Science.gov

Sample records for aircraft typically fly

  1. Flying qualities criteria for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1984-01-01

    An overview of Dryden superaugmented aircraft flying qualities research is presented. This includes F-8 digital fly by wire flight experiments, orbiter flying qualities, shuttle improvements, AFTI/F-16, flying qualities and control system alternatives, Vertical Motion Simulator Shuttle evaluation and Total in Flight Simulator pitch rate criteria.

  2. Flying Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is pioneering various Unmanned Aircraft System (UAS) technologies and procedures which may enable routine access to the National Airspace System (NAS), with an aim for Next Gen NAS. These tools will aid in the development of technologies and integrated capabilities that will enable high value missions for science, security, and defense, and open the door to low-cost, extreme-duration, stratospheric flight. A century of aviation evolution has resulted in accepted standards and best practices in the design of human-machine interfaces, the displays and controls of which serve to optimize safe and efficient flight operations and situational awareness. The current proliferation of non-standard, aircraft-specific flight crew interfaces in UAS, coupled with the inherent limitations of operating UAS without in-situ sensory input and feedback (aural, visual, and vestibular cues), has increased the risk of mishaps associated with the design of the "cockpit." The examples of current non- or sub- standard design features range from "annoying" and "inefficient", to those that are difficult to manipulate or interpret in a timely manner, as well as to those that are "burdensome" and "unsafe." A concerted effort is required to establish best practices and standards for the human-machine interfaces, for the pilot as well as the air traffic controller. In addition, roles, responsibilities, knowledge, and skill sets are subject to redefining the terms, "pilot" and "air traffic controller", with respect to operating UAS, especially in the Next-Gen NAS. The knowledge, skill sets, training, and qualification standards for UAS operations must be established, and reflect the aircraft-specific human-machine interfaces and control methods. NASA s recent experiences flying its MQ-9 Ikhana in the NAS for extended duration, has enabled both NASA and the FAA to realize the full potential for UAS, as well as understand the implications of

  3. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  4. How to fly an aircraft with control theory and splines

    NASA Technical Reports Server (NTRS)

    Karlsson, Anders

    1994-01-01

    When trying to fly an aircraft as smoothly as possible it is a good idea to use the derivatives of the pilot command instead of using the actual control. This idea was implemented with splines and control theory, in a system that tries to model an aircraft. Computer calculations in Matlab show that it is impossible to receive enough smooth control signals by this way. This is due to the fact that the splines not only try to approximate the test function, but also its derivatives. A perfect traction is received but we have to pay in very peaky control signals and accelerations.

  5. Passive morphing of flying wing aircraft: Z-shaped configuration

    NASA Astrophysics Data System (ADS)

    Mardanpour, Pezhman; Hodges, Dewey H.

    2014-01-01

    High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel that increases the absorption of solar energy by decreasing the angle of incidence of the solar radiation at specific times of the day. In this paper solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft), a computer program that is based on geometrically exact, fully intrinsic beam equations and a finite-state induced flow model, was extended to include the ability to simulate morphing of the aircraft into a "Z" configuration. Because of the "long endurance" feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.

  6. Landing flying qualities evaluation criteria for augmented aircraft

    NASA Technical Reports Server (NTRS)

    Radford, R. C.; Smith, R.; Bailey, R.

    1980-01-01

    The criteria evaluated were: Calspan Neal-Smith; Onstott (Northrop Time Domain); McDonnell-Douglas Equivalent System Approach; R. H. Smith Criterion. Each criterion was applied to the same set of longitudinal approach and landing flying qualities data. A revised version of the Neal-Smith criterion which is applicable to the landing task was developed and tested against other landing flying qualities data. Results indicated that both the revised Neal-Smith criterion and the Equivalent System Approach are good discriminators of pitch landing flying qualities; Neal-Smith has particular merit as a design guide, while the Equivalent System Approach is well suited for development of appropriate military specification requirements applicable to highly augmented aircraft.

  7. Drosophila americana Diapausing Females Show Features Typical of Young Flies.

    PubMed

    Reis, Micael; Valer, Felipe B; Vieira, Cristina P; Vieira, Jorge

    2015-01-01

    Diapause is a period of arrested development which is controlled physiologically, preprogrammed environmentally and characterized by metabolic depression that can occur during any stage of insect development. Nevertheless, in the genus Drosophila, diapause is almost always associated with the cessation of ovarian development and reproductive activity in adult females. In this work, we show that, in D. americana (a temperate species of the virilis group), diapause is a genetically determined delay in ovarian development that is triggered by temperature and/or photoperiod. Moreover, we show that in this species diapause incidence increases with latitude, ranging from 13% in the southernmost to 91% in the northernmost range of the distribution. When exposed to diapause inducing conditions, both diapausing and non-diapausing females show a 10% increase in lifespan, that is further increased by 18.6% in diapausing females, although senescence is far from being negligible.ActinD1 expression levels suggest that diapausing females are biologically much younger than their chronological age, and that the fly as a whole, rather than the ovarian developmental one, which is phenotypically more evident, is delayed by diapause. Therefore, diapause candidate genes that show expression levels that are compatible with flies younger than their chronological age may not necessarily play a role in reproductive diapause and in adaptation to seasonally varying environmental conditions [corrected].

  8. The Cognitive Challenges of Flying a Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2016-01-01

    A large variety of Remotely Piloted Aircraft (RPA) designs are currently in production or in development. These aircraft range from small electric quadcopters that are flown close to the ground within visual range of the operator, to larger systems capable of extended flight in airspace shared with conventional aircraft. Before RPA can operate routinely and safely in civilian airspace, we need to understand the unique human factors associated with these aircraft. The task of flying an RPA in civilian airspace involves challenges common to the operation of other highly-automated systems, but also introduces new considerations for pilot perception, decision-making, and action execution. RPA pilots participated in focus groups where they were asked to recall critical incidents that either presented a threat to safety, or highlighted a case where the pilot contributed to system resilience or mission success. Ninety incidents were gathered from focus-groups. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies. Some of these concerns have received significant attention in the literature, or are analogous to human factors of manned aircraft. The presentation will focus on issues that are poorly understood, and have not yet been the subject of extensive human factors study. Although many of the reported incidents were related to pilot error, the participants also provided examples of the positive contribution that humans make to the operation of highly-automated systems.

  9. Terahertz-based relative positioning of aircraft flying in formation

    NASA Astrophysics Data System (ADS)

    Parker, John Scott

    This thesis introduces a new method for estimating the relative positions of aircraft flying in formation using terahertz frequency (THz) signals. We look specifically at the military precision airdrop application, where THz signals have two advantages: (1) stealth due to preferential propagation in the horizontal direction at high altitudes and (2) robustness for operations in GPS-denied environments. This thesis presents two system concepts for implementation. The first, dubbed the straight-and-level (SAL) architecture, produces high precision position estimates during straight and level flight, but suffers from systematic biases when the receiving aircraft performs a maneuver. In support of this architecture, we published the first ever paper on THz relative positioning, and introduced a new filtering method inspired by the well-known GPS Hatch Filter. The second, dubbed the refined-for-maneuvers (RFM) architecture, produces position estimates that are less precise than the SAL architecture, but have no systematic bias when the aircraft maneuver. Simulations are used to predict the performance of the architectures.

  10. Physiologic responses of pilots flying high-performance aircraft.

    PubMed

    Comens, P; Reed, D; Mette, M

    1987-03-01

    This study deals with the physiologic responses to stress in F-4 fighter pilots and aircrew engaged in surface attack training (SAT) missions. Blood levels of HDL-cholesterol, LDH and LDH isoenzymes, CPK, and myoglobin were determined before and after each mission. Continuous EKG and transcutaneous PO2 recordings were made during briefing, preflight, and inflight. The personal history and habits of each participant were recorded. Each mission consisted of six successive bomb deliveries at 80-s intervals and at increasingly steep dive angles, each terminating in 5.5-6 +Gz during pull-up. Results revealed no apparent effect on HDL, COP isoenzymes, and LDH isoenzymes. Many myoglobin levels dropped as much as 50%. EKG recordings revealed ST elevations, ST depressions, T wave inversions, and marked sinus arrhythmias in some, while others showed increases in cardiac rate. Pilots flying these SAT missions in F-4C aircraft were found not to be significantly physiologically stressed.

  11. Evaluation of XV-15 tilt rotor aircraft for flying qualities research application

    NASA Technical Reports Server (NTRS)

    Radford, R. C.; Schelhorn, A. E.; Siracuse, R. J.; Till, R. D.; Wasserman, R.

    1976-01-01

    The results of a design review study and evaluation of the XV-15 Tilt Rotor Research Aircraft for flying qualities research application are presented. The objectives of the program were to determine the capability of the XV-15 aircraft and the V/STOLAND system as a safe, inflight facility to provide meaningful research data on flying qualities, flight control systems, and information display systems.

  12. Ground and flight test experience with a triple redundant digital fly by wire control system. [installed in F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Jarvis, C. R.; Szalai, K. J.

    1981-01-01

    A triplex digital fly by wire flight control system was developed and installed in an F-8C aircraft to provide fail operative, full authority control. Hardware and software redundancy management techniques were designed to detect and identify failures in the system. Control functions typical of those projected for future actively controlled vehicles were implemented.

  13. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China.

    PubMed

    Pan, Yun; Wu, Zhiming; Zhou, Jizhi; Zhao, Jun; Ruan, Xiuxiu; Liu, Jianyong; Qian, Guangren

    2013-10-15

    The release of heavy metals in municipal solid waste incineration (MSWI) fly ash has become a worrying issue while fly ash is utilized or landfilled. This work investigated the potential mobility of heavy metals in the fly ashes from 15 typical MSWI plants in Chinese mainland by the characterization of distribution, chemical speciation and leaching behavior of heavy metals. The results showed that total content of heavy metals decreased in the order Zn>Pb>Cu>Cr>Ni>Cd in samples. The toxicity characteristics leaching procedure (TCLP) of fly ash indicated that the amount of leached Cd in 67% of samples exceeded the regulated limit. Also, the excess amount of leached Zn and Pb was observed in 40% and 53% of samples, respectively. The chemical speciation analysis revealed that this excess of heavy metal leached in TCLP was contributed to the high content of acid soluble fraction (F1) and reducible fraction (F2) of heavy metal. Moreover, the great positive relevance between leaching behavior of heavy metals and F1 fraction was supported by principal component analysis (PCA). Risk assessment code (RAC) results suggested that Cd and Pb showed a very high risk class to the environment.

  14. [Structural-functional reserves of the vegetative nervous system in pilots flying high maneuver aircrafts].

    PubMed

    Sukhoterin, A F; Pashchenko, P S

    2014-01-01

    Purpose of the work was to analyze morbidity among pilots of different categories of aircraft, and to investigate reactivity of the vegetative nervous system (VNS) in pilots flying high maneuver aircrafts varying in age and flying time. Morbidity was deduced from the data of aviation medical exams. The VNS investigation involved 56 pilots of fighter and assault aircrafts both in the inter-flight periods and during duty shifts. Cytochemistry was used to measure glycogen in peripheral blood neutrophils in 77 pilots. It was shown that the pre-stress condition in pilots with the flying time more than 1000 hours may transform to chronic stress, provided that the flight duties remain heavy. According to the cytochemical data, concentration of neutrophilic glycogen indicating the energy potential of peripheral blood leukocytes is controlled by hormones secreted by the VNS sympathetic and parasympathetic components.

  15. Design developments for advanced general aviation aircraft. [using Fly By Light Control

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Gomer, Charles

    1991-01-01

    Design study results are presented for two advanced general-aviation aircraft incorporating fly-by-light/fly-by-wire controls and digital avionics and cockpit displays. The design exercise proceeded from a database of information derived from a market survey for the 4-10 passenger aircraft range. Pusher and tractor propeller configurations were treated, and attention was given to the maximization of passenger comfort. 'Outside-in' tooling methods were assumed for the primary structures of both configurations, in order to achieve surface tolerances which maximize the rearward extent of laminar flow.

  16. Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Walko, L. C.

    1974-01-01

    Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.

  17. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  18. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  19. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  20. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false May I fly my aircraft to a repair facility... May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? Yes... allow them to fly their aircraft to a repair facility to do the work required by an...

  1. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exclude coverage for injuries or death sustained while traveling aboard a Government or military aircraft... information must we give to anyone who flies on our Government aircraft? 301-70.909 Section 301-70.909 Public... Agencies That Own or Hire Government Aircraft for Travel § 301-70.909 What disclosure information must...

  2. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exclude coverage for injuries or death sustained while traveling aboard a Government or military aircraft... information must we give to anyone who flies on our Government aircraft? 301-70.909 Section 301-70.909 Public... Agencies That Own or Hire Government Aircraft for Travel § 301-70.909 What disclosure information must...

  3. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exclude coverage for injuries or death sustained while traveling aboard a Government or military aircraft... information must we give to anyone who flies on our Government aircraft? 301-70.909 Section 301-70.909 Public... Agencies That Own or Hire Government Aircraft for Travel § 301-70.909 What disclosure information must...

  4. Flying Qualities of Relaxed Static Stability Aircraft. Volume I. Flying Qualities Airworthiness Assessment and Flight Testing of Augmented Aircraft

    DTIC Science & Technology

    1982-09-01

    FOR CURRENT PART 25 AIRCRAFT.... 58 3. MAXIMUM FORCES EXERTED ON AIRCRAFT ,CONTROL STICK (LBS) BY MEN AND WOME No ......,.....o...denotes damped Imaginary Pole in Right oscillatory response) Half Plane (denotes divergent oscillation) I/ x Left Half Plane Right Half Plane stable...unstable) I0 0 ýRealI Pole (denotes rReal Pole in Right Half first obrder ’respornse) Plane (denotes diver~gent- Sfirst order response) . -- ttime -T

  5. Flying Qualities Evaluation of a Commuter Aircraft With an Ice Contaminated Tailplane

    NASA Technical Reports Server (NTRS)

    Ranaudo, Richard J.; Ratvasky, Thomas P.; FossVanZante, Judith

    2000-01-01

    During the NASA/FAA (Federal Aviation Administration) Tailplane Icing Program, pilot evaluations of aircraft flying qualities were conducted with various ice shapes attached to the horizontal tailplane of the NASA Twin Otter Icing Research Aircraft. Initially, only NASA pilots conducted these evaluations, assessing the differences in longitudinal flight characteristics between the baseline or clean aircraft, and the aircraft configured with an Ice Contaminated Tailplane (ICT). Longitudinal tests included Constant Airspeed Flap Transitions, Constant Airspeed Thrust Transitions, zero-G Pushovers, Repeat Elevator Doublets, and Simulated Approach and Go-Around tasks. Later in the program, guest pilots from government and industry were invited to fly the NASA Twin Otter configured with a single full-span artificial ice shape attached to the leading edge of the horizontal tailplane. This shape represented ice formed due to a 'Failed Boot' condition, and was generated from tests in the Glenn Icing Research Tunnel on a full-scale tailplane model. Guest pilots performed longitudinal handling tests, similar to those conducted by the NASA pilots, to evaluate the ICT condition. In general, all pilots agreed that longitudinal flying qualities were degraded as flaps were lowered, and further degraded at high thrust settings. Repeat elevator doublets demonstrated reduced pitch damping effects due to ICT, which is a characteristic that results in degraded flying qualities. Pilots identified elevator control force reversals (CFR) in zero-G pushovers at a 20 deg flap setting, a characteristic that fails the FAR 25 no CFR certification requirement. However, when the same pilots used the Cooper-Harper rating scale to perform a simulated approach and go-around task at the 20 deg flap setting, they rated the airplane as having Level I and Level II flying qualities respectively. By comparison, the same task conducted at the 30 deg flap setting, resulted in Level II flying qualities for

  6. Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.; Bridges, P. D.; Brownlee, J. A.; Livingston, W. W.

    1980-01-01

    The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data.

  7. Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.; Bridges, P.; Brownlee, J. A.; Liningston, W. W.

    1980-01-01

    The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full-scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data.

  8. Flying qualities design criteria applicable to supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  9. A design study for a simple-to-fly, constant attitude light aircraft

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Humphreys, D. E.; Montoya, R. J.; Rickard, W. W.; Wilkinson, I. E.

    1973-01-01

    The activities during a four-year study by doctoral students to evolve in detail a design for a simple-to-fly, constant attitude light airplane are described. The study indicated that such aircraft could materially reduce the hazards to light airplane occupants which arise from the high pilot work load and poor visibility that occur during landing. Preliminary cost studies indicate that in volume production this system would increase the cost of the aircraft in roughly the same fashion that automatic transmission, power steering, power brakes, and cruise control increase the cost of a compact car.

  10. NASA's advanced control law program for the F-8 digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1977-01-01

    This paper briefly describes the NASA F-8 Digital Fly-By-Wire (DFBW) and Langley Research Center's role in investigating and promoting advanced control laws for possible flight experimentation and also provides a brief description of the Phase II DFBW F-8 aircraft and its control system. Some of the advanced control law study objectives and guidelines are discussed, and some mathematical models which are useful in the control analysis problem are provided.

  11. The NASA Earth Research-2 (ER-2) Aircraft: A Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 aircraft has been successfully utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The research missions for the ER-2 aircraft are planned, implemented, and managed by the Dryden Flight Research Center Science Mission Directorate. Maintenance and instrument payload integration is conducted by Dryden personnel. The ER-2 aircraft provides experimenters with a wide array of payload accommodations areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of Dryden or from remote bases worldwide, according to research requirements. The NASA ER-2 aircraft is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 aircraft s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community and other customers.

  12. Conceptual design of a flying boom for air-to-air refueling of passenger aircraft

    NASA Astrophysics Data System (ADS)

    Timmermans, Ir. H. S.; La Rocca, ir. G., Dr.

    2014-10-01

    This paper describes the conceptual development of a flying boom for air-to-air refuelingof passenger aircraft. This operational concept is currently evaluated within the EC project RECREATE as a possible means to achieve significant increase in overall fuel efficiency. While in military aviation aerial refueling is performed with the tankerflyingahead and above the receiver aircraft, in case of passenger aircraft, safety, cost and comfort criteria suggest to invert the set up. This unconventional configuration would require a different refueling boom, able to extend from the tanker towards the cruiser, against wind and gravity. Amultidisciplinary design optimization framework was set up to size and compare various boom design solutions free of structural divergence and sufficientlycontrollable and with minimum values of weight and drag. Oneconcept, based on an innovative kinematic mechanism, was selected for its ability to meet all design constraints, with weight and drag values comparable to conventional boom designs.

  13. An experimental radio-controlled model aircraft casts two unique shadows as it flies inside a Dryden

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An experimental radio-controlled model aircraft casts two unique shadows as it flies inside a Dryden hangar using two spotlights as energy sources. This phase of testing was used to develop procedures and operations for 'handing off' the aircraft between different sources of power.

  14. Lateral-Directional Eigenvector Flying Qualities Guidelines for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1996-01-01

    This report presents the development of lateral-directional flying qualities guidelines with application to eigenspace (eigenstructure) assignment methods. These guidelines will assist designers in choosing eigenvectors to achieve desired closed-loop flying qualities or performing trade-offs between flying qualities and other important design requirements, such as achieving realizable gain magnitudes or desired system robustness. This has been accomplished by developing relationships between the system's eigenvectors and the roll rate and sideslip transfer functions. Using these relationships, along with constraints imposed by system dynamics, key eigenvector elements are identified and guidelines for choosing values of these elements to yield desirable flying qualities have been developed. Two guidelines are developed - one for low roll-to-sideslip ratio and one for moderate-to-high roll-to-sideslip ratio. These flying qualities guidelines are based upon the Military Standard lateral-directional coupling criteria for high performance aircraft - the roll rate oscillation criteria and the sideslip excursion criteria. Example guidelines are generated for a moderate-to-large, an intermediate, and low value of roll-to-sideslip ratio.

  15. Fly in Atmosphere by Drag Force - Easy Thrust Generation Aircraft Engine Based Physics

    NASA Astrophysics Data System (ADS)

    Pierre Celestin, Mwizerwa

    2013-11-01

    This paper aims to present to the science community another way to fly in atmosphere, a way which is much more cheaper, efficient, safe and easy. Over the years scientists have been trying to find a way to built the vertically taking off vehicles but there have been no satisfactory success(what have been found was very expensive), Even aircrafts we know now need very sophisticated and expensive engines and not efficient enough. This way of flying may help our governments to spend less money on technologies and will help people to travel at very low prices so that, it may be a solution to the crisis which the world faces nowadays. In other words, it is my proposal to the next generation technologies we was looking for for years because everything can fly from the car to the trucks, the spaceships and even the hotels maybe constructed and fly as we construct the ships which sail in the oceans. My way of flying will have many applications in all the aspect of travel as it is going to be explained.

  16. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  17. NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.

  18. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  19. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  20. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  1. Prevention of mosquitoes (Diptera: Culicidae) and house flies (Diptera: Muscidae) from entering simulated aircraft with commercial air curtain units.

    PubMed

    Carlson, David A; Hogsette, Jerome A; Kline, Daniel L; Geden, Chris D; Vandermeer, Robert K

    2006-02-01

    Commercially available air curtain units were used to create air barriers to prevent mosquitoes and house flies from entering a simulated aircraft doorway together with passengers. Two assemblies of simulated passenger bridge and aircraft were constructed, and airflow measurements were recorded to confirm airflow characteristics for several combinations of commercial units. Three mosquito species were selected for different host-seeking characteristics, and house flies were selected to represent a large, strong-flying insect. Batches of 20 or 200 insects of four species were released into the passenger bridge just before 25 persons passed through the assembly, then insects that entered the aircraft cabin were recovered. Results showed that horizontal plus vertical or vertical-mounted air curtain units with the airflow directed at a 45 degrees angle into the passenger bridge excluded 95-99% of the mosquitoes and 95-100% of the house flies, respectively. Airflows were measured and estimated to be effective if the mean was > 4 m/s in the critical area in the center of the converging airflows. The study validates the concept that air barriers can effectively prevent the passage of flying insects into an aircraft.

  2. Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan

    2016-10-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO

  3. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  4. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icinig. Flight data wre reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured 'iced' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower. Previously announced in STAR as N84-13173

  5. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icing. Flight data were reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured ""iced'' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower.

  6. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  7. Preliminary system design study for a digital fly-by-wire flight control system for an F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D. K.

    1976-01-01

    The design of a fly-by-wire control system having a mission failure probability of less than one millionth failures per flight hour is examined. Emphasis was placed on developing actuator configurations that would improve the system performance, and consideration of the practical aspects of sensor/computer and computer/actuator interface implementation. Five basic configurations were defined as appropriate candidates for the F-8C research aircraft. Options on the basic configurations were included to cover variations in flight sensors, redundancy levels, data transmission techniques, processor input/output methods, and servo actuator arrangements. The study results can be applied to fly by wire systems for transport aircraft in general and the space shuttle.

  8. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Junkai, YAO; Danjie, ZHOU; Haibo, HE; Chengjun, HE; Zhiwei, SHI; Hai, DU

    2017-04-01

    The effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s‑1. The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from ‑4° to 28°. The lift, drag and pitching moment coefficients were compared for the cases with and without plasma control. The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing, for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case. The effects of modulation frequency and discharge voltage were also investigated. The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency. Significant control effects were obtained at f = 70 Hz, corresponding to F + ≈ 1. The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated. However, the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.

  9. Flight-test results using nonlinear control with the F-8C digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.; Smith, R. E.; Krambeer, K. D.

    1983-01-01

    The design and operation of the cooperative advanced digital research experiment (CADRE) to develop nonlinear pitch flight control algorithms is described, and the results of an in-flight evaluation using the F-8C digital fly-by-wire (DFBW) research aircraft are presented. The CADRE controller is described, including the initial filter, linear command prefilter, nonlinear command prefilter, and gain scheduling. The variable-integral control-to-optimize response of the controller is considered, and CADRE parameter combinations are addressed. The remotely-augmented-vehicle interface used in the DFBW aircraft experiment is discussed. The distanct-tracking and close-formation tracking evaluation tasks for the aircraft are described along with evaluation configurations, and the test results are presented and discussed. The latter indicate that a nonlinear adaptive controller is a feasible control system technique for the fighter tracking task.

  10. 14 CFR 39.23 - May I fly my aircraft to a repair facility to do the work required by an airworthiness directive?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false May I fly my aircraft to a repair facility to do the work required by an airworthiness directive? 39.23 Section 39.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS DIRECTIVES §...

  11. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  12. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  13. Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators.

    PubMed

    Ni, Peng; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2016-10-27

    Due to the alkalinity and high concentration of potentially hazardous heavy metals, fly ash from a municipal solid waste (MSW) incinerator is classified as hazardous waste, which should be of particular concern. Physical and chemical characterizations of the contrasted fly ashes were investigated to explore the relation between leaching characteristics of heavy metals and physical properties of fly ashes. The results showed that CaClOH, NaCl, Ca(OH)2, KCl and SiO2 were primary mineral compositions in the MSWI fly ashes, and the particle size distribution of fly ash ranged between 10 μm and 300 μm. The smaller the particle size distribution of fly ash, the larger the BET-specific surface area, which was beneficial to the leaching of heavy metals. As a result of various pores, it easily accumulated heavy metals as well. The leaching tests exhibited a high leachability of heavy metals and the leaching concentration of Pb in almost all of the fly ash samples went far beyond the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Thereupon, it is necessary to establish proper disposal systems and management strategies for environmental protection based on the characteristics of MSW incineration (MSWI) fly ash in China.

  14. "I am flying to the stars"--suicide by aircraft in Germany.

    PubMed

    Schwark, Thorsten; Severin, Karsten; Grellner, Wolfgang

    2008-08-06

    In 2006, 67 persons were killed in aircraft accidents in Germany and involving German aircrafts abroad. In spite of extensive investigation of each aircraft accident, there are no reliable data as to the number of suicides by aircraft. We report on a 50-year-old man who committed suicide by willfully crashing his Beech "Sierra" aircraft minutes after take off from an airport close to the town of Rendsburg, Germany. Before killing himself, the intoxicated pilot had sent an SMS announcing his suicide plans to a friend. The findings of the medico-legal investigation and the results of a review of aircraft accident reports by the German Federal Bureau of Aircraft Accidents Investigation (BFU) regarding suicidal plane crashes are presented.

  15. Using Fly-By-Wire Technology in Future Models of the UH-60 and Other Rotary Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Solem, Courtney K.

    2011-01-01

    Several fixed-winged airplanes have successfully used fly-by-wire (FBW) technology for the last 40 years. This technology is now beginning to be incorporated into rotary wing aircraft. By using FBW technology, manufacturers are expecting to improve upon the weight, maintenance time and costs, handling and reliability of the aircraft. Before mass production of this new system begins in new models such as the UH-60MU, testing must be conducted to insure the safety of this technology as well as to reassure others it will be worth the time and money to make such a dramatic change to a perfectly functional machine. The RASCAL JUH-60A has been modified for these purposes. This Black Hawk helicopter has already been equipped with the FBW technology and can be configured as a near perfect representation of the UH-60MU. Because both machines have very similar qualities, the data collected from the RASCAL can be used to make future decisions about the UH-60MU. The U.S. Army AFDD Flight Project Office oversees all the design modifications for every hardware system used in the RASCAL aircraft. This project deals with specific designs and analyses of unique RASCAL aircraft subsystems and their modifications to conduct flight mechanics research.

  16. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  17. NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Butler, G. F.; Corbin, M. J.; Mepham, S.; Stewart, J. F.; Larson, R. R.

    1983-01-01

    A cooperative advanced digital research experiment (CADRE) was established by the National Aeronautics and Space Administration (NASA) and the Royal Aircraft Establishment (RAE), in which nonlinear control algorithms developed by the RAE were tested on the F-8C digital fly-by-wire (DFBW) aircraft based at the Dryden Flight Research Facility. In the initial phase of the collaboration, some variable-gain algorithms, referred to collectively as variable integral control to optimize response (VICTOR) algorithms, were fight tested. With VICTOR, various measures available within the control system are used to vary gains and time-constants within the closed loop and thereby enhance the control capability of the system, while reducing the adverse effects of sensor noise on the control surfaces. A review of design procedures for VICTOR and results of preliminary flight tests are presented. the F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a single-string (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described.

  18. Falcon 20-E5 Aircraft Flies Close Behind NASA DC-8 to Sample Exhaust

    NASA Video Gallery

    This video was taken from a NASA HU-25C Guardian chase plane looking toward NASA's DC-8, with a Falcon 20-E5 from the German Aerospace Agency (DLR) soon to fly into the DC-8's exhaust. The Falcon i...

  19. The Helios Prototype aircraft at approximately 10,000 feet flying above cloud cover northwest of Kau

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios

  20. New development in flying qualities with application to rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.

    1982-01-01

    Some recent considerations and developments in handling quality criteria are reviewed with emphasis on using fixed wing experience gained in developing MIL-F-8785C and the more recent MiL Standard and Handbook. Particular emphasis is placed on the tasks and environmental conditions used to develop the criterion boundaries, SAS failures, and potential fixed wing criteria that are applicable to rotary wing aircraft.

  1. Identification, analysis and monitoring of risks of freezing affecting aircraft flying over the Guadarrama Mountains (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Sergio; Sánchez, José Luis; Gascón, Estíbaliz; Merino, Andrés; Hermida, Lucía; López, Laura; Marcos, José Luis; García-Ortega, Eduardo

    2014-05-01

    Freezing is one of the main causes of aircraft accidents registered over the last few decades. This means it is very important to be able to predict this situation so that aircraft can change their routes to avoid freezing risk areas. Also, by using satellites it is possible to observe changes in the horizontal and vertical extension of cloud cover likely to cause freezing in real time as well as microphysical changes in the clouds. The METEOSAT Second Generation (MSG) makes it possible to create different red-green-blue (RGB) compositions that provide a large amount of information associated with the microphysics of clouds, in order to identify super-cooled water clouds that pose a high risk of freezing to aircraft. During the winter of 2011/12 in the Guadarrama Mountains, in the centre of the Iberian Peninsula, a series of scientific flights (conducted by INTA) were organised in order to study the cloud systems that affected this region during the winter. On the flight of the 1st of February 2012, the aircraft was affected by freezing after crossing over a mountain ridge with supercooled large drops (SLD). Although freezing was not expected during that day's flight, the orography caused a series of mesoscale factors that led to the appearance of localised freezing conditions. By analysing this case, we have been able to conclude that the use of satellite images makes it possible to monitor the risk of freezing, especially under specific mesoscale circumstances. Acknowledgements S. Fernández-González acknowledges the grant supported from the FPU program (AP 2010-2093). This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22). The authors would like to thank the INTA for its scientific flights.

  2. Flying wings / flying fuselages

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    The present paper has documented the historical relationships between various classes of all lifting vehicles, which includes the flying wing, all wing, tailless, lifting body, and lifting fuselage. The diversity in vehicle focus was to ensure that all vehicle types that map have contributed to or been influenced by the development of the classical flying wing concept was investigated. The paper has provided context and perspective for present and future aircraft design studies that may employ the all lifting vehicle concept. The paper also demonstrated the benefit of developing an understanding of the past in order to obtain the required knowledge to create future concepts with significantly improved aerodynamic performance.

  3. D/B/F 98: Final Report Of the AIAA Student Aircraft Design, Build & Fly Competition

    DTIC Science & Technology

    2007-11-02

    level flight speed, and turning performance around the pylons. Size and type of electric motor(s): the principal trade here was between ferrite ...output of the motor(s) to be installed into the competition aircraft. The propulsion team looked at the performance available from Astro ferrite , Astro...Ü o < T3 o o * to a> ɘ « OJ en (0 « c «! ്" ɘ a. CO CD ɛ> c ’a> >» CO sm c o CO to <n .o CO N co > a. o a

  4. A learning flight control system for the F8-DFBW aircraft. [Digital Fly-By-Wire

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Mekel, R.; Nachmias, S.

    1978-01-01

    This report contains a complete description of a learning control system designed for the F8-DFBW aircraft. The system is parameter-adaptive with the additional feature that it 'learns' the variation of the control system gains needed over the flight envelope. It, thus, generates and modifies its gain schedule when suitable data are available. The report emphasizes the novel learning features of the system: the forms of representation of the flight envelope and the process by which identified parameters are used to modify the gain schedule. It contains data taken during piloted real-time 6 degree-of-freedom simulations that were used to develop and evaluate the system.

  5. Condense Course for Middle School Children to Learn Aerodynamics through Building and Flying Model Aircraft

    NASA Technical Reports Server (NTRS)

    Levine, J. J.

    1999-01-01

    This paper presents the terms of an Educational grant for Model Building 101. The terms of the grant includes the following: 1) 4 Training sessions of one week each (5 days/6 nights) at: Dryden, Langley, Lewis, and the California Museum of Science and Industry; 2) The sessions were to be attended by local educators, solicited and secured by NASA; 3) The cooperative program of MB101 and NASA was to set up a course for middle school students to learn aerodynamics through the building and flying of specialized small model airplanes. This program was already operating successfully on a local level through MB101 in Marietta, Georgia and was published monthly in Model Builder Magazine. MB101 supplies information for schools and groups throughout the country; and 4) Video and art department facilities of NASA were promised to be made available to MB101 for the preparation of instructional videos and preparation of training manuals.

  6. Design of a digital ride quality augmentation system for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Hammond, T. A.; Amin, S. P.; Paduano, J. D.; Downing, D. R.

    1984-01-01

    Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs.

  7. The Flying Diamond: A joined aircraft configuration design project, volume 1

    NASA Technical Reports Server (NTRS)

    Ball, Chris; Czech, Joe; Lentz, Bryan; Kobashigawa, Daryl; Oishi, Curtis; Poladian, David

    1988-01-01

    The results of the analysis conducted on the Joined Wing Configuration study are presented. The joined wing configuration employs a conventional fuselage and incorporates two wings joined together near their tips to form a diamond shape in both plan view and front view. The arrangement of the lifting surfaces uses the rear wing as a horizontal tail and as a forward wing strut. The rear wing has its root at the tip of the vertical stabilizer and is structurally attached to the trailing edge of the forward wing. This arrangement of the two wings forms a truss structure which is inherently resistant to the aerodynamic bending loads generated during flight. This allows for a considerable reduction in the weight of the lifting surfaces. With smaller internal wing structures needed, the Joined Wing may employ thinner wings which are more suitable for supersonic and hypersonic flight, having less induced drag than conventional cantilever winged aircraft. Inherent in the Joined Wing is the capability of the generation of direct lift and side force which enhance the performance parameters.

  8. A fixed-base simulation study of two STOL aircraft flying curved, descending instrument approach paths

    NASA Technical Reports Server (NTRS)

    Benner, M. S.; Sawyer, R. H.; Mclaughlin, M. D.

    1973-01-01

    A real-time, fixed-base simulation study has been conducted to determine the curved, descending approach paths (within passenger-comfort limits) that would be acceptable to pilots, the flight-director-system logic requirements for curved-flight-path guidance, and the paths which can be flown within proposed microwave landing system (MLS) coverage angles. Two STOL aircraft configurations were used in the study. Generally, no differences in the results between the two STOL configurations were found. The investigation showed that paths with a 1828.8 meter turn radius and a 1828.8 meter final-approach distance were acceptable without winds and with winds up to at least 15 knots for airspeeds from 75 to 100 knots. The altitude at roll-out from the final turn determined which final-approach distances were acceptable. Pilots preferred to have an initial straight leg of about 1 n. mi. after MLS guidance acquisition before turn intercept. The size of the azimuth coverage angle necessary to meet passenger and pilot criteria depends on the size of the turn angle: plus or minus 60 deg was adequate to cover all paths execpt ones with a 180 deg turn.

  9. Determination of the passing efficiency for aerosol chemical species through a typical aircraft-mounted, diffuser-type aerosol inlet system

    NASA Astrophysics Data System (ADS)

    Sheridan, Patrick J.; Norton, Richard B.

    1998-04-01

    To assess the particle transmission efficiency of a conventional aircraft-mounted, diffuser-type inlet (CI), a new design inlet containing an internal filter basket assembly (aerosol filter inlet, or AFI) was constructed. All interior surfaces of the AFI were covered with filter material, and air was actively pulled through these filter walls during aerosol sampling. The AFI was demonstrated in the laboratory to trap nearly all particles entering its nozzle orifice, so it was considered usable as a baseline to judge the performance of other inlets. Wind tunnel studies were conducted at three different wind velocities that approximated typical research aircraft speeds. As wind velocity increased, particle transmission through the CI relative to the AFI decreased, as evidenced by chemical analysis of the filter deposits. Aircraft studies of the two inlets showed that particle transmission varied significantly with the measured species. Typical coarse-particle species such as Ca++, Mg++, Na+ and K+ showed 50-90% mass losses through a conventional diffuser-type inlet/curved intake tube system. Predominantly fine particle species such as SO4= and NH4+ passed the CI system with much higher efficiencies, with aerosol mass losses of 0-26% for most flights. Since the AFI traps nearly all particles aspirated into its nozzle orifice, these values indicate that on average, 80-90% of the SO4= and NH4+ aerosol mass passes through the CI and curved intake tube during airborne sampling. This finding suggests that the capability to sample fine (i.e., submicrometer) aerosols from aircraft is perhaps not as bad as has been previously reported, given that adequate attention is paid to inlet design, location, and orientation issues.

  10. Lightning effects on aircraft: A cockpit perspective

    NASA Astrophysics Data System (ADS)

    Plumer, J. A.

    1980-05-01

    Typical conditions in which strikes have been experienced by large and small aircraft are described, together with effects as experienced by flight crews. Most strikes have occurred when the aircraft is flying at between 3000 and 5000 meters altitude, where the outside air temperature is within 5 deg of 0 C and there exists a light to moderate amount of precipitation. Strikes to aircraft have, however, occurred at altitudes as high as 12,000 m and also when the aircraft are parked on the ground. If an aircraft approaches a highly electrified region it may actually trigger a strike, especially if the aircraft is large and causes a significant perturbation in the nearby electric field. Aircraft lightning strike mechanisms, effects to avionics and electric power systems, engine effects, and effects to personnel are addressed.

  11. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  12. Combat aircraft operations: Training requirements for the German Air Force tactical flying units and the noise problem

    NASA Astrophysics Data System (ADS)

    Jertz, W.

    1992-04-01

    The deterrence potential of an Air Force, and by that the capability to fulfill their mission in times of war, relies on threat oriented training in peacetime. Low level flying is a major tactical means to help aircrews reduce the anticipated threat imposed to them by enemy air defence systems to an acceptable degree. The demand for this capability applies also to air defence tasks against attacking fighter bombers. Military low level flying requires a high degree of proficiency, which can only be reached and maintained by constant training. A high performance level is then the key to air power. The possibilities for this kind of necessary training are restricted by superior demands concerning, amongst others, flying safety and environmental reasons. Too intensive restrictions might reduce the fighting capability of the wings to such an extent, that mission fulfillment could be seriously endangered.

  13. Evaluation of Flying Qualities and Guidance Displays for an Advanced Tilt-Wing STOL Transport Aircraft in Final Approach and Landing

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.

    2002-01-01

    A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.

  14. NASA aircraft technician Don Herman completes placement of the first official U.S. Centennial of Fli

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA aircraft technician Don Herman completes placement of the first official U.S. Centennial of Flight Commission logo on an aircraft. The honored recipient is NASA Dryden Flight Research Center's Active Aeroelastic Wing (AAW) F/A-18 research aircraft, which is poised to begin wing-warping research flights harkening back to the Wright brothers. The Centennial of Flight Commission was created by the U.S.Congress in 1999 to serve as a national and international source of information about activities to commemorate the centennial of the Wright Brothers' first powered flight on the sands of Kitty Hawk, North Carolina, on December 17, 1903. Centennial activities are scheduled for 2003 in both North Carolina and Dayton, Ohio, home of the Wrights. In addition to these celebrations, numerous historical and educational projects are anticipated on the subject of aviation and aeronautics that will be an important legacy of the centennial of powered flight.

  15. 41 CFR 301-70.909 - What disclosure information must we give to anyone who flies on our Government aircraft?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Claims Act or Suits in Admiralty Act. If you are killed aboard a military aircraft, your family may be... status of a particular flight, you should contact the agency sponsoring the flight. You and your family... exclude coverage for injuries or death sustained while traveling aboard a Government or military...

  16. A Flying Summer Camp

    ERIC Educational Resources Information Center

    Mercurio, Frank X.

    1975-01-01

    Describes a five-day summer camp which provided 12 children, ages 9-14, with a complete flying experience. The training consisted of ground school and one hour actual flying time, including the basics of aircraft control and a flight prepared and executed by the students. (MLH)

  17. NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Butler, G. F.; Corbin, M. J.; Mepham, S.; Stewart, J. F.; Larson, R. R.

    1983-01-01

    Design procedures are reviewed for variable integral control to optimize response (VICTOR) algorithms and results of preliminary flight tests are presented. The F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a singlestring (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described.

  18. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  19. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  20. Flying Quality Analysis of a JAS 39 Gripen Ministick Controller in an F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Stoliker, P. C.

    2000-01-01

    NASA Dryden conducted a handling qualities experiment using a small displacement centerstick controller that Saab-Scania developed for the JAS 39 Gripen aircraft. The centerstick, or ministick, was mounted in the rear cockpit of an F/A-18 aircraft. Production support flight control computers (PSFCC) provided a pilot-selectable research control system. The objectives for this experiment included determining whether the mechanical characteristics of the centerstick controller had any significant effect on the handling qualities of the F/A-18, and determining the usefulness of the PSFCCs for this kind of experiment. Five pilots evaluated closed-loop tracking tasks, including echelon and column formation flight and target following. Cooper-Harper ratings and pilot comments were collected for each maneuver. This paper describes the test system, including the PSFCCs, the Gripen centerstick, and the flight test experiment. The paper presents results of longitudinal handling qualities maneuvers, including low order equivalent systems, Neal-Smith, and controls anticipation parameter analyses. The experiment showed that, while the centerstick controller provided a different aircraft feel, few handling qualities deficiencies resulted. It also demonstrated that the PSFCCs were useful for this kind of investigation.

  1. Distribution of PCDD/Fs in the fly ash and atmospheric air of two typical hazardous waste incinerators in eastern China.

    PubMed

    Chen, Tong; Zhan, Ming-Xiu; Lin, Xiao-Qing; Fu, Jian-Ying; Lu, Sheng-Yong; Li, Xiao-Dong

    2015-01-01

    Distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in the fly ash and atmospheric air of one medical waste incinerator (MWI) and one industrial hazardous waste incinerator (IHWI) plants were characterized. The PCDD/F concentrations of the stack gas (fly ash) produced from MWI and IHWI were 17.7 and 0.7 ng international toxic equivalent (I-TEQ)/Nm(3) (4.1 and 2.5 ng I-TEQ/g), respectively. For workplace air, the total concentrations of PCDD/Fs were 11.32 and 0.28 pg I-TEQ/Nm(3) (819.5 and 15.3 pg/Nm(3)). We assumed that the large differences of PCDD/F concentrations in workplace air were due to the differences in chlorine content of the waste, combustion conditions, and other contamination sources. With respect to the homologue profiles, the concentrations of PCDFs decreased with the increase of the substituted chlorine number for each site. Among all of the PCDD/F congeners, 2,3,4,7,8-PeCDF was the most important contributor to the I-TEQ value accounting for ca. 43 % of two sites. The gas/particle partition of PCDD/Fs in the atmosphere of the workplace in the MWI was also investigated, indicating that PCDD/Fs were more associated in the particle phase, especially for the higher chlorinated ones. Moreover, the ratio of the I-TEQ values in particle and gas phase of workplace air was 11.0. At last, the relationship between the distribution of PCDD/Fs in the workplace air and that from stack gas and fly ash was also analyzed and discussed. The high correlation coefficient might be a sign for diffuse gas emissions at transient periods of fumes escaping from the incinerator.

  2. Development and application of linear and nonlinear methods for interpretation of lightning strikes to in-flight aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence; Perala, Rodney A.; Easterbrook, Calvin C.; Parker, Steven L.

    1986-01-01

    Since 1980, NASA has been collecting direct strike lightning data by flying an instrumented F-106B aircraft into thunderstorms. The continuing effort to interpret the measured data is reported here. Both linear and nonlinear finite difference modeling techniques are applied to the problem of lightning triggered by an aircraft in a thunderstorm. Five different aircraft are analyzed to determine the effect of aircraft size and shape on lightning triggering. The effect of lightning channel impedance on aircraft response is investigated. The particle environment in thunderstorms and electric field enhancements by typical ice particles is also investigated.

  3. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  4. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    PubMed Central

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-01-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents. PMID:28300143

  5. Beware of agents when flying aircraft: Basic principles behind a generic methodology for the evaluation and certification of advanced aviation systems

    NASA Technical Reports Server (NTRS)

    Javaux, Denis; Masson, Michel; Dekeyser, Veronique

    1994-01-01

    There is currently a growing interest in the aeronautical community to assess the effects of the increasing levels of automation on pilots' performance and overall safety. The first effect of automation is the change in the nature of the pilot's role on the flight deck. Pilots have become supervisors who monitor aircraft systems in usual situations and intervene only when unanticipated events occur. Instead of 'hand flying' the airplane, pilots contribute to the control of aircraft by acting as mediators, instructions given to the automation. By eliminating the need for manually controlling normal situations, such a role division has reduced the opportunities for the pilot to acquire experience and skills necessary to safely cope with abnormal events. Difficulties in assessing the state and behavior of automation arise mainly from four factors: (1) the complexity of current systems and consequence mode-related problems; (2) the intrinsic autonomy of automation which is able to fire mode transitions without explicit commands from the pilots; (3) the bad quality of feed-back from the control systems displays and interfaces to the pilots; and (4) the fact that the automation currently has no explicit representation of the current pilots' intentions and strategy. Assuming certification has among its major goals to guarantee the passengers' and pilots' safety and the airplane integrity under normal and abnormal operational conditions, the authors suggest it would be particularly fruitful to come up with a conceptual reference system providing the certification authorities both with a theoretical framework and a list of principles usable for assessing the quality of the equipment and designs under examination. This is precisely the scope of this paper. However, the authors recognize that the conceptual presented is still under development and would thus be best considered as a source of reflection for the design, evaluation and certification processes of advanced

  6. Observations of chemical releases from high flying aircraft. [investigation of barium and lithium vapor releases in the thermosphere

    NASA Technical Reports Server (NTRS)

    Bedinger, J. F.; Constantinides, E.

    1973-01-01

    Barium and lithium vapors were released from sounding rockets in the thermosphere and observed from aboard the NASA Convair 990 at an altitude of 40,000 ft. The purpose of the releases was to (1) check out observational and operational procedures associated with the large high altitude barium release from a Scout rocket (BIC); (2) develop an all-weather technique for observing chemical releases; (3) evaluate methods of observing daytime releases, and (4) investigate the possibilities of observations from a manned satellite. The initial analysis indicates that the previous limitations on the usage of the vapor release method have been removed by the use of the aircraft and innovative photographic techniques. Methods of analysis and applications to the investigation of the thermosphere are discussed.

  7. Rich Rogers Flying Over Greenland Icecap

    NASA Video Gallery

    Ihis is a view from the NASA P3 aircraft cockpit as it flies 1000 feet over the Greenland icecap during Operation Icebridge mission, which flies each March-May. The end of video shows an ice camp w...

  8. A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG.

    PubMed

    Akce, Abdullah; Johnson, Miles; Dantsker, Or; Bretl, Timothy

    2013-03-01

    This paper presents an interface for navigating a mobile robot that moves at a fixed speed in a planar workspace, with noisy binary inputs that are obtained asynchronously at low bit-rates from a human user through an electroencephalograph (EEG). The approach is to construct an ordered symbolic language for smooth planar curves and to use these curves as desired paths for a mobile robot. The underlying problem is then to design a communication protocol by which the user can, with vanishing error probability, specify a string in this language using a sequence of inputs. Such a protocol, provided by tools from information theory, relies on a human user's ability to compare smooth curves, just like they can compare strings of text. We demonstrate our interface by performing experiments in which twenty subjects fly a simulated aircraft at a fixed speed and altitude with input only from EEG. Experimental results show that the majority of subjects are able to specify desired paths despite a wide range of errors made in decoding EEG signals.

  9. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    NASA Technical Reports Server (NTRS)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  10. Methane Flux Measurements from a Low Flying Aircraft: What they tell us about Regional Heterogeneity in Carbon Flux over the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Healy, C. E.; Munster, J. B.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Baker, B.; Langford, J.; Anderson, J. G.

    2015-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. In situ measurements are further complicated by the presence of gas and oil extraction, natural gas seeps, and biomass burning. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date in situ measurements have been made at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, and their isotopologues, flew over the North Slope of Alaska. During the ten flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types.

  11. Flying Cars

    NASA Technical Reports Server (NTRS)

    Crow, Steven

    1996-01-01

    Flying cars have nearly mythical appeal to nonpilots, a group that includes almost the whole human race. The appeal resides in the perceived utility of flying cars, vehicles that offer portal-to-portal transportation, yet break the bonds of road and traffic and travel freely through the sky at the drivers will. Part of the appeal is an assumption that flying cars can be as easy to fly as to drive. Flying cars have been part of the dream of aviation since the dawn of powered flight. Glenn Curtiss built, displayed, and maybe even flew a flying car in 1917, the Curtiss Autoplane. Many roadable airplanes were built in the 1930's, like the Waterman Arrowbile and the Fulton Airphibian. Two flying cars came close to production in the early 1950's. Ted Hall built a series of flying cars culminating in the Convaircar, sponsored by Consolidated Vultee, General Motors, and Hertz. Molt Taylor built and certified his Aerocar, and Ford came close to producing them. Three Aerocars are still flyable, two in museums in Seattle and Oshkosh, and the third owned and flown by Ed Sweeny. Flying cars do have problems, which so far have prevented commercial success. An obvious problem is complexity of the vehicle, the infrastructure, or both. Another is the difficulty of matching low power for normal driving with high power in flight. An automobile uses only about 20 hp at traffic speeds, while a personal airplane needs about 160 hp at speeds typical of flight. Many automobile engines can deliver 160 hp, but not for very long. A more subtle issue involves the drag of automobiles and airplanes. A good personal airplane can fly 30 miles per gallon of fuel at 200 mph. A good sports car would need 660 hp at the same speed and would travel only 3 miles per gallon. The difference is drag area, about 4.5 sq ft for the automobile and 1.4 sq ft for the airplane. A flying car better have the drag area of the airplane, not the car!

  12. Wind Tunnel Model and Test to Evaluate the Effectiveness of a Passive Gust Alleviation Device for a Flying Wing Aircraft

    DTIC Science & Technology

    2016-10-04

    Jørgensen, F. E. (2002), How to measure turbulence with hot-wire anemometers , Dantec Dynamics, Skovlunde, Denmark. [108] Cao, X., Liu, J., Jiang...measurement There are 3 methods normally used in flow field measurement as following. Solution 1: Hot-wire anemometer system The hot-wire anemometer ...processing. A typical hot-wire probe is shown in Figure D-11 which was the core component for this measurement [107]. Figure D-10 Hot-wire anemometer

  13. Display Systems Dynamics Requirements for Flying Qualities

    DTIC Science & Technology

    1988-05-09

    augmentation of the aircraft dynamics by a control system has been studied extensively, with current and evolving standards in existence. Consideration of the...MOTIVATION AND OBJECTIVES Current and emerging military aircraft present a number of challenges with respect to ".." ensuring good flying qualities... current and emerging military aircraft and the often costly consequences of poor design with respect to flying qualifies, such guidelines should be

  14. Application of trajectory optimization principles to minimize aircraft operating costs

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Morello, S. A.; Erzberger, H.

    1979-01-01

    This paper summarizes various applications of trajectory optimization principles that have been or are being devised by both government and industrial researchers to minimize aircraft direct operating costs (DOC). These costs (time and fuel) are computed for aircraft constrained to fly over a fixed range. Optimization theory is briefly outlined, and specific algorithms which have resulted from application of this theory are described. Typical results which demonstrate use of these algorithms and the potential savings which they can produce are given. Finally, need for further trajectory optimization research is presented.

  15. Cost Implications of the Broad Area Maritime Surveillance Unmanned Aircraft System for the Navy Flying Hour Program and Operation and Maintenance Budget

    DTIC Science & Technology

    2010-12-01

    shown in Table 28. 58 Aircraft Type PRE Costs $FY10 (Million) PRL Costs $FY10 (Million) Fire Scout $16.1 $4.0 SH -60B $0.9 $1.3 SH - 60F $1.0 $1.5...complexity of new aircraft systems, evident in the PRE and PRL cost estimates for new manned aircraft systems in development such as the F-35, P- 8, SH ...60S and SH -60R (OPNAV N432 analyst, personal communication, August 20, 2010). A comparison of the Fire Scout and SH -60 T/M/S PRL and PRE costs is

  16. Entanglement typicality

    NASA Astrophysics Data System (ADS)

    Dahlsten, Oscar C. O.; Lupo, Cosmo; Mancini, Stefano; Serafini, Alessio

    2014-09-01

    We provide a summary of both seminal and recent results on typical entanglement. By ‘typical’ values of entanglement, we refer here to values of entanglement quantifiers that (given a reasonable measure on the manifold of states) appear with arbitrarily high probability for quantum systems of sufficiently high dimensionality. We shall focus on pure states and work within the Haar measure framework for discrete quantum variables, where we report on results concerning the average von Neumann and linear entropies as well as arguments implying the typicality of such values in the asymptotic limit. We then proceed to discuss the generation of typical quantum states with random circuitry. Different phases of entanglement, and the connection between typical entanglement and thermodynamics are discussed. We also cover approaches to measures on the non-compact set of Gaussian states of continuous variable quantum systems.

  17. Flying Fast, Flying Quiet

    NASA Video Gallery

    NASA's been working for a while to learn as much as possible about how sonic booms are formed during supersonic flight and what can be done to make them quieter, so that someday supersonic aircraft...

  18. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil aircraft operators may be invited to a specified Air Force airfield for: (1) A base open house to...

  19. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil aircraft operators may be invited to a specified Air Force airfield for: (1) A base open house to...

  20. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil aircraft operators may be invited to a specified Air Force airfield for: (1) A base open house to...

  1. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil aircraft operators may be invited to a specified Air Force airfield for: (1) A base open house to...

  2. 32 CFR 855.13 - Civil fly-ins.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.13 Civil fly-ins. (a) Civil aircraft operators may be invited to a specified Air Force airfield for: (1) A base open house to...

  3. XV-15 Tilt Rotor fly-by-wire collective control demonstrator development specifications

    NASA Technical Reports Server (NTRS)

    Meuleners, R. J.

    1981-01-01

    A fly by wire system in the collective control system for XV-15 Tilt Rotor Research Aircraft was evaluated. The collective control system was selected because it requires a system tracking accuracy between right and left rotors of approximately 0.1%. The performance characteristics of the collectors axel provide typical axis control response data. The demonstrator is bread boarded as a dual system instead of the triplex system.

  4. Flying qualities criteria and flight control design

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1981-01-01

    Despite the application of sophisticated design methodology, newly introduced aircraft continue to suffer from basic flying qualities deficiencies. Two recent meetings, the DOD/NASA Workshop on Highly Augmented Aircraft Criteria and the NASA Dryden Flight Research Center/Air Force Flight Test Center/AIAA Pilot Induced Oscillation Workshop, addressed this problem. An overview of these meetings is provided from the point of view of the relationship between flying qualities criteria and flight control system design. Among the items discussed are flying qualities criteria development, the role of simulation, and communication between flying qualities specialists and control system designers.

  5. Aircraft as Research Tools

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

  6. An experimental assessment of the use of ground-level microphones to measure the fly-over noise of jet-engined aircraft

    NASA Astrophysics Data System (ADS)

    Payne, R. C.

    1993-01-01

    During aircraft flight trials to measure the noise levels of six different military jet aircraft types in low altitude high speed operations, noise measurements were performed using microphones at ground level and at a height of 1.2 m. The program provided reliable data on the difference between sound pressure levels from the two microphone arrangements, for sound incident over a range of angles, from 0 deg (aircraft overhead) to approximately 80 deg. Substantial differences from ground level to 1.2 m were observed in measurements of maximum perceived noise level, effective perceived noise level and maximum A-weighted sound pressure level. For sound waves incident to the ground at angles less than approximately 60 deg from vertical, these differences were found to be independent of angle of incidence for all the six aircraft and all flight procedures. Within this range of sound incidence angles the ground plane arrangement produced data that closely approximated pressure doubled values. The conventional 1.2 m high microphone gave rise to noise levels approximately 4 dB lower. For sound incident at angles greater than 60 deg from vertical, the difference between noise levels measured using the two microphone configurations was found to depend on angle of incidence, reducing to zero at approximately 75 deg. When noise measurements are made using the ground plane arrangement, the effects of meteorological conditions must be considered in relation to sound incident at angles greater than approximately 60 deg.

  7. NASA Is With You When You Fly

    NASA Video Gallery

    Aviation touches us. Even if you didn't fly today, something you needed did. Did you know that NASA-developed technology is on board every U.S. commercial aircraft and in every U.S. control tower? ...

  8. X-48B: How Does it Fly?

    NASA Video Gallery

    Gary Cosentino, lead flight operations engineer at NASA's Dryden Flight Research Center, talks about what it's like to fly the remotely piloted test vehicle -- X-48B -- a new kind of aircraft that ...

  9. The practical difficulties of commercial flying

    NASA Technical Reports Server (NTRS)

    Courtney, F T

    1924-01-01

    This paper relates some of the problems commercial aircraft companies have in attracting larger numbers of paying customers. The author discusses some remedies such as changing the public perception of flying as dangerous.

  10. Microwave imaging of aircraft

    NASA Astrophysics Data System (ADS)

    Steinberg, Bernard D.

    1988-12-01

    Three methods of imaging aircraft from the ground with microwave radar with quality suitable for aircraft target recognition are described. The imaging methods are based on a self-calibration procedure called adaptive beamforming that compensates for the severe geometric distortion inherent in any imaging system that is large enough to achieve the high angular resolution necessary for two-dimensional target imaging. The signal processing algorithm is described and X-band (3-cm)-wavelength experiments demonstrate its success on commercial aircraft flying into Philadelphia International Airport.

  11. Flight tests of three-dimensional path-redefinition algorithms for transition from Radio Navigation (RNAV) to Microwave Landing System (MLS) navigation when flying an aircraft on autopilot

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    1988-01-01

    This report contains results of flight tests for three path update algorithms designed to provide smooth transition for an aircraft guidance system from DME, VORTAC, and barometric navaids to the more precise MLS by modifying the desired 3-D flight path. The first algorithm, called Zero Cross Track, eliminates the discontinuity in cross-track and altitude error at transition by designating the first valid MLS aircraft position as the desired first waypoint, while retaining all subsequent waypoints. The discontinuity in track angle is left unaltered. The second, called Tangent Path, also eliminates the discontinuity in cross-track and altitude errors and chooses a new desired heading to be tangent to the next oncoming circular arc turn. The third, called Continued Track, eliminates the discontinuity in cross-track, altitude, and track angle errors by accepting the current MLS position and track angle as the desired ones and recomputes the location of the next waypoint. The flight tests were conducted on the Transportation Systems Research Vehicle, a small twin-jet transport aircraft modified for research under the Advanced Transport Operating Systems program at Langley Research Center. The flight tests showed that the algorithms provided a smooth transition to MLS.

  12. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  13. Pilot interface with fly by wire control systems

    NASA Technical Reports Server (NTRS)

    Melvin, W. W.

    1986-01-01

    Aircraft designers are rapidly moving toward full fly by wire control systems for transport aircraft. Aside from pilot interface considerations such as location of the control input device and its basic design such as side stick, there appears to be a desire to change the fundamental way in which a pilot applies manual control. A typical design would have the lowest order of manual control be a control wheel steering mode in which the pilot is controlling an autopilot. This deprives the pilot of the tactile sense of angle of attack which is inherent in present aircraft by virtue of certification requirements for static longitudinal stability whereby a pilot must either force the aircraft away from its trim angle of attack or trim to a new angle of attack. Whether or not an aircraft actually has positive stability, it can be made to feel to a pilot as though it does by artificial feel. Artificial feel systems which interpret pilot input as pitch rate or G rate with automatic trim have proven useful in certain military combat maneuvers, but their transposition to other more normal types of manual control may not be justified.

  14. Combat aircraft noise: The operator's perspective

    NASA Astrophysics Data System (ADS)

    Bogg, R.

    1992-04-01

    Combat aircraft are not subject to the same noise reduction regulations as civil aircraft. Additionally, combat aircraft are operated closer to their performance limits and at high power settings for extended periods. There is general pressure to reduce noise of all kinds, but particularly noise from low flying aircraft. Although there is little that can be done to quiet in-service engines, operational palliatives, such as noise abatement procedures and restrictions on low flying, have been introduced. Moreover, there has been a concerted education and public relations campaign, and numerous airspace management changes have been introduced to reduce the impact of low flying on the population. These subjects were considered during a Pilot Study into aircraft noise under the auspices of the NATO Committee on the Challenges of Modern Society; the findings of the Study are discussed, giving both the international viewpoint and the UK perspective in particular. Some options for the reduction of low flying are also considered, but so long as military aircraft need to fly low to evade enemy air defences, low flying will remain a principal tactic of NATO air forces, and peacetime training will remain an essential military requirement. Thus, noise from low flying combat aircraft will remain a sensitive issue, and ways of reducing it will continue to be of importance for many years to come.

  15. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  16. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  17. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  18. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  19. 14 CFR 183.27 - Designated aircraft maintenance inspectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Designated aircraft maintenance inspectors...: Privileges § 183.27 Designated aircraft maintenance inspectors. A designated aircraft maintenance inspector (DAMI) may approve maintenance on civil aircraft used by United States military flying clubs in...

  20. NASA's F-15B Research Testbed aircraft flies in the supersonic shock wave of a U.S. Navy F-5E as par

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's F-15B Research Testbed aircraft recently flew in the supersonic shock wave of a U.S. Navy F-5E in support of the F-5 Shaped Sonic Boom Demonstration (SSBD) project, part of the Defense Advanced Research Projects Agency's (DARPA) Quiet Supersonic Platform (QSP) program. The flights originated from the NASA Dryden Flight Research Center at Edwards, California. Four flights were flown in order to measure the F-5E's near-field (close-up) sonic boom signature at Mach 1.4, during which more than 50 shockwave patterns were measured at distances as close as 100 feet below the F-5E.

  1. Understanding the Role of the Saharan Heat Low in Modifying Atmospheric Dust Distributions - Observations From Two Research Aircraft Flying Simultaneously Over Western Africa

    NASA Astrophysics Data System (ADS)

    Engelstaedter, S.; Washington, R.; Allen, C.; Flamant, C.; Chaboureau, J.-P.; Kocha, C.; Lavaysse, C.

    2012-04-01

    The near-surface low pressure system that develops over western Africa in Boreal summer (know as the Saharan Heat Low) is thought to have a significant influence on regional and global climate due to its links with the Monsoon, the Northern Atlantic and the Mediterranean climate system. The SHL is associated with the deepest atmospheric boundary layer on the planet and is co-located with the highest dust loadings in the world. The processes that link the heat low and dust distribution are only poorly understood. Improving the representation of the heat low and the processes that control the emission and atmospheric distribution of dust in climate and NWP models is crucial if we are to reduce known systematic errors in climate predictions and weather forecasts. In collaboration with European partners, the UK-based consortium project "Fennec - The Saharan Climate System" aims at improving our understanding of this complex climate system by integrating for the first time coordinated ground and aircraft observations from the central Sahara, newly developed satellite products, and the application of regional and global models. On 22 June 2011, two research aircraft operating out of Fuerteventura (Spain) surveyed the Saharan Heat Low centred over Mauritania-Mali border. The aircraft flew simultaneously in the morning and in the afternoon on two different tracks thereby sampling each track four times on that day. Both aircraft were equipped with a downward looking LIDAR for aerosol detection. In total, 51 sondes were dropped during the flights making this the most comprehensive dataset to study the spatio-temporal diurnal evolution of the heat low including the interactions between the atmospheric boundary layer and dust distributions. Combining LIDAR observations, satellite imagery and back-trajectory modelling we show that an aged dust layer was present in the heat low region resulting from previous day's dust activity associated with a south-moving density current from

  2. 14 CFR 91.503 - Flying equipment and operating information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flying equipment and operating information... Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.503 Flying equipment... flying equipment and aeronautical charts and data, in current and appropriate form, are accessible...

  3. 14 CFR 91.503 - Flying equipment and operating information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flying equipment and operating information... Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.503 Flying equipment... flying equipment and aeronautical charts and data, in current and appropriate form, are accessible...

  4. 14 CFR 91.503 - Flying equipment and operating information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flying equipment and operating information... Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.503 Flying equipment... flying equipment and aeronautical charts and data, in current and appropriate form, are accessible...

  5. 14 CFR 91.503 - Flying equipment and operating information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flying equipment and operating information... Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.503 Flying equipment... flying equipment and aeronautical charts and data, in current and appropriate form, are accessible...

  6. Application of nonlinear feedback control theory to supermaneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Enns, Dale F.

    1991-01-01

    Controlled flight at extremely high angles of attack, far exceeding the stall angle, and/or at high angular rates is sometimes referred to as supermaneuvering flight. The objective was to examine methods for design of control laws for aircraft performing supermaneuvers. Since the equations which govern the motion of aircraft during supermaneuvers are nonlinear, this study concentrated on nonlinear control law design procedures. The two nonlinear techniques considered were Nonlinear Quadratic Regulator (NLQR) theory and nonlinear dynamic inversion. A conventional gain scheduled proportional plus integral (P + I) controller was also developed to serve as a baseline design typical of current control laws used in aircraft. A mathematical model of a generic supermaneuverable aircraft was developed from data obtained from the literature. A detailed computer simulation of the aircraft was also developed. This simulation allowed the flying of proposed supermaneuvers and was used to evaluate the performance of the control law designs and to generate linearized models of the aircraft at different flight conditions.

  7. Finite element methods for the nonlinear motion of flexible aircraft

    NASA Astrophysics Data System (ADS)

    Yang, Victor P.

    Conventional strategies in aeroelasticity and flight dynamics for studying aircraft involve making broad assumptions based more on analytical or computational convenience rather than on physical reality. Typically in aeroelastic analyses, the study of the interaction between aircraft flexibility and aerodynamic forces, the aircraft or structural component in question is constrained in a way that is not representative of realistic flight conditions. In flight dynamics, the study of the maneuvering of aircraft, it is common to consider the vehicle as perfectly rigid. In both disciplines it is well known that such contrivances can produce incorrect results. To address these shortcomings, a finite element formulation is developed for analyzing the dynamics of flexible aircraft undergoing arbitrarily large rotation and translation. The formulation is derived in a set of body-attached axes, a frame of reference conducive to analyzing the motion and control of aircraft, and considers the structure as a whole. Several implementation issues are addressed and mitigated, including finite element interpolating functions, the use of eigenvectors as the basis for nonlinear deformation, inclusion of geometrically nonlinear effects in the strain energy, and enforcement of kinematic constraints. Numerical examples illustrate the capabilities of the latter two aspects, and a free-flying aeroelastic model problem demonstrates the overall potential of the proposed formulation. The development is approached in a general way so that the methodology can be applied to any structure that may be modeled by finite elements.

  8. Mapping automotive like controls to a general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  9. Precise Aircraft Guidance Techniques for NASA's Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Russell, R.

    2013-12-01

    We present a suite of novel aircraft guidance techniques we designed, developed and now operationally utilize to precisely guide large NASA aircraft and their sensor suites over polar science targets. Our techniques are based on real-time, non-differential Global Positioning System (GPS) data. They interact with the flight crew and the aircraft using a combination of yoke-mounted computer displays and an electronic interface to the aircraft's autopilot via the aircraft's Instrument Landing System (ILS). This ILS interface allows the crew to 'couple' the autopilot to our systems, which then guide the aircraft over science targets with considerably better accuracy than it can using its internal guidance. We regularly demonstrate errors in cross-track aircraft positioning of better than 4 m standard deviation and better than 2 m in mean offset over lengthy great-circle routes across the ice sheets. Our system also has a mode allowing for manual aircraft guidance down a predetermined path of arbitrary curvature, such as a sinuous glacier centerline. This mode is in general not as accurate as the coupled technique but is more versatile. We employ both techniques interchangeably and seamlessly during a typical Operation IceBridge science flight. Flight crews find the system sufficiently intuitive so that little or no familiarization is required prior to their accurately flying science lines. We regularly employ the system on NASA's P-3B and DC-8 aircraft, and since the interface to the aircraft's autopilot operates through the ILS, it should work well on any ILS-equipped aircraft. Finally, we recently extended the system to provide precise, three-dimensional landing approach guidance to the aircraft, thus transforming any approach into a precise ILS approach, even to a primitive runway. This was intended to provide a backup to the aircraft's internal landing systems in the event of a zero-visibility landing to a non-ILS equipped runway, such as the McMurdo sea ice runway

  10. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  11. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  12. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  13. Typical Newel Post, First Floor Newel Post, Typical Baluster, Typical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Newel Post, First Floor Newel Post, Typical Baluster, Typical Nosing, First Floor Stringer Profile, Second Floor Stringer Profile - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Treasurer's Quarters, 500 North Fifth Street, Hot Springs, Fall River County, SD

  14. NASA Auralization Tool Reveals Aircraft Noise Differences

    NASA Video Gallery

    How can we *know* that a future aircraft will be less noisy than the ones we fly in today? NASA builds computer-based tools to predict those things, with certainty. This video is an "auralization" ...

  15. Pathfinder-Plus aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.

  16. Progress in aircraft design since 1903

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Significant developments in aviation history are documented to show the advancements in aircraft design which have taken place since 1903. Each aircraft is identified according to the manufacturer, powerplant, dimensions, normal weight, and typical performance. A narrative summary of the major accomplishments of the aircraft is provided. Photographs of each aircraft are included.

  17. Aircraft Mechanics Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in aircraft mechanics. The guide outlines the tasks entailed in 24 different duties typically required of employees in the following occupations: airframe mechanic, power plant mechanic, aircraft mechanic, aircraft sheet metal worker, aircraft electrician,…

  18. Lockheed ER-2 #806 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  19. Lockheed ER-2 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ER-2 tail number 706, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  20. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  1. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  2. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  3. Using fly ash for construction

    SciTech Connect

    Valenti, M.

    1995-05-01

    Each year electrical utilities generate 80 million tons of fly ash, primarily from coal combustion. Typically, utilities dispose of fly ash by hauling it to landfills, but that is changing because of the increasing cost of landfilling, as well as environmental regulations. Now, the Electric Power Research Institute (EPRI), in Palo Alto, Calif., its member utilities, and manufacturers of building materials are finding ways of turning this energy byproduct into the building blocks of roads and structures by converting fly ash into construction materials. Some of these materials include concrete and autoclaved cellular concrete (ACC, also known as aerated concrete), flowable fill, and light-weight aggregate. EPRI is also exploring uses for fly ash other than in construction materials. One of the more high-end uses for the material is in metal matrix composites. In this application, fly ash is mixed with softer metals, such as aluminum and magnesium, to strengthen them, while retaining their lighter weight.

  4. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  5. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  6. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  7. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  8. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    ,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  9. Fly ash chemical classification based on lime

    SciTech Connect

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  10. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  11. Derivation and definition of a linear aircraft model

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1988-01-01

    A linear aircraft model for a rigid aircraft of constant mass flying over a flat, nonrotating earth is derived and defined. The derivation makes no assumptions of reference trajectory or vehicle symmetry. The linear system equations are derived and evaluated along a general trajectory and include both aircraft dynamics and observation variables.

  12. 32 CFR 707.4 - Aircraft warning lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Aircraft warning lights. 707.4 Section 707.4... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.4 Aircraft warning lights. Naval vessels may display, as a means of indicating the presence of an obstruction to low flying aircraft, one all round...

  13. 32 CFR 707.4 - Aircraft warning lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Aircraft warning lights. 707.4 Section 707.4... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.4 Aircraft warning lights. Naval vessels may display, as a means of indicating the presence of an obstruction to low flying aircraft, one all round...

  14. 32 CFR 707.4 - Aircraft warning lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Aircraft warning lights. 707.4 Section 707.4... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.4 Aircraft warning lights. Naval vessels may display, as a means of indicating the presence of an obstruction to low flying aircraft, one all round...

  15. Naval Aircraft Factory (Curtiss) H-16

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Naval Aircraft Factory (Curtiss) H-16: The Naval Aircraft Factory H-16 flying boat, seen here on a beaching dolly on the Langley seaplane ramp, was one of 150 built by the Naval Aircraft Factory in Philadelphia, Pennsylvania. Most H-16s built were made by Curtiss, so the type is more readily known under that name. The NACA performed hull pressure distribution tests at Langley during 1929.

  16. Measurement of Altitude in Blind Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G

    1934-01-01

    In this note, instruments for measuring altitude and rate of change of altitude in blind flying and landing of aircraft and their performance are discussed. Of those indicating the altitude above ground level, the sonic altimeter is the most promising. Its present bulk, intermittent operation, and more or less unsatisfactory means of indication are serious drawbacks to its use. The sensitive type aneroid altimeter is also discussed and errors in flying at a pressure level and in landing are discussed in detail.

  17. Volume II. Flying Qualities Phase. Chapter 3: Differential Equations.

    DTIC Science & Technology

    1988-02-01

    courses in aircraft flying qualities and linear control systems taught at the USAF Test Pilot School. Only analysis and solution techniques which have direct application for work at the School will be covered.

  18. Safety Passage in the Flying Canoes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Jungle Aviation and Radio Service (JAARS) delivers missionaries to remote outposts under sometimes hazardous flying conditions. A serious accident led JAARS' to initiate a crash survivability research program based on NASA technology. In 1978, JAARS sought help from Langley Research Center and was invited to participate in Langley's crashworthiness program. With assistance from Langley, JAARS developed an impact absorbing aircraft seat designed to minimize crash injury. The seat design is available to all missionary aircraft and JAARS is offering it for commercial manufacture.

  19. Fly-by-Wire Systems Enable Safer, More Efficient Flight

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Using the ultra-reliable Apollo Guidance Computer that enabled the Apollo Moon missions, Dryden Flight Research Center engineers, in partnership with industry leaders such as Cambridge, Massachusetts-based Draper Laboratory, demonstrated that digital computers could be used to fly aircraft. Digital fly-by-wire systems have since been incorporated into large airliners, military jets, revolutionary new aircraft, and even cars and submarines.

  20. Supersonic Flying Qualities Experience Using the SR-71

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Jackson, Dante

    1997-01-01

    Approximately 25 years ago NASA Dryden Flight Research Center, Edwards, California, initiated the evaluation of supersonic handling qualities issues using the XB-70 and the YF-12. Comparison of pilot comments and ratings with some of the classical handling qualities criteria for transport aircraft provided information on the usefulness of these criteria and insight into supersonic flying qualities issues. A second research study has recently been completed which again addressed supersonic flying qualities issues through evaluations of the SR-71 in flight at Mach 3. Additional insight into supersonic flying qualities issues was obtained through pilot ratings and comments. These ratings were compared with existing military specifications and proposed criteria for the High Speed Civil Transport. This paper investigates the disparity between pilot comments and the Neal/Smith criteria through a modification of the technique using vertical speed at the pilot station. The paper specifically addresses the pilot ability to control flightpath and pitch attitude in supersonic flight and pilot displays typical of supersonic maneuvering.

  1. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  2. Cruise flight optimization of a commercial aircraft with winds

    NASA Astrophysics Data System (ADS)

    Ansberry, Stephen

    With high prices for fuel and airfare, companies are looking to minimize operational costs. Reducing aircraft fuel consumption is one strategy companies use to lower costs. During flights, commercial aircraft divide the cruise portion's range into cruise-steps, which are changes in altitude typically in increments of 2,000 ft. These cruise-steps allow the aircraft to ascend in a manner easily tracked by Air Traffic Control. This study focuses on the cruise portion of a commercial aircraft's flight. The number and size of the cruise-steps are free. The amount of cruise-steps corresponds to the number of segments comprising the cruise range. The free variables are the velocity and altitude profiles, and the throttle setting for the step-climbs. Optimized results are compared with the analytical range equations and an actual flight. An upper atmospheric wind model is incorporated into this scenario to determine the effects of jet streams. The main objective of this study is to show an optimized flight trajectory by minimizing fuel costs thereby reducing financial costs of flying.

  3. The Healthy Motivation to Fly: No Psychiatric Diagnosis.

    DTIC Science & Technology

    1985-11-01

    FELO GROUP SUs. GR. Motivation to Fly Psychoanalytic Personality 01 02 Flying Aircraft Pilot Eirth Order 0 Aviation Oedipus Business Psychology 19...hero, Oedipus , appear with the greatest frequency and utility for psychiatry. Contributions from business (industrial psychology) and various...exists (13); however, Oedipus ’ Aprominent presence in the literature underscores the likelihood of significant differences as well. Regrettably, an

  4. Space Shuttle flying qualities and flight control system assessment study

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, D.

    1982-01-01

    The suitability of existing and proposed flying quality and flight control system criteria for application to the space shuttle orbiter during atmospheric flight phases was assessed. An orbiter experiment for flying qualities and flight control system design criteria is discussed. Orbiter longitudinal and lateral-directional flying characteristics, flight control system lag and time delay considerations, and flight control manipulator characteristics are included. Data obtained from conventional aircraft may be inappropriate for application to the shuttle orbiter.

  5. Identification of Aircraft Hazards

    SciTech Connect

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  6. IDENTIFICATION OF AIRCRAFT HAZARDS

    SciTech Connect

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  7. Flexible aircraft flying and ride qualities

    NASA Technical Reports Server (NTRS)

    Ashkenas, I. L.; Magdaleno, R. E.; Mcruer, D. T.

    1984-01-01

    A brief analytic exposition is presented to illustrate a central principle in flexible mode control, some of the pertinent pilot centered requirements are listed and discussed. The desired features of the control methodology are exposed and the methodology to be used is selected. The example Boeing supplied characteristics are discussed and approximated with a reduced order model and a simplified treatment of unsteady aerodynamics. The closed loop flight control system design follows, along with first level assessments of resulting handling and ride quality characteristics. Some of these do not meet the postulated requirements and remain problems to be solved possibly by further analysis or future simulation.

  8. Flying NASA's terminal configured vehicle against the microwave landing system

    NASA Technical Reports Server (NTRS)

    Person, L. H., Jr.; Yenni, K. R.

    1979-01-01

    Technology for advanced airborne systems and flight procedures to improve terminal-area operations in ATC environment is developed. The terminal configured vehicle (TCV) aircraft, its integrated digital electronic displays and flight controls, and how the pilot interfaces with the aircraft to fly precise curved descending approaches using Microwave Landing System (MLS) guidance are discussed.

  9. NASA ER-2: Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    This viewgraph presentation gives an overview of the NASA ER-2 aircraft. The contents include: 1) ER-2 Specifications; 2) ER-2 Basic Configuration; 3) ER-2 Payload Areas: Nose Area; 4) ER-2 Payload Areas: SuperPod Fore and Aftbody; 5) ER-2 Payload Areas: SuperPod Midbody; 6) ER-2 Payload Areas: Q-Bay; 7) ER-2 Payload Areas: Q-Bay Hatch Designs; 8) ER-2 Payload Areas: External Pods; 9) ER-2 Electrical/Control Interface; 10) ER-2 Typical Flight Profile; 11) Tropical Composition, Cloud and Climate Coupling TC-4; 12) TC-4 Timeline; 13) TC4 Area of Interest; 14) ER-2 TC4 Payload; 15) A/C ready for fuel; 16) ER-2 Pilot being suited; 17) ER-2 Taxing; 18) ER-2 Pilot post flight debrief; and 19) NASA ER-2: Flying Laboratory for Earth Science Studies and Remote Sensing.

  10. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  11. Pilot-aircraft system reponse to wind shear

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Frost, W.

    1980-01-01

    The nonlinear aircraft motion and automatic control model is expanded to incorporate the human pilot into simulations of aircraft response to wind to wind shear. The human pilot is described by a constant gains lag filter. Two runs are carried out using pilot transfer functions. Fixed-stick, autopilot, and manned computer simulations are made with an aircraft having characteristics of a small commuter type aircraft flown through longitudinal winds measured by a Doppler radar beamed along the glide slope. Simulations are also made flying an aircraft through sinusoidal head wind and tail wind shears at the phugoid frequency to evaluate the response of manned aircraft in thunderstorm wind environments.

  12. Aircraft recognition and tracking device

    NASA Astrophysics Data System (ADS)

    Filis, Dimitrios P.; Renios, Christos I.

    2011-11-01

    The technology of aircraft recognition and tracking has various applications in all areas of air navigation, be they civil or military, spanning from air traffic control and regulation at civilian airports to anti-aircraft weapon handling and guidance for military purposes.1, 18 The system presented in this thesis is an alternative implementation of identifying and tracking flying objects, which benefits from the optical spectrum by using an optical camera built into a servo motor (pan-tilt unit). More specifically, through the purpose-developed software, when a target (aircraft) enters the field of view of the camera18, it is both detected and identified.5, 22 Then the servo motor, being provided with data on target position and velocity, tracks the aircraft while it is in constant communication with the camera (Fig. 1). All the features are so designed as to operate under real time conditions.

  13. Modelling and Control of Mini-Flying Machines

    NASA Astrophysics Data System (ADS)

    Castillo, Pedro; Lozano, Rogelio; Dzul, Alejandro E.

    Problems in the motion control of aircraft are of perennial interest to the control engineer as they tend to be of complex and nonlinear nature. Modelling and Control of Mini-Flying Machines is an exposition of models developed for various types of mini-aircraft: planar Vertical Take-off and Landing aircraft; helicopters; quadrotor mini-rotorcraft; other fixed-wing aircraft; blimps; for each of which it propounds: detailed models derived from Euler-Lagrange methods; appropriate nonlinear control strategies and convergence properties; real-time experimental comparisons of the performance of control algorithms= ; review of the principal sensors, on-board electronics, real-time architectu= re and communications systems for mini-flying machine control, including di= scussion of their performance; detailed explanation of the use of the Kalman filter to flying machine loca= lization. http://www.springeronline.com/alert/article?a=3D1_1fva7w_172cml_63f_6

  14. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  15. Multibody aircraft study, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. H.

    1982-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  16. Multibody aircraft study, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. G.

    1981-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  17. Human factors in aircraft maintenance and inspection

    NASA Technical Reports Server (NTRS)

    Shepherd, William T.

    1992-01-01

    The events which have led to the intensive study of aircraft structural problems have contributed in no less measure to the study of human factors which influence aircraft maintenance and inspection. Initial research emphasis on aging aircraft maintenance and inspection has since broadened to include all aircraft types. Technicians must be equally adept at repairing old and new aircraft. Their skills must include the ability to repair sheet metal and composite materials; control cable and fly-by-wire systems; round dials and glass cockpits. Their work performance is heavily influenced by others such as designers, technical writers, job card authors, schedulers, and trainers. This paper describes the activities concerning aircraft and maintenance human factors.

  18. Lockheed ER-2 #709 high altitude research aircraft during take off

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 709, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  19. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  20. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    -36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

  1. Process modeling KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Instrumentation will be provided for KC-135 aircraft which will provide a quantitative measure of g-level variation during parabolic flights and its effect on experiments which demonstrate differences in results obtained with differences in convective flow. The flight apparatus will provide video recording of the effects of the g-level variations on varying fluid samples. The apparatus will be constructed to be available to fly on the KC-135 during most missions.

  2. Aircraft Derived Data Validation Algorithms

    DTIC Science & Technology

    2012-08-06

    to be equipped with Flight Management Systems (FMSs) that use sophisticated digital computers to assist pilots, allowing them to fly more fuel...some basic data is prepared. These include calculations of aircraft position projeted on a three-dimensional Cartesian coordinate system, and...Administration FMS Flight Management System GA General Aviation NextGen Next Generation Air Transportation System NGA National Geospatial-Intelligence

  3. Alaskan flight trials of a synthetic vision system for instrument landings of a piston twin aircraft

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew K.; Alter, Keith W.; Jennings, Chad W.; Powell, J. D.

    1999-07-01

    Stanford University has developed a low-cost prototype synthetic vision system and flight tested it onboard general aviation aircraft. The display aids pilots by providing an 'out the window' view, making visualization of the desired flight path a simple task. Predictor symbology provides guidance on straight and curved paths presented in a 'tunnel- in-the-sky' format. Based on commodity PC hardware to achieve low cost, the Tunnel Display system uses differential GPS (typically from Stanford prototype Wide Area Augmentation System hardware) for positioning and GPS-aided inertial sensors for attitude determination. The display has been flown onboard Piper Dakota and Beechcraft Queen Air aircraft at several different locations. This paper describes the system, its development, and flight trials culminating with tests in Alaska during the summer of 1998. Operational experience demonstrated the Tunnel Display's ability to increase flight- path following accuracy and situational awareness while easing the task instrument flying.

  4. Passenger demographics and subjective response to commuter aircraft in the northeast

    NASA Technical Reports Server (NTRS)

    Noskowitz, D.; Jacobson, I. D.

    1974-01-01

    Results are compared for comfort and environmental studies taken in conjunction with a STOL program. Data were taken on flights of four different airlines, each flying different aircraft. Two of the lines are classified as commuter airlines flying between relatively close destinations. The aircraft involved are: the De Havilland Twin Otter, a Canadian aircraft; the French Nord 262; the Beechcraft 99 Airliner and the Sikorsky S-61 helicopter, both American.

  5. Pilot-aircraft system response to wind shear

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Frost, W.; Camp, D. W.

    1980-01-01

    The nonlinear aircraft motion and automatic control computer model of Frost and Reddy has been expanded to incorporate the human pilot into simulations of aircraft response to wind shear. Fixed-stick, autopilot, and manned computer simulations are made with an aircraft having characteristics of a Queen Air (small commuter-type aircraft) flown through longitudinal winds measured by a Doppler radar beamed along the glide slope during the SESAME '79 experiments in Oklahoma. Simulations are also made flying a model Boeing 727 through sinusoidal head wind to tail wind shears at the phugoid frequency to evaluate the response of manned aircraft in thunderstorm wind environments.

  6. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  7. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  8. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  9. Development of Longitudinal Equivalent System Models for Selected U.S. Navy Tactical Aircraft

    DTIC Science & Technology

    1981-08-01

    revaraa side II nacaaaary and Identlly by block number) Aircraft Longitudinal Flying Qualities Equivalent Systems Frequency Response Matching...is a twin turbofan powered, land and carrier based, subsonic, anti- submarine warfare aircraft . Longitudinal control is accomplished via a...based, supersonic fighter aircraft . Longitudinal control is accomplished via an irreversible mechanical flight control system which transmits

  10. Aircraft Sensor Platform Has Increased Angular Range

    NASA Technical Reports Server (NTRS)

    Dabney, Philip W.; Bhardwaj, Suneel

    1995-01-01

    Mechanism rotates and translates instrument platform within pressure housing in aircraft to aim remote-sensing instrument toward target on ground below. Enables instrument to look under aircraft structure at larger fore and aft angles without having to deploy instrument into air stream outside. Also provides 10 degrees of yaw compensation, reducing further need for adjustment of attitude of aircraft to keep target in sight. With yaw compensation, pilot can fly with wings level and nose pointed into crosswind while on desired flight path over target.

  11. Role of research aircraft in technology development

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1984-01-01

    The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.

  12. Prospective communications research to support fly by light/power by wire

    NASA Technical Reports Server (NTRS)

    Game, David

    1994-01-01

    A NASA Research Grant NAG-1-1309, Distributed Fiber Optic Systems for Commercial Aircraft, was awarded during July 1991. This report primarily constitutes a summary of findings of the original background research done at that time. NASA is embarking on a research project to design the next generation of commercial aircraft, fly by light/power by wire. The objectives of this effort are to improve commercial aircraft design by (1) reducing the weight of the aircraft to improve efficiency and (2) improving the fault tolerance and safety of the aircraft by enhancing current systems with new technologies or introducing new systems into the aircraft.

  13. Space Shuttle flying qualities and flight control system assessment

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1982-01-01

    This paper reviews issues, data, and analyses relevant to the longitudinal flying qualities of the Space Shuttle in approach and landing. The manual control of attitude and path are first examined theoretically to demonstrate the unconventional nature of the Shuttle's augmented pitch and path response characteristics. The time domain pitch rate transient response criterion used for design of the Shuttle flight control system is examined in context with data from recent flying qualities experiments and operational aircraft. Questions arising from this examination are addressed through comparisons with MIL-F-8785C and other proposed flying qualities criteria which indicate potential longitudinal flying qualities problems. However, it is shown that these criteria, based largely on data from conventional aircraft, may be inappropriate for assessing the Shuttle.

  14. Ideals and Category Typicality

    ERIC Educational Resources Information Center

    Kim, ShinWoo; Murphy, Gregory L.

    2011-01-01

    Barsalou (1985) argued that exemplars that serve category goals become more typical category members. Although this claim has received support, we investigated (a) whether categories have a single ideal, as negatively valenced categories (e.g., cigarette) often have conflicting goals, and (b) whether ideal items are in fact typical, as they often…

  15. Pilot Preferences on Displayed Aircraft Control Variables

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2013-01-01

    The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.

  16. Space shuttle flying qualities and criteria assessment

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, Duane T.

    1987-01-01

    Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft.

  17. Fly-by-light technology development plan

    NASA Technical Reports Server (NTRS)

    Todd, J. R.; Williams, T.; Goldthorpe, S.; Hay, J.; Brennan, M.; Sherman, B.; Chen, J.; Yount, Larry J.; Hess, Richard F.; Kravetz, J.

    1990-01-01

    The driving factors and developments which make a fly-by-light (FBL) viable are discussed. Documentation, analyses, and recommendations are provided on the major issues pertinent to facilitating the U.S. implementation of commercial FBL aircraft before the turn of the century. Areas of particular concern include ultra-reliable computing (hardware/software); electromagnetic environment (EME); verification and validation; optical techniques; life-cycle maintenance; and basis and procedures for certification.

  18. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  19. Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control

    NASA Technical Reports Server (NTRS)

    Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2008-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.

  20. Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2010-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.

  1. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  2. Chemical hazards in aeromedical aircraft.

    PubMed

    Tupper, C R

    1989-01-01

    Several potentially hazardous chemicals are required to make modern military aircraft fly. With each airevac mission, the possibility exists for structural failure of a fluid system, resulting in contamination to flight/medical crews, patients, and passengers. Aeromedical Evacuation Crewmembers (AECMs) need to be aware of the hazardous chemicals used in aircraft and areas where there is an increased risk to those in and around the aircraft. This study identified potential areas for chemical leakage, such as refuel receptacles, hydraulic reservoirs, hydraulic motors, doors, ramps, engines, and more. Further, it identified the basic first aid procedures to perform on people contaminated with jet fuel, hydraulic fluid, engine oil, fire extinguisher agents, LOX and other fluids. First aid procedures are basic and can be performed with supplies and equipment on a routine aeromedical evacuation mission, AECMs trained in a basic awareness of hazardous aircraft chemicals will result in crews better prepared to cope with the unique risks of transporting patients in a complicated military aircraft.

  3. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  4. Human-centered aircraft automation: A concept and guidelines

    NASA Technical Reports Server (NTRS)

    Billings, Charles E.

    1991-01-01

    Aircraft automation is examined and its effects on flight crews. Generic guidelines are proposed for the design and use of automation in transport aircraft, in the hope of stimulating increased and more effective dialogue among designers of automated cockpits, purchasers of automated aircraft, and the pilots who must fly those aircraft in line operations. The goal is to explore the means whereby automation may be a maximally effective tool or resource for pilots without compromising human authority and with an increase in system safety. After definition of the domain of the aircraft pilot and brief discussion of the history of aircraft automation, a concept of human centered automation is presented and discussed. Automated devices are categorized as a control automation, information automation, and management automation. The environment and context of aircraft automation are then considered, followed by thoughts on the likely future of automation of that category.

  5. Stable Fly Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult stable flies feed on the blood of humans, pets and livestock, inflicting painful bites. Stable flies need one and sometimes two bloodmeals each day to develop their eggs. Unlike mosquitoes where only the females bloodfeed, both male and female stable flies require blood to reproduce. Stable fl...

  6. Aircraft Control Strategies by Game Theoretic Approach against Wind Shear

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Umemura, Akira

    The safety problem of aircraft that encounters wind shear during the final approach flight phase is addressed using a game theoretic approach. The game consists of two players, an aircraft and wind shear. The control scheme is composed of non-cooperative game between players. In the game, aircraft tries to fly to avoid crashing to ground and down burst attempts to force the aircraft to crash. A new control strategy based on nonlinear receding horizon control is applied to the game. It is shown by simulation that this control strategy is effective against wind shear.

  7. Altus aircraft on runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The remotely piloted Altus aircraft flew several developmental test flights from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif., in 1996. The Altus--the word is Latin for 'high'--is a variant of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. It is designed for high-altitude, long-duration scientific sampling missions, and is powered by a turbocharged four-cylinder piston engine. The first Altus was developed under NASA's Environmental Research Aircraft and Sensor Technology program, while a second Altus was built for a Naval Postgraduate School/Department of Energy program. A pilot in a control station on the ground flew the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system. Equipped with a single-stage turbocharger during the 1996 test flights, the first Altus reached altitudes in the 37,000-foot range, while the similarly-equipped second Altus reached 43,500 feet during developmental flights at Dryden in the summer of 1997. The NASA Altus also set an endurance record of more than 26 hours while flying a science mission in late 1996 and still had an estimated 10 hours of fuel remaining when it landed. Now equipped with a two-stage turbocharger, the NASA Altus maintained an altitude of 55,000 feet for four hours during flight tests in 1999.

  8. Automated Surveillance of Fruit Flies.

    PubMed

    Potamitis, Ilyas; Rigakis, Iraklis; Tatlas, Nicolaos-Alexandros

    2017-01-08

    Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study.

  9. Automated Surveillance of Fruit Flies

    PubMed Central

    Potamitis, Ilyas; Rigakis, Iraklis; Tatlas, Nicolaos-Alexandros

    2017-01-01

    Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study. PMID:28075346

  10. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  11. Venus Atmospheric Exploration by Solar Aircraft

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; LaMarre, C.; Colozza, A.

    2002-01-01

    The Venus atmosphere is a favorable environment for flying powered aircraft. The atmospheric pressure makes flight much easier than on planets such as Mars. Above the clouds, solar energy is available in abundance on Venus, and the slow rotation of Venus allows a solar airplane to be designed for flight within continuous sunlight. The atmosphere between 50 km and 75 km on Venus is one of the most dynamic and interesting regions of the planet. The challenge for a Venus aircraft will be the fierce winds and caustic atmosphere. In order to remain on the sunlit side of Venus, an exploration aircraft will have to be capable of sustained flight at or above the wind speed. An aircraft would be a powerful tool for exploration. By learning how Venus can be so similar to Earth, and yet so different, we will learn to better understand the climate and geological history of the Earth.

  12. Longitudinal flying qualities criteria for single-pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Bar-Gill, A.

    1983-01-01

    Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.

  13. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  14. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  15. Effect of time delay on flying qualities: An update

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Sarrafian, S. K.

    1986-01-01

    Flying qualities problems of modern, full-authority electronic flight control systems are most often related to the introduction of additional time delay in aircraft response to a pilot input. These delays can have a significant effect on the flying qualities of the aircraft. Time delay effects are reexamined in light of recent flight test experience with aircraft incorporating new technology. Data from the X-29A forward-swept-wing demonstrator, a related preliminary in-flight experiment, and other flight observations are presented. These data suggest that the present MIL-F-8785C allowable-control system time delay specifications are inadequate or, at least, incomplete. Allowable time delay appears to be a function of the shape of the aircraft response following the initial delay. The cockpit feel system is discussed as a dynamic element in the flight control system. Data presented indicate that the time delay associated with a significant low-frequency feel system does not result in the predicted degradation in aircraft flying qualities. The impact of the feel system is discussed from two viewpoints: as a filter in the control system which can alter the initial response shape and, therefore, the allowable time delay, and as a unique dynamic element whose delay contribution can potentially be discounted by special pilot loop closures.

  16. Flying qualities - A costly lapse in flight-control design

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1982-01-01

    Generic problems in advanced aircraft with advanced control systems which suffer from control sensitivity, sluggish response, and pilot-induced oscillation tendencies are examined, with a view to improving techniques for eliminating the problems in the design phase. Results of two NASA and NASA/AIAA workshops reached a consensus that flying qualities criteria do not match control system development, control system designers are not relying on past experience in their field, ground-based simulation is relied on too heavily, and communications between flying qualities and control systems engineers need improvement. A summation is offered in that hardware and software have outstripped the pilot's capacity to use the capabilities which new aircraft offer. The flying qualities data base is stressed to be dynamic, and continually redefining the man/machine relationships.

  17. J-FLiC UAS Flights for Acoustic Testing Research

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2016-01-01

    The jet-powered flying testbed (J-FLiC) unmanned aircraft system (UAS) successfully completed twenty-six flights at Fort AP Hill, VA, from 27 August until September 3 2015, supporting tests of a microphone array system for aircraft noise measurement. The test vehicles, J-FLiC NAVY2 (N508NU), and J-FLiC 4 (N509NU), were flown under manual and autopiloted control in a variety of test conditions: clean at speeds ranging from 80 to 150 knots; and full landing configuration at speeds ranging from 50 to 95 knots. During the test campaign, autopilot capability was incrementally improved to ultimately provide a high degree of accuracy and repeatability of the critical test requirements for airspeed, altitude, runway alignment and position over the microphone array. Manual flights were performed for test conditions at the both ends of the speed envelope where autopiloted flight would have required flight beyond visual range and more extensive developmental work. The research objectives of the campaign were fully achieved. The ARMD Integrated Systems Research Program (ISRP) Environmentally Responsible Aviation (ERA) Project aims to develop the enabling capabilities/technologies that will allow prediction/reduction of aircraft noise. A primary measurement tool for ascertaining and characterizing empirically the effectiveness of various noise reduction technologies is a microphone phased array system. Such array systems need to be vetted and certified for operational use via field deployments and overflights of the array with test aircraft, in this case with sUAS aircraft such as J-FLiC.

  18. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  19. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  20. Automatic control of an aircraft employing outboard horizontal stabilizers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Jason S.

    2000-10-01

    This dissertation concerns the study of radio-operated control of an aircraft using fixed gain and adaptive controllers. The real-time feedback control system is developed to enhance the flying qualities of an experimental model aircraft. The non-conventional flight dynamics of the Outboard Horizontal Stabilizer (OHS) aircraft cause significant differences in the piloting of the aircraft. The control system was added to augment stability as well as to adjust the flight characteristics so that the OHS aircraft handles similar to a conventional aircraft. The control system design process, as applied to recent innovations in aircraft design, is followed. The Outboard Horizontal Stabilizer concept is a non-conventional aircraft, designed to take advantage of the normally wasted energy developed by the wing tip vortices. The research is based on a remotely-controlled OHS aircraft fitted with various sensors and telemetry as part of a real time feedback control system. Fixed gain Linear Quadratic controllers are first applied to the aircraft and result in a dramatic increase in performance at a nominal operating condition. Non-linearities in the OHS aircraft behavior and a wide operating range demanded the development of a variable gain adaptive controller utilizing a parameter estimation scheme to model the plant. The adaptive LQR gain-scheduled controller that emerged gave good performance over a wide flight envelope.

  1. Aircraft Corrosion

    DTIC Science & Technology

    1981-08-01

    chlore mais dans une proportion semblable b cells d’une eau de vil)e ; - lea solides, d’aprbs lea analyses chimique et criatallographique, paraissaiont...IATA member airlines at $100 million based on 1976 operations. Thus the numbers are large, but detailed analyses on specific aircraft types, in known...demonstrate this in any quantitative way with accurate figures. Better information is required on the cost of corrosion, together with analyses of the

  2. Aircraft Ducting

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Templeman Industries developed the Ultra-Seal Ducting System, an environmental composite air duct with a 50 percent weight savings over current metallic ducting, but could not find a commercial facility with the ability to test it. Marshall Space Flight Center conducted a structural evaluation of the duct, equivalent to 86 years of take-offs and landings in an aircraft. Boeing Commercial Airplane Group and McDonnell Douglas Corporation are currently using the ducts.

  3. Unmanned Aircraft Systems: A Logical Choice for Homeland Security Support

    DTIC Science & Technology

    2011-12-01

    than moored balloons, kites, unmanned rockets, unmanned free balloons, and ultra -light vehicles. It prescribes that for any aircraft to fly legally in...These vehicles include moored balloons, unmanned rockets, unmanned balloons, and ultra -light aircraft. Although these aerial vehicles may proceed...experienced in the Deepwater Horizon oil spill in 2010. This critical infrastructure is dispersed throughout the U.S. and its territorial waters leaving it

  4. Experiments Result in Safer, Spin-Resistant Aircraft

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The General Aviation Spin Program at Langley Research Center devised the first-of-their-kind guidelines for designing more spin-resistant aircraft. Thanks to NASA's contributions, the Federal Aviation Administration introduced the Part 23 spin-resistance standard in 1991. Los Angeles-based ICON Aircraft has now manufactured a new plane for consumer recreational flying that meets the complete set of criteria specified for Part 23 testing.

  5. The high-energy radiation dose received aboard aircraft exposed to a terrestrial gamma- ray flash

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Grefenstette, B. W.; Hazelton, B. J.

    2008-12-01

    Terrestrial gamma-ray flashes (TGF) are large bursts of high energy radiation observed from space that originate from our atmosphere. These millisecond long flashes of gamma-rays are often so bright that they saturate detectors, even from 600 km away. Several independent observations suggest that terrestrial gamma-ray flashes originate from thunderstorms deep within the atmosphere, near the altitudes where commercial aircraft fly. Based upon the flux of gamma-rays observed by the RHESSI spacecraft, detailed gamma-ray propagation models show that at least 1.0E17 energetic, multi-MeV electrons, are typically produced at the source. This large number of energetic electrons could potentially be a hazard for aircraft passengers, pilots and electronics. Using theoretical and observational estimates of the size of the TGF source region, we calculate the high-energy radiation dose from the energetic electrons and the gamma-rays for an aircraft exposed to the TGF from a close range. Finally, we shall discuss upcoming observations that will help constrain this radiation risk from TGFs.

  6. Aircraft conceptual design study of the canard and threesurface unconventional configurations for the purposes of reducing environmental impacts

    NASA Astrophysics Data System (ADS)

    Desharnais, Olivier

    With a constant increase in the demand for air transport and today's high fuel price, the aerospace industry is actively searching for new operation methods and technologies to improve efficiency and to reduce the impact it has on the environment. Aircraft manufacturers are exploring many different ways of designing and building better airplanes. One of the considered methods is the use of unconventional aircraft configurations. The objective of this research is to study two configurations, the canard and three-surface, by applying them into a typical high-speed jet aircraft using the conceptual design tools for conventional aircraft available at Bombardier Aerospace (some of them have been modified and validated for the two configurations of interest). This included a weight estimation of the foreplane, an extensive validation of the aerodynamic tool, AVL, and a modification of a physics-based tail-sizing tool. The last tool was found necessary for an accurate foreplane/tailplane sizing, aircraft balancing, establishing the CG envelope and for the assessment of all stability and control requirements. Then, a canard aircraft comparable to the Bombardier research platform aircraft was designed. Final solutions were not obtained from a complete optimization because of some limitations in the design process. The preliminary results show an increase of fuel burn of 10%, leading to an increase of the environmental impacts. The theoretical advantage of not generating any download lift is clearly overwhelmed by the poor effectiveness of the high-lift system. The incapacity to reach a level of high-lift performance close to the one of conventional high-speed aircrafts mostly explains why the canard configuration was found to have no true benefits in this application. Even if no final solution of a three-surface aircraft was obtained in this research, this configuration was identified as being better than the canard case according to the information found in the literature

  7. Survival analysis of aging aircraft

    NASA Astrophysics Data System (ADS)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  8. A model for rotorcraft flying qualities studies

    NASA Technical Reports Server (NTRS)

    Mittal, Manoj; Costello, Mark F.

    1993-01-01

    This paper outlines the development of a mathematical model that is expected to be useful for rotorcraft flying qualities research. A computer model is presented that can be applied to a range of different rotorcraft configurations. The algorithm computes vehicle trim and a linear state-space model of the aircraft. The trim algorithm uses non linear optimization theory to solve the nonlinear algebraic trim equations. The linear aircraft equations consist of an airframe model and a flight control system dynamic model. The airframe model includes coupled rotor and fuselage rigid body dynamics and aerodynamics. The aerodynamic model for the rotors utilizes blade element theory and a three state dynamic inflow model. Aerodynamics of the fuselage and fuselage empennages are included. The linear state-space description for the flight control system is developed using standard block diagram data.

  9. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  10. Ever Fly a Tetrahedron?

    ERIC Educational Resources Information Center

    King, Kenneth

    2004-01-01

    Few things capture the spirit of spring like flying a kite. Watching a kite dance and sail across a cloud spotted sky is not only a visually appealing experience it also provides a foundation for studies in science and mathematics. Put simply, a kite is an airfoil surface that flies when the forces of lift and thrust are greater than the forces of…

  11. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  12. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  13. NASA aeronautics. [fact sheet on NASA programs for aeronautical research and aircraft development

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fact sheet depicting the NASA programs involving aircraft development and aeronautics is presented. The fact sheet consists of artist concepts of the various aircraft which represent specific programs. Among the subjects discussed in the concise explanatory notes are: (1) the YF-12 aircraft, (2) hypersonic drag tests in wind tunnels, (3) augmentor wing concepts, (4) rotary wing development, (5) fly-by-wire aircraft control, (6) supercritical wings, (7) the quiet engine program for noise and emission abatement, (8) flight capabilities of lifting bodies, (9) tilt rotor concepts for improved helicopter performance, and (10) flight safety improvements for general aviation aircraft.

  14. Initial flight test of a ground deployed system for flying qualities assessment

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.; Koehler, Ruthard; Wilson, Edward M.; Levy, David R.

    1989-01-01

    In order to provide a safe, repeatable, precise, high-gain flying qualities task a ground deployed system was developed and tested at the NASA Ames Research Center's Dryden Flight Research Facility. This system, the adaptable target lighting array system (ATLAS), is based on the German Aerospace Research Establishment's ground attack test equipment (GRATE). These systems provide a flying-qualities task, emulating the ground-attack task with ground deployed lighted targets. These targets light in an unpredictable sequence and the pilot has to aim the aircraft at whichever target is lighted. Two flight-test programs were used to assess the suitability of ATLAS. The first program used the United States Air Force (USAF) NT-33A variability stability aircraft to establish that ATLAS provided a task suitable for use in flying qualities research. A head-up display (HUD) tracking task was used for comparison. The second program used the X-29A forward-swept wing aircraft to demonstrate that the ATLAS task was suitable for assessing the flying qualities of a specific experimental aircraft. In this program, the ground-attack task was used for comparison. All pilots who used ATLAS found it be highly satisfactory and thought it to be superior to the other tasks used in flying qualities evaluations. It was recommended that ATLAS become a standard for flying qualities evaluations.

  15. Flared landing approach flying qualities. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Weingarten, Norman C.; Berthe, Charles J., Jr.; Rynaski, Edmund G.; Sarrafian, Shahan K.

    1986-01-01

    An in-flight research study was conducted utilizing the USAF/Total In-Flight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. A consistent set of data were generated for: determining what kind of command response the pilot prefers/requires in order to flare and land an aircraft with precision, and refining a time history criterion that took into account all the necessary variables and the characteristics that would accurately predict flying qualities. Seven evaluation pilots participated representing NASA Langley, NASA Dryden, Calspan, Boeing, Lockheed, and DFVLR (Braunschweig, Germany). The results of the first part of the study provide guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots prefer in flared landings. The results of the second part provide the flying qualities engineer with a derived flying qualities predictive tool which appears to be highly accurate. This time-domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1%, 60% of the time.

  16. Daedalus Project's Light Eagle - Human powered aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  17. Challenge to Aviation: Hatching a Leaner Pterosauer. [Improving Commercial Aircraft Design for Greater Fuel Efficiency

    NASA Technical Reports Server (NTRS)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  18. Computer programs for estimating aircraft takeoff performance in three dimensional space

    NASA Technical Reports Server (NTRS)

    Bowles, J. V.

    1974-01-01

    A set of computer programs has been developed to estimate the takeoff and initial climb-out maneuver of a given aircraft in three-dimensional space. The program is applicable to conventional, vectored lift and power-lift concept aircraft. The aircraft is treated as a point mass flying over a flat earth with no side slip, and the rotational dynamics have been neglected. The required input is described and a sample case presented.

  19. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  20. Nonlinear control of a supermaneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Snell, S. Antony; Garrard, William L.; Enns, Dale F.

    1989-01-01

    This paper describes a technique which may be used to design the flight control system for a highly maneuverable aircraft. The control system was provided to stabilize the dynamics of the aircraft model and allow it to fly simulated, poststall 'supermaneuvers'. Although the aircraft dynamics are highly nonlinear under these conditions, the gain-scheduled, flight control system was designed using basically linear techniques. A manuever generator was implemented to pilot the mathematical model through prescribed optimal trajectories. The control system design performed well while executing maneuvers involving small angular rates where the governing dynamics could be considered linear. However, the performance deteriorated once the model was subjected to high angular rates at high angle of attack.

  1. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    The design features of an aircraft capable of fulfilling a long haul, high capacity cargo mission are described. This span-loading aircraft, or flying wing, is capable of carrying extremely large payloads and is expected to be in demand to replace the slow-moving cargo ships currently in use. The spanloader seeks to reduce empty weight by eliminating the aircraft fuselage. Disadvantages are the thickness of the cargo-containing wing, and resulting stability and control problems. The spanloader presented here has a small fuselage, low-aspect ratio wings, winglets, and uses six turbofan engines for propulsion. It will have a payload capacity of 300,000 pounds plus 30 first class passengers and 6 crew members. Its projected market is transportation of freight from Europe and the U.S.A. to countries in the Pacific Basin. Cost estimates support its economic feasibility.

  2. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  3. Small Aircraft Data Distribution System

    NASA Technical Reports Server (NTRS)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  4. Small Aircraft RF Interference Path Loss

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  5. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  6. Twin-Rotor Patrol Airship Flying Model Design Rationale

    DTIC Science & Technology

    1981-06-01

    MONITORING AGENCY NAME & ’ADORES(f d•llffewent from Contriollin# Ofifer) IS, SECURITY CL.ASS. (at this ve .0d6 ) Unclassified TDiCL.A-SsIPrlCA1ION...experimental data on the controllability of tilt-rotor airships operating near neutral buoyancy, a 32-foot long 1/10 scale flying model is bein...foot long 1/10 scale flying model is being developed using two cuntrarotating tilt-rotors representing those on the NASA/Bell XV-15 research aircraft

  7. Agricultural Aircraft Aid

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Farmers are increasingly turning to aerial applications of pesticides, fertilizers and other materials. Sometimes uneven distribution of the chemicals is caused by worn nozzles, improper alignment of spray nozzles or system leaks. If this happens, job must be redone with added expense to both the pilot and customer. Traditional pattern analysis techniques take days or weeks. Utilizing NASA's wind tunnel and computer validation technology, Dr. Roth, Oklahoma State University (OSU), developed a system for providing answers within minutes. Called the Rapid Distribution Pattern Evaluation System, the OSU system consists of a 100-foot measurement frame tied in to computerized analysis and readout equipment. System is mobile, delivered by trailer to airfields in agricultural areas where OSU conducts educational "fly-ins." A fly-in typically draws 50 to 100 aerial applicators, researchers, chemical suppliers and regulatory officials. An applicator can have his spray pattern checked. A computerized readout, available in five to 12 minutes, provides information for correcting shortcomings in the distribution pattern.

  8. Sun powered aircraft design

    NASA Technical Reports Server (NTRS)

    Maccready, P. B.; Lissaman, P. B. S.; Morgan, W. R.; Burke, J. D.

    1981-01-01

    Two piloted aircraft have been developed and flown powered solely by photovoltaic cells in a program sponsored by the DuPont Company. The 30.8-kg (68-lb), 21.6-m (71-ft) span, Gossamer Penguin was used as a solar test bed, making a 2.6-km (1.6-mile) flight in August 1980. The 88.1-kg (194-lb), 14.3-m (47-ft) span Solar Challenger was developed for long flights in normal turbulence. Stressed to +9 G, it utilizes Kevlar, Nomex honeycomb-graphite sandwich wall tubes, expanded polystyrene foam ribs, and Mylar skin. With a 54.9-kg (121-lb) airframe, 33.1-kg (73-lb) propulsion system, and a 45.4-kg (100-lb) pilot, it flies on 1400 watts. In summer, the projected maximum climb is 1.0 m/s (200 ft/min) at 9,150 m (30,000 ft). Sixty purely solar-powered flights were made during winter 1980-1981. Using thermals, 1,070 m (3,500 ft) was reached with 115-minute duration.

  9. In-flight detection and identification and accommodation of aircraft icing

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2012-11-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  10. Typical Mid Tower Elevation & Section, Typical Mid Tower Footing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Mid Tower Elevation & Section, Typical Mid Tower Footing Section & Elevation, South Tower Section & Elevation, and North Tower Sections & Elevation - Cape Arago Light Station Footbridge, Gregory Point, Charleston, Coos County, OR

  11. Market opportunities for fly ash fillers in North America

    SciTech Connect

    Eckert, C.; Harris, T.; Gledhill, J. )

    1990-11-01

    Direct Acid Leaching (DAL) processed fly ash is derived from treating raw and beneficiated coal fly ash with hydrochloric acid. The DAL process allows for the production of fly ash with greater chemical purity and consistency than raw fly ash alone. In addition, DAL fly ash is similar to various minerals used in a wide range of applications that require filler minerals. This project investigates the feasibility of using three grades of DAL fly ash ranging from 10 microns to 30 microns in diameter as an alternative filler material to mineral fillers. Six major applications in North America, requiring large volumes of filler minerals were investigated by region including: (1) asphalt roofing shingles (2) carpet backing (3) joint compound and wallboard (4) industrial coatings (5) plastics (6) vinyl flooring. It is determined that calcium carbonate was the primary mineral filler DAL fly ash would be competing with in the applications investigated. Calcium carbonate is used in all applications investigated. The application which demonstrated the greatest potential for using DAL fly ash is asphalt shingles. Asphalt shingles were the largest calcium carbonate consuming application identified, consuming 4.8 million tons in 1988, and is the least sensitive to the dark color of the DAL fly ash. Although the DAL fly ash typically has a smaller particle size, in comparison to calcium carbonate, the asphalt shingle manufacturers felt it would be a good substitute. Other promising applications for DAL fly ash were industrial coatings and plastics where the calcium carbonate particle size requirements of 3 to 6 microns very closely matches the particle size of the DAL fly ash considered in this project. 17 figs., 36 tabs.

  12. The all-electric aircraft - In your future?

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1984-01-01

    Recent developments in all-electric aircraft technology are reviewed with particular attention given to models with a digital fly-by-wire quadraplex control systems and experimental mechanical actuators. It is shown that all-electric technologies can eliminate many traditional design constraints and open up enormous range of design possibilities.

  13. A NASA F/A-18, participating in the Automated Aerial Refueling (AAR) project, flies over the Dryden

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA F/A-18 flies over the Dryden Flight Research Center and Rogers Dry Lake on December 11, 2002. The aircraft is participating in the Automated Aerial Refueling (AAR) project. The 300-gallon aerial refueling store seen on the belly of the aircraft carries fuel and a refueling drogue. This aircraft acts as a tanker in the study to develop an aerodynamic model for future automated aerial refueling, especially of unmanned vehicles.

  14. Applications of advanced electric/electronic technology to conventional aircraft

    NASA Technical Reports Server (NTRS)

    Heimbold, R. L.

    1980-01-01

    The desirability of seven advanced technologies as applied to three commercial aircraft of 1985 to 1995 was investigated. Digital fly by wire, multiplexing, ring laser gyro, integrated avionics, all electric airplane, electric load management, and fiber optics were considered for 500 passenger, 50 passenger, and 30 passenger aircraft. The major figure of merit used was Net Value of Technology based on procurement and operating cost over the life of the aircraft. An existing computer program, ASSET, was used to resize the aircraft and evalute fuel usage and maintenance costs for each candidate configuration. Conclusions were that, for the 500 passenger aircraft, all candidates had a worthwhile payoff with the all electric airplane having a large payoff.

  15. Maneuvering technology for advanced fighter aircraft

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, Scott H.; Byers, Richard H.

    1992-01-01

    The need for increased maneuverability has its genesis from the first aerial combat engagement when two adversaries entangled themselves in a deadly aerial dance trying to gain the advantage over the other. It has only been in the past two decades that technologies have been investigated to increase aircraft control at maneuver attitudes that are typically dominated by highly separated flows. These separated flow regions are aggravated by advanced fighter aircraft shapes required to defeat an electronic enemy. This paper discusses passive and active devices that can be used to enhance the maneuverability of advanced fighter aircraft through vortex flow control, boundary layer control, and innovative flow manipulation.

  16. Impact of Airspace Charges on Transatlantic Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.

    2015-01-01

    Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The

  17. The conceptual design of a Mach 2 Oblique Flying Wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.

    1989-01-01

    This paper is based on a performance and economics study of a Mach two oblique flying wing transport aircraft that is to replace the B747B. In order to fairly compare our configuration with the B747B an equal structural technology level is assumed. It will be shown that the oblique flying wing configuration will equal or outperform the B747 in speed, economy and comfort while a modern stability and control system will balance the aircraft and smooth out gusts. The aircraft is designed to comply with the FAR25 airworthiness requirements and FAR36 stage 3 noise regulations. Geometry, aerodynamics, stability and control parameters of the oblique flying wing transport are discussed.

  18. Identification of a typical flight patterns

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)

    2005-01-01

    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous- valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding a typicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.

  19. Overview of Propulsion Systems for a Mars Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Miller, Christopher J.; Reed, Brian D.; Kohout, Lisa L.; Loyselle, Patricia L.

    2001-01-01

    The capabilities and performance of an aircraft depends greatly on the ability of the propulsion system to provide thrust. Since the beginning of powered flight, performance has increased in step with advancements in aircraft propulsion systems. These advances in technology from combustion engines to jets and rockets have enabled aircraft to exploit our atmospheric environment and fly at altitudes near the Earth's surface to near orbit at speeds ranging from hovering to several times the speed of sound. One of the main advantages of our atmosphere for these propulsion systems is the availability of oxygen. Getting oxygen basically "free" from the atmosphere dramatically increases the performance and capabilities of an aircraft. This is one of the reasons our present-day aircraft can perform such a wide range of tasks. But this advantage is limited to Earth; if we want to fly an aircraft on another planetary body, such as Mars, we will either have to carry our own source of oxygen or use a propulsion system that does not require it. The Mars atmosphere, composed mainly of carbon dioxide, is very thin. Because of this low atmospheric density, an aircraft flying on Mars will most likely be operating, in aerodynamical terms, within a very low Reynolds number regime. Also, the speed of sound within the Martian environment is approximately 20 percent less than it is on Earth. The reduction in the speed of sound plays an important role in the aerodynamic performance of both the aircraft itself and the components of the propulsion system, such as the propeller. This low Reynolds number-high Mach number flight regime is a unique flight environment that is very rarely encountered here on Earth.

  20. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  1. Detecting Flying Objects using a Single Moving Camera.

    PubMed

    Rozantsev, Artem; Lepetit, Vincent; Fua, Pascal

    2016-05-06

    We propose an approach for detecting flying objects such as Unmanned Aerial Vehicles (UAVs) and aircrafts when they occupy a small portion of the field of view, possibly moving against complex backgrounds, and are filmed by a camera that itself moves. We argue that solving such a difficult problem requires combining both appearance and motion cues. To this end we propose a regression-based approach for object-centric motion stabilization of image patches that allows us to achieve effective classification on spatio-temporal image cubes and outperform state-of-the-art techniques. As this problem has not yet been extensively studied, no test datasets are publicly available. We therefore built our own, both for UAVs and aircrafts, and will make them publicly available so they can be used to benchmark future flying object detection and collision avoidance algorithms.

  2. The interpretation of flying qualities requirements for flight control design

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Weingarten, N. C.; Grantham, W.

    1986-01-01

    The flying requirements of MIL-F-8785(C) are interpreted in terms of command/response configurations, and pilot preference for flight control systems configurations of angle of attack, or pitch rate command, specified independently for the short period and phugoid dynamics, is determined using the Total-In-Flight-Simulator aircraft. The results show that for either command configuration, the short term response applies to the angle of attack response of the vehicle, and that this response must satisfy the omega(n) vs n/alpha requirement. The preference in the long term for angle of attack command indicates that the pilot wants the aircraft to fly in the direction it is pointing, and an attitude hold system is not found to be preferred unless attitude hold results in flight path angle hold.

  3. The tilt rotor research aircraft (XV-15) program

    NASA Technical Reports Server (NTRS)

    Magee, J. P.

    1983-01-01

    The tilt rotor concept is introduced and the performance capabilities and noise characteristics of the XV-15 aircraft are discussed. In hover, the aircraft is lifted by the two wing tip mounted rotors with the nacelles in the vertical position. In this flight mode, the vehicle is a twin rotor helicopter and is controlled by rotor cyclic and collective controls. The aircraft can fly as a helicopter or tilt the nacelle to the propeller mode and operate as a fixed-wing twin turboprop airplane. It is also possible to stop the conversion at any intermediate angle and fly continuously or reconvert. The rotors are powered by two modified T-53 engines and the power train includes a cross shaft located in the wing, to allow for the engine failure case and still retain power to both rotors.

  4. Application of variable-sweep wings to commuter aircraft

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Lovell, W. A.; Price, J. E.; Turriiziani, R. V.; Washburn, F. F.

    1983-01-01

    The effects of using variable-sweep wings on the riding quality and mission-performance characteristics of commuter-type aircraft were studied. A fixed-wing baseline vehicle and a variable-sweep version of the baseline were designed and evaluated. Both vehicles were twin-turboprop, pressurized-cabin, 30-passenger commuter aircraft with identical mission requirements. Mission performance was calculated with and without various ride-quality constraints for several combinations of cruise altitude and stage lengths. The variable-sweep aircraft had a gross weight of almost four percent greater than the fixed-wing baseline in order to meet the design-mission requirements. In smooth air, the variable sweep configuration flying with low sweep had a two to three percent fuel-use penalty. However, the imposition of quality constraints in rough air can result in advantages in both fuel economy and flight time for the variable-sweep vehicle flying with high sweep.

  5. Space to ground sequential lobe tracking of aircraft

    NASA Astrophysics Data System (ADS)

    Shannon, P. D.; Kwon, D. W.; Polites, M.

    Growing demand for satellite communications capability coupled with shrinking government budgets, has spurred acquisition and repurposing of commercial satellite systems for government missions. One subset of these satellites provides high bandwidth communication with aerial vehicles from geosynchronous orbit. Automated tracking by these satellites of aerial vehicles improves link margin, but is not a typical function of commercial product lines. Additional tracking hardware and flight software development are required to give these commercial products tracking capability. This leads to an inefficient design from a cost and mass standpoint for a large number of slow flying aerial vehicles. Therefore, a need was identified to design a low cost tracking system that minimizes tracking specific spacecraft hardware and flight software development. This paper outlines a sequential lobe tracking system to auto track aerial vehicles and analyzes the algorithm's accuracy and sensitivity in tracking aerial vehicles using their pre-existing uplink signal. The tracking scheme consists of a satellite based RF power meter, automated ground based control of antenna pointing, and ground based processing of the tracking telemetry. The aerial vehicle was modeled as a high altitude, relatively slow moving Ka-band aircraft. To identify and evaluate a feasible design, a MATLAB model was developed to simulate an aerial vehicle, the vehicle's primary uplink signal and its variance, communication and processing latency in the design, and tracking telemetry processing. In addition, the effect on the spacecraft antenna actuators was modeled. The primary output of the model is tracking accuracy and Monte Carlo simulations were used to determine 1, 2, and 3 sigma results. Overall, this paper demonstrates the viability of a sequential lobe scheme with ground based processing as a low cost alternative for Space-to-Ground tracking of slow flying aerial vehicles.

  6. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  7. Altus I aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted Altus I aircraft climbs away after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, were designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology program, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet. The Altus II, the first of the two craft to be completed, made its first flight on May 1, 1996. With its engine augmented by a single-stage turbocharger, the Altus II reached an altitude of 37,000 ft during its first series of development flights at Dryden in Aug., 1996. In Oct. of that year, the Altus II was flown in an Atmospheric Radiation Measurement study for the Department of Energy's Sandia National Laboratory in Oklahoma. During the course of those flights, the Altus II set a single-flight endurance record for remotely-operated aircraft of more than 26 hours. The Altus I, completed in 1997, flew a series of development flights at Dryden that summer. Those test flights culminated with the craft reaching an altitude of 43,500 ft while carrying a simulated 300-lb payload, a record for an unmanned aircraft powered by a piston engine augmented with a single-stage turbocharger. The Altus II sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the

  8. Flying in a flock comes at a cost in pigeons.

    PubMed

    Usherwood, James R; Stavrou, Marinos; Lowe, John C; Roskilly, Kyle; Wilson, Alan M

    2011-06-22

    Flying birds often form flocks, with social, navigational and anti-predator implications. Further, flying in a flock can result in aerodynamic benefits, thus reducing power requirements, as demonstrated by a reduction in heart rate and wingbeat frequency in pelicans flying in a V-formation. But how general is an aerodynamic power reduction due to group-flight? V-formation flocks are limited to moderately steady flight in relatively large birds, and may represent a special case. What are the aerodynamic consequences of flying in the more usual 'cluster' flock? Here we use data from innovative back-mounted Global Positioning System (GPS) and 6-degrees-of-freedom inertial sensors to show that pigeons (1) maintain powered, banked turns like aircraft, imposing dorsal accelerations of up to 2g, effectively doubling body weight and quadrupling induced power requirements; (2) increase flap frequency with increases in all conventional aerodynamic power requirements; and (3) increase flap frequency when flying near, particularly behind, other birds. Therefore, unlike V-formation pelicans, pigeons do not gain an aerodynamic advantage from flying in a flock. Indeed, the increased flap frequency, whether due to direct aerodynamic interactions or requirements for increased stability or control, suggests a considerable energetic cost to flight in a tight cluster flock.

  9. Development of flying qualities criteria for single pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

    1982-01-01

    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

  10. Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2016-01-01

    Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.

  11. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Concepts for possible future airplanes are studied that include all-wing distributed-load airplanes, multi-body airplanes, a long-range laminar flow control airplane, a nuclear powered airplane designed for towing conventionally powered airplanes during long range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short range feeder airplanes. Results indicate that each of these concepts has the potential for important performance and economic advantages, provided certain suggested research tasks are successfully accomplished. Indicated research areas include all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  12. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Several concepts for possible future airplanes, including all-wing distributed-load airplanes, multibody airplanes, a long-range laminar flow control airplane, a nuclear-powered airplane designed for towing conventionally powered airplanes during long-range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short-range feeder airplanes are described. Performance and economic advantages of each concept are indicated. Further research is recommended in the following areas: all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  13. Flying the smoky skies: secondhand smoke exposure of flight attendants

    PubMed Central

    Repace, J

    2004-01-01

    Objective: To assess the contribution of secondhand smoke (SHS) to aircraft cabin air pollution and flight attendants' SHS exposure relative to the general population. Methods: Published air quality measurements, modelling studies, and dosimetry studies were reviewed, analysed, and generalised. Results: Flight attendants reported suffering greatly from SHS pollution on aircraft. Both government and airline sponsored studies concluded that SHS created an air pollution problem in aircraft cabins, while tobacco industry sponsored studies yielding similar data concluded that ventilation controlled SHS, and that SHS pollution levels were low. Between the time that non-smoking sections were established on US carriers in 1973, and the two hour US smoking ban in 1988, commercial aircraft ventilation rates had declined three times as fast as smoking prevalence. The aircraft cabin provided the least volume and lowest ventilation rate per smoker of any social venue, including stand up bars and smoking lounges, and afforded an abnormal respiratory environment. Personal monitors showed little difference in SHS exposures between flight attendants assigned to smoking sections and those assigned to non-smoking sections of aircraft cabins. Conclusions: In-flight air quality measurements in ~250 aircraft, generalised by models, indicate that when smoking was permitted aloft, 95% of the harmful respirable suspended particle (RSP) air pollution in the smoking sections and 85% of that in the non-smoking sections of aircraft cabins was caused by SHS. Typical levels of SHS-RSP on aircraft violated current (PM2.5) federal air quality standards ~threefold for flight attendants, and exceeded SHS irritation thresholds by 10 to 100 times. From cotinine dosimetry, SHS exposure of typical flight attendants in aircraft cabins is estimated to have been >6-fold that of the average US worker and ~14-fold that of the average person. Thus, ventilation systems massively failed to control SHS air

  14. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  15. Fly on the Wall

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald

    2003-01-01

    The email was addressed not only to me, but also to all the Project Knowledge Sharing Community at Ames Research Center. We were invited to sit in on a major project review as a new experiment in knowledge sharing. This first-of-its-kind opportunity had been conceived by Claire Smith, who leads the knowledge sharing program, as well as heading up the Center's Project Leadership Development Program and serving as coordinator of the APPL-West program at Ames. The objective was to offer Ames project practitioners the opportunity to observe project-review processes as they happen. Not that I haven't participated in my share of project reviews, but this seemed like a great way for me to get up-to-date about a new project, the Kepler mission, and to experience a review from a new perspective. Typically, when you're being reviewed, it's difficult to see what's happening objectively-the same way it is on a project. Presenters are always thinking, 'Okay, what's on my slides? How much time do I have left? What are they going to ask me?' So when Claire's email pinged on my computer, I quickly responded by asking her to save a place for me. It was to be an informational review about progress on the project: what the team had done, where they were going, and what they needed to do to get there. There were people on the project team from all over the United States, and it was the first time for them to get together from all aspects of the project. For our part, as observers, we were asked to abide by a couple of rules: Don't ask any questions. and don't talk about the specifics of what we saw or heard. The idea was that we weren't supposed to be noticed. We weren't to buzz around and bother people. Hence the name for this experinient: Fly on the Wall.

  16. Dabbling duck behavior and aircraft activity in coastal North Carolina

    USGS Publications Warehouse

    Conomy, J.T.; Collazo, J.A.; Dubovsky, J.A.; Fleming, W.J.

    1998-01-01

    Requests to increase military aircraft activity in some training facilities in the United States have prompted the need to determine if waterfowl and other wildlife are adversely affected by aircraft disturbance. We quantified behavioral responses of wintering American black ducks (Anas rubripes), American wigeon (A. americana), gadwall (A. strepera), and American green-winged teal (A. crecca carolinensis) exposed to low-level flying military aircrafts at Piney and Cedar islands, North Carolina, in 1991 and 1992. Waterfowl spent ???1.4% of their time responding to aircraft, which included flying, swimming, and alert behaviors. Mean duration of responses by species ranged from 10 to 40 sec. Costs to each species were deemed low because disruptions represented a low percentage of their time-activity budgets only a small proportion of birds reacted to disturbance (13/672; 2%); and the likelihood of resuming the activity disrupted by an aircraft disturbance event was high (64%). Recorded levels of aircraft disturbance (i.e., x?? = 85.1 dBA) were not adversely affecting the time-activity budgets of selected waterfowl species wintering at Piney and Cedar islands.

  17. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  18. Response of geese to aircraft disturbances

    USGS Publications Warehouse

    Ward, David; Stehn, Robert A.; Derksen, Dirk V.

    2000-01-01

    Low-flying aircraft can affect behavior, physiology, and distribution of wildlife (Manci et al., 1988), and over time, may impact a population by reducing survival and reproductive performance. Thus, it is important to identify the particular aspects of overflights that affect animals so that management strategies can be developed to minimize adverse effects.Waterfowl are particularly sensitive to low-flying aircraft (Manci et al., 1988) and respond at all stages of their annual cycle, including breeding (Gollop et al., 1974a; Laing, 1991), molting (Derksen et al., 1979; Mosbech and Glahder, 1991), migration (Jones and Jones, 1966; Belanger and Bedard, 1989), and wintering (Owens, 1977; Kramer et al., 1979; Henry, 1980). Waterfowl response can be quite variable both within and among species (Fleming et al., 1996). For example, response can vary with age, sex, and body condition of individual, habitat type and quality, and previous exposure to aircraft (Dahlgren and Korshgen, 1992). However, the most important factors influencing a response are aircraft type (Davis and Wiseley, 1974; Jensen, 1990), noise (Mosbech and Glahder, 1991; Temple, 1993), and proximity to the birds, as measured in altitude and lateral distance (Derksen et al., 1979; Belanger and Bedard, 1989; Ward et al., 1994). Wildlife managers can reduce impacts on a population by controlling or modifying these factors.In an experimental study conducted at Izembek Lagoon in southwestern Alaska in 1985-1988 (Ward and Stehn, 1989), we conducted planned aircraft overflights with control of aircraft type, noise, altitude, and lateral distance to flocks (hereafter called lateral distance) to measure behavioral response of fall-staging Pacific brant (Branta bernicla nigricans) and Canada geese (B. canadensis taverneri) to fixed- and rotary-wing aircraft. These data were then used to develop predictive models of the relationship between aircraft type, noise, altitude, and lateral distance and the response of

  19. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  20. A new direction in energy conversion - The all-electric aircraft

    NASA Astrophysics Data System (ADS)

    Spitzer, C. R.

    1985-12-01

    This paper reviews recent studies of all-electric aircraft that use electric-only secondary power and flight critical fly-by-wire flight controls, and brings to the attention of the power system designer the intrinsic advantages of such aircraft. The all-electric aircraft is made possible by the development of rare earth magnet materials and fault tolerant systems technologies. Recent studies have shown all-electric aircraft to be more efficient than conventional designs and offer substantial operating costs reductions. Compared to present aircraft, an all-electric transport can save at least 10 percent in fuel burn. The cornerstone of an all-electric aircraft is the electric secondary power system. This paper reviews the major features of flight critical electric secondary power systems. Research required to lay the foundation for an all-electric aircraft is briefly discussed.

  1. A new direction in energy conversion - The all-electric aircraft

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.

    1985-01-01

    This paper reviews recent studies of all-electric aircraft that use electric-only secondary power and flight critical fly-by-wire flight controls, and brings to the attention of the power system designer the intrinsic advantages of such aircraft. The all-electric aircraft is made possible by the development of rare earth magnet materials and fault tolerant systems technologies. Recent studies have shown all-electric aircraft to be more efficient than conventional designs and offer substantial operating costs reductions. Compared to present aircraft, an all-electric transport can save at least 10 percent in fuel burn. The cornerstone of an all-electric aircraft is the electric secondary power system. This paper reviews the major features of flight critical electric secondary power systems. Research required to lay the foundation for an all-electric aircraft is briefly discussed.

  2. A brief review of the source noise technology applicable to fixed-wing military aircraft

    NASA Astrophysics Data System (ADS)

    Pinker, R. A.

    1992-04-01

    Although the last two decades have seen major reductions in the noise from civil aircraft, noise from military operations, both around airfields and from low-flying aircraft, continues to be a source of irritation and a potential health hazard. Because of the continuing concern about the noise levels produced by combat aircraft, the following paper is intended to provide some of the background to the main conclusions and recommendations reached in the final report of the NATO/Committee on the Challenges of a Modern Society (CCMS) Pilot Study on aircraft noise. Although biased towards fixed wing combat aircraft noise, the paper also considers other fixed wing military aircraft, but specifically excludes sonic booms and rotary wing aircraft as they both have their own particular noise sources and problems.

  3. Bridle Attachment for Aircraft Spin-Recovery Parachute

    NASA Technical Reports Server (NTRS)

    White, W. L.

    1985-01-01

    Antispin rolling moment produced by chute drag force. Parachute stowed prior to deployment. At deployment, bridle attachment produces antispin rolling moment. At recovery, parachute forces are in aircraft plane of symmetry. Attachment system reduces parachute diameter typically required for spin recovery of experimental aircraft during harzardous flight testing.

  4. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  5. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  6. V/STOL Dynamics, Control, and Flying Qualities

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    2000-01-01

    This publication presents material that constituted the lectures presented by the author as part of Course AA 234, Dynamics, Control, and Flying Qualities of Vertical/Short Takeoff and Landing (V/STOL) Aircraft that was taught in the Department of Aeronautics and Astronautics at Stanford University. It covers representative operations of vertical and short takeoff and landing (V/STOL) aircraft, a discussion of the pilot's strategy in controlling these aircraft, the equations of motion pertinent to V/STOL tasks, and their application in the analysis of longitudinal and lateral-directional control in hover and forward flight. Following that development, which applies to the characteristics of the basic airframe and propulsion system, the text concludes with a discussion of the contributions of control augmentation in specific flight tasks and of the integration of modern electronic displays with these controls.

  7. Passive Gust Alleviation for a Flying Wing Aircraft

    DTIC Science & Technology

    2013-01-10

    idealising it in punctual loads. The loads are applied on the nodes located at the aerodynamic centre of the frame and rib webs. The inertia of the...Excluding the concentration points in the inboard spars due to the application of punctual loads in the model, the same issue as the lower skin is

  8. [Revisions in the assessment of fitness for aircraft flying].

    PubMed

    Draeger, J

    2000-06-01

    So far medical requirements for aviators have been defined by national licensing authorities. For a long while ophthalmological problems, insufficiencies in vision, refraction or color vision, have been responsible for approximately 50% of rejection of applicants for medical reasons. New international regulations proposed as well by ICAO as JAA try to lead to a new balance in these requirements. In general, ophthalmological requirements now allow for lower standards, specifically in refraction, but also in color vision. Also new examination methods are admitted. German and French authorities have announced their opposition being concerned about flight safety for the future.

  9. Exploiting Formation Flying for Fuel Saving Supersonic Oblique Wing Aircraft

    DTIC Science & Technology

    2007-07-01

    examples of CFF Wind Tunnel work carried out in support of flight tests on the F/A-18. Fig.1.4 refers to CFF work on “ICE” models. Note the possibility of...of subsonic- transonic wings in formation and then re-designed them to eliminate the induced roll / pitch effects. A number of flight formations

  10. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  11. Complexity and Fly Swarms

    NASA Astrophysics Data System (ADS)

    Cates, Grant; Murray, Joelle

    Complexity is the study of phenomena that emerge from a collection of interacting objects and arises in many systems throughout physics, biology, finance, economics and more. Certain kinds of complex systems can be described by self-organized criticality (SOC). An SOC system is one that is internally driven towards some critical state. Recent experimental work suggests scaling behavior of fly swarms-one of the hallmarks of an SOC system. Our goal is to look for SOC behavior in computational models of fly swarms.

  12. Aircraft loss-of-control prevention and recovery: A hybrid control strategy

    NASA Astrophysics Data System (ADS)

    Dongmo, Jean-Etienne Temgoua

    The Complexity of modern commercial and military aircrafts has necessitated better protection and recovery systems. With the tremendous advances in computer technology, control theory and better mathematical models, a number of issues (Prevention, Reconfiguration, Recovery, Operation near critical points, ... etc) moderately addressed in the past have regained interest in the aeronautical industry. Flight envelope is essential in all flying aerospace vehicles. Typically, flying the vehicle means remaining within the flight envelope at all times. Operation outside the normal flight regime is usually subject to failure of components (Actuators, Engines, Deflection Surfaces) , pilots's mistakes, maneuverability near critical points and environmental conditions (crosswinds...) and in general characterized as Loss-Of-Control (LOC) because the aircraft no longer responds to pilot's inputs as expected. For the purpose of this work, (LOC) in aircraft is defined as the departure from the safe set (controlled flight) recognized as the maximum controllable (reachable) set in the initial flight envelope. The LOC can be reached either through failure, unintended maneuvers, evolution near irregular points and disturbances. A coordinated strategy is investigated and designed to ensure that the aircraft can maneuver safely in their constraint domain and can also recover from abnormal regime. The procedure involves the computation of the largest controllable (reachable) set (Safe set) contained in the initial prescribed envelope. The problem is posed as a reachability problem using Hamilton-Jacobi Partial Differential Equation (HJ-PDE) where a cost function is set to he minimized along trajectory departing from the given set. Prevention is then obtained by computing the controller which would allow the flight vehicle to remain in the maximum controlled set in a multi-objective set up. Then the recovery procedure is illustrated with a two-point boundary value problem. Once

  13. Modeling Programs Increase Aircraft Design Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  14. The atmospheric effects of stratospheric aircraft: A current consensus

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Carroll, M. A.; Demore, W. B.; Holton, J. R.; Isaksen, I. S. A.; Johnston, H. S.; Ko, M. K. W.

    1991-01-01

    In the early 1970's, a fleet of supersonic aircraft flying in the lower stratosphere was proposed. A large fleet was never built for economic, political, and environmental reasons. Technological improvements may make it economically feasible to develop supersonic aircraft for current markets. Some key results of earlier scientific programs designed to assess the impact of aircraft emissions on stratospheric ozone are reviewed, and factors that must be considered to assess the environmental impact of aircraft exhaust are discussed. These include the amount of nitrogen oxides injected in the stratosphere, horizontal transport, and stratosphere/troposphere assessment models are presented. Areas in which improvements in scientific understanding and model representation must be made to reduce the uncertainty in model calculations are identified.

  15. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  16. Propulsion system study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Hirschkron, R.; Warren, R. E.

    1981-01-01

    Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).

  17. Techno-economic requirements for composite aircraft components

    NASA Technical Reports Server (NTRS)

    Palmer, Ray

    1993-01-01

    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  18. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  19. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Elliott, Kathryn A.; Huebner, Steven R.

    2003-01-01

    In this study, new technology engines were defined in two power classes: a 200 hp class, for a light, 4-place personal aircraft, and a 1500 pound thrust class for a twin-engined, 6 place business jet type aircraft. The engines were evaluated for retrofitting suitable current production aircraft for comparison to the existing engines. The engines were evaluated for performance using a typical mission for each aircraft, as well as a variant mission to further appraise performance.Issues of cost, safety, maintenance, and reliability were also addressed. Manufacturing plans were then constructed.

  20. Economic Impact of Stable Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dynamic model was created to estimate the economic impact of stable flies on livestock production. Based upon a nationwide average of 10 stable flies per animal for 3 months per year, the model estimates the impact of stable flies to be $543 million to the dairy industry, $1.34 billion to pasture ...

  1. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  2. Simulation evaluation of the control system command monitoring concept for the NASA V/STOL research aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Moralez, E.; Merrick, V. K.

    1987-01-01

    A control-system monitoring concept is described that has the potential of rapidly detecting computer command failures (hardware or software) in fly-by-wire control systems. The concept has been successfully tested on the NASA Vertical/Short Takeoff and Landing Research Aircraft (VSRA) in the Ames Research Center's Vertical Motion Simulator. The test was particularly stringent, since the VSRA is required to operate in a hazardous environment. The fidelity of the aircraft model used in the simulation was verified by flying both the simulated and actual aircraft in a precision hover task using specially designed targets.

  3. Fly on the Wall

    ERIC Educational Resources Information Center

    Berry, Dave; Korpan, Cynthia

    2009-01-01

    This paper describes the implementation of a peer observation program at the University of Victoria called the Lecture Club. The observers are not interactive during the class--they are the proverbial flies on the wall. The paper identifies the program as self-developmental, discussing the attributes of this learning-to-teach and peer-sharing…

  4. Wisdom from the fly.

    PubMed

    Rieder, Leila E; Larschan, Erica N

    2014-11-01

    Arguably, almost all research in Drosophila can be considered basic research, yet many of the most essential and fundamental concepts of human genetics were first decoded in the fly. Although the fly genome, which is organized into only four chromosomes, is approximately one-twentieth the size of the human genome, it contains roughly the same number of genes, and up to 75% of human disease-related genes have Drosophila homologues [1]. The fly was prized for its simplicity and utility even before such compelling homology with humans was apparent. Since Thomas Hunt Morgan began his seminal experiments over a century ago (Table 1), the Drosophila system has revealed countless key mechanisms by which cells function, including the factors that maintain chromatin and the signaling pathways that control cell fate determination and organism development. More recently, the fly has emerged as a critical neurobiological tool and disease model for a range of genetic disorders. In this review, we present a brief retrospective of Drosophila as an indispensable genetic system and discuss some of the many contributions, past and present, of this facile system to human genetics.

  5. Flying High with Spring.

    ERIC Educational Resources Information Center

    Harrington, Carolyn Lang

    2000-01-01

    Presents an art activity for first grade that uses multicolor scratch paper. Explains that students make scratch-drawings of bird nests, then, as a class, discuss types of birds and bird positions (such as sitting or flying), and finally each creates a bird to add to the nest. (CMK)

  6. Pregnancy and Flying Duties

    DTIC Science & Technology

    1994-08-01

    Division U.S. Army Aeromedical Research Laboratory Joy of new life temperamentally unfit to fly and prone to panic in any calamity." In the 1930s, Amelia ...One of my greatest joys has been Earhart said, "Men do not believe us capable." delivering babies for aircrew members and In 1939, women were barred

  7. Testing typicality in multiverse cosmology

    NASA Astrophysics Data System (ADS)

    Azhar, Feraz

    2015-05-01

    In extracting predictions from theories that describe a multiverse, we face the difficulty that we must assess probability distributions over possible observations prescribed not just by an underlying theory, but by a theory together with a conditionalization scheme that allows for (anthropic) selection effects. This means we usually need to compare distributions that are consistent with a broad range of possible observations with actual experimental data. One controversial means of making this comparison is by invoking the "principle of mediocrity": that is, the principle that we are typical of the reference class implicit in the conjunction of the theory and the conditionalization scheme. In this paper, we quantitatively assess the principle of mediocrity in a range of cosmological settings, employing "xerographic distributions" to impose a variety of assumptions regarding typicality. We find that for a fixed theory, the assumption that we are typical gives rise to higher likelihoods for our observations. If, however, one allows both the underlying theory and the assumption of typicality to vary, then the assumption of typicality does not always provide the highest likelihoods. Interpreted from a Bayesian perspective, these results support the claim that when one has the freedom to consider different combinations of theories and xerographic distributions (or different "frameworks"), one should favor the framework that has the highest posterior probability; and then from this framework one can infer, in particular, how typical we are. In this way, the invocation of the principle of mediocrity is more questionable than has been recently claimed.

  8. Recent progress in a classical biological control program for olive fruit fly in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe damage to olive production worldwide. Control of olive fruit fly typically relies on pesticides, and under such conditions the impact of natural enemies is relatively low. About 15 years ago, the USDA-ARS European Biologic...

  9. A mathematic model that describes modes of MdSGHV transmission within house fly populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper it is proposed that one potential component by which the Musca domestica salivary gland hypertrophy virus (MdSGHV) infects individual flies is through cuticular damage. Breaks in the cuticle allow entry of the virus into the hemocoel causing the infection. Male flies typically have a h...

  10. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  11. An annotated checklist of the horse flies, deer flies, and yellow flies (Diptera: Tabanidae) of Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family Tabanidae includes the horse flies, deer flies, and yellow flies and is considered a significant pest of livestock throughout the United States, including Florida. Tabanids can easily become a major pest of man, especially salt marsh species which are known to readily feed on humans and o...

  12. Susceptibility of black soldier fly (Diptera: Stratiomyidae) larvae and adults to four insecticides.

    PubMed

    Tomberlin, Jeffery K; Sheppard, D Craig; Joyce, John A

    2002-06-01

    Dosage-mortality regressions were determined for black soldier fly, Hermetia illucens (L.), larvae fed cyromazine or pyriproxifen treated media. Cyromazine LC50 for larvae dying before becoming prepupae ranged from 0.25 to 0.28 ppm with dosage-mortality regression slopes between 5.79 and 12.04. Cyromazine LC50s for larvae dying before emergence ranged from 0.13 to 0.19 ppm with dosage-mortality regression slopes between 3.94 and 7.69. Pyriproxifen dosage-mortality regressions were not generated for larvae failing to become prepupae since <32% mortality was recorded at the highest concentration of 1,857 ppm. LC50s for larvae failing to become adults ranged from 0.10 to 0.12 ppm with dosage mortality-regression slopes between 1.67 and 2.32. Lambda-cyhalothrin and permethrin dosage-mortality regressions were determined for wild adult black soldier flies and house flies, Musca domestica L., and for susceptible house flies. Our results indicate that the wild house fly, unlike the black soldier fly, population was highly resistant to each of these pyrethroids. Regression slopes for black soldier flies exposed to lambda-cyhalothrin were twice as steep as those determined for the wild house fly strain. Accordingly, LC50s for the black soldier fly and susceptible house fly were 10- to 30-fold lower than those determined for wild house flies. The differential sensitivity between wild black soldier flies and house flies might be due to behavioral differences. Adult house flies usually remain in animal facilities with the possibility of every adult receiving pesticide exposure, while black soldier fly adults are typically present only during emergence and oviposition thereby limiting their exposure.

  13. Correlations between visual test results and flying performance on the advanced simulator for pilot training (ASPT).

    PubMed

    Kruk, R; Regan, D; Beverley, K I; Longridge, T

    1981-08-01

    Looking for visual differences in pilots to account for differences in flying performance, we tested five groups of subjects: Air Force primary student jet pilots, graduating (T38 aircraft) students, Air Force pilot instructors, and two control groups made up of experienced nonpilot aircrew and nonflying civilians. This interim report compares 13 different visual test results with low-visibility landing performance on the Air Force Human Resources Laboratory ASPT simulator. Performance was assessed by the number of crashes and by the distance of the aircraft from the runway threshold at the time of the first visual flight correction. Our main finding was that, for student pilots, landing performance correlated with tracking performance for a target that changed size (as if moving in depth) and also with tracking performance for a target that moved sideways. On the other hand, landing performance correlated comparatively weakly with psychophysical thresholds for motion and contrast. For student pilots, several of the visual tests gave results that correlated with flying grades in T37 and T38 jet aircraft. Tracking tests clearly distinguished between the nonflying group and all the flying groups. On the other hand, visual threshold tests did not distinguish between nonflying and flying groups except for grating contrast, which distinguished between the nonflying group and the pilot instructors. The sideways-motion tracking task was sensitive enough to distinguish between the various flying groups.

  14. System design requirements for advanced rotary-wing agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Lemont, H. E.

    1979-01-01

    Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.

  15. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  16. O fly, where art thou?

    PubMed

    Grover, Dhruv; Tower, John; Tavaré, Simon

    2008-10-06

    In this paper, the design of a real-time image acquisition system for tracking the movement of Drosophila in three-dimensional space is presented. The system uses three calibrated and synchronized cameras to detect multiple flies and integrates the detected fly silhouettes to construct the three-dimensional visual hull models of each fly. We used an extended Kalman filter to estimate the state of each fly, given past positions from the reconstructed fly visual hulls. The results show that our approach constructs the three-dimensional visual hull of each fly from the detected image silhouettes and robustly tracks them at real-time rates. The system is suitable for a more detailed analysis of fly behaviour.

  17. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  18. Detection and Analysis of High Ice Concentration Events and Supercooled Drizzle from IAGOS Commercial Aircraft

    NASA Astrophysics Data System (ADS)

    Gallagher, Martin; Baumgardner, Darrel; Lloyd, Gary; Beswick, Karl; Freer, Matt; Durant, Adam

    2016-04-01

    Hazardous encounters with high ice concentrations that lead to temperature and airspeed sensor measurement errors, as well as engine rollback and flameout, continue to pose serious problems for flight operations of commercial air carriers. Supercooled liquid droplets (SLD) are an additional hazard, especially for smaller commuter aircraft that do not have sufficient power to fly out of heavy icing conditions or heat to remove the ice. New regulations issued by the United States and European regulatory agencies are being implemented that will require aircraft below a certain weight class to carry sensors that will detect and warn of these types of icing conditions. Commercial aircraft do not currently carry standard sensors to detect the presence of ice crystals in high concentrations because they are typical found in sizes that are below the detection range of aircraft weather radar. Likewise, the sensors that are currently used to detect supercooled water do not respond well to drizzle-sized drops. Hence, there is a need for a sensor that can fill this measurement void. In addition, the forecast models that are used to predict regions of icing rely on pilot observations as the only means to validate the model products and currently there are no forecasts for the prevalence of high altitude ice crystals. Backscatter Cloud Probes (BCP) have been flying since 2011 under the IAGOS project on six Airbus commercial airliners operated by Lufthansa, Air France, China Air, Iberia and Cathay Pacific, and measure cloud droplets, ice crystals and aerosol particles larger than 5 μm. The BCP can detect these particles and measures an optical equivalent diameter (OED) but is not able to distinguish the type of particle, i.e. whether they are droplets, ice crystals, dust or ash. However, some qualification can be done based on measured temperature to discriminate between liquid water and ice. The next generation BCP (BCPD, Backscatter Cloud Probe with polarization detection) is

  19. The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NAS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NASA's Dryden flight Research Center, Edwards, California. The 247-foot span solar-powered aircraft, resting on its ground maneuvering dolly, was on display for a visit of NASA Administrator Sean O'Keefe and other NASA officials on January 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on August 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  20. Frequency Analysis of Aircraft hazards for License Application

    SciTech Connect

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  1. Effects of aircraft design on STOL ride quality: A simulator study

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Jones, C. R.

    1974-01-01

    To improve the ride quality in short takeoff aircraft, several means have been investigated. In general, these methods consist of placing sensors in the aircraft which sense aircraft motion, usually linear accelerations and angular rates. These signals are then used to deflect control surfaces which generate aerodynamic forces and moments which tend to minimize the motion which the passenger feels. One of the disadvantages of some of these systems is that they may tend to degrade the handling qualities or controllability of the airplane, making it more difficult or annoying for the pilot to fly. Rather than using active control systems to control ride quality, one might possibly design aircraft so that they are inherently pleasant to ride. The purpose of this study is to determine the relationship between characteristic aircraft motions and aircraft ride quality.

  2. A NASA study of the impact of technology on future sea based attack aircraft

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    1992-01-01

    A conceptual aircraft design study was recently completed evaluating carrier-based, subsonic attack aircraft using contemporary and future technology assumptions. The study examined a configuration matrix that was made up of light and medium bomb loads, one and two man crews, internal and external weapons carriage, as well as conventional and flying wing planforms. Use of common technology assumptions, engine cycle simulation code, design mission, and consistent application of methods allow for direct comparison of the aircraft. This paper describes the design study ground rules and the aircraft designed. The aircraft descriptions include weights, dimensions, layout, design mission, design constraints, maneuver performance, and fallout mission performance. The strengths, and weaknesses of each aircraft are highlighted.

  3. Flies with Parkinson's disease.

    PubMed

    Vanhauwaert, Roeland; Verstreken, Patrik

    2015-12-01

    Parkinson's disease is an incurable neurodegenerative disease. Most cases of the disease are of sporadic origin, but about 10% of the cases are familial. The genes thus far identified in Parkinson's disease are well conserved. Drosophila is ideally suited to study the molecular neuronal cell biology of these genes and the pathogenic mutations in Parkinson's disease. Flies reproduce quickly, and their elaborate genetic tools in combination with their small size allow researchers to analyze identified cells and neurons in large numbers of animals. Furthermore, fruit flies recapitulate many of the cellular and molecular defects also seen in patients, and these defects often result in clear locomotor and behavioral phenotypes, facilitating genetic modifier screens. Hence, Drosophila has played a prominent role in Parkinson's disease research and has provided invaluable insight into the molecular mechanisms of this disease.

  4. Test What You Fly?

    NASA Technical Reports Server (NTRS)

    Margolies, Don

    2002-01-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  5. Test What You Fly?

    NASA Astrophysics Data System (ADS)

    Margolies, Don

    2002-10-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  6. Cost Index Flying

    DTIC Science & Technology

    2011-06-01

    continually alter applicable cost indexes . Computed KC-10 Cost Index Equation Using the dollar figures given above, our CI equation reads : CI = CT / C...COST INDEX FLYING GRADUATE RESEARCH PAPER John M. Mirtich, Major, USAF AFIT/IMO/ENS/11-11 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY...AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

  7. Fly-scan ptychography

    DOE PAGES

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; ...

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  8. Flying Saucer? Aliens?

    NASA Technical Reports Server (NTRS)

    1961-01-01

    No, it's not a flying saucer, it is the domed top to a 70 foot long vacuum tank at the Lewis Research Center's Electric Propulsion Laboratory, Cleveland, Ohio. The three technicians shown here in protective clothing had just emerged from within the tank where they had been cleaning in the toxic mercury atmosphere, left after ion engine testing in the tank. Lewis has since been renamed the John H. Glenn Research Center.

  9. Typical errors of ESP users

    NASA Astrophysics Data System (ADS)

    Eremina, Svetlana V.; Korneva, Anna A.

    2004-07-01

    The paper presents analysis of the errors made by ESP (English for specific purposes) users which have been considered as typical. They occur as a result of misuse of resources of English grammar and tend to resist. Their origin and places of occurrence have also been discussed.

  10. The Electrocardiogram and Ischemic Heart Disease in Aircraft Pilots

    PubMed Central

    Manning, G. W.

    1965-01-01

    A review of the Royal Canadian Air Force electrocardiographic (ECG) program for selection of aircrew and detection of coronary disease in trained aircrew is presented. Twenty reported cases of death due to coronary disease in pilots while at the controls of an aircraft are reviewed. The use of routine electrocardiography in the selection of aircrew has proved to be of considerable value, particularly in view of the high cost of training. The ECG continues to be our most sensitive means of detecting asymptomatic coronary disease in aircrew personnel. It is apparent that from both the military and commercial standpoint the incidence of aircraft accidents due to coronary disease is extremely small. This is due in large part to the careful medical supervision of flying personnel including the routine use of electrocardiography in the assessment of flying fitness of aircrew. PMID:14323657

  11. Flight Safety Aircraft Risk: A Growing Problem

    NASA Astrophysics Data System (ADS)

    Haber, J. M.

    2012-01-01

    In recent years there has been a growing awareness of the need to have appropriate criteria for protection of aircraft from debris resulting from the flight termination of a malfunctioning space booster. There have been several sequences of events that have interacted to bring us to the current risk management problem. With the advent of the US initiative to have common flight safety analysis processes and criteria, it was recognized that the traditional aircraft protection approach was inadequate. It did not consider the added public concern for catastrophic events. While the probability may have been small for downing a large commercial passenger plane, the public outrage if it happened would not be adequately measured by the individual risk to passengers nor the collective (societal risk) presented by a single airplane. Over a period of a number of years the US has developed and evolved a criterion to address catastrophic risk protection. Beginning in the same time period, it was recognized the assertion that all debris with masses greater than one gram were lethal to aircraft was unduly conservative. Over this same period initiatives have been developed to refine aircraft vulnerability models. There were, however, two significant unconservative assumptions that were made in the early years. It was presumed that significant risk to aircraft could only occur in the launch area. In addition, aircraft risk assessments, when they were made were based on debris lists designed to protect people on the ground (typically debris with an impact kinetic energy greater than 11 ft-lb). Good debris lists for aircraft protection do not yet exist. However, it has become increasingly clear that even with partial breakup lists large regions were required from which aircraft flight would be restricted using the normal exclusion approaches. We provide a review of these events and an indication of the way forward.

  12. Determination of tailless aircraft tumbling and stability characteristics through computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Saephan, Syta

    Tailless aircraft configurations such as flying wings are susceptible to tumbling. Tumbling involves an autorotative pitching motion primarily about an axis parallel to the aircraft's lateral axis combined with planar translation. Tumbling is the suspected cause of a tailless aircraft (Northrop YB-49) crash in the late 1940s and is a potential problem for future flying wing and blended wing body aircraft. It may be difficult if not impossible for a tailless aircraft to escape the tumbling motion once it begins. It is therefore important for aircraft designers to know the causes of tumbling in order to prevent its onset. Tumbling has been demonstrated in qualitative free-flight wind tunnel experiments, but few have attempted to quantify the motion using computational fluid dynamics. The purpose of this research is to use computational fluid dynamics to study the tumbling characteristics of a tailless aircraft and then determine dynamic stability information from the simulations. Specifically, the effects of initial conditions, degrees-of-freedom, Reynolds number, and aircraft static margin will be investigated. Lumped pitch damping derivatives will be determined from the simulations.

  13. Intelligent Control Approaches for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; KrishnaKumar, K.; Soloway, Don; Kaneshige, John; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This paper presents an overview of various intelligent control technologies currently being developed and studied under the Intelligent Flight Control (IFC) program at the NASA Ames Research Center. The main objective of the intelligent flight control program is to develop the next generation of flight controllers for the purpose of automatically compensating for a broad spectrum of damaged or malfunctioning aircraft components and to reduce control law development cost and time. The approaches being examined include: (a) direct adaptive dynamic inverse controller and (b) an adaptive critic-based dynamic inverse controller. These approaches can utilize, but do not require, fault detection and isolation information. Piloted simulation studies are performed to examine if the intelligent flight control techniques adequately: 1) Match flying qualities of modern fly-by-wire flight controllers under nominal conditions; 2) Improve performance under failure conditions when sufficient control authority is available; and 3) Achieve consistent handling qualities across the flight envelope and for different aircraft configurations. Results obtained so far demonstrate the potential for improving handling qualities and significantly increasing survivability rates under various simulated failure conditions.

  14. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  15. Flying Through Dust From Asteroids

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  16. Pathfinder aircraft returning from a flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71

  17. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    NASA Astrophysics Data System (ADS)

    Palaniappan, Jayanthi

    2017-04-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  18. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    NASA Astrophysics Data System (ADS)

    Palaniappan, Jayanthi

    2016-05-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  19. Pest Control on the "Fly"

    NASA Technical Reports Server (NTRS)

    2002-01-01

    FlyCracker(R), a non-toxic and environmentally safe pesticide, can be used to treat and control fly problems in closed environments such as milking sheds, cattle barns and hutches, equine stables, swine pens, poultry plants, food-packing plants, and even restaurants, as well as in some outdoor animal husbandry environments. The product can be applied safely in the presence of animals and humans, and was recently permitted for use on organic farms as livestock production aids. FlyCracker's carbohydrate technology kills fly larvae within 24 hours. By killing larvae before they reach the adult stages, FlyCracker eradicates another potential breeding population. Because the process is physical-not chemical-flies and other insects never develop resistance to the treatment, giving way to unlimited use of product, while still keeping the same powerful effect.

  20. Aircraft Survivability. Spring 2009

    DTIC Science & Technology

    2009-01-01

    Surviving an Aircraft Crash with Airbag Restraintsby Thomas Barth Inflatable restraint solutions have improved the survivability of commercial...Surviving an Aircraft Crash with Airbag Restraints by Thomas Barth Transport Aircraft Interiors The AmSafe Aviation Airbag entered service on commercial...all night.” Keithley also noted that, in his early days at BRL, Walt teamed up with a group of like-minded innovators, including Jim Foulk, Roland

  1. Lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  2. Typical and atypical AIS. Pathogenesis.

    PubMed

    Dudin, M; Pinchuk, D

    2012-01-01

    AIS hypothesis has the right to recognition, if it explains the transition of "healthy" vertebra column into status of "scoliotic" one. AIS is the most investigated disease in the history of orthopedics, but up the present time there is no clear explanation of some its phenomena: vertebra column mono-form deformation along with its poly etiology character, interrelation of its origin and development and child's growth process etc. The key for authors' view at AIS was scoliosis with non-standard (concave side) rotation. On the bases of its' multifunctional instrumental investigation results (Rtg, EMG, EEG, optical topography, hormonal and neuropeptides trials, thermo-vision methods and other) in comparison with typical AIS was worked out the new hypothesis, part of it is suggested for discussion. In the work under observation is the sequence of appearance of typical and atypical scoliosis symptomatology beginning from the preclinical stage.

  3. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  4. Structureborne noise in aircraft

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Metcalf, V. L.

    1987-01-01

    The amount of noise reaching an aircraft's interior by structureborne paths, when high levels of other noises are present, involves the measurement of transfer functions between vibrating levels on the wing and interior noise. The magnitude of the structureborne noise transfer function is established by exciting the aircraft with an electrodynamic shaker; a second transfer function is measured using the same sensor locations with the aircraft engines operating. Attention is given to the case of a twin-turboprop OV-10A aircraft; the resulting transfer function values at the discrete frequencies corresponding to the propeller blade passage frequency and its first four harmonics are tabulated and illustrated.

  5. Blood feeding behavior of the stable fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable fly is a fly that looks similar to a house fly but both sexes are blood feeders. Blood is required for successful fertilization and development of eggs. Bites are painful but there is usually no pain after the fly stops feeding. The stable fly is a persistent feeder and will continue trying t...

  6. Noninvasive Analysis of Microbiome Dynamics in the Fruit Fly Drosophila melanogaster

    PubMed Central

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F.

    2013-01-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations. PMID:24014528

  7. Dryden B-52 Launch Aircraft in Flight over Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of

  8. Study of aircraft crashworthiness for fire protection

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1981-01-01

    Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.

  9. Vision in flying insects.

    PubMed

    Egelhaaf, Martin; Kern, Roland

    2002-12-01

    Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.

  10. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  11. Flying by Titan

    NASA Technical Reports Server (NTRS)

    Pelletier, Frederic J.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Ionasescu, Rodica; Jacobson, Robert A.; Jones, Jeremy B.; Parcher, Daniel W.; Roth, Duane C.; Thompson, Paul F.; Vaughan, Andrew T.

    2008-01-01

    The Cassini spacecraft encounters the massive Titan about once every month. These encounters are essential to the mission as Titan is the only satellite of Saturn that can provide enough gravity assist to shape the orbit tour and allow outstanding science for many years. From a navigation point of view, these encounters provide many challenges, in particular those that fly close enough to the surface for the atmospheric drag to perturb the orbit. This paper discusses the dynamics models developed to successfully navigate Cassini and determine its trajectory. This includes the moon's gravity pull with its second degree zonal harmonics J2, the attitude thrust control perturbations and the acceleration of drag.

  12. Flying over decades

    NASA Astrophysics Data System (ADS)

    Hoeller, Judith; Issler, Mena; Imamoglu, Atac

    Levy flights haven been extensively used in the past three decades to describe non-Brownian motion of particles. In this presentation I give an overview on how Levy flights have been used across several disciplines, ranging from biology to finance to physics. In our publication we describe how a single electron spin 'flies' when captured in quantum dot using the central spin model. At last I motivate the use of Levy flights for the description of anomalous diffusion in modern experiments, concretely to describe the lifetimes of quasi-particles in Josephson junctions. Finished PhD at ETH in Spring 2015.

  13. Hovering of a jellyfish-like flying machine

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Childress, Stephen

    2013-11-01

    Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving maneuverability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct, and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Lift measurements and high-speed video of free-flight are used to inform an aerodynamic model that explains the stabilization mechanism. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.

  14. Flying in, Flying out: Offshore Teaching in Higher Education

    ERIC Educational Resources Information Center

    Seah, Wee Tiong; Edwards, Julie

    2006-01-01

    This paper discusses the relatively new phenomenon of university education faculties offering offshore education. The analogy, "flying in, flying out" captures the intensity of such offshore experiences for visiting academics, and contrasts their professional experiences against expatriate academics. This paper reports on case studies of…

  15. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  16. Affordable MMW aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    Almsted, Larry D.; Becker, Robert C.; Zelenka, Richard E.

    1997-06-01

    Collision avoidance is of concern to all aircraft, requiring the detection and identification of hazardous terrain or obstacles in sufficient time for clearance maneuvers. The collision avoidance requirement is even more demanding for helicopters, as their unique capabilities result in extensive operations at low-altitude, near to terrain and other hazardous obstacles. TO augment the pilot's visual collision avoidance abilities, some aircraft are equipped with 'enhanced-vision' systems or terrain collision warning systems. Enhanced-vision systems are typically very large and costly systems that are not very covert and are also difficult to install in a helicopter. The display is typically raw images from infrared or radar sensors, and can require a high degree of pilot interpretation and attention. Terrain collision warning system that rely on stored terrain maps are often of low resolution and accuracy and do not represent hazards to the aircraft placed after map sampling. Such hazards could include aircraft parked on runway, man- made towers or buildings and hills. In this paper, a low cost dual-function scanning pencil-beam, millimeter-wave radar forward sensor is used to determine whether an aircraft's flight path is clear of obstructions. Due to the limited space and weight budget in helicopters, the system is a dual function system that is substituted in place of the existing radar altimeter. The system combines a 35 GHz forward looking obstacle avoidance radar and a 4.3 GHz radar altimeter. The forward looking 35 GHz 3D radar's returns are used to construct a terrain and obstruction database surrounding an aircraft, which is presented to the pilot as a synthetic perspective display. The 35 GHz forward looking radar and the associated display was evaluated in a joint NASA Honeywell flight test program in 1996. The tests were conducted on a NASA/Army test helicopter. The test program clearly demonstrated the systems potential usefulness for collision avoidance.

  17. Typical Reactive Armor Safety Tests

    DTIC Science & Technology

    1993-04-02

    way. etc.). c. Penetration measurements into the backup armor of the dynamic or static rounds (i.e., partial or comple e penetration, depth of...ZP Oe) Alberdeen Prc~ving Ground , MD 21005-5059 Aberdeen Proving Ground , HD 21005-5055 as NAVE 0ýu- TLD,%G 57ON5ORNG 16 (VEif N8 9...OPFJPATIONS PROCEDURE AMSTE-RP-702-10 Test Operatiuns Procedure (TOP) 2-2-623 AD No. 2 April 1993 TYPICAL REACTIVE ARMOR SAFETY TESTS Paragraph 1

  18. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  19. GVE-Based Dynamics and Control for Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Breger, Louis; How, Jonathan P.

    2004-01-01

    Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.

  20. Future aircraft and potential effects on stratospheric ozone and climate

    SciTech Connect

    Kinnison, D.E.; Wuebbles, D.J.

    1991-10-01

    The purpose of this study is to extend the recent research examining the global environmental effects from potential fleets of subsonic and supersonic commercial aircraft. Initial studies with LLNL models of global atmospheric chemical, radiative, and transport processes have indicated that substantial decreases in stratospheric ozone concentrations could result from emissions of NO{sub x} from aircraft flying in the stratosphere, depending on fleet size and magnitude of the engine emissions. These studies used homogeneous chemical reaction rates (e.g. gas-phase chemistry). Recent evidence indicates that reactions on particles in the stratosphere may be important. Heterogeneous chemical reactions, for instance, N{sub 2}O{sub 5}and ClONO{sub 2} on background sulfuric acid aerosols, convert NO{sub x}(NO and NO{sub 2}) molecules to HNO{sub 3}. This decreases the odd oxygen loss from the NO{sub x} catalytic cycle and increases the odd oxygen loss from the Cl{sub x} catalytic cycle. By including these heterogeneous reactions in the LLNL model, the relative partitioning of odd oxygen loss between these two families changes, with the result that emissions of NO{sub x} from proposed aircraft fleets flying in the stratosphere now increase zone. Having these heterogeneous processes present also increases ozone concentration in the troposphere relative to gas-phase only chemistry calculations for emissions of NO{sub x} from subsonic aircraft. 26 refs., 5 figs., 3 tabs.

  1. Recent Experiences with Operating Unmanned Aircraft in Arctic Conditions

    NASA Astrophysics Data System (ADS)

    Walker, G.

    2011-12-01

    The University of Alaska Geophysical Institute has been identifying technical issues with operating small-unmanned aircraft in the harsh conditions of flying in the Arctic. Here we first describe the Institute's recent and ongoing scientific activity that involve unmanned aircraft in the Arctic and correlate these technical challenges to conducting safe operations. Of specific interest is building survivable observation platforms for low altitude remote sensing within the Marginal Ice Zone (MIZ) that fly from either shore or an Arctic capable research vessel. Unmanned aircraft based sensors can assist with obtaining ground truth knowledge of sea ice conditions and characteristics within the MIZ. The Institute's high-resolution imagery capability coupled to its airborne synthetic aperture radar can capture the floe size distribution, show what percent of ice in the MIZ complex is multi-year ice, and capture the effects of wind on the ice edge in real time. The Institute's experiments have also demonstrated a cost-effective, safe means of surveying marine mammals in such conditions. This presentation addresses ongoing work with Steller sea lion survey and past work with ice seal populations that have afforded wonderful opportunities to identify the technology limitations that exist today that prevent further unmanned aircraft exploitation.

  2. Laminar-turbulent transition on the flying wing model

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. M.; Zanin, B. Yu.; Katasonov, M. M.

    2016-10-01

    Results of an experimental study of a subsonic flow past aircraft model having "flying wing" form and belonging to the category of small-unmanned aerial vehicles are reported. Quantitative data about the structure of the flow near the model surface were obtained by hot-wire measurements. It was shown, that with the wing sweep angle 34 °the laminar-turbulent transition scenario is identical to the one on a straight wing. The transition occurs through the development of a package of unstable oscillations in the boundary layer separation.

  3. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  4. Lightning protection of aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1977-01-01

    The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.

  5. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  6. Predicting Aircraft Availability

    DTIC Science & Technology

    2013-06-01

    ENS- GRP -13-J-2 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio...AFIT-ENS- GRP -13-J-2 PREDICTING AIRCRAFT AVAILABILITY GRADUATE RESEARCH PROJECT Presented to the Faculty Department of Operational...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENS- GRP -13-J-2 PREDICTING AIRCRAFT AVAILABILITY Mark A. Chapa

  7. Physics of flying

    NASA Astrophysics Data System (ADS)

    Vetrone, Jim

    2015-05-01

    Column editor's note: As the school year comes to a close, it is important to start thinking about next year. One area that you want to consider is field trips. Many institutions require that teachers plan for a field trip well in advance. Keeping that in mind, I asked Jim Vetrone to write an article about the fantastic field trip he takes his AP Physics students on. I had the awesome opportunity to attend a professional development day that Jim arranged at iFLY in the Chicago suburbs. The experience of "flying" in a wind tunnel was fabulous. Equally fun was watching the other physics teachers come up with experiments to have the professional "flyers" perform in the tube. I could envision my students being similarly excited about the experience and about the development of their own experiments. After I returned to school, I immediately began the process of trying to get this field trip approved for the 2015-16 school year. I suggest that you start your process as well if you hope to try a new field trip next year. The key to getting the approval, in my experience, is submitting a proposal early that includes supporting documentation from sources. Often I use NGSS or state standards as justifications for my field trips. I have also quoted College Board expectations for AP Physics 1 and 2 in my documents when requesting an unusual field trip.

  8. The Flying University

    NASA Astrophysics Data System (ADS)

    Friesen, Catherine

    The Flying University is solo theater performance framed as an academic lecture about Marie Curie and her discovery of radium, delivered to a group of women who have gathered in secret to further their education. As the lecture proceeds, the professor brings in her own research based on a study of Esther Horsch (1905-1991) who lived on a farm in central Illinois. She introduces data from Esther's journals, personal memories, and dreams about Esther's life. The professor's investigation of radium plays at the intersections of magical and mundane, decay and the transformation of life, and the place of ambition in these two women's lives. The intention of this piece is to explore these themes, which are full of mystery, through the traces of the daily lives of Mme. Curie and Esther. Their words and photos are used as roots from which to imagine the things that echo beyond their familiar work; elemental and also fantastically radiant. The Flying University was written and performed by Catherine Friesen April 27-29, 2012 in the Center for Performance Experiment at Hamilton College as part of the University of South Carolina MFA Acting Class of 2013 showcase, Pieces of Eight.

  9. Passenger aircraft cabin air quality: trends, effects, societal costs, proposals.

    PubMed

    Hocking, M B

    2000-08-01

    As aircraft operators have sought to substantially reduce propulsion fuel cost by flying at higher altitudes, the energy cost of providing adequate outside air for ventilation has increased. This has lead to a significant decrease in the amount of outside air provided to the passenger cabin, partly compensated for by recirculation of filtered cabin air. The purpose of this review paper is to assemble the available measured air quality data and some calculated estimates of the air quality for aircraft passenger cabins to highlight the trend of the last 25 years. The influence of filter efficiencies on air quality, and a few medically documented and anecdotal cases of illness transmission aboard aircraft are discussed. Cost information has been collected from the perspective of both the airlines and passengers. Suggestions for air quality improvement are given which should help to result in a net, multistakeholder savings and improved passenger comfort.

  10. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  11. Finite-difference modeling of commercial aircraft using TSAR

    SciTech Connect

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  12. An overview of V/STOL aircraft development

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.

    1983-01-01

    In reviewing the years of aviation development, it can be seen that vertical-takeoff-and-landing (VTOL) flight was considered before conventional fixed-wing operations. However, it has been difficult to develop a VTOL capability. The present investigation is concerned with a review of the historical development of VTOL aircraft, taking into account lessons learned from a selected group of concepts. Attention is given to the Flying Bedsteads, the tail-sitter designs, the Air Test Vehicle (ATV) and X-14 aircraft, the SC-1, the XV-3 tilt-rotor aircraft, the VZ3-RY deflected slipstream, the X-18 tilt wing, the VZ-2 tilt wing, the VZ-4 ducted fan, the Harrier, the XV-4A (Hummingbird), the Forger, and the XV-15 advanced tilt rotor.

  13. A Simple Two Aircraft Conflict Resolution Algorithm

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    2006-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.

  14. A Simple Two Aircraft Conflict Resolution Algorithm

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    1999-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in the cockpit, dispatchers in operation control centers and air traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control imctions.This paper describes a conflict detection and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection and resolution method.

  15. 50 years of transonic aircraft design

    NASA Astrophysics Data System (ADS)

    Jameson, Antony; Ou, Kui

    2011-07-01

    This article traces the evolution of long range jet transport aircraft over the 50 years since Kuechemann founded the journal Progress in Aerospace Sciences. The article is particularly focused on transonic aerodynamics. During Kuechemann's life time a good qualitative understanding had been achieved of transonic flow and swept wing design, but transonic flow remained intractable to quantitative prediction. During the last 50 years this situation has been completely transformed by the introduction of sophisticated numerical algorithms and an astonishing increase in the available computational power, with the consequence that aerodynamic design is now carried out largely by computer simulation. Moreover developments in aerodynamic shape optimization based on control theory enable a competitive swept wing to be designed in just two simulations, as illustrated in the article. While the external appearance of long range jet aircraft has not changed much, advances in information technology have actually transformed the entire design and manufacturing process through parallel advances in computer aided design (CAD), computational structural mechanics (CSM) and multidisciplinary optimization (MDO). They have also transformed aircraft operations through the adoption of digital fly-by-wire and advanced navigational techniques.

  16. High angle of attack flying qualities criteria for longitudinal rate command systems

    NASA Technical Reports Server (NTRS)

    Wilson, David J.; Citurs, Kevin D.; Davidson, John B.

    1994-01-01

    This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.

  17. Why aircraft disinsection?

    PubMed

    Gratz, N G; Steffen, R; Cocksedge, W

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described.

  18. Why aircraft disinsection?

    PubMed Central

    Gratz, N. G.; Steffen, R.; Cocksedge, W.

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described. PMID:10994283

  19. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  20. Hypersonic reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Bulk, Tim; Chiarini, David; Hill, Kevin; Kunszt, Bob; Odgen, Chris; Truong, Bon

    1992-01-01

    A conceptual design of a hypersonic reconnaissance aircraft for the U.S. Navy is discussed. After eighteen weeks of work, a waverider design powered by two augmented turbofans was chosen. The aircraft was designed to be based on an aircraft carrier and to cruise 6,000 nautical miles at Mach 4;80,000 feet and above. As a result the size of the aircraft was only allowed to have a length of eighty feet, fifty-two feet in wingspan, and roughly 2,300 square feet in planform area. Since this is a mainly cruise aircraft, sixty percent of its 100,000 pound take-off weight is JP fuel. At cruise, the highest temperature that it will encounter is roughly 1,100 F, which can be handled through the use of a passive cooling system.

  1. Aircraft stress sequence development: A complex engineering process made simple

    NASA Technical Reports Server (NTRS)

    Schrader, K. H.; Butts, D. G.; Sparks, W. A.

    1994-01-01

    Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.

  2. Why flies are good vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was around 1900 when house flies were implicated in disease transmission. Flies with white powder on their feet were seen landing on food in US Army chow halls. This white powder was lime that had been sprinkled over the human excrement in open latrines not too far from the eating establishments....

  3. Passive Baited Sequential Fly Trap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sampling fly populations associated with human populations is needed to understand diel behavior and to monitor population densities before and after control operations. Population control measures are dependent on the results of monitoring efforts as they may provide insight into the fly behavior ...

  4. Biology and control of tabanids, stable flies and horn flies.

    PubMed

    Foil, L D; Hogsette, J A

    1994-12-01

    Tabanids are among the most free-living adult flies which play a role as livestock pests. A single blood meal is used as a source of energy for egg production (100-1,000 eggs per meal), and females of certain species can oviposit before a blood meal is obtained (autogeny). Therefore, the maintenance of annual populations requires successful oviposition by only 2% of females. Wild animal blood sources are usually available to maintain annual tabanid populations. Larval habitats are also independent of domestic livestock. Thus, the use of repellents or partial repellents is the only effective chemical strategy to reduce the incidence of tabanids on livestock. Permanent traps (and possibly treated silhouette traps) can be employed to intercept flies. Selective grazing or confinement can also reduce the impact of tabanids. Stable fly adults are dependent on vertebrate blood for survival and reproduction, but the amount of time spent in contact with the host is relatively small. Stable fly larvae develop in manure, spilled feed and decaying vegetation. Management of larval habitats by sanitation is the key to stable fly control. Treatment of animals with residual insecticides can aid in control; thorough application to the lower body parts of livestock is important. Proper use of modified traps, using either treated targets or solar-powered electrocution grids, can be effective in reducing stable fly populations. Adult horn flies spend the major part of their time on the host, and the larvae are confined to bovid manure. Therefore, almost any form of topical insecticide application for livestock is effective against horn flies, in the absence of insecticide resistance. Treatments should be applied when economic benefit is possible; economic gains are associated with increased weaning weights and weight gains of yearling and growing cattle. Oral chemical treatments (insect growth regulators or insecticides) administered at appropriate rates via bolus, water, food or

  5. Evaluation of the longitudinal stability and control characteristics of a mixed-flow remote-lift STOVL aircraft in transition and hover

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.

    1991-01-01

    An evaluation of the longitudinal stability and control characteristics of a mixed-flow remote-lift (MFRL) STOVL aircraft in the powered-lift portion of the flight envelope is presented. A stabilization and command augmentation system was implemented on the MFRL aircraft to meet the requirements for satisfactory flying qualities. The pitch portion of this control system uses a state-rate feedback implicit model following controller to achieve the desired flying qualities and to suppress the effects of external variations and disturbances in the aircrafts characteristics over the low speed envelope.

  6. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  7. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    NASA Technical Reports Server (NTRS)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  8. Stability and control of maneuvering high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Berry, P. W.

    1977-01-01

    The stability and control of a high-performance aircraft was analyzed, and a design methodology for a departure prevention stability augmentation system (DPSAS) was developed. A general linear aircraft model was derived which includes maneuvering flight effects and trim calculation procedures for investigating highly dynamic trajectories. The stability and control analysis systematically explored the effects of flight condition and angular motion, as well as the stability of typical air combat trajectories. The effects of configuration variation also were examined.

  9. High frequency drive mechanism for an active controls systems aircraft control surface

    NASA Technical Reports Server (NTRS)

    Smith, H. E.

    1981-01-01

    The mechanism was successfully utilized on a wind tunnel model tested in the transonic blow down tunnel. The mechanism is also applicable to a flying aircraft. Several interrelated mechanical subsystems were utilized, including a low inertia antibacklash drive mechanism for high frequency oscillation and a compact antibacklash drive mechanism for conversion of rotary motion to linear motion.

  10. Interaction of feel system and flight control system dynamics on lateral flying qualities

    NASA Technical Reports Server (NTRS)

    Bailey, R. E.; Knotts, L. H.

    1990-01-01

    An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.

  11. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Viewed in this 1955 photograph is the NACA High Speed Flight Station D-558-2 #2 (144) Skyrocket, an all-rocket powered vehicle. The Skyrocket is parked on Rogers Dry Lakebed at Edwards Air Force Base. This aircraft, NACA 144/Navy 37974, was the first to reach Mach 2 (see project description). The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft gathered a great deal of data about pitch-up and the coupling of lateral (yaw) and

  12. Tu-144LL SST Flying Laboratory in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The delta wing of the Tupolev Tu-144LL supersonic flying laboratory is evident in this view from underneath the aircraft during a 1998 test flight at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were

  13. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  14. Predicting visibility of aircraft.

    PubMed

    Watson, Andrew; Ramirez, Cesar V; Salud, Ellen

    2009-05-20

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  15. Emergence of blueberry maggot flies (Diptera: tephritidae) from mulches and soil at various depths.

    PubMed

    Renkema, J M; Lynch, D H; Cutler, G C; Mackenzie, K; Walde, S J

    2012-04-01

    Control of blueberry maggot, Rhagoletis mendax Curran, typically is achieved with insecticides targeting adult flies before females oviposit in ripening fruit. Management strategies targeting other life stages have received less attention. We tested effects of compost or pine needle mulches on emergence of blueberry maggot flies under laboratory and field conditions. Few flies emerged from pupae that were buried under 20 cm of pine needles in all experiments, but burial in 20 cm of compost did not always result in low fly emergence. Burial of pupae in 5 cm of compost or pine needles did not reduce fly emergence compared with 1 cm in soil. Low emergence with increased mulch depth appeared to be primarily because of failure of flies to ascend to the surface after they exited puparia. Low emergence also was associated with high moisture levels causing rotten, discolored pupae, particularly in the laboratory in compost. No flies emerged from pupae buried in 1 cm of pine needles in the field. In this case no flies exited puparia, likely because high temperatures (>30°C) at the surface killed pupae. Thus, mulch application under highbush blueberries (Vaccinium corymbosum L.) after maggots drop from berries can reduce emergence success of flies from buried pupae, but the level of control will depend on mulch depth and may vary with rainfall and temperature.

  16. Eclipse program QF-106 aircraft in flight, view from tanker

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of QF-106 airplane from a KC-135 tanker aircraft. The Eclipse aircraft was not refueling but simply flying below and behind the tanker for purposes of shooting the photograph from the air. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  17. D-558-2 Aircraft on lakebed

    NASA Technical Reports Server (NTRS)

    1954-01-01

    Viewed in this 1954 photograph is the NACA High Speed Flight Research Station's D-558-2 #2 (144), an all rocket powered Skyrocket. Like the X-1, the D-558-2 had a fuselage shaped like a .50 caliber bullet. Unlike both the X-1 and the D-558-1, it had swept wings. To accommodate them required a completely different design than that used for the earlier straight-wing D-558-1. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS); the Navy-Marine Corps; and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in Calif. on February 4, 1948. The goals of the program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitch-up (uncommanded rotation of the nose of the airplane upwards)--a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during take-off and landing and in tight turns. The three aircraft

  18. Some fighter aircraft trends

    NASA Technical Reports Server (NTRS)

    Spearman, L.

    1985-01-01

    Some basic trends in fighters are traced from the post World II era. Beginning with the first operational jet fighter, the P-80, the characteristics of subsequent fighter aircraft are examined for performance, mission capability, effectiveness, and cost. Characteristics presented include: power loading, wing loading, maximum speed, rate of climb, turn rate, weight and weight distribution, cost and cost distribution. The characteristics of some USSR aircraft are included for comparison. The trends indicate some of the rationale for certain fighter designs and some likely characteristics to be sought in future fighter aircraft designs.

  19. Loftin Collection - Boeing Aircraft

    NASA Technical Reports Server (NTRS)

    1933-01-01

    Either a F2B-1 or F3B-1, both aircraft were built by Boeing and both were powered by Pratt and Whitney Wasp engines. These fighters were intended for Navy shipboard use. Boeing F3B-1: While most Boeing F3B-1s served the U. S. Navy aircraft carriers the Lexington and the Saratoga, this example flew in NACA hands at the Langley Memorial Aeronautical Laboratory in the late 1920's. Also known as the Boeing Model 77, the aircraft was the next to last F3B-1 build in November 1928.

  20. Tropospheric sampling with aircraft

    SciTech Connect

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  1. Aircraft compass characteristics

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Smith, Clyde W

    1937-01-01

    A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing.

  2. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  3. Testing Aircraft Instruments.

    DTIC Science & Technology

    1981-02-11

    AD-A095 680 ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GRO--ETC F/S 1/4 TESTING AIRCRAFT INSTRUMENTS .(U) FEB 81 CLASSIFIED TOP-6-3-013 ML I...Test and Evaluation Command -?Final 7, Ts .to .. eg----- ( -4_ Fia - / + I ORG REPORT STesting Aircraft Instruments , j P I- I. AUTHOR(es) S. CONTRACT...Identify by block number) This document presents information and procedures for testing aircraft flight and systems performance instruments in the functional

  4. Mexican fruit fly (Diptera: tephritidae) and the phenology of its native host plant, Yellow Chapote (Rutaceae) in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In northeastern Mexico, the Mexican fruit fly, Anastrepha ludens (Loew), breeds on its native host, yellow chapote, Casimiroa greggii (Wats.), which typically produces fruit in the spring. Peak populations of the fly occur in late spring or early summer when adults emerge from the generation of lar...

  5. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown

  6. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  7. Cross-Polar Aircraft Trajectory Optimization and Potential Climate Impact

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil; Ng, Hok

    2011-01-01

    Cross-Polar routes offer new opportunities for air travel markets. Transpolar flights reduce travel times, fuel burns, and associated environmental emissions by flying direct paths between many North American and Asian cities. This study evaluates the potential benefits of flying wind-optimal polar routes and assessed their potential impact on climate change. An optimization algorithm is developed for transpolar flights to generate wind-optimal trajectories that minimize climate impact of aircraft, in terms of global warming potentials (relative to warming by one kg of CO2) of several types of emissions, while avoiding regions of airspace that facilitate persistent contrail formation. Estimations of global warming potential are incorporated into the objective function of the optimization algorithm to assess the climate impact of aircraft emissions discharged at a given location and altitude. The regions of airspace with very low ambient temperature and areas favorable to persistent contrail formation are modeled as undesirable regions that aircraft should avoid and are formulated as soft state constraints. The fuel burn and climate impact of cross-polar air traffic flying various types of trajectory including flightplan, great circle, wind-optimal, and contrail-avoidance are computed for 15 origin-destination pairs between major international airports in the U.S. and Asia. Wind-optimal routes reduce average fuel burn of flight plan routes by 4.4% on December 4, 2010 and 8.0% on August 7, 2010, respectively. The tradeoff between persistent contrail formation and additional global warming potential of aircraft emissions is investigated with and without altitude optimization. Without altitude optimization, the reduction in contrail travel times is gradual with increase in total fuel consumption. When altitude is optimized, a one percent increase in additional global warming potential, a climate impact equivalent to that of 4070kg and 4220kg CO2 emission, reduces 135

  8. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    PubMed

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.

  9. Sorbents for CO2 capture from high carbon fly ashes.

    PubMed

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  10. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  11. Aircraft Spacings that Produce a Vortex-Free Region Below Flight Formation

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2000-01-01

    Theoretical estimates are presented for the motion of vortex wakes shed by multiple aircraft flying in close formation. The purpose of the theoretical study was to determine whether the spacings between adjacent aircraft in close formations could be designed so that the lift-generated vortices being trailed would move upward rather than downward. In this way, a region below the formation is produced that is free of vortices. It was found that aircraft can be arranged in formations so that the inboard wake vortices all move upward rather than downward. The two outboard vortices travel downward at a greatly reduced velocity that depends on the number of aircraft in the formation. If the desired motions are to be produced, the lateral spacings between adjacent aircraft centerlines must be between 1.1 and 1.5 wingspans, and the vertical spacings between -0.025 and -0.15 wingspans. Since the range of acceptable spacings is small, it is recommended that the position accuracy between aircraft in the formation be kept within about + or - 0.01 wingspan of the center of acceptable spacings so that aircraft meandering do not cause unwanted vortex excursions. It was also found that, if the in-trail spacings between adjacent aircraft are more than 4 wingspans, the foregoing vertical spacings must be adjusted to allow for the additional downward travel of the vortices shed by leading aircraft.

  12. Phosphate-Bonded Fly Ash.

    DTIC Science & Technology

    1994-12-09

    FCODE OC ______________ ARLINGTON VA 22217-5660 - dis~bu~i.19~ 3 B Navy Case No. 75,787 PATENTS PHOSPHATE -BONDED FLY ASH IN’NA G. TALMY DEBORAH A. HAUGHT...2 3 , CaO. MgO, etc. with which the H.PO4 reacts to form the polymer-like phosphate bonds which hold the fly ash particles together. In the second...conventional means. The moisture (water) content of the aqueous HP0 4 /fly ash mixture is preferably from about 3 to about 5 weight percent for semidry

  13. Design criteria for flightpath and airspeed control for the approach and landing of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.; Hardy, G. H.; Stephenson, J. D.

    1982-01-01

    A flight research program was conducted to assess requirements for flightpath and airspeed control for glide-slope tracking during a precision approach and for flare control, particularly as applied to powered-lift, short takeoff and landing (STOL) aircraft. Ames Research Center's Augmentor Wing Research Aircraft was used to fly approaches on a 7.5 deg glide slope to landings on a 30 X 518 m (100 X 1700 ft) STOL runway. The dominant aircraft response characteristics determined were flightpath overshoot, flightpath-airspeed coupling, and initial flightpath response time. The significant contribution to control of the landing flare using pitch attitude was the short-term flightpath response. The limiting condition for initial flightpath response time for flare control with thrust was also identified. It is possible to define flying-qualities design criteria for glide-slope and flare control based on the aforementioned response characteristics.

  14. Commercial aircraft as a source of automated meteorological data for GATE and DST

    NASA Technical Reports Server (NTRS)

    Julian, P. R.; Steinberg, R.

    1975-01-01

    Specially-equipped wide-body commercial aircraft which are flying tropical and Southern Hemispheric routes are providing a new and unique source of meteorological data with a 100 km spatial resolution. Data have been gathered for the GATE, and the planning for a similar effort for the DST is in progress. These aircraft not only provide synoptic data in critical areas devoid of conventional data, but are, in effect, meteorological research platforms that can provide valuable information on mesoscale phenomena. By 1976 it is anticipated that there will be over 80 such aircraft flying global routes. These specially-equipped jets could also be effectively used for EGGE by providing the nucleus of a supplementary observing system for gathering world-wide meteorological data.

  15. Initial Field Evaluation of Pilot Procedures for Flying CTAS Descent Clearances

    NASA Technical Reports Server (NTRS)

    Palmer, Everett; Goka, Tsuyoshi; Cashion, Patricia; Feary, Michael; Graham, Holly; Smith, Nancy; Shafto, Michael (Technical Monitor)

    1994-01-01

    The Center TRACON Automation System (CTAS) is a new support system that is designed to assist air traffic controllers in the management of arrival traffic. CTAS will provide controllers with more information about current air traffic, enabling them to provide clearances for efficient, conflict-free descents that help achieve an orderly stream of aircraft at the final approach fix. CTAS is a computer-based system that functions as a "ground-based FMS" that can predict flight trajectories and arrival times for all incoming aircraft. CTAS uses an aircraft's cruise airspeed; current air traffic, winds and temperature; performance characteristics of the aircraft type; and individual airline preferences to create a flight profile from cruise altitude to the final approach fix. Controllers can use this flight profile to provide a descent clearance that will allow an aircraft to fly an efficient descent and merge more smoothly with other arriving aircraft. A field test of the CTAS Descent Advisor software was conducted at the Denver Center for aircraft arriving at the Stapleton International Airport from September 12-29. CTAS Descent clearances were given to a NASA flight test aircraft and to 77 airline flights that arrived during low traffic periods. For the airline portion of the field test, cockpit procedures and pilot briefing packages for both FMS equipped and unequipped aircraft were developed in cooperation with an airline. The procedures developed for the FMS equipped aircraft were to fly a VNAV descent at a controller specified speed to cross a metering fix at a specified altitude and speed. For nonFMS aircraft, the clearance also specified a CTAS calculated top-of-descent point. Some CTAS related flight deck issues included how much time was available to the pilots' for compliance, the amount of information that needed to be interpreted in the clearance and possible repercussions of misunderstandings. Data collected during the study ranged from subjective data

  16. An intelligent fiberoptic data bus for fly-by-light applications

    NASA Astrophysics Data System (ADS)

    Manoharan, L. C.; Muthuvel, S.

    An active fiberoptic data bus compatible with MIL-STD-1553B, which could be used for fly-by-light, stores management, AEW etc., on an aircraft has been developed. The data bus is considered intelligent because it can automatically sense which station is in the transmit mode and control the active interface accordingly, so that smooth flow of data takes place on the bus. The tests carried out on the bus including those on the Jaguar Avionics Rig to check its validity are also described. As no software is involved in the operation of the bus, this could be used on any aircraft having its own software.

  17. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  19. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  20. Pollution reducing aircraft propulsion

    SciTech Connect

    Tamura, R. M.

    1985-05-28

    Aircraft engine exhaust is mixed with air and fuel and recombusted. Air is drawn into the secondary combustion chamber from suction surfaces on wings. Exhaust of the secondary combustion chamber is blown over wing and fuselage surfaces.

  1. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  2. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  3. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  4. Depreciation of aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  5. Aircraft Morphing program

    NASA Astrophysics Data System (ADS)

    Wlezien, Richard W.; Horner, Garnett C.; McGowan, Anna-Maria R.; Padula, Sharon L.; Scott, Michael A.; Silcox, Richard J.; Harrison, Joycelyn S.

    1998-06-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest-payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  6. Advanced hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Utzinger, Rob; Blank, Hans-Joachim; Cox, Craig; Harvey, Greg; Mckee, Mike; Molnar, Dave; Nagy, Greg; Petersen, Steve

    1992-01-01

    The objective of this design project is to develop the hypersonic reconnaissance aircraft to replace the SR-71 and to complement existing intelligence gathering devices. The initial design considerations were to create a manned vehicle which could complete its mission with at least two airborne refuelings. The aircraft must travel between Mach 4 and Mach 7 at an altitude of 80,000 feet for a maximum range of 12,000 nautical miles. The vehicle should have an air breathing propulsion system at cruise. With a crew of two, the aircraft should be able to take off and land on a 10,000 foot runway, and the yearly operational costs were not to exceed $300 million. Finally, the aircraft should exhibit stealth characteristics, including a minimized radar cross-section (RCS) and a reduced sonic boom. The technology used in this vehicle should allow for production between the years 1993 and 1995.

  7. Computer sizing of fighter aircraft

    NASA Technical Reports Server (NTRS)

    Coen, P. G.; Foss, W. E., Jr.

    1985-01-01

    The computer sizing technique has been applied to a number of military mission profiles. Performance data can be determined for all segments of the selected profile, which typically include takeoff, climb, cruise, loiter, reserve and landing segments. Options are available for detailed calculation of combat performance and energy-maneuverability characteristics. Configuration changes, such as external fuel tank drop and weapon expenditure, can be included in the mission. In the sizing mode, aircraft gross weight, wing loading, and thrust-to-weight ratio are varied automatically to determine which combinations meet the design mission radius. The resulting performance data can be used to create a thumbprint plot. This plot is useful in determining the configuration size that best satisfies the mission and performance requirements. The sizing mode can also be used to perform parametric studies such as sensitivity of gross weight to alternate design conditions.

  8. Computer sizing of fighter aircraft

    NASA Technical Reports Server (NTRS)

    Coen, P. G.; Foss, W. E., Jr.

    1986-01-01

    The computer sizing technique has been applied to a number of military mission profiles. Performance data can be determined for all segments of the selected profile, which typically include takeoff, climb, cruise, loiter, reserve and landing segments. Options are available for detailed calculation of combat performance and energy-maneuverability characteristics. Configuration changes, such as external fuel tank drop and weapon expenditure, can be included in the mission. In the sizing mode, aircraft gross weight, wing loading, and thrust-to-weight ratio are varied automatically to determine which combinations meet the design mission radius. The resulting performance data can be used to create a thumbprint plot. This plot is useful in determining the configuration size that best satisfies the mission and performance requirements. The sizing mode can also be used to perform parametric studies such as sensitivity of gross weight to alternate design conditions.

  9. Maximum normalized acceleration as a flying qualities parameter

    NASA Technical Reports Server (NTRS)

    Warner, J. S.; Onstott, E. D.

    1986-01-01

    In 1984, Maximum Normalized Rate (MNR) was presented as a Flying Qualities parameter. Subsequent analysis of data from ground based simulation and flight test revealed the utility of a companion parameter, Maximum Normalized Acceleration (MNA). MNR and MNA profiles reveal the presence of both continuous and pulsed compensation strategies during discrete attitude tracking. In addition, MNR appears to be a suitable metric for pilot opinion in the LATHOS data base, while the MNR/MNA relationship is sensitive to pilot-induced-oscillation (PIO) and roll ratcheting problems. As part of an investigation of this problem, Northrop has developed an analysis technique known as the Step Target Method. The Step Target method is essentially a one degree-of-freedom simulation, where an attitude command in the form of a step function is presented to a closed-loop pilot/aircraft model. The two parameters MNR and MNA were shown to be useful in Flying Qualities analysis. MNR was shown to correlate with Pilot Opinion Rating in the LATHOS data base, while MNA reflects PIO and roll ratcheting. Profiles of MNR versus MNA reveal the presence of pulsed compensation strategies in both ground based and in-flight simulation. Furthermore, comparison of continuous and discrete attitude tracking simulation data reveals that these two tracking tasks exhibit independent sensitivities to aircraft characteristics.

  10. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  11. Aircraft Survivability. Spring 2011

    DTIC Science & Technology

    2011-01-01

    advancing and applying technology to predict, evaluate , and improve combat survivability of US flight vehicles. John graduated from the University of...support for most of the aircraft and anti-aircraft programs conducted to date under LFT&E statutory requirements. A number of these test and evaluation ...initiatives to improve the state-of-the-art of LFT&E, to place greater emphasis on the evaluation of human casualties, to integrate Battle Damage

  12. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  13. A molecular key for the identification of blow flies in southeastern Nebraska.

    PubMed

    Samarakoon, Upeka; Skoda, Steven R; Baxendale, Frederick P; Foster, John E

    2013-01-01

    Immature blow flies (Calliphoridae) are typically the first colonizers of cadavers. Identification of the early instars using traditional, morphology-based keys is difficult because of their small size, similarity, and simplicity in external morphology. Information derived from molecular genetic data would augment the accurate identification of immature flies. Nine species of blow flies commonly found in southeastern Nebraska were used to examine the utility of molecular-based keys. Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) were investigated with 10 common, inexpensive, restriction enzymes from an amplicon of approximately 1500 bp spanning the mitochondrial cytochrome oxidase I gene. A simple molecular taxonomic key, comprising RFLP from the restriction enzymes HinfI and DraI, enabled the differentiation of all species used. Further development of PCR-RFLP, including more extensive and intensive examination of blow flies, would benefit forensic laboratories in the accurate identification of evidence consisting of immature blow flies.

  14. Tu-144LL SST Flying Laboratory in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL supersonic flying laboratory shows off its sleek lines in a low-level pass over the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 research flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production

  15. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  16. Subtropical Fruit Fly Invasions into Temperate Fruit Fly Territory in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subtropical fruit fly species including peach fruit fly, Bactrocera zonata (Saunders); melon fly, B. cucurbitae (Coquillett); oriental fruit fly, B. dorsalis (Hendel); and Mediterranean fruit fly, Ceratitis capitata Weidemann, have been detected in the past decade in the San Joaquin Valley of Califo...

  17. Automatic aircraft recognition

    NASA Astrophysics Data System (ADS)

    Hmam, Hatem; Kim, Jijoong

    2002-08-01

    Automatic aircraft recognition is very complex because of clutter, shadows, clouds, self-occlusion and degraded imaging conditions. This paper presents an aircraft recognition system, which assumes from the start that the image is possibly degraded, and implements a number of strategies to overcome edge fragmentation and distortion. The current vision system employs a bottom up approach, where recognition begins by locating image primitives (e.g., lines and corners), which are then combined in an incremental fashion into larger sets of line groupings using knowledge about aircraft, as viewed from a generic viewpoint. Knowledge about aircraft is represented in the form of whole/part shape description and the connectedness property, and is embedded in production rules, which primarily aim at finding instances of the aircraft parts in the image and checking the connectedness property between the parts. Once a match is found, a confidence score is assigned and as evidence in support of an aircraft interpretation is accumulated, the score is increased proportionally. Finally a selection of the resulting image interpretations with the highest scores, is subjected to competition tests, and only non-ambiguous interpretations are allowed to survive. Experimental results demonstrating the effectiveness of the current recognition system are given.

  18. Managing the Fruit Fly Experiment.

    ERIC Educational Resources Information Center

    Jeszenszky, Arleen W.

    1997-01-01

    Describes a sophisticated version of the fruit fly experiment for teaching concepts about genetics to biology students. Provides students with the opportunity to work with live animals over an extended period. (JRH)

  19. A Collection of Nonlinear Aircraft Simulations in MATLAB

    NASA Technical Reports Server (NTRS)

    Garza, Frederico R.; Morelli, Eugene A.

    2003-01-01

    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  20. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  1. Effects of a traffic noise background on judgements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1974-01-01

    A study was conducted in which subjects judged aircraft noises in the presence of road traffic background noise. Two different techniques for presenting the background noises were evaluated. For one technique, the background noise was continuous over the whole of a test session. For the other, the background noise was changed with each aircraft noise. A range of aircraft noise levels and traffic noise levels were presented to simulate typical indoor levels.

  2. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    NASA Technical Reports Server (NTRS)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  3. Technical evaluation of the Aerospace Medical Panel Specialists Meeting on Escape Problems and Manoeuvres in Combat Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1974-01-01

    A technical evaluation of the papers presented at a conference on escape systems for helicopters and V/STOL aircraft was made. The subjects discussed include the following: (1) bioengineering aspects of spinal injury during ejection, (2) aerodynamic forces acting on crewman during escape, (3) operational practicality of fly away ejection seats, (4) helicopter survivability requirements, (5) ejection experience from V/STOL aircraft, and (6) research projects involving escape and retrieval systems.

  4. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-11-01

    certain flight conditions we quantified, for the first time, stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the typically used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.

  5. Studies of Phlebotomine Sand Flies.

    DTIC Science & Technology

    1980-08-31

    submitted for publication. iii 7. Key Words: Sand fly Lutzomyia Phlebotominae Phlebotomus Leishmaniasis 1i Note: Copies of this report are filed with...5 II. Sand Flies of the Central Amazon of Brazil. 2. De- scription of Lutzomyia (Triehophoromyia) ruii n. sp. . 28 III. A New Phlebotomine Sand...previously unknown in the Republic. These are Brvmptomyia hamata, B. galindoi, Lutzomyia odax, L. ovallesi, L. carpenteri, L. shannoni, L. texana, L

  6. Range optimization for a supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.; Well, Klaus H.

    1991-01-01

    Range optimal trajectories for an aircraft flying in the vertical plane are obtained from Pontryagin's Minimum Principle. Control variables are load factor n which appears nonlinearly in the equations of motion and throttle setting eta, which appears only linearly. Both controls are subject to fixed bounds, namely eta between values of 0 and 1 and absolute value of n not greater than n(max). Additionally, a dynamic pressure limit is imposed, which represents a first-order state-inequality constraint. For fixed flight time, fixed initial coordinates, and partially fixed final coordinates, the effect of the load factor limit absolute value of n not greater than n(max) is studied. Upon varying n(max), six different switching structures are obtained. All trajectories involve singular control along arcs with active dynamic pressure limit.

  7. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  8. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Astrophysics Data System (ADS)

    Sundberg, Gale R.

    1990-05-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in gross take-off-weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BITE) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  9. Assessment of flying-quality criteria for air-breathing aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.

    1992-01-01

    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).

  10. Dryden B-52 Launch Aircraft on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable workhorse, the B-52 mothership, rolls out on the Edwards AFB runway after a test flight in 1996. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  11. Dryden B-52 Launch Aircraft on Dryden Ramp

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  12. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  13. Uncontrolled Stability in Freely Flying Insects

    NASA Astrophysics Data System (ADS)

    Melfi, James, Jr.; Wang, Z. Jane

    2015-11-01

    One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.

  14. Sensitivity of stratospheric ozone to present and possible future aircraft emissions

    SciTech Connect

    Wuebbles, D.J.; Kinnison, D.E.

    1990-08-01

    The aircraft industry is showing renewed interest in the development of supersonic, high flying aircraft for intercontinental passenger flights. There appears to be confidence that such high-speed civil transports can be designed, and that aircraft will be economically viable as long as they are also environmentally acceptable. As such, it is important to establish the potential for such environmental problems early in the aircraft design. Initial studies with LLNL models of global atmospheric chemical, radiative, and transport processes have indicated that substantial decreases in stratospheric ozone concentrations could result from emissions of NO{sub x} from aircraft flying the stratosphere, depending on the fleet size and magnitude of the engine emissions. The purpose of this study is to build on previous analyses of potential aircraft emission effects on ozone in order to better define the sensitivity of ozone to such emissions. In addition to NO{sub x}, the effects of potential emissions of carbon monoxide and water vapor are also examined. More realistic scenarios for the emissions as a function of altitude, latitude, and season are examined in comparison to prior analyses. These studies indicate that the effects on ozone are sensitive to the altitude and latitude, as well as the magnitude, of the emissions.

  15. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  16. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall

    NASA Astrophysics Data System (ADS)

    Zhao, Jieliang; Huang, He; Yan, Shaoze

    2017-03-01

    Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.

  17. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

    PubMed

    Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2010-03-16

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.

  18. Structural Health Monitoring of AN Aircraft Joint

    NASA Astrophysics Data System (ADS)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  19. Lift-fan aircraft: Lessons learned-the pilot's perspective

    NASA Technical Reports Server (NTRS)

    Gerdes, Ronald M.

    1993-01-01

    This paper is written from an engineering test pilot's point of view. Its purpose is to present lift-fan 'lessons learned' from the perspective of first-hand experience accumulated during the period 1962 through 1988 while flight testing vertical/short take-off and landing (V/STOL) experimental aircraft and evaluating piloted engineering simulations of promising V/STOL concepts. Specifically, the scope of the discussions to follow is primarily based upon a critical review of the writer's personal accounts of 30 hours of XV-5A/B and 2 hours of X-14A flight testing as well as a limited simulator evaluation of the Grumman Design 755 lift-fan aircraft. Opinions of other test pilots who flew these aircraft and the aircraft simulator are also included and supplement the writer's comments. Furthermore, the lessons learned are presented from the perspective of the writer's flying experience: 10,000 hours in 100 fixed- and rotary-wing aircraft including 330 hours in 5 experimental V/STOL research aircraft. The paper is organized to present to the reader a clear picture of lift-fan lessons learned from three distinct points of view in order to facilitate application of the lesson principles to future designs. Lessons learned are first discussed with respect to case histories of specific flight and simulator investigations. These principles are then organized and restated with respect to four selected design criteria categories in Appendix I. Lastly, Appendix Il is a discussion of the design of a hypothetical supersonic short take-off vertical landing (STOVL) fighter/attack aircraft.

  20. Baseline monitoring using aircraft laser ranging. [spaceborne laser simulation and aircraft laser tracking

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Hoge, F. E.; Martin, C. F.

    1982-01-01

    The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.

  1. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  2. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  3. B-747 in Flight during Vortex Study with Learjet and T-37 Fly Through the Wake

    NASA Technical Reports Server (NTRS)

    1974-01-01

    In this 1974 NASA Flight Research Center (FRC) photograph, the two chase aircraft, a Learjet and a Cessna T-37, are shown in formation off the right wing tip of the Boeing B-747 jetliner. The two chase aircraft were used to probe the trailing wake vortices generated by the airflow around the wings of the B-747 aircraft. The vortex trail behind the right wing tip was made visible by a smoke generator mounted under the wing of the B-747 aircraft. In 1974 the NASA Flight Research Center (later Dryden Flight Research Center, Edwards, California) used a Boeing 747 as part of the overall NASA study of trailing vortices. Trailing vortices are the invisible flow of spiraling air that trails from the wings of large aircraft and can 'upset' smaller aircraft flying behind them. The 747 that NASA used was on loan from the Johnson Space Center where it was part of the Space Shuttle Program. The data gathered in the 747 studies complemented data from the previous (1973-74) joint NASA Flight Research Center and Federal Aviation Administration (FAA) Boeing727 wake vortices study. Six smoke generators were installed under the wings of the 747 to provide a visual image of the trailing vortices. The object of the experiments was to test different configurations and mechanical devices on the747 that could be used to break up or lessen the strength of the vortices. The results of the tests could lead to shorter spacing between landings and takeoffs, which, in turn, could alleviate air-traffic congestion. For approximately 30 flights the 747 was flown using various combinations of wing air spoilers in an attempt to reduce wake vortices. To evaluate the effectiveness of the different configurations, chase aircraft were flown into the vortex sheets to probe their strengths and patterns at different times. Two of the chase planes used were the Flight Research Center's Cessna T-37 and the NASA Ames Research Center's Learjet. These aircraft represented the types of smaller business jets and

  4. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  5. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  6. Optimum design considerations of a gust alleviator for aircraft. [for aircraft stability of short takeoff aircraft during atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Oehman, W. I.

    1976-01-01

    A gust alleviation system for aircraft flying in turbulent air was analyzed. A vane sensor (with noise) was used to measure vertical gusts, and elevators and flaps were used to reduce the root-mean-square value of the normal accelerations associated with the aircraft response to gusts. Since turbulence has stochastic properties, stochastic control theory was used in the analysis. A quadratic performance-index function involving normal acceleration and control deflections was minimized. Application of the analysis was illustrated by a short take-off and landing (STOL) airplane in flight through turbulent air. Effects of varying the noise characteristics of the vane sensor and of a weighting matrix in the performance-index function were determined. Calculations were performed as required by stochastic control theory to obtain the root-mean-square response of the airplane to turbulence. Results show that good alleviation was calculated when the intensity of the measurement noise was about 3.6 percent of the vane deflection angles.

  7. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  8. Aircraft noise synthesis system

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.; Grandle, Robert E.

    1987-02-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  9. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  10. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  11. Aircraft icing instrumentation: Unfilled needs. [rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Kitchens, P. F.

    1980-01-01

    A list of icing instrumentation requirements are presented. Because of the Army's helicopter orientation, many of the suggestions are specific to rotary wing aircraft; however, some of the instrumentation are also suitable for general aviation aircraft.

  12. The Langley-Newcomb brouhaha over the flying machine

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Carter, M. S.

    One century after the Wright brothers proved it was possible to build a piloted heavier-than-air “flying machine,” several airlines will soon, perhaps as early as October 2005, begin to operate the largest passenger aircraft ever built, the Airbus A380. The A380 is nearly half again as large, in terms of passenger floor space, as the Boeing 747-400. It can be configured to hold as many as 840 passengers, and it has a takeoff weight of 550,000 kg, a maximum range of 15,000 km, and a cruising speed of Mach 0.85.The remarkable advances in aeronautics realized during the past century make it difficult to understand how anyone, let alone Simon Newcomb, one of the most prominent U.S. scientists at the turn of the twentieth century, could have opposed efforts by Samuel Pierpont Langley to build a piloted winged aircraft for the military. Newcomb argued that Langley was doomed to failure because the technology required to build such an aircraft was not then available, and he bemoaned the “waste” of scarce government funds toward the effort.

  13. Digital Fly-By-Wire Flight Control Validation Experience

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.

    1978-01-01

    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  14. Monocular-Vision-Based Autonomous Hovering for a Miniature Flying Ball

    PubMed Central

    Lin, Junqin; Han, Baoling; Luo, Qingsheng

    2015-01-01

    This paper presents a method for detecting and controlling the autonomous hovering of a miniature flying ball (MFB) based on monocular vision. A camera is employed to estimate the three-dimensional position of the vehicle relative to the ground without auxiliary sensors, such as inertial measurement units (IMUs). An image of the ground captured by the camera mounted directly under the miniature flying ball is set as a reference. The position variations between the subsequent frames and the reference image are calculated by comparing their correspondence points. The Kalman filter is used to predict the position of the miniature flying ball to handle situations, such as a lost or wrong frame. Finally, a PID controller is designed, and the performance of the entire system is tested experimentally. The results show that the proposed method can keep the aircraft in a stable hover. PMID:26057040

  15. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.

    PubMed

    Sachs, Gottfried; Traugott, Johannes; Nesterova, Anna P; Dell'Omo, Giacomo; Kümmeth, Franz; Heidrich, Wolfgang; Vyssotski, Alexei L; Bonadonna, Francesco

    2012-01-01

    Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion.

  16. Flying at No Mechanical Energy Cost: Disclosing the Secret of Wandering Albatrosses

    PubMed Central

    Sachs, Gottfried; Traugott, Johannes; Nesterova, Anna P.; Dell'Omo, Giacomo; Kümmeth, Franz; Heidrich, Wolfgang

    2012-01-01

    Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion. PMID:22957014

  17. Space Shuttle flying qualities and flight control system assessment study, phase 2

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, D. T.

    1983-01-01

    A program of flying qualities experiments as part of the Orbiter Experiments Program (OEX) is defined. Phase 1, published as CR-170391, reviewed flying qualities criteria and shuttle data. The review of applicable experimental and shuttle data to further define the OEX plan is continued. An unconventional feature of this approach is the use of pilot strategy model identification to relate flight and simulator results. Instrumentation, software, and data analysis techniques for pilot model measurements are examined. The relationship between shuttle characteristics and superaugmented aircraft is established. STS flights 1 through 4 are reviewed from the point of view of flying qualities. A preliminary plan for a coordinated program of inflight and simulator research is presented.

  18. Monocular-Vision-Based Autonomous Hovering for a Miniature Flying Ball.

    PubMed

    Lin, Junqin; Han, Baoling; Luo, Qingsheng

    2015-06-05

    This paper presents a method for detecting and controlling the autonomous hovering of a miniature flying ball (MFB) based on monocular vision. A camera is employed to estimate the three-dimensional position of the vehicle relative to the ground without auxiliary sensors, such as inertial measurement units (IMUs). An image of the ground captured by the camera mounted directly under the miniature flying ball is set as a reference. The position variations between the subsequent frames and the reference image are calculated by comparing their correspondence points. The Kalman filter is used to predict the position of the miniature flying ball to handle situations, such as a lost or wrong frame. Finally, a PID controller is designed, and the performance of the entire system is tested experimentally. The results show that the proposed method can keep the aircraft in a stable hover.

  19. A review of in-flight detection and identification of aircraft icing and reconfigurable control

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2013-07-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this review paper, aircraft icing identification based on neural network (NN), batch least-squares algorithm, Kalman filtering (KF), combined NN/KF, and H∞ parameter identification techniques are investigated, and compared with each other. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  20. Development of a multipurpose smart recorder for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    White, J. H.; Finger, J. F.

    1988-01-01

    An intelligent flight recorder, called the Smart Recorder, was fabricated and installed on a King Air aircraft used in standard commercial charter service. This recorder was used for collection of data toward two objectives: (1) the characterization of the typical environment encountered by the aircraft; and (2) research in the area of trend monitoring. Data processing routines and data presentation formats were defined that are applicable to commuter size aircraft. The feasibility of a cost-effective, multipurpose recorder for general aviation aircraft was successfully demonstrated. Implementation of on-board environmental data processing increased the number of flight hours that could be stored on a single data cartridge and simplified the data management problem by reducing the volume of data to be processed in the laboratory. Trend monitoring algorithms showed less variability in the trend plots when compared against plots of manual data.

  1. Temporal Characterization of Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.

    2004-01-01

    Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.

  2. Deicing System Protects General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  3. Commercial aircraft noise

    NASA Astrophysics Data System (ADS)

    Smith, M. J.

    The history of aircraft noise control development is traced with an eye to forecasting the future. Noise control became imperative with the advent of the first generation of commercial jet aircraft, which were extremely loud. The steady increases in the size of turbofans have nearly matched the progress in noise reduction capabilities in recent years. Only 5 dB of reduction in fleet noise has been achieved since early standards were met. Current engine design is concentrated on increasing fuel efficiency rather than lowering noise emissions. Further difficulties exist because of continued flights with older aircraft. Gains in noise reduction have been made mainly by decreasing exhaust velocities from 600-700 m/sec to 300-400 m/sec. New techniques being explored comprise mixing the core and bypass flows, interaction tone control, reduction of broadband sources, development of acoustic liner technology and alterations in the number of fan blades and stage spacing.

  4. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  5. Aircraft Design Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The helicopter pictured is the twin-turbine S-76, produced by Sikorsky Aircraft division of United Technologies, Stratford, Connecticut. It is the first transport helicopter ever dey n e d purely as a commercial vehicle rather than an adaptation of a military design. Being built in large numbers for customers in 16 countries, the S-76 is intended for offshore oil rig support, executive transportation and general utility service. The craft carries 12 passengers plus a crew of two and has a range of more than 450 miles-yet it weighs less than 10,000 pounds. Significant weight reduction was achieved by use of composite materials, which are generally lighter but stronger than conventional aircraft materials. NASA composite technology played a part in development of the S-76. Under contract with NASA's Langley Research Center, Sikorsky Aircraft designed and flight-tested a helicopter airframe of advanced composite materials.

  6. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  7. Statistical Detection of Atypical Aircraft Flights

    NASA Technical Reports Server (NTRS)

    Statler, Irving; Chidester, Thomas; Shafto, Michael; Ferryman, Thomas; Amidan, Brett; Whitney, Paul; White, Amanda; Willse, Alan; Cooley, Scott; Jay, Joseph; Rosenthal, Loren; Swickard, Andrea; Bates, Derrick; Scherrer, Chad; Webb, Bobbie-Jo; Lawrence, Robert; Mosbrucker, Chris; Prothero, Gary; Andrei, Adi; Romanowski, Tim; Robin, Daniel; Prothero, Jason; Lynch, Robert; Lowe, Michael

    2006-01-01

    A computational method and software to implement the method have been developed to sift through vast quantities of digital flight data to alert human analysts to aircraft flights that are statistically atypical in ways that signify that safety may be adversely affected. On a typical day, there are tens of thousands of flights in the United States and several times that number throughout the world. Depending on the specific aircraft design, the volume of data collected by sensors and flight recorders can range from a few dozen to several thousand parameters per second during a flight. Whereas these data have long been utilized in investigating crashes, the present method is oriented toward helping to prevent crashes by enabling routine monitoring of flight operations to identify portions of flights that may be of interest with respect to safety issues.

  8. Nonlinear feedback control of highly manoeuvrable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Enns, Dale F.; Snell, S. A.

    1992-01-01

    This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.

  9. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  10. Atmospheric Electricity - Aircraft Interaction

    DTIC Science & Technology

    1980-05-01

    flux may leak inside the aircraft through apertures such as windows , radomes. canopies, seams, and joints. Other fields may arise inside the aircraft...fields of other origins are considered. The third type of c-"pling involves electric fields passing directly through aper- tures, such as windows or...Transistors Microwave Diodes Low Power Transistors 0.001 0.01 0.1 1 10 100 0.01 0.1 1 10 100 Damage Constant. K Damage Constant. K Figure 29 - Ranges

  11. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  12. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  13. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  14. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  15. Aircraft Flutter Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.

  16. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  17. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  18. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  19. XMM flying beautifully

    NASA Astrophysics Data System (ADS)

    1999-12-01

    The early orbit phase came to an end on 16 December after XMM had been manoeuvred to its final orbit. This required four firings of its thrusters, on successive passages at apogee, in order to increase XMM's velocity, thus elongating its orbit and raising the perigee from 826 km to 7,365 km. One burn was then made to fine tune the apogee to around 114,000km. The spacecraft, being tracked by ground stations in Perth, Kourou and Villafranca, is now circling the Earth in this highly elliptical orbit once every 48 hours. The XMM flight operations staff have found themselves controlling a spacecraft that responds exceptionally well. During these first orbits, the satellite has been oriented several times with razor-sharp precision. On board systems have responded without incident to several thousand instructions sent by controllers. "XMM is flying so beautifully" says Dietmar Heger, XMM Spacecraft Operations Manager. "The satellite is behaving better in space than all our pre-launch simulations and we have been able to adjust our shifts to this more relaxed situation". On his return from French Guiana, Robert Lainé, XMM Project Manager immediately visited the Darmstadt Mission Control Centre, at ESOC. "The perfect behaviour of XMM at this early stage reflects the constructive cooperation of European industrial companies and top scientists. Spacecraft operations are in the hands of professionals who will endeavour to fulfill the expectations of the astronomers and astrophysicists of the world. I am very happy that ESA could provide them with such a wonderful precision tool". During the early orbit phase, controllers have activated part of XMM's science payload. The three EPIC X-ray cameras have been switched on and vented. On 17 December the telescope doors were opened allowing the spacecraft's golden X-ray Multi Mirror modules to see the sky. The Optical Monitor telescope door was opened on 18 December. During this last weekend, XMM's Radiation Monitor which records

  20. Fiber optics that fly

    NASA Astrophysics Data System (ADS)

    Wilcox, Michael J.; Thelen, Donald C., Jr.

    1996-11-01

    The need for autonomous systems to work under unanticipated conditions requires the use of smart sensors. High resolution systems develop tremendous computational loads. Inspiration from animal vision systems can guide us in developing preprocessing approaches implementable in real time with high resolution and deduced computational load. Given a high quality optical path and a 2D array of photodetectors, the resolution of a digital image is determined by the density of photodetectors sampling the image. In order to reconstruct an image, resolution is limited by the distance between adjacent detectors. However, animal eyes resolve images 10-100 times better than either the acceptance angle of a single photodetector or the center-to-center distance between neighboring photodetectors. A new model of the fly's visual system emulates this improved performance, offering a different approach to subpixel resolution. That an animal without a cortex is capable of this performance suggests that high level computation is not involved. The model takes advantage of a photoreceptor cell's internal structure for capturing light. This organelle is a waveguide. Neurocircuitry exploits the waveguide's optical nonlinearities, namely in the shoulder region of its gaussian sensitivity-profile, to extract high resolution information from the visual scene. The receptive fields of optically disparate inputs overlap in space. Photoreceptor input is continuous rather than discretely sampled. The output of the integrating module is a signal proportional to the position of the target within the detector array. For tracking a point source, resolution is 10 times better than the detector spacing. For locating absolute position and orientation of an edge, the model performs similarly. Analog processing is used throughout. Each element is an independent processor of local luminance. Information processing is in real time with continuous update. This processing principle will be reproduced in an