Science.gov

Sample records for aircraft vertical profiles

  1. Regional CO2 fluxes for eastern Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    Gatti, L. V.; Miller, J. B.; D'Amelio, M. T.; Wofsy, S.; Tans, P.

    2008-12-01

    We have determined regional scale (~105 - 106 km2) CO2 fluxes using atmospheric measurements from aircraft vertical profiles over eastern Amazonia (site SAN: 02°51'S; 54°57'W). Profiles started December 2000 and have continued through 2008. 17 air samples per profile were collected aboard light aircraft between the surface and 4-5 km using the NOAA/ESRL semi- automatic portable flask package. We use a column integration technique to determine the CO2 flux for each vertical profile, where the measured CO2 profile is differenced from a CO2 background, which was determined using co-measured SF6 as a transport tracer. Two NOAA/ESRL background sites, Ascension Island (ASC) located in the Atlantic Ocean (8°S, 14°W) and Barbados (RPB) located in the Atlantic Ocean (12°N, 59°W) were used to calculate the fractions of air arriving at the sites studied. Back trajectories from the HYSPLIT model were calculated for every profile every 500m of altitude to determine the time the air mass took to travel between the coast and SAN. The observed flux, which is representative of that between the coast and measurement sites, averaged -0.03 ± 1.5 g C m-2day-1 for the wet season and 0.3 ± 0.9 g C m-2day-1 for the dry season. The flux variability is high, probably reflecting the dynamic nature of the response of the terrestrial biosphere to environmental conditions. We have attempted to remove the influence of biomass burning from the fluxes using measurements of co-measured CO. This reduces the dry season flux to -0.04 ± 1.2 g C m- 2day-1. We will compare these results to the seasonality found in eddy covariance measurements and to that estimated from models of the terrestrial biosphere.

  2. OPTIM: Computer program to generate a vertical profile which minimizes aircraft fuel burn or direct operating cost. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.

  3. Two Years of Ozone Vertical Profiles Collected from Aircraft over California and the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Austerberry, D.; Yates, E. L.; Roby, M.; Chatfield, R. B.; Iraci, L. T.; Pierce, B.; Fairlie, T. D.; Johnson, B. J.; Ives, M.

    2012-12-01

    Tropospheric ozone transported across the Pacific Ocean has been strongly suggested to contribute substantially to surface ozone levels at several sites within Northern California's Sacramento Valley. Because this contribution can affect a city's ability to meet regulatory ozone limits, the influence of Pacific ozone transport has implications for air quality control strategies in the San Joaquin Valley (SJV). The Alpha Jet Atmospheric Experiment is designed to collect a multi-year data set of tropospheric ozone vertical profiles. Forty-four flights with ozone profiles were conducted between February 2nd, 2011 and August 9th, 2012, and approximately ten more flights are expected in the remainder of 2012. Twenty marine air profiles have been collected at sites including Trinidad Head and two locations tens of kilometers offshore at 37° N latitude. Good agreement is seen with ozonesondes launched from Trinidad Head. Additional profiles over Merced, California were obtained on many of these flight days. These in-situ measurements were conducted during spiral descents of H211's Alpha Jet at mid-day local times using a 2B Technologies Dual Beam Ozone Monitor. Hourly surface ambient ozone data were obtained from the California Air Resources Board's SJV monitoring sites. For each site, the Pearson linear correlation coefficient was calculated between ozone in a 300m vertical layer of an offshore profile and the surface site at varying time offsets from the time of the profile. Each site's local and regional ozone production component was estimated and removed. The resulting correlations suggest instances of Pacific ozone transport following some of the offshore observations. Real-Time Air Quality Modeling System (RAQMS) products constrained by assimilated satellite data model the transport of ozone enhancements and guide flight planning. RAQMS hindcasts also suggest that ozone transport to the surface of the SJV basin occurred following some of these offshore profiles

  4. Vertical profiles of carbon monoxide and ozone from MOZAIC aircraft over Delhi, India during 2003-2005

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Partha S.; Singh, Ramesh P.; Nédélec, Philippe

    2015-04-01

    The Indo-Gangetic Plains is one of the most densely populated regions in the world and associated with large anthropogenic pollutants. Aircraft measurements of two such pollutants, ozone (O3) and carbon monoxide (CO) over Delhi, an urban location are analyzed to study monthly and seasonal variations. Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) vertical profile data during 2003-2005 are used in the present study. O3 over Delhi exhibits a lower tropospheric (surface to 850 mb) high value during post-monsoon (October and November) and winter (December-February) seasons, upper tropospheric (above 400 mb) enhancement during pre-monsoon and a zone of high values in the mid-troposphere (700-400 mb) during monsoon. The anthropogenic emissions show high CO concentrations below 800 mb during winter and pre-monsoon seasons in addition to transported CO in the upper atmosphere during pre-monsoon. During winter season, convective activities are suppressed as a result O3 and CO concentrations are higher near surface, while during summer season, surface air masses enhance levels of H2O, CO and other trace gases are lifted and subsequently mixed into the large scale circulation that enhance mixing ratios of many trace gases in the upper level anticyclones. MOZAIC observed vertical O3 profiles are compared with three chemistry-climate coupled models from the Coupled Model Inter-comparison Project Phase5 (CMIP5) with interactive O3 chemistry. All the models show good agreement with MOZAIC during pre-monsoon, with large biases during winter and monsoon seasons. Finally, monthly variations of MOZAIC observed CO show a good comparison with AIRS and MOPITT satellite data.

  5. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.

    2013-11-01

    Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter category serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7 ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1 ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Some profiles may have been influenced by biomass burning sources as well, making quantitative attribution of organic aerosol sources difficult. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.

  6. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  7. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.

    2013-05-01

    Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.

  8. Vertical Seismoelectric Profiling

    NASA Astrophysics Data System (ADS)

    Araji, A.

    2011-12-01

    The seismoelectric method corresponds to the measurement of electromagnetic disturbances associated with the passage of seismic waves in a porous medium. The coupling is due to the existence of the electric double layer at the solid/water interfaces. We consider the case of vertical seismoelectric profiling in which we trigger a seismic source in a vertical borehole and measure the seismoelectric response on the surface. We aim to image hetrogeneities in that section of the subsurface by utilizing the seismoelectric sources created at interfaces. An iterative source localization inversion algorithm is used to achieve the imaging of interfaces.

  9. Observed Variability in CO2 Column Abundances from aircraft vertical profiles: Insight into future space-based mission requirements

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Kooi, S. A.; Vay, S. A.; Browell, E. V.

    2011-12-01

    This presentation discusses the use of high-resolution in-situ CO2 data to quantify the variability in tropospheric CO2 column optical depth. CO2 column abundances are derived from vertical soundings executed during several large-scale airborne campaigns over different geographic regions and seasons spanning the eastern United States (INTEX-NA summer 2004); Mexico (MILAGRO March 2006); the eastern North Pacific and Alaska (INTEX-B May 2006); the Canadian Arctic (ARCTAS spring and summer 2008); and California (CARB June 2008). Data from smaller-scale field experiments associated with the calibration/validation activities of a new active remote CO2 sensor for ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) conducted over OK, MI, NH, VA, and CA, since 2005, are also examined. Nominal weighting functions for ASCENDS measurements of CO2 in the 1.57- and 2.0-microns regions are used to convert the observed CO2 mixing ratio profiles to column optical depths. Using statistics calculated from these optical depths, we show the variability of the CO2 columns and how it relates to the measurement requirements for future space-based missions.

  10. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  11. Modeling the CAPTEX vertical tracer concentration profiles

    SciTech Connect

    Draxler, R.R.; Stunder, B.J.B.

    1988-05-01

    Perfluorocarbon tracer concentration profiles measured by aircraft 600--900 km downwind of the release locations during CAPTEX are discussed and compared with some model results. In general, the concentrations decreased with height in the upper half of the boundary layer where the aircraft measurements were made. The results of a model sensitivity study suggested that the shape of the profile was primarily due to winds increasing with height and relative position of the sampling with respect to the upwind and downwind edge of the plume. Further modeling studies showed that relatively simple vertical mixing parameterizations could account for the complex vertical plume structure when the model had sufficient vertical resolution. In general, the model performed better with slower winds and corresponding longer transport times.

  12. Modeling the CAPTEX Vertical Tracer Concentration Profiles.

    NASA Astrophysics Data System (ADS)

    Draxler, Roland R.; Stunder, Barbara J. B.

    1988-05-01

    Perfluorocarbon tracer concentration profiles measured by aircraft 600-900 km downwind of the release locations during CAPTEX are discussed and compared with some model results. In general, the concentrations decreased with height in the upper half of the boundary layer where the aircraft measurements were made. The results of a model sensitivity study suggested that the shape of the profile was primarily due to winds increasing with height and relative position of the sampling with respect to the upwind and downwind edge of the plume. Further modeling studies showed that relatively simple vertical mixing parameterizations could account for the complex vertical plume structure when the model had sufficient vertical resolution. In general, the model performed better with slower winds and corresponding longer transport times.

  13. Offset vertical radar profiling

    USGS Publications Warehouse

    Witten, A.; Lane, J.

    2003-01-01

    Diffraction tomography imaging was applied to VRP data acquired by vertically moving a receiving antenna in a number of wells. This procedure simulated a vertical downhole receiver array. Similarly, a transmitting antenna was sequentially moved along a series of radial lines extending outward from the receiver wells. This provided a sequence of multistatic data sets and, from each data set, a two-dimensional vertical cross-sectional image of spatial variations in wave speed was reconstructed.

  14. Vertical tail buffeting of fighter aircraft

    NASA Astrophysics Data System (ADS)

    Lee, B. H. K.

    2000-04-01

    Vertical tail buffeting at high angles of attack is a phenomenon associated with the impact of vortical flows generated by the aircraft on the fins. This poses a serious problem for both single- and twin-tail fighter aircraft from the point of view of combat maneuverability and structural integrity. The research activities to understand the flow physics with an aim to alleviate buffet loads were quite intense during the period from the late 1970s to the early 1990s. Most of the investigations were carried out on the F/A-18 mainly because of two international programs involving countries that operate the F/A-18 in their air force. This review begins with a description of the water tunnel experiments showing some flow visualization results of the leading-edge extension (LEX) burst vortical flows. Wind tunnel studies on a 1/9 scale F/A-18 model in Australia, a 1/6.65 scale model in the United Kingdom, a 6% scale model in Canada, 12%, 16% and full-scale models in the United States are summarized. Scale effects can be deduced from the various sub- and full-scale models tested. Flight test results conducted on the High Alpha Research Vehicle in the United States and on an instrumented CF-18 test aircraft in Canada are presented. The accuracy of analytical methods utilizing wind tunnel data to predict buffet loads at flight conditions is discussed. The use of CFD to compute vertical fin buffeting is challenging and requires a large amount of computing power. A brief exposure to the methodology is given and results from the only available computational case study carried out by NASA Ames are compared with wind tunnel and flight test data. A short introduction to statistical non-stationary effects is given. Hysteresis effect of the LEX vortex burst on the buffet loads is discussed, and a statistical non-stationary buffet prediction method is outlined. This review provides a useful reference to the results collected from the High Alpha Technology Program, The Technical

  15. Longitudinal variability of black carbon vertical profiles

    NASA Astrophysics Data System (ADS)

    Schwarz, J. P.; Weinzierl, B.; Samset, B. H.; Perring, A. E.; Dollner, M.; Heimerl, K.; Markovic, M. Z.; Ziemba, L. D.

    2015-12-01

    Black carbon (BC) aerosol contributes substantially to both climate forcing and climate forcing uncertainty. An important source of this uncertainty derives from the difficulty in predicting BC's global abundance and vertical distribution. Here we present a multi-year record of black carbon (BC) vertical concentration profiles from both sides of the Atlantic, obtained from airborne Single Particle Soot Photometers (SP2s) flown on the NASA DC-8, and the DLR Falcon research aircraft from the CONCERT, ACCESS, DC3, SEAC4RS, and SALTRACE campaigns. The measurements constrain the relative rates of BC transport/removal from, and zonal mixing in, the upper troposphere, as well as the range of BC loadings in these regions. They also constrain the time-rates of change of BC loads in altitudes at which it is a highly efficient (although sparse) climate forcer, and a relatively long-lived aerosol tracer. We find that concentration of BC in the upper troposphere can vary by a factor 10. Over the Northern mid-latitudes concentrations are however consistent to a fraction of this range over wide longitudinal ranges, over month-long timescales. The data show that BC becomes zonally mixed here starting at 500 hPa and extending to near the tropopause. These results imply broader value than previously associated with measured vertical profiles in constraining global scale BC loadings aloft.

  16. Generation and evoluation of near-optimum vertical flight profiles

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.

    1983-01-01

    The overall objectives of this research effort have been to develop and evaluate algorithms and flight management concepts for minimization of fuel or direct operating costs. These concepts are to be used for flight planning or for on-board computation and steering of turbojet transport aircraft in the vertical path. Within this research context, a computer program, called OPTIM, has been developed to use these algorithms to generate near-optimum vertical reference profiles. OPTIM contains control options to examine effects of various flight constraints on cost performance. A companion program, called TRAGEN, was developed to simulate an aircraft flying along a given vertical reference profile. TRAGEN is used to verify OPTIM's output , to examine the effects of parameter value uncertainty (such as prevailing wind), and to compare cost performance of profiles generated by different techniques. This paper describes OPTIM and TRAGEN and presents examples of the programs utility.

  17. Evaluation of vertical profiles to design continuous descent approach procedure

    NASA Astrophysics Data System (ADS)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  18. Propulsion systems for vertical flight aircraft

    SciTech Connect

    Brooks, A.

    1990-01-01

    The present evaluation of VTOL airframe/powerplant integration configurations combining high forward flight speed with safe and efficient vertical flight identifies six configurations that can be matched with one of three powerplant types: turboshafts, convertible-driveshaft lift fans, and gas-drive lift fans. The airframes configurations are (1) tilt-rotor, (2) folded tilt-rotor, (3) tilt-wing, (4) rotor wing/disk wing, (5) lift fan, and (6) variable-diameter rotor. Attention is given to the lift-fan VTOL configuration. The evaluation of these configurations has been conducted by both a joint NASA/DARPA program and the NASA High Speed Rotorcraft program. 7 refs.

  19. Vertical grid of retrieved atmospheric profiles

    NASA Astrophysics Data System (ADS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-05-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application.

  20. Reconstructing the vertical profile of humidity on the basis of the vertical profile of temperature

    NASA Technical Reports Server (NTRS)

    Bazlova, T. I.

    1974-01-01

    The vertical profile of humidity in the atmosphere is developed on the basis of the vertical profile of temperature using an empirical formula linking changes in humidity with changes in temperature and altitude. The atmosphere is divided into three layers by altitude, since the condition for the formation of humidity varies with altitude.

  1. Surface tension profiles in vertical soap films

    NASA Astrophysics Data System (ADS)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  2. Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry

    1990-01-01

    The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.

  3. RSRA vertical drag test report. [rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Flemming, R. J.

    1981-01-01

    The Rotor Systems Research Aircraft (RSRA), because of its ability to measure rotor loads, was used to conduct an experiment to determine vertical drag, tail rotor blockage, and thrust augmentation as affected by ground clearance and flight velocity. The RSRA was flown in the helicopter configuration at speeds from 0 to 15 knots for wheel heights from 5 to 150 feet, and to 60 knots out of ground effect. The vertical drag trends in hover, predicted by theory and shown in model tests, were generally confirmed. The OGE hover vertical drag is 4.0 percent, 1.1 percent greater than predicted. The vertical drag decreases rapidly as wheel height is reduced, and is zero at a wheel height of 6 feet. The vertical drag also decreases with forward speed, approaching zero at sixty knots. The test data show the effect of wheel height and forward speed on thrust, gross weight capability, and power, and provide the relationships for power and collective pitch at constant gross weight required for the simulation of helicopter takeoffs and landings.

  4. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  5. Unsteady aerodynamic characterization of a military aircraft in vertical gusts

    NASA Technical Reports Server (NTRS)

    Lebozec, A.; Cocquerez, J. L.

    1985-01-01

    The effects of 2.5-m/sec vertical gusts on the flight characteristics of a 1:8.6 scale model of a Mirage 2000 aircraft in free flight at 35 m/sec over a distance of 30 m are investigated. The wind-tunnel setup and instrumentation are described; the impulse-response and local-coefficient-identification analysis methods applied are discussed in detail; and the modification and calibration of the gust-detection probes are reviewed. The results are presented in graphs, and good general agreement is obtained between model calculations using the two analysis methods and the experimental measurements.

  6. Vertical Resolution and Information Content of MOPITT CO Profiles

    NASA Astrophysics Data System (ADS)

    Deeter, M. N.; Emmons, L. K.; Gille, J. C.; Edwards, D. P.

    2003-12-01

    The MOPITT (Measurements of Pollution in the Troposphere) remote sensing instrument was designed to monitor global distributions of carbon monoxide and methane from a space-based platform using gas correlation radiometry. MOPITT became operational in March, 2000 after being launched in late December, 1999. Current MOPITT retrievals of CO are based on a subset of the instrument's eight 4.6 μ m-band channels. The sensitivity of the retrieved CO profile to the `true' profile is expressed mathematically by the retrieval averaging kernels. Analysis of the averaging kernels reveals valuable information about (1) vertical resolution and (2) inclusion of a priori information. Calculated averaging kernels for operational retrieved CO profiles indicate the capability of resolving tropospheric CO into approximately two layers. Calculation of the averaging kernels' eigenvectors and eigenvalues provides additional insights into issues of vertical resolution and information content. Instruments such as MOPITT that exploit thermal infrared radiation for trace gas profile retrievals are sensitive to temperature contrasts within the atmosphere and at the surface/atmosphere interface. Over land, retrieval vertical resolution (and information content) varies considerably between daytime and nighttime observations due to the diurnal variability of surface/atmosphere temperature contrasts. Over deserts, for example, resolution is usually much greater for daytime observations than for nighttime observations. Over the oceans, retrieval vertical resolution also follows patterns associated with skin temperature (with the highest resolution observed typically in tropical regions). Comparisons of the vertical gradient of MOPITT retrieved CO profiles with in-situ CO profiles measured using aircraft-based instruments are consistent with the vertical resolution indicated by the calculated averaging kernels. Similar findings apply to comparisons of MOPITT retrievals with output from the

  7. Ozone vertical profile changes over South Pole

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Hofmann, D. J.; Komhyr, W. D.; Lathrop, J. A.

    1994-01-01

    Important changes in the ozone vertical profile over South Pole, Antarctica have occurred both during the recent period of measurements, 1986-1991, and since an earlier set of soundings was carried out from 1967-1971. From the onset of the 'ozone hole' over Antarctica in the early 1980s, there has been a tendency for years with lower spring ozone amounts to alternate with years with somewhat higher (although still depleted) ozone amounts. Beginning in 1989 there have been three consecutive years of strong depletion although the timing of the breakdown of the vortex has varied from year to year. Comparison of the vertical profiles between the two periods of study reveals the dramatic decreases in the ozone amounts in the stratosphere between 15-21 km during the spring. In addition, it appears that summer values are also now much lower in this altitude region.

  8. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  9. Vertical Profiling of Air Pollution at RAPCD

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John

    2004-01-01

    The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.

  10. The vertical profile of winds on Titan.

    PubMed

    Bird, M K; Allison, M; Asmar, S W; Atkinson, D H; Avruch, I M; Dutta-Roy, R; Dzierma, Y; Edenhofer, P; Folkner, W M; Gurvits, L I; Johnston, D V; Plettemeier, D; Pogrebenko, S V; Preston, R A; Tyler, G L

    2005-12-01

    One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent. PMID:16319831

  11. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  12. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. PMID:26257345

  13. Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe

    NASA Astrophysics Data System (ADS)

    Weigelt, Andreas; Ebinghaus, Ralf; Pirrone, Nicola; Bieser, Johannes; Bödewadt, Jan; Esposito, Giulio; Slemr, Franz; van Velthoven, Peter F. J.; Zahn, Andreas; Ziereis, Helmut

    2016-03-01

    The knowledge of the vertical distribution of atmospheric mercury (Hg) plays an important role in determining the transport and cycling of mercury. However, measurements of the vertical distribution are rare, because airborne measurements are expensive and labour intensive. Consequently, only a few vertical Hg profile measurements have been reported since the 1970s. Besides the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) observations, the latest vertical profile over Europe was measured in 1996. Within the Global Mercury Observation System (GMOS) project, four vertical profiles were taken on board research aircraft (CASA-212) in August 2013 in background air over different locations in Slovenia and Germany. Each vertical profile consists of at least seven 5 min horizontal flight sections from 500 m above ground to 3000 m a.s.l. Gaseous elemental mercury (GEM) and total gaseous mercury (TGM) were measured with Tekran 2537X and Tekran 2537B analysers. In addition to the mercury measurements, SO2, CO, O3, NO, and NO2, basic meteorological parameters (pressure, temperature, relative humidity) have been measured. Additional ground-based mercury measurements at the GMOS master site in Waldhof, Germany and measurements onboard the CARIBIC passenger aircraft were used to extend the profile to the ground and upper troposphere respectively. No vertical gradient was found inside the well-mixed boundary layer (variation of less than 0.1 ng m-3) at different sites, with GEM varying from location to location between 1.4 and 1.6 ng m-3 (standard temperature and pressure, STP: T = 273.15 K, p = 1013.25 hPa). At all locations GEM dropped to 1.3 ng m-3 (STP) when entering the free troposphere and remained constant at higher altitudes. The combination of the vertical profile, measured on 21 August 2013 over Leipzig, Germany, with the CARIBIC measurements during ascent and descent to Frankfurt Airport, Germany, taken at

  14. Vertical emission profiles for Europe based on plume rise calculations.

    PubMed

    Bieser, J; Aulinger, A; Matthias, V; Quante, M; Denier van der Gon, H A C

    2011-10-01

    The vertical allocation of emissions has a major impact on results of Chemistry Transport Models. However, in Europe it is still common to use fixed vertical profiles based on rough estimates to determine the emission height of point sources. This publication introduces a set of new vertical profiles for the use in chemistry transport modeling that were created from hourly gridded emissions calculated by the SMOKE for Europe emission model. SMOKE uses plume rise calculations to determine effective emission heights. Out of more than 40,000 different vertical emission profiles 73 have been chosen by means of hierarchical cluster analysis. These profiles show large differences to those currently used in many emission models. Emissions from combustion processes are released in much lower altitudes while those from production processes are allocated to higher altitudes. The profiles have a high temporal and spatial variability which is not represented by currently used profiles. PMID:21561695

  15. Computer programs for generation and evaluation of near-optimum vertical flight profiles

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.; Patmore, L. C.

    1983-01-01

    Two extensive computer programs were developed. The first, called OPTIM, generates a reference near-optimum vertical profile, and it contains control options so that the effects of various flight constraints on cost performance can be examined. The second, called TRAGEN, is used to simulate an aircraft flying along an optimum or any other vertical reference profile. TRAGEN is used to verify OPTIM's output, examine the effects of uncertainty in the values of parameters (such as prevailing wind) which govern the optimum profile, or compare the cost performance of profiles generated by different techniques. A general description of these programs, the efforts to add special features to them, and sample results of their usage are presented.

  16. Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe

    NASA Astrophysics Data System (ADS)

    Weigelt, A.; Ebinghaus, R.; Pirrone, N.; Bieser, J.; Bödewadt, J.; Esposito, G.; Slemr, F.; van Velthoven, P. F. J.; Zahn, A.; Ziereis, H.

    2015-10-01

    Measurements of the vertical distribution of atmospheric mercury (Hg) are rare, because airborne measurements are expensive and labour intensive. Consequently, only a few vertical Hg profile measurements have been reported since the 1970s. Besides the CARIBIC passenger aircraft observations, the latest vertical profile over Europe was measured in 1996. Within the Global Mercury Observation System (GMOS) project four vertical profiles were taken on board research aircraft (CASA-212) in August 2013 in background air over different locations in Slovenia and Germany. Each vertical profile consists of at least seven 5 min horizontal flight sections from 500 m above ground to 3000 m a.s.l. Gaseous elemental mercury (GEM) was measured with a Tekran 2537X analyser and a Lumex RA-915-AM. Total gaseous mercury (TGM) was measured using a Tekran 2537B analyser and gaseous oxidized mercury (GOM) was sampled onto 8 denuders for post flight analysis (one for each profile, three during the transfer flights, and two blanks). In addition to the mercury measurements, SO2, CO, O3, NO, NO2, as well as basic meteorological parameters (pressure, temperature, relative humidity) have been measured. Additional ground based speciated mercury measurements at the GMOS master site in Waldhof (Germany) were used to extend the profile to the ground. No vertical gradient was found inside the well mixed boundary layer (variation by less than 0.1 ng m-3) at different sites with GEM varying from location to location between 1.4 and 1.6 ng m-3 (STP; standard conditions: p = 1013.25 hPa, T = 273.15 K). At all locations GEM dropped to 1.3 ng m-3 (STP) when entering the free troposphere and remained constant at higher altitudes. The combination of the vertical profile, measured on 21 August 2013, over Leipzig (Germany) with the CARIBIC measurements during ascent and descent to Frankfurt airport (Germany) at approximately the same time provide a unique central European vertical profile from inside the

  17. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  18. Dynamics of ultralight aircraft: Motion in vertical gusts

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1977-01-01

    Gust load calculations are extended to the range of conditions encountered by ultralight aircraft such as hang gliders. Having wing loadings of the order of 5 kg/sq m, these gliders acquire a substantial fraction of the motion of a gust within a distance of 1 or 2 m. Comparative loads and displacements for a small powered airplane having a wing loading of 50 kg sq m and for a commercial jet with 500 kg sq m are shown.

  19. Inter-comparison of CALIPSO and CloudSat retrieved profiles of aerosol and cloud microphysical parameters with aircraft profiles over a tropical region

    NASA Astrophysics Data System (ADS)

    Padmakumari, B.; Harikishan, G.; Maheskumar, R. S.

    2016-05-01

    Satellites play a major role in understanding the spatial and vertical distribution of aerosols and cloud microphysical parameters over a large area. However, the inherent limitations in satellite retrievals can be improved through inter-comparisons with airborne platforms. Over the Indian sub-continent, the vertical profiles retrieved from space-borne lidar such as CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) on board the satellite CALIPSO and Cloud Profiling Radar (CPR) on board the satellite CloudSat were inter- compared with the aircraft observations conducted during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX). In the absence of high clouds, both aircraft and CALIOP showed similar features of aerosol layering and water-ice cloud signatures. As CALIOP could not penetrate the thick clouds, the aerosol information below the cloud is missed. While the aircraft could measure high concentrations below the cloud base and above the low clouds in the presence of high clouds. The aircraft derived liquid water content (LWC) and droplet effective radii (Re) showed steady increase from cloud base to cloud top with a variable cloud droplet number concentration (CDNC). While the CloudSat derived LWC, CDNC and Re showed increase from the cloud top to cloud base in contradiction to the aircraft measurements. The CloudSat profiles are underestimated as compared to the corresponding aircraft profiles. Validation of satellite retrieved vertical profiles with aircraft measurements is very much essential over the tropics to improve the retrieval algorithms and to constrain the uncertainties in the regional cloud parameterization schemes.

  20. Vertical profile of 137Cs in soil.

    PubMed

    Krstić, D; Nikezić, D; Stevanović, N; Jelić, M

    2004-12-01

    In this paper, a vertical distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on vertical distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them. PMID:15388151

  1. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1978-01-01

    The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of vertification test panels and root fittings, rudder support specimens, titanium fittings, and rear spar specimen analysis models are included.

  2. The Vertical Profile of Ocean Mixing

    NASA Astrophysics Data System (ADS)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.

    2014-12-01

    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  3. Vertical mixing and chemistry of isoprene in the atmospheric boundary layer: Aircraft-based measurements and numerical modeling

    NASA Astrophysics Data System (ADS)

    Doskey, Paul V.; Gao, Weigang

    1999-09-01

    Vertical profiles of isoprene, methanol, and ozone (O3) concentrations were measured between the middle and upper atmospheric boundary layer (ABL) from a research aircraft and were numerically simulated for the ABL and a deciduous forest canopy with a one-dimensional model coupling turbulence diffusion and atmospheric chemistry. Isoprene emissions from the deciduous forest canopy were estimated by coupling an existing biogenic emission algorithm with estimates of canopy leaf density inferred from satellite remote sensing observations. Numerical simulations predicted low isoprene concentrations in the middle and upper ABL; however, the agreement between the simulations and the measured values was poor for two of the three profiles, indicating that a three-dimensional transport model might be necessary in future simulations. Chemical oxidation of isoprene by O3 and hydroxyl radical (OH), particularly in the middle and upper ABL, tends to reduce the isoprene concentrations and influences the vertical fluxes in that layer; however, chemical reactions have little effect on fluxes of isoprene near the emission source, where turbulent mixing is much faster than chemical reactions and where the emission process controls the vertical flux. The isoprene flux decreases rapidly with increasing height, with little isoprene escaping from the ABL. Vertical profiles of methanol concentrations were simulated with the biogenic emission algorithm used for isoprene; these vertical profiles were similar to the measured values for the well-mixed ABL but were much lower than the measured concentrations in the lower layers of the growing ABL because of weaker calculated mixing in the upper ABL during the morning. The results of this investigation indicate that chemical oxidation of isoprene is rapid enough to allow O3 and other oxidants to accumulate in the ABL on a regional scale if sufficient levels of nitrogen oxides are present; however, methanol is much more stable, and biogenic

  4. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOEpatents

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  5. Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.

  6. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  7. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  8. A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements

    EPA Science Inventory

    In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...

  9. Vertical Profiles as Observational Constraints on Nitrous Oxide (N2O) Emissions in an Agricultural Region

    NASA Astrophysics Data System (ADS)

    Pusede, S.; Diskin, G. S.

    2015-12-01

    We use diurnal variability in near-surface N2O vertical profiles to derive N2O emission rates. Our emissions estimates are ~3 times greater than are accounted for by inventories, a discrepancy in line with results from previous studies using different approaches. We quantify the surface N2O concentration's memory of local surface emissions on previous days to be 50-90%. We compare measured profiles both over and away from a dense N2O source region in the San Joaquin Valley, finding that profile shapes, diurnal variability, and changes in integrated near-surface column abundances are distinct according to proximity to source areas. To do this work, we use aircraft observations from the wintertime DISCOVER-AQ project in California's San Joaquin Valley, a region of intense agricultural activity.

  10. Remote Sensing Measurements of Vertical and Horizontal Moisture Variations from Aircraft Instruments

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Guillory, Anthony R.; Jedlovec, Gary J.

    1998-01-01

    The research in this paper focuses on describing vertical and horizontal of water vapor variability using two remote sensing aircraft instruments. To achieve this goal we will compare precipitable water and upper level humidity estimates derived from the each of the instruments. The Multispectral Atmospheric Mapping Sensor (MAMS) is a visible and infrared radiometer with similar channels to that of the GOES imager. MAMS has flown aboard the NASA ER-2 numerous times. It has been used to validate features observed with the previous series of GOES satellites. MAMS data has been used to study precipitable water and upper level water vapor as well as other geophysical parameters. MAMS provides the opportunity to obtain water vapor Imagery at 6.7 mm. Upper tropospheric humidity can be computed using this channel in a similar fashion to that of Soden and Bretherton. In addition to the water vapor channel, MAMS records data In 3 other Infrared channels and 8 visible and near Infrared bands at high spatial resolution (I 00 Abstract: m). The 1 1 and 12 mm infrared channels allow for the application of a split technique to derive total precipitable water. The Udar Atmospheric Sensing Experiment (LASE) which uses the Differential Absorption Udar (DIAL) technique for obtaining simultaneous water vapor and aerosol profiles through the entire troposphere. LASE operates In the 81 5 nm wavelength region and uses a double pulsed Ti:sapphire laser that is locked onto a water vapor line. LASE has good horizontal (IO km) and excellent vertical (300 m) resolution. MAMS and LASE collected data simultaneously on several ER-2 flights in September 1995. LASE mixing ratio profiles will be Integrated for comparison with MAMS precipitable water estimates and the upper tropospheric humidity will be computed for the layer observed by the MAMS 6.7 mm channel for comparison for this time period. Results show a significant correlation between the measurements of the two Instruments. Regions of high

  11. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    PubMed

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence. PMID:21558603

  12. A manual control theory analysis of vertical situation displays for STOL aircraft

    NASA Technical Reports Server (NTRS)

    Baron, S.; Levison, W. H.

    1973-01-01

    Pilot-vehicle-display systems theory is applied to the analysis of proposed vertical situation displays for manual control in approach-to-landing of a STOL aircraft. The effects of display variables on pilot workload and on total closed-loop system performance was calculated using an optimal-control model for the human operator. The steep approach of an augmentor wing jet STOL aircraft was analyzed. Both random turbulence and mean-wind shears were considered. Linearized perturbation equations were used to describe longitudinal and lateral dynamics of the aircraft. The basic display configuration was one that abstracted the essential status information (including glide-slope and localizer errors) of an EADI display. Proposed flight director displays for both longitudinal and lateral control were also investigated.

  13. Vertical profiles of cloud condensation nuclei, aerosol hygroscopicity, water uptake, and scattering across the United States

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Bougiatioti, A.; Nenes, A.; Anderson, B. E.; Beyersdorf, A. J.; Brock, C. A.; Gordon, T. D.; Lack, D.; Law, D. C.; Liao, J.; Middlebrook, A. M.; Richardson, M.; Thornhill, K. L., II; Winstead, E.; Wagner, N. L.; Welti, A.; Ziemba, L. D.

    2014-12-01

    The evolutions of vertical distributions of aerosol chemical, microphysical, hygroscopic, and optical properties present fundamental challenges to the understanding of ground-level air quality and radiative transfer, and few datasets exist to date for evaluation of atmospheric models. Data collected from recent NASA and NOAA field campaigns in the California Central Valley (DISCOVER-AQ), southeast United States (SENEX, SEAC4RS) and Texas (DISCOVER-AQ) allow for a unique opportunity to constrain vertical profiles of climate-relevant aerosol properties. This work presents in-situ aircraft measurements of cloud condensation nuclei (CCN) concentration and derivations of aerosol hygroscopicity, water uptake, and light scattering. Aerosol hygroscopicity is derived from CCN and aerosol measurements. Inorganic water uptake is calculated from aerosol composition using ISORROPIA, a chemical thermodynamic model, while organic water uptake is calculated from organic hygroscopicity. Aerosol scattering closure is performed between scattering from water uptake calculations and in-situ scattering measurements.

  14. Concentric circles based simple optical landing aid for vertical takeoff and landing aircrafts

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Enaya, Rayan; Lovell, Gregory L.

    2014-09-01

    Vertical takeoff and landing (VTOL) aircrafts such as helicopters and drones, add a flexible degree of operation to airborne vehicles. In order to operate these devices in low light situations, where it is difficult to determine slope of the landing surface, a lightweight and standalone device is proposed here. This small optical device can be easily integrated into current VTOL systems. An optical projector consisting of low power, light weight, solid state laser along with minimal optics is utilized to illuminate the landing surface with donut shaped circles and coaxial centralized dot. This device can placed anywhere on the aircraft and a properly placed fiber system can be used to illuminate the surface beneath the bottom of the VTOL aircraft in a fashion that during operation, when the aircraft is parallel to the landing surface, the radius between the central dot and outer ring(s) are equidistant for the entire circumference; however, when there the landing surface of the VTOL aircraft is not parallel to the landing strip, the radial distance between two opposite sides of the circle and central dot will be unequal. The larger this distortion, the greater the difference will be between the opposite sides of the circle. Visual confirmation or other optical devices can be used to determine relative alignment of the projector output allowing the pilot to make proper adjustments as they approach the landing surface to ensure safe landings. Simulated and experimental results from a prototype optical projector are presented here.

  15. Origins of chemical pollution derived from Mid-Atlantic aircraft profiles using a clustering technique

    NASA Astrophysics Data System (ADS)

    Hains, Jennifer C.; Taubman, Brett F.; Thompson, Anne M.; Stehr, Jeffrey W.; Marufu, Lackson T.; Doddridge, Bruce G.; Dickerson, Russell R.

    Upwind sources of NO x and SO 2 play a crucial role in the amount of O 3 and aerosols in the lower troposphere in the Mid-Atlantic US. This paper describes a novel method of clustering trace gas and aerosol profiles allowing for the quantification of the relationship between point sources and pollution levels. This improves our understanding of pollution origins and has the potential for prediction of episodes of poor air quality. A hierarchical clustering method was used to classify distinct chemical and meteorological events from over 200 aircraft vertical profiles in the lower troposphere. Profile measurements included O 3, SO 2, CO and particle scattering from June to August 1997-2003, in the Mid-Atlantic US (mostly in Maryland, Pennsylvania and Virginia). The clustering technique could discriminate distinct profile shapes including measurements made during the 2002 Canadian forest fires. Forty-eight-hour back trajectories were run for each profile and the integrated NO x and SO 2 point source emissions encountered by each trajectory were calculated using data from the EPA Clean Air Market Division's emissions database. There was a strong correlation between integrated NO x emissions and O 3 profiles, indicating that O 3 profiles are strongly influenced by and can be predicted with point source emissions. There is a prevalent concentration of SO 2 over the eastern US with mixing ratios decreasing smoothly from about 3.5 ppb near the surface to 0.2 ppb at 2400 m.

  16. Downwind Trace Gas Vertical Profiles in SE Australia Associated with SAFARI 2000 Dry Season Campaign

    NASA Astrophysics Data System (ADS)

    Pak, B. C.; Langenfelds, R. L.; Young, S. A.; Francey, R. J.; Meyer, M.; Kivlighon, L. M.; Cooper, L. N.; Dunse, B. L.; Allison, C. E.; Steele, L. P.; Galbally, I. E.; Weeks, I. A.

    2001-12-01

    In association with the SAFARI 2000 Dry Season campaign in Africa, the Commonwealth Scientific and Industrial Research Organization (CSIRO) division of Atmospheric Research conducted aircraft measurements downwind, over Australia. Five missions were conducted using a Piper Navajo twin-engine aircraft to measure trace gas vertical profiles from near surface up to 7 km above Cape Grim (41oS, 144oE) and Melbourne (38oS, 145oE) regions. Air collected in glass flasks were analysed for CO2 and its stable isotopes (d13C and d18O of CO2), CH4, CO, H2 and N2O. Air collected in passivated canisters were analysed for C2 and C3 hydrocarbons. Ozone was monitored continuously in four of these missions and ground-based LIDAR was also employed in the Melbourne region in three occasions. Previous study on trace gas vertical profiles above Cape Grim between 1992 and 1997 had established using emission ratios that burning in Africa and S America are contributing to the enhanced mid-tropospheric content of various trace gases in SE Australia. Now the SAFARI 2000 in-situ data complemented with downwind observations in Australia provides the opportunity to more closely link the observed mid-tropospheric anomalies at Cape Grim to specific surface emissions and atmospheric processes. Combined with our previous data, this investigation of biomass burning impacts is extended for the whole period from 1992 to 2000. In this respect, we plan to collaborate with groups measuring the same trace gases in-situ during SAFARI 2000 (including ozone and VOCs) and compare the observations to simulated results from the UC Irvine chemistry transport model. Data requests for the vertical profile data could be addressed to B.C. Pak or R.L. Langenfelds via email: bpak@halo.ps.uci.edu, ray.langenfelds@dar.csiro.au

  17. Flight investigation of a vertical-velocity command system for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.

    1977-01-01

    A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.

  18. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  19. Black Carbon Vertical Profiles Strongly Affect its Radiative Forcing Uncertainty

    SciTech Connect

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, Susanne E.; Berntsen, T.; Bian, Huisheng; Bellouin, N.; Diehl, T.; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kinne, Stefan; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, Xiaohong; Penner, Joyce E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, Kai

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  20. Vertical soil profiling using a galvanic contact resistivity scanning approach.

    PubMed

    Pan, Luan; Adamchuk, Viacheslav I; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  1. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  2. Vertical profile of atmospheric conductivity that matches Schumann resonance observations.

    PubMed

    Nickolaenko, Alexander P; Galuk, Yuri P; Hayakawa, Masashi

    2016-01-01

    We introduce the vertical profile of atmospheric conductivity in the range from 2 to 98 km. The propagation constant of extremely low frequency (ELF) radio waves was computed for this profile by using the full wave solution. A high correspondence is demonstrated of the data thus obtained to the conventional standard heuristic model of ELF propagation constant derived from the Schumann resonance records performed all over the world. We also suggest the conductivity profiles for the ambient day and ambient night conditions. The full wave solution technique was applied for obtaining the corresponding frequency dependence of propagation constant relevant to these profiles. By using these propagation constants, we computed the power spectra of Schumann resonance in the vertical electric field component for the uniform global distribution of thunderstorms and demonstrate their close similarity in all the models. We also demonstrate a strong correspondence between the wave attenuation rate obtained for these conductivity profiles and the measured ones by using the ELF radio transmissions. PMID:26877906

  3. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  4. An experimental study of concurrent methods for adaptively controlling vertical tail buffet in high performance aircraft

    NASA Astrophysics Data System (ADS)

    Roberts, Patrick J.

    High performance twin-tail aircraft, like the F-15 and F/A-18, encounter a condition known as tail buffet. At high angles of attack, vortices are generated at the wing fuselage interface (shoulder) or other leading edge extensions. These vortices are directed toward the twin vertical tails. When the flow interacts with the vertical tail it creates pressure variations that can oscillate the vertical tail assembly. This results in fatigue cracks in the vertical tail assembly that can decrease the fatigue life and increase maintenance costs. Recently, an offset piezoceramic stack actuator was used on an F-15 wind tunnel model to control buffet induced vibrations at high angles of attack. The controller was based on the acceleration feedback control methods, In this thesis a procedure for designing the offset piezoceramic stack actuators is developed. This design procedure includes determining the quantity and type of piezoceramic stacks used in these actuators. The changes of stresses, in the vertical tail caused by these actuators during an active control, are investigated. In many cases, linear controllers are very effective in reducing vibrations. However, during flight, the natural frequencies of the vertical tail structural system changes as the airspeed increases. This in turn, reduces the effectiveness of a linear controller. Other causes such as the unmodeled dynamics and nonlinear effects due to debonds also reduce the effectiveness of linear controllers. In this thesis, an adaptive neural network is used to augment the linear controller to correct these effects.

  5. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  6. Seasonal variation of vertical distribution of aerosol single scattering albedo over Indian sub-continent: RAWEX aircraft observations

    NASA Astrophysics Data System (ADS)

    Suresh Babu, S.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Krishna Moorthy, K.

    2016-01-01

    To characterize the vertical distribution of aerosols and its seasonality (especially the single scattering albedo, SSA) extensive profiling of aerosol scattering and absorption coefficients have been carried out using an instrumented aircraft from seven base stations spread across the Indian mainland during winter 2012 and spring/pre-monsoon 2013 under the Regional Aerosol Warming Experiment (RAWEX). Spatial variation of the vertical profiles of the asymmetry parameter, the wavelength exponent of the absorption coefficient and the single scattering albedo, derived from the measurements, are used to infer the source characteristics of winter and pre-monsoon aerosols as well as the seasonality of free tropospheric aerosols. The relatively high value of the wavelength exponent of absorption coefficient over most of the regions indicates the contribution from biomass burning and dust aerosols up to lower free tropospheric altitudes. A clear enhancement in aerosol loading and its absorbing nature is seen at lower free troposphere levels (above the planetary boundary layer) over the entire mainland during spring/pre-monsoon season compared to winter, whereas concentration of aerosols within the boundary layer showed a decrease from winter to spring. This could have significant implications on the aerosol heating structure over the Indian region and hence the regional climate.

  7. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  8. Vertical mixing and chemistry of isoprene in the atmospheric boundary layer: Aircraft-based measurements and numerical modeling

    SciTech Connect

    Doskey, P.V.; Gao, W.

    1999-09-01

    Vertical profiles of isoprene, methanol, and ozone (O{sub 3}) concentrations were measured between the middle and upper atmospheric boundary layer (ABL) from a research aircraft and were numerically simulated for the ABL and a deciduous forest canopy with a one-dimensional model coupling turbulence diffusion and atmospheric chemistry. Isoprene emissions from the deciduous forest canopy were estimated by coupling an existing biogenic emission algorithm with estimates of canopy leaf density inferred from satellite remote sensing observations. Numerical simulations predicted low isoprene concentrations in the middle and upper ABL; however, the agreement between the simulations and the measured values was poor for two of the three profiles, indicating that a three-dimensional transport model might be necessary in future simulations. Chemical oxidation of isoprene by O{sub 3} and hydroxyl radical (OH), particularly in the middle and upper ABL, tends to reduce the isoprene concentrations and influences the vertical fluxes in that layer; however, chemical reactions have little effect on fluxes of isoprene near the emission source, where turbulent mixing is much faster than chemical reactions and where the emission process controls the vertical flux. The isoprene flux decreases rapidly with increasing height, with little isoprene escaping from the ABL. Vertical profiles of methanol concentrations were simulated with the biogenic emission algorithm used for isoprene; these vertical profiles were similar to the measured values for the well-mixed ABL but were much lower than the measured concentrations in the lower layers of the growing ABL because of weaker calculated mixing in the upper ABL during the morning. The results of this investigation indicate that chemical oxidation of isoprene is rapid enough to allow O{sub 3} and other oxidants to accumulate in the ABL on a regional scale if sufficient levels of nitrogen oxides are present; however, methanol is much more stable

  9. Crash Simulation of a Vertical Drop Test of a Commuter-Class Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-ft/s (9.14-m/s) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kg) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial code for performing explicit transient dynamic simulations. Predictions of structural deformation and selected time-history responses were generated. The simulation was successfully validated through extensive test-analysis correlation.

  10. Visualization of A-Train vertical profiles using Google Earth

    NASA Astrophysics Data System (ADS)

    Chen, Aijun; Leptoukh, Gregory; Kempler, Steven; Lynnes, Christopher; Savtchenko, Andery; Nadeau, Denis; Farley, John

    2009-02-01

    Online tools, such as those pioneered by Google Earth (GE), are changing the way in which scientists and the general public interact with three-dimensional geospatial data in a virtual environment. However, while GE provides a number of features to facilitate geospatial data visualization, there is currently no readily available method for rendering vertical geospatial data derived from Earth—viewing remote sensing satellites as an orbit curtain seen from above. Here, a solution (one of many possible) is demonstrated to render vertical profiles of atmospheric data from the A-Train satellite formation in GE, using as a proof-of-concept data from one of the instruments—the NASA CloudSat satellite. CloudSat carries a nadir-viewing Cloud Profiling Radar that produces data revealing the vertical distribution of cloud characteristics along the satellite track. These data are first rendered into a long vertical image for a user-selected spatial range through the NASA Goddard Interactive Online Visualization ANd aNalysis Infrastructure (G IOVANNI) system ( http://giovanni.gsfc.nasa.gov/). The vertical image is then chopped into small slices representing 15 s of satellite time (˜103 km long ground distance). Each small piece, as a texture, is fed into a generalized COLLAborative Design Activity (COLLADA) three-dimensional (3-D) model. Using the satellite orbit coordinates, the repeated 15 s "3-D model slices" are spliced together to form a vertical "curtain" image in Keyhole Markup Language (KML) format. Each model slice is geolocated along the CloudSat orbit path based on its size, scale and angle with the longitude line that are precisely calculated on the fly. The resulting vertical cloud data can be viewed in GE, either transparently or opaquely, superimposed above the Earth's surface with an exaggerated vertical scale. Since CloudSat is just a part of the A-Train formation, the full utility of this tool can be explored within the context of the A-Train Data Depot

  11. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 3: User's manual for VATOL simulation program

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Instructions for using Vertical Attitude Takeoff and Landing Aircraft Simulation (VATLAS), the digital simulation program for application to vertical attitude takeoff and landing (VATOL) aircraft developed for installation on the NASA Ames CDC 7600 computer system are described. The framework for VATLAS is the Off-Line Simulation (OLSIM) routine. The OLSIM routine provides a flexible framework and standardized modules which facilitate the development of off-line aircraft simulations. OLSIM runs under the control of VTOLTH, the main program, which calls the proper modules for executing user specified options. These options include trim, stability derivative calculation, time history generation, and various input-output options.

  12. Vertical NO2 Profile measurements in Hong Kong using DOAS

    NASA Astrophysics Data System (ADS)

    Wenig, Mark; Bräu, Melanie; Zhu, Ying; Lipkowitsch, Ivo; Röttger, Clemens; Fat Lam, Yun

    2016-04-01

    In this presentation we describe our first measurements of vertical NO2 distributions in a street canyon in Hong Kong using different DOAS techniques. One approach is to use mobile cavity-enhanced DOAS (CE-DOAS) measurements on different floors of a high rise building to assemble a profile. In addition to this we use a ToTaL-DOAS (Topographic Target Light Scattering DOAS) approach to measure vertical and horizontal distributions of NO2 SCDs of the Hong Kong skyline including the building we used for the CE-DOAS measurements. As a third option to generate profile information, we use data from the Hong Kong Environmental Protection department (EPD) measurement stations. Each measurement location is at a different height and we used a concentration map we assembled using mobile CE-DOAS measurements which again had been corrected for diurnal variations using a continuously measuring LP-DOAS for horizontal extrapolation. We compare parameterized profiles from those three different methods and discuss how profile information can be used to make urban air quality monitoring more comparable.

  13. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    aerosol and black carbon mass mixing ratio with altitude than found in the observations. In contrast, measured profiles from the HIPPO project are qualitatively captured well. Similar conclusions hold for the comparison of simulated and measured aerosol particle number concentrations. On the one hand, these results exemplify the difficulty in evaluating the representativeness of the simulated global climatological state of the aerosol by means of comparison with individually measured vertical profiles. On the other hand, it highlights the value of aircraft campaigns with large spatial and temporal coverage for model evaluation.

  14. TOMS Validation Based on Profiles of Aerosol Properties in the Lower Troposphere as Obtained with Light Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Prospero, Joseph M.; Maring, Hal; Savoie, Dennis

    2003-01-01

    The goal of the University of Miami Aerosol Group (UMAG) in this project was to make measurements of vertical profiles of aerosol properties and aerosol optical depth using a light aircraft. The UMAG developed a light aircraft aerosol package (LAAP) that was used in light aircraft (Cessna 172) during the Puerto Rico Dust Experiment (PRIDE). This field campaign took place on Puerto Rico during July 2000. Design details and results from the use of the LAAP were presented at TOMS Science team meetings on April 1998, April 1999, and May 2000. Results from the LAAP collected during the PRIDE Experiment were presented at the Fall Meeting of the American Geophysical Union, December 2000. Some of the results from the LAAP collected during the PRIDE Experiment have been accepted for publication in the Journal of Geophysical Research in a "topical section" made up of papers from the PRIDE Program.

  15. Design of a Low Cost Short Takeoff-vertical Landing Export Fighter/attack Aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, Anne; Bodeker, Dan, III; Miu, Steve; Petro, Laura; Senf, Cary Taylor; Woeltjen, Donald

    1990-01-01

    The design of a supersonic short takeoff and vertical landing (STOVL) aircraft is presented that is suitable for export. An advanced four poster, low bypass turbofan engine is to be used for propulsion. Preliminary aerodynamic analysis is presented covering a determination of CD versus CL, CD versus Mach number, as well as best cruise Mach number and altitude. Component locations are presented and center of gravity determined. Cost minimization is achieved through the use of developed subsystems and standard fabrication techniques using nonexotic materials. Conclusions regarding the viability of the STOVL design are presented.

  16. Vertical resolution of temperature profiles obtained from remote radiation measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1971-01-01

    The Backus-Gilbert theory, originally developed for analysis of inversion problems associated with the physics of the solid earth, was applied to the problem of the vertical sounding of the atmosphere by means of remote radiation measurements. An application was made to spectral intervals 2.8/cm wide in the 667/cm band CO2, and tradeoff curves are presented which quantitatively define the relationship between intrinsic vertical resolution and random error in temperature profile estimates. It is found that for a 1-2 K random error with state-of-the-art instrumentation, the intrinsic vertical resolution ranges from approximately 0.5 locale scale height (l.s.h.) in the lower troposphere to greater than 2 l.s.h. in the upper stratosphere with approximately 1 l.s.h. resolution in the vicinity of the tropopause. These values are somewhat smaller than the widths of the radioactive transfer kernels at similar levels. Increasing the number of spectral intervals from 7 to 16 is found to produce only a marginal improvement in vertical resolution.

  17. Vertical resolution of temperature profiles obtained from remote radiation measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1971-01-01

    The Backus-Gilbert theory is applied to the problem of the vertical sounding of the atmosphere by means of remote radiation measurements. An application is made to spectral intervals 2.8/cm wide in the 667/cm band of CO2, and tradeoff curves are presented which quantitatively define the relationship between intrinsic vertical resolution and random error in temperature profile estimates. It is found that for a 1-2K random error with state-of-the-art instrumentation, the intrinsic vertical resolution ranges from approximately 0.5 local scale height (l.s.h.) in the lower troposphere to 2 l.s.h. in the upper stratosphere with approximately 2 l.s.h. resolution in the vicinity of the tropopause. These values are somewhat smaller than the widths of the radiactive transfer kernels at similar levels. Increasing the number of spectral intervals from 7 to 16 is found to produce only a marginal improvement in vertical resolution.

  18. Sampling the Vertical Moisture Structure of an Atmospheric River Event Using Airborne GPS Radio Occultation Profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Malloy, K.; Murphy, B.; Sussman, J.; Zhang, W.

    2015-12-01

    Atmospheric rivers (ARs) are of high concern in California, bringing significant rain to the region over extended time periods of up to 5 days, potentially causing floods, and more importantly, contributing to the Sierra snowpack that provides much of the regional water resources. The CalWater project focuses on predicting the variability of the West Coast water supply, including improving AR forecasting. Unfortunately, data collection over the ocean remains a challenge and impacts forecasting accuracy. One novel technique to address this issue includes airborne GPS radio occultation (ARO), using broadcast GPS signals from space to measure the signal ray path bending angle and refractivity to retrieve vertical water vapor profiles. The Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) system was developed for this purpose for recording and processing high-sample rate (10MHz) signals in the lower troposphere. Previous studies (Murphy et al, 2014) have shown promising results in acquiring airborne GPS RO data, comparing it to dropsondes and numerical weather models. CalWater launched a field campaign in the beginning of 2015 which included testing GISMOS ARO on the NOAA GIV aircraft for AR data acquisition, flying into the February 6th AR event that brought up to 35 cm of rain to central California. This case study will compare airborne GPS RO refractivity profiles to the NCEP-NCAR final reanalysis model and dropsonde profiles. We will show the data distribution and explain the sampling characteristics, providing high resolution vertical information to the sides of the aircraft in a manner complementary to dropsondes beneath the flight track. We will show how this method can provide additional reliable data during the development of AR storms.

  19. Measuring Vertical Profiles of Wind, Temperature and Humidity within the Atmospheric Boundary Layer using the Research UAVs 'M2AV Carolo'

    NASA Astrophysics Data System (ADS)

    Bange, J.; Martin, S.

    2009-09-01

    The measurement of vertical profiles is important to characterise the vertical structure of the atmospheric boundary layer (ABL). For instance, the dependence of the potential temperature on altitude defines the thermal stratification. The mechanical shear (i.e. the variation of wind speed and direction) produces turbulence and turbulent fluxes. The top of the ABL is required for scaling approaches (e.g. Deardorff scaling in the convective boundary layer, local scaling in the stable boundary layer). The Meteorological Mini Aerial Vehicles (M²AV) are self-constructed, automatically operating research aircraft of 6 kg in weight (including 1.5 kg scientific payload) and 2 m wingspan. These systems are capable of performing turbulence measurements (wind vector, temperature and humidity) and are used as a new instrument for measuring vertical profiles of the lower troposphere. Compared to a radiosonde, the spatial resolution of the M²AV is significantly higher. Especially the wind measurement is significantly more accurate compared to radiosonde data when using an aircraft that is equipped with a proper flow sensor (mainly a five-hole probe). It is important to maintain flow angles (sideslip and angle of attack) within the calibration range (typically 10 to 20 degree). This limits the vertical speed (the rate of climb and descent) of the research aircraft. In general there are two approaches to measure vertical profiles with research aircraft. Instantaneous profiles (slant flight pattern) are suitable if only little time is available, if the ABL is very in-stationary (or the aircraft is slow), if the dependence of the profile on time is requested (repeated slant flight patterns over one location) or if the dependence of the profile on the location is requested (saw-tooth pattern). For mean profiles (horizontal straight and level flights 'legs' at several altitudes within the ABL) it is necessary to use fast sensors. If the response time is too large, the vertical

  20. Depth profiles and free volume in aircraft primer films

    NASA Astrophysics Data System (ADS)

    Van Horn, J. D.; Chen, H.; Jean, Y. C.; Zhang, W.; Jaworowski, M. R.

    2015-06-01

    Positron annihilation lifetime spectroscopy (PALS) and associated techniques provide non-destructive methods to study the free volume inside polymeric materials, and to study material characteristics over a depth profile. Cast free films of organic- or aqueous-based, non-chromated aerospace primers, when cured for about one week, had very different water vapour transport (through-plane) behaviour. In addition, both types of primer films showed strong anisotropic behaviour in in-plane versus through-plane water vapour transport rates. We report the differences between the organic- and aqueous-based aircraft primer films samples and their surface depth profiles. In bulk PALS measurements, an aged, organic-based film exhibited typical lifetimes and intensities for a particulate-containing polymer film on both faces. In contrast, aqueous-based films exhibited face oriented-dependent differences. In all aqueous- based samples, the I3 value of the back of the sample was smaller. The primer film samples were also evaluated with mono-energetic positron beam techniques to generate depth profile information. The heterogeneity in the samples was verified by Doppler broadening of energy spectroscopy (DBES). A model for the differences in the faces of the films, and their layered structure is discussed.

  1. Radial-vertical profiles of tropical cyclone derived from dropsondes

    NASA Astrophysics Data System (ADS)

    Ren, Yifang

    The scopes of this thesis research are two folds: the first one is to the construct the intensity-based composite radial-vertical profiles of tropical cyclones (TC) using GPS-based dropsonde observations and the second one is to identify the major deficiencies of Mathur vortices against the dropsonde composites of TCs. The intensity-based dropsonde composites of TCs advances our understanding of the dynamic and thermal structure of TCs of different intensity along the radial direction in and above the boundary layer where lies the devastating high wind that causes property damages and storm surges. The identification of the major deficiencies of Mathur vortices in representing the radial-vertical profiles of TC of different intensity helps to improve numerical predictions of TCs since most operational TC forecast models need to utilize bogus vortices, such as Mathur vortices, to initialize TC forecasts and simulations. We first screen all available GPS dropsonde data within and round 35 named TCs over the tropical Atlantic basin from 1996 to 2010 and pair them with TC parameters derived from the best-track data provided by the National Hurricane Center (NHC) and select 1149 dropsondes that have continuous coverage in the lower troposphere. The composite radial-vertical profiles of tangential wind speed, temperature, mixing ratio and humidity are based for each TC category ranging from "Tropical Storm" (TS) to "Hurricane Category 1" (H1) through "Hurricane Category 5" (H5). The key findings of the dropsonde composites are: (i) all TCs have the maximum tangential wind within 1 km above the ground and a distance of 1-2 times of the radius of maximum wind (RMW) at the surface; (ii) all TCs have a cold ring surrounding the warm core near the boundary layer at a distance of 1-3 times of the RMW and the cold ring structure gradually diminishes at a higher elevation where the warm core structure prevails along the radial direction; (iii) the existence of such shallow cold

  2. Mean Vertical Motions Seen by Radar Wind Profilers.

    NASA Astrophysics Data System (ADS)

    Nastrom, G. D.; Vanzandt, T. E.

    1994-08-01

    Radar wind profilers have been used to measure directly the vertical motion above the radar site. Mean values of vertical motions in the troposphere and lower stratosphere reported at sites in and near mountains are often several centimeters per second and have often been attributed to the effects of quasi-stationary lee waves. However, observations now available at sites in the plains, far from any mountains, also show mean values of several centimeters per second. For example, monthly mean values seen by the Flatland VHF radar near Champaign-Urbana, Illinois, range from about 3 to 7 cm s1, with largest magnitudes during the winter. The authors examine several of the hypotheses that have previously been advanced to explain these observations and find that each is inconsistent with the observations in some respect, except that quasi-horizontal flow along gently sloping isentropic surfaces leads to mean downward motion as large as 1 2 cm s1. In this paper the authors suggest that the effects of vertically propagating gravity waves can account for most of the mean downward motions measured with radars, and the measured mean vertical motions can aptly be termed `apparent' mean vertical motions. In gravity waves with downward phase propagation (upward energy propagation), the perturbations to the static stability and to the vertical velocity are negatively correlated. Since the radar reflectivity is proportional to the static stability, regions of the radar sampling volume with downward (or less strongly upward) vertical air motion due to gravity waves are weighted more heavily. A model incorporating this suggestion is first developed for a monochromatic gravity wave and is then expanded to a spectrum of gravity waves. This model predicts a correlation between the magnitude of the downward motion seen by the radar and the gravity wave energy density; the predicted relationship is verified by the observations from the Flatland radar. Statistical analysis of data from

  3. Vertical profiles of ion production measured in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Nicoll, Keri; Aplin, Karen

    2014-05-01

    The electrical resistance of a unit area column of atmosphere is strongly influenced by the generation of cluster ions within the column, for example from natural radioactivity and galactic cosmic rays. This "columnar resistance" determines the vertical current flow in the global circuit. An underexploited measurement platform is the conventional weather balloon (radiosonde), thousands of which are launched daily by meteorological services. Using specially-designed and inexpensive ionization sensing technology, we present profiles of ion production in the troposphere. These show characteristic features of ionization profiles, such as variations due to changes in geomagnetic latitude and the Pfoetzer maximum between 15 and 25km. The use of meteorological radiosondes for such measurements of particle fluxes at a wide range of altitude and latitudes offers a cost-effective method of long term measurements of these quantities.

  4. Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar

    NASA Technical Reports Server (NTRS)

    Orr, Brad W.; Kropfli, Robert A.

    1993-01-01

    During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.

  5. Vertical profile of fog microphysics : a case study

    NASA Astrophysics Data System (ADS)

    Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan

    2016-04-01

    The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.

  6. Reconstruction of the vertical electron density profile based on vertical TEC using the simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Chunhua; Yang, Guobin; Zhu, Peng; Nishioka, Michi; Yokoyama, Tatsuhiro; Zhou, Chen; Song, Huan; Lan, Ting; Zhao, Zhengyu; Zhang, Yuannong

    2016-05-01

    This paper presents a new method to reconstruct the vertical electron density profile based on vertical Total Electron Content (TEC) using the simulated annealing algorithm. The present technique used the Quasi-parabolic segments (QPS) to model the bottomside ionosphere. The initial parameters of the ionosphere model were determined from both International Reference Ionosphere (IRI) (Bilitza et al., 2014) and vertical TEC (vTEC). Then, the simulated annealing algorithm was used to search the best-fit parameters of the ionosphere model by comparing with the GPS-TEC. The performance and robust of this technique were verified by ionosonde data. The critical frequency (foF2) and peak height (hmF2) of the F2 layer obtained from ionograms recorded at different locations and on different days were compared with those calculated by the proposed method. The analysis of results shows that the present method is inspiring for obtaining foF2 from vTEC. However, the accuracy of hmF2 needs to be improved in the future work.

  7. Vertical Profile Measurements of Formaldehyde and NO2 by means of the CU Airborne Multi-Axis DOAS instrument

    NASA Astrophysics Data System (ADS)

    Oetjen, H.; Baidar, S.; Coburn, S.; Ortega, I.; Dix, B. K.; Sinreich, R.; Volkamer, R.

    2010-12-01

    The University of Colorado airborne multi-axis differential optical absorption spectroscopy (CU AMAX-DOAS) instrument was operated on board the NOAA twin otter research aircraft to measure column abundances of reactive trace gases (e.g., NO2, formaldehyde, glyoxal, O4, BrO, and IO) during the CalNEx and CARES campaigns in California in May to July, 2010. Column observations of reactive trace gases provide means to bridge spatial scales between ground-based measurements, and satellite observations, and enable a more direct comparison with atmospheric models. However, the CU AMAX-DOAS features a novel telescope to collect scattered sunlight under discrete viewing angles providing the opportunity to obtain profile information of trace gases as well. This telescope was installed in a pylon pointing out of the side window of the aircraft and allows to flexibly scan most angles in front of the aircraft from the zenith to nadir geometry (only limited by the window openings in the pylon) as well as backwards down to about minus 20°. A motion compensation system is included to actively adjust the pointing of the telescope to compensate for aircraft angular movements in the vertical. Two spectrometers have been deployed covering wavelength ranges from 350-720 nm with a spectral resolution of ~2 nm full width at half maximum (FWHM) and 330-470 nm with 0.7 nm FWHM. The recorded spectra are analyzed with the well-known DOAS method to retrieve so-called slant column densities (SCDs) of absorbers. Sets of SCDs recorded at different viewing angles are converted into a vertical profile through experimentally constrained inverse modeling of radiative transfer. The angular scanning pattern of the telescope, as well as the flight plan was optimized to characterize the horizontal and vertical distribution of the trace gases. Especially, the variation of the flight altitude in combination with the scanning of different angles provides a powerful tool to obtain the detailed vertical

  8. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

    NASA Technical Reports Server (NTRS)

    Gerhardt, H. A.; Chen, W. S.

    1978-01-01

    The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.

  9. Towards vertical cloud profile retrieval from satellite observations.

    NASA Astrophysics Data System (ADS)

    van Zadelhoff, G.-J.; Donovan, D. P.; Schutgens, N. A. J.

    2003-04-01

    In 2004 the satellites CloudSat and CALIPSO will be launched giving a first opportunity to retrieve vertical profiles of cloud macro- and micro-physical properties (LWC, IWC and Reff) on a global base using the combination of a lidar and radar. The two satellites will fly in tight formation (460 km after each other) resulting in co-located observations with a delay of ~1 minute, with a vertical resolution of 60 to 180 m for the Lidar and 500 m for the radar. In this poster we present the current status of the KNMI lidar-radar algorithm and the ongoing work to implement this procedure for use in the CALIPSO-CloudSat combination. Discussed are the impact of the time lag between the lidar and radar observations and how to deal with this. Secondly the transfering of the radar and lidar data to a common spatial and temporal grid. Finally the need for multiple scattering calculations for the lidar due to the large footprint of the beam is discussed. The work described is also part of the preparation for a future ESA/NASDA candidate satellite mission EarthCARE.

  10. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  11. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  12. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  13. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    NASA Astrophysics Data System (ADS)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  14. An Analytical Model for Vertical Profiles in Submarine Channels

    NASA Astrophysics Data System (ADS)

    Bolla Pittaluga, M.; Imran, J.

    2011-12-01

    Turbidity currents are the primary agents carrying sediments from the continental shelf to the deep-sea. They are the counterpart of fluvial currents in the deep-sea environment and are responsible for the shaping of submarine channels. Due to the unpredictability of events and to their ability to destroy installed monitoring instruments, only a few attempts to directly measure the properties of turbidity currents in submarine channels has proved to be successful (Xu et al., 2004; Xu, 2010). Consequently the vast majority of the studies concerning the vertical structure of turbidity currents were either laboratory experiments or numerical models. In spite of the relevance of the problem, related to the consequences of flow field on sedimentary deposits, at present an ongoing debate still exist on similarities and differences between submarine and fluvial channels related in particular to the orientation of the helical flow in channel bends. Here we expand on the above ideas and develop an analytical theory for flow and suspended sediment transport in submarine channels able to describe vertical profiles of both flow field and suspendend sediment concentration. The turbulence closure needed to account for density stratification is adapted from the model of Mellor and Yamada (1982). Solutions are found for both straight and constant curvature channels. In the latter case, in order to evaluate the secondary flow induced by curvature, we take advantage of the fact that the ratio of flow depth to radius of curvature is typically small in the field, which leads to a solution of the governing equations through an appropriate asymptotic expansion. Steady fully developed flow conditions in a bend of constant width are considered. Results for longitudinal velocity and concentration profiles in straight channels are then compared with experimental observations of Sequeiros et al. (2010) providing good agreement. We also expect to find under which values of the controlling

  15. Turbulence length scales in stably stratified free shear flow analyzed from slant aircraft profiles

    SciTech Connect

    Tjernstroem, M. )

    1993-05-01

    The vertical turbulence structure in the marine atmosphere close to a coastline is investigated using airborne measurements. The measurements are from a field experiment close to the coast in the southeast of Sweden, in the Baltic Sea. The Baltic Sea has two main properties that make it particularly interesting to study: significant annual lag in sea surface temperature compared to inland surface temperatures and the fact that it is surrounded by land in all directions within advection distances of from a few hours up to 10-15 hours in normal meteorological conditions. The present results are mostly from spring or early summer with mainly cool water: with a stable or neutral marine boundary layer but with substantial heating of the land area during daytime. When the daytime inland convective boundary layer is advected out over the cool sea, there is a frictional decoupling in space analogous to the same nocturnal process in time. This sometimes creates a residual layer, a remnant of the inland convective boundary layer, that can be advected for considerable distances over the sea. At the top of this layer, wind shear gives rise to a local increase in turbulent kinetic energy. These layers are used for an analysis of turbulent scales for free shear flow in stable stratification. The analysis is based on different length scales used in numerical model closures for turbulence processes and reveals the asymptotic behavior of different scales in the neutral limit and their functional form, and illustrates the nonlinear relationship between scales for different properties. The profiles from the aircraft are taken from 25 slant soundings performed in connection to low-level boundary-layer flights. The results are calculated from turbulence data extracted through filtering techniques on instantaneous time series (individual profiles). The calculated turbulence parameters from all profiles are grouped and averaged compositely over all profiles. 48 refs., 12 figs., 1 tab.

  16. Deriving Vertical Profiles of Aerosol Sizes from TES

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Smith, M. D.; McConnochie, T. H.; Flittner, D. E.; Fouchet, T.

    2011-12-01

    Vertical variations in aerosol particle sizes can have a dramatic effect in their net impact on the state and evolution of the Martian atmosphere. Recent analyses of data from the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) and the Thermal Emission Spectrometer (TES) instruments offer some long overdue progress in constraining this aspect of aerosols. However, significantly more work remains to be done along these lines in order to better constrain and inform modern dynamical simulations of the Martian atmosphere. Thus, the primary goal of our work is to perform retrievals of particle size as a function of altitude for both dust and water ice aerosols. The choice of the TES dataset, with pole-to-pole coverage over a period of nearly three martian years, provides the crucial systematic temporal and spatial sampling. Additional leverage on the particle size will be obtained by using both solarband bolometry and infrared (IR) spectroscopy. Our presentation will include: 1) A summary of our limb radiative transfer comparison/validation exercises which include Monte Carlo, Gauss-Seidel, and discrete-ordinate algorithms (including the plane-parallel source function approximation). 2) The initial results of the application of our particle size retrieval scheme to the TES observations of the 2001 planet encircling dust event. 3) A few test applications to the Mars Climate Sounder (MCS) radiance profiles (enabled by the recent solarband radiometric calibration by Bandfield and collaborators). 4) Our plans for additional retrievals (aphelion cloud season, lower optical depth locations and seasons, etc.) and the distribution of the derived profiles.

  17. Field evaluation of an electromagnetic current meter based vertical profiler

    NASA Astrophysics Data System (ADS)

    Hamblin, P. F.; Marmoush, Y. M. R.; Boyce, F. M.; Smith, A. A.

    1987-10-01

    A current profiler consisting of a vertical array of three electromagnetic current meters has been evaluated through an intercomparison of the three sensors, with reference to nearby current and wave data and by comparison to recent laboratory performance tests (Aubrey and Trowbridge, 1985). Mean flow estimates are too uncertain and variable to allow bottom boundary layer shear stress to be estimated by the conventional logarithmic law method. As well as unexplained sudden shifts in the mean speed response, the comparison with vector-averaged current meter data indicates possible long-term reduction in response due to fouling of the sensors by biological growth. The directional response was less sensitive to fouling effects. The oscillatory response on one occasion after field deployment for 17 days indicates a reduction in response from 41 to 45% at a period of oscillation of 3 s in a combined steady and oscillatory flow field. This study demonstrates that despite careful laboratory calibration, electromagnetic current meters are not at present suitable for quantitative study of dynamics of sediment resuspension in near-bottom shallow-water environments.

  18. Profile design for an advanced-technology airfoil for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Welte, D.

    1978-01-01

    A profile from the NASA General Aviation Whitcomb series and NACA profiles are used as a starting point in designing an advanced airfoil for general aviation aircraft. Potential theory pressure distribution calculations, together with boundary layer calculations, permit a decrease in the null moment and an optimization of the lift characteristics of the wing. Trailing edge flap design is also improved. Wind tunnel tests are used to compare the conventional profiles, the NASA profile, and the improved design.

  19. Vertical profiles and column densities of NO2 by the CU Airbone MAX-DOAS: comparison with model simulations

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Ortega, I.; Cai, C.; Kaduwela, A.; Kim, S.; Volkamer, R.

    2011-12-01

    An airborne motion-stabilized scanning multi-axis differential optical absorption spectroscopy (CU AMAX-DOAS) instrument was deployed on board the NOAA Twin Otter research aircraft during the CalNex and CARES field campaigns in summer 2010. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19. We describe the CU AMAX-DOAS instrument, column densities and vertical profile retrieval techniques. Comparisons of column densities of NO2 with ground MAX-DOAS at Caltech, Fontana Arrows and CARES T1 sites are also shown as a validation of the aircraft instrument. The obtained vertical profiles and tropospheric column densities of NO2 are compared to CMAQ and WRF-Chem simulation results based on ARB 2008 and EPA NEI 2005 emission inventories respectively. On the basis of case studies we compare NOx pollution over urban pollution hotspots, background conditions as well as above and inside the boundary layer. Comparisons show strong evidence for decreasing NOx emissions to be widespread in California.

  20. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  1. Numerical simulations of a vertical tail of a commercial aircraft with active flow control

    NASA Astrophysics Data System (ADS)

    Rasquin, Michel; Martin, Jeffrey; Jansen, Kenneth

    2012-11-01

    A series of numerical simulations of a realistic vertical tail of a commercial aircraft, with a tapered swept stabilizer and a rudder, is considered in this work with application of flow control. Flow control is known to have the capacity to augment the streamwise momentum near the rudder suction peak where separation is typically observed to limit rudder effectiveness for high deflection angles. Specifically, we use Delayed Detached Eddy Simulations (DDES) to study the interaction of a cross flow with an array of 24 synthetic jets for a 0° angle of attack, a 30° deflection angle and a Reynolds number of 7×105. We concentrate our analysis on the influence of the spacing between successive active jets in the spanwise direction. Indeed, our current simulations suggest that doubling the number of active jets at a lower Reynolds number improves the lateral force while opposite effect is observed at the considered Reynolds number when using the same size jets. These simulations offer insight into the fundamental physics of the flow structures in the vicinity of the synthetic jets by accurately resolving the complete synthetic jet pathway and the vorticity plume where the jet structures interact with each other and with the primary flow. The Boeing Company and the Argonne Leadership Computing Facility are acknowledged for their support and resources through the INCITE program.

  2. FIRE aircraft observations of horizontal and vertical transport in marine stratocumulus

    NASA Technical Reports Server (NTRS)

    Paluch, Ilga R.; Lenschow, Donald H.

    1990-01-01

    A major goal of research on marine stratocumulus is to try to understand the processes that generate and dissipate them. One approach to studying this problem is to investigate the boundary layer structure in the vicinity of a transition from a cloudy to a cloud-free region to document the differences in structure on each side of the transition. Since stratiform clouds have a major impact on the radiation divergence in the boundary layer, the transition from a cloudy to a clear boundary layer is a region of large horizontal inhomogeneity in air temperature and turbulence intensity. This leads to a considerable difference in horizontal and vertical transports between the cloudy and cloud-free regions. Measurements are used from the NCAR Electra aircraft during flights 5 (7 July 1987) and 10 (18 July 1987) of FIRE for this purpose. Flight 5 coincided with a LANDSAT overflight, and was designed to investigate the transition across a well-defined N-S cloud boundary, since the LANDSAT image can document the cloud cover in considerable detail. Turbulence legs were flown about 60 km on both sides of the cloud boundary. Flight 10 was flown at night in an area of scattered small cumuli and broken cloud patches.

  3. Vertical particle concentration profiles around urban office buildings

    NASA Astrophysics Data System (ADS)

    Quang, T. N.; He, C.; Morawska, L.; Knibbs, L. D.; Falk, M.

    2012-06-01

    Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such, this study aimed to assess the influence of vehicle emissions and nucleation formation on particle characteristics (particle number size distribution - PNSD and PM2.5 concentration) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PNSD, particle number (PN) and PM2.5 concentrations, respectively, for up to three weeks at each building. The results showed that both PNSD and PM2.5 concentration around building envelopes were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During nucleation events, PN concentration in size range of <30 nm and total PN concentration increased (7-65% and 5-46%, respectively), while PM2.5 concentration decreased (36-52%) with height. This study has shown an under acknowledged role for nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for

  4. Radiosonde aerosol counter for vertical profiling of atmospheric dust layers

    NASA Astrophysics Data System (ADS)

    Ulanowski, Z.; Hirst, E.; Kaye, P. H.; Harrison, R. G.; Nicoll, K. A.; Rogers, G.

    2010-05-01

    A low-cost, miniature aerosol particle counter has been developed, intended for use with balloon-borne meteorological radiosondes. It is particularly suitable for airborne mineral dust measurements. Ambient air is drawn into the counter using a diaphragm pump at a rate of 0.5 litre per minute. The counter detects particles in the airstream using a diode laser and a photodiode. Output from the photodiode is digitised into 5 size bins, with minimum particle diameters equivalent to 0.6, 1.4, 2.6, 5.4 and 10.6 micrometers. The counter is interfaced to a Vaisala RS92 radiosonde, which transmits data from the counter together with meteorological parameters and GPS-derived position to a ground based receiver at 1 Hz rate. Statistically significant particle size distributions can be obtained once a second for number concentrations down to about 100,000 particle per litre (within the measured size range), or correspondingly less at lower temporal resolutions. At the same time, the counter is capable of measuring dust number concentrations exceeding a million per litre without incurring significant errors. Soundings during the DREAME campaign in Kuwait (Ulanowski et al. EGU 2010, AS4.7) and on Cape Verde Islands (Nicoll et al. EGU 2010, AS4.7) provided dust concentration profiles with a typical vertical resolution of 4 m. Comparisons with integrated dust column size distribution measurements from AERONET sun photometers showed good agreement in two out of three cases where near-simultaneous retrievals were available. Optical thickness calculations based on the size distributions measured in Kuwait, with the assumption that the dust particles were prolate spheroids, agreed with the AERONET optical thickness at 675 nm to within 15%.

  5. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  6. Aerodynamically controlled expansion (ACE) nozzle for short takeoff and vertical landing aircraft

    NASA Astrophysics Data System (ADS)

    Terrier, Douglas Anthony

    2000-10-01

    An Aerodynamically Controlled Expansion (ACE) propulsion nozzle that improves hover thrust performance by 2.5 percent in a short take off and vertical landing (STOVL) aircraft has been developed. The ACE concept employs a carefully defined step in the nozzle internal contour that interacts with the boundary layer to induce flow separation in the divergent section, thereby relieving over-expansion losses during hover. This study specifies design parameters for a passive boundary layer control step for application on the Joint Strike Fighter (JSF). In addition, parametric performance predictions presented herein provide a basic understanding of how the step concept can be applied to overcome undesirable over-expansion in generalized supersonic nozzle flows. The aerodynamic phenomena governing the interaction of the step with the nozzle flow were investigated in an extensive, parametric CFD analysis. The CFD analysis matrix consists of thirty-three axi-symmetric nozzle cases including expansion area ratios (A9/A 8) of 1.1, 1.3 and 1.5, slot area ratios (A s/A8) of 1.0 (baseline), 1.1 and 1.2, and covering the nozzle pressure ratio (NPR) range of 2.0 to 8.0. The CFD results define the NPR at which flow separation occurs as a function of A9/A8, and A s/A8, and the effect of the step on nozzle performance. Results indicate that the onset of separation occurs at higher NPR with increasing A9/A 8 and increasing As/A 8. For the case of the JSF nozzle with A9/ A8 = 1.3, the CFD analysis predicted that a nozzle having an As/A8 = 1.1 produces an improvement of approximately 2.5 percent in hover thrust relative to the baseline with a minimal adverse impact at other design conditions. Twelve percent scale models representing the baseline, and step sizes of 1.1 and 1.2 were tested in the Lockheed Martin Thrust Measurement Facility (TMF). Test results showed excellent agreement with CFD predictions and validated the step performance. Preliminary design integration studies support

  7. Vertical velocities within a Cirrus cloud from Doppler lidar and aircraft measurements during FIRE: Implications for particle growth

    NASA Technical Reports Server (NTRS)

    Gultepe, Ismail; Heymsfield, Andrew J.

    1990-01-01

    A large and comprehensive data set taken by the NOAA CO2 Doppler lidar, the NCAR King Air, and rawinsondes on 31 October 1986 during the FIRE (First ISCCP Regional Experiment) field program which took place in Wisconsin are presented. Vertical velocities are determined from the Doppler lidar data, and are compared with velocities derived from the aircraft microphysical data. The data are used for discussion of particle growth and dynamical processes operative within the cloud.

  8. A comparison of vertical velocity in cirrus obtained from aircraft and lidar divergence measurements during FIRE. [First ISCCP Regional Experiment

    NASA Technical Reports Server (NTRS)

    Gultepe, Ismail; Heymsfield, A. J.; Lenschow, D. H.

    1990-01-01

    Techniques are presented to obtain vertical velocity in cirrus clouds from in situ aircraft lateral wind measurements and from ground-based remote Doppler lidar measurements. The approach used is to calculate w from the integral of the divergence of the horizontal velocity around a closed path. Divergence measurements from both aircraft and Doppler lidar are discussed. The principal errors in the calculation of w from aircraft lateral wind measurements are bias in the lateral wind, ground speed errors, and error due to vertical shear of the horizontal wind. For Doppler lidar measurements the principal errors are in the estimate of mean terminal velocity and the zeroth order coefficients of the Fourier series that is fitted to the data. The technique is applied to a cirrus cloud investigated during the FIRE (First International Satellite Cloud Climatology Regional Experiment) Cirrus Intensive Field Observation Program. The results indicate that the error in w is about + or - 14 cm/s from the aircraft technique; this can be reduced to about + or - 2 to 3 cm/s with technical improvements in both ground speed and lateral velocity measurements. The error in w from Doppler lidar measurements, which is about + or - 8 cm/s, can be reduced to about + or - 5 cm/s by improvements in the Doppler velocity measurements with technology that is currently available.

  9. IO in the Lower Stratosphere and Vertical Profiles over the Tropical Eastern and Western Pacific

    NASA Astrophysics Data System (ADS)

    Koenig, T. K.; Volkamer, R. M.; Baidar, S.; Dix, B. K.; Evans, M. J.; Carpenter, L.; Sherwen, T.; Kinnison, D. E.; Lamarque, J. F.; Saiz-Lopez, A.; Apel, E. C.; Hornbrook, R. S.; Atlas, E. L.; Pan, L.; Salawitch, R. J.

    2014-12-01

    Iodine Monoxide (IO) is a halogen radical species that catalytically destroys ozone, modifies the atmosphere's oxidative capacity and is a precursor to aerosol particle formation and growth. Measurements of IO are generally scarce, and only very few observations have recently detected IO as widespread in the tropical free troposphere. Here we report on IO observations by the CU Airborne MAX-DOAS instrument aboard the NSF/NCAR GV aircraft during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field campaigns. We have measured IO vertical profiles over the tropical and sub-tropical Western and Eastern Pacific Ocean, including a detection of IO in the UTLS and lower stratosphere. Our measurements indicate IO abundances that are 2-3 times higher in the Southern hemisphere than in the Northern hemisphere free troposphere. Measurements in the lower stratosphere and tropical UTLS provide the first quantification of IO in these layers by limb observations of scattered sunlight. We compare these observations with predictions from the global models CAMChem and GEOSChem.

  10. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  11. Reconstruction of Vertical Profile of Permittivity of Layered Media which is Probed Using Vertical Differential Antenna

    NASA Astrophysics Data System (ADS)

    Pochanin, Gennadiy P.; Poyedinchuk, Anatoliy Y.; Varianytsia-Roshchupkina, Liudmyla A.; Pochanina, Iryna Ye.

    2016-04-01

    Results of this research are intended to use at GPR investigations of layered media (for example, at roads' inspection) for the processing of collected data and reconstruction of dependence of permittivity on the depth. Recently, an antenna system with a vertical differential configuration of receiving module (Patent UA81652) for GPR was suggested and developed The main advantage of the differential antennas in comparison with bistatic antennas is a high electromagnetic decoupling between the transmitting and receiving modules. The new vertical differential configuration has an additional advantage because it allows collecting GPR data reflected by layered media without any losses of information about these layers [1] and, potentially, it is a more accurate instrument for the layers thickness measurements [2]. The developed antenna system is tested in practice with the GPR at asphalt thickness measurements [3] and shown an accuracy which is better than 0.5 cm. Since this antenna system is good for sounding from above the surface (air coupled technique), the mobile laboratory was equipped with the developed GPR [3]. In order to process big set of GPR data that collected during probing at long routes of the roads, for the data processing it was tested new algorithm of the inverse problem solution. It uses a fast algorithm for calculation of electromagnetic wave diffraction by non-uniform anisotropic layers [4]. The algorithm is based on constructing a special case solution to the Riccati equation for the Cauchy problem and enables a qualitative description of the wave diffraction by the electromagnetic structure of the type within a unitary framework. At this stage as initial data we used synthetic GPR data that were obtained as results of the FDTD simulation of the problem of UWB electromagnetic impulse diffraction on layered media. Differential and bistatic antenna configurations were tested at several different profiles of permittivity. Meanings of permittivity of

  12. Development of an Aircraft Approach and Departure Atmospheric Profile Generation Algorithm

    NASA Technical Reports Server (NTRS)

    Buck, Bill K.; Velotas, Steven G.; Rutishauser, David K. (Technical Monitor)

    2004-01-01

    In support of NASA Virtual Airspace Modeling and Simulation (VAMS) project, an effort was initiated to develop and test techniques for extracting meteorological data from landing and departing aircraft, and for building altitude based profiles for key meteorological parameters from these data. The generated atmospheric profiles will be used as inputs to NASA s Aircraft Vortex Spacing System (AVOLSS) Prediction Algorithm (APA) for benefits and trade analysis. A Wake Vortex Advisory System (WakeVAS) is being developed to apply weather and wake prediction and sensing technologies with procedures to reduce current wake separation criteria when safe and appropriate to increase airport operational efficiency. The purpose of this report is to document the initial theory and design of the Aircraft Approach Departure Atmospheric Profile Generation Algorithm.

  13. GROUND WATER SAMPLING FOR VERTICAL PROFILING OF CONTAMINANTS

    EPA Science Inventory

    Accurate delineation of plume boundaries and vertical contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...

  14. Algorithme d'optimisation du profil vertical pour un segment de vol en croisiere avec une contrainte d'heure d'arrivee requise

    NASA Astrophysics Data System (ADS)

    Dancila, Radu Ioan

    This thesis presents the development of an algorithm that determines the optimal vertical navigation (VNAV) profile for an aircraft flying a cruise segment, along a given lateral navigation (LNAV) profile, with a required time of arrival (RTA) constraint. The algorithm is intended for implementation into a Flight Management System (FMS) as a new feature that gives advisory information regarding the optimal VNAV profile. The optimization objective is to minimize the total cost associated with flying the cruise segment while arriving at the end of the segment within an imposed time window. For the vertical navigation profiles yielding a time of arrival within the imposed limits, the degree of fulfillment of the RTA constraint is quantified by a cost proportional with the absolute value of the difference between the actual time of arrival and the RTA. The VNAV profiles evaluated in this thesis are characterized by identical altitudes at the beginning and at the end of the profile, they have no more than one step altitude and are flown at constant speed. The acceleration and deceleration segments are not taken into account. The altitude and speed ranges to be used for the VNAV profiles are specified as input parameters for the algorithm. The algorithm described in this thesis is developed in MATLAB. At each altitude, in the range of altitudes considered for the VNAV profiles, a binary search is performed in order to identify the speed interval that yields a time of arrival compatible with the RTA constraint and the profile that produces a minimum total cost is retained. The performance parameters that determine the total cost for flying a particular VNAV profile, the fuel burn and the flight time, are calculated based on the aircraft's specific performance data and configuration, climb/descent profile, the altitude at the beginning of the VNAV profile, the VNAV and LNAV profiles and the atmospheric conditions. These calculations were validated using data generated by a

  15. Remote measurements of ozone, water vapor and liquid water content, and vertical profiles of temperature in the lower troposphere

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Gary, B. L.; Shumate, M. S.

    1983-01-01

    Several advanced atmospheric remote sensing systems developed at the Jet Propulsion Laboratory were demonstrated under various field conditions to determine how useful they would be for general use by the California Air Resources Board and local air quality districts. One of the instruments reported on is the Laser Absorption Spectrometer (LAS). It has a pair of carbon dioxide lasers with a transmitter and receiver and can be flown in an aircraft to measure the column abundance of such gases as ozone. From an aircraft, it can be used to rapidly survey a large region. The LAS is usually operated from an aircraft, although it can also be used at a fixed location on the ground. Some tests were performed with the LAS to measure ozone over a 2-km horizontal path. Another system reported on is the Microwave Atmospheric Remote Sensing System (MARS). It is tuned to microwave emissions from water vapor, liquid water, and oxygen molecules (for atmospheric temperature). It can measure water vapor and liquid water in the line-of-sight, and can measure the vertical temperature profile.

  16. Static internal performance of ventral and rear nozzle concepts for short-takeoff and vertical-landing aircraft

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Carson, George T., Jr.

    1991-01-01

    The internal performance of two exhaust system concepts applicable to single-engine short-take-off and vertical-landing tactical fighter configurations was investigated. These concepts involved blocking (or partially blocking) tailpipe flow to the rear (cruise) nozzle and diverting it through an opening to a ventral nozzle exit for vertical thrust. A set of variable angle vanes at the ventral nozzle exit were used to vary ventral nozzle thrust angle between 45 and 110 deg relative to the positive axial force direction. In the vertical flight mode the rear nozzle (or tailpipe flow to it) was completely blocked. In the transition flight mode flow in the tailpipe was split between the rear and ventral nozzles and the flow was vectored at both exits for aircraft control purposes through this flight regime. In the cruise flight mode the ventral nozzle was sealed and all flow exited through the rear nozzle.

  17. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  18. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  19. Minimum-Cost Aircraft Descent Trajectories with a Constrained Altitude Profile

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G.; Sadovsky, Alexander V.

    2015-01-01

    An analytical formula for solving the speed profile that accrues minimum cost during an aircraft descent with a constrained altitude profile is derived. The optimal speed profile first reaches a certain speed, called the minimum-cost speed, as quickly as possible using an appropriate extreme value of thrust. The speed profile then stays on the minimum-cost speed as long as possible, before switching to an extreme value of thrust for the rest of the descent. The formula is applied to an actual arrival route and its sensitivity to winds and airlines' business objectives is analyzed.

  20. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance vary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are: (1) determining what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major u.s. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort-topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with

  1. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance x,ary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are (1) determining, what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major U.S. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with

  2. Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter-Category Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-feet per second (9.14-meters per second) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kilograms) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, simulated engines and fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial finite element code for performing explicit transient dynamic simulations. Analytical predictions of structural deformation and selected time-history responses were correlated with experimental data from the drop test to validate the simulation.

  3. Insights Into Precipitation Processes As Revealed By Profiling Radar, Disdrometer and Aircraft Observations During The MC3E Campaign.

    NASA Astrophysics Data System (ADS)

    Giangrande, S. E.; Toto, T.; Mishra, S.; Ryzhkov, A.; Bansemer, A.; Kumjian, M.

    2014-12-01

    The Midlatitude Continental Convective Clouds Experiment (MC3E) was a collaborative campaign led by the National Aeronautic and Space Administration's (NASA's) Global Precipitation Measurement (GPM) mission and the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program. This campaign was held at the DOE ARM Southern Great Plains (SGP) Central Facility (CF) in north-central Oklahoma, with the programs joining forces to deploy an extensive array of airborne, radiosonde and ground-based instrumentation towards an unprecedented set of deep convective environment and cloud property observations. An overarching motivation was to capitalize on the wealth of aircraft observations and new multi-frequency dual-polarization radars to provide insights for improving the treatments of cloud processes in convective models. This study considers a coupled aircraft, radar and surface disdrometer approach for identifying key cloud processes and linking those to possible radar-based microphysical fingerprints and/or cloud properties. Our emphasis is on the MC3E observations collected during aircraft spirals over the column of the ARM CF. We focus on those spirals associated with radar 'bright band' signatures and Doppler spectral anomalies observed within trailing stratifrom precipitation. Two cases are highlighted, one following a weaker convective event, and one following a stronger squall line. For each event, we investigate the usefulness of radar to inform on processes including aggregation and riming as viewed by the vertically-pointing ARM wind profiler (915 MHz) and cloud radar Doppler spectral observations (35 GHz). Matching dual-polarization radar signatures from nearby cm-wavelength radar are also consulted for complementary insights. For one event, the successive Citation II aircraft spirals through the melting layer and associated ground observations indicate a fortunate capture of the transition from a region of riming to one favoring aggregation

  4. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 2: Model equations and base aircraft data

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Equations incorporated in a VATOL six degree of freedom off-line digital simulation program and data for the Vought SF-121 VATOL aircraft concept which served as the baseline for the development of this program are presented. The equations and data are intended to facilitate the development of a piloted VATOL simulation. The equation presentation format is to state the equations which define a particular model segment. Listings of constants required to quantify the model segment, input variables required to exercise the model segment, and output variables required by other model segments are included. In several instances a series of input or output variables are followed by a section number in parentheses which identifies the model segment of origination or termination of those variables.

  5. Vertical profiles of aerosol radiative forcing - a comparison of AEROCOM phase 2 model submissions

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.

    2012-04-01

    Aerosols in the earth's atmosphere affect the radiation balance of the planet. The radiative forcing (RF) induced by a given aerosol burden is however sensitive to its vertical density profile, in addition to aerosol optical properties, cloud distributions and surface albedo. Differences in vertical profiles are thought to be among the causes for the large intermodel differences in RF of the aerosol direct effect. As part of the AEROCOM phase 2 direct radiative forcing experiment, this study compares 3D concentration fields of black carbon from fossil fuel burning (BC) and sulphate (SO4) from a set of major global climate models. The participating models were run using a prescribed set of emissions of aerosol and aerosol precursors and the same meteorological year. We assume that model differences due to the aerosol vertical profile can be factored out from other differences such as aerosol physics, radiative transfer or ground albedo. We consequently analyse model RF variability using profiles of normalized RF (radiative forcing per unit mass, NDRF) calculated from a single model. This tool allows us to quantify the fraction of the intermodel variability due to differences in aerosol vertical profiles. We show that there are still significant differences between both modelled vertical density profiles, treatment of aerosol physics and other factors influencing the RF profiles.

  6. Low profile, high load vertical rolling positioning stage

    DOEpatents

    Shu, Deming; Barraza, Juan

    1996-01-01

    A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.

  7. Impacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Tai; McElroy, Michael B.

    2010-05-01

    Mixing in the planetary boundary layer (PBL) affects vertical distributions of air tracers in the lower troposphere. An accurate representation of PBL mixing is critical for chemical-transport models (CTMs) for applications sensitive to simulations of the vertical profiles of tracers. The full mixing assumption in the widely used global CTM GEOS-Chem has recently been supplemented with a non-local PBL scheme. This study analyzes the impact of the non-local scheme on model representation of PBL mixing, consequences for simulations of vertical profiles of air tracers and surface air pollution, and implications for model applications to the interpretation of data retrieved from satellite remote sensing. The non-local scheme significantly improves simulations of the vertical distributions for NO 2 and O 3, as evaluated using aircraft measurements in summer 2004. It also reduces model biases over the U.S. by more than 10 ppb for surface ozone concentrations at night and by 2-5 ppb for peak ozone in the afternoon, as evaluated using ground observations. The application to inverse modeling of anthropogenic NO x emissions for East China using satellite retrievals of NO 2 from OMI and GOME-2 suggests that the full mixing assumption results in 3-14% differences in top-down emission budgets as compared to the non-local scheme. The top-down estimate combining the non-local scheme and the Lin et al. inverse modeling approach suggests a magnitude of 6.6 TgN yr -1 for emissions of NO x over East China in July 2008 and 8.0 TgN yr -1 for January 2009, with the magnitude and seasonality in good agreement with bottom-up estimates.

  8. TRAGEN: Computer program to simulate an aircraft steered to follow a specified verticle profile. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The longitudinal dynamics of a medium range twin-jet or tri-jet transport aircraft are simulated. For the climbing trajectory, the thrust is constrained to maximum value, and for descent, the thrust is set at idle. For cruise, the aircraft is held in the trim condition. For climb or descent, the aircraft is steered to follow either (a) a fixed profile which is input to the program or (b) a profile computed at the beginning of that segment of the run. For climb, the aircraft is steered to maintain the given airspeed as a function of altitude. For descent, the aircraft is steered to maintain the given altitude as a function of range-to-go. In both cases, the control variable is angle-of-attack. The given output trajectory is presented and compared with the input trajectory. Step climb is treated just as climb. For cruise, the Breguet equations are used to compute the fuel burned to achieve a given range and to connect given initial and final values of altitude and Mach number.

  9. Vertical seismic profile at Pike's Peak, Saskatchewan, Canada: turning rays and velocity anisotropy

    NASA Astrophysics Data System (ADS)

    Newrick, Rachel T.; Lawton, Don C.

    2003-12-01

    First-arrival traveltimes from a multi-offset vertical seismic profile (VSP) were used to estimate velocity anisotropy in the presence of a vertical velocity gradient. A numerical model consisting of two layers with vertical velocity gradients of 3.1 and 1.2 s-1, respectively, and global anisotropy parameters of ε=0.12±0.02 and δ=0.30±0.06 yielded first-arrival traveltimes that matched the observed traveltimes well. Shallow receivers were found to be crucial for constraining the vertical velocity field and for determining the parameters of anisotropy at depth.

  10. Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler

    NASA Astrophysics Data System (ADS)

    Bühl, J.; Leinweber, R.; Görsdorf, U.; Radenz, M.; Ansmann, A.; Lehmann, V.

    2015-08-01

    Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory, Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: a comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion. It is shown that this combination of instruments can up-value the measurement values of each single instrument and may allow the simultaneous sensing of atmospheric targets and the motion of clear air.

  11. Vertical profiles of nocturnal boundary layer chemistry in polluted urban environments: Field observations and model studies

    NASA Astrophysics Data System (ADS)

    Wang, Shuhui

    Nocturnal chemistry in the atmospheric boundary layer determines initial chemical conditions for morning photochemistry and influences the budgets of O3 and NO2. Despite its importance, chemistry in the nocturnal boundary layer (NBL), especially in heavily polluted urban areas, has received surprisingly little attention so far. In particular, the influence of vertical mixing on chemical processes leads to complex vertical profiles of reactive species and makes NBL chemistry altitude-dependent. The processing of pollutants is thus driven by a complicated, and not well understood, interplay between chemistry and vertical mixing. To gain a better understanding of NBL chemistry in urban environments, a field study was carried out in the downtown area of Phoenix, AZ. Vertical profiles of reactive species such as O3, NO2, and NO 3 were observed in the lowest 140 m of the troposphere. The disappearance of vertical profiles during the morning coincided with the transition from a stable NBL to a well-mixed convective layer. The vertical profiles were dependent on both surface NOx emissions and the vertical stability of the NBL. The analysis of Ox (the sum of O3 and NO 2) vertical distribution reveals the dominant role of the O3+NO reaction for the vertical variations of NBL chemistry in typical urban areas. Dry deposition, direct emissions, and other chemical pathways also play a role in some circumstances. Strong positive NO3 vertical gradients are predominantly determined by NO3 loss processes and the vertical distribution of the reservoir species (N2O5). The altitude-dependent NO3-N2O5 chemistry suggests complex vertical distributions of atmospheric denoxification, which is critical for nocturnal Ox loss. A 1-D chemical transport model was applied to study these vertical profiles and the relevant chemical processes. Model results agree well with the general features of observed profiles, showing its applicability for describing the altitude-dependent NBL chemistry and

  12. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  13. Tropospheric CO vertical profiles deduced from total columns using data assimilation: methodology and validation

    NASA Astrophysics Data System (ADS)

    El Amraoui, L.; Attié, J.-L.; Ricaud, P.; Lahoz, W. A.; Piacentini, A.; Peuch, V.-H.; Warner, J. X.; Abida, R.; Barré, J.

    2013-07-01

    This paper presents a validation of a method to derive the vertical profile of carbon monoxide (CO) from its total column using data assimilation. The main motivation of this study is twofold. First, to deduce both the vertical CO profiles and the assimilated CO fields with good confidence. Second, for chemical species that can be measured only as the total column, this method provides an attractive alternative for estimating their vertical profiles in the troposphere. We choose version 3 (V3) of MOPITT CO total columns to validate the proposed method. MOPITT has the advantage of providing both the vertical profiles and the total columns of CO. Furthermore, this version has been extensively validated by comparison with many independent datasets, and has been used in many scientific studies. The first step of the paper consists in the specification of the observation errors based on the Chi-square (χ2) test. The observations have been binned according to day, night, land and sea (LAND_DAY, LAND_NIGHT and SEA, respectively). The respective optimal observation error values for which the χ2 metric is the closest to 1 are: 7%, 8% and 11% for SEA, LAND_DAY and LAND_NIGHT, respectively. In a second step, the CO total column, with its specified errors, is used within the assimilation system to estimate the vertical profiles. These are validated by comparison with vertical profiles of MOPITT V3 retrievals at global and regional scales. Generally, both datasets show similar patterns and good agreement at both global and regional scales. Nevertheless, the total column analyses (TOTCOL_ANALYSES) slightly overestimate CO concentrations compared to MOPITT observations. In a third step, vertical profiles calculated from TOTCOL_ANALYSES have been compared to those calculated from the assimilation of MOPITT V3 vertical profiles (PROFILE_ANALYSES). Both datasets shows very good agreement, but TOTCOL_ANALYSES tend to slightly overestimate CO concentrations. The mean bias between

  14. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  15. Low-Speed Wind-Tunnel Tests of a Pilotless Aircraft Having Horizontal and Vertical Wings and Cruciform Tail

    NASA Technical Reports Server (NTRS)

    Mastrocola, N; Assadourian, A

    1947-01-01

    Low-speed tests of a pilotless aircraft were conducted in the Langley propeller-research tunnel to provide information for the estimation of the longitudinal stability and. control, to measure the aileron effectiveness, and to calibrate the radome and the Machmeter pitot-static orifices. It was found that the model possessed a stEb.le variation of elevator angle required for trim throughout the speed range at the design angle of attack. A comparison of the airplane with and without JATO units and with an alternate rocket booster showed that a large loss in longitudinal stability and control resulting from the addition of the rocket booster to the aircraft was sufficient to make the rocket-booster assembly unsatisfactory as an alternate for the JATO units. Reversal of the aileron effectiveness was evident at positive deflections of the vertical wing flap indicating that the roll-stabilization system would produce roiling moments in a tight right turn contrary to its design purpose. Vertical-wing-flap deflections caused large errors in the static-pressure reading obtained by the original static-tube installation. A practical installation point on the fuselage was located which should yield reliable measurement of the free-stream static pressure.

  16. Influence of particles shape on the vertical profile of blowing snow concentration

    NASA Astrophysics Data System (ADS)

    Vionnet, Vincent; Trouvilliez, Alexandre; Naaim-Bouvet, Florence; Guyomarc'h, Gilbert

    2013-04-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow cover throughout the winter season. In Antarctica, blowing snow is an essential surface mass balance process and plays a non-negligible role in the annual accumulation. The vertical profile of blowing snow concentration determines the quantity of snow transported in turbulent suspension. A power law is often used to represent this vertical profile. It serves as an analytical solution representing an equilibrium between vertical turbulent diffusion and gravitational settling. In this work, we study how the exponent of the power law depends on the type of transported particles. Vertical profiles of blowing snow concentration have been collected at the experimental site of Col du Lac Blanc (French Alps) in 2011 and 2012 and near the research station of Cap Prud'homme (Antarctica) in 2010 and 2011. We used mechanical gauges (butterfly nets) and optical devices (Snow Particles Counters). Profiles collected during blowing snow events with precipitation have been corrected to account for the contribution of snowfall. Results show that profiles collected during blowing snow without snowfall differ from the corrected profiles collected during snowfall. At a given wind speed, particles transported during snowfall have a lower settling velocity than particles transported without snowfall. This difference confirms earlier observations (Takahashi, 1985) and can be explained by the change of drag coefficient between dendritic and rounded particles. This difference pertains several hours after the end of the snowfall illustrating the fragmentation of snow grains during blowing snow events.

  17. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; Eilers, J.; Ricci, K.; Hallar, A. G.; Clayton, M.; Michalsky, J.; Smirnov, A.; Holben, B.; Barnard, J.

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  18. Calibration of a Vertical-Scan Long Trace Profiler at MSFC

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Kester, Thomas; Takacs, Peter; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The long trace profiler (LTP) is the instrument of a choice for the surface figure measurement of grazing incidence mirrors. The modification of conventional LTP, the vertical-scan LTP, capable of measuring the surface figure of replicated shell mirrors is now in operation at Marshall Space Flight Center. Sources of systematic error for vertical-scan LTP are discussed. Calibration method using a test flat mirror and results of measurements are presented.

  19. CALIBRATION OF A VERTICAL-SCAN LONG TRACE PROFILER AT MSFC.

    SciTech Connect

    GUBAREV,M.; KESTER,T.; TAKACS,P.Z.

    2001-07-31

    The long trace profiler (LTP) is the instrument of choice for the surface figure measurement of grazing incidence mirrors. The modification of conventional LTP, the vertical-scan LTP, capable of measuring the surface figure of replicated shell mirrors is now in operation at Marshall Space Flight Center. A few sources of systematic error for vertical-scan LTP are discussed. Status of systematic error reduction is reported.

  20. Measurements of Vertical Profiles of Turbulence, Temperature, Ozone, Aerosols, and BrO over Sea Ice and Tundra Snowpack during BROMEX

    NASA Astrophysics Data System (ADS)

    Shepson, P.; Caulton, D.; Cambaliza, M. L.; Dhaniyala, S.; Fuentes, J. D.; General, S.; Halfacre, J. W.; Nghiem, S. V.; Perez Perez, L.; Peterson, P. K.; Platt, U.; Pohler, D.; Pratt, K. A.; Simpson, W. R.; Stirm, B.; Walsh, S. J.; Zielcke, J.

    2012-12-01

    During the BROMEX field campaign of March 2012, we conducted measurements of boundary layer structure, ozone, BrO and aerosol, from a light, twin-engine aircraft during eleven flights originating from Barrow, AK. Flights were conducted over the sea ice in the Beaufort and Chukchi Seas, and over the tundra from Barrow to the Brooks Range, with vertical profiles covering altitudes from the surface to 3.5km in the free troposphere. Flights over the course of one month allowed a variety of sea ice conditions, including open water, nilas, first year sea ice, and frost flowers, to be examined over the Chukchi Sea. Atmospheric turbulence was measured using a calibrated turbulence probe, which will enable characterization of both the structure and turbulence of the Arctic boundary layer. Ozone was measured using a 2B UV absorption instrument. A GRIMM optical particle counter was used to measure 0.25-4 μm sized aerosol particles. The MAX-DOAS instrument enabled measurements of BrO vertical profiles. The aircraft measurements can be used to connect the surface measurements of ozone and BrO from the "Icelander" buoys, and the surface sites at Barrow, with those measured on the aircraft. Here we will discuss the spatial variability/coherence in these data. A major question that will be addressed using these data is the extent to which bromine is activated through reactions at the snowpack/ice surface versus the surface of aerosols. Here we will present a preliminary analysis of the relationships between snow/ice surface types, aerosol size-resolved number concentrations, and the vertical profiles of ozone and BrO.

  1. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  2. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1989-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  3. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1987-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  4. Vertical Lift Aircraft Design Conference, San Francisco, CA, Jan. 17-19, 1990, Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    Topics presented include an overview of the NASA High Speed Rotorcraft Technology Development Program, propulsion system design for supersonic STOVL aircraft, NASA studies on hot gas ingestion and ground effects on STOVL aircraft, and the V/STOL transport concepts for special operations. Also presented are fault-tolerant architecture for a fly-by-light flight control computer, the servo flap in an advanced rotor control system, the high-speed rotorcraft V/STOL, and the improvement to interactive two-dimensional rotor section design. Also contributed are the experimental investigation of wingtip aerodynamic loading, the performance of an optimized rotor blade at off-design flight conditions, an unmanned air vehicle concept with tipjet drive, and AH-64A Apache hydraulic flight control system survivability design concepts.

  5. Aircraft observations of the vertical structure of stratiform precipitation relevant to microwave radiative transfer

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Barnes, A.; Glass, M.; Kakar, R.; Wilheit, T. T.

    1993-01-01

    The retrieval of rainfall intensity over the oceans from passive microwave observations is based on a radiative transfer model. Direct rainfall observations of oceanic rainfall are virtually nonexistent making validation of the retrievals extremely difficult. Observations of the model assumptions provide an alternative approach for improving and developing confidence in the rainfall retrievals. In the winter of 1983, the NASA CV-990 aircraft was equipped with a payload suitable for examining several of the model assumptions. The payload included microwave and infrared radiometers, mirror hygrometers, temperature probes, and PMS probes. On two occasions the aircraft ascended on a spiral track through stratiform precipitation providing an opportunity to study the atmospheric parameters. The assumptions concerning liquid hydrometeors, water vapor, lapse rate, and nonprecipitating clouds were studied. Model assumptions seem to be supported by these observations.

  6. Aircraft observations of the vertical structure of stratiform precipitation relevant to microwave radiative transfer

    SciTech Connect

    Chang, A.T.C. ); Barnes, A.; Glass, M. ); Kakar, R. ); Wilheit, T.T. )

    1993-06-01

    The retrieval of rainfall intensity over the oceans from passive microwave observations is based on a radiative transfer model. direct rainfall observations of oceanic rainfall are virtually nonexistent making validation of the retrievals extremely difficult. Observations of the model assumptions provide an alternative approach for improving and developing confidence in the rainfall retrievals. In the winter of 1983, the NASA CV-990 aircraft was equipped with a payload suitable for examining several of the model assumptions. The payload included microwave and infrared radiometers, mirror hygrometers, temperature probes, and PMS probes. On two occasions the aircraft ascended on a spiral track through stratiform precipitation providing an opportunity to study the atmospheric parameters. The assumptions concerning liquid hydrometeors, water vapor, lapse rate, and nonprecipitating clouds were studied. Model assumptions seem to be supported by these observations. 23 refs., 7 figs.

  7. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  8. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    NASA Technical Reports Server (NTRS)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  9. Vertical profile and aerosol size distribution measurements in Iceland (LOAC)

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Renard, Jean-Baptiste; Vignelles, Damien; Verdier, Nicolas

    2014-05-01

    Cold climate and high latitudes regions contain important dust sources where dust is frequently emitted, foremost from glacially-derived sediments of riverbeds or ice-proximal areas (Arnalds, 2010; Bullard, 2013). Iceland is probably the most active dust source in the arctic/sub-arctic region (Dagsson-Waldhauserova, 2013). The frequency of days with suspended dust exceeds 34 dust days annually. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances. Thus, there is a need to better understand the spatial and temporal variability of these dusts. Two launch campaigns of the Light Optical Aerosols Counter (LOAC) were conducted in Iceland with meteorological balloons. LOAC use a new optical design that allows to retrieve the size concentrations in 19 size classes between 0.2 and 100 microm, and to provide an estimate of the main nature of aerosols. Vertical stratification and aerosol composition of the subarctic atmosphere was studied in detail. The July 2011 launch represented clean non-dusty season with low winds while the November 2013 launch was conducted during the high winds after dusty period. For the winter flight (performed from Reykjavik), the nature of aerosols strongly changed with altitude. In particular, a thin layer of volcanic dust was observed at an altitude of 1 km. Further LOAC measurements are needed to understand the implication of Icelandic dust to the Arctic warming and climate change. A new campaign of LAOC launches is planned for May 2014. Reference: Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 3-21. Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 71-89. Dagsson-Waldhauserova, P., Arnalds O., Olafsson H. 2013. Long-term frequency and characteristics of dust storm events in

  10. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  11. Analysis of atmospheric vertical profiles in the presence of desert dust aerosols

    NASA Astrophysics Data System (ADS)

    Costa, M. J.; Obregón, M. A.; Pereira, S.; Salgueiro, V.; Potes, M.; Couto, F. T.; Salgado, R.; Bortoli, D.; Silva, A. M.

    2015-12-01

    The present work aims at studying a very recent episode of desert dust transport that affected Iberia in mid May 2015. The dust aerosols were detected over Évora, where a varied set of instrumentation for aerosol measurements is installed, including: a CIMEL sunphotometer integrated in AERONET, a Raman Lidar and a TEOM monitor, as well as ceilometer and a microwave radiometer (profiler). The aerosol occurrence, detected using the columnar, vertically-resolved and in situ measurements, was characterized by a fairly high aerosol optical thickness that reached a value of 1.0 at 440 nm and showed mass concentration peaks at the surface of the order of 100 μg/m3. Subsequently, the tropospheric vertical profiles of humidity and temperature obtained with the passive microwave (MW) radiometer are analysed in order to distinguish possible modifications that can be connected with the transport of desert dust. Modelling results are also examined and the total, SW and LW radiative forcings are investigated, taking into account the different vertical profiles obtained during the desert dust occurrence. It is found that the differences in the atmospheric profiles mostly affect the LW radiative forcing, with an underestimation of about 30% when the actual vertical profile is not considered.

  12. Calibration of the total carbon column observing network using aircraft profile data

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Toon, G. C.; Wennberg, P. O.; Wofsy, S. C.; Stephens, B. B.; Fischer, M. L.; Uchino, O.; Abshire, J. B.; Bernath, P.; Biraud, S. C.; Blavier, J.-F. L.; Boone, C.; Bowman, K. P.; Browell, E. V.; Campos, T.; Connor, B. J.; Daube, B. C.; Deutscher, N. M.; Diao, M.; Elkins, J. W.; Gerbig, C.; Gottlieb, E.; Griffith, D. W. T.; Hurst, D. F.; Jiménez, R.; Keppel-Aleks, G.; Kort, E.; Macatangay, R.; Machida, T.; Matsueda, H.; Moore, F.; Morino, I.; Park, S.; Robinson, J.; Roehl, C. M.; Sawa, Y.; Sherlock, V.; Sweeney, C.; Tanaka, T.; Zondlo, M. A.

    2010-06-01

    The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO2, CO, CH4, N2O and H2O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.

  13. Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data

    SciTech Connect

    Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.; Wofsy, Steven C.; Stephens, Britton B.; Fischer, Marc L.; Uchino, Osamu; Abshire, James B.; Bernath, Peter; Biraud, Sebastien C.; Blavier, Jean-Francois L.; Boone, Chris; Bowman, Kenneth P.; Browell, Edward V.; Campos, Teresa; Connor, Brian J.; Daube, Bruce C.; Deutscher, Nicholas M.; Diao, Minghui; Elkins, James W.; Gerbig, Christoph; Gottlieb, Elaine; Griffith, David W. T.; Hurst, Dale F.; Jimenez, Rodrigo; Keppel-Aleks, Gretchen; Kort, Eric; Macatangay, Ronald; Machida, Toshinobu; Matsueda, Hidekazu; Moore, Fred; Morino, Isamu; Park, Sunyoung; Robinson, John; Roehl, Coleen M.; Sawa, Yusuke; Sherlock, Vanessa; Sweeney, Colm; Tanaka, Tomoaki; Zondlo, Mark A.

    2010-03-26

    The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.

  14. Mechanistic modeling of the vertical soil organic matter profile in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Beer, Christian; Hoosbeek, Marcel; Reichstein, Markus; Kruijt, Bart; Wutzler, Thomas; Kattge, Jens; Schrumpf, Marion; Kabat, Pavel

    2010-05-01

    Modelling and measuring studies of soil organic carbon have traditionally focused on the 30 cm of the soil. In the recent past however, interest in the vertical distribution of soil carbon has increased due to 1) estimates suggesting that the deep soil globally stores a large amount of carbon, and 2) increasing evidence that soil carbon stabilization is be controlled by different processes at different depths that are likely to respond varyingly to future global changes, possibly leading to release of previously stabilized carbon. Therefore the ‘bucket' approach employed in traditional soil carbon models is not sufficient to adequately predict future soil carbon dynamics on long time scales. Furthermore, aggregation of soil temperature and moisture response of the whole profile may lead to biased results on short time scales as well. Hence, a more vertically explicit representation is needed, but development and parameterization of such models is hindered by lack of understanding of the processes involved in SOM profile development. Our study aims to answer the following questions: 1) what are the key driving processes that determine the vertical profile of soil organic matter and their comparative strength? and 2) can we improve soil carbon cycle models by accounting for the vertical SOM profile? In this scope we have developed SOMPROF, a new soil carbon model that dynamically simulates the vertical profile of the SOM fraction in the mineral soil, as well as the storage of organic matter in organic surface horizons L, F and H. The model includes two mechanisms of vertical organic matter transport: 1) diffusion, representing bioturbation (mixing of the soil matrix by soil biota), and 2) advection, representing downward movement with infiltrating water. Furthermore organic matter may be input directly at depth by root turnover. The model includes 5 organic carbon pools that differ with respect to their transport behavior and decomposability. The model has been

  15. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  16. Comparison of glyoxal, BrO, and IO vertical profiles derived from both ground-based and airborne MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Coburn, Sean; Volkamer, Rainer; Baidar, Sunil; Dix, Barbara; Koenig, Theodore; Ortega, Ivan; Sinreich, Roman; van Roozendael, Michel; Hendrick, Francois; Kinnison, Doug

    2015-04-01

    The information content of ground-based MAX-DOAS retrievals is assessed by collocated aircraft measurements for a ship MAX-DOAS setup over the Eastern tropical Pacific Ocean (TORERO RF17), and a mountain-top MAX-DOAS setup at Mauna Loa Observatory, Hawaii (CONTRAST RF17). During both case studies the CU airborne MAX-DOAS (AMAX-DOAS) instrument aboard the NSF/NCAR GV aircraft measured profiles of glyoxal, BrO, and IO with 12-20 degrees of freedom and up to 500 m vertical resolution. The TORERO field campaign took place in 2012, while CONTRAST in 2014; both campaigns covered the months of January and February. Additional measurements aboard the aircraft helped to provide information/validation of the AMAX-DOAS derived profiles, such as in-situ water vapor from the Vertical-Cavity Surface-Emitting Laser hygrometer (VCSEL), in-situ hydrocarbon measurements from the Trace Organic Gas Analyzer (TOGA), and aerosol information constrained by the Ultra High Sensitivity Aerosol Spectrometer (UHSAS). The AMAX-DOAS profiles are compared with ground-based MAX-DOAS inversions. The latter explores the effect of using either the measured differential slant column density (dSCD) or SCD as input to the optimal estimation inversion, where SCD = dSCD + SCD_ref. SCD_ref is the residual column amount of the trace gas contained within the reference spectrum. For the AMAX-DOAS data, the values of SCD_ref were actively minimized, while SCD_ref is usually unknown for ground-based MAX-DOAS retrievals. In absence of independent measurements to constrain SCD_ref, the current state-of-the-art with ground-based MAX-DOAS applications is to use dSCDs as input to the inversion. Here we assess the effect of uncertain SCD_ref for ground-based MAX-DOAS profiles in form of a sensitivity study. Additionally for the ground-based data, different methods are compared for the determination of SCD_ref: 1) the collocated aircraft profiles described above present the opportunity to forward calculate the SCD

  17. FAME-C: Retrieval of cloud top pressure with vertically inhomogeneous cloud profiles

    NASA Astrophysics Data System (ADS)

    Henken, Cintia Carbajal; Lindstrot, Rasmus; Filipitsch, Florian; Walther, Andi; Preusker, Rene; Fischer, Jürgen

    2013-05-01

    A synergistic FAME-C (Freie Universität Berlin AATSR-MERIS Cloud Retrieval) algorithm is developed within the frame of the ESA CCI Cloud project. Within FAME-C the ratio of two MERIS measurements (the Oxygen-A absorption channel and a window channel) is used to retrieve cloud top pressure. In case of high, extended clouds the retrieved cloud top pressure is generally too high. This can be understood as an overestimation of extinction in upper cloud layers due to the assumption of vertical homogeneous clouds in the radiative transfer simulations. To include more realistic cloud vertical profiles, one year of data from the Cloud Profiling Radar (CPR) onboard CloudSat has been used to determine average normalized cloud vertical extinction profiles with a fixed pressure thickness for nine cloud types. The nine cloud types are based on the ISCCP COT-CTP classification table. The retrieved cloud top pressure, now using CloudSat cloud profiles in the forward model, is compared to CPR reflectivities as well as the retrieved cloud top pressure using vertically homogeneous cloud profiles. In the first number of cases under examination the overestimation of cloud top pressure, and therefore the bias, is reduced by a large amount when using CloudSat vertical cloud profiles. Another advantage is that no assumption about the cloud geometrical thickness has to be made in the new retrieval. It should be noted that comparisons between FAME-C products and A-train products can only be made at high latitudes where A-train and ENVISAT have overlapping overflights.

  18. Development of an angular scanning system for sensing vertical profiles of soil electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apparent soil electrical conductivity (EC**a**) is typically mapped to define soil spatial variability within an agricultural field. Knowledge of the vertical variability of EC**a** is desired to define site-specific behavior of the soil profile. A Pneumatic Angular Scanning System (PASS) was develo...

  19. [Monitoring and analysis of vertical profile of atmospheric HONO, NO2 in boundary layer of Beijing].

    PubMed

    Zhu, Yan-Wu; Liu, Wen-Qing; Fang, Jing; Xie, Pin-Hua; Dou, Ke; Qin, Min; Si, Fu-Qi

    2011-04-01

    Based on the scanning differential optical absorption spectroscopy (DOAS) system, field measurement of vertical profiles of HONO and NO2 was performed continuously from Aug. 27, 2007 to Sep. 4, 2007 in Chaoyang District of Beijing, and their vertical profiles were analyzed. Based on the acquired data, the typical vertical variation characteristics of HONO, NO2 and the ratio HONO/NO2 were discussed, and the possible formation sources of HONO were studied. The results indicated that the decrease of HONO with height was faster than the decrease of NO2. The study found good correlation between NO2 and HONO, as well as between the ratio HONO/NO2 and vapor, respectively. Therefore, the authors' conclusion is that HONO was formed by heterogeneous conversion of NO2 on surfaces or near ground and then transported to higher altitudes. PMID:21714264

  20. VERTICAL MIXING AND CHEMISTRY OVER AN ARID URBAN SITE: FIRST RESULTS FROM AIRCRAFT OBSERVATIONS MADE DURING THE PHOENIX SUNRISE CAMPAIGN.

    SciTech Connect

    BERKOWITZ,C.M.; SPRINGSTON,S.R.; DORAN,J.C.; FAST,J.D.

    2002-01-13

    The role of boundary layer mixing is increasingly recognized as an important factor in determining the concentrations of ozone and other trace gases near the surface. While the concentrations at the surface can vary widely due to horizontal transport of chemical plumes, the boundary layer is also characterized by turbulence that follows a diurnal cycle in height and intensity. Surface oxidant concentrations can therefore undergo significant changes even in the absence of photochemistry. A central goal of the Phoenix 2001 Field Campaign was to study vertical mixing with the onset of convection and to quantify the effect of this mixing on chemistry within an urban boundary layer. As part of this study, a series of low altitude aircraft sampling flights were made over the Greater Phoenix area between June 16-30, 2001. The resulting observations, in conjunction with a series of surface measurements and meteorological observations, are being used to study the vertical transport and reactivity of ozone and ozone-precursors shortly after sunrise. Additional details of this campaign are given in Doran, et al. (2002). It was anticipated that turbulence over Phoenix at night would be suppressed as a result of cooling of the boundary layer over the city. By sampling shortly after sunrise, we hoped to collect measurements above the residual nocturnal stable layer and to continue sampling through the developmental period of a convectively active boundary layer. We report here on the first analysis of these observations, made from a Gulstream-1 (G-1) aircraft operated by the U.S. Department of Energy.

  1. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    NASA Astrophysics Data System (ADS)

    Mignot, A.; Claustre, H.; D'Ortenzio, F.; Xing, X.; Poteau, A.; Ras, J.

    2011-04-01

    In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m-3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m-3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape

  2. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    NASA Astrophysics Data System (ADS)

    Mignot, A.; Claustre, H.; D'Ortenzio, F.; Xing, X.; Poteau, A.; Ras, J.

    2011-08-01

    In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m-3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m-3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape

  3. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  4. Coarse-fine vertical scanning based optical profiler for structured surface measurement with large step height

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Liu, Xiaojun; Lei, Zili; Li, Qian; Yang, Xiao; Chen, Liangzhou; Lu, Wenlong

    2015-02-01

    White light interference (WLI) optical profiler had been used widely for structured surface measurement. To achieve high measuring accuracy, piezoelectric ceramic (PZT) was usually used as the vertical scanning unit, which was normally less than 100um and only for small range structured surface measurement. With the development of advanced manufacturing technology, precision structured surfaces with large step height were appearing. To satisfy the measurement requirements of this kind of precision structured surfaces, WLI optical profiler with large range had to be developed. In this paper, an optical profiler was proposed, in which a coarse-fine vertical scanning system was adopted to expand its measurement range to 10mm while its resolution still at nanometer level.

  5. Observing the Great Plains Low-Level Jet Using the Aircraft Communications Addressing and Reporting System (ACARS): A Comparison with Boundary Layer Profiler Observations

    NASA Astrophysics Data System (ADS)

    Skinner, P. S.; Basu, S.

    2009-12-01

    Wind resources derived from the nocturnal low-level jet of the Great Plains of the United States are a driving factor in the proliferation of wind energy facilities across the region. Accurate diagnosis and forecasting of the low-level jet is important to not only assess the wind resource but to estimate the potential for shear-induced stress generation on turbine rotors. This study will examine the utility of Aircraft Communications Addressing and Reporting System (ACARS) observations in diagnosing low-level jet events across the Texas Panhandle. ACARS observations from Lubbock International Airport (KLBB) will be compared to observations from a 915 MHZ Doppler radar vertical boundary-layer profiler with 60m vertical resolution located at the field experiment site of Texas Tech University. The ability of ACARS data to adequately observe low-level jet events during the spring and summer of 2009 will be assessed and presented.

  6. CO2 vertical profile retrieval from ground-based IR atmospheric spectra

    NASA Astrophysics Data System (ADS)

    Khosravian, Kobra; Loehnert, Ulrich; Turner, David; Ebell, Kerstin

    2016-04-01

    CO2 vertical profile retrieval from ground-based IR atmospheric spectra In this study, we developed an algorithm for retrieving the CO2 vertical profile from atmospheric ground-based zenith spectra in the mid IR. Providing the CO2 profile from continuous (24h/day) ground-based spectra would be a great potential for studying the carbon cycle, the evaluation of satellite measurements or the assessment of numerical models, which forecast the near-surface CO2 flux. In order to retrieve the CO2 profile, we used observations of the Atmospheric Emitted Radiance Interferometer (AERI) that was installed at the JOYCE (Jülich ObservatorY for Cloud Evolution), Germany in 2012. AERI measures downwelling infrared radiances from 520 cm-1 (3.3 μm) to 3020 cm-1 (19 μm) with a spectral resolution of 1 cm-1 and a temporal resolution of 1 minute. In a first step, we performed sensitivity studies for finding the most-suited spectral bands with highest sensitivity to the mean column amount of CO2 volume mixing ratio (VMR). Then an algorithm, known as AERIoe (Turner and Löhnert 2014), was applied to retrieve the mean column amount of CO2 VMR using simulated radiances in clear sky cases. AERIoe is a variational retrieval algorithm to provide information on Temperature, humidity, trace gases and clouds. The simulated AERI radiances were generated by a line by line radiative transfer model (LBLRTM) using model temperature, humidity and CO2 profile. The retrieval results of mean column amount of CO2 VMR are in good agreement with the true ones. In addition to the mean column amount, we modified AERIoe to retrieve the CO2 vertical profile. First results reveal that there is more than 1 degree of freedom for CO2 profile. We will show results how the retrieval method is refined to optimally exploit the information on the CO2 profile contained in the AERI measurements.

  7. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert, Jr.

    2015-01-01

    Assessment of space vehicle loads and trajectories during design requires a large sample of wind profiles at the altitudes where winds affect the vehicle. Traditionally, this altitude region extends from near 8-14 km to address maximum dynamic pressure upon ascent into space, but some applications require knowledge of measured wind profiles at lower altitudes. Such applications include crew capsule pad abort and plume damage analyses. Two Doppler Radar Wind Profiler (DRWP) systems exist at the United States Air Force (USAF) Eastern Range and at the National Aeronautics and Space Administration's Kennedy Space Center. The 50-MHz DRWP provides wind profiles every 3-5 minutes from roughly 2.5-18.5 km, and five 915-MHz DRWPs provide wind profiles every 15 minutes from approximately 0.2-3.0 km. Archived wind profiles from all systems underwent rigorous quality control (QC) processes, and concurrent measurements from the QC'ed 50- and 915-MHz DRWP archives were spliced into individual profiles that extend from about 0.2-18.5 km. The archive contains combined profiles from April 2000 to December 2009, and thousands of profiles during each month are available for use by the launch vehicle community. This paper presents the details of the QC and splice methodology, as well as some attributes of the archive.

  8. Experimental study of vertical stress profiles of a confined granular bed under static and dynamic conditions.

    PubMed

    Mandato, S; Cuq, B; Ruiz, T

    2012-07-01

    In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation. PMID:22772594

  9. GFIT2: an experimental algorithm for vertical profile retrieval from near IR spectra

    NASA Astrophysics Data System (ADS)

    Connor, B. J.; Sherlock, V.; Toon, G.; Wunch, D.; Wennberg, P.

    2015-11-01

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO2, and is used exclusively for CO2 in this paper. Retrieval of CO2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra, and to measurements at two TCCON sites. We demonstrate that there are approximately 3° of freedom for the CO2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO2 from measurements in the 1.6 μ spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective, but to date have not been demonstrated to produce CO2 profile retrievals superior to existing techniques for retrieval of column abundance. We finish by discussing on-going research which may allow CO2 profile retrievals with sufficient accuracy to significantly improve on the results of column retrievals, both in total column abundance and in profile shape.

  10. First results of the PML monitor of atmospheric turbulence profile with high vertical resolution

    NASA Astrophysics Data System (ADS)

    Ziad, A.; Blary, F.; Borgnino, J.; Fanteï-Caujolle, Y.; Aristidi, E.; Martin, F.; Lantéri, H.; Douet, R.; Bondoux, E.; Mékarnia, D.

    2013-11-01

    Aims: Future extremely large telescopes will certainly be equipped with wide-field adaptive optics systems. The optimization of the performances of these techniques requires a precise specification of the different components of these AO systems. Most of these technical specifications are related to the atmospheric turbulence parameters, particularly the profile of the refractive index structure constant CN2(h). A new monitor called Profiler of Moon Limb (PML) for the extraction of the CN2(h) profile with high vertical resolution and its first results are presented. Methods: The PML instrument uses an optical method based on the observation of the Moon limb through two subapertures. The use of the lunar limb leads to a continuum of double stars allowing a scan of the whole atmosphere with high resolution in altitude. Results: The first prototype of the PML has been installed at Dome C in Antarctica and the first results of the PML are presented and compared to radio-sounding balloon profiles. In addition to the CN2(h) profile obtained with high vertical resolution, PML is also able to provide other atmospheric turbulence parameters such as the outer scale profile, the total seeing, and the isoplanatic and isopistonic angles.

  11. Evaluation of the Rotational Throttle Interface for Converting Aircraft Utilizing the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Rozovski, David; Theodore, Colin R.

    2011-01-01

    An experiment was conducted to compare a conventional helicopter Thrust Control Lever (TCL) to the Rotational Throttle Interface (RTI) for tiltrotor aircraft. The RTI is designed to adjust its orientation to match the angle of the tiltrotor s nacelles. The underlying principle behind the design is to increase pilot awareness of the vehicle s configuration state (i.e. nacelle angle). Four test pilots flew multiple runs on seven different experimental courses. Three predominant effects were discovered in the testing of the RTI: 1. Unintentional binding along the control axis resulted in difficulties with precision power setting, 2. Confusion in which way to move the throttle grip was present during RTI transition modes, and 3. Pilots were not able to distinguish small angle differences during RTI transition. In this experiment the pilots were able to successfully perform all of the required tasks with both inceptors although the handling qualities ratings were slightly worse for the RTI partly due to unforeseen deficiencies in the design. Pilots did however report improved understanding of nacelle movement during transitions with the RTI.

  12. Inter-comparison of MAX-DOAS Retrieved Vertical Profiles of Aerosol Extinction, SO2 and NO2 in the Alberta Oil Sands with LIDAR Data and GEM-MACH Air Quality Model.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Friess, Udo; Strawbridge, Kevin; Whiteway, James; Aggarwal, Monika; Makar, Paul; Li, Shao-Meng; O'Brien, Jason; Baray, Sabour; Schnitzler, Elijah; Olfert, Jason S.; Osthoff, Hans D.; Lobo, Akshay; McLaren, Robert

    2016-04-01

    Understanding industrial emissions of trace gas pollutants in the Alberta oil sands is essential to maintaining air quality standards and informing public policy. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of trace gases can improve knowledge of pollutant levels, vertical distribution and chemical transformation. During an intensive air measurement campaign to study emissions, transport, transformation and deposition of oil sands air pollutants from August to September of 2013, a MAX-DOAS instrument was deployed at a site north of Fort McMurray, Alberta to determine the vertical profiles of aerosol extinction, NO2 and SO2 through retrieval from the MAX-DOAS spectral measurements using an optimal estimation method. The large complement of data collected from multiple instruments deployed during this field campaign provides a unique opportunity to validate and characterize the performance of the MAX-DOAS vertical profile retrievals. Aerosol extinction profiles determined from two Light Detection and Ranging (LIDAR) instruments, one collocated and the other on a Twin Otter aircraft that flew over the site during the study, will be compared to the MAX-DOAS aerosol extinction profile retrievals. Vertical profiles of NO2 and SO2 retrieved from the MAX-DOAS measurements will be further compared with the composite vertical profiles measured from the flights of a second aircraft, the NRC-Convair 580, over the field site during the same measurement period. Finally, the MAX-DOAS retrieved tropospheric vertical column densities (VCDs) of SO2 and NO2 will be compared to the predicted VCDs from Environment and Climate Change Canada's Global Environmental Multi-scale - Modelling Air quality and Chemistry (GEM-MACH) air quality model over the grid cell containing the field site. Emission estimates of SO2 from the major oil mining facility Syncrude Mildred Lake using the MAX-DOAS VCD results, validated through the detailed characterization above

  13. Long-term aerosol study on continental scale through EARLINET vertical profiles

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Pappalardo, Gelsomina; Linne, Holger; Wandinger, Ulla

    2015-04-01

    Lidar techniques offer the opportunity for investigating the aerosol vertical profiles, which is an important information for climatological, meteorological and air quality issues. EARLINET (European Aerosol Research Lidar Network) has been providing aerosol optical properties vertical profiles over Europe since May 2000. Long-term aerosol observations performed within EARLINET allows a climatological study of aerosol properties over Europe. All EARLINET stations perform almost simultaneously measurements three times per week following a scheduling established in 2000. Besides these climatological measurements, additional measurements are performed in order to monitor special events (as volcanic eruptions and desert dust intrusion), for satellite data evaluation and integrated studies and during intensive measurements campaigns. Aerosol optical properties vertical profiles are freely available at www.earlinet.org and through ACRIS data center http://www.actris.net/. This data are currently published on the CERA database with an associated doi number. Based mainly on Raman technique, EARLINET stations typically provide direct measurement of extinction profiles, and therefore of the aerosol optical depth (AOD), a key parameter for understanding the aerosol role on radiation budget. The free troposphere contribution to AOD and altitude of lofted layers are provided thanks to the vertical profiling capability of lidar technique. The representativeness of EARLINET regular scheduling for climatological studies is investigating through the comparison with AERONET and MODIS measurements. We find that the regular measurements schedule is typically sufficient for climatological studies. In addition lidar punctual measurements are representative for a larger area (1°x1°) in a climatological sense. Long term analysis of EARLINET profiles shows that the AOD in generally decreasing over Europe in agreement with both passive-sensors and in situ measurements. Mean vertical

  14. Effects of control laws and relaxed static stability on vertical ride quality of flexible aircraft

    NASA Technical Reports Server (NTRS)

    Roberts, P. A.; Swaim, R. L.; Schmidt, D. K.; Hinsdale, A. J.

    1977-01-01

    State variable techniques are utilized to generate the RMS vertical load factors for the B-52H and B-1 bombers at low level, mission critical, cruise conditions. A ride quality index is proposed to provide meaningful comparisons between different controls or conditions. Ride quality is shown to be relatively invariant under various popular control laws. Handling quality variations are shown to be major contributors to ride quality variations on both vehicles. Relaxed static stability is artificially implemented on the study vehicles to investigate its effects on ride quality. The B-52H ride quality is generally degraded when handling characteristics are automatically restored by a feedback control to the original values from relaxed stability conditions. The B-1 airplane shows little ride quality sensitivity to the same analysis due to the small rigid body contribution to load factors at the flight condition investigated.

  15. High-resolution Vertical Profiling of Ocean Velocity and Water Properties Under Hurricane Frances in September 2004

    NASA Astrophysics Data System (ADS)

    Sanford, T. B.; D'Asarp, E. A.; Girton, J. B.; Price, J. F.; Webb, D. C.

    2006-12-01

    In ONR's CBLAST Hurricane research program observations were made of the upper ocean's response to Hurricane Frances. Three EM-APEX floats (velocity sensing versions of Webb Research APEX floats) and two Lagrangian floats were deployed north of Hispaniola from a C-130 aircraft ahead of Hurricane Frances in September 2004. The EM-APEX floats measured T, S and V over the upper 500 m starting about a day before the storm's arrival. The Lagrangian floats measured temperature and salinity while following the three- dimensional boundary layer turbulence in the upper 40 m. One EM-APEX float was directly under the track of the storm's eye, another EM-APEX and two Lagrangian floats went in about 50 km to the right of the track (where the surface winds are strongest) and the third float was about 100 km to the right. The EM-APEX floats profiled for 10 hours from the surface to 200 m, then continued profiling between 35 and 200 m with excursions to 500 m every half inertial period. After 5 days, the EM-APEX floats surfaced and transmitted the accumulated processed observations, then the floats profiled to 500 m every half inertial period until recovered early in October aided by GPS and Iridium. The float array sampled in unprecedented detail the upper-ocean turbulence, momentum, and salt and heat changes in response to the hurricane. The buildup of surface gravity waves in advance of the storm was also observed in the velocity profiles, with significant wave heights of up to 11 m. Rapid acceleration of inertial currents in the surface mixing layer (SML) to over 1 m/s stimulated vertical mixing by shear instability at the SML base, as indicated by low Richardson numbers and SML deepening from about 40 m to 120 m under the strongest wind forcing. Surface cooling of about 2.5 C was primarily due to the SML deepening and entrainment of colder water, with a small contribution from surface heat flux. Intense inertial pumping was observed under the eye, with vertical excursions of

  16. Stability effects on the profiles of vertical velocity and its variance in katabatic flow

    SciTech Connect

    Coulter, R.L.; Martin, T.J.

    1994-10-01

    The atmospheric katabatic flow in the foothills of the Front Range of the Rocky Mountains has been monitored by a network of towers and sodars for several years as part of the Atmospheric Studies in Complex Terrain (ASCOT) program. The dependence of the vertical component of motion, its variance, and the mean component of the wind perpendicular to the surface at the mouth of Coal Creek Canyon on surface cooling and channeling by winds above the canyon has been explored by using almost three years of data from the network. The magnitude of the near-surface temperature differences was found to decrease with increasing surface cooling in light winds, apparently because of increasing turbulence resulting when increasing winds interact with surface topography. The variance of vertical velocity exhibits three types of vertical profiles, corresponding to different cooling rates and external wind speeds. The mean variance was found to depend strongly on a locally derived Richardson number.

  17. An analysis of continuous vertical nutrient profiles taken during a cold-anomaly off Peru

    NASA Astrophysics Data System (ADS)

    Friederich, G. E.; Codispoti, L. A.

    1987-06-01

    Continuous vertical profiles of nutrient concentrations to depths of ˜250 m with a vertical resolution of ˜2 m help to describe and explain conditions during a cold-anomaly in the waters off Peru. The data suggest that primary production (˜2 g C m 2 d 1) in the euphotic zone above an extraordinary shallow oxygen deficient zone (maximum nitrite value of 23 μM) was supported largely by vertical transports from a thin layer between 10 and 20 m. Calculations based on the profiles suggest that the denitrification rate in the shallow oxygen deficient feature (2-5 × 10 3μmol m -2 d -1) was also supported by vertical diffusion. Both calculations are based on a vertical diffusion coefficient of 1 cm 2 s -1. Deeper oxygen deficient zones with secondary nitrite maxima embedded within them were also sampled; an unusual feature found north of 11°S centered at about 300 m and the main secondary nitrite maximum (MSNM) centred at about 200 m south of 11°S. Our data and calculations suggest that vertical diffusion was not the dominant control on denitrification rates in the northern feature. A possibly atypical station within the MSNM, however, revealed a steep vertical gradient at the relatively shallow upper boundary of the nitrite maximum. In this case, the denitrification rate required to balance losses through the upper boundary may have been on the order of 40% of the total rate. Comparison of the vertical nutrient profiles with variations in static stability shows structures with similar depth scales. The data also suggest that these features may arise from the interleaving of water masses with different histories and that the rates of microbial nitrogen transformations may display similar fine structure. A stability maximum is common at the upper boundary of the oxygen deficient zones, but our data agree with previous results suggesting that the nitrite maxima embedded within the cores of these features are not associated with unusually strong stratification.

  18. A Direct Detection 1.6μm DIAL with Three Wavelengths for Measurements of Vertical CO2 Concentration and Temperature Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Tsukamoto, M.

    2012-12-01

    We report the new 1.6 μm DIAL system that can measure the temperature profiles with the CO2 concentration profiles in the atmosphere because of improvement of measurement accuracy of the CO2 density and mixing ratio (ppm). We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere [Sakaizawa et al. 2009]. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode and the telescope with larger aperture than that of the coherent detection method. Laser beams of three wavelengths around a CO2 absorption line is transmitted alternately to the atmosphere for measurements of CO2 concentration and temperature profiles. Moreover, a few retrieval algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes [Stephens et al. 2007]. In comparison with the ground-based monitoring network, CO2 measurements for vertical profiles in the troposphere have been limited to campaign-style aircraft and commercial airline observations with the limited spatial and temporal coverage. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical

  19. Model simulations and aircraft measurements of vertical, seasonal and latitudinal O3 and CO distributions over Europe

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Lawrence, M.; Gurk, Ch.; Hoor, P.; Lelieveld, J.; Hegglin, M. I.; Brunner, D.; Schiller, C.

    2006-02-01

    During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3 in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.

  20. Model simulations and aircraft measurements of vertical, seasonal and latitudinal O3 and CO distributions over Europe

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Lawrence, M.; Gurk, Ch.; Hoor, P.; Lelieveld, J.; Hegglin, M. I.; Brunner, D.; Schiller, C.

    2005-09-01

    During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3) in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.

  1. Study of vertical profiles of aerosols using tethersonde over Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sinha, P. R.; Sreenivasan, S.; Subba Rao Jonnalagadda, Venkata

    Characterization of the physical, chemical and the optical properties of aerosol along with their spatial and temporal variations due to short residence time of few days to about a week, has received significant attention because of their critical role in the atmospheric radiation budget and the climate change. Since of the globe is covered by oceans, the measurement of aerosols, their altitude profiles and long range transport remains a challenge. We conducted the first ever in-situ measurements of size-segregated vertical profiles of aerosol in the marine atmospheric boundary layer (MABL) over the Bay of Bengal (BoB) using tethersonde. The observations were made at five different locations during the winter Integrated Campaign of Aerosols, gases and Radiation Budget. We present spatial distribution and the vertical behaviour of marine aerosols.

  2. Using the Rouse Concentration Model to Represent Vertical Flux Profiles of Wind Blown Sand

    NASA Astrophysics Data System (ADS)

    Farrell, Eugene; Sherman, Douglas

    2014-05-01

    From studies of suspended sediments in water or dust in air it is recognized that the Rouse profile represents a theoretically sound, first approximation of characteristic concentration gradients. Rouse (1938) combined the influence of grain size and shear velocity changes into a universal equation for concentration gradients. The Rouse number relates sediment size (in the form of settling velocity, w0) to shear velocity, the von Kármán constant (0.4) and the Schmidt Number, typically assumed to be equal to 1.0 but with much larger values reported. The shape of the Rouse concentration profile is controlled by the Rouse number exponent. We applied the Rouse profile model to 14 vertical flux profiles of wind-blown sand measured during a field experiment in Jericoacoara, Brazil in 2008. These data were supplemented with 96 vertical flux profiles obtained from fourteen wind tunnel and field experiments reported in the literature, for a total of 110 profiles. A fall velocity equation for particles falling in air was derived using a grain size (d) dependency: w0 (in m/s) = 4.248 (in mm) + 0.174 (r2=0.88). The Rouse model performs poorly when the value of the β (a form of the Schmidt number in the Rouse number exponent) is assumed to be unity. The values of β were modeled using a relationship derived from a dependency of β on the w0/u* ratio: β = 3.277(w0/u*) - 0.4133 (r2=0.65). The Rouse profiles calculated using this approach predict very similar vertical distributions to the observed data and predicted 86% and 81% of the observed transport rate in field and wind tunnel experiments respectively. The analyses show that the performance of the Rouse model is not sensitive to changes in the range of variability we can expect to observe in values of fall velocity, shear velocity and the von Kármán constant but is very sensitive to changes in the values of the Schmidt number. The Rouse approach is more physically meaningful than current approaches that use standard

  3. SPICAM dayglow measurements: a tool to retrieve CO2 vertical density profile and exospheric temperatures

    NASA Astrophysics Data System (ADS)

    Stiepen, A.; Gérard, J.-C.; Bougher, S.; Montmessin, F.; Bertaux, J.-L.

    2012-09-01

    We analyze the behavior of the CO2 + and CO Cameron ultraviolet dayglow in the atmosphere of Mars through a large dataset of dayside grazing limb observations performed by the Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board the Mars Express spacecraft. Limb profiles are studied to retrieve the temperature of the Martian exosphere and its variability with season, latitude and solar activity. We use a one-dimensional chemical-diffusive model to retrieve the main features of the emissions and constrain the temperature and density vertical profiles of the main components of the Martian atmosphere.

  4. Observed changes in the vertical profile of stratopheric nitrous oxide at Thule, Greenland, February - March 1992

    NASA Technical Reports Server (NTRS)

    Emmons, Louisa K.; Reeves, John M.; Shindell, Drew T.; Dezafra, Robert L.

    1994-01-01

    Using a ground-based mm-wave spectrometer, we have observed stratospheric N2O over Thule, Greenland (76.3 N, 68.4 W) during late February and March, 1992. Vertical profiles of mixing ratio ranging from 16 to 50 km were recovered from molecular emission spectra. The profiles of early March show an abrupt increase in the lower-stratosphere N2O mixing ratio similar to the spring-to-summer change associated with the break up of the Antarctic polar vortex. This increase is correlated with changes in potential vorticity, air temperature, and ozone mixing ratio.

  5. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    NASA Astrophysics Data System (ADS)

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; Wunch, Debra; Wennberg, Paul O.

    2016-08-01

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO2, and is used exclusively for CO2 in this paper. Retrieval of CO2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate that there are approximately 3° of freedom for the CO2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO2 from measurements in the 1.61μ (6220 cm-1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO2 profile retrievals with sufficient precision for applications to carbon dynamics. We finish by discussing ongoing research which may allow CO2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.

  6. Vertical profile of rain: Ka band radar observations at tropical locations

    NASA Astrophysics Data System (ADS)

    Das, Saurabh; Maitra, Animesh

    2016-03-01

    Information of vertical rain structure is important for accurate quantitative precipitation estimation from weather radars and space-borne radars. In this paper, some characteristics of the vertical rain structure observed using a Ka band Micro Rain Radar at three tropical locations in India are presented. The average vertical structure is studied in terms of drop size distribution (DSD), fall velocity, rain rate, liquid water content and radar reflectivity profile. The changes in vertical rain structure with rain rate is observed to be significant only above 20 mm/h in Ahmedabad and Trivandrum, although, in Shillong, significant variation is observed starting from 2 mm/h. Results show a significant negative slope of the fall velocity of rain drops and Ka band radar reflectivity up to melting layer height for rain rate above 20 mm/h indicating a shift in the drop size distribution (DSD) toward lower size at all sites. The near ground measurements show strong variation of rain structure for all rain rates. The mean DSD near ground (<1 km) indicates the dominance of smaller drops during rain rates below 2 mm/h, but significant increase in drop size in rain rate above 20 mm/h. The findings suggest using different retrieval techniques for near ground rain estimation than the rest of the height profile as well for high rain rate events.

  7. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D. A.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-02-01

    Vertical profiles of submicron aerosol over the southeastern United States (SEUS) during the summertime from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10% larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10% to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary organic aerosol (SOA) aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. In contrast to this hypothesis, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.

  8. A New Airborne Lidar for Remote Sensing of Canopy Fluorescence and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Ounis, A.; Bach, J.; Mahjoub, A.; Daumard, F.; Moya, I.; Goulas, Y.

    2016-06-01

    We report the development of a new lidar system for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laserinduced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will low the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the lidar development are discussed and expected performances are presented.

  9. Passive microwave signatures of fractures and ridges in sea ice at 33. 6 GHz (vertical polarization) as observed in aircraft images

    SciTech Connect

    Farmer, L.D.; Eppler, D.T.; Lohanick, A.W. )

    1993-03-15

    An aircraft data set of coincident K[sub a] band (33.6 GHz, vertical polarization) passive microwave images and aerial photographs acquired in the Chukchi-Beaufort Sea region in March 1983 was analyzed to evaluate radiometric signatures of deformational features that occur in sea ice. A total of 115 fractures and 197 pressure ridges were examined with respect to physical appearance (relative age, snow cover, ice type, width, orientation) as observed in photographs, and radiometric character (brightness temperature, radiometric contrast with respect to adjacent ice, radiometric profile across the feature) as measured from digital passive microwave images. Of the deformational features that were observed in aerial photographs, 82% had radiometric signatures of sufficient contrast to be observed in passive microwave images. Fractures and ridges have equal chance of detection, but fractures cannot be distinguished from pressure ridges on the basis of brightness temperature, radiometric contrast, or characteristics of radiometric profiles measured across these features. Radiometric signatures of both fractures and ridges are more likely to be radiometrically warmer (as opposed to cooler) than adjacent ice, which suggests that saline ice is a significant constituent of most deformational features. New ridges are more likely to be radiometrically warmer than old ridges, probably because brine drains from the ridge as it ages (which reduces emissivity) and snow accumulates in drifts along the ridge trend (which enhances scattering). However, brightness temperatures of snow-covered ridges extend across a range that is approximately 15 K cooler, and 10 K warmer than the range observed for snow-free ridges. Old features show higher radiometric contrast with respect to adjacent ice than new features, which increases their probability of detection. 36 refs., 13 figs., 4 tabs.

  10. A method for retrieving vertical ozone profiles from limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua

    2011-10-01

    A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.

  11. Vertical transport and removal of black carbon over East Asia in spring during the A-FORCE aircraft campaign

    NASA Astrophysics Data System (ADS)

    Oshima, N.; Koike, M.; Kondo, Y.; Nakamura, H.; Moteki, N.; Matsui, H.; Takegawa, N.; Kita, K.

    2014-12-01

    The Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign was conducted at 0-9 km in altitude over East Asia in March-April 2009 to investigate transport and removal processes of aerosols, their physical and chemical properties, and cloud microphysical properties in Asian outflow. In this study, mechanisms of vertical transport of black carbon (BC) aerosols and their three-dimensional transport pathways over East Asia in spring were examined through numerical simulations for the A-FORCE campaign using a modified version of the Community Multiscale Air Quality (CMAQ) modeling system. The simulations reproduced the spatial distributions of mass concentration of BC and its transport efficiency observed by the A-FORCE campaign reasonably well, including its vertical and latitudinal gradients and dependency on precipitation amount that air parcels experienced during the transport. During the A-FORCE period, two types of pronounced upward BC mass fluxes from the planetary boundary layer (PBL) to the free troposphere (FT) were found over northeastern and inland-southern China. Over northeastern China, cyclones with modest precipitation were the primary uplifting mechanism of BC. Over inland-southern China, both cumulus convection and orographic uplifting along the slopes of the Tibetan Plateau played important roles in the upward transport of BC, despite its efficient wet deposition due to a large amount of precipitation supported by an abundant moisture supply by the low-level southerlies. In addition to the midlatitude (35-45°N) eastward outflow within the PBL (21% BC removal by precipitation during transport), the uplifting of BC over northeastern and inland-southern China and the subsequent BC transport by the midlatitude lower tropospheric (50% BC removal) and subtropical (25-35°N) midtropospheric westerlies (67% BC removal), respectively, provided the major transport pathways for BC export from continental East Asia to the Pacific.

  12. Non-homogeneous vertical distribution of methane over Indian region using surface, aircraft and satellite based data

    NASA Astrophysics Data System (ADS)

    Kavitha, M.; Nair, Prabha R.

    2016-09-01

    The upper tropospheric methane (UCH4) data from Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC), the column average mixing ratio of methane (XCH4) from SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and near-surface methane at two locations- Cape Rama, Goa, a Commonwealth Scientific Industrial Research Organization (CSIRO) network station and Ahmedabad (23.03°N; 72.45°E) were analysed to understand vertical inhomogenities in methane mixing ratio and the seasonal changes in the latitude sector 13°-24°N over India. XCH4 and UCH4 were found to follow more or less similar pattern over all the three latitude sectors, with the peak occurring in July-August, and minimum in late winter. The seasonal amplitude in XCH4 is less at low latitude sector (∼64 ppbv) compared to that of high latitudes (∼101 ppbv at 18°-22°N and 88 ppbv at 22°-24°N). On the other hand, the near surface methane shows opposite pattern peaking in winter attaining low in monsoon. During monsoon when methane sources are active at the surface, XCH4 > UCH4 and during other seasons UCH4 > XCH4 indicating presence of high altitude layers. This analysis revealed non-homogeneous distribution of methane in the troposphere indicative of stratified layers. The role of convective activity, boundary layer meteorology and long-range transport in controlling the seasonal changes in the vertical distribution of methane are examined in this study.

  13. A general framework for modelling the vertical organic matter profile in mineral and organic soils

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Ahrens, Bernhard

    2016-04-01

    The vertical distribution of soil organic matter (SOM) within the mineral soil and surface organic layer is an important property of terrestrial ecosystems that affects carbon and nutrient cycling and soil heat and moisture transport. The overwhelming majority of models of SOM dynamics are zero-dimensional, i.e. they do not resolve heterogeneity of SOM concentration along the vertical profile. In recent years, however, a number of new vertically explicit SOM models or vertically explicit versions of existing models have been published. These models describe SOM in units of concentration (mass per unit volume) by means of a reactive-transport model that includes diffusion and/or advection terms for SOM transport, and vertically resolves SOM inputs and factors that influence decomposition. An important assumption behind these models is that the volume of soil elements is constant over time, i.e. not affected by SOM dynamics. This assumption only holds if the SOM content is negligible compared to the mineral content. When this is not the case, SOM input or loss in a soil element may cause a change in volume of the element rather than a change in SOM concentration. Furthermore, these volume changes can cause vertical shifts of material relative to the surface. This generally causes material in an organic layer to gradually move downward, even in absence of mixing processes. Since the classical reactive-transport model of the SOM profile can only be applied to the mineral soil, the surface organic layer is usually either treated separately or not explicitly considered. We present a new and elegant framework that treats the surface organic layer and mineral soil as one continuous whole. It explicitly accounts for volume changes due to SOM dynamics and changes in bulk density. The vertical shifts resulting from these volume changes are included in an Eulerian representation as an additional advective transport flux. Our approach offers a more elegant and realistic

  14. Development of balloon-borne CO2 sonde: CO2 vertical profile (0-10km) observations and comparison with the air craft measurements

    NASA Astrophysics Data System (ADS)

    Ouchi, M.; Matsumi, Y.; Nakayama, T.; Machida, T.; Matsueda, H.; Sawa, Y.; Tanaka, T.; Morino, I.; Uchino, O.

    2012-12-01

    The atmospheric CO2 concentration has drastically increased since the Industrial Revolution due to the mass consumption of fossil fuels and natural gas by human activities. CO2 is considered to be a major factor of global warming; therefore it is important to measure CO2 correctly. CO2 vertical profile measurement is the key to estimate CO2 sources and sinks in high precision. However, current CO2 monitoring sites are limited and there are few CO2 vertical profile measurements. We have been developing a balloon-borne instrument that can measure the vertical distribution of CO2 in any place in the world under any kind of weather conditions (CO2 sonde). The target specifications of altitude range is from surface to 10 km. Time resolution is 1min. The CO2 sensor, originally developed for upper air sounding by our team, is based on the non-dispersed infrared absorption spectroscopy technique (NDIR) at the wavelengths of 4.0 and 4.3 micrometer. The data of the optical infrared absorption are transmitted through a GPS sonde with temperature, humidity and GPS data every second. In this study, we will show simultaneous measurement campaigns of the balloon-borne instruments and in-situ aircraft measurements in January and February 2011 in the Tokyo metropolitan area in Japan. We will present the comparisons between the results of CO2 sonde (5 flights) and two types of aircraft measurements. One is observed by the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) and the other is chartered flight measurements operated by NIES/JAXA.

  15. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  16. Global profiles of the direct aerosol effect using vertically resolved aerosol data

    NASA Astrophysics Data System (ADS)

    Korras Carraca, Marios Bruno; Pappas, Vasilios; Matsoukas, Christos; Hatzianastassiou, Nikolaos; Vardavas, Ilias

    2014-05-01

    Atmospheric aerosols, both natural and anthropogenic, can cause climate change through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In general, aerosols cause cooling of the surface and the planet, while they warm the atmosphere due to scattering and absorption of incoming solar radiation. The importance of vertically resolved direct radiative effect (DRE) and heating/cooling effects of aerosols is strong, while large uncertainties still lie with their magnitudes. In order to be able to quantify them throughout the atmosphere, a detailed vertical profile of the aerosol effect is required. Such data were made available recently by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIOP is the first polarization lidar to fly in space and has been acquiring unique data on aerosols and clouds since June 2006. The aim of this study is to investigate both the vertically resolved geographic and seasonal variation of the DRE due to aerosols. The vertical profile of DRE under all-sky and clear-sky conditions is computed using the deterministic spectral radiative transfer model FORTH. From the DRE, the effect on atmospheric heating/cooling rate profiles due to aerosols can also be derived. We use CALIOP Level 2-Version 3 Layer aerosol optical depth data as input to our radiation transfer model, for a period of 3 complete years (2007-2009). These data are provided on a 5 km horizontal resolution and in up to 8 vertical layers and have been regridded on our model horizontal and vertical resolutions. We use cloud data from the International Satellite Cloud Climatology Project (ISCCP), while the aerosol asymmetry factor and single scattering albedo are taken from the Global Aerosol Data Set (GADS). The model computations are performed on a monthly, 2.5°× 2.5° resolution on global scale, at 40

  17. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B. L.; Rappenglück, B.; Stutz, J.

    2011-04-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1-2 and 7-8 September in the nocturnal boundary layer (NBL). The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to

  18. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B.; Rappenglück, B.; Stutz, J.

    2010-12-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced well by the model. The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to HONO conversion on the ground was the dominant source of HONO

  19. Parameterization of PAR vertical profile within horizontally uniform forest canopies for use in environmental modeling

    NASA Astrophysics Data System (ADS)

    Lalic, Branislava; Firanj, Ana; Mihailovic, Dragutin T.; Podrascanin, Zorica

    2013-08-01

    radiation transfer within the forest canopy plays crucial role in energy balance and turbulent transfer processes. Objective of this study is to suggest a new relation for vertical profile of photosynthetically active radiation (PAR) in case of horizontally uniform forest canopy. It is based on (i) the Lambert-Beer law relationship and (ii) new parameterization of leaf area density (LAD) profile. We have supposed that absorption coefficient μ varies with height and depends on LAD distribution. To check validity of the relation proposed, we have compared calculated values with the observations using data sets assimilated during Anglo-Brazilian Amazonian Climate Observation Study experiment at two observational sites located in Reserva Jaru and Reserva Ducke (Brazil) with different types of forest. Among all available measurements, 615 profiles observed between 08 and 18 local mean time for 72 days at 2 locations were selected. For comparison study, two more profiles based on constant- and variable-LAD approximation were introduced. Obtained results indicate that suggested relation: (i) well reproduces PAR profile within the forest in comparison with observations and (ii) shows better agreement with observations in comparison with two other profiles used in this study.

  20. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  1. Investigation of blast-induced fracture in rock mass using reversed vertical seismic profiling

    NASA Astrophysics Data System (ADS)

    Zou, D. H.; Wu, Y. K.

    2001-10-01

    The rock mass on quarry and pit wall surfaces is usually fractured during production blasting. Quantitative investigations of the fractured zones are needed for stabilization of the rock walls. In this study, the principle of reversed vertical seismic profiling (RVSP) was applied. A set of seismic geophones were arranged on the horizontal bench surface and seismic signals were generated along the vertical rock wall using a free-swinging hammer. The travel times of seismic rays were recorded and the P-wave velocities of the rock mass were analyzed using the Simultaneous Iterative Reconstruction Technique (SIRT). A series of site tests have been carried out on the rock walls at a granite quarry that are characterized by fractures. The fracture depth at various locations on the wall surface is thereby determined. The results indicate that RVSP provides an easy and reliable method to quantitatively evaluate the blasting-induced fractures in the rock mass.

  2. A simple deep-towed vertical array for high-resolution reflection seismic profiling

    NASA Astrophysics Data System (ADS)

    Herber, R.; Nuppenau, V.; Weigel, W.; Wong, H. K.

    1986-06-01

    A simple, low cost, deep-towed system for high-resolution reflection seismic profiling is described. It consists of a vertical array with two hydrophones having a separation of 2.2 m and rigidly mounted onto streamlined tow bodies. Improvement of the signal-to-noise ratio is attained by simple stacking of the hydrophone outputs after signal conditioning and travel time corrections. The suppression of side echoes and surface reflections is achieved by an analog procedure which in effect improves the directional characteristics of the array. A circuit for automatic gain control is included to enhance weak signals as well as to suppress ringing. Results in Kiel Bay and over the crest of the Jan Mayen Ridge (northern Atlantic) suggest that this simple vertical array may supplement air gun systems better than conventional, surface pinger-type equipment.

  3. Vertical Tracer Concentration Profiles Measured During the Joint Urban 2003 Dispersion Study

    SciTech Connect

    Flaherty, Julia E.; Lamb, Brian K.; Allwine, K Jerry; Allwine, Eugene J.

    2007-12-01

    An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma during the summer of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from downtown tracer gas release locations. These profiles indicated that the urban landscape was very effective in mixing the plume vertically. The height of the plume centerline (as determined by the maximum concentration over the depth of the measurements) for any specific 30 min period varied over the 65 m measurement range. Most of the variations in tracer concentration observed in the profile time series were related to changes in wind direction as opposed to changes in turbulence. As a simple analysis tool for emergency response, maximum normalized concentration curves were developed with 5-minute averaged measurements. These curves give the maximum concentration (normalized by the release rate) that would be observed as a function of downwind distance in an urban area. The 5-min data resulted in greater concentrations than predicted with a simple Gaussian plume model. However, the curve compared well with results from a computational fluid dynamics simulation. This dispersion dataset is a valuable asset not only for refining air quality models, but also for developing new tools for emergency response personnel in the event of a toxic release.

  4. Profiles of flow discharged from vertical rotating pipes: A contrast between inviscid liquid and granular jets

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Kubitschek, J. P.; Medina, A.

    2008-11-01

    The stability of viscous rotating liquid columns and their application to rotating viscous liquid jets aligned under gravity is reviewed. Experiments on stable viscous fluid flow discharged from rotating vertical pipes exhibit very weak contraction. We present an elementary liquid jet analysis to understand this phenomenon. Indeed, our inviscid model of a slender rotating inviscid liquid jet shows that rotation suppresses contraction. Next we study the comparable problem for granular flow. Our model for noncohesive granular flow emanating from a vertical pipe rotating about its central axis, valid for sufficiently large rotation rate, shows that the granular profiles blossom rather than contract. The profiles of both the liquid and granular jets depend on the same dimensionless parameters—an exit Froude number Fr0 and an exit swirl parameter χ0. The limitations of both models are discussed. Experimental data for granular jet profiles compare well with the collision-free granular flow model in its range of applicability. A criterion for the rotation rate at which particles adjacent to the inner wall of the rotating pipe cease to flow is also given and compared to experiment.

  5. Vertical and horizontal corneal epithelial thickness profiles determined by ultra-high resolution optical coherence tomography

    PubMed Central

    Du, Chixin; Wang, Jianhua; Cui, Lele; Shen, Meixiao; Yuan, Yimin

    2011-01-01

    Purpose To measure vertical and horizontal thickness profiles of the central and peripheral corneal epithelium and determine if daytime changes occur. Methods Forty eyes of 20 normal subjects were imaged by ultra-high resolution spectral domain optical coherence tomography to profile the corneal epithelial thickness from the edge of Bowman’s layer to the central cornea across the vertical and horizontal meridians. Measurements were made at 10:00 AM and again at 6, 8 hours later. Results The baseline vertical meridional epithelial thickness was thinnest, 42.9±4.1 μm, at the edge of Bowman’s layer in the superior region. It increased in thickness (p<0.01), towards the central cornea. The central epithelium averaged 52.5±2.4 μm, becoming thickest, 55.2±2.5 μm, in the inferior pericentral region. It thinned towards the inferior periphery, reaching 51.3±5.1 μm at the edge of Bowman’s layer (p<0.01). Along the horizontal meridian, the epithelium was thickest at the nasal side, 58.6±5.1 μm, and temporal side, 59.3±6.6 μm, near the edges of Bowman’s layer. It thinned towards the central cornea. There were no significant changes in the epithelial thickness at any location over 8 hours. Conclusion Epithelial thickness varied over the horizontal and vertical meridians and appeared stable during the daytime. PMID:22357393

  6. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    NASA Astrophysics Data System (ADS)

    Siqueira, G. M.; Silva, E. F. F.; Montenegro, A. A. A.; Vidal Vázquez, E.; Paz-Ferreiro, J.

    2013-07-01

    Soil penetration resistance (PR) is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV), skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  7. Effects of aircraft and flight parameters on energy-efficient profile descents in time-based metered traffic

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1984-01-01

    The influence of several parameters on the time required to fly a nominal profile descent of a B-737 from an entry fix to a metering fix 75 n.mi. away was studied. The ground distance for the constant speed segment was adjusted in each case so that the aircraft would always arrive at the metering fix position at the completion of the five segments of the profile descent. The influence of eight parameters on the same nominal profile descent is outlined, but the method used for the off nominal cases was changed. The time calculated for the constant speed segment in the nominal case is used for all off nominal cases. This method allows the aircraft to arrive at the metering fix before or after the profile descent is complete. It is shown that descent Mach number and wind speed have a large effect on the time error, whereas weight was a much smaller effect.

  8. Factors determining the vertical profile of dimethylsulfide in the Sargasso Sea during summer

    NASA Astrophysics Data System (ADS)

    Gabric, A. J.; Matrai, P. A.; Kiene, R. P.; Cropp, R.; Dacey, J. W. H.; DiTullio, G. R.; Najjar, R. G.; Simó, R.; Toole, D. A.; delValle, D. A.; Slezak, D.

    2008-05-01

    The major source of reduced sulfur in the remote marine atmosphere is the biogenic compound dimethylsulfide (DMS), which is ubiquitous in the world's oceans and released through food web interactions. Relevant fluxes and concentrations of DMS, its phytoplankton-produced precursor, dimethylsulfoniopropionate (DMSP) and related parameters were measured during an intensive Lagrangian field study in two mesoscale eddies in the Sargasso Sea during July-August 2004, a period characterized by high mixed-layer DMS and low chlorophyll—the so-called 'DMS summer paradox'. We used a 1-D vertically variable DMS production model forced with output from a 1-D vertical mixing model to evaluate the extent to which the simulated vertical structure in DMS and DMSP was consistent with changes expected from field-determined rate measurements of individual processes, such as photolysis, microbial DMS and dissolved DMSP turnover, and air-sea gas exchange. Model numerical experiments and related parametric sensitivity analyses suggested that the vertical structure of the DMS profile in the upper 60 m was determined mainly by the interplay of the two depth-variable processes—vertical mixing and photolysis—and less by biological consumption of DMS. A key finding from the model calibration was the need to increase the DMS(P) algal exudation rate constant, which includes the effects of cell rupture due to grazing and cell lysis, to significantly higher values than previously used in other regions. This was consistent with the small algal cell size and therefore high surface area-to-volume ratio of the dominant DMSP-producing group—the picoeukaryotes.

  9. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

  10. A Look Inside the San Andreas fault at Parkfield Through Vertical Seismic Profiling

    USGS Publications Warehouse

    Chavarria, J.A.; Malin, P.; Catchings, R.D.; Shalev, E.

    2003-01-01

    The San Andreas Fault Observatory at Depth pilot hole is located on the southwestern side of the Parkfield San Andreas fault. This observatory includes a vertical seismic profiling (VSP) array. VSP seismograms from nearby micro-earthquakes contain signals between the P and S waves. These signals may be P and S waves scattered by the local geologic structure. The collected scattering points form planar surfaces that we interpret as the San Andreas fault and four other secondary faults. The scattering process includes conversions between P and S waves, the strengths of which suggest large contrasts in material properties, possibly indicating the presence of cracks or fluids.

  11. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  12. A look inside the San Andreas Fault at Parkfield through vertical seismic profiling.

    PubMed

    Chavarria, J Andres; Malin, Peter; Catchings, Rufus D; Shalev, Eylon

    2003-12-01

    The San Andreas Fault Observatory at Depth pilot hole is located on the southwestern side of the Parkfield San Andreas fault. This observatory includes a vertical seismic profiling (VSP) array. VSP seismograms from nearby microearthquakes contain signals between the P and S waves. These signals may be P and S waves scattered by the local geologic structure. The collected scattering points form planar surfaces that we interpret as the San Andreas fault and four other secondary faults. The scattering process includes conversions between P and S waves, the strengths of which suggest large contrasts in material properties, possibly indicating the presence of cracks or fluids. PMID:14657494

  13. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-06-01

    Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while

  14. Moisture profile measurements of concrete samples in vertical water flow by gamma ray transmission method

    NASA Astrophysics Data System (ADS)

    da Rocha, M. C.; da Silva, L. M.; Appoloni, C. R.; Portezan Filho, O.; Lopes, F.; Melquíades, F. L.; dos Santos, E. A.; dos Santos, A. O.; Moreira, A. C.; Pötker, W. E.; de Almeida, E.; Tannous, C. Q.; Kuramoto, R.; Cavalcante, F. H. de M.; Barbieri, P. F.; Caleffi, A. F.; Carbonari, B. T.; Carbonari, G.

    2001-06-01

    Samples of concrete for popular habitation (0.1×0.03×0.1 m) and cellular concrete (0.1×0.05×0.1 m) were submitted to water vertical ascending infiltration. The moisture content spatial and temporal evolution of each sample it was monitored in three halfway positions in a same horizontal line, applying the gamma rays transmission method. The data were taken with a 137Cs (3.7×1010 Bq, 0662 MeV) source, Nal (Tl) of 2×2″ detector coupled to gamma ray spectrometry standard electronic with multichannel analyzer and a micrometric table. For the popular habitation concrete, there was a clear correlation between wetting profiles and concrete strength. The cellular concrete showed a wetting profile compatible to its greater porosity.

  15. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  16. Assessing the Role of Vegetation Fires in CO Vertical Profile Anomalies in 2002-2012 with MOZAIC-IAGOS Airborne Observations

    NASA Astrophysics Data System (ADS)

    Petetin, H.

    2015-12-01

    Vegetation fires represent a major source of pollution throughout the troposphere, with strong impacts on the atmospheric composition, air quality and radiative balance. Among the myriad of compounds emitted by these fires, carbon monoxide represents one of the dominant species, and due to its long lifetime, can be transported over very large distances. In the framework of the MOZAIC-IAGOS program, carbon monoxide is routinely measured since 2002 by several commercial aircraft, which provides a unique dataset of CO vertical profiles throughout troposphere. In this study, we investigate the role of vegetation fires in the strong CO anomalies observed in troposphere during the 2002-2012 period. FLEXPART backward simulations coupled with anthropogenic and biomass burning emission inventories are used to trace the geographical origin of these anomalies, which provides valuable informations on the long-range transport of vegetation fire plumes and their subsequent impact on downwind regions.

  17. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  18. The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls.

    PubMed

    Bourke, A K; O'Donovan, K J; Olaighin, G

    2008-09-01

    This study investigates distinguishing falls from normal Activities of Daily Living (ADL) by thresholding of the vertical velocity of the trunk. Also presented is the design and evaluation of a wearable inertial sensor, capable of accurately measuring these vertical velocity profiles, thus providing an alternative to optical motion capture systems. Five young healthy subjects performed a number of simulated falls and normal ADL and their trunk vertical velocities were measured by both the optical motion capture system and the inertial sensor. Through vertical velocity thresholding (VVT) of the trunk, obtained from the optical motion capture system, at -1.3 m/s, falls can be distinguished from normal ADL, with 100% accuracy and with an average of 323 ms prior to trunk impact and 140 ms prior to knee impact, in this subject group. The vertical velocity profiles obtained using the inertial sensor, were then compared to those obtained using the optical motion capture system. The signals from the inertial sensor were combined to produce vertical velocity profiles using rotational mathematics and integration. Results show high mean correlation (0.941: Coefficient of Multiple Correlations) and low mean percentage error (6.74%) between the signals generated from the inertial sensor to those from the optical motion capture system. The proposed system enables vertical velocity profiles to be measured from elderly subjects in a home environment where as this has previously been impractical. PMID:18243034

  19. Aeolian vertical mass flux profiles above a dry and moist sandy beach

    NASA Astrophysics Data System (ADS)

    Rotnicka, Joanna

    2013-04-01

    The vertical distribution of aeolian mass flux was investigated in a natural beach environment. Field experiments conducted on the beach of the Łeba Barrier, southern Baltic coast, Poland, measured the sand transport rate and the vertical mass flux distribution above dry rippled sand and a moist flat sandy surface. The experiments were intended to show the changes in the vertical distribution of sand with changing wind speed. All the data represent maximum flux conditions achieved during alongshore winds. Sand transport was measured using 0.5 m-high vertically segmented sand traps, the wind speed and direction were monitored at 1 m elevation. The obtained dataset comprises 65 measurements on dry surfaces and 51 measurements on moist sandy surfaces. The sand transport rate above the moist surface was higher than above the dry surface, but higher velocities gave smaller differences between the surfaces. The saltation layer was thicker above the moist surface than above the dry surface. All the vertical sand flux profiles are best described by exponential decay functions. Analysis of the normalised flux profiles grouped by wind velocity shows that the fitted curves are less inclined for moist surfaces than dry surfaces.The regression coefficients depict a marked trend in which the intercept decreases and the slope increases with increasing wind speed; this indicates that more sand is transported at higher elevations above the bed and less at lower elevations. The proportion of total transport seems to be independent of wind speed at elevations of approximately 35 mm and 50 mm above the dry and moist surfaces, respectively. Differences between the measured- and exponential-fit values of mass flux are particularly distinct close to the bed, where the exponential fit either over- or under-predicts the measured values. Over-predictions occur in weaker winds, whereas under-predictions become more pronounced as the wind becomes stronger and when the layer in which the

  20. Vertical geochemical profiling of an aquifer contaminated with JP-4 fuel

    SciTech Connect

    Fang, Jiasong; Barcelona, M.J.

    1996-12-31

    Soil samples were collected at a site contaminated with jet fuel at Wurtsmith Air Force Base, Michigan, and were analyzed for aromatic hydrocarbons, aromatic acid metabolites, and phospholipid ester-linked fatty acids (PLFA). Vertically, concentrations of alkylbenzenes (with C1-C4 substitutions) ranged from less than 1.0 to 21.69 {mu}g/kg away from water table to 2605.96 {mu}g/kg in samples taken at water table in the contaminated areas. Contaminant concentration decreased to less than 1.0 {mu}g/kg in downgradient zone. Aromatic acid metabolites identified include o-, m-, and p-toluic acid, 2,4-, 2,5-, 3,5-, 2,6- and 3,4- dimethylbenzoic acid, and 2,4,6-trimethylbenzoic acid. The contaminant profiles paralleled to the concentration profiles of alkylbenzenes, suggesting that the production of aromatic acid was associated with the microbial degradation of aromatic hydrocarbons. PLFA ranging from C{sub 12} to C{sub 20} were determined in soil samples, including saturated and monounsaturated fatty acids. The only polyenoic acid detected was 18:2w6, a biomarker for protozoa. The total microbial biomass calculated from PLFA showed varied profiles within wells at different depths as well as at different wells at similar depths indicating considerable microbial heterogeneity in the subsurface over depths or lateral distance. The PLFA profiles also suggested a dominant anaerobic and aerobic microbial community in the aquifer solids.

  1. 3-D x-ray mirror metrology with a vertical scanning long trace profiler

    SciTech Connect

    Takacs, P.Z.; Li, H.; Li, X.; Grindel, M.W.

    1996-09-01

    The long trace profiler (LTP) was originally developed at Brookhaven National Laboratory for the specific purpose of measuring the surface figure of large cylindrical mirrors used at grazing incidence in synchrotron radiation (SR) beamlines. In its original configuration, it could measure only along one line down the center of the cylinder. A single linear profile is often sufficient to gauge the quality of the optical surface on these kinds of mirrors. For some applications it is necessary to measure the topography of the entire surface, not just along one line but over a grid that covers the entire surface area. We have modified a standard LTP to enable measurement of the complete surface of Wolter telescope optics in a vertical configuration. The vertical scanning LTP (VSLTP) is capable of producing a complete 3-D map of the surface topography errors relative to the ideal desired surface on complete segments of paraboloids and hyperboloids. The instrument uses a penta prism assembly to scan the probe beam in the longitudinal direction parallel to the mirror symmetry axis and uses a precision rotary stage to provide scans in the azimuthal direction. A Risley prism pair and a dove prism are used to orient the probe beam in the proper direction for the azimuthal scans. The repeatability of the prototype instrument is better than 20 nm over trace lengths of 35 mm with a slope measurement accuracy of about 1 microradian. {copyright} {ital 1996 American Institute of Physics.}

  2. Validation of vertical profile from atmosphere using ATOVS products and its impact over Indian region.

    NASA Astrophysics Data System (ADS)

    Mahandru, Riddhi; Kumar, Adarsh; Mitra, Ashim kumar

    This research paper summarizes the validation of atmospheric vertical profile using NOAA(National Oceanic and Atmospheric Administration)/ MetOp satellite derived data over India with radiosonde observations over a span of 8 months. NOAA's International Advanced Television and Infrared Observations satellite Vertical Sounder (ATOVS) processing package (IAPP) obtains temperature and moisture profiles in different pressure levels ranging from 1000hpa to 10hpa from real time direct broadcast (DB) receiving system installed at India Meteorological department. Different pressure levels were substituted to the same pressure levels for calculations of standard deviation, bias and RMSE (root mean square error) The sounder derived products like Total precipitable water vapor (TPW) and Lifting index(LI) from NOAA Satellite was also validated with radiosonde data which provided significant results for weather forecasting. The validation shows that the sounder provides unique information about the state of atmosphere and monitoring the convective environment for severe weather forecasting In addition to this, case study on severe weather events was analyzed using ATOVS products.

  3. High-latitude topside ionospheric vertical electron density profile changes in response to large magnetic storms

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-05-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  4. Vertical velocity variance in the mixed layer from radar wind profilers

    USGS Publications Warehouse

    Eng, K.; Coulter, R.L.; Brutsaert, W.

    2003-01-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  5. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria

    2015-04-01

    In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.

  6. Vertical velocity variance in the mixed layer from radar wind profilers.

    SciTech Connect

    Eng, K.; Coulter, R. L.; Brutsaert, W.; Environmental Research; Cornell Univ.

    2003-11-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, {omega}'{sup 2}, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with {omega}'{sup 2} was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on {omega}'{sup 2} and yet retained a sufficient number of data points to average. A similarity relationship of {omega}'{sup 2} versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  7. Vertical profiles of optical and microphysical particle properties above the northern Indian Ocean during CARDEX 2012

    NASA Astrophysics Data System (ADS)

    Höpner, F.; Bender, F. A.-M.; Ekman, A. M. L.; Praveen, P. S.; Bosch, C.; Ogren, J. A.; Andersson, A.; Gustafsson, Ö.; Ramanathan, V.

    2015-02-01

    A detailed analysis of optical and microphysical properties of aerosol particles during the dry winter monsoon season above the northern Indian Ocean is presented. The Cloud Aerosol Radiative Forcing Experiment (CARDEX), conducted in February and March 2012 at the Maldives Climate Observatory on Hanimaadhoo island (MCOH) in the Republic of the Maldives, used autonomous unmanned aerial vehicles (AUAV) to perform vertical in-situ measurements of particle number concentration, particle number size distribution as well as particle absorption. These measurements were used together with surface-based Mini Micro Pulse Lidar (MiniMPL) observations and aerosol in-situ and off-line measurements to investigate the vertical distribution of aerosol particles. Air masses were mainly advected over the Indian subcontinent and the Arabian Peninsula. Mean surface aerosol number concentration was 1717±604 cm-3 and the highest values were found in air masses from the Bay of Bengal and Indo-Gangetic Plain (2247±370 cm-3). Investigations of the free tropospheric air showed that elevated aerosol layers with up to 3 times higher aerosol number concentrations than at the surface occurred mainly during periods with air masses originating from the Bay of Bengal and the Indo-Gangetic Plain. Compared to the Indian Ocean Experiment (INDOEX) conducted in winter 1999, elevated aerosol layers with increased aerosol number concentration were observed more frequently in 2012. However, lower particle absorption at the surface (σabs(520 nm)=8.5±4.2 Wm-1) was found during CARDEX compared to INDOEX 1999. By combining vertical in-situ measured particle absorption with scattering calculated with Mie-theory, layers with single-scattering albedo (SSA) values of specific source regions were derived and utilized to calculate vertical particle absorption profiles from MiniMPL profiles. SSA surface values for dry conditions were found to be 0.94±0.02 and 0.91±0.02 for air masses from the Arabian Sea (and

  8. Vertical profiles of optical and microphysical particle properties above the northern Indian Ocean during CARDEX 2012

    NASA Astrophysics Data System (ADS)

    Höpner, F.; Bender, F. A.-M.; Ekman, A. M. L.; Praveen, P. S.; Bosch, C.; Ogren, J. A.; Andersson, A.; Gustafsson, Ö.; Ramanathan, V.

    2016-01-01

    A detailed analysis of optical and microphysical properties of aerosol particles during the dry winter monsoon season above the northern Indian Ocean is presented. The Cloud Aerosol Radiative Forcing Experiment (CARDEX), conducted from 16 February to 30 March 2012 at the Maldives Climate Observatory on Hanimaadhoo island (MCOH) in the Republic of the Maldives, used autonomous unmanned aerial vehicles (AUAV) to perform vertical in situ measurements of particle number concentration, particle number size distribution as well as particle absorption coefficients. These measurements were used together with surface- based Mini Micro Pulse Lidar (MiniMPL) observations and aerosol in situ and off-line measurements to investigate the vertical distribution of aerosol particles.Air masses were mainly advected over the Indian subcontinent and the Arabian Peninsula. The mean surface aerosol number concentration was 1717 ± 604 cm-3 and the highest values were found in air masses from the Bay of Bengal and Indo-Gangetic Plain (2247 ± 370 cm-3). Investigations of the free tropospheric air showed that elevated aerosol layers with up to 3 times higher aerosol number concentrations than at the surface occurred mainly during periods with air masses originating from the Bay of Bengal and the Indo-Gangetic Plain. This feature is different compared to what was observed during the Indian Ocean Experiment (INDOEX) conducted in winter 1999, where aerosol number concentrations generally decreased with height. In contrast, lower particle absorption at the surface (σabs(520 nm) = 8.5 ± 4.2 Wm-1) was found during CARDEX compared to INDOEX 1999.Layers with source region specific single-scattering albedo (SSA) values were derived by combining vertical in situ particle absorption coefficients and scattering coefficients calculated with Mie theory. These SSA layers were utilized to calculate vertical particle absorption profiles from MiniMPL profiles. SSA surface values for 550 nm for dry

  9. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  10. Algorithmic identification of limnological features in vertical profiles from the Great Lakes

    NASA Astrophysics Data System (ADS)

    Wietsma, T.; Collingsworth, P.; Minsker, B. S.

    2013-12-01

    High volume collection of environmental data in digital format presents a range of challenges for the researcher, from quality control and data management to efficient interpretation of the signal and the development of requisite information technology skills. These challenges have been termed the "data deluge". To aid in efficient data interpretation, we describe several algorithmic approaches for feature identification in signal streams, including gradient estimation, spectral analysis, and the hidden Markov model. These approaches are calibrated and evaluated over vertical temperature profiles from the Great Lakes obtained through the U.S. Environmental Protection Agency. To demonstrate the value of this data science approach, we describe how the algorithms can be integrated with the historical sampling record to yield an expert system that assists field technicians with adaptive sampling.

  11. Does the vertical profile of ethane contain more insight into mixing layer height than carbon monoxide?

    NASA Astrophysics Data System (ADS)

    Herndon, Scott; Yacovitch, Tara; Pusede, Sally; Diskin, Glenn; DiGangi, Joshua; Sachse, Glenn; Crawford, James

    2015-04-01

    To improve the interpretation of satellite data measurements near the surface, the DISCOVER-AQ project embarked on a four year campaign to produce an integrated dataset of airborne and surface based measurements at various locations in North America. One of the key metrics when pursuing the the goal of measuring the surface air quality from space is the mixing layer height. The measurement phase in 2014 included the novel 1-Hz Aerodyne Research, Inc. fast Ethane Spectrometer to distinguish the methane emissions from thermogenic (oil&gas) and biogenic sources in the Denver-Julesberg basin. A second potential use of ethane as a determinant of mixing layer height is revealed in the analysis of 213 vertical profiles collected at 7 points during 21 flights. The findings are evaluated relative to other in-situ metrics, such as carbon monoxide and remote sensing attributions of mixing layer height.

  12. An Algorithm to Estimate the Heating Budget from Vertical Hydrometeor Profiles.

    NASA Astrophysics Data System (ADS)

    Tao, Wei-Kuo; Simpson, Joanne; Lang, Stephen; McCumber, Michael; Adler, Robert; Penc, Richard

    1990-12-01

    A simple algorithm to estimate the latent heating of cloud systems from their vertical hydrometer profiles is proposed. The derivation as well as the validation of the algorithm is based on output generated by a non-hydrostatic cloud model with parameterized microphysical processes. Mature and decaying stages of a GATE squall-type convective system have been tested. The algorithm-derived heating budget is in reasonable agreement with the budget predicted by the cloud model. The input to the proposed algorithm can be obtained from either a rain retrieval technique based on information from multichannel passive microwave signals or a kinematic cloud model based on information from Doppler radar wind fields and radar reflectivity patterns. Such an application would have significant implications for spaceborne remote sensing and the large-scale weather prediction data assimilation problem.

  13. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  14. An algorithm to estimate the heating budget from vertical hydrometeor profiles

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, Joanne; Mccumber, Michael; Adler, Robert; Lang, Stephen

    1990-01-01

    A simple algorithm to estimate the latent heating of cloud systems from their vertical hydrometeor profiles is proposed. The derivation as well as the validation of the algorithm is based on output generated by a nonhydrostatic cloud model with parameterized microphysical processes. Mature and decaying stages of a GATE squall-type convective system have been tested. The algorithm-derived heating budget is in reasonable agreement with the budget predicted by the cloud model. The input to the proposed algoritm can be obtained from either a rain retrieval technique based on information from multichannel passive microwave signals or a kinematic cloud model based on information from Doppler radar wind fields and radar reflectivity patterns. Such an application would have significant implications for spaceborne remote sensing and the large-scale weather prediction data assimilation problem.

  15. Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States

    NASA Astrophysics Data System (ADS)

    Tang, H.; Ganguly, S.; Zhang, G.; Hofton, M. A.; Nelson, R. F.; Dubayah, R.

    2016-01-01

    Leaf area index (LAI) and vertical foliage profile (VFP) are among the important canopy structural variables. Recent advances in lidar remote sensing technology have demonstrated the capability of accurately mapping LAI and VFP over large areas. The primary objective of this study was to derive and validate a LAI and VFP product over the contiguous United States (CONUS) using spaceborne waveform lidar data. This product was derived at the footprint level from the Geoscience Laser Altimeter System (GLAS) using a biophysical model. We validated GLAS-derived LAI and VFP across major forest biomes using airborne waveform lidar. The comparison results showed that GLAS retrievals of total LAI were generally accurate with little bias (r2 = 0.67, bias = -0.13, RMSE = 0.75). The derivations of GLAS retrievals of VFP within layers were not as accurate overall (r2 = 0.36, bias = -0.04, RMSE = 0.26), and these varied as a function of height, increasing from understory to overstory - 0 to 5 m layer: r2 = 0.04, bias = 0.09, RMSE = 0.31; 10 to 15 m layer: r2 = 0.53, bias = -0.08, RMSE = 0.22; and 15 to 20 m layer: r2 = 0.66, bias = -0.05, RMSE = 0.20. Significant relationships were also found between GLAS LAI products and different environmental factors, in particular elevation and annual precipitation. In summary, our results provide a unique insight into vertical canopy structure distribution across North American ecosystems. This data set is a first step towards a baseline of canopy structure needed for evaluating climate and land use induced forest changes at the continental scale in the future, and should help deepen our understanding of the role of vertical canopy structure in terrestrial ecosystem processes across varying scales.

  16. Characterizing Leaf Area Index (LAI) and Vertical Foliage Profile (VFP) over the United States

    NASA Astrophysics Data System (ADS)

    Tang, H.; Ganguly, S.; Zhang, G.; Hofton, M. A.; Nelson, R. F.; Dubayah, R.

    2015-08-01

    Leaf area index (LAI) and vertical foliage profile (VFP) are among the important canopy structural variables. Recent advances in lidar remote sensing technology have demonstrated the capability of accurately mapping LAI and VFP over large areas. The primary objective of this study was to derive and validate a LAI and VFP product over the contiguous United States using spaceborne waveform lidar data. This product was derived at the footprint level from the Geoscience Laser Altimeter System (GLAS) using a biophysical model. We validated GLAS derived LAI and VFP across major forest biomes using airborne waveform lidar. The comparison results showed that GLAS retrievals of total LAI were generally accurate with little bias (r2 = 0.67, bias = -0.13, RMSE = 0.75). The derivations of GLAS retrievals of VFP within layers was not as accurate overall (r2 = 0.36, bias = -0.04, RMSE = 0.26), and these varied as a function of height, increasing from understory to overstory -0 to 5 m layer: r2 = 0.04, bias = 0.09, RMSE = 0.31; 10 to 15 m layer: r2 = 0.53, bias = -0.08, RMSE = 0.22; and 15 to 20 m layer: r2 = 0.66, bias =-0.05, RMSE = 0.20. Significant relationships were also found between GLAS LAI products and different environmental factors, in particular elevation and annual precipitation. In summary, our results provide a unique insight into vertical canopy structure distribution across North American ecosystems. This data set is a first step towards a baseline of canopy structure needed for evaluating climate and land use induced forest changes at continental scale in the future and should help deepen our understanding of the role of vertical canopy structure on terrestrial ecosystem processes across varying scales.

  17. Computation of vertical profiles of longwave radiative cooling over the equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Ramsey, Perry G.; Vincent, Dayton G.

    1995-01-01

    An important quantity whose magnitude has not been throughly examined is the vertical distribution of heating in the Tropics. The details of the vertical distribution of heating have a significant impact on a number of phenomena, including the 30-60 day oscillation, sometimes known as the intraseasonal oscillation. Prior attempts to establish the structure of the heating relied on limited field data or assimilated data, coupled with climatological radiative heating parameters. The availability of high quality global-scale datasets has made it possible to make more accurate calculations than were possible a few years ago. An important component of the apparent heat budget is the longwave radiative cooling, which in this paper is found by using the ECMWF/WCRP/TOGA Archive 2 and ISCCP C1 datasets, together with a well-established parameterization scheme. A method is developed that can be used to estimate the vertical structure of cloud amounts based on top-of-atmosphere cloud observations, and the results are used with a wide-band longwave parameterization to produce longwave cooling rates over the tropical Pacific Ocean. Outgoing longwave radiation is calculated and compared the ERBE results. The calculated values are generally higher than those from ERBE, though the spatial distributions are similar. Some significant problems exist with the ECMWF upper-tropospheric water vapor amounts, which could imply uncertainties of 0.5 C/day in the calculated cooling rates. This is comparable to the differences associated with the minimum or random overlap assumptions used to generate cloud profiles.

  18. Use of vertical electrical resistivity profiles to characterize the riverbed of losing-disconnected rivers

    NASA Astrophysics Data System (ADS)

    Lamontagne, Sebastien; Davis, Aaron; Crosbie, Russell; Taylor, Andrew; Munday, Tim

    2014-05-01

    There are few field techniques available to estimate infiltration rates from losing-disconnected rivers, where infiltration rates are often constrained by the presence of clay layers with a low hydraulic conductivity. It is hypothesized that, in this environment, the bulk of the infiltration would occur in 'hotspots' where the clay layer is thin or absent. Infiltration was estimated over a 2 km section of Billabong Creek (Murray-Darling Basin, Australia) using vertical electrical sounding (VES) resistivity to characterize the continuity and thickness of the riverbed clay layer. Both a towed in-river survey over the whole study reach and three fixed array measurements at the shoreline at selected areas were used. Using locations with measured high and low resistivity, the resistivity profiles were constrained by coring the riverbed to measure vertical variations in riverbed texture, porewater content and porewater salinity. The VES showed that the clay layer was continuous along the study reach and varied in thickness between 1 m and >4 m. Using a simple steady-state model, infiltration rates along the study reach were estimated to vary between 1700 and 7800 m3 km-1 year-1, with an average of 3400 m3 km-1 year-1. This methodology can provide independent estimates of infiltration rates at a scale suitable for the calibration of regional groundwater models.

  19. Vertical scanning long trace profiler: A tool for metrology of X-ray mirrors

    SciTech Connect

    Li, Haizhang; Takacs, P.Z.; Oversluizen, T.

    1997-07-01

    This paper describes the development of a prototype instrument of the Vertical Scanning Long Trace Profiler (VSLTP) under a SBIR Phase II grant from NASA. The instrument is capable of scanning shell mirrors with a diameter as small as 100mm for a travel distance of 700mm in vertical configuration. Main components of the optical system are described. It has a beam separation set, a beam splitting set, a Fourier transform lens system, a penta prism pair, a Risley prism pair and a cylinder lens. The main hardware and software for implementation of the prototype instrument are also presented. They include the major mechanical structure, 9-axis motion control system and the data acquisition and analysis software. The design of the optical and mechanical systems makes the VSLTP very tolerable to the deformation of the slide deformation, laser pattern shift and fluctuation due to temperature change. Results obtained from the Phase I show that VSLTP instrument is capable of a measurement accuracy of 50 nm for the height and 1 microradian for the slope.

  20. An evaluation and comparison of vertical profile data from the VISSR Atmospheric Sounder (VAS)

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.

    1985-01-01

    A statistical evaluation is used to compared vertical profiles of temperature and moisture derived from VISSR Atmospheric Sounder (VAS) with three different algorithms to that of corresponding rawinsonde measurements for a clear cold environment. To account for time and space discrepancies between the data sets, rawinsonde data were adjusted to be representative of the satellite sounding times. Both rawinsonde and satellite sounding data were objectively analyzed onto a mesoscale grid. These grid point values were compared at 50 mb pressure increments from the surface up to 100 mb. The data were analyed for horizontal and vertical structure, representatives of derived parameters, and significant departure (improvement) from the apriori (first guess) information. Results indicate some rather strong temperature and moisture biases exist in the satellite soundings. Temperature biases of 1 to 4 C and dewpoint biases of 2 to 6 C generally occur in layers where strong inversions are present and vary with time as these atmospheric features evolve. The biases also changes as a function retrieval scheme suggesting limitations and restrictions on the applications of the various techniques. Standard temperature deviations range from 1 to 2 C for each retrieval scheme with maximum values around 800 and 400 mb. Derived parameters (precipitable water and thickness) suffer from similar biases, though to a somewhat lesser extent. Gradients of basic and derived parameters are generally weaker but have good horizontal structure where magnitudes of the parameters are relatively strong. Integrated thermal (temperature) and moisture (precipitable water) parameters show mixed results.

  1. Vertical profile of δ18OOO from the middle stratosphere to lower mesosphere from SMILES spectra

    NASA Astrophysics Data System (ADS)

    Sato, T. O.; Sagawa, H.; Yoshida, N.; Kasai, Y.

    2014-04-01

    Ozone is known to have large oxygen isotopic enrichments of about 10% in the middle stratosphere; however, there have been no reports of ozone isotopic enrichments above the middle stratosphere. We derived an enrichment δ18OOO in the stratosphere and the lower mesosphere from observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS) using a retrieval algorithm optimized for the isotopic ratio. The retrieval algorithm includes (i) an a priori covariance matrix constrained by oxygen isotopic ratios in ozone, (ii) an optimization of spectral windows for ozone isotopomers and isotopologues, and (iii) common tangent height information for all windows. The δ18OOO by averaging the SMILES measurements at the latitude range of 20 to 40° N from February to March in 2010 with solar zenith angle < 80° was 13% (at 32 km) with the systematic error of about 5%. SMILES and past measurements were in good agreement, with δ18OOO increasing with altitude between 30 and 40 km. The vertical profile of δ18OOO obtained in this study showed an increase and a decrease with altitude in the stratosphere and mesosphere, respectively. The δ18OOO peak, 18%, is found at the stratopause. The δ18OOO has a positive correlation with temperature in the range of 220-255 K, indicating that temperature can be a dominant factor to control the vertical profile of δ18OOO in the stratosphere and mesosphere. This is the first report of the observation of δ18OOO over a wide altitude range extending from the stratosphere to the mesosphere (28-57 km).

  2. Development of ATLID-MSI synergy for retrieving the vertical profiles of aerosol components

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Nishizawa, T.; Higurashi, A.; Sugimoto, N.; Oikawa, E.

    2014-12-01

    EarthCARE is an earth observation satellite and will be launched in 2016. Using its two sensors, ATLID (High spectral resolution lidar) and MSI (Multi-spectral imager), we are developing the synergy algorithm to retrieve the vertical profiles of extinction coefficients at 355 nm of four aerosol components (Water-soluble, black carbon, dust, and sea-salt particles), and the column mean of mode radii of water-soluble and dust particles. The ATLID data are extinction coefficient, backscatter coefficient, and depolarization ratio for total aerosols at 355 nm. The MSI data are radiances at 670 and 865 nm. The dry volume concentrations of four aerosol components at each altitude and the mode radii of water-soluble and dust particles in the column are simultaneously optimized to ATLID and MSI data by the gauss newton method. After the optimization, the vertical profiles of the extinction coefficient at 355 nm of four aerosol components are obtained. The size distributions of four aerosol components are assumed to be a lognormal distribution. The refractive indices of four aerosol components are given from previously observational studies. The humidity growth is considered for water-soluble and sea-salt particles. The volume concentration and the mode radius of the sea-salt particle are parameterized using the surface wind speed on the ocean. We assumed that the shape of the water-soluble, black carbon, and sea-salt particles are spherical, and the shape of the dust particle is spheroidal. We tested the algorithm using the ATLID and MSI data simulated using clean, dust-transported, and smoke-transported aerosols. The extinction coefficients of each component at 355 nm are retrieved well. The mode radius of water-soluble and dust particles were somehow overestimated.

  3. In situ vertical profiles of aerosol extinction, mass, and composition over the SEUS during the SENEX and SEAC4RS studies

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Brock, C. A.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Graus, M.; Holloway, J. S.; Huey, L. G.; Jimenez, J. L.; Lack, D.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Perring, A. E.; Richardson, M.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.; Campuzano Jost, P.

    2014-12-01

    Shallow cumulus convection enhances vertical transport of trace gases and aerosol and creates a cloudy transition layer on top of the sub-cloud mixed layer. Two recent studies have proposed that an elevated layer of enhanced organic aerosol over the southeastern United States (SEUS) could explain the discrepancy in the summertime enhancement of aerosol optical depth (AOD) and summertime enhancement of surface measurements of aerosol mass. We investigate the vertical profile of aerosol over the SEUS during the summertime using in situ aircraft-based measurements of aerosol from the SENEX and SEAC4RS studies. During shallow cumulus convection over the SEUS, we found that aerosol and trace gas concentration in the transition layer are diluted by cleaner air from the free troposphere, and the absolute aerosol loading decreases with altitude in the transition layer. However, after normalizing the vertical profiles to the CO boundary layer enhancement to correct for the dilution, the aerosol mass, volume, and extinction relative to the boundary layer CO enhancement is ~20% greater in the transition layer than in the mixed layer. The enhancement of aerosol loading suggests production of aerosol mass in the transition layer, although biomass burning could also be the source of the enhancement. The median composition of the aerosol in the mixed layer is ~70% organics and ~18% sulfate, while it is 65% organics and 23% sulfate in the transition layer. The composition of the aerosol enhancement in the transition layer is roughly equal parts sulfate and organics by mass. The enhancement of aerosol extinction in the transition layer is not sufficient to explain the summertime enhancement of AOD over SEUS.

  4. Vertical Profiles of SO2 and NO2 in the Alberta Oil Sands: MAX-DOAS Measurements and Comparison to in-situ Instrumentation

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Lobo, Akshay; McLaren, Robert

    2015-04-01

    complex (e.g. elevated layers). Retrieved trace gas vertical profiles were compared with aircraft composite profiles from flights over the site. Trace gas surface retrievals were compared with results from a co-located active-DOAS instrument. The degree of agreement between the DOAS instruments appear to be related to pollution levels and meteorological conditions. Significant observed pollution events were associated with particular meteorological conditions such as South-Westerly winds. Maximum observed SO2 and NO2 retrieved mixing ratios were 250ppb and 60ppb, respectively, at approximately 300m above the surface while maximum surface concentrations measured by the active-DOAS were 77ppb and 20 ppb, respectively. The observed spatial complexity in the trace gas profiles indicates that comprehensive air quality monitoring in the oil sands requires instruments with boundary layer spatial profiling capabilities.

  5. Aircraft measurements of bromine monoxide, iodine monoxide, and glyoxal profiles in the tropics: comparison with ship-based and in situ measurements

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Koenig, T. K.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO), and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the CU Airborne Multi AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, in situ aerosol size distributions by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS), and in situ H2O by Vertical-Cavity Surface-Emitting Laser hygrometer (VCSEL). Data are presented from two research flights (RF12, RF17) aboard the NSF/NCAR GV aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project. We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols, and find O4-inferred aerosol extinction profiles at 477 nm agree within 5% with Mie calculations of extinction profiles constrained by UHSAS. CU AMAX-DOAS provides a flexible choice of geometry which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise), and to test the robustness of BrO, IO, and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01), and provides independent validation data from ship-based in situ Cavity Enhanced- and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2-0.55 pptv IO and 32-36 pptv glyoxal were observed. The near surface concentrations agree within 20% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly

  6. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology.

    PubMed

    Eldering, A; Irion, F W; Chang, A Y; Gunson, M R; Mills, F P; Steele, H M

    2001-06-20

    The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause. PMID:18357329

  7. Analytical solution for the vertical profile of daily production in the ocean

    NASA Astrophysics Data System (ADS)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Morović, Mira

    2016-05-01

    Photosynthesis parameters are routinely estimated from in vitro measurements of primary production under constant light reaching each incubation bottle, by fitting a photosynthesis-irradiance function to the measurements. Here we take one such function and integrate it in time for variable light input, similar to natural conditions, to obtain the analytical solution for the vertical profile of daily phytoplankton production in the field. This solution is then fitted to in situ measurements of primary production profiles in the same manner as a photosynthesis-irradiance function is fitted to in vitro measurements under controlled and constant light conditions to retrieve the photosynthesis-irradiance parameters. The method is tested on the Hawaii Ocean Time-series data set. The solution explained 97.88% of the variance in measured normalized production at individual depths. The recovered parameters were then used to model the normalized daily water-column production. The model explained 99.21% of variance in normalized watercolumn production of the entire data set. The seasonal cycle of the photosynthesis parameters recovered with the analytical solution was further studied for the Hawaii Ocean Time-series. With respect to the photosynthesis parameter determination, the solution bridges the gap between classical photosynthesis-irradiance measurements under controlled light conditions and in situ measurements which are made under natural, variable light conditions. It presents a new tool for the estimation of photosynthesis parameters from in situ measurements of primary production.

  8. Comparing Water Vapor Mixing Ratio Profiles and Cloud Vertical Structure from Multiwavelength Raman Lidar Retrievals and Radiosounding Measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Stachlewska, Iwona S.; Markowicz, Krzysztof

    2016-06-01

    A study of comparison of water vapor mixing ratio profiles, relative humidity profiles, and cloud vertical structures using two different instruments, a multiwavelength Aerosol-Depolarization-Raman lidar and radiosoundings, is presented. The observations were taken by the lidar located in Warsaw center and the radiosoundings located about 30km to the North in Legionowo (Poland). We compared the ground-based remote sensing technology with in-situ method in order to improve knowledge about water content thought the atmosphere and cloud formation. The method used for retrieving the cloud vertical structure can be improved comparing the radiosonde results with the lidar observations, which show promising results.

  9. Vertical profiles of the specific surface area of the snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Gallet, J.-C.; Domine, F.; Arnaud, L.; Picard, G.; Savarino, J.

    2010-09-01

    The specific surface area (SSA) of snow determines in Part the albedo of snow surfaces and the capacity of the snow to adsorb chemical species and catalyze reactions. Despite these crucial roles, almost no value of snow SSA are available for the largest permanent snow expanse on Earth, the Antarctic. We have measured the first vertical profiles of snow SSA near Dome C (DC: 75°06´ S, 123°20´ E, 3233 m a.s.l.) on the Antarctic plateau, and at seven sites during the logistical traverse between Dome C and the French coastal base Dumont D'Urville (DDU: 66°40´ S, 140°01´ E) during the Austral summer 2008-2009. We used the DUFISSS system, which measures the IR reflectance of snow at 1310 nm with an integrating sphere. At DC, the mean SSA of the snow in the top 1 cm is 38 m2 kg-1, decreasing monotonically to 14 m2 kg-1 at a depth of 15 cm. Along the traverse, the snow SSA profile is similar to that at DC in the first 600 km from DC. Closer to DDU, the SSA of the top 5 cm is 23 m2 kg-1, decreasing to 19 m2 kg-1 at 50 cm depth. This is attributed to wind, which causes a rapid decrease of surface snow SSA, but forms hard windpacks whose SSA decrease more slowly with time. Since light-absorbing impurities are not concentrated enough to affect albedo, the vertical profiles of SSA and density were used to calculate the spectral albedo of the snow for several realistic illumination conditions, using the DISORT radiative transfer model. A preliminary comparison with MODIS data is presented for use in energy balance calculations and for comparison with other satellite retrievals. These calculated albedos are compared to the few existing measurements on the Antarctic plateau. The interest of postulating a submillimetric, high-SSA layer at the snow surface to explain measured albedos is discussed.

  10. Radar frequency effect on the relationship between surface soil moisture vertical profile and radar backscatter

    NASA Astrophysics Data System (ADS)

    Zribi, Mehrez; Gorrab, Azza; Baghdadi, Nicolas; Lili-Chabaane, Zohra; Mougenot, Bernard; Boulet, Gilles

    2013-04-01

    Soil moisture plays a key role in hydrological and climatic studies. Considerable efforts have been devoted to the study of radar backscattering responses from natural surfaces in active microwave remote sensing. Electromagnetic analytical backscattering models (Kirchhoff models, the small perturbation method, and more recently the Integral Equation Model (IEM,the AIEM, …) have been used to estimate moisture parameter. However, various experimental measurements have shown that their use must be restricted to specific conditions. For studies in the L, C, and X frequency bands, empirical and semi-empirical models are often calibrated using soil samples collected down to a depth of five centimetres, in which the moisture content is assumed to be homogeneous. In recent years, some studies have revealed that using the actual, inhomogeneous soil moisture profile can make a significant difference in the results obtained from backscatter models. The aim of this paper is to discuss the influence of radar frequency on the relationship between surface soil moisture and the nature of radar backscatter over bare soils. In an attempt to answer this question, the Advanced Integral Equation Model (AIEM) was used to simulate backscatter from soil surfaces with various moisture vertical profiles, for three frequency bands: L, C and X. In these computations, we investigated the influence of the vertical heterogeneity of soil moisture on the characteristics of the backscattered signals. The influence of radar frequency is clearly demonstrated. A database produced from Envisat ASAR and TerraSAR-X data, acquired over bare soils with in situ measurements of moisture content and ground surface roughness, was used to validate the usefulness of taking the soil moisture heterogeneity into account in the backscattering model. These results confirm the significant influence of soil moisture heterogeneities on the strength of radar backscatter. It also highlights the sensitivity of inversion

  11. Comparing the Cloud Vertical Structure Derived from Several Methods Based on Radiosonde Profiles and Ground-based Remote Sensing Measurements

    SciTech Connect

    Costa-Suros, M.; Calbo, J.; Gonzalez, J. A.; Long, Charles N.

    2014-08-27

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  12. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2013-06-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  13. Assimilation of Ground-Penetrating Radar Data to Update Vertical Soil Moisture Profile

    NASA Astrophysics Data System (ADS)

    Tran, Phuong; Vanclooster, Marnik; Lambot, Sébastien

    2013-04-01

    The root zone soil moisture has been long recognized as important information for hydrological, meteorological and agricultural research. In this study, we propose a closed-loop data assimilation procedure to update the vertical soil moisture profile from time-lapse ground-penetrating radar (GPR) data. The hydrodynamic model, Hydrus-1D (Simunek et al., 2009), is used to propagate the system state in time and a radar electromagnetic model (Lambot et al., 2004) to link the state variable (soil moisture profile) with the observation data (GPR data), which enables us to update the soil moisture profile by directly assimilating the GPR data. The assimilation was performed within the maximum likelihood ensemble filter (MLEF) framework developed by Zupanski et al., (2005), for which the problem of nonlinear observation operator is solved much more effectively than the Ensemble Kalman filter (EnKF) techniques. The method estimates the optimal state as the maximum of the probability density function (PDF) instead of the minimum variance like in most of the other ensemble data assimilation methods. Direct assimilation of GPR data is a prominent advantage of our approach. It avoids solving the time-consuming inverse problem as well as the estimation errors of the soil moisture caused by inversion. In addition, instead of using only surface soil moisture, the approach allows to use the information of the whole soil moisture profile, which is reflected via the ultra wideband (UWB) GPR data, for the assimilation. The use of the UWB antenna in this study is also an advantage as it provides more information about soil moisture profile with a better depth resolution compared to other classical remote sensing techniques. Our approach was validated by a synthetic study. We constructed a synthetic soil column with a depth of 80 cm and analyzed the effects of the soil type on the data assimilation by considering 3 soil types, namely, loamy sand, silt and clay. The assimilation of GPR

  14. Vertical profiling of methane and carbon dioxide using high resolution near-infrared heterodyne spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander; Klimchuk, Artem; Churbanov, Dmitry; Pereslavtseva, Anastasia; Spiridonov, Maxim; Nadezhdinskyi, Alexander

    2014-05-01

    We present new method of monitoring greenhouse gases using spectroscopic observations of solar radiation passed through the atmosphere with spectral resolution ΛvδΛ up to 108. Such a high resolution is achieved by heterodyne technique and allows to retrieve full information about spectral line shape which, in turn, is used to distinguish contribution of different atmospheric layers to the resulting absorption. Weak absorption line at 6056.5 cm-1 was selected for CO2 measurements and a quartet of lines centered at 6057 cm-1for CH4. The instrument setup includes Sun tracker with a microtelescope and chopper, diode DFB laser used as a local oscillator, a bundle of single mode optical fibers that provides medium for radiation transfer and beam coupling, reference cell with depressurized methane for LO frequency stabilization, and Fabry-Perot etalon for LO frequency calibration. A commercial p-i-n diode with squared detector replaces a mixer and IF spectrometer, providing measurement of heterodyne beating within a bandpass of few MHz, which determines the effective spectral resolution of the instrument. Spectral coverage within narrow range (about 1 cm-1) is provided by ramping the LO frequency based on feedback from the reference channel. Observations of Sun in the Moscow region have resulted for the first time in measurements of the atmospheric transmission near 1.65 μm with sub-Doppler spectral resolution. In order to retrieve vertical profiles of methane and carbon dioxide we developed the inversion algorithm implementing Tikhonov regularization approach. With measured transmission having S/N ratio of 100 or higher, the uncertainty of CH4 profile is about 10 ppb, with the uncertainty of CO2 profile at 1 ppm. This techniques is promising an affordable opportunity or widespread monitoring of greenhouse gases and may be implemented on existing ground-based stations. This work has been supported by the grant of Russian Ministry of education and science #11.G34.31.0074

  15. Vertical profiles of trapped greenhouse gases in Alaskan permafrost active layers before the spring thaw

    NASA Astrophysics Data System (ADS)

    Byun, Eunji; Yang, Ji-woong; Kim, Yongwon; Ahn, Jinho

    2015-04-01

    Seasonally frozen ground over permafrost is important in controlling annual greenhouse gas exchange between permafrost and atmosphere. Soil microbes decompose soil carbon and generate carbon dioxide and methane when they become activated. However, the actual greenhouse gas emission follows various efflux pathways. For example, seasonal freezing of the top soil layers can either restrain or press the gas emission from deeper layers. It has been reported that abrupt release of methane during spring is attributable to the emission of trapped gases that had failed to be released instantly after formation (1, 2). In order to examine the seasonally trapped greenhouse gases, we drilled five Alaskan permafrost cores before spring thaw; one from coastal tundra, two from typical boreal forests, one from area where fire occurred, and one from peat accumulated sites. Vertical profiles of carbon dioxide and methane concentrations were obtained with 5-10 cm depth intervals. We found methane peaks from two cores, indicating inhibition of methane efflux. We also analyzed organic carbon, nitrogen and water contents and compared them with the greenhouse gas profiles. We are continuing analysis for the soil temperature profiles of the sampling boreholes because the detailed temperature information might be related to microbial activity, and can be used as indirect indicators of soil water freezing and latent heat influences at some active layer depth (zero curtain effects). All the high-resolution analyses for subsurface environments may help to improve understanding greenhouse gas emission from permafrost regions. 1. Mastepanov M, et al. (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628-630. 2. Song C, et al. (2012) Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7(3):034009.

  16. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the

  17. An investigation into the vertical axis control power requirements for landing VTOL type aircraft onboard nonaviation ships in various sea states

    NASA Technical Reports Server (NTRS)

    Stevens, M. E.; Roskam, J.

    1985-01-01

    The problem of determining the vertical axis control requirements for landing a VTOL aircraft on a moving ship deck in various sea states is examined. Both a fixed-base piloted simulation and a nonpiloted simulation were used to determine the landing performance as influenced by thrust-to-weight ratio, vertical damping, and engine lags. The piloted simulation was run using a fixed-based simulator at Ames Research center. Simplified versions of an existing AV-8A Harrier model and an existing head-up display format were used. The ship model used was that of a DD963 class destroyer. Simplified linear models of the pilot, aircraft, ship motion, and ship air-wake turbulence were developed for the nonpiloted simulation. A unique aspect of the nonpiloted simulation was the development of a model of the piloting strategy used for shipboard landing. This model was refined during the piloted simulation until it provided a reasonably good representation of observed pilot behavior.

  18. AROTAL Ozone and Temperature Vertical Profile Measurements from the NASA DC-8 during the SOLVE II Campaign

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.

    2004-01-01

    The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.

  19. Is tropospheric ozone over southern Africa really increasing? Evidence from sonde and aircraft profiles

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Balashov, N. V.; Witte, J. C.; Coetzee, J. G. R.; Thouret, V.; Posny, F.

    2014-04-01

    Ozonesonde records from the early 1990's through 2008 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion Island (21° S, 55° W, ~3500 km NE of Irene in the Indian Ocean) were reported to exhibit free tropospheric (FT) ozone increases. Over Irene a large increase in the urban-influenced boundary layer (BL, 1.5-4 km) was also observed during the 18 year period, equivalent to 30% decade-1. Here we show that the Irene BL trend is at least partly due to a gradual change in the sonde launch times from early morning to the midday period. The FT ozone profiles over Irene in 1990-2007 are re-examined, filling in a 1995-1999 gap with ozone profiles taken by Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) over nearby Johannesburg. A multivariate regression model that accounts for the annual ozone cycle, ENSO and possible tropopause changes was applied to monthly averaged Irene data from 4-11 km and to 1992-2011 Réunion sonde data from 4-15 km. Statistically significant trends appear predominantly in the middle and upper troposphere (UT, 4-11 km over Irene, 5-13 km over Réunion) in winter (June-August), with increases ~1 ppbv yr-1 over Irene and ~2 ppbv yr-1 over Réunion. These changes are equivalent to ~25% and 40-50% decade-1, respectively. Both stations also display smaller positive trends in summer with a 50% decade-1 ozone increase near the tropopause over Réunion in December. To explain the ozone increases, we investigated a time series of dynamical markers, e.g., potential vorticity (PV) at 330-350 K. PV affects UT ozone over Irene in November-December but displays little relationship to ozone over Réunion. A more likely reason for wintertime FT ozone increases over Irene and Réunion appears to be long-range transport of growing pollution in the Southern Hemisphere. The ozone increases are consistent with trajectory origins of air parcels sampled by the sondes and with recent NOx emissions trends estimated for Africa

  20. Constraining Early Cenozoic exhumation of the British Isles with vertical profile modelling

    NASA Astrophysics Data System (ADS)

    Doepke, Daniel; Cogné, Nathan; Chew, David

    2016-04-01

    Despite decades of research is the Early Cenozoic exhumation history of Ireland and Britain still poorly understood and subject to contentious debate (e.g., Davis et al., 2012 and subsequent comments). One reason for this debate is the difficultly of constraining the evolution of onshore parts of the British Isles in both time and space. The paucity of Mesozoic and Cenozoic onshore outcrops makes direct analysis of this time span difficult. Furthermore, Ireland and Britain are situated at a passive margin, where the amount of post-rift exhumation is generally very low. Classical thermochronological tools are therefore near the edge of their resolution and make precise dating of post-rift cooling events challenging. In this study we used the established apatite fission track and (U-Th-Sm)/He techniques, but took advantage of the vertical profile approach of Gallagher et al. (2005) implemented in the QTQt modelling package (Gallagher, 2012), to better constrain the thermal histories. This method allowed us to define the geographical extent of a Late Cretaceous - Early Tertiary cooling event and to show that it was centered around the Irish Sea. Thus, we argue that this cooling event is linked to the underplating of hot material below the crust centered on the Irish Sea (Jones et al., 2002; Al-Kindi et al., 2003), and demonstrate that such conclusion would have been harder, if not impossible, to draw by modelling the samples individually without the use of the vertical profile approach. References Al-Kindi, S., White, N., Sinha, M., England, R., and Tiley, R., 2003, Crustal trace of a hot convective sheet: Geology, v. 31, no. 3, p. 207-210. Davis, M.W., White, N.J., Priestley, K.F., Baptie, B.J., and Tilmann, F.J., 2012, Crustal structure of the British Isles and its epeirogenic consequences: Geophysical Journal International, v. 190, no. 2, p. 705-725. Jones, S.M., White, N., Clarke, B.J., Rowley, E., and Gallagher, K., 2002, Present and past influence of the Iceland

  1. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Klein Baltink, Henk; Bas Henzing, J. S.; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs

    2016-06-01

    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at ˜ 100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to ˜ 700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34 ± 0.12 and 0.19 ± 0.07 for 500 nm particles, at ˜ 100 and ˜ 700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18 ± 0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from

  2. Vertical AMS variation within basalt flow profiles from the Xitle volcano (Mexico) as indicator of heterogeneous strain in lava flows

    NASA Astrophysics Data System (ADS)

    Caballero-Miranda, C. I.; Alva-Valdivia, L. M.; González-Rangel, J. A.; Gogitchaishvili, A.; Urrutia-Fucugauchi, J.; Kontny, A.

    2016-02-01

    The within-flow vertical variation of anisotropy of the magnetic susceptibility (AMS) of three basaltic flow profiles from the Xitle volcano were investigated in relation to the lava flow-induced shear strain. Rock magnetic properties and opaque microscopy studies have shown that the magnetic mineralogy is dominated by Ti-poor magnetite with subtle vertical variations in grain size distribution: PSD grains dominate in a thin bottommost zone, and from base to top from PSD-MD to PSD-SD grains are found. The vertical variation of AMS principal direction patterns permitted identification of two to three main lava zones, some subdivided into subzones. The lower zone is very similar in all profiles with the magnetic foliation dipping toward the flow source, whereas the upper zone has magnetic foliation dipping toward the flow direction or alternates between dipping against and toward the flow direction. The K1 (maximum AMS axis) directions tend to be mostly parallel to the flow direction in both zones. The middle zone shows AMS axes diverging among profiles. We present heterogeneous strain ellipse distribution models for different flow velocities assuming similar viscosity to explain the AMS directions and related parameters of each zone. Irregular vertical foliations and transverse to flow lineation of a few samples at the bottommost and topmost part of profiles suggest SD inverse fabric, levels of intense friction, or degassing effects in AMS orientations.

  3. IMPROVED PREDICTION OF THE VERTICAL PROFILE OF ATMOSPHERIC BLACK CARBON: DEVELOPMENT AND EVALUATION OF WRF-CMAQ

    EPA Science Inventory

    Advanced model descriptions of cloud processing of atmospheric pollutants will improve predicted vertical profiles of optically active particulate carbon (e.g., black carbon (Be) and other short lived climate forcers (SLCFs) such as "brown" carbon). More accurate prediction of...

  4. Vertical Profiles of Aerosol Particle Sizes using MGS/TES and MRO/MCS

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Smith, M. D.; Benson, J. L.; McConnochie, T. H.; Pankine, A.

    2012-12-01

    Vertical variations in aerosol particle sizes often have a dramatic impact on the state and evolution of the Martian atmosphere. Recent analyses of data from the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM), the Thermal Emission Spectrometer (TES), and the Mars Climate Sounder (MCS) instruments offer some long overdue progress in constraining this aspect of aerosols. However, significantly more work remains to be done along these lines in order to better constrain and inform modern dynamical simulations of the Martian atmosphere. Thus, the primary goal of our work is to perform retrievals of particle size as a function of altitude for both dust and water ice aerosols. The choice of the TES and MCS dataset, with pole-to-pole coverage over a period of nearly eight martian years, provides the crucial systematic temporal and spatial sampling. Our presentation will include: 1) A summary of our limb radiative transfer algorithms and retrieval schemes; 2) The initial results of the application of our particle size retrieval scheme to the 2001 TES and 2007 MCS observations of those planet encircling dust events; 3) Near-term plans for for additional retrievals (aphelion cloud season, lower optical depth locations and seasons, etc.); 4) Location of the archive to be used for the distribution of the derived profiles and associated retrieval metadata.

  5. VSP (Vertical Seismic Profile) site characterization at NTS (Nevada Test Site)

    SciTech Connect

    Daley, T.M.; McEvilly, T.V.; Michelini, A.

    1990-10-01

    In late 1989 a site characterization study using the Vertical Seismic Profile (VSP) method was conducted as part of the On Site Seismic Yield (OSSY) experiment organized by Lawrence Livermore Laboratory as well UE-10 ITS {number sign}3 located in Yucca valley inside the Nevada Test Site (NTS). The OSSY experiment fired 10 and 100 lb explosive sources at several depths in the hole, with multiple 3-component receivers on the surface, to test the nature of seismic signal scaling with source size and the accuracy in the near field of source modeling algorithms. Shear-waves in particular are influenced strongly by both the source mechanism and the properties of the propagation path. The multi-component OSSY VSP (3-component receivers at several depths, with P, SV and SH surface sources) measured the seismic wave transmission separately for three source types. The VSP surface-source to borehole-receiver acquisition geometry was reversed in the subsequent explosion phase of the experiment in which the explosion-generated waves presumably experienced the same propagation effects as did the waves generated by the VSP sources. The OSSY VSP has progressed through data acquisition and processing to an initial interpretation in terms of P- and S-velocity structures. Preliminary result were presented at the 1990 meeting of the Seismological Society of America (Daley and McEvilly, 1990). This report is an overview of the data acquisition, processing and analysis to date, and on plans for the next of interpretation. 6 refs., 23 figs.

  6. Vertical profiles of ozone between 0 and 400 meters in and above the African equatorial forest

    NASA Astrophysics Data System (ADS)

    Cros, B.; Fontan, J.; Minga, A.; Helas, G.; Nganga, D.; Delmas, R.; Chapuis, A.; Benech, B.; Druilhet, A.; Andreae, M. O.

    1992-08-01

    Results are presented of measurements of ozone concentrations in the northern Congo, near Impfondo, as part of the DECAFE experiment in February 1988, during the dry season. The measurements were carried out simultaneously at ground level in a large clearing, inside the forest between 0 and 30 m, and above the forest with a captive balloon flying up to 400 m. The results presented are compared with the data obtained in the Mayombe forest in southern Congo, near Dimonika, in June 1988, during the dry season. For both northern and southern forested areas the ozone concentrations measured at ground level in a large clearing exhibit daily variations with maxima in the afternoon ranging between 10 and 30 parts per billion by volume (ppbv) and minima at the end of the night between 4 and 15 ppbv. The characteristics of each surface ozone cycle are analyzed. Inside the forest, ozone concentrations are found very low near the ground, and rarely exceed 15 ppbv above the canopy. The relationships among the vertical profiles of ozone, temperature, and water vapor are discussed.

  7. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. PMID:26421659

  8. Moving Toward Continuous Satellite Monitoring of PM2.5 Using the GOES Aerosol/Smoke Product (GASP) and Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Stehr, J. W.; Kondragunta, S.; Anderson, D. C.; Arkinson, H.; Brent, L. C.; Goldberg, D.; He, H.; Liaskos, C.; Ring, A.; Dickerson, R. R.; Carpenter, S.; Ciren, P.; Xu, C.

    2012-12-01

    The NOAA Geostationary Operational Environmental Satellite (GOES) makes measurements of aerosol optical depth (AOD) every 30 minutes during daylight hours. Those measurements then feed the Automated Smoke Detection and Tracking algorithm that uses fire counts, trajectory modeling and pattern recognition to identify fire plumes, especially in the western U.S. Tying these satellite measurements to surface measurements of fine particles (PM2.5) would be a considerable benefit to the air quality community and to people who live in areas with elevated fine particle concentrations. Currently, these retrievals are useful in identifying areas of elevated PM2.5 concentrations and in forecasting PM2.5 by federal, state and local agencies, but are largely limited to qualitative measures of fine particle loading. Among other issues, layers of fine particles well above ground level, cloud contamination, and particle growth by addition of water in areas of high relative humidity are examples of barriers to a direct relationship between surface PM2.5 and satellite AOD. We have identified a path forward by using aircraft profiles to determine the vertical distribution of aerosol scattering in the atmosphere. In addition, long-term measurements of scattering and rapid measurements of PM2.5 at ground-based field sites have provided a relationship between scattering and mass. Simultaneous measurements of relative humidity and temperature allow one to calculate scattering the particles would have in a dry environment and relate that to fine particle mass measurements. A relationship between rapid scattering measurements and much slower PM2.5 mass measurements is then developed, which is used to tie rapid aircraft measurements of scattering to mass. In turn, aircraft profiles are then used to tie column measurements to those at the ground and to identify cases when satellite retrievals are likely to fail. The resulting algorithm should apply throughout much of the eastern U.S., so long

  9. Flight Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical-Take-Off-and-Landing Aircraft

    NASA Technical Reports Server (NTRS)

    Tosti, Louis P.

    1959-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.

  10. A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band

    NASA Astrophysics Data System (ADS)

    Colosimo, S. F.; Natraj, V.; Sander, S. P.; Stutz, J.

    2015-11-01

    Atmospheric absorption in the O2 A-band (12 950-13 200 cm-1) offers a unique opportunity to retrieve aerosol extinction profiles from space-borne measurements due to the large dynamic range of optical thickness in that spectral region. Absorptions in strong O2 lines are saturated; therefore, any radiance measured in these lines originates from scattering in the upper part of the atmosphere. Outside of O2 lines, or in weak lines, the atmospheric column absorption is small, and light penetrates to lower atmospheric layers, allowing for the quantification of aerosols and other scatterers near the surface. While the principle of aerosol profile retrieval using O2 A-band absorption from space is well known, a thorough quantification of the information content, i.e., the amount of vertical profile information that can be obtained, and the dependence of the information content on the spectral resolution of the measurements, has not been thoroughly conducted. Here, we use the linearized vector radiative transfer model VLIDORT to perform spectrally resolved simulations of atmospheric radiation in the O2 A-band in the presence of aerosol for four different generic scenarios: Urban, Highly polluted, Elevated layer, and Marine-Arctic. The high-resolution radiances emerging from the top of the atmosphere are degraded to different spectral resolutions, simulating spectrometers with different resolving powers. We use optimal estimation theory to quantify the information content in the aerosol profile retrieval with respect to different aerosol parameters and instrument spectral resolutions. The simulations show that better spectral resolution generally leads to an increase in the total amount of information that can be retrieved, with the number of degrees of freedom (DoF) varying between 0.34-2.11 at low resolution (5 cm-1) to 3.43-5.92 at high resolution (0.05 cm-1) for the four different cases. A particularly strong improvement was found in the retrieval of tropospheric

  11. Vertical profiling of the Martian atmosphere with the Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    McCleese, Daniel

    The Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) began observing the Martian atmosphere and surface on October 11, 2006. This paper describes investigations we are pursuing that build upon the nearly decade-long climatology of the planet acquired by TES and MOC on MGS and THEMIS on Odyssey. The MCS instrument is unique in that it is designed to acquire high vertical resolution (one-half scale height) profiles of temperature, dust, condensates and water vapor. MCS measurements are made in nine spectral intervals in the visible and infrared between 0.3 and 50 µm. The observing geometry places nine 21-element linear detector-arrays on the limb extending from just below the surface to above 80 km altitude at the tangent point. MCS observations by began on Ls=110° , southern winter, and much of our early work has focused on the South Polar Region. This location at this season is particularly attractive as a starting point for interpreting MCS data because the small amount of dust in the atmosphere makes for successful retrievals of geophysical quantities from limb radiances. MCS observations reveal new details of the intense warming of the winter middle atmosphere over CO2 ice cap. The polar warming is understood, from published numerical modeling experiments, to be a consequence of the descending branch of the Hadley cell; the intensity of which is sensitive to the amount and distribution of dust in the atmosphere at low latitudes. However, the observed intensity of the warming is underestimated in models and the location of the descending branch is poleward of that predicted. Another observed feature of the region is circumpolar very clear middle and upper atmosphere surrounding a vertically extended cloud which MCS data suggests is composed of water ice. The appearance of water ice in the cold dry air associated with the CO2 ice cap has yet to be explained. This paper describes these and other atmospheric phenomena, as well as aspects of

  12. Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer

    NASA Astrophysics Data System (ADS)

    Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.

    2013-12-01

    Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between

  13. Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer

    NASA Astrophysics Data System (ADS)

    Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.

    2013-04-01

    Unique measurements of vertical size resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, http://www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from onboard the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Near the surface (lowermost couple hundred meters), transport from the marginal ice zone (MIZ), if sufficiently short (less than ca. 2 days), condensational growth and cloud-processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore they are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, long-range transport plumes can influence the radiative balance of the PBL by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles can be from biological processes, both primary and secondary

  14. A Mathematical Model for Vertical Attitude Takeoff and Landing (VATOL) Aircraft Simulation. Volume 1; Model Description Application

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    A mathematical model of a high performance airplane capable of vertical attitude takeoff and landing (VATOL) was developed. An off line digital simulation program incorporating this model was developed to provide trim conditions and dynamic check runs for the piloted simulation studies and support dynamic analyses of proposed VATOL configuration and flight control concepts. Development details for the various simulation component models and the application of the off line simulation program, Vertical Attitude Take-Off and Landing Simulation (VATLAS), to develop a baseline control system for the Vought SF-121 VATOL airplane concept are described.

  15. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  16. Airdata calibration of a high-performance aircraft for measuring atmospheric wind profiles

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    1990-01-01

    The research airdata system of an instrumented F-104 aircraft has been calibrated to measure winds aloft in support of the space shuttle wind measurement investigation at the National Aeronautics and Space Administration Ames Research Center Dryden Flight Research Facility. For this investigation, wind measurement accuracies comparable to those obtained from Jimsphere balloons were desired. This required an airdata calibration more accurate than needed for most aircraft research programs. The F-104 aircraft was equipped with a research pilot-static noseboom with integral angle-of-attack and flank angle-of-attack vanes and a ring-laser-gyro inertial reference unit. Tower fly-bys and radar acceleration-decelerations were used to calibrate Mach number and total temperature. Angle of attack and angle of sideslip were calibrated with a trajectory reconstruction technique using a multiple-state linear Kalman filter. The F-104 aircraft and instrumentation configuration, flight test maneuvers, data corrections, calibration techniques, and resulting calibrations and data repeatability are presented. Recommendations for future airdata systems on aircraft used to measure winds aloft are also given.

  17. Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Gysel, M.; Rubach, F.; Mentel, T. F.; Goger, B.; Poulain, L.; Schlag, P.; Miettinen, P.; Pajunoja, A.; Virtanen, A.; Bialek, J.; Klein Baltink, H.; Henzing, J. S.; Größ, J.; Gobbi, G. P.; Wiedensohler, A.; Kiendler-Scharr, A.; O'Dowd, C.; Decesari, S.; Facchini, M. C.; Weingartner, E.; Baltensperger, U.

    2015-03-01

    Airborne measurements of the aerosol hygroscopic and optical properties as well as chemical composition were performed in the Netherlands and northern Italy on board of a Zeppelin NT airship during the PEGASOS field campaigns in 2012. The vertical changes in aerosol properties during the development of the mixing layer were studied. Hygroscopic growth factors (GF) at 95% relative humidity were determined using the white-light humidified optical particles spectrometer (WHOPS) for dry diameters of 300 and 500 nm particles. These measurements were supplemented by an aerosol mass spectrometer (AMS) and an aethalometer providing information on the aerosol chemical composition. Several vertical profiles between 100 and 700 m a.g. were flown just after sunrise close to the San Pietro Capofiume ground station in the Po Valley, Italy. During the early morning hours the lowest layer (newly developing mixing layer) contained a high nitrate fraction (20%) which was coupled with enhanced hygroscopic growth. In the layer above (residual layer) small nitrate fractions of ~ 2% were measured as well as low GFs. After full mixing of the layers, typically around noon and with increased temperature, the nitrate fraction decreased to 2% at all altitudes and led to similar hygroscopicity values as found in the residual layer. These distinct vertical and temporal changes underline the importance of airborne campaigns to study aerosol properties during the development of the mixed layer. The aerosol was externally mixed with 22 and 67% of the 500 nm particles in the range GF < 1.1 and GF > 1.5, respectively. Contributors to the non-hygroscopic mode in the observed size range are most likely mineral dust and biological material. Mean hygroscopicity parameters (κ) were 0.34, 0.19 and 0.18 for particles in the newly forming mixing layer, residual layer and fully mixed layer, respectively. These results agree well with those from chemical analysis which found values of κ = 0.27, 0.21 and 0

  18. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  19. Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2-O2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; Pierce, B. R.; Reeves, M.; Sinreich, R.; Wang, S.; Zondlo, M. A.; Romashkin, P. A.

    2015-05-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  20. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  1. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-08-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  2. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-04-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  3. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, Philip T.; Flanagan, Sarah M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances.

  4. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, P.T.; Flanagan, S.M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances. Ground Water Monitoring & Remediation ?? 2011, National Ground Water Association. No claim to original US government works.

  5. Vertical profile and components of marine planktonic archaea in the Pacific sector of the Arctic Oceean

    NASA Astrophysics Data System (ADS)

    Akiyama, S.; Amano (Sato), C.; Uchida, M.; Utsumi, M.

    2011-12-01

    Ocean was carried out during a cruise, with R/V Mirai from September to October 2008 (MR08-04). We focused on 3 stations located in Mendeleyev Ridge, Northwind Ridge and Canada Basin. CARD-FISH and clone library techniques targeted on archaeal specific 16S rRNA gene were used to investigate vertical profile of marine planktonic archaeal abundance and characterize their community structure. The results showed that their community structure comprised Group I Crenarchaeota, Group II, III and IV Euryarchaeota. Group I Crenarchaeota outnumbered Group II Euryarchaeota through the water column (0.0064-2.5 x 104 and 0.0038-1.3 x 104 cells/mL, respectively). Although their abundance decreased exponentially with depth, Group I Crenarchaeota relative abundance of the toltal bacteria were high in > 200 m depth at all station. Besides, Group III Euryarchaeota sequences were more frequently detected than other oceans (24 of 115 sequences; 20.9%). It could be said that Group III Euryarchaeota is more predominant in this ocean. Moreover, it was observed that vertical profile of their abundance and components were different depending on the stations and depth.

  6. Interpretation of MODIS Cloud Images by CloudSat/CALIPSO Cloud Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Wang, T.; Fetzer, E. J.; Wong, S.; Yue, Q.

    2015-12-01

    Clouds observed by passive remote-sensing imager (Aqua-MODIS) are collocated to cloud vertical profiles observed by active profiling sensors (CloudSat radar and CALIPSO lidar) at the pixel-scale. By comparing different layers of cloud types classified in the 2B-CLDCLASS-LIDAR product from CloudSat+CALIPSO to those cloud properties observed by MODIS, we evaluate the occurrence frequencies of cloud types and cloud-overlap in CloudSat+CALIPSO for each MODIS cloud regime defined by cloud optical depth (τ) and cloud-top pressure (P) histograms. We find that about 70% of MODIS clear sky agrees with the clear category in CloudSat+CALIPSO; whereas the remainder is either single layer (~25%) cirrus (Ci), low-level cumulus (Cu), stratocumulus (Sc), or multi-layer (<5%) clouds in CloudSat+CALIPSO. Under MODIS cloudy conditions, 60%, 28%, and 8% of the occurrences show single-, double-, and triple-layer clouds, respectively in CloudSat+CALIPSO. When MODIS identifies single-layer clouds, 50-60% of the MODIS low-level clouds are categorized as stratus (Sc) in CloudSat+CALIPSO. Over the tropics, ~70% of MODIS high and optically thin clouds (considered as cirrus in the histogram) is also identified as Ci in CloudSat+CALIPSO, and ~40% of MODIS high and optically thick clouds (considered as convective in the histogram) agrees with CloudSat+CALIPSO deep convections (DC). Over mid-latitudes these numbers drop to 45% and 10%, respectively. The best agreement occurs in tropical single-layer cloud regimes, where 90% of MODIS high-thin clouds are identified as Ci by CloudSat+CALIPSO and 60% of MODIS high-thick clouds are identified as DC. Worst agreement is found for multi-layer clouds, where cirrus on top of low- and mid-level clouds in MODIS are frequently categorized as high-thick clouds by passive imaging - among these only 5-12% are DC in CloudSat+CALIPSO. It is encouraging that both MODIS low-level clouds (regardless of optical thickness) and high-level thin clouds are consistently

  7. Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment.

    PubMed

    Müller, Detlef; Kolgotin, Alexei; Mattis, Ina; Petzold, Andreas; Stohl, Andreas

    2011-05-10

    Inversion with two-dimensional (2-D) regularization is a new methodology that can be used for the retrieval of profiles of microphysical properties, e.g., effective radius and complex refractive index of atmospheric particles from complete (or sections) of profiles of optical particle properties. The optical profiles are acquired with multiwavelength Raman lidar. Previous simulations with synthetic data have shown advantages in terms of retrieval accuracy compared to our so-called classical one-dimensional (1-D) regularization, which is a method mostly used in the European Aerosol Research Lidar Network (EARLINET). The 1-D regularization suffers from flaws such as retrieval accuracy, speed, and ability for error analysis. In this contribution, we test for the first time the performance of the new 2-D regularization algorithm on the basis of experimental data. We measured with lidar an aged biomass-burning plume over West/Central Europe. For comparison, we use particle in situ data taken in the smoke plume during research aircraft flights upwind of the lidar. We find good agreement for effective radius and volume, surface-area, and number concentrations. The retrieved complex refractive index on average is lower than what we find from the in situ observations. Accordingly, the single-scattering albedo that we obtain from the inversion is higher than what we obtain from the aircraft data. In view of the difficult measurement situation, i.e., the large spatial and temporal distances between aircraft and lidar measurements, this test of our new inversion methodology is satisfactory. PMID:21556108

  8. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot

  9. Effect of diurnal cycle in anthropogenic emissions on the vertical profile of black carbon over the Indian region

    NASA Astrophysics Data System (ADS)

    Govardhan, G.; Nanjundiah, R. S.; Satheesh, S.

    2013-12-01

    South Asian region is considered to be a regional hot spot for natural as well as anthropogenic aerosols viz. mineral dust, black carbon (BC), organic matter and so on. Vehicular and industrial emissions, forest fires, biomass burning for agricultural purposes and cooking are the main sources for the carbonaceous aerosols over the region. On the other hand, seasonal wind patterns over the region are the mainly responsible for the abundance of the mineral dust. Climate impact of large aerosol abundance on the regional climate has been a topic of interest during the last decade. The anthropogenic aerosols over the region have a diurnal variation owing to their sources (vehicular and industrial emissions). In this study, we have analysed the effect of diurnal cycle in emissions on the overall meteorology and the aerosols' concentrations over the region. We have used the version 3.3 of the online chemistry transport model WRF-Chem for this study. The model simulations for control runs (No diurnal emission cycle for anthropogenic aerosols i.e. constant emissions) and sensitivity runs (diurnal cycle for anthropogenic aerosols) are done for the 3 selected months of 2011 viz. May, October and December. From the results it has been observed that, the monthly mean vertical profile of BC over the selected 18 stations (urban+semi-urban+rural) is significantly affected by the inclusion of the diurnal cycle in the emissions. The changes in BC mass concentration are more than 60% over a few of the selected stations. The effect of diurnal cycle in emissions on the vertical profile of BC is more prominent in May than in October and December. In May, the noteworthy changes in BC mass concentrations occur within 3-8 km. Additionally, the effect of the diurnal cycle in emissions is seen on the vertical profile of BC over the selected oceanic regions as well. The back trajectory analysis of our model data with HYSPLIT model indicates the changes in the overall wind directions

  10. Saharan Desert Dust Sources: New Insights Based on Aerosol Vertical Profiles Retrieved from Thermal Infrared Measurements by IASI

    NASA Astrophysics Data System (ADS)

    Vandenbussche, S.; Kumps, N.; Vandaele, A. C.; De Maziere, M.

    2015-06-01

    Desert dust is a major actor in the climate and one of the least characterized with respect to its radiative forcing, both direct and indirect. Studies of dust atmospheric load and sources are therefore of great scientific interest. In the last years, we have developed and improved a retrieval strategy to obtain desert dust aerosols vertical profiles, from thermal infrared measurements by IASI. This strategy has been used to process significant amount of IASI data above North Africa. This dataset allows a new insight in the study of Saharan desert dust sources: it provides twice a day, at interesting times considering the dust emission diurnal cycle, vertical profiles of desert dust (not only optical depth), making possible to distinguish local emissions from transported dust.

  11. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  12. Comparing vertical profiles of natural tracers in the Williston Basin to estimate the onset of deep aquifer activation

    NASA Astrophysics Data System (ADS)

    Hendry, M. Jim; Harrington, Glenn A.

    2014-08-01

    Comparing high-resolution depth profiles of different naturally occurring environmental tracers in aquitards should yield consistent and perhaps complementary information about solute transport mechanisms and the timing of major hydrogeological and climatological events. This study evaluated whether deep, continuous profiles of aquitard pore water chloride concentration could provide further insight into the paleohydrology of the Williston Basin, Canada, than possible using high-resolution depth profiles of stable H/O isotopes of water (δ18O, δ2H). Pore water samples were obtained from extracts of cores taken over 392 m of the thick Cretaceous shale aquitard. Water samples were also collected from wells installed in the underlying regional sandy aquifer (Mannville Group; 93 m thick) and from seepage inflows into potash mine shafts (to 825 m below ground). Numerical modeling of the 1-D vertical Cl- profile supported diffusion dominated solute transport in the shales. The modeling also showed a similar time frame for development of the Cl- profile prior to activation of the aquifer as determined from the δ18O profile (20-25 Ma); however, it provided a significantly longer and potentially better-constrained time frame for evolution of the profile during the activation phase of the aquifer (0.5-1 Ma). The dominant paleoevent reflected in present-day profiles of both tracers is the introduction of glaciogenic meteoric water to the Mannville aquifer underlying the shale during the Pleistocene. The source area of this water remains to be determined.

  13. Vertical profiling of CH4 and CO2 based on high resolution ground-based NIR heterodyne spectro-radiometry

    NASA Astrophysics Data System (ADS)

    Klimchuk, Artem; Rodin, Alexander V.; Nadezhdinskii, Alexander; Spiridonov, Maxim; Churbanov, Dmitriy

    A compact, lightweight heterodyne NIR spectro-radiometer suitable for ground-based atmospheric sounding by direct spectro-radimetry of Sun spectrum with spectral resolution lambda / deltalambda=5*10 (7) has been used for precise measurements and vertical profiling of methane and carbon dioxide. Highly stabilized DFB laser was used as local oscillator, while single model quartz fiber Y-coupler served as a diplexer. Radiation mixed in the single mode fiber was detected by quadratic detector using p-i-n diode within the bandpass of 10 MHz. Wavelength coverage of spectral measurement was provided by sweeping local oscillator frequency in the range 1,1 cm (-1) . With the exposure time of 15 min, the absorption spectrum of the atmosphere over Moscow has been recorded with S/N=300. We retrieved methane vertical profile using Tikhonov method of smooth functional, which takes into account a priori information about first guess profile. The reference to model methane profile means that the regularization procedure always selects a priori values unless the measurements contradict this assumption. The retrieved methane profile demonstrates higher abundances in the lower scale height compared to the assumed model profile, well expected in the megalopolis center. The retrievals sensitivity is limited by 10 ppb, with the exception of the lower part of the profile where the tendency to lower values is revealed. Thus the methane abundance variations may be evaluated with relative accuracy better than 1%, which fits the requirements of greenhouse gas monitoring. The CO2 profile has also been retrieved with the accuracy sufficient for analyzing regional sources of greenhouse gases.

  14. A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band

    NASA Astrophysics Data System (ADS)

    Fedele Colosimo, Santo; Natraj, Vijay; Sander, Stanley P.; Stutz, Jochen

    2016-04-01

    Atmospheric absorption in the O2 A-band (12 950-13 200 cm-1) offers a unique opportunity to retrieve aerosol extinction profiles from space-borne measurements due to the large dynamic range of optical thickness in that spectral region. Absorptions in strong O2 lines are saturated; therefore, any radiance measured in these lines originates from scattering in the upper part of the atmosphere. Outside of O2 lines, or in weak lines, the atmospheric column absorption is small, and light penetrates to lower atmospheric layers, allowing for the quantification of aerosols and other scatterers near the surface.

    While the principle of aerosol profile retrieval using O2 A-band absorption from space is well-known, a thorough quantification of the information content, i.e., the amount of vertical profile information that can be obtained, and the dependence of the information content on the spectral resolution of the measurements, has not been thoroughly conducted. Here, we use the linearized vector radiative transfer model VLIDORT to perform spectrally resolved simulations of atmospheric radiation in the O2 A-band for four different aerosol extinction profile scenarios: urban (urban-rural areas), highly polluted (megacity areas with large aerosol extinction), elevated layer (identifying elevated plumes, for example for biomass burning) and low extinction (representative of small aerosol extinction, such as vegetated, marine and arctic areas). The high-resolution radiances emerging from the top of the atmosphere measurements are degraded to different spectral resolutions, simulating spectrometers with different resolving powers. We use optimal estimation theory to quantify the information content in the aerosol profile retrieval with respect to different aerosol parameters and instrument spectral resolutions. The simulations show that better spectral resolution generally leads to an increase in the total amount of information that can be retrieved, with the number of

  15. Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile

    NASA Technical Reports Server (NTRS)

    Moreau, G.; Robert, C.

    1994-01-01

    A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.

  16. Heat Budget Calculation in the Convective Boundary Layer on a 4 × 4 Vertical versus Time Grid from Aircraft and Surface Measurements.

    NASA Astrophysics Data System (ADS)

    Lukas, John C.

    2000-09-01

    Aircraft, portable tower, and radiosonde measurements from 4 August 1989 (day 68) of the First International Satellite Land Surface Climatology Project (ISLCP) Field Experiment (FIFE), over fairly flat terrain in Kansas, are used for the reconstruction of the heat conservation equation. The calculation grid consists of three grouped flight levels and the surface, and three 1-h blocks, within the midday convective boundary layer (CBL). The day chosen had a week warm front disturbance in addition to the usual summertime southern flow over the midwestern United States. Significant vertical and temporal structure, which should not be bulk averaged, was observed for all terms. The upper layer showed warming sustained at a constant rate around noon and appeared decoupled from the surface and the middle levels in the later hours. Excess warming was due to advection and possibly entrainment. Consequently, the heat flux divergence also had a nonzero vertical gradient. Advection proves to be an important term and does not average out when driven by a synoptic feature. Its east-west component improved the balance of the heat equation at all levels. Partial flight intertrack and total CBL volume standard deviations for terms and residuals are carried through explicitly.

  17. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  18. Optimization of the seasonal cycles of simulated CO2 flux by fitting simulated atmospheric CO2 to observed vertical profiles

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Y.; Maksyutov, S.

    2009-06-01

    An inverse of a combination of atmospheric transport and flux models was used to optimize model parameters of the Carnegie-Ames-Stanford Approach (CASA) terrestrial ecosystem model. The method employed in the present study is based on minimizing an appropriate cost function (i.e. the weighted differences between the simulated and observed seasonal cycles of CO2 concentrations). We tried to reduce impacts that the inaccuracy of a vertical mixing in a transport model has on the simulated amplitudes of seasonal cycles of carbon flux by using airborne observations of CO2 vertical profile aggregated to a partial column. Effect of the vertical mixing on optimized NEP was evaluated by carrying out 2 sets of inverse calculations: one with partial-column concentration data from 15 locations and another with near-surface CO2 concentration data from the same 15 locations. We found that the values of simulated growing season net flux (GSNF) and net primary productivity (NPP) are affected by the rate of vertical mixing in a transport model used in the optimization. Optimized GSNF and NPP are higher when optimized with partial column data as compared to the case with near-surface data only due to the weak vertical mixing in the transport model used in this study.

  19. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-02-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier Transform Spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information is not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs are typically within 60 m of those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (Collision-Induced Absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC, CONTRAIL and HIPPO, yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS dataset is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.5 ± 0.7 ppm yr-1, in agreement with the currently accepted global growth rate based on ground-based measurements.

  20. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-07-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier transform spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information are not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs have typical biases of 60 m relative to those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (collision-induced absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20 m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), CONTRAIL (Comprehensive Observation Network for Trace gases by Airline), and HIPPO (HIAPER Pole-to-Pole Observations), yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS data set is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.6 ± 0.4 ppm year-1, in agreement with the currently accepted global growth rate based on

  1. Retrieval of Vertical LAI Profiles Over Tropical Rain Forests using Waveform Lidar at La Selva, Costa Rica

    NASA Technical Reports Server (NTRS)

    Tang, Hao; Dubayah, Ralph; Swatantra, Anu; Hofton, Michelle; Sheldon, Sage; Clark, David B.; Blair, Bryan

    2012-01-01

    This study explores the potential of waveform lidar in mapping the vertical and spatial distributions of leaf area index (LAI) over the tropical rain forest of La Selva Biological Station in Costa Rica. Vertical profiles of LAI were derived at 0.3 m height intervals from the Laser Vegetation Imaging Sensor (LVIS) data using the Geometric Optical and Radiative Transfer (GORT) model. Cumulative LAI profiles obtained from LVIS were validated with data from 55 ground to canopy vertical transects using a modular field tower to destructively sample all vegetation. Our results showed moderate agreement between lidar and field derived LAI (r2=0.42, RMSE=1.91, bias=-0.32), which further improved when differences between lidar and tower footprint scales (r2=0.50, RMSE=1.79, bias=0.27) and distance of field tower from lidar footprint center (r2=0.63, RMSE=1.36, bias=0.0) were accounted for. Next, we mapped the spatial distribution of total LAI across the landscape and analyzed LAI variations over different land cover types. Mean values of total LAI were 1.74, 5.20, 5.41 and 5.62 over open pasture, secondary forests, regeneration forests after selective-logging and old-growth forests respectively. Lastly, we evaluated the sensitivities of our LAI retrieval model to variations in canopy/ground reflectance ratio and to waveform noise such as induced by topographic slopes. We found for both, that the effects were not significant for moderate LAI values (about 4). However model derivations of LAI might be inaccurate in areas of high-slope and high LAI (about 8) if ground return energies are low. This research suggests that large footprint waveform lidar can provide accurate vertical LAI profile estimates that do not saturate even at the high LAI levels in tropical rain forests and may be a useful tool for understanding the light transmittance within these canopies.

  2. Modified power law equations for vertical wind profiles. [in investigation of windpower plant siting

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Richards, T. R.

    1979-01-01

    In an investigation of windpower plant siting, equations are presented and evaluated for a wind profile model which incorporates both roughness and wind speed effects, while retaining the basic simplicity of the Hellman power law. These equations recognize the statistical nature of wind profiles and are compatible with existing analytical models and recent wind profile data. Predictions of energy output based on the proposed profile equations are 10% to 20% higher than those made with the 1/7 power law. In addition, correlation between calculated and observed blade loads is significantly better at higher wind speeds when the proposed wind profile model is used than when a constant power model is used.

  3. Retrieval of vertical profiles of liquid water and ice content in mixed clouds from Doppler Radar and microwave radiometer measurements

    SciTech Connect

    Sauvageot, H.

    1996-01-01

    A new method to retrieve vertical profiles of liquid water content M{sub w}(z), ice water content M{sub i}(z), and ice particle size distribution N{sub i}(D, z) (where D is the ice particle size and z the vertical coordinate) in mixed nonprecipitating clouds using the observations of a zenith-viewing Doppler radar and of a microwave radiometer is proposed. In this method, the profile of the vertical air velocity deduced from Doppler radar measurements is used to describe the rate of production by the updrafts of water vapor in excess of saturation with respect to ice. Using a Z{sub i}-M{sub i} power-law relation with an unknown linear parameter (let {alpha}{sub i} be this parameter) and initially assuming that Z{sub w} is negligible with respect to Z{sub i} (where Z{sub w} and Z{sub i} are the radar reflectivity factors of liquid water and ice particles, respectively), the measured radar reflectivity factor profile Z{sub m}({approx}Z{sub i}) is inverted to estimate N{sub i}(D, z). From N{sub i}(D, z), the profile of the rate of water vapor that can be consumed by pure deposition on ice particles is calculated. The difference between the rate of production of the excess water vapor and the rate of deposited water vapor is an expression of the rate of liquid water generation at each level. By writing that the integral of the liquid water along the profile has to be equal to the total liquid water deduced from the microwave radiometer measurement, an estimation of the {alpha}{sub i} parameter is obtained. From {alpha}{sub i}, an estimation of the profiles M{sub w}(z), M{sub i}(z), Z{sub w}(z), Z{sub i}(z) (=Z{sub m} - Z{sub w}), and N{sub i}(D, z) is calculated. If Z{sub w} is effectively negligible with respect to Z{sub i}, the computation of the retrieved profiles is ended. If not, Z{sub i}(z) is corrected and a new estimation of the profiles is computed. The results of the numerical simulation of the algorithm are presented. 21 refs., 6 figs., 1 tab.

  4. Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO{sub 2} with HIPPO and SGP aircraft profile measurements

    SciTech Connect

    Kulawik, S. S.; Worden, J. R.; Wofsy, S. C.; Biraud, S. C.; Nassar, R.; Jones, D. B.A.; Olsen, E. T.; Osterman, G. B.

    2012-02-01

    Comparisons are made between mid-tropospheric Tropospheric Emission Spectrometer (TES) carbon dioxide (CO{sub 2}) satellite measurements and ocean profiles from three Hiaper Pole-to-Pole Observations (HIPPO) campaigns and land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site over a 4-yr period. These comparisons are used to characterize the bias in the TES CO{sub 2} estimates and to assess whether calculated and actual uncertainties and sensitivities are consistent. The HIPPO dataset is one of the few datasets spanning the altitude range where TES CO{sub 2} estimates are sensitive, which is especially important for characterization of biases. We find that TES CO{sub 2} estimates capture the seasonal and latitudinal gradients observed by HIPPO CO{sub 2} measurements; actual errors range from 0.8–1.2 ppm, depending on the campaign, and are approximately 1.4 times larger than the predicted errors. The bias of TES versus HIPPO is within 0.85 ppm for each of the 3 campaigns; however several of the sub-tropical TES CO{sub 2} estimates are lower than expected based on the calculated errors. Comparisons of aircraft flask profiles, which are measured from the surface to 5 km, to TES CO{sub 2} at the SGP ARM site show good agreement with an overall bias of 0.1 ppm and rms of 1.0 ppm. We also find that the predicted sensitivity of the TES CO{sub 2} estimates is too high, which results from using a multi-step retrieval for CO{sub 2} and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO{sub 2} product.

  5. Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Noersomadi; Tsuda, T.

    2016-02-01

    We retrieved temperature (T) profiles with a high vertical resolution using the full spectrum inversion (FSI) method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation (GPS-RO) data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20-27 km altitude. This height range does not include a sharp jump in the background Brunt-Väisälä frequency squared (N2) near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs) with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total) potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO) retrievals. We also estimated the logarithmic spectral slope (p) for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a) 90-150° E, where the topography was more complicated, and (b) 170-230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U) and outgoing longwave radiation (OLR). We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30-50° N in region (a), and 50-70° N in region (b), which was related to the topography. At 30-50° N in region (b), EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to convective activity. The ratio of EpT to the

  6. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  7. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  8. Estimation of raindrop drop size distribution vertical profile from simultaneous micro rain radar and 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, Elisa; Baldini, Luca; Roberto, Nicoletta; Montopoli, Mario; Gorgucci, Eugenio; Gatlin, Patrick; Tokay, Ali

    2016-04-01

    Experimental field campaigns of rain precipitation usually require the coexistence of several ground and satellite based observations in order to guarantee a more complete analysis of the collected case studies at the various spatial and temporal scales of interest. In the framework of the Ground Validation programme of the NASAA/JAXA Global Precipitation Measurement (GPM) mission, several climate regions of the Earth have been interested by various field campaigns involving experimental setup which include one or more ground based disdrometers and profilers. In such situation a typical implementation of the measurement scheme consists of a pair of K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) installed close each other. Since 2DVD estimates are referred to the ground level, the co-located MRR is supposed to provide complementary vertical profiles of drop size distribution (DSD) measurements. However, if not properly processed MRR and 2DVD raw data can lead to erroneous interpretations of the underlying microphysics. In this work, we investigate some typical issues occurring when dealing with MRR and 2DVD observations proposing techniques to ensure the adequate data quality required in typical field validation campaigns. More in detail, MRR is an affordable continuous wave frequency-modulated radar (CWFM) typically used at vertical incidence. In the MMR configuration used, DSD profiles are estimated from Doppler spectra determined by drops falling at different velocities and at different heights from 1000 meters almost up to the ground level with a vertical resolution of 35 meters and time resolution up to 10 seconds. The importance of the microphysical measurements from MRR are related to the effects of the vertical gradients of rain precipitation at the sub-resolution scale of the measurements based remote sensing instruments such as those provided by the dual frequency radar of GPM as well as by ground based weather radars

  9. Analyses of Dynamic Response of Vehicle and Track Coupling System with Random Irregularity of Track Vertical Profile

    NASA Astrophysics Data System (ADS)

    LEI, X.; NODA, N.-A.

    2002-11-01

    A dynamic computational model for the vehicle and track coupling system is developed by means of finite element method in this paper. In numerical implementation, the vehicle and track coupling system is divided into two parts; lower structure and upper structure. The vehicle as the upper structure in the coupling system is a whole locomotive or rolling stock with two layers of spring and damping system in which vertical and rolling motion for vehicle and bogie are involved. The lower structure in the coupling system is a railway track where rails are considered as beams with finite length rested on a double layer continuous elastic foundation. The two parts are solved independently with an iterative scheme. Coupling the vehicle system and railway track is realized through interaction forces between the wheels and the rail, where the irregularity of the track vertical profile considered as stationary ergodic Gaussian random processes and simulated by trigonometry series is included. The amplitudes of vibrations, their velocities and the accelerations generated in the vehicle and rail and the interaction forces between the vehicle and the rail due to the random irregularity of the track vertical profile and different line grades and train speeds have been analyzed numerically by this model. Analyses of system responses are performed in time and frequency domains.

  10. Results of the measurement of the vertical profile of ozone up to a height of 70 km by means of the MR-12 and M-100 sounding rockets

    NASA Technical Reports Server (NTRS)

    Brezgin, N. I.; Kuznetsov, G. I.; Chizhov, A. F.; Shtyrkov, O. V.

    1979-01-01

    The photometers used and methods of calculation of the vertical ozone concentration profile are described. The results obtained in several series of MR-12 and M-100 sounding rocket launchings are presented and discussed.

  11. The influence of local circulations on vertical profiles of NO2 and O3 at semi-rural sites during DISCOVER-AQ campaigns in California, Texas, and Colorado

    NASA Astrophysics Data System (ADS)

    Stein Zweers, D. C.; Pickering, K. E.; Clark, R. D.; Weinheimer, A. J.; Flynn, C.; Mazzuca, G.; Spinei, E.

    2014-12-01

    Through use of the Millersville University tethersonde balloon an NO2-sonde, developed at the Royal Netherlands Meteorological Institute (KNMI), profiled the lower boundary layer as part of the larger NASA Earth Venture program funded mission. This campaign known as DISCOVER-AQ stands for 'Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality'. Recent results from the California, Texas, and Colorado deployments of DISCOVER-AQ highlight the importance of semi-continuous, daytime measurement of the vertical distribution of ozone and NO2 in the lower boundary layer. The balloon profiles, typically from the surface to 500m above ground level, fill an important gap between surface measurements and the lowest extent of aircraft measurements. This near-surface region of the atmosphere is highly variable and local circulation features including land-sea breezes and mountain-valley breezes were observed. These circulations altered local transport patterns and led to changes in the chemical regime at each site. These processes were especially apparent at Smith Point, Texas during an extreme pollution event on 25 September 2013. The extent to which these local circulations influenced diurnal variation and vertical distribution of NO2 and ozone is evaluated and compared for each semi-rural site using wind direction and other meteorological data. NO2-sonde profile data is compared to ground station trace gas analyzers and where available, column and profile measurements from PANDORA spectrometer instruments. These data measured in the segment of the near-surface atmosphere most critical for human health are unique and crucial for validation of satellite columns and atmospheric chemical models.

  12. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  13. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon.

    PubMed

    Colls, J J; Micallef, A

    1999-09-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM10 and PM2.5) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data. PMID:10535122

  14. Vertical profiles of CO and CH4 in the lower and middle troposphere over the Eastern United States January 1978

    NASA Technical Reports Server (NTRS)

    Reichle, H. G., Jr.; Condon, E. P.

    1979-01-01

    Samples of tropospheric air were obtained over the Eastern United States during January of 1978. These samples were analyzed by gas chromatography using flame ionization detection to produce vertical profiles of carbon monoxide and methane from the surface to 8 km. The carbon monoxide mixing ratios at 35 deg N and 45 deg N agree with previously published values; however, the mixing ratio at 25 deg N was significantly lower than most published values. The methane mixing ratio was weakly dependent on latitude and has an average value of 1.64 ppm.

  15. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    PubMed

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-01

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements. PMID:26301371

  16. Sea Ice Topography Profiling using Laser Altimetry from Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian

    Arctic sea ice is undergoing a dramatic transition from a perennial ice pack with a high prevalence of old multiyear ice, to a predominantly seasonal ice pack comprised primarily of young first-year and second-year ice. This transition has brought about changes in the sea ice thickness and topography characteristics, which will further affect the evolution and survivability of the ice pack. The varying ice conditions have substantial implications for commercial operations, international affairs, regional and global climate, our ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and airborne missions are dedicated to monitoring sea ice, but they are limited by their spatial and temporal resolution and coverage. Given the fast rate of sea ice change and its pervasive implications, enhanced observational capabilities are needed to augment the current strategies. The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (<25 cm), aircraft attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea ice topography, and observed ridge height and ridge separation distributions are found to agree with theoretical distributions to within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent the theoretical distributions

  17. Temporal variability of the trade wind inversion: Measured with a boundary layer vertical profiler. Master's thesis

    SciTech Connect

    Grindinger, C.M.

    1992-05-01

    This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.

  18. Validation of HF radar probing of the vertical shear of surface currents by acoustic Doppler current profiler measurements

    NASA Astrophysics Data System (ADS)

    Ivonin, Dmitry V.; Broche, Pierre; Devenon, Jean-Luc; Shrira, Victor I.

    2004-04-01

    There exists no practical way of measuring vertical shear in the water just below the air/sea interface that contains information on air/water momentum fluxes. The paper is concerned with the validation of a recently proposed method of remote sensing of sea subsurface shear by means of a commonly used single-frequency HF radar based on the use of the second-order Bragg echo. To this end a dedicated field experiment was carried out off the French Mediterranean coast. In parallel with the HF radar probing, the independent simultaneous measurements of the subsurface shear profile were obtained by means of acoustic Doppler current profiler mounted on a floating platform, whose position was monitored by GPS. The comparison shows a fairly good agreement of the results (the discrepancy does not exceed 15%) and suggests a higher accuracy of the HF probing.

  19. Cooperative Suction by Vertical Capillary Array Pump for Controlling Flow Profiles of Microfluidic Sensor Chips

    PubMed Central

    Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi

    2012-01-01

    A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary. PMID:23202035

  20. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.

    PubMed

    Petitjean, A; Forquet, N; Boutin, C

    2016-04-01

    13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system. PMID:26775157

  1. Vertical emissivity profiles of Jupiter's northern H3+ and H2 infrared auroras observed by Subaru/IRCS

    NASA Astrophysics Data System (ADS)

    Uno, T.; Kasaba, Y.; Tao, C.; Sakanoi, T.; Kagitani, M.; Fujisawa, S.; Kita, H.; Badman, S. V.

    2014-12-01

    We resolved the vertical emissivity profiles of H3+ overtone, H3+ hot overtone, and H2 emission lines of the Jovian northern auroras in K band obtained in December 2011 observed by the IR Camera and Spectrograph of the Subaru 8.2 m telescope with the adaptive optics system (AO188). The spatial resolution achieved was ~0.2 arcsec, corresponding to ~600 km at Jupiter. We derived the vertical emissivity profiles at three polar regions close to the Jovian limb. The H3+ overtone and H3+ hot overtone lines had similar peak altitudes of 700-900 km and 680-950 km above the 1 bar level, which were 100-300 km and 150-420 km lower, respectively, than the model values. On the contrary, the H2 peak emission altitude was high, 590-720 km above the 1 bar level. It was consistent with the value expected for precipitation of ~1 keV electron, which favors a higher-altitude emissivity profile. We concluded that the lower peak altitudes of H3+ overtone and hot overtone lines were caused by the nonlocal thermodynamic equilibrium effect stronger than the model assumption. We could reproduce the observational emissivity profiles from the model by including this effect. It has been proposed that neutral H2 and ionized H3+ emissions can have different source altitudes because of their different morphologies and velocities; however, our observed results with a general circulation model show that the peak emission altitudes of H3+ and H2 can be similar even with different velocities.

  2. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Wang, Z.; Yang, S.; Shan, H.; Ma, X.; Zhang, H.; Zhao, S.; Liu, D.; Xie, C.; Wang, Y.

    2015-12-01

    Fine particle (PM2.5) affects human life and activities directly; the detection of PM2.5 mass concentration profile is very essential due to its practical and scientific meanings (such as, quantifying of air quality and its variability, and improving air quality forecast and assessment). But so far, it is difficult to detect PM2.5 mass concentration profile. The proposed methodology to study the relationship between aerosol extinction coefficient and PM2.5 mass concentration is described, which indicates that the PM2.5 mass concentration profile could be retrieved by combining a charge-coupled device (CCD) side-scatter lidar and a PM2.5 sampling detector. When the relative humidity is less than 70 %, PM2.5 mass concentration is proportional to aerosol extinction coefficient, and then the specific coefficient can be calculated. Using this specific coefficient, aerosol extinction profile is converted to PM2.5 mass concentration profile. Three cases of clean night (on 21 September 2014), pollutant night (on 17 March 2014), and heavy pollutant night (on 13 February 2015) are studied. The characteristic of PM2.5 mass concentration profile in near-ground during these three nights' cases in the western suburb of Hefei city was discussed. The PM2.5 air pollutant concentration is comparatively large in close surface varying with time and altitude. The experiment results show that the CCD side-scatter lidar combined with a PM2.5 detector is an effective and new method to explore pollutant mass concentration profile in near-ground.

  3. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer

    NASA Astrophysics Data System (ADS)

    Tao, Zongming; Wang, Zhenzhu; Yang, Shijun; Shan, Huihui; Ma, Xiaomin; Zhang, Hui; Zhao, Sugui; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2016-04-01

    Fine particles (PM2.5) affect human life and activities directly; the detection of PM2.5 mass concentration profile is very essential due to its practical and scientific significance (such as the quantification of air quality and its variability as well as the assessment of improving air quality forecast). But so far, it has been difficult to detect PM2.5 mass concentration profile. The proposed methodology to study the relationship between aerosol extinction coefficient and PM2.5 mass concentration is described, which indicates that the PM2.5 mass concentration profile could be retrieved by combining a charge-coupled device (CCD) side-scatter lidar with a PM2.5 sampling detector. When the relative humidity is less than 70 %, PM2.5, mass concentration is proportional to the aerosol extinction coefficient, and then the specific coefficient can be calculated. Through this specific coefficient, aerosol extinction profile is converted to PM2.5 mass concentration profile. Three cases of clean night (on 21 September 2014), pollutant night (on 17 March 2014), and heavy pollutant night (on 13 February 2015) are studied. The characteristics of PM2.5 mass concentration profile at the near-ground level during the cases of these 3 nights in the western suburb of Hefei city were discussed. The PM2.5 air pollutant concentration is comparatively large close to the surface and varies with time and altitude. The experiment results show that the CCD side-scatter lidar combined with a PM2.5 detector is an effective and new method to explore pollutant mass concentration profile at the near-ground level.

  4. Diel vertical migrations of Meganyctiphanes norvegica in the Kattegat: Comparison of net catches and measurements with Acoustic Doppler Current Profilers

    NASA Astrophysics Data System (ADS)

    Buchholz, F.; Buchholz, C.; Reppin, J.; Fischer, J.

    1995-03-01

    Diel vertical migration of a stable and well-defined population of Nordic krill, Meganyctiphanes norvegica (Crustacea, Euphausiacea) was investigated during eight days in August 1989, in the Läsö-Deep, East of the Danish island Läsö. Net catches with a multi-net (MOCNESS) and measurements with a moored and a shipboard Acoustic Doppler Current Profiler (ADCP) were compared. Backscattered energy as a measure for biomass gave good correlations to the dry weight of M. norvegica and smaller zooplankton from net catches. Diel migratory patterns matched well, as determined, parallel with both methods. Migratory vertical velocity was determined with ADCP at 2 3 cm sec-1. The potential for the use of ADCPs for biological investigation is discussed. Vertical migration was dependent on environmental parameters. The krill did not cross a temperature barrier of 14°C, although rich food sources were situated beyond it. Differences in salinity did not play a role. Currents were involved in plankton distribution. Light was an important Zeitgeber (synchronizer) and determined the density of the krill aggregations. Feeding behaviour did not interfere with the light-induced migratory pattern of Nordic krill at the Läsö-Deep.

  5. Tedlar bag sampling technique for vertical profiling of carbon dioxide through the atmospheric boundary layer with high precision and accuracy.

    PubMed

    Schulz, Kristen; Jensen, Michael L; Balsley, Ben B; Davis, Kenneth; Birks, John W

    2004-07-01

    Carbon dioxide is the most important greenhouse gas other than water vapor, and its modulation by the biosphere is of fundamental importance to our understanding of global climate change. We have developed a new technique for vertical profiling of CO2 and meteorological parameters through the atmospheric boundary layer and well into the free troposphere. Vertical profiling of CO2 mixing ratios allows estimates of landscape-scale fluxes characteristic of approximately100 km2 of an ecosystem. The method makes use of a powered parachute as a platform and a new Tedlar bag air sampling technique. Air samples are returned to the ground where measurements of CO2 mixing ratios are made with high precision (< or =0.1%) and accuracy (< or =0.1%) using a conventional nondispersive infrared analyzer. Laboratory studies are described that characterize the accuracy and precision of the bag sampling technique and that measure the diffusion coefficient of CO2 through the Tedlar bag wall. The technique has been applied in field studies in the proximity of two AmeriFlux sites, and results are compared with tower measurements of CO2. PMID:15296321

  6. Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.

    2000-01-01

    This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar

  7. Electric Field Profiles over Hurricanes, Tropical Cyclones, and Thunderstorms with an Instrumented ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Mach, Doug M.; Blakeslee, Richard J.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Over the past several years, we have flown a set of calibrated electric field meters (FMs) on the NASA high altitude ER-2 aircraft over oceanic and landbased storms in a number of locations. These included tropical oceanic cyclones and hurricanes in the Caribbean and Atlantic ocean during the Third and Fourth Convection And Moisture EXperiment (CAMEX-3,1998; CAMEX-4, 2001), thunderstorms in Florida during the TExas FLorida UNderflight (TEFLUN, 1998) experiment, tropical thunderstorms in Brazil during the Tropical Rainfall Measuring Mission - Large Scale Biosphere-Atmosphere Experiment in Amazonia (TRMM LBA, 1999), and finally, hurricanes and tropical cyclones in the Caribbean and Western Pacific and thunderstorms in Central America during the Tropical Cloud Systems and Processes (TCSP, 2005) mission. Between these various missions we have well over 50 sorties that provide a unique insights on the different electrical environment, evolution and activity occurring in and around these various types of storms. In general, the electric fields over the tropical oceanic storms and hurricanes were less than a few kilovolts per meter at the ER-2 altitude, while the lightning rates were low. Land-based thunderstorms often produced high lightning activity and correspondingly higher electric fields.

  8. Validation of MODIS liquid water path for oceanic nonraining warm clouds: Implications on the vertical profile of cloud water content

    NASA Astrophysics Data System (ADS)

    Zhou, Lingli; Liu, Qi; Liu, Dongyang; Xie, Lei; Qi, Lin; Liu, Xiantong

    2016-05-01

    Liquid water path (LWP) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) is validated using the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) retrievals for global oceanic nonraining warm clouds, with focus on the vertically homogeneous (VH) model and adiabatically stratified (AS) model of liquid water content (LWC) profile used in MODIS retrieval. With respect to AMSR-E LWP that acts as ground truth under a series of constraints, the global average of MODIS-LWPVH and MODIS-LWPAS has a positive (11.8%) and negative (-6.8%) bias, respectively. Most of the oceanic warm clouds tend to have adiabatic origin and correspondingly form AS-like profiles, which could be well retained if drizzle is absent. Besides, the presence of drizzle, cloud top entrainment seems to be another cause that modifies the original LWC profiles to become VH-like, which is notable for the very low clouds that have rather small thickness. These factors jointly determine the appearance of LWP profiles and in turn their spatial pattern across global oceans, with AS-like profiles dominant in the areas where nonraining warm clouds occur very frequently in the form of stratocumulus. The modified MODIS LWP shows significant improvement compared with either MODIS-LWPVH or MODIS-LWPAS. This is achieved by using the two physically explicit models flexibly, in which the elementary MODIS retrievals of cloud top temperature, cloud optical thickness, and droplet effective radius play a determinant role. A combined use of VH and AS model in the MODIS retrieval is demonstrated to be effective for improving the LWP estimation for oceanic nonraining warm clouds.

  9. Application of seamless vertical profiles for use in the topside electron density modeling

    NASA Astrophysics Data System (ADS)

    Triskova, L.; Galkin, I.; Truhlik, V.; Reinisch, B. W.

    Modeling of the topside electron (ion) density profiles, usually done within the Booker formalism, greatly benefits from the recently introduced representation by the Chapman function with continuously varying scale height, dubbed a vary-Chap function. The vary-Chap function is capable of producing smooth and seamless altitude dependences from a variety of previously developed empirical models. This paper presents a successful project of using the vary-Chap function to obtain a seamless representation of the electron density profiles based on three global models; the IRI (International Reference Ionosphere) for the bottomside ionosphere and an empirical topside electron density model and an empirical upper transition height model. The results show the advantage of the proposed method and its potential for implementation in the IRI.

  10. Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Alibo, Dia Sotto

    2003-01-01

    Vertical profiles of dissolved rare earth elements (REEs) were obtained in the Bay of Bengal and the Andaman Sea. The REE concentrations at various depths in the Bay of Bengal are the highest in the Indian Ocean. This is attributable ultimately to the large outflow of the Ganges-Brahmaputra and Irrawaddy rivers, but the dissolved REE flux to surface waters alone cannot explain the large and near-constant REE enrichment throughout the entire water column. The underlying fan sediments serve as not a source but a sink for dissolved REE(III)s. Absence of excess 228Ra in the deep waters suggests that lateral input of dissolved REEs from slope sediments is also small in these regions. Partial (<0.3%) dissolution of detrital particles, which are carried by the rivers and lateral surface currents and subsequently settle through the water column, appears to be a predominant source for the dissolved REEs. Vertical profiles showing an almost linear increase with depth are common features for the light and middle REEs everywhere, but their concentration levels are variable from basin to basin and from element to element. This suggests that their oceanic distributions respond quickly to the variation of particle flux and its REE composition through reversible exchange equilibrium with suspended and sinking particles much like the case for Th. The relative importance of the vertical geochemical processes of reversible scavenging over the horizontal basin-scale ocean circulation with passive regeneration like nutrients decreases systematically from the light to the heavy REEs. Using a model, the mean oceanic residence times of REEs in the Bay of Bengal are estimated to range from 37 years for Ce to 140-1510 years for the strictly trivalent REEs. In the deep water of the Andaman Sea, isolated from the Bay of Bengal by the Andaman-Nicobar Ridge (maximum sill depth of ˜1800 m), the REE concentrations are almost uniform presumably due to rapid vertical mixing. The REE

  11. Atmospheric backscatter vertical profiles at 9.2 and 10.6 microns - A comparative study

    NASA Technical Reports Server (NTRS)

    Ancellet, Gerard M.; Menzies, Robert T.; Tratt, David M.

    1988-01-01

    The paper reports a series of atmospheric aerosol backscatter measurements at two widely spaced CO2 laser wavelengths: 9.25 and 10.6 microns. Comparisons are made between backscatter coefficient profiles at these two wavelengths up to 20-km altitude. Measurements such as those reported here can be used to assess the feasibility of coherent CO2 lidar for wind measurements, and they also provide a partial test of backscatter model predictions.

  12. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  13. Model predictions of wind and turbulence profiles associated with an ensemble of aircraft accidents

    NASA Technical Reports Server (NTRS)

    Williamson, G. G.; Lewellen, W. S.; Teske, M. E.

    1977-01-01

    The feasibility of predicting conditions under which wind/turbulence environments hazardous to aviation operations exist is studied by examining a number of different accidents in detail. A model of turbulent flow in the atmospheric boundary layer is used to reconstruct wind and turbulence profiles which may have existed at low altitudes at the time of the accidents. The predictions are consistent with available flight recorder data, but neither the input boundary conditions nor the flight recorder observations are sufficiently precise for these studies to be interpreted as verification tests of the model predictions.

  14. Polarimetric remote sensing in oxygen A and B bands: sensitivity study and information content analysis for vertical profile of aerosols

    NASA Astrophysics Data System (ADS)

    Ding, Shouguo; Wang, Jun; Xu, Xiaoguang

    2016-05-01

    Theoretical analysis is conducted to reveal the information content of aerosol vertical profile in space-borne measurements of the backscattered radiance and degree of linear polarization (DOLP) in oxygen (O2) A and B bands. Assuming a quasi-Gaussian shape for aerosol vertical profile characterized by peak height H and half width γ (at half maximum), the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to simulate the Stokes four-vector elements of upwelling radiation at the top of atmosphere (TOA) and their Jacobians with respect to H and γ. Calculations for different aerosol types and different combinations of H and γ values show that the wide range of gas absorption optical depth in O2 A and B band enables the sensitivity of backscattered DOLP and radiance at TOA to the aerosol layer at different altitudes. Quantitatively, DOLP in O2 A and B bands is found to be more sensitive to H and γ than radiance, especially over the bright surfaces (with large visible reflectance). In many O2 absorption wavelengths, the degree of freedom of signal (DFS) for retrieving H (or γ) generally increases with H (and γ) and can be close to unity in many cases, assuming that the composite uncertainty from surface and aerosol scattering properties as well as measurements is less than 5 %. Further analysis demonstrates that DFS needed for simultaneous retrieval of H and γ can be obtained from a combined use of DOLP measurements at ˜ 10-100 O2 A and B absorption wavelengths (or channels), depending on the specific values of H. The higher the aerosol layer, the fewer number of channels for DOLP measurements in O2 A and B bands are needed for characterizing H and γ. Future hyperspectral measurements of DOLP in O2 A and B bands are needed to continue studying their potential and their combination with radiance and DOLP in atmospheric window channels for retrieving the vertical profiles of aerosols, especially highly scattering aerosols, over land.

  15. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    NASA Technical Reports Server (NTRS)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  16. Pure rotational Raman lidar for the measurement of vertical profiles of temperature in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Radhakrishnan, S. R.; Presennakumar, B.; Murty, V. S.; Bindhu, R.

    2006-12-01

    The design and development of the new Raman lidar of the Space Physics Laboratory, Vikram Sarabhai Space Centre is presented here. This station is located at 8 degrees 33 minutes N, 77 degrees E in India. This lidar can monitor atmospheric temperature (using Pure Rotational Raman Spectrum), aerosol extinction coefficient, water vapor profile and clouds. Advantages of Pure Rotational Raman method over Vibrational Raman method are presented with the result obtained using Vibrational Raman lidar. Optical layout of the lidar system, PRRS method and aerosol extinction measurements are described briefly.

  17. Cloud, dust, and ozone vertical profiles from solar occultation measurements: Implications for dynamics

    NASA Technical Reports Server (NTRS)

    Chassefiere, E.; Blamont, J. E.

    1993-01-01

    An instrument was designed for solar occultation measurements of the martian atmosphere from the Phobos spacecraft. It was composed of three different dispersive systems working in the ultraviolet (UV: 0.22-0.32 microns) for the measurement of O3 and aerosols, in the near infrared (NIR: 0.76 microns, 0.94 microns) for the detection of O2 and H2O, and in the infrared (IR: 1.9 microns, 3.7 microns) where CO2 and H2O were measured. A detailed description of the instrument may be found in the special issue of Nature. Its principle objective is to measure from the Phobos orbit the spectrum of the Sun, modified by atmospheric extinction, during sunset. The UV-NIR spot has an angular diameter of 1 arcmin, or approximately 3 km vertical resolution, and is located near the center of the solar disk. The IR field is about twice as large and its line of sight is shifted by 8.5 arcmin, or approximately 20 km, relative to the previous one. It is therefore located near the edge of the solar disk. Sampling times are generally 0.5, 1, and 2 s for IR, UV, and NIR channels respectively, corresponding to vertical excursions of the line of sight of 1, 2, and 4 km respectively under nominal conditions. The instrument operated from February 8 to March 26 (the martian equinox occurred on February 17). The latitude of the intersection of the Sun-spacecraft axis with the surface of Mars varied from -11 to +20, the seasonal date L(sub s) being in the range 0 - 20. All measurements were therefore made near northern spring equinox in equatorial regions. Due to an error in the pointing system, only partial results were obtained, the region below approximately equals 30 km altitude being never sounded by the UV-NIR spectrometer. On the contrary, nine complete occultations were obtained in the IR channels, whose line of sight was fortunately approximately equals 20 km below the UV-NIR axis.

  18. Seasonal distribution of metals in vertical and horizontal profiles of sheltered and exposed beaches on Polish coast.

    PubMed

    Bigus, Katarzyna; Astel, Aleksander; Niedzielski, Przemysław

    2016-05-15

    The distribution of alkali and heavy metals in coastal sediments of three Polish beaches was assessed. In all locations there are sandy beaches of different characteristics according to the anthropogenic impact and degree of sheltering. Core sediments collected in Czołpino and Ustka were characterized by the highest concentration of Cd, Ag, Ba, and Al, Cu, Cr, Bi, Na, respectively. Among the alkaline metals core sediments were the most abundant with Ca, Bi, Mg and Na, presenting almost stable decreasing order in all beaches. The majority of dredge material collected can be classified as light or trace contaminated by Cr, Cu, Zn, Cd and Hg. An abundance of mineralogical components in core sediments in Ustka increases in Summer and Autumn, while in Puck is stable throughout the year. The content of studied metals in core sediments collected in three Polish beaches changes both in the vertical and horizontal profiles of the beach. PMID:26975611

  19. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, W. R.

    1990-01-01

    Azulene-doped naphtalene was directionally solidified using the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection are determined as a function of the temperature profile in the furnace and the freezing rate. Convective velocities are two orders of magnitude lower when the temperature increases with height. The cross sectional variation in azulene concentration tends to be asymmetric. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions can produce greater inhomogeneities than on earth. Thus when low freezing rates are necessary in order to avoid constitutional supercooling, it may be necessary to combine microgravity and magnetic fields in order to achieve homogeneous crystals.

  20. LIDAR vertical profiles over the Oil Sands Region: an important tool in understanding atmospheric particulate matter transport, mixing and transformation

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2013-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model verification and validation. In recent years, Environment Canada has designed an autonomous aerosol LIDAR system that can be deployed to remote areas such as the oil sands. Currently two autonomous LIDAR systems are making measurements in the oil sands region, one since December, 2012 and the other since July, 2013. The LIDAR transmitter emits two wavelengths (1064nm and 532nm) and the detector assembly collects four channels (1064nm backscatter, 532nm backscatter and 532nm depolarization, 607 nm nitrogen channel). Aerosol profiles from near ground to 20 km are collected every 10-60 s providing sufficient resolution to probe atmospheric dynamics, mixing and transport. The depolarization channel provides key information in identifying and discriminating the various aerosol layers aloft such as dust, forest fire plumes, industrial plume sources or ice crystals. The vertical resolution of the LIDAR can determine whether industrial plumes remain aloft or mix down to the surface and also provide estimates as to the concentration of the particulate at various altitudes. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. An intensive measurement campaign will be carried out in August and September of 2013 and will provide coincident airborne and ground-based measurements for the two LIDAR systems. The first results from this field study will be presented as well as some statistics on the frequency and evolution of plume events that were detected by the LIDARs.

  1. Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles

    NASA Technical Reports Server (NTRS)

    Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Michael

    2014-01-01

    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.

  2. Vertical profiles of dust and ozone in the Martian atmosphere deduced from solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Blamont, J. E.; Chassefiere, E.; Goutail, J. P.; Mege, B.; Nunes-Pinharanda, M.; Souchon, G.; Krasnopolsky, V. A.; Krysko, A. A.; Moroz, V. I.

    1991-02-01

    The vertical distribution of the ozone content and of the aerosols in the Martian atmosphere at the equinox and near the equator was studied with the aid of a biaxial pointing device, a microprocessor-controlled flat mirror of elliptical shape. An upper limit of 5 x 10 to the 7th mol/cu cm for ozone was obtained above an altitude of 30 km. For the aerosols, a semiquantitative distribution has been obtained between 10 and 50 km of altitude. The scale height is nearly equal to the atmospheric scale height in the 10-20 km region where mixing seems to predominate, and falls rapidly to a thickness of about 2 km at 30 km. In 10 percent of the occultations, a stratified haze has been detected between 40 and 50 km. The particle radius of cloud constituents is estimated and optical thickness per kilometer of these hazes at peak extinction are approximated. An eddy diffusion coefficient and a mixing ratio are estimated for clouds assumed to be at equilibrium.

  3. Analytical solution to transient Richards' equation with realistic water profiles for vertical infiltration and parameter estimation

    NASA Astrophysics Data System (ADS)

    Hayek, Mohamed

    2016-06-01

    A general analytical model for one-dimensional transient vertical infiltration is presented. The model is based on a combination of the Brooks and Corey soil water retention function and a generalized hydraulic conductivity function. This leads to power law diffusivity and convective term for which the exponents are functions of the inverse of the pore size distribution index. Accordingly, the proposed analytical solution covers many existing realistic models in the literature. The general form of the analytical solution is simple and it expresses implicitly the depth as function of water content and time. It can be used to model infiltration through semi-infinite dry soils with prescribed water content or flux boundary conditions. Some mathematical expressions of practical importance are also derived. The general form solution is useful for comparison between models, validation of numerical solutions and for better understanding the effect of some hydraulic parameters. Based on the analytical expression, a complete inverse procedure which allows the estimation of the hydraulic parameters from water content measurements is presented.

  4. Assessing the Microbial Community and Functional Genes in a Vertical Soil Profile with Long-Term Arsenic Contamination

    PubMed Central

    Xiong, Jinbo; He, Zhili; Van Nostrand, Joy D.; Luo, Guosheng; Tu, Shuxin; Zhou, Jizhong; Wang, Gejiao

    2012-01-01

    Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO3− and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management. PMID:23226297

  5. Vertical profile of δ18OOO from middle stratosphere to lower mesosphere derived by retrieval algorithm developed for SMILES spectra

    NASA Astrophysics Data System (ADS)

    Sato, T. O.; Sagawa, H.; Yoshida, N.; Kasai, Y.

    2013-10-01

    Ozone is known to have large oxygen isotopic enrichments of about 10 % in the middle stratosphere, however, there have been no reports on ozone isotopic enrichments above the middle stratosphere. We derived an enrichment δ18OOO by a retrieval algorithm specified for the isotopic ratio from the stratosphere to the lower mesosphere based on observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS). The retrieval algorithm includes (i) an a priori covariance matrix constrained by oxygen isotopic ratios in ozone, (ii) an optimization of spectral windows for ozone isotopomers and isotopologues, and (iii) a common tangent height information for all windows. The δ18OOO obtained by averaging the SMILES measurements at the latitude range of 20° N to 40° N from February to March in 2010 with solar zenith angle <80° was 15% (at 32 km) and the systematic error was estimated to be about 5%. SMILES and past measurements were in good agreement with δ18OOO increasing with altitude between 30 and 40 km. The vertical profile of δ18OOO obtained in this study showed an increase and a decrease with altitude in the stratosphere and mesosphere, respectively. Stratopause is the peak-height of the δ18OOO value, and it rose to 18%. The δ18OOO has a positive correlation with temperature in the range of 220-255 K, indicating that temperature can be a dominant factor to control the vertical profile of δ18OOO in the stratosphere and mesosphere. This is the first report of the observation of δ18OOO over a wide range extending from the stratosphere to the mesosphere.

  6. Vertical profile of delta 18000 from middle stratosphere to lower mesosphere derived by retrieval algorithm developed for SMILES spectra

    NASA Astrophysics Data System (ADS)

    Kasai, Yasuko; Sato, Tomohiro; Sagawa, Hideo

    Ozone is known to have large oxygen isotopic enrichments of about 10% in the middle stratosphere, however, there have been no reports on ozone isotopic enrichments above the middle stratosphere. We derived an enrichment delta18OOO by a retrieval algorithm specified for the isotopic ratio from the stratosphere to the lower mesosphere based on observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS). The retrieval algorithm includes (i) an a priori covariance matrix constrained by oxygen isotopic ratios in ozone, (ii) an optimization of spectral windows for ozone isotopomers and isotopologues, and (iii) a common tangent height information for all windows. The delta18OOO obtained by averaging the SMILES measurements at the latitude range of 20N to 40N from February to March in 2010 with solar zenith angle less than 80(°) °was 15 % (at 32 km) and the systematic error was estimated to be about 5 percent. SMILES and past measurements were in good agreement with delta18OOO increasing with altitude between 30 and 40 km. The vertical profile of δ18OOO obtained in this study showed an increase and a decrease with altitude in the stratosphere and mesosphere, respectively. Stratopause is the peak-height of the delta18OOO value, and it rose to 18 %. The delta18OOO has a positive correlation with temperature in the range of 220-255 K, indicating that temperature can be a dominant factor to control the vertical profile of delta18OOO in the stratosphere and mesosphere. This is the first report of the observation of delta18OOO over a wide range extending from the stratosphere to the mesosphere.

  7. Variability of the CO2 vertical soil profile production and its isotopic composition in a beech forest

    NASA Astrophysics Data System (ADS)

    Delogu, E.; Plain, C.; Epron, D.; Longdoz, B.

    2015-12-01

    The use of stable isotopes has become a useful research tool to understand the complexity of processes involved in the variability of the vertical profile of CO2 production (P). In this context, an approach considering diffusion as the only gas transport, the Flux-Gradient Approach (FGA) is used to relate the temporal variation in soil P and its isotopic composition (δ13P). P of the different soil layers ([1] 0 cm - -10 cm / [2] -10 cm - -20 cm / [3] -20 cm - -40 cm) and their isotopic signature can be computed from continuous measurements of the vertical soil CO2 concentration profile and its isotopic signature and combined to simultaneous measurements of the soil efflux, trunk efflux, their respective isotopic signature and eddy flux measurements. The field campaign was conducted at the beech forest of Hesse (France) in 2011 from April to September. The results show significant temporal variations in P and δ13P. For P, large intra and inter day fluctuations are observed and are explained by a dependence on temperature specific to each layer. For δ13P, the horizon 2 show significant daily fluctuations which are related to lag-timed soil moisture and water use efficiency. These fluctuations dependency appears to be consistent with a response of P sources to environment and to the impact of photosynthetic δ13C fluctuations on δ13P. Comparison of isoprod, defined as the product of CO2 production and its isotopic composition, and soil and trunk isofluxes shows that horizon 2, the largest contributor to soil P (50 % to 77 % of total soil P depending on the period) is mainly affected by root respiration. The fluctuations of horizon 1 isoprod are influenced both by autotrophic and heterotrophic sources. Moreover, some fluctuations can be generated by other physical processes inducing P and δ13P variability, highlighting methodological issues that need to be taken into account to improve FGA.

  8. Tropospheric Ozone Increases in the TTL over the Southern African Region (1990-2007): Insights from Sonde and Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Balashov, N. V.; Thompson, A. M.; Kollonige, D. E.; Coetzee, G.; Thouret, V.; Posny, F.

    2013-12-01

    Ozonesonde records from the early 1990s through 2007 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion Island (21S, 55W, ~3500 km NE of Irene in the southwest Indian Ocean) have been reported to exhibit free tropospheric (FT) ozone increases. We re-analyzed FT ozone in the1990-2007 Irene sondes, filling in mid-1990s gaps with ozone profiles taken by Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) over nearby Johannesburg. We applied a multivariate regression model to monthly averaged data from the combined dataset as well as to 1992-2011 FT and TTL ozone from Réunion sondes. Taking into account terms for the seasonal cycle, ENSO, and potential vorticity (PV) anomalies, we found that: (1) Statistically significant trends appear predominantly in the middle troposphere up to the tropopause layer (6-11 km over Irene, 6-15 km over Réunion) in winter (June-August), with an increase ~ 1 ppbv/yr over Irene and ~2 ppbv/yr over Réunion. Both stations display a less intense ozone increase above 7 km in November-December. (2) Variability in TTL dynamics and stratosphere-troposphere interactions were considered as plausible explanations for the Irene ozone increases. For the spring, there is a pronounced sensitivity to PV anomalies (+ 70 ppbv ozone/PV unit). We compare these results to our prior study of TTL wave activity at Irene and Réunion and relationships among waves, TTL ozone variability and oscillations like the ENSO. Trend (change in ppbv ozone/year) computed from multivariate regression model for 4-15 km, profiles from Réunion sondes, 1992-2011. Diagonal shading denotes statistical significance.

  9. Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka

    PubMed Central

    Mach, Václav; Blaser, Martin B.; Claus, Peter; Chaudhary, Prem P.; Rulík, Martin

    2015-01-01

    Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) the pathway of methane production (stable carbon isotopes and inhibitor studies), and (c) the methanogenic community composition (terminal restriction length polymorphism of mcrA) in depth profiles of sediment cores of River Sitka, Czech Republic. We found two depth-related distinct maxima for the methanogenic potentials (a) The pathway of methane production was dominated by hydrogenotrophic methanogenesis (b) The methanogenic community composition was similar in all depth layers (c) The main TRFs were representative for Methanosarcina, Methanosaeta, Methanobacterium, and Methanomicrobium species. The isotopic signals of acetate indicated a relative high contribution of chemolithotrophic acetogenesis to the acetate pool. PMID:26052322

  10. Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Pavelka, M.

    2012-04-01

    Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity

  11. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    SciTech Connect

    Daley, T.M.; Majer, E.L.; Karageorgi, E.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies.

  12. Evaluation of Vertical Lacunarity Profiles in Forested Areas Using Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.

    2016-06-01

    The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.

  13. Vertical profiles of O3 and NOx chemistry in the polluted nocturnal boundary layer in Phoenix, AZ: I. Field observations by long-path DOAS

    NASA Astrophysics Data System (ADS)

    Wang, S.; Ackermann, R.; Stutz, J.

    2006-07-01

    Nocturnal chemistry in the atmospheric boundary layer plays a key role in determining the initial chemical conditions for photochemistry during the following morning as well as influencing the budgets of O3 and NO2. Despite its importance, chemistry in the nocturnal boundary layer (NBL), especially in heavily polluted urban areas, has received little attention so far, which greatly limits the current understanding of the processes involved. In particular, the influence of vertical mixing on chemical processes gives rise to complex vertical profiles of various reactive trace gases and makes nocturnal chemistry altitude-dependent. The processing of pollutants is thus driven by a complicated, and not well quantified, interplay between chemistry and vertical mixing. In order to gain a better understanding of the altitude-dependent nocturnal chemistry in the polluted urban environment, a field study was carried out in the downtown area of Phoenix, AZ, in summer 2001. Vertical profiles of reactive species, such as O3, NO2, and NO3, were observed in the lowest 140 m of the troposphere throughout the night. The disappearance of these trace gas vertical gradients during the morning coincided with the morning transition from a stable NBL to a well-mixed convective layer. The vertical gradients of trace gas levels were found to be dependent on both surface NOx emission strength and the vertical stability of the NBL. The vertical gradients of Ox, the sum of O3 and NO2, were found to be much smaller than those of O3 and NO2, revealing the dominant role of NO emissions followed by the O3+NO reaction for the altitude-dependence of nocturnal chemistry in urban areas. Dry deposition, direct emissions, and other chemical production pathways of NO2 also play a role for the Ox distribution. Strong positive vertical gradients of NO3, that are predominantly determined by NO3 loss near the ground, were observed. The vertical profiles of NO3 and the calculated vertical profiles of its

  14. Vertical Profiles of Nocturnal O3-NOx Chemistry in the Urban Boundary Layer --- Field Observations in Phoenix and the Corresponding Model Studies

    NASA Astrophysics Data System (ADS)

    Wang, S.; Stutz, J.

    2004-12-01

    Nocturnal boundary layer (NBL) chemistry in urban areas is strongly influenced by surface NOx emissions. Vertical mixing in combination with chemical transformations leads to distinctive vertical profiles of reactive trace gases. The O3-NOx chemistry system, therefore, varies with altitude in the stable NBL. To understand the influence of vertical mixing on nocturnal chemistry and to improve the accuracy of urban air pollution models, vertical distributions of a number of trace gases were measured in the lowest 10-140 m of the atmosphere with a long-path DOAS instrument in downtown Phoenix, AZ in June-July, 2001. Here we present and analyze results from these measurements. Strong positive vertical profiles of O3 and NO3 and negative vertical profiles of NO2, HONO, HCHO and SO2 were observed during all nights. The magnitudes of gradients were significantly larger than earlier observations in rural or suburban areas due to higher nighttime ground-level emissions. Vertical profiles of Ox (O3 + NO2) were much lower than those of O3 and NO2. This shows the dominant role of the reaction of NO with O3 in the urban NBL. In all cases, total Ox levels decreased gradually throughout the night. An analysis of the NO3 production rate reveals complex vertical profiles of this parameter depending on the distribution of both NO2 and O3. The positive NO3 profiles are, however, a consequence of strong emissions of NO and VOCs near the surface. The calculated steady-state N2O5 distribution further implies vertical variations in the atmospheric loss of Ox and NOx. To quantitatively analyze our observations, we employed a 1-D chemical transport model. The model results generally agree with the observations. Our calculations reveal that the profiles of Ox are controlled by the interplay between, NOx emissions, dry deposition of O3, and the initial O3 level. NO3 and N2O5 chemistry was found to be responsible for a large part of the ultimate O3 and NOx loss at night. Details of the model

  15. Measurement and Modeling of Vertical Temperature, Humidity and Wind Profiles Through Aspen Stands in a Mountain Basin

    NASA Astrophysics Data System (ADS)

    Flerchinger, G. N.; Marks, D. G.; Reba, M. L.; Link, T. E.

    2013-12-01

    Forest canopies filter climate by reducing wind speed and solar radiation, and moderating temperature and thermal radiation to the ground surface. Vertical profiles were established in two aspen stands to investigate how deciduous canopy structure modulates interaction between the atmosphere and the snow or soil surface below the canopy. The study sites are located within Reynolds Creek Experimental Watershed (RCEW) at the Reynolds Mountain East (RME) and Upper Sheep Creek (USC) catchments. The aspen canopy at RME is 15 m tall and that at USC is 4.5 m. For this study, meteorological sensors were placed on a tower at 3, 9, and 15 m above the ground surface for the RME site and at 1.5, 3.0 and 4.5 m at the USC site. The data presented include hourly averages of temperature, humidity, wind speed, and vegetation surface temperature at each level. Inter-annual, seasonal, monthly and diurnal variability are reported. Analysis of events during key periods of interest, including snow covered, meltout, and snow-free growing season periods are also reported. Precipitation, solar and thermal radiation, soil temperature and soil moisture data from nearby stations within the catchments were used to support the analysis and to model the canopy profile data. This analysis illustrates the sensitivity of surface energetics and watershed hydrology to canopy structure.

  16. Characteristics of the vertical profiles of dual-frequency, dual-polarization radar data in stratiform rain

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Kumagai, H.

    1994-01-01

    Airborne dual-wavelength and dual-polarization radar data are analyzed for measurements taken in stratiform rain in the western Pacific during September 1990. The focus of the paper is on the vertical profiles of the linear depolarization ratio, LDR (10 GHz); the reflectivity factor, dBZ (10 GHz); and the dual-frequency ratio, DFR (10, 34.45 GHz). Statistical characterizations of the maxima of these quantities and the relative locations at which they occur suggest that the eccentricity of the melting particles is fairly large and that the shape and size of the particles are correlated. To try to explain these features, two types of simulation are presented. In the first, a set of measured drop size distributions is used in the context of a standard model of the melting layer. Variations in snow density, as well as shape, size, and orientation distributions are used to study the relationship between these parameters and the radar measurements. To reduce the amount of ambiguity in the estimation, a second type of simulation is described in which the size distribution of the snow is estimated. Comparisons between the simulated and measured profiles indicate that radar measurements can be used to derive certain characteristics of the particle size and shape distributions in the melting layer.

  17. Water vapor on Titan: the stratospheric vertical profile from Cassini/CIRS infrared spectra

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Jennings, D. E.; Nixon, C. A.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Achterberg, R. K.; Teanby, N. A.; de Kok, R.; Irwin, P. G. J.; Bézard, B.; Lellouch, E.; Flasar, F. M.; Bampasidis, G.

    2012-04-01

    Water vapor in Titan’s middle atmosphere has previously been detected only by disk-average observations from the Infrared Space Observatory (Coustenis et al., 1998). We report here the successful detection of stratospheric water vapor using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al., 2004) following an earlier null result (de Kok et al., 2007a). CIRS senses water emissions in the far-infrared spectral region near 50 microns, which we have modeled using two independent radiative transfer and inversion codes (NEMESIS, Irwin et al 2008 and ART, Coustenis et al., 2010). From the analysis of nadir spectra we have derived a mixing ratio of (0.14 ± 0.05) ppb at 100 km, corresponding to a column abundance of approximately (3.7 ± 1.3) × 10^14 mol/cm2. Using limb observations, we obtained mixing ratios of (0.13 ± 0.04) ppb at 125 km and (0.45 ± 0.15) ppb at 225 km of altitude, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. In the latitude range (80˚S - 30˚N) we see no evidence for latitudinal variations in these abundances within the error bars. References: Coustenis, A.; Salama, A.; Lellouch, E.; Encrenaz, Th.; Bjoraker, G. L.; Samuelson, R. E.; de Graauw, Th.; Feuchtgruber, H.; Kessler, M. F., 1998. Evidence for water vapor in Titan's atmosphere from ISO/SWS data. Astronomy and Astrophysics, v.336, p.L85-L89 Coustenis, A.; Jennings, D. E.; Nixon, C. A.; Achterberg, R. K.; Lavvas, P.; Vinatier, S.; Teanby, N. A.; Bjoraker, G. L.; Carlson, R. C.; Piani, L.; Bampasidis, G.; Flasar, F. M.; Romani, P. N., 2010. Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission. Icarus, Volume 207, Issue 1, p. 461-476. de Kok, R.; Irwin, P. G. J.; Teanby, N. A.; Lellouch, E.; Bézard, B.; Vinatier, S.; Nixon, C. A.; Fletcher, L.; Howett, C.; Calcutt, S. B.; Bowles, N. E.; Flasar, F. M.; Taylor, F. W. , 2007a. Oxygen compounds in Titan's stratosphere as observed by

  18. [Seasonal Variations in Vertical Profile of Hg Species and the Influential Factors in Changshou Reservior].

    PubMed

    Bai, Wei-yang; Zhang, Cheng; Tang, Zhen-ya; Zhao, Zheng; Wang, Ding-yong

    2015-10-01

    The vertical distribution of mercury (Hg) species were investigated in water and porewater of Changshou reservoir during the period from September 2013 to July 2014. Water samples were collected seasonally from five sampling sites, and the concentrations of Hg species were evaluated. Diffusion fluxes of Hg from sediment to overlaying water were also obtained. The results showed that the average concentrations of total Hg and total methylmercury (MeHg) were (14.77 ± 12.24) ng x L(-1) and (0.41 ± 0.47) ng x L(1), respectively. The concentrations of dissolved MeHg (DMeHg) was highest in 4-8 m under surface water, and then decreased with the increasing water depth with a subsequent increase in the bottom of Changshou Reservior. Peak particulate MeHg (PMeHg) values were found in 8-20 m under surface water, but not in the interface of sediment-water, suggesting that the increasing PMeHg might be related to the deposition of MeHg adsorbed to particulates from upper water. Two peak MeHg levels in pore water appeared in 16 and 28 cm under sediment surface, probably due to the extension of living region for sulfate reduction bacteria (SRB) to deeper sediment which resulted in increased methylation rate there. The diffusion fluxes of DMeHg from pore water to overlaying water were 28.2 ng x (m2 x d)(1) and 30.0 ng x (m2 x d)(-1) in autumn and summer, which were significantly higher than that in winter 3.8 ng x (m2 x d)(-1). It may be associated with the higher temperature in those two seasons. An obvious negative correlation was observed between DMeHg and dissolved oxygen (DO) in summer and spring (r = -0.482**, P < 0.05; r = -0.339, P < 0.01); however, similar correlations were not found in autumn and winter. PMID:26841596

  19. Vertical and Horizontal Corneal Epithelial Thickness Profile Using Ultra-High Resolution and Long Scan Depth Optical Coherence Tomography

    PubMed Central

    Jiang, Hong; Xu, Zhe; Perez, Victor; Wang, Jianhua

    2014-01-01

    Purpose To determine the vertical and horizontal thickness profiles of the corneal epithelium in vivo using ultra-long scan depth and ultra-high resolution spectral domain optical coherence tomography (SD-OCT). Methods A SD-OCT was developed with an axial resolution of ∼3.3 µm in tissue and an extended scan depth. Forty-two eyes of 21 subjects were imaged twice. The entire horizontal and vertical corneal epithelial thickness profiles were evaluated. The coefficient of repeatability (CoR) and intraclass correlation (ICC) of the tests and interobserver variability were analyzed. Results The full width of the horizontal epithelium was detected, whereas part of the superior epithelium was not shown for the covered super eyelid. The mean central epithelial corneal thickness was 52.0±3.2 µm for the first measurement and 52.3±3.4 µm for the second measurement (P>.05). In the central zone (0–3.0 mm), the paracentral zones (3.0–6.0 mm) and the peripheral zones (6.0–10.0 mm), the mean epithelial thickness ranged from 51 to 53 µm, 52 to 57 µm, and 58 to 72 µm, respectively. There was no difference between the two tests at both meridians and in the right and left eyes (P>.05). The ICCs of the two tests ranged from 0.70 to 0.97 and the CoRs ranged from 2.5 µm to 7.8 µm from the center to the periphery, corresponding to 5.6% to 10.6% (CoR%). The ICCs of the two observers ranged from 0.72 to 0.93 and the CoRs ranged from 4.5 µm to 10.4 µm from the center to the periphery, corresponding to 8.7% to 15.2% (CoR%). Conclusions This study demonstrated good repeatability of ultra-high resolution and long scan depth SD-OCT to evaluate the entire thickness profiles of the corneal epithelium. The epithelial thickness increases from the center toward the limbus. PMID:24844566

  20. New constraints on the CH4 vertical profile in Uranus and Neptune from Herschel observations

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Moreno, R.; Orton, G. S.; Feuchtgruber, H.; Cavalié, T.; Moses, J. I.; Hartogh, P.; Jarchow, C.; Sagawa, H.

    2015-07-01

    Dedicated line observations of CH4 rotational lines performed with Herschel/PACS and HIFI in 2009-2011 provide new inferences of the mean methane profile in the upper tropospheres and stratospheres of Uranus and Neptune. At Uranus, CH4 is found to be near saturation, with a ~9 × 10-4 tropopause/lower stratosphere mole fraction. This is nominally six times larger than inferred from Spitzer in 2007, although reconciliation may be possible if the CH4 abundance decreases sharply from ~100 to 2 mbar. This unexpected situation might reflect heterogeneous conditions in Uranus' stratosphere, with local CH4 depletions and heating associated with downwelling motions. Higher CH4 abundances compared to values inferred under solstitial conditions by Voyager in 1989 suggest that atmospheric mixing is effectively subdued at high latitudes and/or is time-variable. At Neptune, the mid-stratosphere CH4 abundance is (1.15 ± 0.10) × 10-3, in agreement with earlier determinations and indicative of either leakage through a warmer polar region or upwelling at low or middle latitudes. On both planets, spatially resolved observations of temperature and methane in the stratosphere are needed to further identify the physical processes at work. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  2. Vertical profiles of NOx chemistry in the polluted nocturnal boundary layer in Phoenix, AZ: I. Field observations by long-path DOAS

    NASA Astrophysics Data System (ADS)

    Wang, S.; Ackermann, R.; Stutz, J.

    2006-01-01

    Nocturnal chemistry in the atmospheric boundary layer plays a key role in determining the initial chemical conditions for photochemistry during the following morning as well as influencing the budgets of O3 and NO2. Despite its importance, chemistry in the nocturnal boundary layer (NBL), especially in heavily polluted urban areas, has received little attention so far, which greatly limits the current understanding of the processes involved. In particular, the influence of vertical mixing on chemical processes gives rise to complex vertical profiles of various reactive trace gases and makes nocturnal chemistry altitude-dependent. The processing of pollutants is thus driven by a complicated, and not well quantified, interplay between chemistry and vertical mixing. In order to gain a better understanding of the altitude-dependent nocturnal chemistry in the polluted urban environment, a field study was carried out in the downtown area of Phoenix, AZ, in summer 2001. Vertical profiles of reactive species, such as O3, NO2, and NO3, were observed in the lowest 140 m of the troposphere throughout the night. The disappearance of these trace gas vertical profiles during the morning coincided with the morning transition from a stable NBL to a well-mixed convective layer. The vertical gradients of trace gas levels were found to be dependent on both surface NOx emission strength and the vertical stability of the NBL. The vertical gradients of Ox, the sum of O3 and NO2, were found to be much smaller than those of O3 and NO2, revealing the dominant role of NO emissions followed by the O3+NO reaction for the altitude-dependence of nocturnal chemistry in urban areas. Dry deposition, direct emissions, and other chemical production pathways of NO2 also play a role for the Ox distribution. Strong positive vertical gradients of NO3, that are predominantly determined by NO3 loss near the ground, were observed. The vertical profiles of NO3 and its reservoir species (N2O5) confirm earlier

  3. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  4. Vertical profiles of soil water content as influenced by environmental factors in a small catchment on the hilly-gully Loess Plateau.

    PubMed

    Wang, Bing; Wen, Fenxiang; Wu, Jiangtao; Wang, Xiaojun; Hu, Yani

    2014-01-01

    Characterization of soil water content (SWC) profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform) on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom) were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0-20, 20-160, and 160-300 cm), generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05). Landform significantly affected SWC in the surface soil layer (0-20 cm) before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other complex terrains

  5. Vertical Profiles of Soil Water Content as Influenced by Environmental Factors in a Small Catchment on the Hilly-Gully Loess Plateau

    PubMed Central

    Wang, Bing; Wen, Fenxiang; Wu, Jiangtao; Wang, Xiaojun; Hu, Yani

    2014-01-01

    Characterization of soil water content (SWC) profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform) on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom) were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0–20, 20–160, and 160–300 cm), generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05). Landform significantly affected SWC in the surface soil layer (0–20 cm) before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other complex

  6. Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Hong, Yang; Qi, Youcun; Wen, Yixin; Zhang, Jian; Gourley, Jonathan J.; Liao, Liang

    2013-02-01

    ABSTRACT This paper presents an empirical method for converting reflectivity from Ku-band (13.8 GHz) to S-band (2.8 GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empirical dual-frequency relations is based on theoretical simulations, which have assumed appropriate scattering and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/hail). Particle phase, shape, orientation, and density (especially for snow particles) have been considered in applying the T-matrix method to compute the scattering amplitudes. Gamma particle size distribution (PSD) is utilized to model the microphysical properties in the ice region, melting layer, and raining region of precipitating clouds. The variability of PSD parameters is considered to study the characteristics of dual-frequency reflectivity, especially the variations in radar dual-frequency ratio (DFR). The empirical relations between DFR and Ku-band reflectivity have been derived for particles in different regions within the vertical structure of precipitating clouds. The reflectivity conversion using the proposed empirical relations has been tested using real data collected by TRMM-PR and a prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN. The processing and analysis of collocated data demonstrate the validity of the proposed empirical relations and substantiate their practical significance for reflectivity conversion, which is essential to the TRMM-based vertical profile of reflectivity correction approach in improving NEXRAD-based QPE.

  7. A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles

    NASA Astrophysics Data System (ADS)

    Euser, T.; Luxemburg, W. M. J.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.; Bastiaanssen, W. G. M.

    2014-06-01

    The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.

  8. Statistical model of the range-dependent error in radar-rainfall estimates due to the vertical profile of reflectivity

    NASA Astrophysics Data System (ADS)

    Krajewski, Witold F.; Vignal, Bertrand; Seo, Bong-Chul; Villarini, Gabriele

    2011-05-01

    SummaryThe authors developed an approach for deriving a statistical model of range-dependent error (RDE) in radar-rainfall estimates by parameterizing the structure of the non-uniform vertical profile of radar reflectivity (VPR). The proposed parameterization of the mean VPR and its expected variations are characterized by several climatological parameters that describe dominant atmospheric conditions related to vertical reflectivity variation. We have used four years of radar volume scan data from the Tulsa weather radar WSR-88D (Oklahoma) to illustrate this approach and have estimated the model parameters by minimizing the sum of the squared differences between the modeled and observed VPR influences that were computed using radar data. We evaluated the mean and standard deviation of the modeled RDE against rain gauge data from the Oklahoma Mesonet network. No rain gauge data were used in the model development. The authors used the three lowest antenna elevation angles to demonstrate the model performance for cold (November-April) and warm (May-October) seasons. The RDE derived from the parameterized models shows very good agreement with the observed differences between radar and rain gauge estimates of rainfall. For the third elevation angle and cold season, there are 82% and 42% improvements for the RDE and its standard deviation with respect to the no-VPR case. The results of this study indicate that VPR is a key factor in the characterization of the radar range-dependent bias, and the proposed models can be used to represent the radar RDE in the absence of rain gauge data.

  9. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  10. Vertical Seismic Profiling at riser drilling site in the rupture area of the 1944 Tonankai Earthquake, Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Hino, R.; Kinoshita, M.; Araki, E.; Byrne, T. B.; McNeill, L. C.; Saffer, D. M.; Eguchi, N. O.; Takahashi, K.; Toczko, S.

    2009-12-01

    A series of scientific drilling expeditions is in operation in the Nankai Trough to reveal the faulting mechanism of the magathrust earthquakes, through clarifying composition, fine structure, mechanical behavior, and environmental variables of the seismogenic faults. In the studied area, extensive seismic surveys for site characterization have been made to image detailed geometry of the fault complex in the accretionary prism as well as Vp distribution around the faults. Although these previous surveys provided invaluable information for understanding seismotectonic processes in this subduction zone, more complete knowledge is needed to be acquired to predict dynamic behavior of the faults, such as geometrical irregularities in short wavelength, Vs and seismic attenuation which are sensitive to fluid distribution in and around fault zones. It is expected that estimation of these parameters would be improved considerably by a seismic exploration using a vertical array of seismographs installed in a deep borehole (VSP: vertical seismic profiling). In July 2009, we made a VSP at one of the drilling sites located just above the rupture area of the 1994 Tonankai Earthquake (M 8.1), during the IODP Exp.319. The well site of our VSP was made by the riser drilling of D/V Chikyu. The seismic array, lowered from Chikyu into the hole, was composed of a three-component accelerometer and vertical separation of the array elements was 15.12 m. The VSP was composed of offset VSP and zero-offset VSP. In the offset VSP, a tuned airgun array towed by R/V Kairei was shot along one straight line (walk-away VSP) and another circular line (walk-around VSP) and seismic signals were recorded by an array consisting of 16 elements installed from 907 to 1,135 m in depth from seafloor. The object of the walk-away VSP is to obtain fine image of the faults using reflection arrivals with less attenuation. It is also expected to obtain spatial variation of Vs from arrival time tomography of

  11. The vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Hosein, Todd

    1988-01-01

    Today's flight simulators, such as NASA's multimillion dollar Vertical Motion Simulator (VMS), recreate an authentic aircraft environment, and reproduce the sensations of flight by mechanically generating true physical events. In addition to their application as a training tool for pilots, simulators have become essential in the design, construction, and testing of new aircraft. Simulators allow engineers to study an aircraft's flight performance and characteristics without the cost or risk of an actual test flight. Because of their practicality, simulators will become more and more important in the development and design of new, safer aircraft.

  12. Dynamic links between shape of the eddy viscosity profile and the vertical structure of tidal current amplitude in bays and estuaries

    NASA Astrophysics Data System (ADS)

    Chen, Wei; de Swart, Huib E.

    2016-03-01

    Several field studies in bays and estuaries have revealed pronounced subsurface maxima in the vertical profiles of the current amplitude of the principal tidal harmonic, or of its vertical shear, over the water column. To gain fundamental understanding about these phenomena, a semi-analytical model is designed and analysed, with focus on the sensitivity of the vertical structure of the tidal current amplitude to formulations of the vertical shape of the eddy viscosity. The new analytical solutions for the tidal current amplitude are used to explore their dependence on the degree of surface mixing, the vertical shape of eddy viscosity in the upper part of the water column and the density stratification. Sources of surface mixing are wind and whitecapping. Results show three types of current amplitude profiles of tidal harmonics, characterised by monotonically decreasing shear towards the surface, "surface jumps" (vertical shear of tidal current amplitude has a subsurface maximum) and "subsurface jets" (maximum tidal current amplitude below the surface), respectively. The "surface jumps" and "subsurface jets" both occur for low turbulence near the surface, whilst additionally the surface jumps only occur if the eddy viscosity in the upper part of the water column decreases faster than linearly to the surface. Furthermore, "surface jumps" take place for low density stratification, while and "subsurface jets" occur for high density stratification. The physics causing the presence of surface jumps and subsurface jets is also discussed.

  13. Improving the Automatic Inversion of Digital ISIS-2 Ionogram Reflection Traces into Topside Vertical Electron-Density Profiles

    NASA Technical Reports Server (NTRS)

    Benson, R. F.; Truhlik, V.; Huang, X.; Wang, Y.; Bilitza, D.

    2011-01-01

    The topside-sounders on the four satellites of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35-mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the TOPside Ionogram Scalar with True-height (TOPIST) algorithm has been produced that enables the automatic inversion of ISIS-2 ionogram reflection traces into topside vertical electron-density profiles Ne(h). More than million digital Alouette/ISIS topside ionograms have been produced and over 300,000 are from ISIS 2. Many of these ISIS-2 ionograms correspond to a passive mode of operation for the detection of natural radio emissions and thus do not contain ionospheric reflection traces. TOPIST, however, is not able to produce Ne(h) profiles from all of the ISIS-2 ionograms with reflection traces because some of them did not contain frequency information. This information was missing due to difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame-sync pulse and/or the frequency markers. Of the many digital topside ionograms that TOPIST was able to process, over 200 were found where direct comparisons could be made with Ne(h) profiles that were produced by manual scaling in the early days of the ISIS program. While many of these comparisons indicated excellent agreement (<10% average difference over the entire profile) there were also many cases with large differences (more than a factor of two). Here we will report on two approaches to improve the automatic inversion process: (1) improve the quality of the digital ionogram database by remedying the missing frequency-information problem when possible, and (2) using the above-mentioned comparisons as

  14. Source apportionment of PAHs and n-alkanes in respirable particles in Tehran, Iran by wind sector and vertical profile.

    PubMed

    Moeinaddini, Mazaher; Esmaili Sari, Abbas; Riyahi bakhtiari, Alireza; Chan, Andrew Yiu-Chung; Taghavi, Seyed Mohammad; Hawker, Darryl; Connell, Des

    2014-06-01

    The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m(3), respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: 'diesel' (56.3% of total PAHs on average), 'gasoline' (15.5%), 'wood combustion, and incineration' (13%), 'industry' (9.2%), and 'road soil particle' (6.0%). The four n-alkane source factors identified were: 'petrogenic' (65% of total n-alkanes on average), 'mixture of petrogenic and biomass burning' (15%), 'mixture of biogenic and fossil fuel' (11.5%), and 'biogenic' (8.5%). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4% of total PAHs and 5.0% of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area

  15. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].

    PubMed

    Ma, Peng-fei; Chen, Liang-fu; Zou, Ming-min; Zhang, Ying; Tao, Ming-hui; Wang, Zi-leng; Su, Lin

    2015-12-01

    Ozone is a particularly critical trace gas in the Earth's atmosphere, since this molecule plays a key role in the photochemical reactions and climate change. The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles, with the additional advantage that measurements are also possible during the night. Because of the influence of atmospheric temperature, the ozone profile retrieval accuracy is severely limited. This paper analyze and discuss the ozone absorption spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail. First, we simulate the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty, using line-by-line radiative transfer mode under 6 different atmosphere modes. The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5%-6% change of ozone density variation in all layers of the profile. Then, we calculate the change of weighting function by a temperature error of 1 K, using the Community Radiative Transfer Model (CRTM) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result. The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere, with the peak vertical sensitivity between 10-100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile. Finally, the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state. In order to resolve the problem of temperature uncertainty and get high accuracy

  16. Development of a computer technique for the prediction of transport aircraft flight profile sonic boom signatures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Coen, Peter G.

    1991-01-01

    A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.

  17. Value of corneal epithelial and Bowman’s layer vertical thickness profiles generated by UHR-OCT for sub-clinical keratoconus diagnosis

    PubMed Central

    Xu, Zhe; Jiang, Jun; Yang, Chun; Huang, Shenghai; Peng, Mei; Li, Weibo; Cui, Lele; Wang, Jianhua; Lu, Fan; Shen, Meixiao

    2016-01-01

    Ultra-high resolution optical coherence tomography (UHR-OCT) can image the corneal epithelium and Bowman’s layer and measurement the thicknesses. The purpose of this study was to validate the diagnostic power of vertical thickness profiles of the corneal epithelium and Bowman’s layer imaged by UHR-OCT in the diagnosis of sub-clinical keratoconus (KC). Each eye of 37 KC patients, asymptomatic fellow eyes of 32 KC patients, and each eye of 81 normal subjects were enrolled. Vertical thickness profiles of the corneal epithelium and Bowman’s layer were measured by UHR-OCT. Diagnostic indices were calculated from vertical thickness profiles of each layer and output values of discriminant functions based on individual indices. Receiver operating characteristic curves were determined, and the accuracy of the diagnostic indices were assessed as the area under the curves (AUC). Among all of the individual indices, the maximum ectasia index for epithelium had the highest ability to discriminate sub-clinical KC from normal corneas (AUC = 0.939). The discriminant function containing maximum ectasia indices of epithelium and Bowman’s layer further increased the AUC value (AUC = 0.970) for sub-clinical KC diagnosis. UHR-OCT-derived thickness indices from the entire vertical thickness profiles of the corneal epithelium and Bowman’s layer can provide valuable diagnostic references to detect sub-clinical KC. PMID:27511620

  18. Value of corneal epithelial and Bowman's layer vertical thickness profiles generated by UHR-OCT for sub-clinical keratoconus diagnosis.

    PubMed

    Xu, Zhe; Jiang, Jun; Yang, Chun; Huang, Shenghai; Peng, Mei; Li, Weibo; Cui, Lele; Wang, Jianhua; Lu, Fan; Shen, Meixiao

    2016-01-01

    Ultra-high resolution optical coherence tomography (UHR-OCT) can image the corneal epithelium and Bowman's layer and measurement the thicknesses. The purpose of this study was to validate the diagnostic power of vertical thickness profiles of the corneal epithelium and Bowman's layer imaged by UHR-OCT in the diagnosis of sub-clinical keratoconus (KC). Each eye of 37 KC patients, asymptomatic fellow eyes of 32 KC patients, and each eye of 81 normal subjects were enrolled. Vertical thickness profiles of the corneal epithelium and Bowman's layer were measured by UHR-OCT. Diagnostic indices were calculated from vertical thickness profiles of each layer and output values of discriminant functions based on individual indices. Receiver operating characteristic curves were determined, and the accuracy of the diagnostic indices were assessed as the area under the curves (AUC). Among all of the individual indices, the maximum ectasia index for epithelium had the highest ability to discriminate sub-clinical KC from normal corneas (AUC = 0.939). The discriminant function containing maximum ectasia indices of epithelium and Bowman's layer further increased the AUC value (AUC = 0.970) for sub-clinical KC diagnosis. UHR-OCT-derived thickness indices from the entire vertical thickness profiles of the corneal epithelium and Bowman's layer can provide valuable diagnostic references to detect sub-clinical KC. PMID:27511620

  19. Reliability of rock magnetic properties and paleointensity along vertical basalt flow profiles: identification of best part for sampling?

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Caballero, C. M.; Bohnel, H.

    2013-12-01

    A review of the rock magnetic properties, AMS, opaque microscopy and paleointensity (PI) of two vertical single lava flows (RM and PC) and its comparison with the CU profile of Xitle volcano are presented. The emplacement dynamics of the RM and PC lava flows indicates that possibly was via inflation in its internal structure. We search for the possible explanation (emplacement physics, mineralogical, magnetic anomalies) to the variability of magnetic properties and PI along the lava flows, and at the same time look for the best part to get the paleomagnetic samples. Considerable intra- and inter-flow differences in both the characteristic directions and paleointensities are observed both in one of the new profiles (RM) and previous studies of sites distributed across the lava field. These variations do not correlate with any of the measured physical or magnetic properties of the flows. At any one site the mean directions are well defined and it is only when considered collectively that the inconsistencies are recognized. Intra-flow and inter-site PI variations are large: a total of 117 determinations yield between 36.6 and 139.7 μT. Within this range it is difficult to recognize a best estimate on the basis of rock magnetic criteria. These results raise questions about the reliability of lavas as paleomagnetic recorders and highlight the importance of sampling strategy in obtaining representative flow-mean parameters. Thellier-type PI data from Mexico are related to global records, which could indicate that non-dipole features might be responsible for the higher than expected results. However, the scarcity of available data obscures the significance of this observation and the balance of evidence rather suggest an artificial biasing of most measurements towards high values. This is in contrasts to the AMS results, which suggests that in the Xitle lava flows their (almost) lower part are the best to give reliable PI studies results.

  20. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles.

    PubMed

    Soyka, Florian; Giordano, Paolo Robuffo; Barnett-Cowan, Michael; Bülthoff, Heinrich H

    2012-07-01

    Understanding the dynamics of vestibular perception is important, for example, for improving the realism of motion simulation and virtual reality environments or for diagnosing patients suffering from vestibular problems. Previous research has found a dependence of direction discrimination thresholds for rotational motions on the period length (inverse frequency) of a transient (single cycle) sinusoidal acceleration stimulus. However, self-motion is seldom purely sinusoidal, and up to now, no models have been proposed that take into account non-sinusoidal stimuli for rotational motions. In this work, the influence of both the period length and the specific time course of an inertial stimulus is investigated. Thresholds for three acceleration profile shapes (triangular, sinusoidal, and trapezoidal) were measured for three period lengths (0.3, 1.4, and 6.7 s) in ten participants. A two-alternative forced-choice discrimination task was used where participants had to judge if a yaw rotation around an earth-vertical axis was leftward or rightward. The peak velocity of the stimulus was varied, and the threshold was defined as the stimulus yielding 75 % correct answers. In accordance with previous research, thresholds decreased with shortening period length (from ~2 deg/s for 6.7 s to ~0.8 deg/s for 0.3 s). The peak velocity was the determining factor for discrimination: Different profiles with the same period length have similar velocity thresholds. These measurements were used to fit a novel model based on a description of the firing rate of semi-circular canal neurons. In accordance with previous research, the estimates of the model parameters suggest that velocity storage does not influence perceptual thresholds. PMID:22623095

  1. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  2. Results of vertical seismic profiling at Well 46-28, Rye Patch Geothermal Field, Pershing County, Nevada

    SciTech Connect

    Feighner, M.A.; Daley, T.M.; Majer, E.L.

    1998-02-25

    A Vertical Seismic Profile (VSP) was recorded in Rye Patch by LBNL between December 11 and December 13, 1997. Figure 1 shows the location of the Rye Patch Geothermal Field with Well 46-28 located within the marked Rye Patch Anomaly. The VSP in Well 46-28 used a vibroseis source and a single-level, high temperature, hydraulic wall-locking, 3-component seismometer. The vibroseis source was a Mertz P-wave vibrator. The source sweep was 10 Hz to 80 Hz, 10 seconds long, with a 0.2 s cosine taper. The borehole geophone was an SSC model LVHK 6001 using 14 Hz geophones. The recording system was a Geometrics Strataview. Six data channels were recorded: the three geophones, the source pilot, the vibrator reference and the vibrator baseplate accelerometer. The record length was 12,288 samples at a 1 ms sample rate, giving a 2.3 s correlated record length. A 10 Hz low cut filter was used and no high cut filter was used except the anti-alias filter. Results are described.

  3. The application of vertical seismic profiling and cross-hole tomographic imaging for fracture characterization at Yucca Mountain

    SciTech Connect

    Majer, E.L.; Peterson, J.E.; Tura, M.A.; McEvilly, T.V.

    1990-01-01

    In order to obtain the necessary characterization for the storage of nuclear waste, much higher resolution of the features likely to affect the transport of radionuclides will be required than is normally achieved in conventional surface seismic reflection used in the exploration and characterization of petroleum and geothermal resources. Because fractures represent a significant mechanical anomaly seismic methods using are being investigated as a means to image and characterize the subsurface. Because of inherent limitations in applying the seismic methods solely from the surface, state-of-the-art borehole methods are being investigated to provide high resolution definition within the repository block. Therefore, Vertical Seismic Profiling (VSP) and cross-hole methods are being developed to obtain maximum resolution of the features that will possible affect the transport of fluids. Presented here will be the methods being developed, the strategy being pursued, and the rational for using VSP and crosshole methods at Yucca Mountain. The approach is intended to be an integrated method involving improvements in data acquisition, processing, and interpretation as well as improvements in the fundamental understanding of seismic wave propagation in fractured rock. 33 refs., 4 figs.

  4. Estimate of the vertical plankton biomass profile on the basis of measurements of fluorescent characteristics in pelagial of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Panchenko, Mikhail V.; Sakirko, Maria V.; Usoltseva, Marina V.; Popovskaya, Galina I.; Domysheva, Valentina M.; Shimaraev, Mikhail N.; Zavoruev, Valerii V.; Pestunov, Dmitrii A.

    2014-11-01

    We study the effect of physical, chemical and biological processes on gas exchange of CO2 in the air-water system in Lake Baikal. Photosynthesis of aquatic biota is known to play a crucial role in changing the concentration of carbon dioxide in the water. Fluorescent methods are considered to be of high performance in problems of determining quantitative characteristics of biomass, however they require preliminary calibration directly for a specific type of plankton. In the pelagic zone of Lake Baikal the species composition, quantitative and spatial distribution of phytoplankton are characterized by strong spatial and temporal variability. Therefore, the fluorescent devices calibration on a single reference does not provide acceptable accuracy of quantitative assessment of the biomass. The results discussed in the paper were obtained by shipboard measurements during the Baikal campaign of 2010-2011. Correlation between the biomass in 25-meter water layer and the integral value of the fluorescent signal in this layer was obtained for calibration. The report discusses the advantages and disadvantages of the chosen methods and the results of retrieval of the vertical profiles of the biomass for stations in the pelagic zone of Lake Baikal in spring for the 2010-2011 biennium.

  5. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, William R.

    1992-01-01

    Azulene-doped naphthalene was directionally solidified during the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection were determined as a function of the temperature profile in the furnace and the freezing rate. Convection velocities were two orders of magnitude lower when the temperature increased with height. Rarely was the convection pattern axisymmetric, even though the temperature varied less than 0.1 K around the circumference of the growth ampoule. Correspondingly the cross sectional variation in azulene concentration tended to be asymmetric, especially when the temperature increased with height. This cross sectional variation changed dramatically along the ingot, reflecting changes in convection presumably due to the decreasing height of the melt. Although there was large scatter and irreproducibility in the cross sectional variation in doping, this variation tended to be least when the growth rate was low and the convection was vigorous. It is expected that compositional variations would also be small at high growth rates with weak convection and flat interfaces, although this was not investigated in the present experiments. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions could produce greater inhomogeneities than on Earth. Combined use of microgravity and magnetic fields would be required to achieve homogeneity when it is necessary to freeze slowly in order to avoid constitutional supercooling.

  6. Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin.

    PubMed

    Rajmohan, N; Prathapar, S A; Jayaprakash, M; Nagarajan, R

    2014-09-01

    The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe > Mn > Cr > Zn > Ni > Cu > Co > Pb > Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I(geo)), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I(geo) values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87%. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC

  7. Atmospheric dust charging, vertical profiles and optical properties measured in the Arabian Peninsula during the DREAME campaign

    NASA Astrophysics Data System (ADS)

    Ulanowski, Z.; Sabbah, I.; Harrison, R. G.; Nicoll, K. A.; Hirst, E.; Kaye, P. H.; Al-Abbadi, N.; Rogers, G.

    2010-05-01

    Polarimetric observations of atmospheric Saharan dust over the Canary Islands have provided strong evidence for the presence of vertically aligned particles. The alignment was thought to be due to the electric field present because of dust charging. It was concluded that the charging and consequent partial alignment could be a common feature of atmospheric mineral dust layers, influencing the optical properties of dust layers and possibly also dust transport (Atmos. Chem. Phys. 7, 6161, 2007). We show preliminary results from the DREAME campaign, aimed at investigating these phenomena. DREAME used simultaneous and collocated measurements from specially developed aerosol radiosondes, and ground-based sun photometers and electric field meters. The radiosondes provided vertical profiles of dust size distribution and electric charge density, in addition to standard meteorological parameters (Ulanowski et al. EGU 2010, AS3.16). The electric field was measured in Kuwait between late April and November 2009, and at Solar Village (Riyadh, Saudi Arabia) between May and June 2009. The measurements were supplemented by satellite retrievals of aerosol properties. Similar measurements but without electric field meters were carried out on Cape Verde Islands in August 2009 (Nicoll et al. EGU 2010, AS4.7). The electric field measured on the ground in Kuwait showed strong variability, particularly in the presence of atmospheric dust, when polarity reversals from the normal positive potential gradient (PG) clear-sky pattern were frequently observed. In the absence of clouds the negative PG excursions were often down to -800 V/m and reached -1300 V/m. The PG was strongly correlated with the aerosol optical thickness (AOT) from the sun photometer: the correlation coefficient was about -0.51 at visible and near infra-red wavelengths and a few percent less in the UV. Slightly lower correlation was present for satellite AOT: -0.4 for MODIS AOT at 550 nm, and -0.3 for OMI AOT at 483.5 nm

  8. Using a fibre-optic cable as Distributed Acoustic Sensor for Vertical Seismic Profiling - Overview of various field tests

    NASA Astrophysics Data System (ADS)

    Götz, Julia; Lüth, Stefan; Henninges, Jan; Reinsch, Thomas

    2015-04-01

    Fibre-optic Distributed Acoustic Sensing (DAS) or Distributed Vibration Sensing (DVS) is a technology, where an optical fibre cable is used as a sensor for acoustic signals. An ambient seismic wavefield, which is coupled by friction or pressure to the optical fibre, induces dynamic strain changes along the cable. The DAS/DVS technology offers the possibility to record an optoelectronic signal which is linearly related to the time dependent local strain. The DAS/DVS technology is based on the established technique of phase-sensitive optical time-domain reflectometry (phi-OTDR). Coherent laser pulses are launched into the fibre to monitor changes in the resulting elastic Rayleigh backscatter with time. Dynamic strain changes lead to small displacements of the scattering elements (non-uniformities within the glass structure of the optical fibre), and therefore to variations of the relative phases of the backscattered photons. The fibre behaves as a series of interferometers whose output is sensitive to small changes of the strain at any point along its length. To record the ground motion not only in space but also in time, snapshots of the wavefield are created by repeatedly firing laser pulses into the fibre at sampling frequencies much higher than seismic frequencies. DAS/DVS is used e.g. for continuous monitoring of pipelines, roads or borders and for production monitoring from within the wellbore. Within the last years, the DAS/DVS technology was further developed to record seismic data. We focus on the recording of Vertical Seismic Profiling (VSP) data with DAS/DVS and present an overview of various field tests published between 2011 and 2014. Here, especially CO2 storage pilot sites provided the opportunity to test this new technology for geophysical reservoir monitoring. DAS/DVS-VSP time-lapse measurements have been published for the Quest CO2 storage site in Canada. The DAS/DVS technology was also tested at the CO2 storage sites in Rousse (France), Citronelle

  9. Methane at Ascension Island, southern tropical Atlantic Ocean: continuous ground measurement and vertical profiling above the Trade-Wind Inversion

    NASA Astrophysics Data System (ADS)

    Lowry, David; Brownlow, Rebecca; Fisher, Rebecca; Nisbet, Euan; Lanoisellé, Mathias; France, James; Thomas, Rick; Mackenzie, Rob; Richardson, Tom; Greatwood, Colin; Freer, Jim; Cain, Michelle; Warwick, Nicola; Pyle, John

    2015-04-01

    δ13CCH4. The marine boundary layer at the surface has CH4 mixing ratios below 1800ppb. In the mixing layer of the TWI, values increase, and above 2000m, methane is above 1820ppb. Back trajectory analysis shows that these inputs are from African savanna and wetland emissions. After vertical mixing events the difference across the TWI reduces to less than 10ppb. The experiment has demonstrated the feasibility of UAV work to observe methane at Ascension. In effect, Ascension becomes a 'virtual mountain observatory' - measurements here can both use the Trade Winds to monitor the wide South Atlantic and Southern Ocean, and also the air above the TWI to assess inputs from tropical Africa and S. America. Comparison of continuous ground measurements, vertical UAV profiles and data from the Ascension TCCON site, potentially allows observation of a complete atmospheric profile. Acknowledgement This work is supported by the Natural Environment Research Council Grant NE/K005979/1

  10. Vertical ozone distribution characteristics deduced from 44,000 re-evaluated Umkehr profiles (1957-2000)

    NASA Astrophysics Data System (ADS)

    Bojkov, R. D.; Kosmidis, E.; DeLuisi, J. J.; Petropavlovskikh, I.; Fioletov, V. E.; Godin, S.; Zerefos, C.

    Umkehr observations taken during the 1957-2000 period at 15 stations located between 19 and 52°N have been reanalyzed using a significantly improved algorithm-99, developed by DeLuisi and Petropavlovskikh et al. (2000a,b). The alg-99 utilizes new latitudinal and seasonally dependent first guess ozone and temperature profiles, new vector radiative transfer code, complete aerosol corrections, gravimetric corrections, and others. Before reprocessing, all total ozone values as well as the N-values (radiance) readings were thoroughly re-evaluated. For the first time, shifts in the N-values were detected and provisionally corrected. The re-evaluated Umkehr data set was validated against satellite and ground based measurements. The retrievals with alg-99 show much closer agreement with the lidar and SAGE than with the alg-92. Although the latitudinal coverage is limited, this Umkehr data set contains 44,000 profiles and represent the longest ( 40 years) coherent information on the ozone behavior in the stratosphere of the Northern Hemisphere. The 14-months periods following the El-Chichon and the Mt. Pinatubo eruptions were excluded from the analysis. Then the basic climatological characteristics of the vertical ozone distribution in the 44-52°N and more southern locations are described. Some of these characteristics are not well known or impossible to be determined from satellites or single stations. The absolute and relative variability reach their maximum during winter-spring at altitudes below 24km the lower stratospheric layers in the middle latitudes contain 62% of the total ozone and contribute 57% to its total variability. The layer-5 (between 24 and 29km) although containing 20% of the total ozone shows the least fluctuations, no trend and contributes only 11% to the total ozone variability. Meridional cross-sections from 19 to 52°N of the vertical ozone distribution and its variability illustrate the changes, and show poleward-decreasing altitude of the ozone

  11. Partitions and vertical profiles of 9 endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity.

    PubMed

    Yang, Lihua; Cheng, Qiao; Lin, Li; Wang, Xiaowei; Chen, Baowei; Luan, Tiangang; Tam, Nora F Y

    2016-04-01

    Phenolic endocrine disrupting chemicals (EDCs) in an estuarine water column in a depth profile of five water layers (0.05 D, 0.20 D, 0.60 D, 0.80 D and 0.90 D, D = Depth, 10.7 ± 0.7 m) and their corresponding environmental parameters (tide, salinity and particle size) were investigated over a year. Water sample from each layer was further separated into three fractions, which were dissolved, coarse (SPM-D, Φ ≥ 2.7 μm) and fine (SPM-F, 2.7 μm > Φ ≥ 0.7 μm) suspended particulate matters. Most of EDCs in the water column were presented in the dissolved fraction. Vertical profiles of salinity fluctuations showed that the upper water layer was most influenced by upstream flow. Estriol (E3), mestranol (Mes) and 17α-ethynylestradiol (EE2) concentrations were significantly higher in ebb tide than in flood tide, indicating that EDCs mainly came from terrestrial source, the upstream flow. Dissolved EDCs also exhibited high levels in the surface layer (0.05 D) due to the upstream source and atmosphere deposition, followed by the bottom layer (0.90 D) owing to the re-suspension of EDCs-containing sediment. Compared to the dissolved phase, the contents of BPA, Mes and EE2 in the solid phase were affected by particle size and exhibited a trend of SPM-F > SPM-D > sediment. On the other hand, the concentrations of octylphenol (OP) and t-nonylphenol (NP), the degradation products from common nonionic surfactants, in sediment were higher than those in suspended particles, and NP concentration was higher in flood tide than that in ebb tide. For both SPM-D and SPM-F, their corresponding EDCs concentrations were negatively related to SPM concentrations due to particle concentration effect (PCE). Owing to the "salting-out effect", salinity pushed EDCs from dissolved fraction to particulate or sedimentary phase. PMID:26736056

  12. A new method to measure bowen ratios using high resolution vertical dry and wet bulb temperature profiles

    NASA Astrophysics Data System (ADS)

    Euser, T.; Luxemburg, W.; Everson, C.; Mengistu, M.; Clulow, A.; Bastiaanssen, W.

    2013-06-01

    The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. Despite its simplicity, the Bowen ratio method is generally considered to be unreliable due to the use of two-level sensors that are installed by default in operational Bowen ratio systems. In this paper we present the concept of a new measurement methodology to estimate the Bowen ratio from high resolution vertical dry and wet bulb temperature profiles. A short field experiment with Distributed Temperature Sensing (DTS) in a fibre optic cable having 13 levels was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and temperature at 0.20 m intervals was established. These data allows the computation of the Bowen ratio with a high precision. By linking the Bowen ratio to net radiation and soil heat flux, the daytime latent heat flux was estimated. The latent heat flux derived from DTS-based Bowen ratio (BR-DTS) showed consistent agreement (correlation coefficients between 0.97 and 0.98) with results derived from eddy covariance, surface layer scintillometer and surface renewal techniques. The latent heat from BR-DTS overestimated the latent heat derived with the eddy covariance by 4% and the latent heat derived with the surface layer scintillometer by 8%. Through this research, a new window is opened to engage on simplified, inexpensive and easy to interpret in situ measurement techniques for measuring evaporation.

  13. Shallow 3-D vertical seismic profiling around a contaminant withdrawal well on the Lawrence Livermore National Laboratory Site

    SciTech Connect

    Rector, J.; Bainer, R.; Milligan, P.; Tong, C.

    1997-01-30

    One of the major problems associated with ground water contaminant remediation is well placement. Optimal-placement of wells requires an accurate knowledge of geologic structure and stratigraphy in the near surface sediments and rock (0 to 100 m). Without the development of remote imaging provided by geophysical techniques, the required spacing between treatment wells may be less than 2 m in order to be confident that all contaminant reservoirs had been remediated. One method for characterizing geologic structure and stratigraphy in the near surface is vertical seismic profiling (VSP), a technique often used on deep exploration wells to calibrate surface seismic reflection data. For near-surface applications, VSP data can be acquired efficiently using an array of hydrophones lowered into a fluid-filled borehole (Milligan et al, 1997). In this paper we discuss the acquisition and processing of a 3-D VSP collected at a shallow remediation site located on the grounds of the Lawrence Livermore National Laboratory (LLNL) near Livermore, California. The site was used by the United States Navy as an air training base. At this time, initial releases of hazardous materials to the environment occurred in the form of solvents [volatile organic compounds (VOCs)] that were used for the cleaning of airplanes and their parts. Gasoline, diesel and other petroleum-based compounds are also known to have leaked into the ground. California Research and Development Company, a subsidy of Standard Oil, occupied the southeastern portion of the site from 1950 to 1954. The first releases of radioactive materials to the environment occurred at this time, with the beginning of testing of radioactive materials at the site. In 1952, LLNL acquired the site. Additional releases of VOCS, polychlorinated biphenyls (PCBs), metals, radionuclides (primarily tritium), gasoline and pesticides have occurred since. These releases were due to localized spills, landfills, surface impoundments, disposal pits

  14. The effects of vehicle emissions and nucleation events on vertical particle concentration profiles around urban office buildings

    NASA Astrophysics Data System (ADS)

    Quang, T. N.; He, C.; Morawska, L.; Knibbs, L. D.; Falk, M.

    2012-01-01

    Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such this study aimed to assess the influence of vehicle emissions and nucleation formation on particle concentrations (PN and PM2.5) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PN size distribution, PN and PM2.5 concentrations, respectively, for up to three weeks each at three office buildings. The results showed that both PN and PM2.5 concentrations around building envelope were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During the nucleation event, PN concentrations increased (21-46%), while PM2.5 concentrations decreased (36-52%) with height at all three buildings. This study has shown an underappreciated role of nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for studies of both human exposure and particle dynamics.

  15. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  16. Validation of GOMOS-Envisat vertical profiles of O3, NO2, NO3, and aerosol extinction using balloon-borne instruments and analysis of the retrievals

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenaël; Brogniez, Colette; Catoire, Valery; Fussen, Didier; Goutail, Florence; Oelhaf, Hermann; Pommereau, Jean-Pierre; Roscoe, Howard K.; Wetzel, Gerald; Chartier, Michel; Robert, Claude; Balois, Jean-Yves; Verwaerde, Christian; Auriol, Frédérique; François, Philippe; Gaubicher, Bertrand; Wursteisen, Patrick

    2008-02-01

    The UV-visible Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument onboard Envisat performs nighttime measurements of ozone, NO2, NO3 and of the aerosol extinction, using the stellar occultation method. We have conducted a validation exercise using various balloon-borne instruments in different geophysical conditions from 2002 to 2006, using GOMOS measurements performed with stars of different magnitudes. GOMOS and balloon-borne vertical columns in the middle stratosphere are in excellent agreement for ozone and NO2. Some discrepancies can appear between GOMOS and balloon-borne vertical profiles for the altitude and the amplitude of the concentration maximum. These discrepancies are randomly distributed, and no bias is detected. The accuracy of individual profiles in the middle stratosphere is 10 % for ozone and 25 % for NO2. On the other hand, the GOMOS NO3 retrieval is difficult and no direct validation can be conducted. The GOMOS aerosol content is also well estimated, but the wavelength dependence can be better estimated if the aerosol retrieval is performed only in the visible domain. We can conclude that the GOMOS operational retrieval algorithm works well and that GOMOS has fully respected its primary objective for the study of the trends of species in the middle stratosphere, using the profiles in a statistical manner. Some individual profiles can be partly inaccurate, in particular in the lower stratosphere. Improvements could be obtained by reprocessing some GOMOS transmissions in case of specific studies in the middle and lower stratosphere when using the individual profiles.

  17. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  18. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; González-Ramos, Y.; Schneider, M.

    2015-01-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δ D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δ D) ≈ 10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of δ D(H2O) as a means to validate the remote sensing humidity and δ D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δ D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed.

  19. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  20. Effect of aircraft on ultraviolet radiation reaching the ground

    NASA Astrophysics Data System (ADS)

    Plumb, I. C.; Ryan, K. R.

    1998-12-01

    Changes in ozone levels for a range of scenarios, including those for present and projected future aircraft emissions and for present and future halogen loadings, are calculated using the Commonwealth Scientific and Industrial Research Organization two-dimensional chemical transport model. These changes are applied to measured ozone columns and vertical profiles based on measurements to produce vertical profiles of ozone for each scenario considered, which are traceable to measurements. A radiative transfer model is then used to investigate changes in biologically active radiation reaching the surface of the Earth resulting from current and future fleets of aircraft and those resulting from changing levels of halogen compounds in the atmosphere. It is shown that equal changes in ozone column for these scenarios do not produce equal changes in biologically weighted fluxes reaching the ground. This is because aircraft affect ozone mainly in the upper troposphere, whereas the effects of halogens are greatest in the middle and lower stratosphere. The magnitude of the ratio of the biologically weighted flux change to the ozone column change is greater for the case of the aircraft, due to the larger contribution to multiple scattering in the troposphere. For the same reason, projected fleets of supersonic aircraft are shown to have a smaller effect on UV radiation for a given change in ozone column than subsonic aircraft. While aerosols reduce the UV radiation reaching the ground for all scenarios investigated, they have minimal impact on the ratios of UV changes to ozone column changes because the bulk of the aerosol loading is below the altitudes where ozone changes due to aircraft or halogens occur.

  1. Dependence of the drizzle growth process on the cloud top height and its relevance to the aerosol vertical profile

    NASA Astrophysics Data System (ADS)

    Kawamoto, K.; Suzuki, K.

    2013-12-01

    Transitional processes among cloud droplets, drizzle and raindrops are still uncertain and more efforts are required for the better understanding. In this situation, difference in the drizzle growth process was examined according to the cloud top height using the CloudSat and MODIS synergetic datasets. From the CloudSat products such as 2B-GEOPROF, 2B-TAU, ECMWF-AUX, only one-layered water clouds whose top temperatures were warmer than 273K were extracted over China (a circular area having a diameter of 1800km of the center at 35°N and 120°E) and over ocean (a circular area having a diameter of 1500km of the center at 35°N and 150°E). Then a threshold of 3km of the cloud top height was adopted to divide the extracted clouds into upper and lower cases. First, the probability distribution functions (PDF) of the cloud droplet number density (Nc) and the effective particle radius (Re) were calculated for these four cases (land/ocean/upper/lower). Nc was obtained assuming the adiabatic liquid water content from MODIS-derived cloud optical depth and Re. Oceanic clouds had fewer Nc than land clouds, and almost the same for upper and lower cases. Land clouds had more Nc for the lower case than for the higher case. On the other hand, oceanic clouds had larger Re than land clouds, and almost the same for upper and lower cases. Land clouds had smaller Re for the lower case than for the higher case. These results quite agreed with our existing knowledge on the vertical profile of the aerosol number concentration over ocean (pristine) and land (polluted). Although the number of aerosol particles is fewer and almost the same regardless of the height over the ocean, it is more near the surface and it rapidly decreases according to the height over the land. Next, examining PDF of the radar reflectivity (Ze), we found that although PDFs of Ze were almost the same for oceanic clouds regardless of the cloud top height, PDF of land lower clouds were less frequent at around from

  2. A Sensitivity Study of the Aircraft Vortex Spacing System (AVOSS) Wake Predictor Algorithm to the Resolution of Input Meteorological Profiles

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; Butler, Patrick; Riggins, Jamie

    2004-01-01

    The AVOSS project demonstrated the feasibility of applying aircraft wake vortex sensing and prediction technologies to safe aircraft spacing for single runway arrivals. On average, AVOSS provided spacing recommendations that were less than the current FAA prescribed spacing rules, resulting in a potential airport efficiency gain. Subsequent efforts have included quantifying the operational specifications for future Wake Vortex Advisory Systems (WakeVAS). In support of these efforts, each of the candidate subsystems for a WakeVAS must be specified. The specifications represent a consensus between the high-level requirements and the capabilities of the candidate technologies. This report documents the beginnings of an effort to quantify the capabilities of the AVOSS Prediction Algorithm (APA). Specifically, the APA horizontal position and circulation strength output sensitivity to the resolution of its wind and turbulence inputs is examined. The results of this analysis have implications for the requirements of the meteorological sensing and prediction systems comprising a WakeVAS implementation.

  3. A lidar instrument to measure H2O and aerosol profiles from the NASA ER-2 aircraft

    NASA Technical Reports Server (NTRS)

    Vaughan, W. R.; Browell, E. V.; Hall, W. M.; Averill, R. D.; Wells, J. G.; Hinton, D. E.; Goad, J. H.; Degnan, J. J.

    1986-01-01

    Plans to develop the Lidar Atmospheric Sensing Experiment (LASE) instrument to conduct scientific experiments aboard a NASA U-2 (ER-2) aircraft are described. The LASE measurement objectives are listed, and the design of the LASE instrument is discussed, including performance criteria for the laser transmitter, wavemeter, telescope, optical receiver, and associated electronics. The instrument function is depicted with a block diagram, and layouts of various components are presented.

  4. Particle pH Inferred from Aircraft Data: Validation and Geographical, Vertical and Seasonal Characteristics with Case Studies from the WINTER Campaign

    NASA Astrophysics Data System (ADS)

    Guo, H.; Weber, R. J.; Nenes, A.; Sullivan, A.; Thornton, J. A.; Lopez-Hilfiker, F.; Jimenez, J. L.; Campuzano Jost, P.; Schroder, J. C.; Dibb, J. E.

    2015-12-01

    Particle pH is a critical but poorly understood factor that affects many aerosol processes and properties, including aerosol composition, concentrations, geochemical cycles, and aerosol toxicity. Here we assess the prediction of pH from aircraft data, report pH as a function of geographical location and altitude for different seasons, and investigate causes for variability in pH-dependent aerosol components, such as nitrate. pH is generally predicted with a thermodynamic model since it is difficult to measure directly. We used ISORROPIA-II with particle and selected gas inorganic species, along with RH and T as inputs to calculate aerosol pH. Data are from three aircraft studies: WINTER (2015 Feb-Mar) and NEAQS (2004 July-Aug), both over the northeastern US, and SENEX (2013 Jun-July) over the southeastern US. pH was validated by comparing measured and predicted partitioning of ammonia and nitric acid. The effect of inevitable sample heating associated with aircraft measurements was minimal since partitioning of measured semi-volatile components based on ambient T and RH were accurately predicted. Overall, pH determined from WINTER, NEAQS, and SENEX for altitudes up to 5000 m ranged between -0.4 and 1.9 (10-90% percentiles, mean±SD=0.9±1.0), similar to what we have observed at ground-based sites in the southeastern US. Coupling between water vapor concentrations, temperature, particle composition, liquid water content and particle pH on partitioning of nitric acid-nitrate observed during the WINTER campaign will be investigated.

  5. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  6. Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical Configurations of a Profile System and CO2 Density Averaging

    SciTech Connect

    Yang, Bai; Hanson, Paul J; Riggs, Jeffery S; Pallardy, Stephen G.; Hosman, K. P.; Meyers, T. P.; Wullschleger, Stan D; Gu, Lianhong; Heuer, Mark

    2007-01-01

    CO2 storage in a 30-minute period in a tall forest canopy often makes significant contributions to net ecosystem exchange (NEE) in the early morning and at night. When CO2 storage is properly measured and taken into account, underestimations of NEE on calm nights can be greatly reduced. Using CO2 data from a 12-level profile, we demonstrate that the lower canopy layer (below the thermal inversion) is a disproportional contributor to the total CO2 storage. This is because time derivative of CO2 density ( c/ t) generally shows increasing magnitude of mean and standard deviation with decreasing heights at night and from sunrise to 1000 hr in both growing and dormant seasons. Effects of resolution and configuration in a profiling system on the accuracy of CO2 storage estimation are evaluated by comparing subset profiles to the 12-level benchmark profile. It is demonstrated that the effectiveness of a profiling system in estimating CO2 storage is not only determined by its number of sampling levels but, more importantly, by its vertical configuration. To optimize a profile, one needs to balance the influence of two factors, c/ t and layer thickness, among all vertical sections within a forest. As a key contributor to the total CO2 storage, the lower canopy (with relatively large means and standard deviations of c/ t) requires a higher resolution in a profile system than the layers above. However, if the upper canopy is over-sparsely sampled relative to the lower canopy, the performance of a profile system might be degraded since, in such a situation, the influence of layer thickness dominates over that of c/ t. We also find that, because of different level of complexity in canopy structure, more sampling levels are necessary at our site in order to achieve the same level of accuracy as at a boreal aspen site. These results suggest that, in order to achieve an adequate accuracy in CO2 storage measurements, the number of sampling levels in a profile and its design should

  7. Vertical Force-deflection Characteristics of a Pair of 56-inch-diameter Aircraft Tires from Static and Drop Tests with and Without Prerotation

    NASA Technical Reports Server (NTRS)

    Smiley, Robert F; Horne, Walter B

    1957-01-01

    The vertical force-deflection characteristics were experimentally determined for a pair of 56-inch-diameter tires under static and drop-test conditions with and without prerotation. For increasing force, the tires were found to be least stiff for static tests, almost the same as for the static case for prerotation drop tests as long as the tires remain rotating, and appreciably stiffer for drop tests without prerotation.

  8. Heat flux measurement from vertical temperature profile and thermal infrared imagery in low-flux fumarolic zones

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Finizola, Anthony; Beauducel, François; Brothelande, Elodie; Allemand, Pascal; Delacourt, Christophe; Delcher, Eric; Peltier, Aline

    2014-05-01

    Hydrothermal systems are associated to most of the dormant volcanoes. Heat is transported by steam from the hot magma body in the connected porosity and the fissures of the rock to the surface. If the flux is low enough (<500 W/m²), the steam mainly condensates in the soil close to surface, and a significant proportion of the heat is transported to the surface by conduction, producing a gradient of temperature and a thermal anomaly detectable at the surface. Detecting and monitoring these fluxes is crucial for hazard management, since it reflects the state of the magma body in depth. In order to quantify this flux two methods are considered. First, a vertical profile of temperature is measured by a series of thermocouples, and the conducted flux is estimated thanks to the Fourier law. Secondly, a more recent method uses the thermal infrared imagery to monitor the surface temperature anomaly (STA) between the studied zone and an equivalent zone not affected by the geothermal flux. The heat flux from the soil to the atmosphere is computed as the sum of (1) the radiative flux, (2) the sensible flux and (3) the residual steam flux. These two methods are complementary and have an equivalent uncertainty of approximately 20%, which would allow to track the major changes in the hydrothermal system. However, the surface and sub-surface temperatures are strongly influenced by the climate. For instance, it has been widely demonstrated that the surface temperature dramatically decreases after a rainfall. In order to estimate the reliability of the measurements, a numerical model simulating the evolution of the subsurface temperature in low flux fumarolic zone has been built. In depth, the heat can be transported either by conduction, or by the rising steam, or by condensed water. In surface, both the radiative flux and the sensible flux (convection of the atmosphere) are taken into account. This model allows to estimate the changes of temperature due to a variation of solar

  9. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    SciTech Connect

    Matrosov, S.Y. |; Heymsfield, A.J.; Kropfli, R.A.; Snider, J.B.

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  10. First look at the NOAA Aircraft-based Tropospheric Ozone Climatology

    NASA Astrophysics Data System (ADS)

    Leonard, M.; Petropavlovskikh, I. V.; McClure-Begley, A.; Lin, M.; Tarasick, D.; Johnson, B. J.; Oltmans, S. J.

    2015-12-01

    The Global Greenhouse Gas Reference Network's aircraft program has operated since the 1990s as part of the NOAA Global Monitoring Division network to capture spatial and temporal variability in greenhouse tracers (i.e. CO2, CO, N2O, methane, SF6, halo- and hydro-carbons). Since 2005 the suite of airborne measurements also includes ozone, humidity and temperature profiling through the troposphere (up to 8 km). Light commercial aircraft are equipped with modified 2B Technology ozone monitors (Model 205DB), incorporate temperature and humidity probes, and include global positioning system instrumentation. The dataset was analyzed for tropospheric ozone variability at five continental US stations. As site locations within the Tropospheric Aircraft Ozone Measurement Program have flights only once (four times at one site) a month and begun a decade ago, this raises the question of whether this sampling frequency allows the derivation of an accurate vertical climatology of ozone values. We interpret the representativeness of the vertical and seasonal ozone distribution from aircraft measurements using multi-decadal hindcast simulations conducted with the GFDL AM3 chemistry-climate model. When available, climatology derived from co-located ozone-sonde data will be used for comparisons. The results of the comparisons are analyzed to establish altitude ranges in the troposphere where the aircraft climatology would be deemed to be the most representative. Aircraft-based climatologies are tested from two approaches: comparing the aircraft-based climatology to the daily sampled model and to the subset of model data with matching aircraft dates. Whenever the model and aircraft climatologies show significant seasonal differences, further information is gathered from a seasonal Gaussian distribution plot. We will report on the minimum frequency in flights that can provide adequate climatological representation of seasonal and vertical variability in tropospheric ozone.

  11. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir A.; Bristow, Michael P.; McElroy, James L.

    1996-08-01

    A new technique is presented for the retrieval of ozone-concentration profiles (O 3 ) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O 3 profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O 3 profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation.

  12. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar.

    PubMed

    Kovalev, V A; Bristow, M P; McElroy, J L

    1996-08-20

    A new technique is presented for the retrieval of ozone-concentration profiles (O(3)) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O(3) profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O(3) profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation. PMID:21102905

  13. Ozone vertical flux within the lower troposphere over background areas of west Siberia

    NASA Astrophysics Data System (ADS)

    Antokhin, P. N.; Antokhina, O. Yu.; Belan, S. B.; Belan, B. D.; Kozlov, A. V.; Krasnov, O. A.; Pestunov, D. A.

    2014-11-01

    In this paper the results of the vertical ozone flux profiles calculated within the lower troposphere over background area of west Siberia are presented. The data on the vertical distribution of the ozone and meteorological parameters derived from AN-2 aircraft measurements supplemented by radiosonde launches. Profiles of turbulent diffusion coefficient were calculated based on "K-theory" with the use of nonlocal closure scheme - "Troen and Mahrt". Calculations confirmed earlier findings that the formation of the daytime ozone maximum in the atmospheric boundary layer occurs due to its photochemical production from precursors.

  14. Decoupling of deformation in the Upper Rhine Graben sediments. Seismic reflection and diffraction on 3-component Vertical Seismic Profiling (Soultz-sous-Forêts area)

    NASA Astrophysics Data System (ADS)

    Place, Joachim; Diraison, Marc; Naville, Charles; Géraud, Yves; Schaming, Marc; Dezayes, Chrystel

    2010-07-01

    A contribution to the definition of the structural pattern of the Soultz-sous-Forêts EGS (Enhanced Geothermal System) is presented here. After reprocessing, the PHN84J seismic reflection profile highlights the tilted blocks of the Merkwiller-Péchelbronn oilfield. In the Soultz-sous-Forêts horst, complex fault patterns are observed: the Hermerswiller normal fault flattens at depth and is rooted in decollements occurring in Triassic salt or clay series, while other steep normal faults affect underlying sedimentary formations and basement. Some methods for the exploitation of a seismic diffraction recorded by multi-component Vertical Seismic Profiling (VSP) are also illustrated to locate the diffractor without specific data processing. Polarisation and travel time analysis of a diffraction event recorded in the GPK1 borehole are analysed, and its exploitation combined with seismic reflection helps defining a tilted block geometry.

  15. Influence of atmospheric parameters on vertical profiles and horizontal transport of aerosols generated in the surf zone

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Tedeschi, G.; Van Eijk, A. M. J.; Piazzola, J.

    2013-10-01

    The vertical and horizontal transport of aerosols generated over the surf zone is discussed. Experimental data were collected during the second campaign of the Surf Zone Aerosol Experiment that took place in Duck NC (USA) in November 2007. The Empirical Orthogonal Function (EOF) method was used to analyze the vertical concentration gradients, and allowed separating the surf aerosols from aerosols advected from elsewhere. The numerical Marine Aerosol Concentration Model (MACMod) supported the analysis by confirming that the concentration gradients are more pronounced under stable conditions and that aerosol plumes are then more confined to the surface. The model also confirmed the experimental observations made during two boat runs along the offshore wind vector that surf-generated aerosols are efficiently advected out to sea over several tens of kilometers.

  16. Seismic anisotropy in gas-hydrate- and gas-bearing sediments on the Blake Ridge, from a walkaway vertical seismic profile

    USGS Publications Warehouse

    Pecher, I.A.; Holbrook, W.S.; Sen, M.K.; Lizarralde, D.; Wood, W.T.; Hutchinson, D.R.; Dillon, William P.; Hoskins, H.; Stephen, R.A.

    2003-01-01

    We present results from an analysis of anisotropy in marine sediments using walkaway vertical seismic profiles from the Blake Ridge, offshore South Carolina. We encountered transverse isotropy (TI) with a vertical symmetry axis in a gas-hydrate-bearing unit of clay and claystone with Thomsen parameters ?? = 0.05 ?? 0.02 and ?? = 0.04 ?? 0.06. TI increased to ?? = 0.16 ?? 0.04 and ?? = 0.19 ?? 0.12 in the underlying gas zone. Rock physics modeling suggests that the observed TI is caused by a partial alignment of clay particles rather than high-velocity gas-hydrate veins. Similarly, the increase of TI in the gas zone is not caused by thin low-velocity gas layers but rather, we speculate, by the sharp contrast between seismic properties of an anisotropic sediment frame and elongated gas-bearing pore voids. Our results underscore the significance of anisotropy for integrating near-vertical and wide-angle seismic data.

  17. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  18. Estimation of vertical plant area density profiles in a rice canopy at different growth stages by high-resolution portable scanning lidar with a lightweight mirror

    NASA Astrophysics Data System (ADS)

    Hosoi, Fumiki; Omasa, Kenji

    2012-11-01

    We used a high-resolution portable scanning lidar together with a lightweight mirror and a voxel-based canopy profiling method to estimate the vertical plant area density (PAD) profile of a rice (Oryza sativa L. cv. Koshihikari) canopy at different growth stages. To improve the laser's penetration of the dense canopy, we used a mirror to change the direction of the laser beam from horizontal to vertical (0°) and off-vertical (30°). The estimates of PAD and plant area index (PAI) were more accurate at 30° than at 0°. The root-mean-square errors of PAD at each growth stage ranged from 1.04 to 3.33 m2 m-3 at 0° and from 0.42 to 2.36 m2 m-3 at 30°, and those across all growth stages averaged 1.79 m2 m-3 at 0° and 1.52 m2 m-3 at 30°. The absolute percent errors of PAI at each growth stage ranged from 1.8% to 66.1% at 0° and from 4.3% to 23.2% at 30°, and those across all growth stages averaged 30.4% at 0° and 14.8% at 30°. The degree of laser beam coverage of the canopy (expressed as index Ω) explained these errors. From the estimates of PAD at 30°, regressions between the areas of stems, leaves, and ears per unit ground area and actual dry weights gave standard errors of 7.9 g m-2 for ears and 12.2 g m-2 for stems and leaves.

  19. Large-eddy simulation of turbulence in the free atmosphere and behind aircraft

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Dörnbrack, A.; Dürbeck, T.; Gerz, T.

    1997-02-01

    The method of large-eddy simulation has been used for a wide variety of atmospheric flow problems. This paper gives an overview on recent applications of this method to turbulence in the free atmosphere under stably stratified conditions. In particular, flows in the wake of aircraft are studied in light of the potential impact of aircraft exhausts on the chemical and climatological state of the atmosphere. It is shown that different profiles of heat and moisture in the initial conditions of a jet representing engine exhaust gases may cause larger water saturation and hence earlier contrail formation than assumed up to now. The instability of trailing vortices in the wake of an aircraft is simulated up to the fully turbulent regime. The vertical diffusivity of aircraft exhaust is large in the vortex regime and much smaller than horizontal diffusivities in the later diffusion regime. The three-dimensional formation of a critical layer and breaking of gravity waves is simulated.

  20. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  1. EFFECTS OF LEAF AREA PROFILES AND CANOPY STRATIFICATION ON SIMULATED ENERGY FLUXES: THE PROBLEM OF VERTICAL SPATIAL SCALE. (R827676)

    EPA Science Inventory

    We investigated the effects of the shape of leaf area profiles and the number of canopy layers on simulated sensible and latent heat fluxes using a gradient diffusion-based biometeorological model. Three research questions were addressed through simulation experiments: (1) Given ...

  2. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-07-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1 2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  3. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-02-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude - thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (asl), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude and width agree mostly within 1-2 km with CALIPSO observations of stratospheric aerosol produced from the SO2. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  4. N2O vertical profiles retrieved from ground-based solar absorption spectra taken at McMurdo station during austral spring of 1989

    SciTech Connect

    Liu, X.; Murcray, F.J.

    1995-01-01

    N2O can be a tracer of atmospheric air motion due to its long life time. Ground-based FTIR solar spectra contain information on the vertical distributions of N2O due to pressure broadening of absorption lines. The authors have combined the Chahine-Twomey` relaxation method with a line-by-line layer-by-layer radiative transfer code to retrieve N2O VMR profiles from ground based solar absorption spectra. The spectra were taken at McMurdo station during the austral spring of 1989 with a 0.02 wavenumber resolution FTIR spectrometer. Since N2O is released from troposphere and is photolyzed in the stratosphere, the line shape of its absorption is mainly due Lorentz broadening. The 0.02 wavenumber resolution is high enough for the authors to retrieve N2O VMR profiles up to 25 kilometers. Figures show a typical observed N2O solar spectrum near 1993.15 wavenumber and a calculated spectrum using the authors profile retrieval program. The best fit is obtained by iteratively adjusting N20 VMR profile according to the formulation of Chahine and Twomey. The lower tropospheric N2O VMR`s have an average value around 310 ppb. Correlations of the N2O contour with that of temperature shows interesting features of tropospheric and lower stratospheric air motions. The authors have also compared the total N2O column amounts retrieved from this profile retrieval method and from the PC version of the non-linear least square spectral fitting algorithm (SFIT). The temporal variations of the N2O total column amounts retrieved from the two methods show excellent correlation.

  5. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.

  6. Use of the maximum entropy method to retrieve the vertical atmospheric ozone profile and predict atmospheric ozone content

    NASA Technical Reports Server (NTRS)

    Turner, B. Curtis

    1992-01-01

    A method is developed for prediction of ozone levels in planetary atmospheres. This method is formulated in terms of error covariance matrices, and is associated with both direct measurements, a priori first guess profiles, and a weighting function matrix. This is described by the following linearized equation: y = A(matrix) x X + eta, where A is the weighting matrix and eta is noise. The problems to this approach are: (1) the A matrix is near singularity; (2) the number of unknowns in the profile exceeds the number of data points, therefore, the solution may not be unique; and (3) even if a unique solution exists, eta may cause the solution to be ill conditioned.

  7. Force-Test Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical-Take-Off-and-Landing Aircraft

    NASA Technical Reports Server (NTRS)

    Newsom, William A., Jr.; Tosti, Louis P.

    1959-01-01

    A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.

  8. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  9. Vertical Profiles of Latent Heat Release over the Global Tropics Using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  10. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  11. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  12. Specific Bacterial, Archaeal, and Eukaryotic Communities in Tidal-Flat Sediments along a Vertical Profile of Several Meters†

    PubMed Central

    Wilms, Reinhard; Sass, Henrik; Köpke, Beate; Köster, Jürgen; Cypionka, Heribert; Engelen, Bert

    2006-01-01

    The subsurface of a tidal-flat sediment was analyzed down to 360 cm in depth by molecular and geochemical methods. A community structure analysis of all three domains of life was performed using domain-specific PCR followed by denaturing gradient gel electrophoresis analysis and sequencing of characteristic bands. The sediment column comprised horizons easily distinguishable by lithology that were deposited in intertidal and salt marsh environments. The pore water profile was characterized by a subsurface sulfate peak at a depth of about 250 cm. Methane and sulfate profiles were opposed, showing increased methane concentrations in the sulfate-free layers. The availability of organic carbon appeared to have the most pronounced effect on the bacterial community composition in deeper sediment layers. In general, the bacterial community was dominated by fermenters and syntrophic bacteria. The depth distribution of methanogenic archaea correlated with the sulfate profile and could be explained by electron donor competition with sulfate-reducing bacteria. Sequences affiliated with the typically hydrogenotrophic Methanomicrobiales were present in sulfate-free layers. Archaea belonging to the Methanosarcinales that utilize noncompetitive substrates were found along the entire anoxic-sediment column. Primers targeting the eukaryotic 18S rRNA gene revealed the presence of a subset of archaeal sequences in the deeper part of the sediment cores. The phylogenetic distance to other archaeal sequences indicates that these organisms represent a new phylogenetic group, proposed as “tidal-flat cluster 1.” Eukarya were still detectable at 360 cm, even though their diversity decreased with depth. Most of the eukaryotic sequences were distantly related to those of grazers and deposit feeders. PMID:16597980

  13. General comparison of ozone vertical profiles obtained by various techniques during the 1983 MAP/GLOBUS campaign

    NASA Technical Reports Server (NTRS)

    Matthews, W. A.; Aimedieu, P.; Megie, G.; Pelon, J.; Attmannspacher, W.; Komhyr, W.; Marche, P.; De La Noe, J.; Rigaud, P.; Robbins, D. E.

    1987-01-01

    As part of the 1983 MAP/GLOBUS campaign, atmospheric ozone profile measurements were made using a large variety of different techniques both from balloon platforms and the ground. It is shown that, for most techniques, the measured height distributions agree to within + or - 5 percent with the exception of the remote visible absorption method. This + or - 5 percent uncertainty is of the order of the individual intersystem accuracy. It is suggested that since the differences with the visible absorption method are in magnitude rather than in form, the absorption cross-section data could be the possible cause for the discrepancy.

  14. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  15. Characteristics of vertical profiles and sources of PM 2.5, PM 10 and carbonaceous species in Beijing

    NASA Astrophysics Data System (ADS)

    Chan, C. Y.; Xu, X. D.; Li, Y. S.; Wong, K. H.; Ding, G. A.; Chan, L. Y.; Cheng, X. H.

    In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM 10 and PM 2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM 2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m -3) and the overall daily average PM 10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m -3). The maximum daily PM 2.5 and PM 10 concentrations reached 178.7 and 368.1 μg m -3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m -3 in PM 2.5 and 30.0 and 13.0 μg m -3 in PM 10, respectively. PM, especially PM 2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8-5.1 for PM 2.5 and 2.0-4.3 for PM 10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28

  16. A Practical Method to Autonomously Obtain Vertical Profiles of Biomarkers in Ice Sheets on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Hecht, M. H.; Smith, M.; Fisher, A.; Engelhardt, H.; Aharonson, O.

    2007-12-01

    We describe experiments using a low-power thermal drill capable of autonomously retrieving and analyzing meltwater samples from an ice sheet with a vertical resolution of a centimeter or less. The drill operates by passively creating a melt front at the nose, then pumping the melt water to an analytical instrument on the surface. This "open hole" strategy minimizes thermal contact between the drill and the ice, limiting the power consumption to little more than is necessary to melt the ice. Even in the cold martian ice sheet (<175K) a 7.5 cm diameter drill can descend at speeds of 25 cm per hr using only about 250W. In relatively warm terrestrial ice the technique is useful only to a few hundred meters, below which the hole would collapse. The drill has successfully been tested in Greenland to a depth of 50 m. In cold martian ice, given enough time, such a drill could penetrate two or more kilometers to the base of the northern ice sheet. For Mars, the primary objective of such a drill is to explore the climate record through visual inspection of layering and analysis of isotopic ratios in the meltwater. A secondary objective would be to seek biomarkers through detection of relevant chemical signatures such as methane or fluorescent molecules. To this end, studies were performed to determine the limits of vertical resolution imposed by tube flow of the meltwater from the drill to the surface. Mixing in the tube could dilute a localized biomarker to the point of undetectability, or could degrade the ability to associate such a signal with a specific historical climate marker. Chemical markers (salts, detected by conductivity changes) and fluorescent markers (including quantum dots) were introduced abruptly into the meltwater stream, and the effluent at the end of the tube was then analyzed to determine the persistence of the signature. Theoretically, the transfer function is strongly dependent on factors that are difficult to quantify such as turbulence and wall

  17. Calculation of zero-offset vertical seismic profiles generated by a horizontal point force acting on the surface of an elastic half-space

    USGS Publications Warehouse

    Hsi-Ping, Liu

    1990-01-01

    Impulse responses including near-field terms have been obtained in closed form for the zero-offset vertical seismic profiles generated by a horizontal point force acting on the surface of an elastic half-space. The method is based on the correspondence principle. Through transformation of variables, the Fourier transform of the elastic impulse response is put in a form such that the Fourier transform of the corresponding anelastic impulse response can be expressed as elementary functions and their definite integrals involving distance angular frequency, phase velocities, and attenuation factors. These results are used for accurate calculation of shear-wave arrival rise times of synthetic seismograms needed for data interpretation of anelastic-attenuation measurements in near-surface sediment. -Author

  18. Remote profiling of lake ice thickness using a short pulse radar system aboard a C-47 aircraft

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; Heighway, J. E.; Shook, D. F.; Jirberg, R. J.; Vickers, R. S.

    1974-01-01

    Design and operation of short pulse radar systems for use in ice thickness measurement are described. Two ice profiling systems were tested, an S system which used either random noise or continous wave modulation at 2.8 GHz and a less powerful C band system which operated at 6.0 GHz and did not have random noise modulation. Flight altitudes of 4,000 feet were used, but the S band system was usable at 7,000 feet allowing flights in poor weather conditions. A minimum ice thickness of four inches is required for measurement, while the thickest ice measured was 36 inches. System accuracy is plus or minus one inch.

  19. Vertical profiles of pollutant gases measured with passive DOAS in the Po Valley devoted to satellite and chemical model data comparison

    NASA Astrophysics Data System (ADS)

    Masieri, S.; Petritoli, A.; Kostadinov, I.; Bortoli, D.; Premuda, M.; Ravegnani, F.; Giovanelli, G.

    2009-04-01

    whose profile depends strongly on altitude [7][8]. Due to this it is also possible gain information about the atmospheric aerosol profile to set better the parameters in AMF Calculation, and then retrieve gas concentration's profiles. The NO2 concentrations measured were in the range of 0.5-25 ppb, as we expect for summer periods in rural area. GAMES (Gas Aerosol Modelling Evaluation System) model [9] was used in this work to have a reference about vertical distribution of gases (the model provides concentration profiles along 4km of altitude, with 11 growing thickness levels). Result of comparison with profile caculate by the model and profile calulate by the Multi-axis DOAS technique, is presented and then it is compared with Satellite column retrieved (with our satellite Data processor) from SCIAMACHY sensor (onboard on ENVISAT platform) and (directly NO2 Tropospheric Vertical Column provided by KNMI) from OMI (onboard on AURA platform). Good agreements between used series are shown and improvements for this methodology are discussed. One month of measurement has been taken in consideration starting from 15 May to 15 June of 2007. Vertical structure of most important trace gases calculated with model has strong correlation with the off-axis DOAS one (in some cases with R2=0,8), so better understanding of profiles and chemistry behaviour can be studied. The experience acquired within QUITSAT activity appears valuable contribution for enlargement of the DOAS applications what concern atmospheric chemistry studies, operative monitoring of the air quality over regional scale as well as satellite data validation. Deployed approaches are not restricted to NO2 but could be applied to other gases e.g. ozone, formaldehyde etc.. Key words: Off axis DOAS, NO2, CTM, AMF, gas profiles, satellite data validation, 1 2. BIBLIOGRAPHY [1] F. Evangelisti, A. Baroncelli, P. Bonasoni, G. Giovanelli, And F. Ravegnani, "Differential optical absorption spectrometer for measurement of

  20. CO2 retrieval algorithm for the thermal infrared spectra of the Greenhouse Gases Observing Satellite: Potential of retrieving CO2 vertical profile from high-resolution FTS sensor

    NASA Astrophysics Data System (ADS)

    Saitoh, Naoko; Imasu, Ryoichi; Ota, Yoshifumi; Niwa, Yosuke

    2009-09-01

    The Greenhouse Gases Observing Satellite (GOSAT) was successfully launched in January 2009, with the aim of providing global observations of greenhouse gases. We developed an algorithm to retrieve CO2 vertical profiles from the terrestrial radiation spectra at 700-800 cm-1 and assessed its validity. For this purpose, we first computed GOSAT pseudomeasurement spectra and then performed CO2 retrieval simulations using the maximum a posteriori (MAP) method, with analytical data for temperature information. Our simulations with no uncertainty in the estimates of atmospheric conditions such as surface temperature, surface emissivity, and profiles of temperature, water vapor, and ozone showed that the retrieved CO2 profiles had an accuracy of 1% above 800 hPa, with little dependence on the a priori profiles. Introducing correlations between layers in an a priori error covariance matrix was important for CO2 retrieval especially above 200 hPa. Enhancing the correlations below 800 hPa was important for CO2 retrieval there. Selecting 100 channels based on CO2 information content for all layers, 10 channels for the region above 55 hPa, and 50 channels for the region below 800 hPa was sufficient to achieve CO2 retrieval with 1% accuracy from the troposphere through the stratosphere. Our simulations with possible errors in the atmospheric conditions showed that 1% accuracy was also achieved at 600-100 hPa in every latitude region, although the retrieved CO2 concentrations probably included up to 4% positive and negative biases at 30°S-30°N above 100 hPa and at mid- and high latitudes below 600 hPa, respectively.

  1. Measuring and modelling the intra-day variability of the 13CO2 & 12CO2 vertical soil profile production in a Scots pine forest

    NASA Astrophysics Data System (ADS)

    Longdoz, Bernard; Goffin, Stéphanie; Parent, Florian; Plain, Caroline; Epron, Daniel; Wylock, Christophe; Haut, Benoit; Aubinet, Marc; Maier, Martin

    2015-04-01

    Vertical profile of CO2 production (Ps) and transport, as well as their isotopic discrimination (13CO2/12CO2) should be considered to improve the soil CO2 efflux (Fs) mechanistic understanding and especially its short-term temporal variations. In this context, we propose a new methodology able to measure continuously and simultaneously Fs, the vertical soil CO2 concentration ([CO2]) profile and their respective isotopic signature (δFs and δCO2) [1]. The Ps of the different soil layers and their isotopic signature (δPs) can then be determined from these measurements by an approach considering diffusion as the only gas transport. A field campaign was conducted with this device at the Scots Pine Hartheim forest (Germany). The results [2] show (i) a Ps dependence on local temperature specific for each layer, (ii) an enrichment of δPs with soil drought, (iii) Fs and [CO2] large intra-day fluctuations non explained by the soil temperature and moisture. These fluctuations can be generated by other processes creating Ps and/or transport variability. To investigate about the nature of these processes, some sensitivity analyses have been performed with a soil CO2 model simulating both production and transport. The impacts of the introduction of advection, dispersion and phloem pressure concentration wave (through dependence of Ps on vapour pressure deficit) on intra-day Fs and [CO2] variations have been quantified. We conclude that these variations are significantly better represented when the phloem pressure wave expression is included in the simulations. The study of the processes related to CO2 production seems to be a better option than an investigation about transport to explain the intra-day Fs variability.

  2. Carbon Dioxide and Methane Column Abundances Retrieved from Ground-Based Near-Infrared Solar Spectra and Comparison with In Situ Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Toon, G. C.; Blavier, J.; Wennberg, P. O.; Yang, Z.; Vay, S. A.; Sachse, G. W.; Blake, D. R.; Matross, D. M.; Gerbig, C.

    2004-12-01

    We have developed an automated observatory for measuring ground-based column abundances of CO2, CH4, CO, N2O, O2, H2O, and HF. Near-infrared spectra of the direct sun are measured between 3,900 - 15,600 cm-1 (0.67 - 2.56 μ m) by a Bruker 125HR Fourier Transform Spectrometer. This is the first laboratory in a proposed network of ground-based solar observatories that will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The laboratory was assembled in Pasadena, California and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 14 km east of Park Falls, Wisconsin. This site was chosen because NOAA CMDL and other groups conduct intensive measurements in the area, including continuous monitoring of CO2 at six heights on the 447-m tall tower. CO2 and CH4 column abundances for May - November 2004 demonstrate ˜0.1% precision. The seasonal drawdown of CO2 is recognizable within the late-May column abundances. As part of the INTEX and COBRA campaigns, the DC-8 or King Air recorded in situ measurements during profiles over the WLEF site during five dates in July and August 2004. We will compare the column abundances of CO2, CH4, and CO with these in situ aircraft measurements.

  3. Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1994-01-01

    This paper briefly reviews several single-frequency rain profiling methods for an airborne or spaceborne radar. The authors describe the different methods from a unified point of view starting from the basic differential equation. This facilitates the comparisons between the methods and also provides a better understanding of the physical and mathematical basis of the methods. The application of several methods to airborne radar data taken during the Convective and Precipitation/Electrification Experiment is shown. Finally, the authors consider a hybrid method that provides a smooth transition between the Hitschfeld-Bordan method, which performs well at low attenuations, and the surface reference method, for which the relative error decreases with increasing path attenuation.

  4. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  5. Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope

    NASA Astrophysics Data System (ADS)

    Wiaux, F.; Vanclooster, M.; Van Oost, K.

    2015-08-01

    In this study we aim to elucidate the role of physical conditions and gas transfer mechanism along soil profiles in the decomposition and storage of soil organic carbon (OC) in subsoil layers. We use a qualitative approach showing the temporal evolution and the vertical profile description of CO2 fluxes and abiotic variables. We assessed soil CO2 fluxes throughout two contrasted soil profiles (i.e. summit and footslope positions) along a hillslope in the central loess belt of Belgium. We measured the time series of soil temperature, soil moisture and CO2 concentration at different depths in the soil profiles for two periods of 6 months. We then calculated the CO2 flux at different depths using Fick's diffusion law and horizon specific diffusivity coefficients. The calculated fluxes allowed assessing the contribution of different soil layers to surface CO2 fluxes. We constrained the soil gas diffusivity coefficients using direct observations of soil surface CO2 fluxes from chamber-based measurements and obtained a good prediction power of soil surface CO2 fluxes with an R2 of 92 %. We observed that the temporal evolution of soil CO2 emissions at the summit position is mainly controlled by temperature. In contrast, at the footslope, we found that long periods of CO2 accumulation in the subsoil alternates with short peaks of important CO2 release. This was related to the high water filled pore space that limits the transfer of CO2 along the soil profile at this slope position. Furthermore, the results show that approximately 90 to 95 % of the surface CO2 fluxes originate from the first 10 cm of the soil profile at the footslope. This indicates that soil OC in this depositional context can be stabilized at depth, i.e. below 10 cm. This study highlights the need to consider soil physical properties and their dynamics when assessing and modeling soil CO2 emissions. Finally, changes in the physical environment of depositional soils (e.g. longer dry periods) may affect the

  6. An overview of millimeter-wave spectroscopic measurements of chlorine monoxide at Thule, Greenland, February-March, 1992: Vertical profiles, diurnal variation, and longer-term trends

    NASA Technical Reports Server (NTRS)

    De Zafra, R. L.; Emmons, L. K.; Reeves, J. M.; Shindell, D. T.

    1994-01-01

    Measurements of chlorine monoxide in the stratosphere over Thule, Greenland (73.6 N, 68.4 W) were made quasi-continuously during the period February 8 to March 24, 1992, using a high-sensitivity ground based mm-wave spectrometer. These observations give diurnal, short term, and long term changes in the mixing ratio and vertical distribution of ClO. At an equivalent time after the Antarctic winter solstice, very large concentrations (up to approximately 1.5 ppbv) occur in lower stratospheric ClO, resulting in massive ozone destruction. We saw no evidence for large (approximately 1 top 1.5 ppbv) amounts of ClO in the 16-25 km range over Thule in February or March, in agreement with UARS (satellite) observations by the MLS mm-wave spectrometer for this period, and in marked contrast to UARS/MLS and ER-2 aircraft measurements over northern Europe and eastern Canada, respectively, during January, 1992. We have evidence for smaller enhancements (approximately 0.2 to 0.5 ppbv) in the 18-30 km range during late February-early March, which could result from transport of residual low NO2 air following earlier polar stratospheric cloud (PSC) processing (the last of which occurred at least one month earlier, however) or the result of chemical processing by Pinatubo aerosols. Direct influence of Pinatubo aerosols on Arctic ozone during the spring of 1992 has been difficult to assess, and this enhancement of low-altitude ClO might be a significant indicator of aerosol effects.

  7. Designing for aircraft structural crashworthiness

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Caiafa, C.

    1981-01-01

    This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.

  8. Combined SAGE II-GOMOS ozone profile data set for 1984-2011 and trend analysis of the vertical distribution of ozone

    NASA Astrophysics Data System (ADS)

    Kyrölä, E.; Laine, M.; Sofieva, V.; Tamminen, J.; Päivärinta, S.-M.; Tukiainen, S.; Zawodny, J.; Thomason, L.

    2013-11-01

    We have studied data from two satellite occultation instruments in order to generate a high vertical resolution homogeneous ozone time series of 26 yr. The Stratospheric Aerosol and Gas Experiment (SAGE) II solar occultation instrument and the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument measured ozone profiles in the stratosphere and mesosphere from 1984-2005 and 2002-2012, respectively. Global coverage, good vertical resolution, and the self-calibrating measurement method make data from these instruments valuable for the detection of changes in vertical distribution of ozone over time. As both instruments share a common measurement period from 2002-2005, it is possible to inter-calibrate the data sets. We investigate how well these measurements agree with each other and combine all the data to produce a new stratospheric ozone profile data set. Above 55 km, SAGE II measurements show much less ozone than the GOMOS nighttime measurements as a consequence of the well-known diurnal variation of ozone in the mesosphere. Between 35-55 km, SAGE II sunrise and sunset measurements differ from GOMOS' measurements to different extents. Sunrise measurements show 2% less ozone than GOMOS, whereas sunset measurements show 4% more ozone than GOMOS. Differences can be explained qualitatively by the diurnal variation of ozone in the stratosphere recently observed by SMILES and modeled by chemical transport models. Between 25-35 km, SAGE II sunrise and sunset measurements and GOMOS measurements agree within 1%. The observed ozone bias between collocated measurements of SAGE II sunrise/sunset and GOMOS night measurements is used to align the two data sets. The combined data set covers the time period 1984-2011, latitudes 60° S-60° N, and the altitude range of 20-60 km. Profile data are given on a 1 km vertical grid, and with a resolution of 1 month in time and 10° in latitude. The combined ozone data set is analyzed by fitting a time series model to the

  9. Combined SAGE II-GOMOS ozone profile data set 1984-2011 and trend analysis of the vertical distribution of ozone

    NASA Astrophysics Data System (ADS)

    Kyrölä, E.; Laine, M.; Sofieva, V.; Tamminen, J.; Päivärinta, S.-M.; Tukiainen, S.; Zawodny, J.; Thomason, L.

    2013-04-01

    We have studied data from two satellite occultation instruments in order to generate a high vertical resolution homogeneous ozone time series of 26 yr. The Stratospheric Aerosol and Gas Experimen (SAGE) II solar occultation instrument from 1984-2005 and the Global Ozone Monitoring by Occultation of Stars instrument (GOMOS) from 2002-2012 measured ozone profiles in the stratosphere and mesosphere. Global coverage, good vertical resolution and the self calibrating measurement method make data from these instruments valuable for the detection of changes in vertical distribution of ozone over time. As both instruments share a common measurement period from 2002-2005, it is possible to intercalibrate the data sets. We investigate how well these measurements agree with each other and combine all the data to produce a new stratospheric ozone profile data set. Above 55 km SAGE II measurements show much less ozone than the GOMOS nighttime measurements as a consequence of the well-known diurnal variation of ozone in the mesosphere. Between 35-55 km SAGE II sunrise and sunset measurements differ from each other. Sunrise measurements show 2% less ozone than GOMOS whereas sunset measurements show 4% more ozone than GOMOS. Differences can be explained qualitatively by the diurnal variation of ozone in the stratosphere recently observed by SMILES and modelled by chemical transport models. For 25-35 km SAGE II sunrise and sunset and GOMOS agree within 1%. The observed ozone bias between collocated measurements of SAGE II sunrise/sunset and GOMOS night measurements is used to align the two data sets. The combined data set covers the time period 1984-2011, latitudes 60° S-60° N and the altitude range of 20-60 km. Profile data are given on a 1 km vertical grid, and with a resolution of one month in time and ten degrees in latitude. The combined ozone data set is analyzed by fitting a time series model to the data. We assume a linear trend with an inflexion point (so-called "hockey

  10. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface