. This paper describes the test system, including the PSFCCs, the Gripen centerstick, and the flight test experiment. The paper presents results of longitudinal handling qualities maneuvers, including low order equivalent systems, Neal-Smith, and controls anticipation parameter analyses. The experiment showed that, while the centerstick controller provided a different aircraft feel, few handling qualities deficiencies resulted. It also demonstrated that the PSFCCs were useful for this kind of investigation.

  13. Development and application of linear and nonlinear methods for interpretation of lightning strikes to in-flight aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence; Perala, Rodney A.; Easterbrook, Calvin C.; Parker, Steven L.

    1986-01-01

    Since 1980, NASA has been collecting direct strike lightning data by flying an instrumented F-106B aircraft into thunderstorms. The continuing effort to interpret the measured data is reported here. Both linear and nonlinear finite difference modeling techniques are applied to the problem of lightning triggered by an aircraft in a thunderstorm. Five different aircraft are analyzed to determine the effect of aircraft size and shape on lightning triggering. The effect of lightning channel impedance on aircraft response is investigated. The particle environment in thunderstorms and electric field enhancements by typical ice particles is also investigated.

  14. A Flying Summer Camp

    ERIC Educational Resources Information Center

    Mercurio, Frank X.

    1975-01-01

    Describes a five-day summer camp which provided 12 children, ages 9-14, with a complete flying experience. The training consisted of ground school and one hour actual flying time, including the basics of aircraft control and a flight prepared and executed by the students. (MLH)

  15. Beware of agents when flying aircraft: Basic principles behind a generic methodology for the evaluation and certification of advanced aviation systems

    NASA Technical Reports Server (NTRS)

    Javaux, Denis; Masson, Michel; Dekeyser, Veronique

    1994-01-01

    There is currently a growing interest in the aeronautical community to assess the effects of the increasing levels of automation on pilots' performance and overall safety. The first effect of automation is the change in the nature of the pilot's role on the flight deck. Pilots have become supervisors who monitor aircraft systems in usual situations and intervene only when unanticipated events occur. Instead of 'hand flying' the airplane, pilots contribute to the control of aircraft by acting as mediators, instructions given to the automation. By eliminating the need for manually controlling normal situations, such a role division has reduced the opportunities for the pilot to acquire experience and skills necessary to safely cope with abnormal events. Difficulties in assessing the state and behavior of automation arise mainly from four factors: (1) the complexity of current systems and consequence mode-related problems; (2) the intrinsic autonomy of automation which is able to fire mode transitions without explicit commands from the pilots; (3) the bad quality of feed-back from the control systems displays and interfaces to the pilots; and (4) the fact that the automation currently has no explicit representation of the current pilots' intentions and strategy. Assuming certification has among its major goals to guarantee the passengers' and pilots' safety and the airplane integrity under normal and abnormal operational conditions, the authors suggest it would be particularly fruitful to come up with a conceptual reference system providing the certification authorities both with a theoretical framework and a list of principles usable for assessing the quality of the equipment and designs under examination. This is precisely the scope of this paper. However, the authors recognize that the conceptual presented is still under development and would thus be best considered as a source of reflection for the design, evaluation and certification processes of advanced

  16. A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG.

    PubMed

    Akce, Abdullah; Johnson, Miles; Dantsker, Or; Bretl, Timothy

    2013-03-01

    This paper presents an interface for navigating a mobile robot that moves at a fixed speed in a planar workspace, with noisy binary inputs that are obtained asynchronously at low bit-rates from a human user through an electroencephalograph (EEG). The approach is to construct an ordered symbolic language for smooth planar curves and to use these curves as desired paths for a mobile robot. The underlying problem is then to design a communication protocol by which the user can, with vanishing error probability, specify a string in this language using a sequence of inputs. Such a protocol, provided by tools from information theory, relies on a human user's ability to compare smooth curves, just like they can compare strings of text. We demonstrate our interface by performing experiments in which twenty subjects fly a simulated aircraft at a fixed speed and altitude with input only from EEG. Experimental results show that the majority of subjects are able to specify desired paths despite a wide range of errors made in decoding EEG signals.

  17. Methane Flux Measurements from a Low Flying Aircraft: What they tell us about Regional Heterogeneity in Carbon Flux over the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Healy, C. E.; Munster, J. B.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Baker, B.; Langford, J.; Anderson, J. G.

    2015-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. In situ measurements are further complicated by the presence of gas and oil extraction, natural gas seeps, and biomass burning. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date in situ measurements have been made at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, and their isotopologues, flew over the North Slope of Alaska. During the ten flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types.

  18. A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG.

    PubMed

    Akce, Abdullah; Johnson, Miles; Dantsker, Or; Bretl, Timothy

    2013-03-01

    This paper presents an interface for navigating a mobile robot that moves at a fixed speed in a planar workspace, with noisy binary inputs that are obtained asynchronously at low bit-rates from a human user through an electroencephalograph (EEG). The approach is to construct an ordered symbolic language for smooth planar curves and to use these curves as desired paths for a mobile robot. The underlying problem is then to design a communication protocol by which the user can, with vanishing error probability, specify a string in this language using a sequence of inputs. Such a protocol, provided by tools from information theory, relies on a human user's ability to compare smooth curves, just like they can compare strings of text. We demonstrate our interface by performing experiments in which twenty subjects fly a simulated aircraft at a fixed speed and altitude with input only from EEG. Experimental results show that the majority of subjects are able to specify desired paths despite a wide range of errors made in decoding EEG signals. PMID:23268384

  19. Distribution of PCDD/Fs in the fly ash and atmospheric air of two typical hazardous waste incinerators in eastern China.

    PubMed

    Chen, Tong; Zhan, Ming-Xiu; Lin, Xiao-Qing; Fu, Jian-Ying; Lu, Sheng-Yong; Li, Xiao-Dong

    2015-01-01

    Distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in the fly ash and atmospheric air of one medical waste incinerator (MWI) and one industrial hazardous waste incinerator (IHWI) plants were characterized. The PCDD/F concentrations of the stack gas (fly ash) produced from MWI and IHWI were 17.7 and 0.7 ng international toxic equivalent (I-TEQ)/Nm(3) (4.1 and 2.5 ng I-TEQ/g), respectively. For workplace air, the total concentrations of PCDD/Fs were 11.32 and 0.28 pg I-TEQ/Nm(3) (819.5 and 15.3 pg/Nm(3)). We assumed that the large differences of PCDD/F concentrations in workplace air were due to the differences in chlorine content of the waste, combustion conditions, and other contamination sources. With respect to the homologue profiles, the concentrations of PCDFs decreased with the increase of the substituted chlorine number for each site. Among all of the PCDD/F congeners, 2,3,4,7,8-PeCDF was the most important contributor to the I-TEQ value accounting for ca. 43 % of two sites. The gas/particle partition of PCDD/Fs in the atmosphere of the workplace in the MWI was also investigated, indicating that PCDD/Fs were more associated in the particle phase, especially for the higher chlorinated ones. Moreover, the ratio of the I-TEQ values in particle and gas phase of workplace air was 11.0. At last, the relationship between the distribution of PCDD/Fs in the workplace air and that from stack gas and fly ash was also analyzed and discussed. The high correlation coefficient might be a sign for diffuse gas emissions at transient periods of fumes escaping from the incinerator.

  20. Co-operation processes in dynamic environment management: evolution through training experienced pilots in flying a highly automated aircraft.

    PubMed

    Rogalski, J

    1996-01-01

    Dynamic environment management (process control, aircraft piloting, etc.) increasingly implies collective work components. Pragmatic purposes as well as epistemological interests raise important questions on collective activities at work. In particular, linked to the technological evolution in flight management, the role of the 'collective fact' appears as a key point in reliability. Beyond the development of individual competencies, the quality of the 'distributed' crew activity has to be questioned. This paper presents an empirical study about how experienced pilots co-ordinate their information and actions during the last period of training on a highly automated cockpit. A task of disturbance management (engine fire during takeoff) is chosen as amplifying cognitive requirements. Analysis focuses on the transitions between the main task and the incident to be managed. Crew performance and co-operation between two pilots are compared in three occurrences of the same task: the results are coherent with the hypothesis of a parallel evolution of the crew performance and its internal co-operation, and show that prescribed explicit co-operation is more present on action than on information about the 'state of the world'. Methodological issues are discussed about the possible effects of the specific situation of training, and about the psychological meaning of the results. PMID:11540153

  1. Rich Rogers Flying Over Greenland Icecap

    NASA Video Gallery

    Ihis is a view from the NASA P3 aircraft cockpit as it flies 1000 feet over the Greenland icecap during Operation Icebridge mission, which flies each March-May. The end of video shows an ice camp w...

  2. Flying Cars

    NASA Technical Reports Server (NTRS)

    Crow, Steven

    1996-01-01

    Flying cars have nearly mythical appeal to nonpilots, a group that includes almost the whole human race. The appeal resides in the perceived utility of flying cars, vehicles that offer portal-to-portal transportation, yet break the bonds of road and traffic and travel freely through the sky at the drivers will. Part of the appeal is an assumption that flying cars can be as easy to fly as to drive. Flying cars have been part of the dream of aviation since the dawn of powered flight. Glenn Curtiss built, displayed, and maybe even flew a flying car in 1917, the Curtiss Autoplane. Many roadable airplanes were built in the 1930's, like the Waterman Arrowbile and the Fulton Airphibian. Two flying cars came close to production in the early 1950's. Ted Hall built a series of flying cars culminating in the Convaircar, sponsored by Consolidated Vultee, General Motors, and Hertz. Molt Taylor built and certified his Aerocar, and Ford came close to producing them. Three Aerocars are still flyable, two in museums in Seattle and Oshkosh, and the third owned and flown by Ed Sweeny. Flying cars do have problems, which so far have prevented commercial success. An obvious problem is complexity of the vehicle, the infrastructure, or both. Another is the difficulty of matching low power for normal driving with high power in flight. An automobile uses only about 20 hp at traffic speeds, while a personal airplane needs about 160 hp at speeds typical of flight. Many automobile engines can deliver 160 hp, but not for very long. A more subtle issue involves the drag of automobiles and airplanes. A good personal airplane can fly 30 miles per gallon of fuel at 200 mph. A good sports car would need 660 hp at the same speed and would travel only 3 miles per gallon. The difference is drag area, about 4.5 sq ft for the automobile and 1.4 sq ft for the airplane. A flying car better have the drag area of the airplane, not the car!

  3. 40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Aircraft Engines & Engine Parts Aircraft Frames Manufacturing Aircraft Parts & Equipment Airports, Flying..., & Surgical Supplies Pens, Mechanical Pencils, & Parts Process Control Instruments Search & Navigation... Combustion Engines Measuring & Dispensing Pumps Mechanical Power Transmission Equipment Metal...

  4. Technical problems encountered with the LALA-1 flying laboratory

    NASA Technical Reports Server (NTRS)

    Swidzinski, J.

    1978-01-01

    A description is given of structural design changes necessitated by the conversion of the An-2R agricultural support aircraft into a flying test bed to be used in feasibility studies evaluating jet engines in agricultural support aircraft. The entire rear of the fuselage was radically modified to permit mounting of the Al-25 jet engine directly behind the trailing edge of the upper wing. The standard piston engine was retained to permit comparison between the two types of power plants in typical agricultural support operations.

  5. Transport aircraft flying qualities activities

    NASA Technical Reports Server (NTRS)

    Moul, M. T.

    1981-01-01

    The optimal control model for pilot vehicle systems was used to develop a methodology for predicting pilot ratings for commercial transports. The method was tested by applying it to a family of transport configurations for which subjective pilot ratings were obtained. Specific attention is given to the development of the simulator program and procedures so as to yield objective and subjective performance data useful for a critical evaluation of the analytical method.

  6. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Civil fly-ins. 855.13 Section 855.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a)...

  7. Learning to Fly.

    ERIC Educational Resources Information Center

    Weil, Patricia E.

    1983-01-01

    Presents information on where to learn to fly, which aircraft is best for this purpose, and approximate costs. Includes additional information on certificates, licenses, and ratings, and a description of the two phases of the General Aviation Manufacturers Association flight training program. (JN)

  8. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Civil fly-ins. 855.13 Section 855.13 National... UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil... or provide a static display. (2) A flying safety seminar. (b) Civil fly-in procedures: (1)...

  9. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Civil fly-ins. 855.13 Section 855.13 National... UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil... or provide a static display. (2) A flying safety seminar. (b) Civil fly-in procedures: (1)...

  10. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Civil fly-ins. 855.13 Section 855.13 National... UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil... or provide a static display. (2) A flying safety seminar. (b) Civil fly-in procedures: (1)...

  11. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Civil fly-ins. 855.13 Section 855.13 National... UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil... or provide a static display. (2) A flying safety seminar. (b) Civil fly-in procedures: (1)...

  12. Autonomous Martian flying rover

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A remotely programmable, autonomous flying rover is proposed to extensively survey the Martian surface environment. A Mach .3, solar powered, modified flying wing could cover roughly a 2000 mile range during Martian daylight hours. Multiple craft launched from an orbiting mother ship could provide near-global coverage. Each craft is envisioned to fly at about 1 km above the surface and measure atmospheric composition, pressure and temperature, map surface topography, and remotely penetrate the near subsurface looking for water (ice) and perhaps evidence of life. Data collected are relayed to Earth via the orbiting mother ship. Near surface guidance and control capability is an adaptation of current cruise missile technology. A solar powered aircraft designed to fly in the low temperature, low density, carbon dioxide Martian atmosphere near the surface appears feasible.

  13. Flying Fast, Flying Quiet

    NASA Video Gallery

    NASA's been working for a while to learn as much as possible about how sonic booms are formed during supersonic flight and what can be done to make them quieter, so that someday supersonic aircraft...

  14. XV-15 Tilt Rotor fly-by-wire collective control demonstrator development specifications

    NASA Technical Reports Server (NTRS)

    Meuleners, R. J.

    1981-01-01

    A fly by wire system in the collective control system for XV-15 Tilt Rotor Research Aircraft was evaluated. The collective control system was selected because it requires a system tracking accuracy between right and left rotors of approximately 0.1%. The performance characteristics of the collectors axel provide typical axis control response data. The demonstrator is bread boarded as a dual system instead of the triplex system.

  15. Flying qualities criteria and flight control design

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1981-01-01

    Despite the application of sophisticated design methodology, newly introduced aircraft continue to suffer from basic flying qualities deficiencies. Two recent meetings, the DOD/NASA Workshop on Highly Augmented Aircraft Criteria and the NASA Dryden Flight Research Center/Air Force Flight Test Center/AIAA Pilot Induced Oscillation Workshop, addressed this problem. An overview of these meetings is provided from the point of view of the relationship between flying qualities criteria and flight control system design. Among the items discussed are flying qualities criteria development, the role of simulation, and communication between flying qualities specialists and control system designers.

  16. Flight tests of three-dimensional path-redefinition algorithms for transition from Radio Navigation (RNAV) to Microwave Landing System (MLS) navigation when flying an aircraft on autopilot

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    1988-01-01

    This report contains results of flight tests for three path update algorithms designed to provide smooth transition for an aircraft guidance system from DME, VORTAC, and barometric navaids to the more precise MLS by modifying the desired 3-D flight path. The first algorithm, called Zero Cross Track, eliminates the discontinuity in cross-track and altitude error at transition by designating the first valid MLS aircraft position as the desired first waypoint, while retaining all subsequent waypoints. The discontinuity in track angle is left unaltered. The second, called Tangent Path, also eliminates the discontinuity in cross-track and altitude errors and chooses a new desired heading to be tangent to the next oncoming circular arc turn. The third, called Continued Track, eliminates the discontinuity in cross-track, altitude, and track angle errors by accepting the current MLS position and track angle as the desired ones and recomputes the location of the next waypoint. The flight tests were conducted on the Transportation Systems Research Vehicle, a small twin-jet transport aircraft modified for research under the Advanced Transport Operating Systems program at Langley Research Center. The flight tests showed that the algorithms provided a smooth transition to MLS.

  17. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  18. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  19. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  20. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  1. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  2. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  3. The practical difficulties of commercial flying

    NASA Technical Reports Server (NTRS)

    Courtney, F T

    1924-01-01

    This paper relates some of the problems commercial aircraft companies have in attracting larger numbers of paying customers. The author discusses some remedies such as changing the public perception of flying as dangerous.

  4. NASA Is With You When You Fly

    NASA Video Gallery

    Aviation touches us. Even if you didn't fly today, something you needed did. Did you know that NASA-developed technology is on board every U.S. commercial aircraft and in every U.S. control tower? ...

  5. X-48B: How Does it Fly?

    NASA Video Gallery

    Gary Cosentino, lead flight operations engineer at NASA's Dryden Flight Research Center, talks about what it's like to fly the remotely piloted test vehicle -- X-48B -- a new kind of aircraft that ...

  6. Application of nonlinear feedback control theory to supermaneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Enns, Dale F.

    1991-01-01

    Controlled flight at extremely high angles of attack, far exceeding the stall angle, and/or at high angular rates is sometimes referred to as supermaneuvering flight. The objective was to examine methods for design of control laws for aircraft performing supermaneuvers. Since the equations which govern the motion of aircraft during supermaneuvers are nonlinear, this study concentrated on nonlinear control law design procedures. The two nonlinear techniques considered were Nonlinear Quadratic Regulator (NLQR) theory and nonlinear dynamic inversion. A conventional gain scheduled proportional plus integral (P + I) controller was also developed to serve as a baseline design typical of current control laws used in aircraft. A mathematical model of a generic supermaneuverable aircraft was developed from data obtained from the literature. A detailed computer simulation of the aircraft was also developed. This simulation allowed the flying of proposed supermaneuvers and was used to evaluate the performance of the control law designs and to generate linearized models of the aircraft at different flight conditions.

  7. Detecting aircraft with a low-resolution infrared sensor.

    PubMed

    Jakubowicz, Jérémie; Lefebvre, Sidonie; Maire, Florian; Moulines, Eric

    2012-06-01

    Existing computer simulations of aircraft infrared signature (IRS) do not account for dispersion induced by uncertainty on input data, such as aircraft aspect angles and meteorological conditions. As a result, they are of little use to estimate the detection performance of IR optronic systems; in this case, the scenario encompasses a lot of possible situations that must be indeed addressed, but cannot be singly simulated. In this paper, we focus on low-resolution infrared sensors and we propose a methodological approach for predicting simulated IRS dispersion of poorly known aircraft and performing aircraft detection on the resulting set of low-resolution infrared images. It is based on a sensitivity analysis, which identifies inputs that have negligible influence on the computed IRS and can be set at a constant value, on a quasi-Monte Carlo survey of the code output dispersion, and on a new detection test taking advantage of level sets estimation. This method is illustrated in a typical scenario, i.e., a daylight air-to-ground full-frontal attack by a generic combat aircraft flying at low altitude, over a database of 90,000 simulated aircraft images. Assuming a white noise or a fractional Brownian background model, detection performances are very promising.

  8. Understanding the Role of the Saharan Heat Low in Modifying Atmospheric Dust Distributions - Observations From Two Research Aircraft Flying Simultaneously Over Western Africa

    NASA Astrophysics Data System (ADS)

    Engelstaedter, S.; Washington, R.; Allen, C.; Flamant, C.; Chaboureau, J.-P.; Kocha, C.; Lavaysse, C.

    2012-04-01

    The near-surface low pressure system that develops over western Africa in Boreal summer (know as the Saharan Heat Low) is thought to have a significant influence on regional and global climate due to its links with the Monsoon, the Northern Atlantic and the Mediterranean climate system. The SHL is associated with the deepest atmospheric boundary layer on the planet and is co-located with the highest dust loadings in the world. The processes that link the heat low and dust distribution are only poorly understood. Improving the representation of the heat low and the processes that control the emission and atmospheric distribution of dust in climate and NWP models is crucial if we are to reduce known systematic errors in climate predictions and weather forecasts. In collaboration with European partners, the UK-based consortium project "Fennec - The Saharan Climate System" aims at improving our understanding of this complex climate system by integrating for the first time coordinated ground and aircraft observations from the central Sahara, newly developed satellite products, and the application of regional and global models. On 22 June 2011, two research aircraft operating out of Fuerteventura (Spain) surveyed the Saharan Heat Low centred over Mauritania-Mali border. The aircraft flew simultaneously in the morning and in the afternoon on two different tracks thereby sampling each track four times on that day. Both aircraft were equipped with a downward looking LIDAR for aerosol detection. In total, 51 sondes were dropped during the flights making this the most comprehensive dataset to study the spatio-temporal diurnal evolution of the heat low including the interactions between the atmospheric boundary layer and dust distributions. Combining LIDAR observations, satellite imagery and back-trajectory modelling we show that an aged dust layer was present in the heat low region resulting from previous day's dust activity associated with a south-moving density current from

  9. NASA's F-15B Research Testbed aircraft flies in the supersonic shock wave of a U.S. Navy F-5E as par

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's F-15B Research Testbed aircraft recently flew in the supersonic shock wave of a U.S. Navy F-5E in support of the F-5 Shaped Sonic Boom Demonstration (SSBD) project, part of the Defense Advanced Research Projects Agency's (DARPA) Quiet Supersonic Platform (QSP) program. The flights originated from the NASA Dryden Flight Research Center at Edwards, California. Four flights were flown in order to measure the F-5E's near-field (close-up) sonic boom signature at Mach 1.4, during which more than 50 shockwave patterns were measured at distances as close as 100 feet below the F-5E.

  10. Mapping automotive like controls to a general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  11. Precise Aircraft Guidance Techniques for NASA's Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Russell, R.

    2013-12-01

    We present a suite of novel aircraft guidance techniques we designed, developed and now operationally utilize to precisely guide large NASA aircraft and their sensor suites over polar science targets. Our techniques are based on real-time, non-differential Global Positioning System (GPS) data. They interact with the flight crew and the aircraft using a combination of yoke-mounted computer displays and an electronic interface to the aircraft's autopilot via the aircraft's Instrument Landing System (ILS). This ILS interface allows the crew to 'couple' the autopilot to our systems, which then guide the aircraft over science targets with considerably better accuracy than it can using its internal guidance. We regularly demonstrate errors in cross-track aircraft positioning of better than 4 m standard deviation and better than 2 m in mean offset over lengthy great-circle routes across the ice sheets. Our system also has a mode allowing for manual aircraft guidance down a predetermined path of arbitrary curvature, such as a sinuous glacier centerline. This mode is in general not as accurate as the coupled technique but is more versatile. We employ both techniques interchangeably and seamlessly during a typical Operation IceBridge science flight. Flight crews find the system sufficiently intuitive so that little or no familiarization is required prior to their accurately flying science lines. We regularly employ the system on NASA's P-3B and DC-8 aircraft, and since the interface to the aircraft's autopilot operates through the ILS, it should work well on any ILS-equipped aircraft. Finally, we recently extended the system to provide precise, three-dimensional landing approach guidance to the aircraft, thus transforming any approach into a precise ILS approach, even to a primitive runway. This was intended to provide a backup to the aircraft's internal landing systems in the event of a zero-visibility landing to a non-ILS equipped runway, such as the McMurdo sea ice runway

  12. Pilot interface with fly by wire control systems

    NASA Technical Reports Server (NTRS)

    Melvin, W. W.

    1986-01-01

    Aircraft designers are rapidly moving toward full fly by wire control systems for transport aircraft. Aside from pilot interface considerations such as location of the control input device and its basic design such as side stick, there appears to be a desire to change the fundamental way in which a pilot applies manual control. A typical design would have the lowest order of manual control be a control wheel steering mode in which the pilot is controlling an autopilot. This deprives the pilot of the tactile sense of angle of attack which is inherent in present aircraft by virtue of certification requirements for static longitudinal stability whereby a pilot must either force the aircraft away from its trim angle of attack or trim to a new angle of attack. Whether or not an aircraft actually has positive stability, it can be made to feel to a pilot as though it does by artificial feel. Artificial feel systems which interpret pilot input as pitch rate or G rate with automatic trim have proven useful in certain military combat maneuvers, but their transposition to other more normal types of manual control may not be justified.

  13. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  14. NASA Auralization Tool Reveals Aircraft Noise Differences

    NASA Video Gallery

    How can we *know* that a future aircraft will be less noisy than the ones we fly in today? NASA builds computer-based tools to predict those things, with certainty. This video is an "auralization" ...

  15. Investigation of aircraft vortex wake structure

    NASA Astrophysics Data System (ADS)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  16. 14 CFR 91.503 - Flying equipment and operating information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flying equipment and operating information... Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.503 Flying equipment... flying equipment and aeronautical charts and data, in current and appropriate form, are accessible...

  17. 14 CFR 91.503 - Flying equipment and operating information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flying equipment and operating information... Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.503 Flying equipment... flying equipment and aeronautical charts and data, in current and appropriate form, are accessible...

  18. 14 CFR 91.503 - Flying equipment and operating information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flying equipment and operating information... Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.503 Flying equipment... flying equipment and aeronautical charts and data, in current and appropriate form, are accessible...

  19. 14 CFR 91.503 - Flying equipment and operating information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flying equipment and operating information... Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.503 Flying equipment... flying equipment and aeronautical charts and data, in current and appropriate form, are accessible...

  20. Progress in aircraft design since 1903

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Significant developments in aviation history are documented to show the advancements in aircraft design which have taken place since 1903. Each aircraft is identified according to the manufacturer, powerplant, dimensions, normal weight, and typical performance. A narrative summary of the major accomplishments of the aircraft is provided. Photographs of each aircraft are included.

  1. Aircraft Mechanics Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in aircraft mechanics. The guide outlines the tasks entailed in 24 different duties typically required of employees in the following occupations: airframe mechanic, power plant mechanic, aircraft mechanic, aircraft sheet metal worker, aircraft electrician,…

  2. Sound radiation around a flying fly

    NASA Astrophysics Data System (ADS)

    Sueur, Jérôme; Tuck, Elizabeth J.; Robert, Daniel

    2005-07-01

    Many insects produce sounds during flight. These acoustic emissions result from the oscillation of the wings in air. To date, most studies have measured the frequency characteristics of flight sounds, leaving other acoustic characteristics-and their possible biological functions-unexplored. Here, using close-range acoustic recording, we describe both the directional radiation pattern and the detailed frequency composition of the sound produced by a tethered flying (Lucilia sericata). The flapping wings produce a sound wave consisting of a series of harmonics, the first harmonic occurring around 190 Hz. In the horizontal plane of the fly, the first harmonic shows a dipolelike amplitude distribution whereas the second harmonic shows a monopolelike radiation pattern. The first frequency component is dominant in front of the fly while the second harmonic is dominant at the sides. Sound with a broad frequency content, typical of that produced by wind, is also recorded at the back of the fly. This sound qualifies as pseudo-sound and results from the vortices generated during wing kinematics. Frequency and amplitude features may be used by flies in different behavioral contexts such as sexual communication, competitive communication, or navigation within the environment.

  3. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  4. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  5. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  6. NASA's Zero-g aircraft operations

    NASA Technical Reports Server (NTRS)

    Williams, R. K.

    1988-01-01

    NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.

  7. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The unique Pathfinder solar-powered flying wing, is shown during a checkout flight from the Dryden Flight Research Center, Edwards, California. This two-hour low-altitude flight over Rogers Dry Lake, Nov. 19, 1996, served to test aircraft systems and functional procedures, according to officials of AeroVironment, Inc., Pathfinder's developer and operator. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  8. CID Aircraft slap-down

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph the B-720 is seen during the moments of initial impact. The left wing is digging into the lakebed while the aircraft continues sliding towards wing openers. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive, Anti-misting Kerosene (AMK), designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1

  9. Highly reliable multiprocessors. [for commerical transport aircraft

    NASA Technical Reports Server (NTRS)

    Murray, N. D.; Hopkins, A. L.; Wensley, J. H.

    1977-01-01

    Highly reliable fault-tolerant computer systems are discussed for use in flight-critical avionic and control systems of future commercial transport aircraft. Such aircraft are envisioned to have integrated systems, to be terminally configured, and to be equipped with fly-by-wire flight control systems, all of which require highly reliable, fault-tolerant computers. Two candidate computer architectures are identified as having the potential of satisfying the commercial transport aircraft requirements.

  10. Naval Aircraft Factory (Curtiss) H-16

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Naval Aircraft Factory (Curtiss) H-16: The Naval Aircraft Factory H-16 flying boat, seen here on a beaching dolly on the Langley seaplane ramp, was one of 150 built by the Naval Aircraft Factory in Philadelphia, Pennsylvania. Most H-16s built were made by Curtiss, so the type is more readily known under that name. The NACA performed hull pressure distribution tests at Langley during 1929.

  11. VENUS Atmospheric Exploration by Solar Aircraft

    NASA Astrophysics Data System (ADS)

    Landis, G. A.; Lamarre, C.; Colozza, A.

    2002-01-01

    much easier than on planets such as Mars. Above the clouds, solar energy is available in abundance on Venus. Venus has a solar flux of 2600 W/m2, compared to Earth's 1370 W/m2. The solar intensity is 20 to 50% of the exoatmospheric intensity (depending on wavelength) at the bottom of the cloud layer at 50 km, and increases to nearly 95% of the exoatmospheric intensity at 65 km, the top of the main cloud layer, and the slow rotation of Venus allows an airplane to be designed for flight within continuous sunlight, eliminating the need for energy storage for nighttime flight. challenge for a Venus aircraft will be the fierce winds and caustic atmosphere. The wind reaches a speed of about 95m/s at the cloud top level, and in order to remain on the sunlit side of Venus, an exploration aircraft will have to be capable of sustained flight at or above the wind speed. desirable that the number of moving parts be minimized. Figure 1 shows a concept for a Venus airplane design that requires only two folds to fold the wing into an aeroshell, and no folds to deploy the tail. Because of the design constraint that the two- fold wing is to fit into a small aeroshell, the wing area is maximum at extremely low aspect ratio, and higher aspect ratios can be achieved only by reducing the wing area. To fit the circular aeroshell, the resulting design trade-off increases wing area by accepting the design compromise of an extremely short tail moment and small tail area (stabilizer area 9% of wing area). In terms of flight behavior, the aircraft is essentially a flying wing design with the addition of a small control surface. A more conventional aircraft design can be made by folding or telescoping the tail boom as well as the wing. Typical flight altitudes for analysis were 65 to 75 km above the surface. For exploration of lower altitudes, it is feasible to glide down to low altitudes for periods of several hours, accepting the fact that the airplane ground track will blow downwind, and

  12. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  13. 32 CFR 707.4 - Aircraft warning lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aircraft warning lights. 707.4 Section 707.4... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.4 Aircraft warning lights. Naval vessels may display, as a means of indicating the presence of an obstruction to low flying aircraft, one all round...

  14. 32 CFR 707.4 - Aircraft warning lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Aircraft warning lights. 707.4 Section 707.4... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.4 Aircraft warning lights. Naval vessels may display, as a means of indicating the presence of an obstruction to low flying aircraft, one all round...

  15. Derivation and definition of a linear aircraft model

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1988-01-01

    A linear aircraft model for a rigid aircraft of constant mass flying over a flat, nonrotating earth is derived and defined. The derivation makes no assumptions of reference trajectory or vehicle symmetry. The linear system equations are derived and evaluated along a general trajectory and include both aircraft dynamics and observation variables.

  16. 32 CFR 707.4 - Aircraft warning lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Aircraft warning lights. 707.4 Section 707.4... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.4 Aircraft warning lights. Naval vessels may display, as a means of indicating the presence of an obstruction to low flying aircraft, one all round...

  17. 32 CFR 707.4 - Aircraft warning lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Aircraft warning lights. 707.4 Section 707.4... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.4 Aircraft warning lights. Naval vessels may display, as a means of indicating the presence of an obstruction to low flying aircraft, one all round...

  18. 32 CFR 707.4 - Aircraft warning lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Aircraft warning lights. 707.4 Section 707.4... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.4 Aircraft warning lights. Naval vessels may display, as a means of indicating the presence of an obstruction to low flying aircraft, one all round...

  19. Typical Newel Post, First Floor Newel Post, Typical Baluster, Typical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Newel Post, First Floor Newel Post, Typical Baluster, Typical Nosing, First Floor Stringer Profile, Second Floor Stringer Profile - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Treasurer's Quarters, 500 North Fifth Street, Hot Springs, Fall River County, SD

  20. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  1. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  2. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  3. Safety Passage in the Flying Canoes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Jungle Aviation and Radio Service (JAARS) delivers missionaries to remote outposts under sometimes hazardous flying conditions. A serious accident led JAARS' to initiate a crash survivability research program based on NASA technology. In 1978, JAARS sought help from Langley Research Center and was invited to participate in Langley's crashworthiness program. With assistance from Langley, JAARS developed an impact absorbing aircraft seat designed to minimize crash injury. The seat design is available to all missionary aircraft and JAARS is offering it for commercial manufacture.

  4. Fly-by-Wire Systems Enable Safer, More Efficient Flight

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Using the ultra-reliable Apollo Guidance Computer that enabled the Apollo Moon missions, Dryden Flight Research Center engineers, in partnership with industry leaders such as Cambridge, Massachusetts-based Draper Laboratory, demonstrated that digital computers could be used to fly aircraft. Digital fly-by-wire systems have since been incorporated into large airliners, military jets, revolutionary new aircraft, and even cars and submarines.

  5. Aircraft recognition and tracking device

    NASA Astrophysics Data System (ADS)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  6. Supersonic Flying Qualities Experience Using the SR-71

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Jackson, Dante

    1997-01-01

    Approximately 25 years ago NASA Dryden Flight Research Center, Edwards, California, initiated the evaluation of supersonic handling qualities issues using the XB-70 and the YF-12. Comparison of pilot comments and ratings with some of the classical handling qualities criteria for transport aircraft provided information on the usefulness of these criteria and insight into supersonic flying qualities issues. A second research study has recently been completed which again addressed supersonic flying qualities issues through evaluations of the SR-71 in flight at Mach 3. Additional insight into supersonic flying qualities issues was obtained through pilot ratings and comments. These ratings were compared with existing military specifications and proposed criteria for the High Speed Civil Transport. This paper investigates the disparity between pilot comments and the Neal/Smith criteria through a modification of the technique using vertical speed at the pilot station. The paper specifically addresses the pilot ability to control flightpath and pitch attitude in supersonic flight and pilot displays typical of supersonic maneuvering.

  7. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's solar cell arrays are prominently displayed as it touches down on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, following a test flight. The solar arrays covered more than 75 percent of Pathfinder's upper wing surface, and provided electricity to power its six electric motors, flight controls, communications links and a host of scientific sensors. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  8. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft heads for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  9. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft is silhouetted against a clear blue sky as it soars aloft during a checkout flight from the Dryden Flight Research Center, Edwards, California, November, 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  10. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  11. Multibody aircraft study, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. H.

    1982-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  12. Space Shuttle flying qualities and flight control system assessment study

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, D.

    1982-01-01

    The suitability of existing and proposed flying quality and flight control system criteria for application to the space shuttle orbiter during atmospheric flight phases was assessed. An orbiter experiment for flying qualities and flight control system design criteria is discussed. Orbiter longitudinal and lateral-directional flying characteristics, flight control system lag and time delay considerations, and flight control manipulator characteristics are included. Data obtained from conventional aircraft may be inappropriate for application to the shuttle orbiter.

  13. Flight testing of unique aircraft configurations

    NASA Technical Reports Server (NTRS)

    Painter, W. D.

    1983-01-01

    Some historical developments of flight testing of unique aircraft configurations by NASA and the military sector are documented. Several test aircraft are outlined including the M2-F1 (which was the first Space Shuttle concept ever demonstrated, and contributed to the present design), the X-15, the Flying Wing, the Lunar Landing Research Vehicle, the Oblique Wing Research Aircraft, and the Space Shuttle Enterprise. Future test aircraft such as the forward swept wing X-29A Advanced Technology Demonstrator Aircraft, and the X-Wing vehicle are also mentioned. It is noted that the logical preliminary to flight testing is flight simulation, and that flight testing itself is the vital final component of the development, and seems to be the most direct approach to aircraft evaluations.

  14. Fly-By-Light Sensors

    NASA Astrophysics Data System (ADS)

    Fox, Edward V.; Snitzer, Elias

    1983-03-01

    The last decade witnessed the emergence and acceptance of Fly-by-Wire technology for advanced flight control systems. The benefits of fiber-optic technology such as low EMI susceptability, lower aircraft system weight, and lower life cycle cost may substitute Fly-by-Light technology as the accepted state-of-the-art in this decade. This paper addresses the motivation for moving toward Fly-by-Light technology and technology needs for implementation of Fly-by-Light with particular emphasis on the sensors. The paper examines the impact of increased intensity levels of man-made threats (EMI, EMP and nuclear radiation) coupled with the extensive utilization of non-conductive fuselage materials. A baseline Fly-by-Light control system highlights the key system elements of sensors, effectors, and communication which require development for fiber optics to be used. With the ongoing development of fiber-optic communication technology by the telecommunication industry, the responsibility has fallen to the controls industry to provide the generic technology development for the sensing and effector requirements. United Technologies Corporation and in particular its Hamilton Standard and Research Divisions have been developing effector and sensor technology and have applied the results of these efforts to the U.S. Navy Linear Optical Transducer and the U.S. Army Rotary Optical Transducer programs. The linear transducer is a 12-bit, 3.5-inch stroke device. The rotary is a 10-bit, 40 degrees-of-travel unit.

  15. NASA ER-2: Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    This viewgraph presentation gives an overview of the NASA ER-2 aircraft. The contents include: 1) ER-2 Specifications; 2) ER-2 Basic Configuration; 3) ER-2 Payload Areas: Nose Area; 4) ER-2 Payload Areas: SuperPod Fore and Aftbody; 5) ER-2 Payload Areas: SuperPod Midbody; 6) ER-2 Payload Areas: Q-Bay; 7) ER-2 Payload Areas: Q-Bay Hatch Designs; 8) ER-2 Payload Areas: External Pods; 9) ER-2 Electrical/Control Interface; 10) ER-2 Typical Flight Profile; 11) Tropical Composition, Cloud and Climate Coupling TC-4; 12) TC-4 Timeline; 13) TC4 Area of Interest; 14) ER-2 TC4 Payload; 15) A/C ready for fuel; 16) ER-2 Pilot being suited; 17) ER-2 Taxing; 18) ER-2 Pilot post flight debrief; and 19) NASA ER-2: Flying Laboratory for Earth Science Studies and Remote Sensing.

  16. Cueing light configuration for aircraft navigation

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K. (Inventor); Johnson, Walter J. (Inventor)

    1994-01-01

    A pattern of light is projected from multiple sources located on an aircraft to form two clusters. The pattern of each cluster changes as the aircraft flies above and below a predetermined nominal altitude. The initial patterns are two horizontal, spaced apart lines. Each is capable of changing to a delta formation as either the altitude or the terrain varies. The direction of the delta cues the pilot as to the direction of corrective action.

  17. Process modeling KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Instrumentation will be provided for KC-135 aircraft which will provide a quantitative measure of g-level variation during parabolic flights and its effect on experiments which demonstrate differences in results obtained with differences in convective flow. The flight apparatus will provide video recording of the effects of the g-level variations on varying fluid samples. The apparatus will be constructed to be available to fly on the KC-135 during most missions.

  18. Lockheed ER-2 #709 high altitude research aircraft during take off

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 709, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  19. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  20. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  1. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  2. Alaskan flight trials of a synthetic vision system for instrument landings of a piston twin aircraft

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew K.; Alter, Keith W.; Jennings, Chad W.; Powell, J. D.

    1999-07-01

    Stanford University has developed a low-cost prototype synthetic vision system and flight tested it onboard general aviation aircraft. The display aids pilots by providing an 'out the window' view, making visualization of the desired flight path a simple task. Predictor symbology provides guidance on straight and curved paths presented in a 'tunnel- in-the-sky' format. Based on commodity PC hardware to achieve low cost, the Tunnel Display system uses differential GPS (typically from Stanford prototype Wide Area Augmentation System hardware) for positioning and GPS-aided inertial sensors for attitude determination. The display has been flown onboard Piper Dakota and Beechcraft Queen Air aircraft at several different locations. This paper describes the system, its development, and flight trials culminating with tests in Alaska during the summer of 1998. Operational experience demonstrated the Tunnel Display's ability to increase flight- path following accuracy and situational awareness while easing the task instrument flying.

  3. Role of research aircraft in technology development

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1984-01-01

    The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.

  4. Pilot Preferences on Displayed Aircraft Control Variables

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2013-01-01

    The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.

  5. Retention of Escherichia coli by house fly and stable fly (Diptera: Muscidae) during pupal metamorphosis and eclosion.

    PubMed

    Rochon, K; Lysyk, T J; Selinger, L B

    2005-05-01

    Populations of Escherichia coli obtained by feeding larval house flies, Musca domestica L. and stable flies, Stomoxys calcitrans (L.), persisted through the pupal stage. The abundance of E. coli in house fly pupae increased initially then declined before adult emergence. Abundance of E. coli in stable fly pupae increased through pupal development and remained high. Infected stable fly pupal cases typically contained more E. coli than house fly pupal cases. A greater proportion of emerging adult house flies were infected with E. coli compared with stable flies; however, the abundance of E. coli on infected flies was similar between species. Adult flies contained 0.04-0.19% of the E. coli in the pupal cases. The proportion of infected house fly adults and the amount of E. coli on the infected flies were related to the levels of E. coli in the pupal cases; however, these relationships did not occur with the stable fly. Results suggest that retention of E. coli from larval to adult house flies could play a role in the transmission and spread of E. coli, whereas stable fly adults probably play a minor role in E. coli spread. However, pupae of both species have potential to act as reservoirs for E. coli.

  6. Chemical hazards in aeromedical aircraft.

    PubMed

    Tupper, C R

    1989-01-01

    Several potentially hazardous chemicals are required to make modern military aircraft fly. With each airevac mission, the possibility exists for structural failure of a fluid system, resulting in contamination to flight/medical crews, patients, and passengers. Aeromedical Evacuation Crewmembers (AECMs) need to be aware of the hazardous chemicals used in aircraft and areas where there is an increased risk to those in and around the aircraft. This study identified potential areas for chemical leakage, such as refuel receptacles, hydraulic reservoirs, hydraulic motors, doors, ramps, engines, and more. Further, it identified the basic first aid procedures to perform on people contaminated with jet fuel, hydraulic fluid, engine oil, fire extinguisher agents, LOX and other fluids. First aid procedures are basic and can be performed with supplies and equipment on a routine aeromedical evacuation mission, AECMs trained in a basic awareness of hazardous aircraft chemicals will result in crews better prepared to cope with the unique risks of transporting patients in a complicated military aircraft.

  7. Chemical hazards in aeromedical aircraft.

    PubMed

    Tupper, C R

    1989-01-01

    Several potentially hazardous chemicals are required to make modern military aircraft fly. With each airevac mission, the possibility exists for structural failure of a fluid system, resulting in contamination to flight/medical crews, patients, and passengers. Aeromedical Evacuation Crewmembers (AECMs) need to be aware of the hazardous chemicals used in aircraft and areas where there is an increased risk to those in and around the aircraft. This study identified potential areas for chemical leakage, such as refuel receptacles, hydraulic reservoirs, hydraulic motors, doors, ramps, engines, and more. Further, it identified the basic first aid procedures to perform on people contaminated with jet fuel, hydraulic fluid, engine oil, fire extinguisher agents, LOX and other fluids. First aid procedures are basic and can be performed with supplies and equipment on a routine aeromedical evacuation mission, AECMs trained in a basic awareness of hazardous aircraft chemicals will result in crews better prepared to cope with the unique risks of transporting patients in a complicated military aircraft. PMID:2923600

  8. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  9. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  10. Prospective communications research to support fly by light/power by wire

    NASA Technical Reports Server (NTRS)

    Game, David

    1994-01-01

    A NASA Research Grant NAG-1-1309, Distributed Fiber Optic Systems for Commercial Aircraft, was awarded during July 1991. This report primarily constitutes a summary of findings of the original background research done at that time. NASA is embarking on a research project to design the next generation of commercial aircraft, fly by light/power by wire. The objectives of this effort are to improve commercial aircraft design by (1) reducing the weight of the aircraft to improve efficiency and (2) improving the fault tolerance and safety of the aircraft by enhancing current systems with new technologies or introducing new systems into the aircraft.

  11. CID Aircraft post-impact lakebed skid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Moments after hitting and sliding through the wing openers the aircraft burst into flame, with a spectacular fireball seen emanating from the right inboard engine area. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four

  12. 14 CFR 91.161 - Special awareness training required for pilots flying under visual flight rules within a 60...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... Rules Visual Flight Rules § 91.161 Special awareness training required for pilots flying under visual... of an aircraft while flying within a 60-nautical mile radius of the DCA VOR/DME, under VFR,...

  13. 14 CFR 91.161 - Special awareness training required for pilots flying under visual flight rules within a 60...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... Rules Visual Flight Rules § 91.161 Special awareness training required for pilots flying under visual... of an aircraft while flying within a 60-nautical mile radius of the DCA VOR/DME, under VFR,...

  14. 14 CFR 91.161 - Special awareness training required for pilots flying under visual flight rules within a 60...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... Rules Visual Flight Rules § 91.161 Special awareness training required for pilots flying under visual... of an aircraft while flying within a 60-nautical mile radius of the DCA VOR/DME, under VFR,...

  15. 14 CFR 91.161 - Special awareness training required for pilots flying under visual flight rules within a 60...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... Rules Visual Flight Rules § 91.161 Special awareness training required for pilots flying under visual... of an aircraft while flying within a 60-nautical mile radius of the DCA VOR/DME, under VFR,...

  16. 14 CFR 91.161 - Special awareness training required for pilots flying under visual flight rules within a 60...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... Rules Visual Flight Rules § 91.161 Special awareness training required for pilots flying under visual... of an aircraft while flying within a 60-nautical mile radius of the DCA VOR/DME, under VFR,...

  17. Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control

    NASA Technical Reports Server (NTRS)

    Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2008-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.

  18. Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2010-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.

  19. Altus aircraft on runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.

  20. Human-centered aircraft automation: A concept and guidelines

    NASA Technical Reports Server (NTRS)

    Billings, Charles E.

    1991-01-01

    Aircraft automation is examined and its effects on flight crews. Generic guidelines are proposed for the design and use of automation in transport aircraft, in the hope of stimulating increased and more effective dialogue among designers of automated cockpits, purchasers of automated aircraft, and the pilots who must fly those aircraft in line operations. The goal is to explore the means whereby automation may be a maximally effective tool or resource for pilots without compromising human authority and with an increase in system safety. After definition of the domain of the aircraft pilot and brief discussion of the history of aircraft automation, a concept of human centered automation is presented and discussed. Automated devices are categorized as a control automation, information automation, and management automation. The environment and context of aircraft automation are then considered, followed by thoughts on the likely future of automation of that category.

  1. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  2. A chronic pneumothorax and fitness to fly.

    PubMed

    Currie, Graeme P; Kennedy, Ann-Maree; Paterson, Edward; Watt, Stephen J

    2007-02-01

    According to Boyle's law, as the pressure falls, the volume of gas rises in an inversely proportional manner. This means that during an aircraft flight, the volume of trapped air in gas filled body chambers will increase. As a consequence, it is fairly well established that individuals with an untreated pneumothorax should not participate in commercial flying due to the risk of it enlarging and the possible development of tension. However, whether this also applies to individuals who have a long-standing, clinically stable pneumothorax is uncertain. The following article describes two adult patients each with a chronic pneumothorax who asked whether they would be fit to fly in an aircraft. We outline their histories and subsequent evaluation which consisted of clinical assessment, computed tomographic imaging, a hypoxic challenge test and exposure to a hypoxic hypobaric environment in a decompression chamber. PMID:17287307

  3. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  4. Aeroelastic stability of forward swept composite winged aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.

    1983-01-01

    This paper reviews the author's past and present aeroelastic stability and performance studies related to forward swept, composite wing aircraft. The influence of laminate elastic bend/twist coupling upon wing divergence, lateral control, and lift effectiveness will be illustrated by means of closed-form solutions, numerical analysis and simple wind-tunnel experiments. In addition, results of analyses of a freely flying flexible FSW aircraft are discussed to indicate the possible effects of the flexible forward swept wing on aircraft dynamic stability. These studies show, both theoretically and experimentally, that, if the aircraft is not carefully designed, a phenomenon referred to as body freedom flutter may appear.

  5. Fly-by-light technology development plan

    NASA Technical Reports Server (NTRS)

    Todd, J. R.; Williams, T.; Goldthorpe, S.; Hay, J.; Brennan, M.; Sherman, B.; Chen, J.; Yount, Larry J.; Hess, Richard F.; Kravetz, J.

    1990-01-01

    The driving factors and developments which make a fly-by-light (FBL) viable are discussed. Documentation, analyses, and recommendations are provided on the major issues pertinent to facilitating the U.S. implementation of commercial FBL aircraft before the turn of the century. Areas of particular concern include ultra-reliable computing (hardware/software); electromagnetic environment (EME); verification and validation; optical techniques; life-cycle maintenance; and basis and procedures for certification.

  6. Space shuttle flying qualities and criteria assessment

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.

    1987-01-01

    Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.

  7. Venus Atmospheric Exploration by Solar Aircraft

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; LaMarre, C.; Colozza, A.

    2002-01-01

    The Venus atmosphere is a favorable environment for flying powered aircraft. The atmospheric pressure makes flight much easier than on planets such as Mars. Above the clouds, solar energy is available in abundance on Venus, and the slow rotation of Venus allows a solar airplane to be designed for flight within continuous sunlight. The atmosphere between 50 km and 75 km on Venus is one of the most dynamic and interesting regions of the planet. The challenge for a Venus aircraft will be the fierce winds and caustic atmosphere. In order to remain on the sunlit side of Venus, an exploration aircraft will have to be capable of sustained flight at or above the wind speed. An aircraft would be a powerful tool for exploration. By learning how Venus can be so similar to Earth, and yet so different, we will learn to better understand the climate and geological history of the Earth.

  8. Ideals and Category Typicality

    ERIC Educational Resources Information Center

    Kim, ShinWoo; Murphy, Gregory L.

    2011-01-01

    Barsalou (1985) argued that exemplars that serve category goals become more typical category members. Although this claim has received support, we investigated (a) whether categories have a single ideal, as negatively valenced categories (e.g., cigarette) often have conflicting goals, and (b) whether ideal items are in fact typical, as they often…

  9. CID Aircraft pre-impact lakebed skid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The B-720 is seen viewed moments after impact and just before hitting the wing openers. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and

  10. A formulation for aircraft rotation

    SciTech Connect

    Boland, N.

    1994-12-31

    The aircraft rotation problem arises in airline operations: the flight legs to be flown by a particular type of aircraft must be sequenced, with the intention that any one aircraft could fly through the entire sequence and end up positioned so as to begin the sequence again, hence the use of the term {open_quotes}rotation{close_quotes}. A rotation must be constructed so that at regular intervals the aircraft can undergo maintenance. This requires a particular location and duration of time. For each pair of legs which can be adjacent in the rotation, there is an associated value, called the {open_quotes}through-value{close_quotes}, which represents the revenue possibilities of providing one-stop service on these legs. We model this problem on a digraph: we need to find a Hamiltonian cycle that maximizes total through-value, subject to the side constraints arising from the maintenance requirements. We present a set partitioning formulation in which column generation involves finding a shortest path in a network, subject to side constraints.

  11. Estimating Orientation of Flying Fruit Flies.

    PubMed

    Cheng, Xi En; Wang, Shuo Hong; Qian, Zhi-Ming; Chen, Yan Qiu

    2015-01-01

    The recently growing interest in studying flight behaviours of fruit flies, Drosophila melanogaster, has highlighted the need for developing tools that acquire quantitative motion data. Despite recent advance of video tracking systems, acquiring a flying fly's orientation remains a challenge for these tools. In this paper, we present a novel method for estimating individual flying fly's orientation using image cues. Thanks to the line reconstruction algorithm in computer vision field, this work can thereby focus on the practical detail of implementation and evaluation of the orientation estimation algorithm. The orientation estimation algorithm can be incorporated into tracking algorithms. We rigorously evaluated the effectiveness and accuracy of the proposed algorithm by running experiments both on simulation data and on real-world data. This work complements methods for studying the fruit fly's flight behaviours in a three-dimensional environment.

  12. An overview of NASA's digital fly-by-wire technology development program

    NASA Technical Reports Server (NTRS)

    Jarvis, C. R.

    1976-01-01

    The feasibility of using digital fly by wire systems to control aircraft was demonstrated by developing and flight testing a single channel system, which used Apollo hardware, in an F-8C test airplane. This is the first airplane to fly with a digital fly by wire system as its primary means of control and with no mechanical reversion capability. The development and flight test of a triplex digital fly by wire system, which will serve as an experimental prototype for future operational digital fly by wire systems, are underway.

  13. An overview of NASA's digital fly-by-wire technology development program

    NASA Technical Reports Server (NTRS)

    Jarvis, C. R.

    1975-01-01

    The feasibility of using digital fly-by-wire systems to control aircraft was demonstrated by developing and flight testing a single channel system, which used Apollo hardware, in an F-8C test airplane. This is the first airplane to fly with a digital fly-by-wire system as its primary means of control and with no mechanical reversion capability. The development and flight test of a triplex digital fly-by-wire system, which will serve as an experimental prototype for future operational digital fly-by-wire systems, is underway.

  14. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  15. Survival analysis of aging aircraft

    NASA Astrophysics Data System (ADS)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  16. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  17. Experiments Result in Safer, Spin-Resistant Aircraft

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The General Aviation Spin Program at Langley Research Center devised the first-of-their-kind guidelines for designing more spin-resistant aircraft. Thanks to NASA's contributions, the Federal Aviation Administration introduced the Part 23 spin-resistance standard in 1991. Los Angeles-based ICON Aircraft has now manufactured a new plane for consumer recreational flying that meets the complete set of criteria specified for Part 23 testing.

  18. Evaluating and minimizing noise impact due to aircraft flyover

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1980-01-01

    The results of a study on the evaluation and reduction of noise impact to a community due to aircraft landing and takeoff operations are presented. The case of multiple aircrafts flying on several trajectories, for either approach/landings or takeoffs was examined. An extremely realistic model of the flight path was developed. The annoyance criterion used was the noise impact index (NII). The algorithm was applied to Patrick Henry International Airport.

  19. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  20. Longitudinal flying qualities criteria for single-pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Bar-Gill, A.

    1983-01-01

    Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.

  1. Aircraft conceptual design study of the canard and threesurface unconventional configurations for the purposes of reducing environmental impacts

    NASA Astrophysics Data System (ADS)

    Desharnais, Olivier

    With a constant increase in the demand for air transport and today's high fuel price, the aerospace industry is actively searching for new operation methods and technologies to improve efficiency and to reduce the impact it has on the environment. Aircraft manufacturers are exploring many different ways of designing and building better airplanes. One of the considered methods is the use of unconventional aircraft configurations. The objective of this research is to study two configurations, the canard and three-surface, by applying them into a typical high-speed jet aircraft using the conceptual design tools for conventional aircraft available at Bombardier Aerospace (some of them have been modified and validated for the two configurations of interest). This included a weight estimation of the foreplane, an extensive validation of the aerodynamic tool, AVL, and a modification of a physics-based tail-sizing tool. The last tool was found necessary for an accurate foreplane/tailplane sizing, aircraft balancing, establishing the CG envelope and for the assessment of all stability and control requirements. Then, a canard aircraft comparable to the Bombardier research platform aircraft was designed. Final solutions were not obtained from a complete optimization because of some limitations in the design process. The preliminary results show an increase of fuel burn of 10%, leading to an increase of the environmental impacts. The theoretical advantage of not generating any download lift is clearly overwhelmed by the poor effectiveness of the high-lift system. The incapacity to reach a level of high-lift performance close to the one of conventional high-speed aircrafts mostly explains why the canard configuration was found to have no true benefits in this application. Even if no final solution of a three-surface aircraft was obtained in this research, this configuration was identified as being better than the canard case according to the information found in the literature

  2. Flying qualities - A costly lapse in flight-control design

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1982-01-01

    Generic problems in advanced aircraft with advanced control systems which suffer from control sensitivity, sluggish response, and pilot-induced oscillation tendencies are examined, with a view to improving techniques for eliminating the problems in the design phase. Results of two NASA and NASA/AIAA workshops reached a consensus that flying qualities criteria do not match control system development, control system designers are not relying on past experience in their field, ground-based simulation is relied on too heavily, and communications between flying qualities and control systems engineers need improvement. A summation is offered in that hardware and software have outstripped the pilot's capacity to use the capabilities which new aircraft offer. The flying qualities data base is stressed to be dynamic, and continually redefining the man/machine relationships.

  3. Daedalus Project's Light Eagle - Human powered aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  4. Sun powered aircraft design

    NASA Technical Reports Server (NTRS)

    Maccready, P. B.; Lissaman, P. B. S.; Morgan, W. R.; Burke, J. D.

    1981-01-01

    Two piloted aircraft have been developed and flown powered solely by photovoltaic cells in a program sponsored by the DuPont Company. The 30.8-kg (68-lb), 21.6-m (71-ft) span, Gossamer Penguin was used as a solar test bed, making a 2.6-km (1.6-mile) flight in August 1980. The 88.1-kg (194-lb), 14.3-m (47-ft) span Solar Challenger was developed for long flights in normal turbulence. Stressed to +9 G, it utilizes Kevlar, Nomex honeycomb-graphite sandwich wall tubes, expanded polystyrene foam ribs, and Mylar skin. With a 54.9-kg (121-lb) airframe, 33.1-kg (73-lb) propulsion system, and a 45.4-kg (100-lb) pilot, it flies on 1400 watts. In summer, the projected maximum climb is 1.0 m/s (200 ft/min) at 9,150 m (30,000 ft). Sixty purely solar-powered flights were made during winter 1980-1981. Using thermals, 1,070 m (3,500 ft) was reached with 115-minute duration.

  5. Small Aircraft RF Interference Path Loss

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  6. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  7. Automated optimization techniques for aircraft synthesis

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1976-01-01

    Application of numerical optimization techniques to automated conceptual aircraft design is examined. These methods are shown to be a general and efficient way to obtain quantitative information for evaluating alternative new vehicle projects. Fully automated design is compared with traditional point design methods and time and resource requirements for automated design are given. The NASA Ames Research Center aircraft synthesis program (ACSYNT) is described with special attention to calculation of the weight of a vehicle to fly a specified mission. The ACSYNT procedures for automatically obtaining sensitivity of the design (aircraft weight, performance and cost) to various vehicle, mission, and material technology parameters are presented. Examples are used to demonstrate the efficient application of these techniques.

  8. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  9. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    The design features of an aircraft capable of fulfilling a long haul, high capacity cargo mission are described. This span-loading aircraft, or flying wing, is capable of carrying extremely large payloads and is expected to be in demand to replace the slow-moving cargo ships currently in use. The spanloader seeks to reduce empty weight by eliminating the aircraft fuselage. Disadvantages are the thickness of the cargo-containing wing, and resulting stability and control problems. The spanloader presented here has a small fuselage, low-aspect ratio wings, winglets, and uses six turbofan engines for propulsion. It will have a payload capacity of 300,000 pounds plus 30 first class passengers and 6 crew members. Its projected market is transportation of freight from Europe and the U.S.A. to countries in the Pacific Basin. Cost estimates support its economic feasibility.

  10. Recommendations for field measurements of aircraft noise

    NASA Astrophysics Data System (ADS)

    Marsh, A. H.

    1982-04-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  11. Agricultural Aircraft Aid

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Farmers are increasingly turning to aerial applications of pesticides, fertilizers and other materials. Sometimes uneven distribution of the chemicals is caused by worn nozzles, improper alignment of spray nozzles or system leaks. If this happens, job must be redone with added expense to both the pilot and customer. Traditional pattern analysis techniques take days or weeks. Utilizing NASA's wind tunnel and computer validation technology, Dr. Roth, Oklahoma State University (OSU), developed a system for providing answers within minutes. Called the Rapid Distribution Pattern Evaluation System, the OSU system consists of a 100-foot measurement frame tied in to computerized analysis and readout equipment. System is mobile, delivered by trailer to airfields in agricultural areas where OSU conducts educational "fly-ins." A fly-in typically draws 50 to 100 aerial applicators, researchers, chemical suppliers and regulatory officials. An applicator can have his spray pattern checked. A computerized readout, available in five to 12 minutes, provides information for correcting shortcomings in the distribution pattern.

  12. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  13. World commercial aircraft accidents

    SciTech Connect

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accident is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.

  14. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  15. W5 - If Pigs Could Fly

    NASA Astrophysics Data System (ADS)

    Cannon, Trina

    2012-10-01

    Centripetal force seems to be a challenge for students and we are typically using stoppers, string, tubes and slotted masses (that always crash to the floor). But if we use a toy that reminds them of an amusement park ride, we can get the message across and have some fun. Come and see if pigs can fly!

  16. Challenge to aviation: Hatching a leaner pterosauer. [improving commercial aircraft design for greater fuel efficiency

    NASA Technical Reports Server (NTRS)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  17. Computer programs for estimating aircraft takeoff performance in three dimensional space

    NASA Technical Reports Server (NTRS)

    Bowles, J. V.

    1974-01-01

    A set of computer programs has been developed to estimate the takeoff and initial climb-out maneuver of a given aircraft in three-dimensional space. The program is applicable to conventional, vectored lift and power-lift concept aircraft. The aircraft is treated as a point mass flying over a flat earth with no side slip, and the rotational dynamics have been neglected. The required input is described and a sample case presented.

  18. Maneuvering technology for advanced fighter aircraft

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, Scott H.; Byers, Richard H.

    1992-01-01

    The need for increased maneuverability has its genesis from the first aerial combat engagement when two adversaries entangled themselves in a deadly aerial dance trying to gain the advantage over the other. It has only been in the past two decades that technologies have been investigated to increase aircraft control at maneuver attitudes that are typically dominated by highly separated flows. These separated flow regions are aggravated by advanced fighter aircraft shapes required to defeat an electronic enemy. This paper discusses passive and active devices that can be used to enhance the maneuverability of advanced fighter aircraft through vortex flow control, boundary layer control, and innovative flow manipulation.

  19. Certification of an agricultural spray aircraft on ethanol fuel

    SciTech Connect

    Shauck, M.E.; Zanin, M.G.

    1994-12-31

    A Piper Pawnee, one of the most common agricultural spray aircraft, is currently undergoing Federal Aviation Administration (FAA) certification to allow the use of denatured ethanol as its fuel. This certification is part of a broader effort to introduce ethanol as a replacement for aviation gasoline. Various reasons brought about the choice of an agricultural spray aircraft to be certified on ethanol. One is the minimization of initial fuel distribution problems. Agricultural aviation often requires only single fuel storage since most of the flying is local. Additionally, corn-produced ethanol is the natural fuel of choice for farming operations. The increased power developed on ethanol compared to aviation gasoline (avgas) is very important when operating heavily loaded spray aircraft at very low altitudes. The power-plant, a Lycoming IO-540, is already certified. The aircraft is currently flying on ethanol in order to satisfy the airframe requirements. The effort is being supported by a consortium of organizations of corn-producing states. Upon completion of certification, the aircraft will be demonstrated around the mid-western states. Certification will allow the use of the aircraft in the commercial arena. Many mid-western agricultural spray operations and ag-pilots have already expressed interest in converting their aircraft to ethanol fuel.

  20. In-flight detection and identification and accommodation of aircraft icing

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2012-11-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  1. The role of wind tunnel testing in the development of advanced rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.

    1973-01-01

    The relations of wind tunnel test objectives to wind tunnel test requirements are reviewed in an assessment of the current role of wind tunnel testing in the development of advanced rotary-wing aircraft. Elements of typical development programs are examined, and a comparison of fixed wing and rotary wing aircraft programs is presented. Proposed new test facilities for fixed wing aircraft and typical aircraft program costs are discussed, along with the use of wind tunnels for tilt rotor research aircraft and the role of 40 x 80 ft wind tunnels in tilt rotor aircraft development. Some changes in current programs and methods are outlined for bringing about desired improvements.

  2. Applications of advanced electric/electronic technology to conventional aircraft

    NASA Technical Reports Server (NTRS)

    Heimbold, R. L.

    1980-01-01

    The desirability of seven advanced technologies as applied to three commercial aircraft of 1985 to 1995 was investigated. Digital fly by wire, multiplexing, ring laser gyro, integrated avionics, all electric airplane, electric load management, and fiber optics were considered for 500 passenger, 50 passenger, and 30 passenger aircraft. The major figure of merit used was Net Value of Technology based on procurement and operating cost over the life of the aircraft. An existing computer program, ASSET, was used to resize the aircraft and evalute fuel usage and maintenance costs for each candidate configuration. Conclusions were that, for the 500 passenger aircraft, all candidates had a worthwhile payoff with the all electric airplane having a large payoff.

  3. Evaluating the Effectiveness of Infrared Signature Suppression of Aircraft Skin

    NASA Astrophysics Data System (ADS)

    Lu, Jian Wei; Wang, Qiang; Kwon, Oh Joon

    During typical supersonic cruising, the temperature of the aircraft skin rises above 300 K due to aerodynamic heating. In this situation, aircraft-skin infrared (IR) suppression, used to minimize the radiation contrast from the background is a crucial survival technology. In the present study, a technique to evaluate the effectiveness of IR suppression of aircraft skin is proposed. For this purpose, a synthetic procedure based on numerical simulations has been developed. In this procedure, the thermal status of aircraft skin is obtained using a computational fluid dynamics (CFD) method for complex aircraft geometries. An IR signature model is proposed using a reverse Monte Carlo (RMC) technique. The detection range and the IR contrast are adopted as the performance indicators for the evaluation of the aircraft IR suppression. The influence of these factors related to the aircraft-skin radiation, such as aircraft-skin emissivity, surface temperature distribution and flight speed, on the IR contrast and the detection range is also studied. As a test case, the effectiveness of various IR suppression schemes was analyzed for a typical air combat situation. Then, the method is applied to clarify the contribution of each aircraft component to the IR suppression of the overall IR radiation. The results show that aircraft-skin temperature control and emissivity control are effective means to reduce the IR radiation and to achieve lower detection. The results can be used as a practical guide for designing future stealth aircraft.

  4. Fly ash of mineral coal as ceramic tiles raw material.

    PubMed

    Zimmer, A; Bergmann, C P

    2007-01-01

    The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.

  5. Overview of Propulsion Systems for a Mars Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Miller, Christopher J.; Reed, Brian D.; Kohout, Lisa L.; Loyselle, Patricia L.

    2001-01-01

    The capabilities and performance of an aircraft depends greatly on the ability of the propulsion system to provide thrust. Since the beginning of powered flight, performance has increased in step with advancements in aircraft propulsion systems. These advances in technology from combustion engines to jets and rockets have enabled aircraft to exploit our atmospheric environment and fly at altitudes near the Earth's surface to near orbit at speeds ranging from hovering to several times the speed of sound. One of the main advantages of our atmosphere for these propulsion systems is the availability of oxygen. Getting oxygen basically "free" from the atmosphere dramatically increases the performance and capabilities of an aircraft. This is one of the reasons our present-day aircraft can perform such a wide range of tasks. But this advantage is limited to Earth; if we want to fly an aircraft on another planetary body, such as Mars, we will either have to carry our own source of oxygen or use a propulsion system that does not require it. The Mars atmosphere, composed mainly of carbon dioxide, is very thin. Because of this low atmospheric density, an aircraft flying on Mars will most likely be operating, in aerodynamical terms, within a very low Reynolds number regime. Also, the speed of sound within the Martian environment is approximately 20 percent less than it is on Earth. The reduction in the speed of sound plays an important role in the aerodynamic performance of both the aircraft itself and the components of the propulsion system, such as the propeller. This low Reynolds number-high Mach number flight regime is a unique flight environment that is very rarely encountered here on Earth.

  6. Impact of Airspace Charges on Transatlantic Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.

    2015-01-01

    Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The

  7. Altus I aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft climbs away after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the

  8. Escorting commercial aircraft to reduce the MANPAD threat

    NASA Astrophysics Data System (ADS)

    Hock, Nicholas; Richardson, M. A.; Butters, B.; Walmsley, R.; Ayling, R.; Taylor, B.

    2005-11-01

    This paper studies the Man-Portable Air Defence System (MANPADS) threat against large commercial aircraft using flight profile analysis, engagement modelling and simulation. Non-countermeasure equipped commercial aircraft are at risk during approach and departure due to the large areas around airports that would need to be secured to prevent the use of highly portable and concealable MANPADs. A software model (CounterSim) has been developed and was used to simulate an SA-7b and large commercial aircraft engagement. The results of this simulation have found that the threat was lessened when a escort fighter aircraft is flown in the 'Centreline Low' position, or 25 m rearward from the large aircraft and 15 m lower, similar to the Air-to-Air refuelling position. In the model a large aircraft on approach had a 50% chance of being hit or having a near miss (within 20m) whereas escorted by a countermeasure equipped F-16 in the 'Centerline Low' position, this was reduced to only 14%. Departure is a particularly vulnerable time for large aircraft due to slow climb rates and the inability to fly evasive manoeuvres. The 'Centreline Low' escorted departure greatly reduced the threat to 16% hit or near miss from 62% for an unescorted heavy aircraft. Overall the CounterSim modelling has showed that escorting a civilian aircraft on approach and departure can reduce the MANPAD threat by 3 to 4 times.

  9. Carbon composites fly high

    SciTech Connect

    Ashley, S.

    1997-09-01

    This article describes improved techniques of resin transfer molding being used to fabricate flight-critical carbon-composite structures for aircraft and jet engines. Hand lay-up methods have been the traditional means to fabricate fiber-reinforced resin-composite parts. The procedure typically involves laying up or stacking multiple plies of preimpregnated woven fabrics in molds, then curing the sealed mold assemblies in autoclaves. The entire process is both time-consuming and labor-intensive. Only in the last few years has resin transfer molding (RTM)--a family of processes in which resin is injected into fiber preforms enclosed in heated mold cavities--emerged as a viable alternative for producing composite parts. RTM can often speed processing because it performs the shaping and curing functions in one step. The method also features the ability (in principle) to achieve precise control of the placement, orientation, and quantity of reinforcing fibers in the formed structure. Thus, RTM lends itself well to the fabrication of highly complex structural shapes that usually pose a challenge to the lay-up method.

  10. Application of variable-sweep wings to commuter aircraft

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Lovell, W. A.; Price, J. E.; Turriiziani, R. V.; Washburn, F. F.

    1983-01-01

    The effects of using variable-sweep wings on the riding quality and mission-performance characteristics of commuter-type aircraft were studied. A fixed-wing baseline vehicle and a variable-sweep version of the baseline were designed and evaluated. Both vehicles were twin-turboprop, pressurized-cabin, 30-passenger commuter aircraft with identical mission requirements. Mission performance was calculated with and without various ride-quality constraints for several combinations of cruise altitude and stage lengths. The variable-sweep aircraft had a gross weight of almost four percent greater than the fixed-wing baseline in order to meet the design-mission requirements. In smooth air, the variable sweep configuration flying with low sweep had a two to three percent fuel-use penalty. However, the imposition of quality constraints in rough air can result in advantages in both fuel economy and flight time for the variable-sweep vehicle flying with high sweep.

  11. Initial flight test of a ground deployed system for flying qualities assessment

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.; Koehler, Ruthard; Wilson, Edward M.; Levy, David R.

    1989-01-01

    In order to provide a safe, repeatable, precise, high-gain flying qualities task a ground deployed system was developed and tested at the NASA Ames Research Center's Dryden Flight Research Facility. This system, the adaptable target lighting array system (ATLAS), is based on the German Aerospace Research Establishment's ground attack test equipment (GRATE). These systems provide a flying-qualities task, emulating the ground-attack task with ground deployed lighted targets. These targets light in an unpredictable sequence and the pilot has to aim the aircraft at whichever target is lighted. Two flight-test programs were used to assess the suitability of ATLAS. The first program used the United States Air Force (USAF) NT-33A variability stability aircraft to establish that ATLAS provided a task suitable for use in flying qualities research. A head-up display (HUD) tracking task was used for comparison. The second program used the X-29A forward-swept wing aircraft to demonstrate that the ATLAS task was suitable for assessing the flying qualities of a specific experimental aircraft. In this program, the ground-attack task was used for comparison. All pilots who used ATLAS found it be highly satisfactory and thought it to be superior to the other tasks used in flying qualities evaluations. It was recommended that ATLAS become a standard for flying qualities evaluations.

  12. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    1989-01-01

    With a growing demand for fast international freight service, the slow-moving cargo ships currently in use will soon find a substantial portion of their clients looking elsewhere. One candidate for filling this expected gap in the freight market is a span-loading aircraft (or 'flying wing') capable of long-range operation with extremely large payloads. This report summarizes the design features of an aircraft capable of fulfilling a long-haul, high-capacity cargo mission. The spanloader seeks to gain advantage over conventional aircraft by eliminating the aircraft fuselage and thus reducing empty weight. The primary disadvantage of this configuration is that the cargo-containing wing tends to be thick, thus posing a challenge to the airfoil designer. It also suffers from stability and control problems not encountered by conventional aircraft. The result is an interesting, challenging exercise in unconventional design. The report that follows is a student written synopsis of an effort judged to be the best of eight designs developed during the year 1988-1989.

  13. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  14. Effect of fly ash on Portland cement systems. Part 1: Low-calcium fly ash

    SciTech Connect

    Papadakis, V.G.

    1999-11-01

    A typical low-calcium fly ash was used as additive in mortar, replacing part of the volume either of Portland cement or aggregate. The development of the strength, heat, porosity, boundwater, and calcium hydroxide content was measured. In aggregate replacement higher strengths were observed after 14 days, whereas in cement replacement higher strengths were observed after 91 days. The final strength gain was found to be roughly proportional to the content of active silica in the concrete volume. Bound water content and porosity results showed that fly ash reacts with calcium hydroxide, binding small amounts of water. On the basis of the experimental results, a simplified scheme describing the chemical reactions of the low-calcium fly ash in hydrating cement in proposed. Using the reaction stoichiometry, quantitative expressions for the estimation of the chemical and volumetric composition of a fly ash concrete are proposed. The model expressions can be applied in mix design and concrete performance prediction.

  15. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Concepts for possible future airplanes are studied that include all-wing distributed-load airplanes, multi-body airplanes, a long-range laminar flow control airplane, a nuclear powered airplane designed for towing conventionally powered airplanes during long range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short range feeder airplanes. Results indicate that each of these concepts has the potential for important performance and economic advantages, provided certain suggested research tasks are successfully accomplished. Indicated research areas include all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  16. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Several concepts for possible future airplanes, including all-wing distributed-load airplanes, multibody airplanes, a long-range laminar flow control airplane, a nuclear-powered airplane designed for towing conventionally powered airplanes during long-range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short-range feeder airplanes are described. Performance and economic advantages of each concept are indicated. Further research is recommended in the following areas: all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  17. Estimating Orientation of Flying Fruit Flies

    PubMed Central

    Cheng, Xi En; Wang, Shuo Hong; Qian, Zhi-Ming; Chen, Yan Qiu

    2015-01-01

    The recently growing interest in studying flight behaviours of fruit flies, Drosophila melanogaster, has highlighted the need for developing tools that acquire quantitative motion data. Despite recent advance of video tracking systems, acquiring a flying fly’s orientation remains a challenge for these tools. In this paper, we present a novel method for estimating individual flying fly’s orientation using image cues. Thanks to the line reconstruction algorithm in computer vision field, this work can thereby focus on the practical detail of implementation and evaluation of the orientation estimation algorithm. The orientation estimation algorithm can be incorporated into tracking algorithms. We rigorously evaluated the effectiveness and accuracy of the proposed algorithm by running experiments both on simulation data and on real-world data. This work complements methods for studying the fruit fly’s flight behaviours in a three-dimensional environment. PMID:26173128

  18. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  19. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  20. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  1. Ever Fly a Tetrahedron?

    ERIC Educational Resources Information Center

    King, Kenneth

    2004-01-01

    Few things capture the spirit of spring like flying a kite. Watching a kite dance and sail across a cloud spotted sky is not only a visually appealing experience it also provides a foundation for studies in science and mathematics. Put simply, a kite is an airfoil surface that flies when the forces of lift and thrust are greater than the forces of…

  2. Pathfinder aircraft being assembled - wing assembly

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Technicians easily lift a 20-foot-long wing section during assembly of the Pathfinder solar-powered research aircraft at NASA's Dryden Flight Research Center, Edwards, California. A number of upgrades were made to the unique aircraft prior to its successful checkout flight Nov. 19, 1996, among them the installation of stronger ultra-light wing ribs made of composite materials on two of the five wing panels. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  3. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  4. Dabbling duck behavior and aircraft activity in coastal North Carolina

    USGS Publications Warehouse

    Conomy, J.T.; Collazo, J.A.; Dubovsky, J.A.; Fleming, W.J.

    1998-01-01

    Requests to increase military aircraft activity in some training facilities in the United States have prompted the need to determine if waterfowl and other wildlife are adversely affected by aircraft disturbance. We quantified behavioral responses of wintering American black ducks (Anas rubripes), American wigeon (A. americana), gadwall (A. strepera), and American green-winged teal (A. crecca carolinensis) exposed to low-level flying military aircrafts at Piney and Cedar islands, North Carolina, in 1991 and 1992. Waterfowl spent ???1.4% of their time responding to aircraft, which included flying, swimming, and alert behaviors. Mean duration of responses by species ranged from 10 to 40 sec. Costs to each species were deemed low because disruptions represented a low percentage of their time-activity budgets only a small proportion of birds reacted to disturbance (13/672; 2%); and the likelihood of resuming the activity disrupted by an aircraft disturbance event was high (64%). Recorded levels of aircraft disturbance (i.e., x?? = 85.1 dBA) were not adversely affecting the time-activity budgets of selected waterfowl species wintering at Piney and Cedar islands.

  5. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  6. Pilotless Aircraft Research Division

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Technician William Ferguson adjusts coupling on typical NACA D4 automatic control research missile with double Deacon booster, August 18, 1950. Joseph Shortal noted that a new research authorization (RA 1525) was issued on September 29, 1948 'to study various automatic stabilization systems for pilotless aircraft.' Earlier research had revealed aerodynamic control problems at speeds beyond Mach 1. The first two development missiles in this research program were launched in April 1949; the first stabilized missile on May 24, 1949. That flight was successful and 'verified the wing-tip aileron control system, the adaptation of the gyro-actuated control to supersonic flight, and a method for calculating rolling response.' 'A typical D4 missile is shown on the launcher.... This particular missile was launched August 1950, by which time the booster had been changed to a double-Deacon System to obtain higher speeds. The D4 missile configuration was also found to be a desirable one from pitch and yaw considerations in later flights. Its general configuration was followed later in the design of the Navy-Martin Bullpup air-to-ground guided missile.' Excerpts from Joseph Shortal's history of Wallops Station.

  7. A NASA F/A-18, participating in the Automated Aerial Refueling (AAR) project, flies over the Dryden

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA F/A-18 flies over the Dryden Flight Research Center and Rogers Dry Lake on December 11, 2002. The aircraft is participating in the Automated Aerial Refueling (AAR) project. The 300-gallon aerial refueling store seen on the belly of the aircraft carries fuel and a refueling drogue. This aircraft acts as a tanker in the study to develop an aerodynamic model for future automated aerial refueling, especially of unmanned vehicles.

  8. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  9. Low Reynolds number, long endurance aircraft design

    SciTech Connect

    Foch, R.J.; Ailinger, K.G. )

    1992-02-01

    Airplanes are typically designed to maximize range at the highest practical cruising speed. However, several missions require extended duration rather than range, and favor the slowest possible cruise speed. Such missions include surveillance, radio relay, and ship's electronic decoy. These missions are ideally suited for advanced technology unmanned aircraft, either remotely piloted or autonomous. Feasibility studies have been conducted and flight demonstrator prototypes of such unique aircraft have been under steady research and development at the Naval Research Laboratory since 1978. This paper discusses the design aspects and tradeoffs unique to small, slow speed long endurance unmanned aircraft operating at wing chord Reynolds numbers between 150,000 and 500,000. Additionally, many of these low Reynolds number-driven design features have applicability to high altitude, long endurance aircraft. 6 refs.

  10. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  11. Modeling Programs Increase Aircraft Design Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  12. Typical Mid Tower Elevation & Section, Typical Mid Tower Footing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Mid Tower Elevation & Section, Typical Mid Tower Footing Section & Elevation, South Tower Section & Elevation, and North Tower Sections & Elevation - Cape Arago Light Station Footbridge, Gregory Point, Charleston, Coos County, OR

  13. [The dream of flying].

    PubMed

    Goddemeier, Christof

    2005-01-01

    More than a 100 years ago the Wright brothers succeeded in performing the first motor flight in the history of mankind. But irrespective of its technical realisation man has always dealt with flying. So myths, rites and fairy-tales as well reflect the different ideas of flying as these conceptions come to light again and again in dreams and visions. Whether ascension, expression of desire and yearning or sexual metaphor -- the idea of flying seems to be a universal magic figure of thinking.

  14. Market opportunities for fly ash fillers in North America

    SciTech Connect

    Eckert, C.; Harris, T.; Gledhill, J. )

    1990-11-01

    Direct Acid Leaching (DAL) processed fly ash is derived from treating raw and beneficiated coal fly ash with hydrochloric acid. The DAL process allows for the production of fly ash with greater chemical purity and consistency than raw fly ash alone. In addition, DAL fly ash is similar to various minerals used in a wide range of applications that require filler minerals. This project investigates the feasibility of using three grades of DAL fly ash ranging from 10 microns to 30 microns in diameter as an alternative filler material to mineral fillers. Six major applications in North America, requiring large volumes of filler minerals were investigated by region including: (1) asphalt roofing shingles (2) carpet backing (3) joint compound and wallboard (4) industrial coatings (5) plastics (6) vinyl flooring. It is determined that calcium carbonate was the primary mineral filler DAL fly ash would be competing with in the applications investigated. Calcium carbonate is used in all applications investigated. The application which demonstrated the greatest potential for using DAL fly ash is asphalt shingles. Asphalt shingles were the largest calcium carbonate consuming application identified, consuming 4.8 million tons in 1988, and is the least sensitive to the dark color of the DAL fly ash. Although the DAL fly ash typically has a smaller particle size, in comparison to calcium carbonate, the asphalt shingle manufacturers felt it would be a good substitute. Other promising applications for DAL fly ash were industrial coatings and plastics where the calcium carbonate particle size requirements of 3 to 6 microns very closely matches the particle size of the DAL fly ash considered in this project. 17 figs., 36 tabs.

  15. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  16. The interpretation of flying qualities requirements for flight control design

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Weingarten, N. C.; Grantham, W.

    1986-01-01

    The flying requirements of MIL-F-8785(C) are interpreted in terms of command/response configurations, and pilot preference for flight control systems configurations of angle of attack, or pitch rate command, specified independently for the short period and phugoid dynamics, is determined using the Total-In-Flight-Simulator aircraft. The results show that for either command configuration, the short term response applies to the angle of attack response of the vehicle, and that this response must satisfy the omega(n) vs n/alpha requirement. The preference in the long term for angle of attack command indicates that the pilot wants the aircraft to fly in the direction it is pointing, and an attitude hold system is not found to be preferred unless attitude hold results in flight path angle hold.

  17. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  18. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Elliott, Kathryn A.; Huebner, Steven R.

    2003-01-01

    In this study, new technology engines were defined in two power classes: a 200 hp class, for a light, 4-place personal aircraft, and a 1500 pound thrust class for a twin-engined, 6 place business jet type aircraft. The engines were evaluated for retrofitting suitable current production aircraft for comparison to the existing engines. The engines were evaluated for performance using a typical mission for each aircraft, as well as a variant mission to further appraise performance.Issues of cost, safety, maintenance, and reliability were also addressed. Manufacturing plans were then constructed.

  19. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  20. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  1. Propulsion system study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Hirschkron, R.; Warren, R. E.

    1981-01-01

    Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).

  2. Measurement and analysis of aircraft far-field aerodynamic noise

    NASA Technical Reports Server (NTRS)

    Healy, G. J.

    1974-01-01

    A systematic investigation of aircraft far-field radiated, aerodynamically generated noise was conducted. The test phase of the original program involved the measurement of the noise produced by five gliding aircraft in an aerodynamically clean configuration during low altitude flyovers. These aircraft had gross weights that ranged from 5785 to 173 925N (1300 to 39,000 pounds), fly-by velocities from 30 to 98.5m/sec (58 to 191.5 knots or 98 to 323 ft/sec) and wing aspect ratios from 6.59 to 18.25. The results of these measurements were used to develop an equation relating aerodynamic noise to readily evaluated physical and operational parameters of the aircraft. A non-dimensional frequency spectrum, based on the mean wing thickness, was also developed.

  3. The atmospheric effects of stratospheric aircraft: A current consensus

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Carroll, M. A.; Demore, W. B.; Holton, J. R.; Isaksen, I. S. A.; Johnston, H. S.; Ko, M. K. W.

    1991-01-01

    In the early 1970's, a fleet of supersonic aircraft flying in the lower stratosphere was proposed. A large fleet was never built for economic, political, and environmental reasons. Technological improvements may make it economically feasible to develop supersonic aircraft for current markets. Some key results of earlier scientific programs designed to assess the impact of aircraft emissions on stratospheric ozone are reviewed, and factors that must be considered to assess the environmental impact of aircraft exhaust are discussed. These include the amount of nitrogen oxides injected in the stratosphere, horizontal transport, and stratosphere/troposphere assessment models are presented. Areas in which improvements in scientific understanding and model representation must be made to reduce the uncertainty in model calculations are identified.

  4. Techno-economic requirements for composite aircraft components

    NASA Technical Reports Server (NTRS)

    Palmer, Ray

    1993-01-01

    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  5. Two Modules Of A Fly-By-Light System

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    1993-01-01

    Proposed fly-by-light/power-by-wire control system for commercial aircraft designed on basis of fault-tolerant transmission of digital control data along fiber-optic paths. Important novel features of system embodied in two modules. Redundancy-management unit (RMU) performs fault-tolerance functions. Fiber-optic serial backplane (FOSB) is high-speed fault-tolerant time-division-multiplex data bus with fiber-optic transmission.

  6. Solar irradiance measurements from a research aircraft.

    PubMed

    Thekaekara, M P; Kruger, R; Duncan, C H

    1969-08-01

    Measurements of the solar constant and solar spectrum were made from a research aircraft flying at 11.58 km, above almost all of the highly variable and absorbing constituents of the atmosphere. A wide range of solar zenith angles was covered during six flights for over 14 h of observation. Results are presented from nine different instruments which complemented each other in measuring techniques and wavelength range and were calibrated and operated by different experimenters. A new value of the solar constant, 135.1 mW cm(-2), has been derived, as well as a revised solar spectral irradiance curve for zero air mass.

  7. Flying the smoky skies: secondhand smoke exposure of flight attendants

    PubMed Central

    Repace, J

    2004-01-01

    Objective: To assess the contribution of secondhand smoke (SHS) to aircraft cabin air pollution and flight attendants' SHS exposure relative to the general population. Methods: Published air quality measurements, modelling studies, and dosimetry studies were reviewed, analysed, and generalised. Results: Flight attendants reported suffering greatly from SHS pollution on aircraft. Both government and airline sponsored studies concluded that SHS created an air pollution problem in aircraft cabins, while tobacco industry sponsored studies yielding similar data concluded that ventilation controlled SHS, and that SHS pollution levels were low. Between the time that non-smoking sections were established on US carriers in 1973, and the two hour US smoking ban in 1988, commercial aircraft ventilation rates had declined three times as fast as smoking prevalence. The aircraft cabin provided the least volume and lowest ventilation rate per smoker of any social venue, including stand up bars and smoking lounges, and afforded an abnormal respiratory environment. Personal monitors showed little difference in SHS exposures between flight attendants assigned to smoking sections and those assigned to non-smoking sections of aircraft cabins. Conclusions: In-flight air quality measurements in ~250 aircraft, generalised by models, indicate that when smoking was permitted aloft, 95% of the harmful respirable suspended particle (RSP) air pollution in the smoking sections and 85% of that in the non-smoking sections of aircraft cabins was caused by SHS. Typical levels of SHS-RSP on aircraft violated current (PM2.5) federal air quality standards ~threefold for flight attendants, and exceeded SHS irritation thresholds by 10 to 100 times. From cotinine dosimetry, SHS exposure of typical flight attendants in aircraft cabins is estimated to have been >6-fold that of the average US worker and ~14-fold that of the average person. Thus, ventilation systems massively failed to control SHS air

  8. Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2016-01-01

    Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.

  9. Development of flying qualities criteria for single pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

    1982-01-01

    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

  10. Tsetse-fly control and eradication*

    PubMed Central

    Hocking, K. S.; Lamerton, J. F.; Lewis, E. A.

    1963-01-01

    In many instances the cheapest and quickest way of controlling trypanosomiasis is to reduce the number of vectors and the opportunities for contact between man and vector. For permanent results, moreover, eradication of the vectors is necessary, since eradication of trypanosomiasis by chemotherapeutic means has so far not proved feasible. For a variety of reasons, game destruction as a method of fly control is gradually being replaced by other methods. Of these, the complete removal of bush cover will always effectively eradicate tsetse flies, but in order to save time, labour and money, partial clearing (selective or discriminative) is more usually resorted to. Provided this is preceded by extensive and accurate surveys of fly infestation, it is generally successful. Blanket applications of insecticides from aircraft or from ground aerosol machines can give good and rapid results; however, as knowledge of the habits and behaviour of Glossina species grows, the discriminative application of insecticides can be made more precise, economical and effective. This method of using the residual insecticides seems to be the most promising for the future. PMID:13963757

  11. Emergency Landing Planning for Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Plaunt, Christian John; Smith, David E.

    2008-01-01

    Considerable progress has been made over the last 15 years on building adaptive control systems to assist pilots in flying damaged aircraft. Once a pilot has regained control of a damaged aircraft, the next problem is to determine the best site for an emergency landing. In general, the decision depends on many factors including the actual control envelope of the aircraft, distance to the site, weather en route, characteristics of the approach path, characteristics of the runway or landing site, and emergency facilities at the site. All of these influence the risk to the aircraft, to the passengers and crew, and to people and property on the ground. We describe an ongoing project to build and demonstrate an emergency landing planner that takes these various factors into consideration and proposes possible routes and landing sites to the pilot, ordering them according to estimated risk. We give an overview of the system architecture and input data, describe our preliminary modeling of risk, and describe how we search the space of landing sites and routes.

  12. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  13. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  14. Stabilizing soft fine-grained soils with fly ash

    SciTech Connect

    Edil, T.B.; Acosta, H.A.; Benson, C.H.

    2006-03-15

    The objective of this study was to evaluate the effectiveness of self-cementing fly ashes derived from combustion of subbituminous coal at electric power plants for stabilization of soft fine-grained soils. California bearing ratio (CBR) and resilient modulus (M{sub r}) tests were conducted on mixtures prepared with seven soft fine-grained soils (six inorganic soils and one organic soil) and four fly ashes. The soils were selected to represent a relatively broad range of plasticity, with plasticity indices ranging between 15 and 38. Two of the fly ashes are high quality Class C ashes (per ASTM C 618) that are normally used in Portland cement concrete. The other ashes are off-specification ashes, meaning they do not meet the Class C or Class F criteria in ASTM C 618. Tests were conducted on soils and soil-fly ash mixtures prepared at optimum water content (a standardized condition), 7% wet of optimum water content (representative of the typical in situ condition in Wisconsin), and 9-18% wet of optimum water content (representative of a very wet in situ condition). Addition of fly ash resulted in appreciable increases in the CBR and M{sub r} of the inorganic soils. For water contents 7% wet of optimum, CBRs of the soils alone ranged between 1 and 5. Addition of 10% fly ash resulted in CBRs ranging between 8 and 17, and 18% fly ash resulted in CBRs between 15 and 31. Similarly, M{sub r} of the soil alone ranged between 3 and 15 MPa at 7% wet of optimum, whereas addition of 10% fly ash resulted in M{sub r} between 12 and 60 MPa and 18% fly ash resulted in M{sub r} between 51 and 106 MPa. In contrast, except for one fly ash, addition of fly ash generally had little effect on CBR or M{sub r} of the organic soil.

  15. Significance and survival of Enterococci during the house fly development.

    PubMed

    Ghosh, Anuradha; Akhtar, Mastura; Holderman, Chris; Zurek, Ludek

    2014-01-01

    House flies are among the most important nonbiting insect pests of medical and veterinary importance. Larvae develop in decaying organic substrates and their survival strictly depends on an active microbial community. House flies have been implicated in the ecology and transmission of enterococci, including multi-antibiotic-resistant and virulent strains of Enterococcus faecalis. In this study, eight American Type Culture Collection type strains of enterococci including Enterococcus avium, Enterococcus casseliflavus, Enterococcus durans, Enterococcus hirae, Enterococcus mundtii, Enterococcus gallinarum, Enterococcusfaecalis, and Enterococcusfaecium were evaluated for their significance in the development of house flies from eggs to adults in bacterial feeding assays. Furthermore, the bacterial colonization of the gut of teneral flies as well as the importance of several virulence traits of E. faecalis in larval mortality was assessed. Overall survival of house flies (egg to adult) was significantly higher when grown with typically nonpathogenic enterococcal species such as E. hirae (76.0% survival), E. durans (64.0%), and E. avium (64.0%) compared with that with clinically important species E. faecalis (24.0%) and E. faecium (36.0%). However, no significant differences in survival of house fly larvae were detected when grown with E. faecalis strains carrying various virulence traits, including isogenic mutants of the human clinical isolate E. faecalis V583 with in-frame deletions of gelatinase, serine protease, and capsular polysaccharide serotype C. Enterococci were commonly detected in fly puparia (range: 75-100%; concentration: 103-105 CFU/puparium);however, the prevalence of enterococci in teneral flies varied greatly: from 25.0 (E. casseliflavus) to 89.5% (E. hirae). In conclusion, depending on the species, enterococci variably support house fly larval development and colonize the gut of teneral adults. The human pathogenic species, E. faecalis and E. faecium

  16. Understanding tsetse flies.

    PubMed

    Langley, P A

    1994-12-01

    The discovery that tsetse flies are the vectors of African trypanosomosis, causing sleeping sickness in man and nagana in cattle, occurred at the start of a rapidly expanding colonialism in sub-Saharan Africa. Hence, the first research on the fly was largely taxonomic, coupled with a painstaking ecological approach to determine the identities and distribution limits of the different species. This was followed by closer attention to the physiology of the fly, both from the academic standpoint as related to its survival and reproduction in the field, and from the standpoint of its vectorial capacity. There are still conflicting hypotheses concerning the maturation of trypanosomes within the fly. Increasing concern for the environment led to a ban in the developed nations on the use of DDT as an insecticide which had been used successfully for tsetse control in Africa. This was followed by a ban on the use of organochlorine insecticides in general, and no doubt the next restrictions will be on the use of organophosphates and upon synthetic pyrethroids which have already been banned in the UK for the control of houseflies. Fortunately, research on the role of olfactory and visual stimuli of the tsetse, in the location of potential hosts, led to an improvement in methods for monitoring fly populations by means of traps and targets upon which the flies alight. So successful are such devices that, when treated with an insecticide, they can be used to sustain an increase in natural mortality in fly populations to such an extent that these populations decline to manageable levels.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  18. AD-1 oblique wing research aircraft pilot evaluation program

    NASA Technical Reports Server (NTRS)

    Painter, W. D.

    1983-01-01

    A flight test program of a low cost, low speed, manned, oblique wing research airplane was conducted at the NASA Dryden Flight Research Facility in cooperation with NASA Ames Research Center between 1979 and 1982. When the principal purpose of the test program was completed, which was to demonstrate the flight and handling characteristics of the configuration, particularly in wing-sweep-angle ranges from 45 to 60 deg, a pilot evaluation program was conducted to obtain a qualification evaluation of the flying qualities of an oblique wing aircraft. These results were documented for use in future studies of such aircraft.

  19. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  20. Frequency Analysis of Aircraft hazards for License Application

    SciTech Connect

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  1. Fly on the Wall

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald

    2003-01-01

    The email was addressed not only to me, but also to all the Project Knowledge Sharing Community at Ames Research Center. We were invited to sit in on a major project review as a new experiment in knowledge sharing. This first-of-its-kind opportunity had been conceived by Claire Smith, who leads the knowledge sharing program, as well as heading up the Center's Project Leadership Development Program and serving as coordinator of the APPL-West program at Ames. The objective was to offer Ames project practitioners the opportunity to observe project-review processes as they happen. Not that I haven't participated in my share of project reviews, but this seemed like a great way for me to get up-to-date about a new project, the Kepler mission, and to experience a review from a new perspective. Typically, when you're being reviewed, it's difficult to see what's happening objectively-the same way it is on a project. Presenters are always thinking, 'Okay, what's on my slides? How much time do I have left? What are they going to ask me?' So when Claire's email pinged on my computer, I quickly responded by asking her to save a place for me. It was to be an informational review about progress on the project: what the team had done, where they were going, and what they needed to do to get there. There were people on the project team from all over the United States, and it was the first time for them to get together from all aspects of the project. For our part, as observers, we were asked to abide by a couple of rules: Don't ask any questions. and don't talk about the specifics of what we saw or heard. The idea was that we weren't supposed to be noticed. We weren't to buzz around and bother people. Hence the name for this experinient: Fly on the Wall.

  2. V/STOL Dynamics, Control, and Flying Qualities

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    2000-01-01

    This publication presents material that constituted the lectures presented by the author as part of Course AA 234, Dynamics, Control, and Flying Qualities of Vertical/Short Takeoff and Landing (V/STOL) Aircraft that was taught in the Department of Aeronautics and Astronautics at Stanford University. It covers representative operations of vertical and short takeoff and landing (V/STOL) aircraft, a discussion of the pilot's strategy in controlling these aircraft, the equations of motion pertinent to V/STOL tasks, and their application in the analysis of longitudinal and lateral-directional control in hover and forward flight. Following that development, which applies to the characteristics of the basic airframe and propulsion system, the text concludes with a discussion of the contributions of control augmentation in specific flight tasks and of the integration of modern electronic displays with these controls.

  3. Lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  4. Flight Safety Aircraft Risk: A Growing Problem

    NASA Astrophysics Data System (ADS)

    Haber, J. M.

    2012-01-01

    In recent years there has been a growing awareness of the need to have appropriate criteria for protection of aircraft from debris resulting from the flight termination of a malfunctioning space booster. There have been several sequences of events that have interacted to bring us to the current risk management problem. With the advent of the US initiative to have common flight safety analysis processes and criteria, it was recognized that the traditional aircraft protection approach was inadequate. It did not consider the added public concern for catastrophic events. While the probability may have been small for downing a large commercial passenger plane, the public outrage if it happened would not be adequately measured by the individual risk to passengers nor the collective (societal risk) presented by a single airplane. Over a period of a number of years the US has developed and evolved a criterion to address catastrophic risk protection. Beginning in the same time period, it was recognized the assertion that all debris with masses greater than one gram were lethal to aircraft was unduly conservative. Over this same period initiatives have been developed to refine aircraft vulnerability models. There were, however, two significant unconservative assumptions that were made in the early years. It was presumed that significant risk to aircraft could only occur in the launch area. In addition, aircraft risk assessments, when they were made were based on debris lists designed to protect people on the ground (typically debris with an impact kinetic energy greater than 11 ft-lb). Good debris lists for aircraft protection do not yet exist. However, it has become increasingly clear that even with partial breakup lists large regions were required from which aircraft flight would be restricted using the normal exclusion approaches. We provide a review of these events and an indication of the way forward.

  5. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  6. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  7. Detection and Analysis of High Ice Concentration Events and Supercooled Drizzle from IAGOS Commercial Aircraft

    NASA Astrophysics Data System (ADS)

    Gallagher, Martin; Baumgardner, Darrel; Lloyd, Gary; Beswick, Karl; Freer, Matt; Durant, Adam

    2016-04-01

    Hazardous encounters with high ice concentrations that lead to temperature and airspeed sensor measurement errors, as well as engine rollback and flameout, continue to pose serious problems for flight operations of commercial air carriers. Supercooled liquid droplets (SLD) are an additional hazard, especially for smaller commuter aircraft that do not have sufficient power to fly out of heavy icing conditions or heat to remove the ice. New regulations issued by the United States and European regulatory agencies are being implemented that will require aircraft below a certain weight class to carry sensors that will detect and warn of these types of icing conditions. Commercial aircraft do not currently carry standard sensors to detect the presence of ice crystals in high concentrations because they are typical found in sizes that are below the detection range of aircraft weather radar. Likewise, the sensors that are currently used to detect supercooled water do not respond well to drizzle-sized drops. Hence, there is a need for a sensor that can fill this measurement void. In addition, the forecast models that are used to predict regions of icing rely on pilot observations as the only means to validate the model products and currently there are no forecasts for the prevalence of high altitude ice crystals. Backscatter Cloud Probes (BCP) have been flying since 2011 under the IAGOS project on six Airbus commercial airliners operated by Lufthansa, Air France, China Air, Iberia and Cathay Pacific, and measure cloud droplets, ice crystals and aerosol particles larger than 5 μm. The BCP can detect these particles and measures an optical equivalent diameter (OED) but is not able to distinguish the type of particle, i.e. whether they are droplets, ice crystals, dust or ash. However, some qualification can be done based on measured temperature to discriminate between liquid water and ice. The next generation BCP (BCPD, Backscatter Cloud Probe with polarization detection) is

  8. A survey of handling qualities criteria and their applications to high performance aircraft

    NASA Technical Reports Server (NTRS)

    Peahl, D. L.; Kolkailah, F.; Sandlin, D. R.

    1986-01-01

    Various handling qualities criteria and their application to high performance aircraft including state-of-the-art and highly augmented aircraft were surveyed. Neal-Smith, Bandwidth, Equivalent Systems, and Military Specification 8785 criteria are applied to flight test data from aircraft such as the F-8 Digital Fly-By-Wire, the YF-12, and an Advanced Fighter Aircraft. Backgrounds and example applications of each criteria are given. The results show that the handling qualities criteria investigated can be applied to highly augmented aircraft with fairly good results in most cases; however, since no one method excelled, more than one criteria should be used whenever possible. Equivalent time delays appear to be the most frequent critical factor in determining pilot rating levels of highly augmented aircraft.

  9. Pathfinder aircraft returning from a flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71

  10. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  11. Flies and the mouth.

    PubMed

    Hassona, Yazan; Scully, Crispian; Aguida, Miranda; de Almeida, Oslei Paes

    2014-05-01

    Oral infections caused by flies are rarely encountered in clinical practice, and consequently, there is a paucity of information in the medical and dental literature about these conditions. In the present article, we present a concise review on oral myiasis or fly-blown disease. A variety of fly species can infest the oral tissues and produce an exotic clinical picture. Oral myiasis is mainly encountered in the tropics and subtropics, but can also be encountered in the western part of the world due to the increase of globalization, immigration, and global warming. Commonly-reported symptoms of oral myiasis include pain, swelling, itchy sensation, and feeling of something moving in the mouth. The surgical debridement of infected tissue with the removal of maggots is the treatment of choice in most cases of oral myiasis.

  12. Ride quality evaluation. I. [aircraft passenger comfort assessment

    NASA Technical Reports Server (NTRS)

    Richards, L. G.; Jacobson, I. D.

    1975-01-01

    As part of a larger effort to assess passenger comfort in aircraft, two questionnaires were administered: one to ground-based respondents, the other to passengers in flight. Respondents indicated the importance of various factors influencing their satisfaction with a trip, the perceived importance of various physical factors in determining their level of comfort, and the ease of time spent performing activities in flight. The in-flight sample also provided a rating of their level of comfort and of their willingness to fly again. Comfort ratings were examined in relation to (1) type of respondent, (2) type of aircraft, (3) characteristics of the passengers, (4) ease of performing activities, and (5) willingness to fly again.

  13. Intelligent Control Approaches for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; KrishnaKumar, K.; Soloway, Don; Kaneshige, John; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This paper presents an overview of various intelligent control technologies currently being developed and studied under the Intelligent Flight Control (IFC) program at the NASA Ames Research Center. The main objective of the intelligent flight control program is to develop the next generation of flight controllers for the purpose of automatically compensating for a broad spectrum of damaged or malfunctioning aircraft components and to reduce control law development cost and time. The approaches being examined include: (a) direct adaptive dynamic inverse controller and (b) an adaptive critic-based dynamic inverse controller. These approaches can utilize, but do not require, fault detection and isolation information. Piloted simulation studies are performed to examine if the intelligent flight control techniques adequately: 1) Match flying qualities of modern fly-by-wire flight controllers under nominal conditions; 2) Improve performance under failure conditions when sufficient control authority is available; and 3) Achieve consistent handling qualities across the flight envelope and for different aircraft configurations. Results obtained so far demonstrate the potential for improving handling qualities and significantly increasing survivability rates under various simulated failure conditions.

  14. Pathfinder aircraft prepared for flight at dawn on lakebed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft is silhouetted by the morning sun on the bed of Rogers Dry Lake as technicians prepare it for flight. The unique remotely piloted flying wing flew for two hours under control of a ground-based pilot on Nov. 19, 1996, at NASA's Dryden Flight Research Center, Edwards, California, while engineers checked out various aircraft systems. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  15. Human Factors In Aircraft Automation

    NASA Technical Reports Server (NTRS)

    Billings, Charles

    1995-01-01

    Report presents survey of state of art in human factors in automation of aircraft operation. Presents examination of aircraft automation and effects on flight crews in relation to human error and aircraft accidents.

  16. Complexity and Fly Swarms

    NASA Astrophysics Data System (ADS)

    Cates, Grant; Murray, Joelle

    Complexity is the study of phenomena that emerge from a collection of interacting objects and arises in many systems throughout physics, biology, finance, economics and more. Certain kinds of complex systems can be described by self-organized criticality (SOC). An SOC system is one that is internally driven towards some critical state. Recent experimental work suggests scaling behavior of fly swarms-one of the hallmarks of an SOC system. Our goal is to look for SOC behavior in computational models of fly swarms.

  17. The Aerodynamics of a Flying Sports Disc

    NASA Astrophysics Data System (ADS)

    Potts, Jonathan R.; Crowther, William J.

    2001-11-01

    The flying sports disc is a spin-stabilised axi-symmetric wing of quite remarkable design. A typical disc has an approximate elliptical cross-section and hollowed out under-side cavity, such as the Frisbee(TM) disc. An experimental study of flying disc aerodynamics, including both spinning and non-spinning tests, has been carried out in the wind tunnel. Load measurements, pressure data and flow visualisation techniques have enabled an explanation of the flow physics and provided data for free-flight simulations. A computer simulation that predicts free-flight trajectories from a given set of initial conditions was used to investigate the dynamics of a flying disc. This includes a six-degree of freedom mathematical model of disc flight mechanics, with aerodynamic coefficients derived from experimental data. A flying sports disc generates lift through forward velocity just like a conventional wing. The lift contributed by spin is insignificant and does not provide nearly enough down force to support hover. Without spin, the disc tumbles ground-ward under the influence of an unstable aerodynamic pitching moment. From a backhand throw however, spin is naturally given to the disc. The unchanged pitching moment now results in roll, due to gyroscopic precession, stabilising the disc in free-flight.

  18. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  19. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  20. Lightning protection of aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1977-01-01

    The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.

  1. Civil aircraft accident investigation.

    PubMed

    Haines, Daniel

    2013-01-01

    This talk reviews some historic aircraft accidents and some more recent. It reflects on the division of accident causes, considering mechanical failures and aircrew failures, and on aircrew training. Investigation results may lead to improved aircraft design, and to appropriate crew training. PMID:24057309

  2. Multipurpose aircraft monitoring with a smart recorder

    NASA Technical Reports Server (NTRS)

    White, J. H.; Finger, J. F.; Alfonsi, P. J.

    1986-01-01

    This paper describes a microprocessor-based flight recorder the 'Smart Recorder' - which was developed and installed on a King Air aircraft used for commercial charter service. The recorder is used as a research tool for developing monitoring strategies and processing algorithms to: (1) characterize the typical flight environment encountered by the host aircraft, (2) develop technology for automated engine trend monitoring, and (3) implement a crash recording capability. Initially the recorder was used as an adaptive data acquisition system, monitoring engine sensors and flight instruments and then modifying its data acquisition in response to the perceived aircraft situation. Data collected in this manner were stored in a removable bubble memory and subsequently analyzed in the laboratory. Later, on-board processing was implemented to better utilize the available storage capacity.

  3. Study of aircraft crashworthiness for fire protection

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1981-01-01

    Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.

  4. Why aircraft disinsection?

    PubMed Central

    Gratz, N. G.; Steffen, R.; Cocksedge, W.

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described. PMID:10994283

  5. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  6. Hypersonic reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Bulk, Tim; Chiarini, David; Hill, Kevin; Kunszt, Bob; Odgen, Chris; Truong, Bon

    1992-01-01

    A conceptual design of a hypersonic reconnaissance aircraft for the U.S. Navy is discussed. After eighteen weeks of work, a waverider design powered by two augmented turbofans was chosen. The aircraft was designed to be based on an aircraft carrier and to cruise 6,000 nautical miles at Mach 4;80,000 feet and above. As a result the size of the aircraft was only allowed to have a length of eighty feet, fifty-two feet in wingspan, and roughly 2,300 square feet in planform area. Since this is a mainly cruise aircraft, sixty percent of its 100,000 pound take-off weight is JP fuel. At cruise, the highest temperature that it will encounter is roughly 1,100 F, which can be handled through the use of a passive cooling system.

  7. Dryden B-52 Launch Aircraft in Flight over Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of

  8. Lightning effects on the NASA F-8 digital-fly-by-wire airplane

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Fisher, F. A.; Walko, L. C.

    1975-01-01

    The effects of lightning on a Digital Fly-By-Wire (DFBW)aircraft control system were investigated. The aircraft was a NASA operated F-8 fitted with a modified Apollo guidance computer. Current pulses similar in waveshape to natural lightning, but lower in amplitude, were injected into the aircraft. Measurements were made of the voltages induced on the DFBW circuits, the total current induced on the bundles of wires, the magnetic field intensity inside the aircraft, and the current density on the skin of the aircraft. Voltage measurements were made in both the line-to-ground and line-to-line modes. Voltages measured at the non-destructive test level were then scaled upward to determine how much would be produced by actual lightning. A 200,000 ampere severe lightning flash would produce between 40 and 2000 volts in DFBW circuits. Some system components are expected to be vulnerable to these voltages.

  9. Go Fly a Kite

    ERIC Educational Resources Information Center

    Klopack, Ken

    2009-01-01

    This article describes an "art kite" activity. The idea is to construct and decorate a non-flying kite that they could display for an art exhibit. Through the activity, students learn to give and take suggestions from one another, improve the quality of their work and set a wonderful atmosphere of collaboration. (Contains 1 online resource.)

  10. Flying Boat Construction

    NASA Technical Reports Server (NTRS)

    1946-01-01

    Technicians are pictured installing flaps and wiring on a flying-boat model, circa 1944 (page 47). Photograph published in Winds of Change, 75th Anniversary NASA publication, by James Schultz. Photograph also published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen (page 209).

  11. Fly on the Wall

    ERIC Educational Resources Information Center

    Berry, Dave; Korpan, Cynthia

    2009-01-01

    This paper describes the implementation of a peer observation program at the University of Victoria called the Lecture Club. The observers are not interactive during the class--they are the proverbial flies on the wall. The paper identifies the program as self-developmental, discussing the attributes of this learning-to-teach and peer-sharing…

  12. Flying High with Spring.

    ERIC Educational Resources Information Center

    Harrington, Carolyn Lang

    2000-01-01

    Presents an art activity for first grade that uses multicolor scratch paper. Explains that students make scratch-drawings of bird nests, then, as a class, discuss types of birds and bird positions (such as sitting or flying), and finally each creates a bird to add to the nest. (CMK)

  13. Affordable MMW aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    Almsted, Larry D.; Becker, Robert C.; Zelenka, Richard E.

    1997-06-01

    Collision avoidance is of concern to all aircraft, requiring the detection and identification of hazardous terrain or obstacles in sufficient time for clearance maneuvers. The collision avoidance requirement is even more demanding for helicopters, as their unique capabilities result in extensive operations at low-altitude, near to terrain and other hazardous obstacles. TO augment the pilot's visual collision avoidance abilities, some aircraft are equipped with 'enhanced-vision' systems or terrain collision warning systems. Enhanced-vision systems are typically very large and costly systems that are not very covert and are also difficult to install in a helicopter. The display is typically raw images from infrared or radar sensors, and can require a high degree of pilot interpretation and attention. Terrain collision warning system that rely on stored terrain maps are often of low resolution and accuracy and do not represent hazards to the aircraft placed after map sampling. Such hazards could include aircraft parked on runway, man- made towers or buildings and hills. In this paper, a low cost dual-function scanning pencil-beam, millimeter-wave radar forward sensor is used to determine whether an aircraft's flight path is clear of obstructions. Due to the limited space and weight budget in helicopters, the system is a dual function system that is substituted in place of the existing radar altimeter. The system combines a 35 GHz forward looking obstacle avoidance radar and a 4.3 GHz radar altimeter. The forward looking 35 GHz 3D radar's returns are used to construct a terrain and obstruction database surrounding an aircraft, which is presented to the pilot as a synthetic perspective display. The 35 GHz forward looking radar and the associated display was evaluated in a joint NASA Honeywell flight test program in 1996. The tests were conducted on a NASA/Army test helicopter. The test program clearly demonstrated the systems potential usefulness for collision avoidance.

  14. Tsetse EP Protein Protects the Fly Midgut from Trypanosome Establishment

    PubMed Central

    Haines, Lee R.; Lehane, Stella M.; Pearson, Terry W.; Lehane, Michael J.

    2010-01-01

    African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis. PMID:20221444

  15. A Simple Two Aircraft Conflict Resolution Algorithm

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    1999-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in the cockpit, dispatchers in operation control centers and air traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control imctions.This paper describes a conflict detection and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection and resolution method.

  16. A Simple Two Aircraft Conflict Resolution Algorithm

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    2006-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.

  17. Testing typicality in multiverse cosmology

    NASA Astrophysics Data System (ADS)

    Azhar, Feraz

    2015-05-01

    In extracting predictions from theories that describe a multiverse, we face the difficulty that we must assess probability distributions over possible observations prescribed not just by an underlying theory, but by a theory together with a conditionalization scheme that allows for (anthropic) selection effects. This means we usually need to compare distributions that are consistent with a broad range of possible observations with actual experimental data. One controversial means of making this comparison is by invoking the "principle of mediocrity": that is, the principle that we are typical of the reference class implicit in the conjunction of the theory and the conditionalization scheme. In this paper, we quantitatively assess the principle of mediocrity in a range of cosmological settings, employing "xerographic distributions" to impose a variety of assumptions regarding typicality. We find that for a fixed theory, the assumption that we are typical gives rise to higher likelihoods for our observations. If, however, one allows both the underlying theory and the assumption of typicality to vary, then the assumption of typicality does not always provide the highest likelihoods. Interpreted from a Bayesian perspective, these results support the claim that when one has the freedom to consider different combinations of theories and xerographic distributions (or different "frameworks"), one should favor the framework that has the highest posterior probability; and then from this framework one can infer, in particular, how typical we are. In this way, the invocation of the principle of mediocrity is more questionable than has been recently claimed.

  18. The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NAS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NASA's Dryden flight Research Center, Edwards, California. The 247-foot span solar-powered aircraft, resting on its ground maneuvering dolly, was on display for a visit of NASA Administrator Sean O'Keefe and other NASA officials on January 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on August 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  19. An annotated checklist of the horse flies, deer flies, and yellow flies (Diptera: Tabanidae) of Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family Tabanidae includes the horse flies, deer flies, and yellow flies and is considered a significant pest of livestock throughout the United States, including Florida. Tabanids can easily become a major pest of man, especially salt marsh species which are known to readily feed on humans and o...

  20. Recent progress in a classical biological control program for olive fruit fly in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe damage to olive production worldwide. Control of olive fruit fly typically relies on pesticides, and under such conditions the impact of natural enemies is relatively low. About 15 years ago, the USDA-ARS European Biologic...

  1. A mathematic model that describes modes of MdSGHV transmission within house fly populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper it is proposed that one potential component by which the Musca domestica salivary gland hypertrophy virus (MdSGHV) infects individual flies is through cuticular damage. Breaks in the cuticle allow entry of the virus into the hemocoel causing the infection. Male flies typically have a h...

  2. Predicting visibility of aircraft.

    PubMed

    Watson, Andrew; Ramirez, Cesar V; Salud, Ellen

    2009-05-20

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  3. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  4. Aircraft performance and control in downburst wind shear

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.

    1986-01-01

    The methods developed for analyses of the winds and of aircraft performance during an investigation of a downburst wind-shear-induced accident have been utilized in a more general study of aircraft performance in such encounters. The computed responses of a generic, large transport aircraft to take-off and approach encounters with a downburst wind field were used in examining the effects of performance factors and control procedures on the ability of the aircraft to survive. Obvious benefits are seen for higher initial encounter speeds, maximum thrust-weight values typical of two-engined aircraft, and immediacy of pilot response. The results of controlling to a constant, predetermined, pitch attitude are demonstrated. Control algorithms that sacrifice altitude for speed appear to provide a higher level of survivability, but guidance displays more explicitly defining flightpath than those commonly in use might be required.

  5. Aircraft stress sequence development: A complex engineering process made simple

    NASA Technical Reports Server (NTRS)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  6. Passenger aircraft cabin air quality: trends, effects, societal costs, proposals.

    PubMed

    Hocking, M B

    2000-08-01

    As aircraft operators have sought to substantially reduce propulsion fuel cost by flying at higher altitudes, the energy cost of providing adequate outside air for ventilation has increased. This has lead to a significant decrease in the amount of outside air provided to the passenger cabin, partly compensated for by recirculation of filtered cabin air. The purpose of this review paper is to assemble the available measured air quality data and some calculated estimates of the air quality for aircraft passenger cabins to highlight the trend of the last 25 years. The influence of filter efficiencies on air quality, and a few medically documented and anecdotal cases of illness transmission aboard aircraft are discussed. Cost information has been collected from the perspective of both the airlines and passengers. Suggestions for air quality improvement are given which should help to result in a net, multistakeholder savings and improved passenger comfort.

  7. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  8. An overview of V/STOL aircraft development

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.

    1983-01-01

    In reviewing the years of aviation development, it can be seen that vertical-takeoff-and-landing (VTOL) flight was considered before conventional fixed-wing operations. However, it has been difficult to develop a VTOL capability. The present investigation is concerned with a review of the historical development of VTOL aircraft, taking into account lessons learned from a selected group of concepts. Attention is given to the Flying Bedsteads, the tail-sitter designs, the Air Test Vehicle (ATV) and X-14 aircraft, the SC-1, the XV-3 tilt-rotor aircraft, the VZ3-RY deflected slipstream, the X-18 tilt wing, the VZ-2 tilt wing, the VZ-4 ducted fan, the Harrier, the XV-4A (Hummingbird), the Forger, and the XV-15 advanced tilt rotor.

  9. Finite-difference modeling of commercial aircraft using TSAR

    SciTech Connect

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  10. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  11. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  12. Aircraft compass characteristics

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Smith, Clyde W

    1937-01-01

    A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing.

  13. Loftin Collection - Boeing Aircraft

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Either a F2B-1 or F3B-1, both aircraft were built by Boeing and both were powered by Pratt and Whitney Wasp engines. These fighters were intended for Navy shipboard use. Boeing F3B-1: While most Boeing F3B-1s served the U. S. Navy aircraft carriers the Lexington and the Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was the next to last F3B-1 build in November 1928.

  14. Some fighter aircraft trends

    NASA Technical Reports Server (NTRS)

    Spearman, L.

    1985-01-01

    Some basic trends in fighters are traced from the post World II era. Beginning with the first operational jet fighter, the P-80, the characteristics of subsequent fighter aircraft are examined for performance, mission capability, effectiveness, and cost. Characteristics presented include: power loading, wing loading, maximum speed, rate of climb, turn rate, weight and weight distribution, cost and cost distribution. The characteristics of some USSR aircraft are included for comparison. The trends indicate some of the rationale for certain fighter designs and some likely characteristics to be sought in future fighter aircraft designs.

  15. Lightning hazards to aircraft

    NASA Technical Reports Server (NTRS)

    Corn, P. B.

    1978-01-01

    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.

  16. Tropospheric sampling with aircraft

    SciTech Connect

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  17. Susceptibility of black soldier fly (Diptera: Stratiomyidae) larvae and adults to four insecticides.

    PubMed

    Tomberlin, Jeffery K; Sheppard, D Craig; Joyce, John A

    2002-06-01

    Dosage-mortality regressions were determined for black soldier fly, Hermetia illucens (L.), larvae fed cyromazine or pyriproxifen treated media. Cyromazine LC50 for larvae dying before becoming prepupae ranged from 0.25 to 0.28 ppm with dosage-mortality regression slopes between 5.79 and 12.04. Cyromazine LC50s for larvae dying before emergence ranged from 0.13 to 0.19 ppm with dosage-mortality regression slopes between 3.94 and 7.69. Pyriproxifen dosage-mortality regressions were not generated for larvae failing to become prepupae since <32% mortality was recorded at the highest concentration of 1,857 ppm. LC50s for larvae failing to become adults ranged from 0.10 to 0.12 ppm with dosage mortality-regression slopes between 1.67 and 2.32. Lambda-cyhalothrin and permethrin dosage-mortality regressions were determined for wild adult black soldier flies and house flies, Musca domestica L., and for susceptible house flies. Our results indicate that the wild house fly, unlike the black soldier fly, population was highly resistant to each of these pyrethroids. Regression slopes for black soldier flies exposed to lambda-cyhalothrin were twice as steep as those determined for the wild house fly strain. Accordingly, LC50s for the black soldier fly and susceptible house fly were 10- to 30-fold lower than those determined for wild house flies. The differential sensitivity between wild black soldier flies and house flies might be due to behavioral differences. Adult house flies usually remain in animal facilities with the possibility of every adult receiving pesticide exposure, while black soldier fly adults are typically present only during emergence and oviposition thereby limiting their exposure. PMID:12076006

  18. Susceptibility of black soldier fly (Diptera: Stratiomyidae) larvae and adults to four insecticides.

    PubMed

    Tomberlin, Jeffery K; Sheppard, D Craig; Joyce, John A

    2002-06-01

    Dosage-mortality regressions were determined for black soldier fly, Hermetia illucens (L.), larvae fed cyromazine or pyriproxifen treated media. Cyromazine LC50 for larvae dying before becoming prepupae ranged from 0.25 to 0.28 ppm with dosage-mortality regression slopes between 5.79 and 12.04. Cyromazine LC50s for larvae dying before emergence ranged from 0.13 to 0.19 ppm with dosage-mortality regression slopes between 3.94 and 7.69. Pyriproxifen dosage-mortality regressions were not generated for larvae failing to become prepupae since <32% mortality was recorded at the highest concentration of 1,857 ppm. LC50s for larvae failing to become adults ranged from 0.10 to 0.12 ppm with dosage mortality-regression slopes between 1.67 and 2.32. Lambda-cyhalothrin and permethrin dosage-mortality regressions were determined for wild adult black soldier flies and house flies, Musca domestica L., and for susceptible house flies. Our results indicate that the wild house fly, unlike the black soldier fly, population was highly resistant to each of these pyrethroids. Regression slopes for black soldier flies exposed to lambda-cyhalothrin were twice as steep as those determined for the wild house fly strain. Accordingly, LC50s for the black soldier fly and susceptible house fly were 10- to 30-fold lower than those determined for wild house flies. The differential sensitivity between wild black soldier flies and house flies might be due to behavioral differences. Adult house flies usually remain in animal facilities with the possibility of every adult receiving pesticide exposure, while black soldier fly adults are typically present only during emergence and oviposition thereby limiting their exposure.

  19. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-12-31

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  20. The development of a parachute system for aerial delivery from high speed cargo aircraft

    SciTech Connect

    Behr, V.L.

    1992-01-01

    Supply of military personnel on the ground with cargo has long been accomplished with parachute delivery systems from aircraft. Structural limits of aircraft have typically limited these operations to no more than 150 KCAS. A desire for increased survivability of cargo delivery aircraft has led to the development and fielding of aircraft capable of delivering cargo at substantially higher speeds. This paper describes efforts undertaken to design develop and test a cargo delivery system for use at speeds compatible with those high speed cargo aircraft.

  1. Antecedents and analogues - Experimental aircraft

    NASA Technical Reports Server (NTRS)

    Smith, R. H.

    1978-01-01

    The paper reviews the development of experimental aircraft from 1953 to the present. Consideration is given to the X-series experimental aircraft, to X-15 (the first aerospace plane), to the transition of experimental aircraft to high-speed flight, to XB-70 research, to lifting body research aircraft, and to current high-speed flight research.

  2. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  3. Aircraft landing response in a discrete multipath environment

    NASA Technical Reports Server (NTRS)

    Guarino, C. R.

    1975-01-01

    This paper considers the problem of discrete multipath reflections upon an aircraft in the landing phase. A model is developed for the communication channel for a typical receiver. Simulation studies are presented showing the effects of discrete multipath upon the aircraft's ability to follow a specified flight path. A development is presented for the analytical determination of the probability density function of the angular errors.

  4. Stability and control of maneuvering high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Berry, P. W.

    1977-01-01

    The stability and control of a high-performance aircraft was analyzed, and a design methodology for a departure prevention stability augmentation system (DPSAS) was developed. A general linear aircraft model was derived which includes maneuvering flight effects and trim calculation procedures for investigating highly dynamic trajectories. The stability and control analysis systematically explored the effects of flight condition and angular motion, as well as the stability of typical air combat trajectories. The effects of configuration variation also were examined.

  5. Test What You Fly?

    NASA Technical Reports Server (NTRS)

    Margolies, Don

    2002-01-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  6. Depreciation of aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  7. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  8. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  9. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  10. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  11. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  12. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  13. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  14. Fly-scan ptychography

    PubMed Central

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-01-01

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems. PMID:25766519

  15. Fly-scan ptychography

    DOE PAGES

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; Xu, Weihe; Nazaretski, Evgeny; Harder, Ross; Robinson, Ian K.; Chu, Yong S.

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  16. Flying Saucer? Aliens?

    NASA Technical Reports Server (NTRS)

    1961-01-01

    No, it's not a flying saucer, it is the domed top to a 70 foot long vacuum tank at the Lewis Research Center's Electric Propulsion Laboratory, Cleveland, Ohio. The three technicians shown here in protective clothing had just emerged from within the tank where they had been cleaning in the toxic mercury atmosphere, left after ion engine testing in the tank. Lewis has since been renamed the John H. Glenn Research Center.

  17. Assessment of Attractiveness of Plants as Roosting Sites for the Melon Fly, Bactrocera cucurbitae, and Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    McQuate, Grant T.; Vargas, Roger I.

    2007-01-01

    The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae

  18. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  19. Soil stabilization and pavement recycling with self-cementing coal fly ash

    SciTech Connect

    2008-01-15

    This manual provides design information for self-cementing coal fly ash as the sole stabilizing agent for a wide range of engineering applications. As in any process, the application of sound engineering practices, appropriate testing, and evaluation of fly ash quality and characteristics will lend themselves to successful projects using the guidelines in this manual. Topics discussed include: self-cementing coal fly ash characteristics; laboratory mix design; stabilization of clay soils; stabilisation of granular materials; construction considerations; high sulfate ash; environmental considerations for fly ash stabilization; design considerations; state specification/guidelines/standards; and a sample of a typical stabilization specification.

  20. Eclipse program QF-106 aircraft in flight, view from tanker

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of QF-106 airplane from a KC-135 tanker aircraft. The Eclipse aircraft was not refueling but simply flying below and behind the tanker for purposes of shooting the photograph from the air. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  1. Toxicity and toxic potential of fly ash from municipal incinerators assessed by means of a fish early life stage test

    SciTech Connect

    Helder, T.; Stutterheim, E.; Olie, K.

    1982-01-01

    The toxicity and toxic potential of fly ash were assessed, using rainbow trout yolk sac fry. In contrast to fly ash itself, extracts of fly ash were extremely toxic, producing typical toxicopathological features fo TCDD-intoxication. By comparison with earlier experiments using pure 2,3,7,8-TCDD, the toxic potential of fly ash was roughly estimated to be 75-125 ng.g/sup -1/ toxic aequivalents TCDD. Obviously, this toxic potential is attributed for a minor part to 2,3,7,8-TCDD and for the greater part to the other chlorinated dioxin congeners and the dibenzofurans, present in fly ash.

  2. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  3. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    NASA Technical Reports Server (NTRS)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  4. Typical errors of ESP users

    NASA Astrophysics Data System (ADS)

    Eremina, Svetlana V.; Korneva, Anna A.

    2004-07-01

    The paper presents analysis of the errors made by ESP (English for specific purposes) users which have been considered as typical. They occur as a result of misuse of resources of English grammar and tend to resist. Their origin and places of occurrence have also been discussed.

  5. 41 CFR 301-10.262 - How will my agency authorize travel on Government aircraft?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agency authorize travel on Government aircraft? Your agency will authorize your travel on Government...-use travel; or (2) You are not an agency head, and your agency head has determined in writing that all... official or his/her principal deputy in the agency sponsoring your travel must authorize you to fly...

  6. 41 CFR 301-10.262 - How will my agency authorize travel on Government aircraft?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agency authorize travel on Government aircraft? Your agency will authorize your travel on Government...-use travel; or (2) You are not an agency head, and your agency head has determined in writing that all... official or his/her principal deputy in the agency sponsoring your travel must authorize you to fly...

  7. Survey of piloting factors in V/STOL aircraft with implications for flight control system design

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Craig, S. J.

    1977-01-01

    Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach.

  8. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Viewed in this 1955 photograph is the NACA High Speed Flight Station D-558-2 #2 (144) Skyrocket, an all-rocket powered vehicle. The Skyrocket is parked on Rogers Dry Lakebed at Edwards Air Force Base. This aircraft, NACA 144/Navy 37974, was the first to reach Mach 2 (see project description). The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and

  9. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  10. Flying Through Dust From Asteroids

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  11. Cross-Polar Aircraft Trajectory Optimization and Potential Climate Impact

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil; Ng, Hok

    2011-01-01

    Cross-Polar routes offer new opportunities for air travel markets. Transpolar flights reduce travel times, fuel burns, and associated environmental emissions by flying direct paths between many North American and Asian cities. This study evaluates the potential benefits of flying wind-optimal polar routes and assessed their potential impact on climate change. An optimization algorithm is developed for transpolar flights to generate wind-optimal trajectories that minimize climate impact of aircraft, in terms of global warming potentials (relative to warming by one kg of CO2) of several types of emissions, while avoiding regions of airspace that facilitate persistent contrail formation. Estimations of global warming potential are incorporated into the objective function of the optimization algorithm to assess the climate impact of aircraft emissions discharged at a given location and altitude. The regions of airspace with very low ambient temperature and areas favorable to persistent contrail formation are modeled as undesirable regions that aircraft should avoid and are formulated as soft state constraints. The fuel burn and climate impact of cross-polar air traffic flying various types of trajectory including flightplan, great circle, wind-optimal, and contrail-avoidance are computed for 15 origin-destination pairs between major international airports in the U.S. and Asia. Wind-optimal routes reduce average fuel burn of flight plan routes by 4.4% on December 4, 2010 and 8.0% on August 7, 2010, respectively. The tradeoff between persistent contrail formation and additional global warming potential of aircraft emissions is investigated with and without altitude optimization. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a one percent increase in additional global warming potential, a climate impact equivalent to that of 4070kg and 4220kg CO2 emission, reduces 135

  12. Pest Control on the "Fly"

    NASA Technical Reports Server (NTRS)

    2002-01-01

    FlyCracker(R), a non-toxic and environmentally safe pesticide, can be used to treat and control fly problems in closed environments such as milking sheds, cattle barns and hutches, equine stables, swine pens, poultry plants, food-packing plants, and even restaurants, as well as in some outdoor animal husbandry environments. The product can be applied safely in the presence of animals and humans, and was recently permitted for use on organic farms as livestock production aids. FlyCracker's carbohydrate technology kills fly larvae within 24 hours. By killing larvae before they reach the adult stages, FlyCracker eradicates another potential breeding population. Because the process is physical-not chemical-flies and other insects never develop resistance to the treatment, giving way to unlimited use of product, while still keeping the same powerful effect.

  13. Retinal degeneration in the fly.

    PubMed

    Colley, Nansi Jo

    2012-01-01

    Many genes are functionally equivalent between flies and humans. In addition, the same, or similar, mutations cause disease in both species. In fact, nearly three-fourths of all human disease genes have related sequences in Drosophila. The fly has a relatively small genome, made up of about 13,600 genes in four pairs of chromosomes. However, despite the dramatic differences in size and apparent complexity between humans and flies--we have less than twice as many genes as a fly--our genome is estimated to be made up of only 20,000-25,000 genes contained in 23 pairs of chromosomes. Therefore, despite the fly's perceived simplicity, or our perceived complexity, our genetic makeup may not be all that different. Its versatility for genetic manipulation and convenience for unraveling fundamental biological processes continue to guarantee the fly a place in the spotlight for unraveling the basis of and therapeutic treatments for human eye diseases.

  14. Aircraft Spacings that Produce a Vortex-Free Region Below Flight Formation

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2000-01-01

    Theoretical estimates are presented for the motion of vortex wakes shed by multiple aircraft flying in close formation. The purpose of the theoretical study was to determine whether the spacings between adjacent aircraft in close formations could be designed so that the lift-generated vortices being trailed would move upward rather than downward. In this way, a region below the formation is produced that is free of vortices. It was found that aircraft can be arranged in formations so that the inboard wake vortices all move upward rather than downward. The two outboard vortices travel downward at a greatly reduced velocity that depends on the number of aircraft in the formation. If the desired motions are to be produced, the lateral spacings between adjacent aircraft centerlines must be between 1.1 and 1.5 wingspans, and the vertical spacings between -0.025 and -0.15 wingspans. Since the range of acceptable spacings is small, it is recommended that the position accuracy between aircraft in the formation be kept within about + or - 0.01 wingspan of the center of acceptable spacings so that aircraft meandering do not cause unwanted vortex excursions. It was also found that, if the in-trail spacings between adjacent aircraft are more than 4 wingspans, the foregoing vertical spacings must be adjusted to allow for the additional downward travel of the vortices shed by leading aircraft.

  15. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  16. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    NASA Astrophysics Data System (ADS)

    Palaniappan, Jayanthi

    2016-05-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  17. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  18. Typical and atypical AIS. Pathogenesis.

    PubMed

    Dudin, M; Pinchuk, D

    2012-01-01

    AIS hypothesis has the right to recognition, if it explains the transition of "healthy" vertebra column into status of "scoliotic" one. AIS is the most investigated disease in the history of orthopedics, but up the present time there is no clear explanation of some its phenomena: vertebra column mono-form deformation along with its poly etiology character, interrelation of its origin and development and child's growth process etc. The key for authors' view at AIS was scoliosis with non-standard (concave side) rotation. On the bases of its' multifunctional instrumental investigation results (Rtg, EMG, EEG, optical topography, hormonal and neuropeptides trials, thermo-vision methods and other) in comparison with typical AIS was worked out the new hypothesis, part of it is suggested for discussion. In the work under observation is the sequence of appearance of typical and atypical scoliosis symptomatology beginning from the preclinical stage. PMID:22744477

  19. Effects of control saturation on the command response of statically unstable aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, G. D.; Stengel, R. F.

    1983-01-01

    Hanson and Stengel (1981) have described the effects of saturating controls on the initial-condition response of statically unstable aircraft. In an analysis of the stability augmentation system, consideration was given to maximizing the region of stable response. The present investigation is concerned with an extension of the control saturation analysis to the problem of command response, taking into account the main problem of control design for satisfactory flying qualities (as perceived by the pilot). A model for examining the effects of control saturation on longitudinal stability and command response is developed and applied to an aircraft with a static instability. Three parameters prescribing longitudinal flying qualities are examined with respect to their ability to identify proper flying qualities in the presence of control saturation. The presented analysis provides also satisfactory guidelines for establishing command saturation/stability boundaries.

  20. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1954-01-01

    Viewed in this 1954 photograph is the NACA High Speed Flight Research Station's D-558-2 #2 (144), an all rocket powered Skyrocket. Like the X-1, the D-558-2 had a fuselage shaped like a .50 caliber bullet. Unlike both the X-1 and the D-558-1, it had swept wings. To accommodate them required a completely different design than that used for the earlier straight-wing D-558-1. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft

  1. Hovering of a jellyfish-like flying machine

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Childress, Stephen

    2013-11-01

    Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving maneuverability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct, and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Lift measurements and high-speed video of free-flight are used to inform an aerodynamic model that explains the stabilization mechanism. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.

  2. Blood feeding behavior of the stable fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable fly is a fly that looks similar to a house fly but both sexes are blood feeders. Blood is required for successful fertilization and development of eggs. Bites are painful but there is usually no pain after the fly stops feeding. The stable fly is a persistent feeder and will continue trying t...

  3. Typicality, graded membership, and vagueness.

    PubMed

    Hampton, James A

    2007-05-01

    This paper addresses theoretical problems arising from the vagueness of language terms, and intuitions of the vagueness of the concepts to which they refer. It is argued that the central intuitions of prototype theory are sufficient to account for both typicality phenomena and psychological intuitions about degrees of membership in vaguely defined classes. The first section explains the importance of the relation between degrees of membership and typicality (or goodness of example) in conceptual categorization. The second and third section address arguments advanced by Osherson and Smith (1997), and Kamp and Partee (1995), that the two notions of degree of membership and typicality must relate to fundamentally different aspects of conceptual representations. A version of prototype theory-the Threshold Model-is proposed to counter these arguments and three possible solutions to the problems of logical selfcontradiction and tautology for vague categorizations are outlined. In the final section graded membership is related to the social construction of conceptual boundaries maintained through language use.

  4. Ameliorative effect of fly ashes

    SciTech Connect

    Bhumbla, D.K.

    1991-01-01

    Agronomic effectiveness and environmental impact of fly ashes used to reclaim pyritic acid mine spoils were investigated in the laboratory and field. Mine spoils at two abandoned sites were amended with three rates of fly ash, three rates of rock phosphate, and seeded with alfalfa and wheat. Application of fly ash decreased bulk density and increased moisture retention capacity of spoils. Fly ash application reduced cation exchange capacity, acidity, toxic levels of Al, Fe, and Mn in soils by buffering soil pH at 6.5, and retarded pyrite oxidation. The reduction in cation exchange capacity was compensated by release of plant nutrients through diffusion and dissolution of plerospheres in fly ash. Improvement of spoil physical, chemical and microbial properties resulted in higher yield, more nitrogen fixation, and utilization of P from rock phosphate by alfalfa. Laboratory investigations demonstrated that neutralization potential and the amounts of amorphous oxides of iron were more important for classifying fly ashes than the total elemental analysis presently used in a taxonomic classification system. Contamination of the food chain through plant removal of Mo and As in fly ash treated mine spoils was observed only for Mo and only for the first year of cropping. Plant available As and Mo decreased with time. Laboratory leaching and adsorption studies and a field experiment showed that trace metals do not leach from fly ashes at near neutral pH and more oxyanions will leach from fly ashes with low neutralization potential and low amounts of amorphous oxides of iron.

  5. Low-flying target position finding with a seismic system

    NASA Astrophysics Data System (ADS)

    Cechak, Jaroslav; Hubacek, Petr; Vesely, Jiri

    2009-06-01

    The development of new sensor systems able to detect, identify and find position of the targets equipped with STEALTH technology began early in 1990s. Some of the sensor systems utilise acoustic, magnetic, seismic and/or other physical effects of target activity. A reason motivating the development of new sensor systems based on other than radar or optical principal of operation in detecting targets is that the systems usually emit no electromagnetic energy during operation. Thanks to their passive principle they provide the users with the advantages of hidden positioning and difficult discovery with reconnaissance tools. Therefore, some of the new UGS systems also allow detecting low-flying targets, such as helicopters, propeller or jet aircraft, etc., in the detection range of up to several kilometres. The information of flight direction is usually estimated and deduced from spatiotemporal sequence detections by multiple interlinked UGS systems. The submitted paper analyses low-flying target position finding principle on Time Direction Of Arrival (TDOA) basis. It presents the qualities of found UGS arrangement topologies and the characteristics of the unambiguous position determination of low-flying targets. It also contains mathematical description of signal digital processing intended to find low-flying target's position. The processed results are presented in table and diagram forms created in Matlab mathematical environment. All the presented detection and identification results were obtained from real recorded signals.

  6. Design criteria for flightpath and airspeed control for the approach and landing of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.; Hardy, G. H.; Stephenson, J. D.

    1982-01-01

    A flight research program was conducted to assess requirements for flightpath and airspeed control for glide-slope tracking during a precision approach and for flare control, particularly as applied to powered-lift, short takeoff and landing (STOL) aircraft. Ames Research Center's Augmentor Wing Research Aircraft was used to fly approaches on a 7.5 deg glide slope to landings on a 30 X 518 m (100 X 1700 ft) STOL runway. The dominant aircraft response characteristics determined were flightpath overshoot, flightpath-airspeed coupling, and initial flightpath response time. The significant contribution to control of the landing flare using pitch attitude was the short-term flightpath response. The limiting condition for initial flightpath response time for flare control with thrust was also identified. It is possible to define flying-qualities design criteria for glide-slope and flare control based on the aforementioned response characteristics.

  7. Noninvasive analysis of microbiome dynamics in the fruit fly Drosophila melanogaster.

    PubMed

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F; Roeder, Thomas

    2013-11-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.

  8. Noninvasive Analysis of Microbiome Dynamics in the Fruit Fly Drosophila melanogaster

    PubMed Central

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F.

    2013-01-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations. PMID:24014528

  9. Aircraft-Induced Hole Punch and Canal Clouds

    NASA Astrophysics Data System (ADS)

    Heymsfield, A. J.; Kennedy, P.; Massie, S. T.; Schmitt, C. G.; Wang, Z.; Haimov, S.; Rangno, A.

    2009-12-01

    The production of holes and channels in altocumulus clouds by two commercial turboprop aircraft is documented for the first time. An unprecedented data set combining in situ measurements from microphysical probes with remote sensing measurements from cloud radar and lidar, all operating from the NSF/NCAR C130 aircraft, as well as ground-based NOAA and CSU radars, is used to describe the radar/lidar properties of a hole punch cloud and channel and the ensuing ice microphysical properties and structure of the ice column that subsequently developed. Ice particle production by commercial turboprop aircraft climbing through clouds much warmer than the regions where contrails are produced has the potential to modify significantly the cloud microphysical properties and effectively seed them under some conditions. Jet aircraft may also be producing hole punch clouds when flying through altocumulus with supercooled droplets at heights lower than their normal cruise altitudes where contrails can form. Commercial aircraft therefore can generate ice and affect the clouds at temperatures as much as 30°C warmer than the -40°C contrail formation threshold temperature.

  10. F-15B transonic flight research testbed aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is flying a modified McDonnell-Douglas F-15B aircraft as a testbed for a variety of transonic flight experiments. The two-seat aircraft, bearing NASA tail number 836, is shown during a recent flight over the high desert carrying a Drdyen-designed Flight Test Fixture (FTF) upon which aerodynamic experiments are mounted. The FTF is a heavily instrumented fin-like structure which is mounted on the F-15B's underbelly in place of the standard external fuel tank. Since being aquired by NASA in 1993, the aircraft has been modified to include video recording, telemetry and data recording capabilities. The twin-engine aircraft flew several flights recently in support of an experiment to determine the precise location of sonic shockwave development as air passes over an airfoil. The F-15B is currently being prepared for the Boundary Layer Heat Experiment, which will explore the potential drag reduction from heating the turbulent portion of the air that passes over the fuselage of a large aircraft.

  11. A Collection of Nonlinear Aircraft Simulations in MATLAB

    NASA Technical Reports Server (NTRS)

    Garza, Frederico R.; Morelli, Eugene A.

    2003-01-01

    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  12. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  13. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  14. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  15. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  16. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  17. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  18. Flying over decades

    NASA Astrophysics Data System (ADS)

    Hoeller, Judith; Issler, Mena; Imamoglu, Atac

    Levy flights haven been extensively used in the past three decades to describe non-Brownian motion of particles. In this presentation I give an overview on how Levy flights have been used across several disciplines, ranging from biology to finance to physics. In our publication we describe how a single electron spin 'flies' when captured in quantum dot using the central spin model. At last I motivate the use of Levy flights for the description of anomalous diffusion in modern experiments, concretely to describe the lifetimes of quasi-particles in Josephson junctions. Finished PhD at ETH in Spring 2015.

  19. Laminar-turbulent transition on the flying wing model

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. M.; Zanin, B. Yu.; Katasonov, M. M.

    2016-10-01

    Results of an experimental study of a subsonic flow past aircraft model having "flying wing" form and belonging to the category of small-unmanned aerial vehicles are reported. Quantitative data about the structure of the flow near the model surface were obtained by hot-wire measurements. It was shown, that with the wing sweep angle 34 °the laminar-turbulent transition scenario is identical to the one on a straight wing. The transition occurs through the development of a package of unstable oscillations in the boundary layer separation.

  20. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  1. Range optimization for a supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.; Well, Klaus H.

    1991-01-01

    Range optimal trajectories for an aircraft flying in the vertical plane are obtained from Pontryagin's Minimum Principle. Control variables are load factor n which appears nonlinearly in the equations of motion and throttle setting eta, which appears only linearly. Both controls are subject to fixed bounds, namely eta between values of 0 and 1 and absolute value of n not greater than n(max). Additionally, a dynamic pressure limit is imposed, which represents a first-order state-inequality constraint. For fixed flight time, fixed initial coordinates, and partially fixed final coordinates, the effect of the load factor limit absolute value of n not greater than n(max) is studied. Upon varying n(max), six different switching structures are obtained. All trajectories involve singular control along arcs with active dynamic pressure limit.

  2. High angle of attack flying qualities criteria for longitudinal rate command systems

    NASA Technical Reports Server (NTRS)

    Wilson, David J.; Citurs, Kevin D.; Davidson, John B.

    1994-01-01

    This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.

  3. Structural Health Monitoring of AN Aircraft Joint

    NASA Astrophysics Data System (ADS)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  4. Dryden B-52 Launch Aircraft on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable workhorse, the B-52 mothership, rolls out on the Edwards AFB runway after a test flight in 1996. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  5. Dryden B-52 Launch Aircraft on Dryden Ramp

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  6. Flying in, Flying out: Offshore Teaching in Higher Education

    ERIC Educational Resources Information Center

    Seah, Wee Tiong; Edwards, Julie

    2006-01-01

    This paper discusses the relatively new phenomenon of university education faculties offering offshore education. The analogy, "flying in, flying out" captures the intensity of such offshore experiences for visiting academics, and contrasts their professional experiences against expatriate academics. This paper reports on case studies of two…

  7. Aircraft icing instrumentation: Unfilled needs. [rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Kitchens, P. F.

    1980-01-01

    A list of icing instrumentation requirements are presented. Because of the Army's helicopter orientation, many of the suggestions are specific to rotary wing aircraft; however, some of the instrumentation are also suitable for general aviation aircraft.

  8. Survival of insects in the wheel bays of a Boeing 747B aircraft on flights between tropical and temperate airports

    PubMed Central

    Russell, R. C.

    1987-01-01

    Mosquitos (Culex quinquefasciatus), house flies (Musca domestica), and flour beetles (Tribolium confusum) located in cages within the wheel bays of a Boeing 747B aircraft, survived travel on the following normal commercial routes: Sydney—Melbourne; Melbourne—Singapore; Singapore—Bangkok; Bangkok—Singapore; and Singapore—Melbourne. Survival of all three species was high, averaging 84% for mosquitos and higher for flies (93%) and beetles (>99%). Although external temperatures were -42 °C to -54 °C for aircraft cruising at 10 700-11 900 m, minimum temperatures within the wheel bays ranged from +8 °C to +25 °C. PMID:3501345

  9. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model.

    PubMed

    Ferrari, A; Pelliccioni, M; Villari, R

    2004-01-01

    In order to investigate the influence of aircraft shielding on the galactic component of cosmic rays, an aircraft mathematical model has been developed by the combinatorial geometry package of the Monte-Carlo transport code FLUKA. The isotropic irradiation of the aircraft in the cosmic ray environment has been simulated. Effective dose and ambient dose equivalent rates have been determined inside the aircraft at several locations along the fuselage, at a typical civil aviation altitude (10 580 m), for vertical cut-off rigidity of 0.4 GV (poles) and 17.6 GV (equator) and deceleration potential of 465 MV. The values of both quantities were generally lower than those in the free atmosphere. They depend, in an intricate manner, on the location within the aircraft, quantity of fuel, number of passengers, etc. The position onboard of crew members should be taken into account when assessing individual doses. Likewise due consideration must be taken when positioning detectors which are used to measure H*(10). Care would be needed to avoid ambiguity when comparing the results of calculation with the experimental data.

  10. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  11. Scaling aircraft noise perception.

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1973-01-01

    Following a brief review of the background to the study, an extensive experiment is described which was undertaken to assess the practical differences between numerous alternative methods for calculating the perceived levels of individual aircraft flyover wounds. One hundred and twenty recorded sounds, including jets, turboprops, piston aircraft and helicopters were rated by a panel of subjects in a pair comparison test. The results were analyzed to evaluate a number of noise rating procedures, in terms of their ability to accurately estimate both relative and absolute perceived noise levels over a wider dynamic range (84-115 dB SPL) than had generally been used in previous experiments. Performances of the different scales were examined in detail for different aircraft categories, and the merits of different band level summation procedures, frequency weighting functions, duration and tone corrections were investigated.

  12. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  13. GVE-Based Dynamics and Control for Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Breger, Louis; How, Jonathan P.

    2004-01-01

    Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.

  14. Physics of flying

    NASA Astrophysics Data System (ADS)

    Vetrone, Jim

    2015-05-01

    Column editor's note: As the school year comes to a close, it is important to start thinking about next year. One area that you want to consider is field trips. Many institutions require that teachers plan for a field trip well in advance. Keeping that in mind, I asked Jim Vetrone to write an article about the fantastic field trip he takes his AP Physics students on. I had the awesome opportunity to attend a professional development day that Jim arranged at iFLY in the Chicago suburbs. The experience of "flying" in a wind tunnel was fabulous. Equally fun was watching the other physics teachers come up with experiments to have the professional "flyers" perform in the tube. I could envision my students being similarly excited about the experience and about the development of their own experiments. After I returned to school, I immediately began the process of trying to get this field trip approved for the 2015-16 school year. I suggest that you start your process as well if you hope to try a new field trip next year. The key to getting the approval, in my experience, is submitting a proposal early that includes supporting documentation from sources. Often I use NGSS or state standards as justifications for my field trips. I have also quoted College Board expectations for AP Physics 1 and 2 in my documents when requesting an unusual field trip.

  15. The Flying University

    NASA Astrophysics Data System (ADS)

    Friesen, Catherine

    The Flying University is solo theater performance framed as an academic lecture about Marie Curie and her discovery of radium, delivered to a group of women who have gathered in secret to further their education. As the lecture proceeds, the professor brings in her own research based on a study of Esther Horsch (1905-1991) who lived on a farm in central Illinois. She introduces data from Esther's journals, personal memories, and dreams about Esther's life. The professor's investigation of radium plays at the intersections of magical and mundane, decay and the transformation of life, and the place of ambition in these two women's lives. The intention of this piece is to explore these themes, which are full of mystery, through the traces of the daily lives of Mme. Curie and Esther. Their words and photos are used as roots from which to imagine the things that echo beyond their familiar work; elemental and also fantastically radiant. The Flying University was written and performed by Catherine Friesen April 27-29, 2012 in the Center for Performance Experiment at Hamilton College as part of the University of South Carolina MFA Acting Class of 2013 showcase, Pieces of Eight.

  16. Lift-fan aircraft: Lessons learned-the pilot's perspective

    NASA Technical Reports Server (NTRS)

    Gerdes, Ronald M.

    1993-01-01

    This paper is written from an engineering test pilot's point of view. Its purpose is to present lift-fan 'lessons learned' from the perspective of first-hand experience accumulated during the period 1962 through 1988 while flight testing vertical/short take-off and landing (V/STOL) experimental aircraft and evaluating piloted engineering simulations of promising V/STOL concepts. Specifically, the scope of the discussions to follow is primarily based upon a critical review of the writer's personal accounts of 30 hours of XV-5A/B and 2 hours of X-14A flight testing as well as a limited simulator evaluation of the Grumman Design 755 lift-fan aircraft. Opinions of other test pilots who flew these aircraft and the aircraft simulator are also included and supplement the writer's comments. Furthermore, the lessons learned are presented from the perspective of the writer's flying experience: 10,000 hours in 100 fixed- and rotary-wing aircraft including 330 hours in 5 experimental V/STOL research aircraft. The paper is organized to present to the reader a clear picture of lift-fan lessons learned from three distinct points of view in order to facilitate application of the lesson principles to future designs. Lessons learned are first discussed with respect to case histories of specific flight and simulator investigations. These principles are then organized and restated with respect to four selected design criteria categories in Appendix I. Lastly, Appendix Il is a discussion of the design of a hypothetical supersonic short take-off vertical landing (STOVL) fighter/attack aircraft.

  17. Technical evaluation of the Aerospace Medical Panel Specialists Meeting on Escape Problems and Manoeuvres in Combat Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1974-01-01

    A technical evaluation of the papers presented at a conference on escape systems for helicopters and V/STOL aircraft was made. The subjects discussed include the following: (1) bioengineering aspects of spinal injury during ejection, (2) aerodynamic forces acting on crewman during escape, (3) operational practicality of fly away ejection seats, (4) helicopter survivability requirements, (5) ejection experience from V/STOL aircraft, and (6) research projects involving escape and retrieval systems.

  18. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    NASA Technical Reports Server (NTRS)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  19. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-11-01

    certain flight conditions we quantified, for the first time, stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the typically used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.

  20. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  1. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  2. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  3. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  4. Solar powered aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. H. (Inventor)

    1983-01-01

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the Sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  5. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  6. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  7. Comfort and health in commercial aircraft: a literature review.

    PubMed

    Brundrett, G

    2001-03-01

    Air travel is becoming increasingly more accessible to people both through the availability of cheap flights and because the airlines are now able to cater for individuals of all ages and disabilities. The wide bodies of many new aircraft permit the airlines to have very flexible seating options. Airline operators currently have an important role in determining the comfort and spaciousness of the seating in their aircraft. Passengers who remain seated for the bulk of a flight may risk oedema or deep vein thrombosis. This could be particularly important for larger people in certain economy class seats. The absence of smoking on planes has encouraged designers to cut back on the rate of cabin ventilation and hence introduce filtered recirculated air to the aircraft cabin. In new planes the ventilation rate is under pilot control and savings (economies) can be achieved by using decreased ventilation. A lower ventilation rate may lead to 'less comfortable air quality' in some parts of the plane and an increased risk of possible cross-infection from other passengers on the flight. Technological advances in jet engine design has permitted larger passenger planes to fly longer distances and at greater altitudes than ever before. The higher flying altitude is associated with a lower cabin pressure, which has an important physiological effect on oxygen saturation in the blood of both crew and passengers, particularly for the very young, the elderly and those who are less fit.

  8. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  9. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  10. Why flies are good vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was around 1900 when house flies were implicated in disease transmission. Flies with white powder on their feet were seen landing on food in US Army chow halls. This white powder was lime that had been sprinkled over the human excrement in open latrines not too far from the eating establishments....

  11. Tu-144LL SST Flying Laboratory in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The delta wing of the Tupolev Tu-144LL supersonic flying laboratory is evident in this view from underneath the aircraft during a 1998 test flight at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were

  12. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  13. Interaction of feel system and flight control system dynamics on lateral flying qualities

    NASA Technical Reports Server (NTRS)

    Bailey, R. E.; Knotts, L. H.

    1990-01-01

    An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.

  14. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  15. Light aircraft sound transmission study

    NASA Technical Reports Server (NTRS)

    Atwal, M.; David, J.; Heitman, K.; Crocker, M. J.

    1983-01-01

    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented.

  16. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  17. Typical pollutants in bottom ashes from a typical medical waste incinerator.

    PubMed

    Zhao, Lijuan; Zhang, Fu-Shen; Chen, Mengjun; Liu, Zhengang; Wu, Da Bo Jianzhi

    2010-01-15

    Incineration of medical waste (MW) is an important alternative way for disposal of this type of hazardous waste, especially in China because of the outbreak of severe acute respiratory syndromes (SARs) in 2003. Thus, far, fly ash has received much attention but less attention has been paid to bottom ash. In this study, bottom ash samples were collected from a typical MW incinerator, and typical pollutants including heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the ash were examined. X-ray fluorescence spectroscopy results indicated that CaO, SiO(2) and Al(2)O(3) were the main components of the bottom ash. Inductively coupled plasma-optical emission spectroscopy showed that the ash contained large amounts of heavy metals, including Zn, Ti, Ba, Cu, Pb, Mn, Cr, Ni and Sn. Most of the heavy metals (e.g., Ba, Cr, Ni, and Sn) presented in the residual fraction; whereas Mn, Pb and Zn presented in Fe-Mn oxides fraction, and Cu in organic-matter fraction. Toxicity characteristic leaching procedure tests indicated that the leached amounts of heavy metals were well below the limits. The sum of 16 US EPA priority PAHs (Sigma PAHs) varied from 10.30 to 38.14 mg kg(-1), and the total amounts of carcinogenic PAHs ranged between 4.09 and 16.95 mg kg(-1), exceeding the limits regulated by several countries. This research provides basic information for the evaluation of the environmental risk of MW incinerator bottom ash. PMID:19748182

  18. Development of a multipurpose smart recorder for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    White, J. H.; Finger, J. F.

    1988-01-01

    An intelligent flight recorder, called the Smart Recorder, was fabricated and installed on a King Air aircraft used in standard commercial charter service. This recorder was used for collection of data toward two objectives: (1) the characterization of the typical environment encountered by the aircraft; and (2) research in the area of trend monitoring. Data processing routines and data presentation formats were defined that are applicable to commuter size aircraft. The feasibility of a cost-effective, multipurpose recorder for general aviation aircraft was successfully demonstrated. Implementation of on-board environmental data processing increased the number of flight hours that could be stored on a single data cartridge and simplified the data management problem by reducing the volume of data to be processed in the laboratory. Trend monitoring algorithms showed less variability in the trend plots when compared against plots of manual data.

  19. Temporal Characterization of Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.

    2004-01-01

    Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.

  20. Deicing System Protects General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  1. An Operational Concept for Flying FMS Trajectories in Center and TRACON Airspace

    NASA Technical Reports Server (NTRS)

    Palmer, Everett; Williams, David; Prevot, Thomas; Romanhn, Stephan; Goka, Tsuyoshi; Smith, Nancy; Crane, Barry; Null, Cynthia (Technical Monitor)

    1998-01-01

    Current Flight Management Systems (FMS) do a good job of constructing and flying an optimal trajectory for a single aircraft. Unfortunately, flight crews are often unable to fly these FMS routes during arrivals at busy airports. The Center TRACON Automation System (CTAS) has been designed to aid Center and TRACON (Terminal Radar Approach Control) controllers in assigning runways, sequencing and vectoring all classes of aircraft. CTAS bases its advisories on trajectory predictions for arriving aircraft using algorithms very similar to those in airborne FMS systems. This paper presents near and far term operational concepts for how a ground ATM (air traffic management) automation system like CTAS could work more effectively with the airborne automation in FMS equipped aircraft. The concepts for a more compatible air-ground system include: 1) a common route databases for both CTAS and FMS; 2) datalink to downlink information on aircraft weight, final approach speed and trajectory intent and to uplink wind information; 3) new FMS functions to allow flight crews to easily update their FMS trajectory to match the trajectory suggested by the ground automation with voice clearances, and 4) in the far term, datalink to downlink user preferred trajectories and to uplink trajectory clearances in the terminal area. The paper analyses some of the human factors issues that may result in allowing aircraft to fly FMS routes during enroute descent and in the terminal area. A series of linked human in the loop flight deck and air traffic control simulations and a field test with the NASA 757 are being conducted at NASA's Ames and Langley Research Centers to address these issues and to evaluate the operational feasibility of these approaches to more efficient flight and increased airport throughput.

  2. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  3. Statistical Detection of Atypical Aircraft Flights

    NASA Technical Reports Server (NTRS)

    Statler, Irving; Chidester, Thomas; Shafto, Michael; Ferryman, Thomas; Amidan, Brett; Whitney, Paul; White, Amanda; Willse, Alan; Cooley, Scott; Jay, Joseph; Rosenthal, Loren; Swickard, Andrea; Bates, Derrick; Scherrer, Chad; Webb, Bobbie-Jo; Lawrence, Robert; Mosbrucker, Chris; Prothero, Gary; Andrei, Adi; Romanowski, Tim; Robin, Daniel; Prothero, Jason; Lynch, Robert; Lowe, Michael

    2006-01-01

    A computational method and software to implement the method have been developed to sift through vast quantities of digital flight data to alert human analysts to aircraft flights that are statistically atypical in ways that signify that safety may be adversely affected. On a typical day, there are tens of thousands of flights in the United States and several times that number throughout the world. Depending on the specific aircraft design, the volume of data collected by sensors and flight recorders can range from a few dozen to several thousand parameters per second during a flight. Whereas these data have long been utilized in investigating crashes, the present method is oriented toward helping to prevent crashes by enabling routine monitoring of flight operations to identify portions of flights that may be of interest with respect to safety issues.

  4. Nonlinear feedback control of highly manoeuvrable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Enns, Dale F.; Snell, S. A.

    1992-01-01

    This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.

  5. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  6. Flight test experience with the F-8 digital fly-by-wire system

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1976-01-01

    Flight test results of the F-8 digital fly by wire control system are presented and the implications for application to active control technology are discussed. The F-8 DFBW system has several of the attributes of proposed ACT systems, so the flight test experience is helpful in assessing the capabilities of those systems. Topics of discussion include the predicted and actual flight performance of the control system, assessments of aircraft flying qualities and other piloting factors, software management and control, and operational experience.

  7. Flight test experience with the F-8 digital fly-by-wire system

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1975-01-01

    Flight test results of the F-8 digital fly-by-wire (DFBW) control system are presented and the implications for application to active control technology (ACT) are discussed. The F-8 DFBW system has several of the attributes of proposed ACT systems, so the flight test experience is helpful in assessing the capabilities of those systems. Topics of discussion include the predicted and actual flight performance of the control system, assessments of aircraft flying qualities and other piloting factors, software management and control, and operational experience.

  8. Commercial aircraft wake vortices

    NASA Astrophysics Data System (ADS)

    Gerz, Thomas; Holzäpfel, Frank; Darracq, Denis

    2002-04-01

    This paper discusses the problem of wake vortices shed by commercial aircraft. It presents a consolidated European view on the current status of knowledge of the nature and characteristics of aircraft wakes and of technical and operational procedures of minimizing and predicting the vortex strength and avoiding wake encounters. Methodological aspects of data evaluation and interpretation, like the description of wake ages, the characterization of wake vortices, and the proper evaluation of wake data from measurement and simulation, are addressed in the first part. In the second part an inventory of our knowledge is given on vortex characterization and control, prediction and monitoring of vortex decay, vortex detection and warning, vortex encounter models, and wake-vortex safety assessment. Each section is concluded by a list of questions and required actions which may help to guide further research activities. The primary objective of the joint international efforts in wake-vortex research is to avoid potentially hazardous wake encounters for aircraft. Shortened aircraft separations under appropriate meteorological conditions, whilst keeping or even increasing the safety level, is the ultimate goal. Reduced time delays on the tactical side and increased airport capacities on the strategic side will be the benefits of these ambitious ventures for the air transportation industry and services.

  9. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  10. Aircraft to Medicine

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video discusses how the technology of computer modeling can improve the design and durability of artificial joints for human joint replacement surgery. Also, ultrasound, originally used to detect structural flaws in aircraft, can also be used to quickly assess the severity of a burn patient's injuries, thus aiding the healing process.

  11. Aircraft mission analysis

    NASA Technical Reports Server (NTRS)

    Hauge, D. S.; Rosendaal, H. L.

    1979-01-01

    Aircraft missions, from low to hypersonic speeds, are analyzed rapidly using the FORTRAN IV program NSEG. Program employs approximate equations of motion that vary in form with type of flight segment. Takeoffs, accelerations, climbs, cruises, descents, decelerations, and landings are considered.

  12. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  13. Initial Field Evaluation of Pilot Procedures for Flying CTAS Descent Clearances

    NASA Technical Reports Server (NTRS)

    Palmer, Everett; Goka, Tsuyoshi; Cashion, Patricia; Feary, Michael; Graham, Holly; Smith, Nancy; Shafto, Michael (Technical Monitor)

    1994-01-01

    The Center TRACON Automation System (CTAS) is a new support system that is designed to assist air traffic controllers in the management of arrival traffic. CTAS will provide controllers with more information about current air traffic, enabling them to provide clearances for efficient, conflict-free descents that help achieve an orderly stream of aircraft at the final approach fix. CTAS is a computer-based system that functions as a "ground-based FMS" that can predict flight trajectories and arrival times for all incoming aircraft. CTAS uses an aircraft's cruise airspeed; current air traffic, winds and temperature; performance characteristics of the aircraft type; and individual airline preferences to create a flight profile from cruise altitude to the final approach fix. Controllers can use this flight profile to provide a descent clearance that will allow an aircraft to fly an efficient descent and merge more smoothly with other arriving aircraft. A field test of the CTAS Descent Advisor software was conducted at the Denver Center for aircraft arriving at the Stapleton International Airport from September 12-29. CTAS Descent clearances were given to a NASA flight test aircraft and to 77 airline flights that arrived during low traffic periods. For the airline portion of the field test, cockpit procedures and pilot briefing packages for both FMS equipped and unequipped aircraft were developed in cooperation with an airline. The procedures developed for the FMS equipped aircraft were to fly a VNAV descent at a controller specified speed to cross a metering fix at a specified altitude and speed. For nonFMS aircraft, the clearance also specified a CTAS calculated top-of-descent point. Some CTAS related flight deck issues included how much time was available to the pilots' for compliance, the amount of information that needed to be interpreted in the clearance and possible repercussions of misunderstandings. Data collected during the study ranged from subjective data

  14. Vibration and aeroelastic analysis of highly flexible HALE aircraft

    NASA Astrophysics Data System (ADS)

    Chang, Chong-Seok

    The highly flexible HALE (High Altitude Long Endurance) aircraft analysis methodology is of interest because early studies indicated that HALE aircraft might have different vibration and aeroelastic characteristics from those of conventional aircraft. Recently the computer code Nonlinear Aeroelastic Trim And Stability of HALE Aircraft (NATASHA) was developed under NASA sponsorship. NATASHA can predict the flight dynamics and aeroelastic behavior for HALE aircraft with a flying wing configuration. Further analysis improvements for NATASHA were required to extend its capability to the ground vibration test (GVT) environment and to both GVT and aeroelastic behavior of HALE aircraft with other configurations. First, the analysis methodology, based on geometrically exact fully intrinsic beam theory, was extended to treat other aircraft cofigurations. Conventional aircraft with flexible fuselage and tail can now be modeled by treating the aircraft as an assembly of beam elements. NATASHA is now applicable to any aircraft cofiguration that can be modeled this way. The intrinsic beam formulation, which is a fundamental structural modeling approach, is now capable of being applying to a structure consisting of multiple beams by relating the virtual displacements and rotations at points where two or more beam elements are connected to each other. Additional aspects are also considered in the analysis such as auxiliary elevator input in the horizontal tail and fuselage aerodynamics. Second, the modeling approach was extended to treat the GVT environment for HALE aircraft, which have highly flexible wings. GVT has its main purpose to provide modal characteristics for model validation. A bungee formulation was developed by the augmented Lagrangian method and coupled to the intrinsic beam formulation for the GVT modeling. After the coupling procedure, the whole formulation cannot be fully intrinsic because the geometric constraint by bungee cords makes the system statically

  15. Fly-by-Light Advanced Systems Hardware (FLASH) program

    NASA Astrophysics Data System (ADS)

    Bedoya, Carlos A.

    1995-05-01

    hundreds of MHz are available. Applications of fiber optic buses would then result in the reduction of wires and connections because of reduction in the number of buses needed for information transfer due to the fact that a large number of different signals can be sent across one fiber by multiplexing each signal. The Advanced Research Projects Agency (ARPA) Technology Reinvestment Project (TRP) Fly-by-Light Advanced Systems Hardware (FLASH) program addresses the development of Fly-by-Light Technology in order to apply the benefits of fiber optics to military and commercial aircraft.

  16. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown

  17. An intelligent fiberoptic data bus for fly-by-light applications

    NASA Astrophysics Data System (ADS)

    Manoharan, L. C.; Muthuvel, S.

    An active fiberoptic data bus compatible with MIL-STD-1553B, which could be used for fly-by-light, stores management, AEW etc., on an aircraft has been developed. The data bus is considered intelligent because it can automatically sense which station is in the transmit mode and control the active interface accordingly, so that smooth flow of data takes place on the bus. The tests carried out on the bus including those on the Jaguar Avionics Rig to check its validity are also described. As no software is involved in the operation of the bus, this could be used on any aircraft having its own software.

  18. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  19. Braking performance of aircraft tires

    NASA Astrophysics Data System (ADS)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  20. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  1. Tu-144LL SST Flying Laboratory in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL supersonic flying laboratory shows off its sleek lines in a low-level pass over the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 research flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production

  2. Simulation Tools Model Icing for Aircraft Design

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here s a simple science experiment to try: Place an unopened bottle of distilled water in your freezer. After 2-3 hours, if the water is pure enough, you will notice that it has not frozen. Carefully pour the water into a bowl with a piece of ice in it. When it strikes the ice, the water will instantly freeze. One of the most basic and commonly known scientific facts is that water freezes at around 32 F. But this is not always the case. Water lacking any impurities for ice crystals to form around can be supercooled to even lower temperatures without freezing. High in the atmosphere, water droplets can achieve this delicate, supercooled state. When a plane flies through clouds containing these droplets, the water can strike the airframe and, like the supercooled water hitting the ice in the experiment above, freeze instantly. The ice buildup alters the aerodynamics of the plane - reducing lift and increasing drag - affecting its performance and presenting a safety issue if the plane can no longer fly effectively. In certain circumstances, ice can form inside aircraft engines, another potential hazard. NASA has long studied ways of detecting and countering atmospheric icing conditions as part of the Agency s efforts to enhance aviation safety. To do this, the Icing Branch at Glenn Research Center utilizes a number of world-class tools, including the Center s Icing Research Tunnel and the NASA 607 icing research aircraft, a "flying laboratory" for studying icing conditions. The branch has also developed a suite of software programs to help aircraft and icing protection system designers understand the behavior of ice accumulation on various surfaces and in various conditions. One of these innovations is the LEWICE ice accretion simulation software. Initially developed in the 1980s (when Glenn was known as Lewis Research Center), LEWICE has become one of the most widely used tools in icing research and aircraft design and certification. LEWICE has been transformed over

  3. Stratospheric ozone destruction by aircraft-induced nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Alyea, F. N.; Cunnold, D. M.; Prinn, R. G.

    1975-01-01

    The preliminary results from a three-dimensional dynamic-chemical model applied to the SST-NOx (NO + NO2) problem are reported. Simulations indicate that a depletion of about 12 per cent in total stratospheric O3 would be realized for a continuous NOx injection rate of 1.8 x 10 to the sixth power metric tons per year from a hypothetical fleet of SST's flying at an altitude of 20 km in the midlatitudes of the Northern Hemisphere. Sixteen per cent of the existing O3 would be destroyed on an annual basis. The model assumes a fleet of about 500 aircraft of the now-canceled American Boeing 2707 type; if only present Anglo-French and Russian SST models, which fly at lower, less harmful altitudes, are built, it will take a fleet of a few thousand such craft to attain an effective injection rate equal to the one above.

  4. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  5. Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2006-01-01

    The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The

  6. Advanced air transport concepts. [review of design methods for very large aircraft

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.

    1979-01-01

    The concepts of laminar flow control, very large all-wing aircraft, an aerial relay transportation system and alternative fuels, which would enable large improvements in fuel conservation in air transportation in the 1990's are discussed. Laminar boundary layer control through suction would greatly reduce skin friction and has been reported to reduce fuel consumption by up to 29%. Distributed load aircraft, in which all fuel and payload are carried in the wing and the fuselage is absent, permit the use of lighter construction materials and the elimination of fuselage and tail drag. Spanloader aircraft with laminar flow control could be used in an aerial relay transportation system which would employ a network of continuously flying liners supplied with fuel, cargo and crews by smaller feeder aircraft. Liquid hydrogen and methane fuels derived from coal are shown to be more weight efficient and less costly than coal-derived synthetic jet fuels.

  7. Deaths and injuries as a result of lightning strikes to aircraft.

    PubMed

    Cherington, M; Mathys, K

    1995-07-01

    Aircraft are at risk of being struck by lightning or triggering lightning as they fly through clouds. Commercial and private airplanes have been struck, with resultant deaths and injuries to passengers and crew. We were interested in learning how large a problem existed to the American public from lightning strikes to airplanes. We analyzed data from the National Transportation Safety Board (NTSB) on lightning-related accidents in the United States from 1963-89. NTSB recorded 40 lightning-related aircraft accidents. There were 10 commercial airplane accidents reported, 4 of which were associated with 260 fatalities and 28 serious injuries. There were 30 private aircraft accidents that accounted for 30 fatalities and 46 serious injuries. While lightning remains a potential risk to aircraft passengers and crew, modern airplanes are better equipped to lessen the dangers of accidents due to lightning.

  8. Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques

    NASA Technical Reports Server (NTRS)

    Gridley, D.

    1982-01-01

    A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.

  9. Radiation protection aspects of the cosmic radiation exposure of aircraft crew.

    PubMed

    Bartlett, D T

    2004-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe.

  10. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  11. Deaths and injuries as a result of lightning strikes to aircraft.

    PubMed

    Cherington, M; Mathys, K

    1995-07-01

    Aircraft are at risk of being struck by lightning or triggering lightning as they fly through clouds. Commercial and private airplanes have been struck, with resultant deaths and injuries to passengers and crew. We were interested in learning how large a problem existed to the American public from lightning strikes to airplanes. We analyzed data from the National Transportation Safety Board (NTSB) on lightning-related accidents in the United States from 1963-89. NTSB recorded 40 lightning-related aircraft accidents. There were 10 commercial airplane accidents reported, 4 of which were associated with 260 fatalities and 28 serious injuries. There were 30 private aircraft accidents that accounted for 30 fatalities and 46 serious injuries. While lightning remains a potential risk to aircraft passengers and crew, modern airplanes are better equipped to lessen the dangers of accidents due to lightning. PMID:7575320

  12. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  13. An approach to aircraft seat comfort using interface pressure mapping.

    PubMed

    Ciaccia, Flavia Renata Dantas Alves Silva; Sznelwar, Laerte Idal

    2012-01-01

    The objective of the present study is to propose a method to dynamically evaluate discomfort of a passenger seat by measuring the interface pressure between the occupant and the seat during the performance of the most common activities of a typical flight. This article reports the results of resting and reading studies performed in a simulator that represents the interior of a commercial aircraft.

  14. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    PubMed

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.

  15. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    PubMed

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated. PMID:18838261

  16. Sorbents for CO2 capture from high carbon fly ashes.

    PubMed

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  17. Transonic stability and control of aircraft using CFD methods

    NASA Technical Reports Server (NTRS)

    Vinh, Lam-Son; Edwards, John W.; Seidel, David A.; Batina, John T.

    1988-01-01

    Implementation of a capability to calculate longitudinal short-period response in the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) finite-difference code is described. The code, developed recently at the NASA Langley Research Center, is capable of solving steady and unsteady flows about complete aircraft configurations and is used primarily for aeroelastic calculations in the critical transonic speed range. The longitudinal short-period equations of motion in state-space form have been coupled to the time-accurate lift and moment calculated by the program. Transient responses to an elevator pulse for free-flying aircraft demonstrate the new capability. A trim routine is also added to the code to obtain trim automatically during steady-state flow field convergence. Stability and control derivatives are estimated from the calculated transient response by a maximum likelihood estimation program. Results for a fighter configuration and a general aviation configuration are presented to assess the capability.

  18. Maintenance cost study of rotary wing aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Navy's maintenance and materials management data base was used in a study to determine the feasibility of predicting unscheduled maintenance costs for the dynamic systems of military rotary wing aircraft. The major operational and design variables were identified and the direct maintenance man hours per flight hour were obtained by step-wise multiple regression analysis. Five nonmilitary helicopter users were contacted to supply data on which variables were important factors in civil applications. These uses included offshore oil exploration and support, police and fire department rescue and enforcement, logging and heavy equipment movement, and U.S. Army military operations. The equations developed were highly effective in predicting unscheduled direct maintenance man hours per flying hours for military aircraft, but less effective for commercial or public service helicopters, probably because of the longer mission durations and the much higher utilization of civil users.

  19. Typical motions in multiple systems

    NASA Technical Reports Server (NTRS)

    Anosova, Joanna P.

    1990-01-01

    In very old times, people counted - one, two, many. The author wants to show that they were right. Consider the motions of isolated bodies: (1) N = 1 - simple motion; (2) N = 2 - Keplerian orbits; and (3) N = 3 - this is the difficult problem. In general, this problem can be studied only by computer simulations. The author studied this problem over many years (see, e.g., Agekian and Anosova, 1967; Anosova, 1986, 1989 a,b). The principal result is that two basic types of dynamics take place in triple systems. The first special type is the stable hierarchical systems with two almost Keplerian orbits. The second general type is the unstable triple systems with complicated motions of the bodies. By random choice of the initial conditions, by the Monte-Carlo method, the stable systems comprised about approx. 10% of the examined cases; the unstable systems comprised the other approx. 90% of cases under consideration. In N greater than 3, the studies of dynamics of such systems by computer simulations show that we have in general also the motions roughly as at the cases 1 - 3 with the relative negative or positive energies of the bodies. In the author's picture, the typical trajectories of the bodies in unstable triple systems of the general type of dynamics are seen. Such systems are disrupted always after close triple approaches of the bodies. These approaches play a role like the gravitational slingshot. Often, the velocities of escapers are very large. On the other hand, the movie also shows the dynamical processes of a formation, dynamical evolution and disruption of the temporary wide binaries in triples and a formation of final hard massive binaries in the final evolution of triples.

  20. CID Aircraft in practice flight above target impact site with wing cutters

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720

  1. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in gross take-off-weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BITE) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  2. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1991-01-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in operating empty weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BIT) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  3. The occurrence of the vection illusion among helicopter pilots while flying over water.

    PubMed

    Ungs, T J

    1989-11-01

    U.S. Coast Guard helicopter pilots were questioned on the occurrence of the vection illusion while flying over water under different light and sea conditions. A total of 267 (79.9%) pilots completed the study questionnaire. The illusion of vection was experienced by 248 (92.5%) of these pilots. The majority of the pilots, 209 (84.6%), reported that dark rather than light visual conditions increased the likelihood of experiencing vection. Vection was considered likely to occur over rough seas by more pilots [114 (46.2%)] then over smooth seas [81 (37.8%)]. Several pilots commented that they had responded to the illusion with aircraft movement. The vection illusion is a common experience among helicopter pilots while flying over open water. Low light conditions and rough sea states are conducive to experiencing the vection illusion. Pilots may respond to the illusion with aircraft control movements, which raises flight safety concerns.

  4. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Astrophysics Data System (ADS)

    Sundberg, Gale R.

    1990-05-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in gross take-off-weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BITE) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  5. Civil air transport - A fresh look at power-by-wire and fly-by-light

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology, with potential savings of over 10 percent in gross take off weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators, and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BITE) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high-energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to future aircraft, both civil and military.

  6. Assessment of flying-quality criteria for air-breathing aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.

    1992-01-01

    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).

  7. Evaluation of Contrail Reduction Strategies Based on Aircraft Flight Distances

    NASA Technical Reports Server (NTRS)

    Chen, Neil Y.; Sridhar, Banavar; Li, Jinhua; Ng, Hok Kwan

    2012-01-01

    This paper evaluates a set of contrail reduction strategies based on the flight range of aircraft as contrail reduction strategies have different impacts on aircraft depending on how they plan to fly. In general, aircraft with longer flight distances cruise at the altitudes where contrails are more likely to form. The concept of the contrail frequency index is used to quantify contrail impacts. The strategy for reducing the persistent contrail formation is to minimize the contrail frequency index by altering the aircraft's cruising altitude. A user-defined factor is used to trade off between contrail reduction and extra CO2 emissions. A higher value of tradeoff factor results in more contrail reduction and extra CO2 emissions. Results show that contrail reduction strategies using various tradeo factors behave differently from short-range flights to long-range ights. Analysis shows that short-distance flights (less than 500 miles) are the most frequent flights but contribute least to contrail reduction. Therefore these aircraft have the lowest priority when applying contrail reduction strategies. Medium-distance flights (500 to 1000 miles) have a higher priority if the goal is to achieve maximum contrail reduction in total; long-distance flights (1000 to 1500 miles) have a higher priority if the goal is to achieve maximum contrail reduction per flight. The characteristics of transcontinental flights (greater than 1500 miles) vary with different weather days so the priority of applying contrail reduction strategies to the group needs to be evaluated based on the locations of the contrail areas during any given day. For the days tested, medium-distance ights contribute up to 42.6% of the reduction among the groups during a day. The contrail frequency index per 1,000 miles for medium-distance, long-distance, and transcontinental flights can be reduced by an average of 75%. The results provide a starting point for developing operational policies to reduce the impact of

  8. Project ARES 2: High-altitude battery-powered aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A high-altitude, battery-powered, propeller-driven aircraft was designed and is being built by undergraduate students at California State University, Northridge. The aircraft will fly at an altitude of 104,000 ft at Mach 0.2 (190 ft/sec) and will be instrumented to record flight performance data, including low Reynolds number propeller and airfoil information. This project will demonstrate the feasibility of electric-powered flight in a low-density, low-temperature Earth environment that models the atmosphere of Mars. Data collected will be used to design a Mars aircraft to investigate the surface of Mars prior to manned missions. The instrumented payload and the mission profile for the high-altitude Earth flight were determined. Detailed aerodynamic and structural analyses were performed. Control, tracking, and data recording subsystems were developed. Materials were obtained and fabrication begun. The aircraft has a 32-ft wing span, a wing area of 105 sq ft, is 17.5 ft long, has a 12-in payload bay, and weighs 42 lb. It is composed primarily of lightweight materials, including Mylar, and composite materials, including graphite/epoxy and aramid core honeycomb sandwich. Low-altitude flight testing to check guidance and control systems and to calibrate data-gathering instruments will take place this summer, followed shortly by the 104,000-ft flight.

  9. 3D flyable curves for an autonomous aircraft

    NASA Astrophysics Data System (ADS)

    Bestaoui, Yasmina

    2012-11-01

    The process of conducting a mission for an autonomous aircraft includes determining the set of waypoints (flight planning) and the path for the aircraft to fly (path planning). The autonomous aircraft is an under-actuated system, having less control inputs than degrees of freedom and has two nonholonomic (non integrable) kinematic constraints. Consequently, the set of feasible trajectories will be restricted and the problem of trajectory generation becomes more complicated than a simple interpolation. Care must be taken in the selection of the basic primitives to respect the kinematic and dynamic limitations. The topic of this paper is trajectory generation using parametric curves. The problem can be formulated as follows: to lead the autonomous aircraft from an initial configuration qi to a final configuration qf in the absence of obstacles, find a trajectory q(t) for 0 ≤t ≤ T. The trajectory can be broken down into a geometric path q(s), s being the curvilinear abscissa and s=s(t) a temporal function. In 2D the curves fall into two categories: • Curves whose coordinates have a closed form expressions, for example B-splines, quintic polynomials or polar splines. • Curves whose curvature is a function of their arc length for example clothoids, cubic spirals, quintic or intrinsic splines. Some 3D solutions will be presented in this paper and their effectiveness discussed towards the problem in hand.

  10. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  11. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  12. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  13. Project report: Aircraft

    SciTech Connect

    Wuebbles, D.J.; Baughcum, S.; Metwally, M.; Seals, R.

    1994-04-01

    Analyses of scenarios of past and possible future emissions are an important aspect of assessing the potential environmental effects from aircraft, including the proposed high speed civil transport (HSCT). The development of a detailed three-dimensional database that accurately represents the integration of all aircraft emissions along realistic flight paths for such scenarios requires complex computational modeling capabilities. Such a detailed data set is required for the scenarios evaluated in this interim assessment. Within the NASA High-Speed Research Program, the Emissions Scenarios Committee provides a forum for identifying the required scenarios and evaluating the resulting database being developed with the advanced emissions modeling capabilities at the Boeing Company and McDonnell Douglas Corporation.

  14. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  15. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  16. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  17. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  18. B-747 in Flight during Vortex Study with Learjet and T-37 Fly Through the Wake

    NASA Technical Reports Server (NTRS)

    1974-01-01

    In this 1974 NASA Flight Research Center (FRC) photograph, the two chase aircraft, a Learjet and a Cessna T-37, are shown in formation off the right wing tip of the Boeing B-747 jetliner. The two chase aircraft were used to probe the trailing wake vortices generated by the airflow around the wings of the B-747 aircraft. The vortex trail behind the right wing tip was made visible by a smoke generator mounted under the wing of the B-747 aircraft. In 1974 the NASA Flight Research Center (later Dryden Flight Research Center, Edwards, California) used a Boeing 747 as part of the overall NASA study of trailing vortices. Trailing vortices are the invisible flow of spiraling air that trails from the wings of large aircraft and can 'upset' smaller aircraft flying behind them. The 747 that NASA used was on loan from the Johnson Space Center where it was part of the Space Shuttle Program. The data gathered in the 747 studies complemented data from the previous (1973-74) joint NASA Flight Research Center and Federal Aviation Administration (FAA) Boeing727 wake vortices study. Six smoke generators were installed under the wings of the 747 to provide a visual image of the trailing vortices. The object of the experiments was to test different configurations and mechanical devices on the747 that could be used to break up or lessen the strength of the vortices. The results of the tests could lead to shorter spacing between landings and takeoffs, which, in turn, could alleviate air-traffic congestion. For approximately 30 flights the 747 was flown using various combinations of wing air spoilers in an attempt to reduce wake vortices. To evaluate the effectiveness of the different configurations, chase aircraft were flown into the vortex sheets to probe their strengths and patterns at different times. Two of the chase planes used were the Flight Research Center's Cessna T-37 and the NASA Ames Research Center's Learjet. These aircraft represented the types of smaller business jets and

  19. Managing the Fruit Fly Experiment.

    ERIC Educational Resources Information Center

    Jeszenszky, Arleen W.

    1997-01-01

    Describes a sophisticated version of the fruit fly experiment for teaching concepts about genetics to biology students. Provides students with the opportunity to work with live animals over an extended period. (JRH)

  20. Electrical Thermometers for Aircraft

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Womack, S H J

    1937-01-01

    Electrical thermometers commonly used on aircraft are the thermoelectric type for measuring engine-cylinder temperatures, the resistance type for measuring air temperatures, and the superheat meters of thermoelectric and resistance types for use on airships. These instruments are described and their advantages and disadvantages enumerated. Methods of testing these instruments and the performance to be expected from each are discussed. The field testing of engine-cylinder thermometers is treated in detail.