Science.gov

Sample records for aircraft wind tunnel

  1. Wind tunnel technology for the development of future commercial aircraft

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  2. Wind-tunnel testing of VTOL and STOL aircraft

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1978-01-01

    The basic concepts of wind-tunnel boundary interference are discussed and the development of the theory for VTOL-STOL aircraft is described. Features affecting the wall interference, such as wake roll-up, configuration differences, recirculation limits, and interference nonuniformity, are discussed. The effects of the level of correction on allowable model size are shown to be amenable to generalized presentation. Finally, experimental confirmation of wind-tunnel interference theory is presented for jet-flap, rotor, and fan-in-wing models.

  3. Wind tunnel and flight test of the XV-15 Tilt Rotor Research Aircraft

    NASA Technical Reports Server (NTRS)

    Marr, R. L.; Blackman, S.; Weiberg, J. A.; Schroers, L. G.

    1979-01-01

    The XV-15 Tilt Rotor Research Aircraft Project involves design, fabrication, and flight testing of two aircraft. This program is currently in the test phase for concept evaluation and substantiation of design. As part of this evaluation, one of the aircraft was tested in the NASA-Ames 40- by 80-foot wind tunnel. The status of testing to date and some of the results of the wind tunnel and flight tests are presented.

  4. Wind-tunnel tests of the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Weiberg, J. A.; Maisel, M. D.

    1980-01-01

    The XV-15 aircraft was tested in the Ames 40 by 80 Foot Wind Tunnel for preliminary evaluation of aerodynamic and aeroelastic characteristics prior to flight. The tests were undertaken to investigate the aircraft performance, stability, control and structural loads for flight modes from helicopter through transition and airplane mode up to the tunnel capability of 170 knots. Results from these tests are presented.

  5. Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Hoe, Garrison; Owens, Donald B.; Denham, Casey

    2012-01-01

    As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

  6. Comparison of wind tunnel and flyover noise measurements of the YOV-10A STOL aircraft

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1972-01-01

    The YOV-10A Research Aircraft was flown to obtain flyover noise data that could be compared to noise data measured in the 40- by 80- foot wind tunnel at NASA Ames Research Center. The flyover noise measurements were made during the early morning hours on runway 32L at Moffett Field, California. A number of passes were made at 50 ft altitude in level flight with an airplane configuration closely matching that tested in the wind tunnel. Two passes were selected as prime and were designated for full data reduction. The YOV-10A was flown over a microphone field geometrically similar to the microphone array set up in the wind tunnel. An acoustic center was chosen as a matching point for the data. Data from the wind tunnel and flyover were reduced and appropiate corrections were applied to compare the data. Results show that wind tunnel and flight test acoustic data agreed closely.

  7. The development of cryogenic wind tunnels and their application to maneuvering aircraft technology

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Boyden, R. F.

    1981-01-01

    The cryogenic wind tunnel and its potential for advancing maneuvering aircraft technology is discussed. A brief overview of the cryogenic wind tunnel concept and the capabilities and status of the Langley cryogenic facilities is given, as is a review of the considerations leading to the selection of the cryogenic concept such as capital and operating costs of the tunnel, model and balance construction implications, and test condition. Typical viscous, compressibility and aeroelastic effects encountered by maneuvering aircraft are illustrated and the unique ability of the cryogenic wind tunnels to isolate and investigate these parameters while simulating full scale conditions is discussed. The status of the Langley cryogenic wind tunnel facilities is reviewed and their operating envelopes described in relation to maneuvering aircraft research and development requirements. The status of cryogenic testing technology specifically related to aircraft maneuverability studies including force balances and buffet measurement techniques is discussed. Included are examples of research carried out in the Langley 0.3 meter transonic cryogenic wind tunnel to verify the various techniques.

  8. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  9. Wind Tunnel Measurements and Calculations of Aerodynamic Interactions Between Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Derby, Michael R.; Wadcock, Alan J.

    2002-01-01

    Wind tunnel measurements and calculations of the aerodynamic interactions between two tiltrotor aircraft in helicopter mode are presented. The measured results include the roll moment and thrust change on the downwind aircraft, as a function of the upwind aircraft position (longitudinal, lateral, and vertical). Magnitudes and locations of the largest interactions are identified. The calculated interactions generally match the measurements, with discrepancies attributed to the unsteadiness of the wake and aerodynamic forces on the airframe. To interpret the interactions in terms of control and power changes on the aircraft, additional calculations are presented for trimmed aircraft with gimballed rotors.

  10. High speed wind tunnel tests of the PTA aircraft. [Propfan Test Assessment Program

    NASA Technical Reports Server (NTRS)

    Aljabri, A. S.; Little, B. H., Jr.

    1986-01-01

    Propfans, advanced highly-loaded propellers, are proposed to power transport aircraft that cruise at high subsonic speeds, giving significant fuel savings over the equivalent turbofan-powered aircraft. NASA is currently sponsoring the Propfan Test Assessment Program (PTA) to provide basic data on the structural integrity and acoustic performance of the propfan. The program involves installation design, wind-tunnel tests, and flight tests of the Hamilton Standard SR-7 propfan in a wing-mount tractor installation on the Gulfstream II aircraft. This paper reports on the high-speed wind-tunnel tests and presents the computational aerodynamic methods that were employed in the analyses, design, and evaluation of the configuration. In spite of the complexity of the configuration, these methods provide aerodynamic predictions which are in excellent agreement with wind-tunnel data.

  11. Orbiter/shuttle carrier aircraft separation: Wind tunnel, simulation, and flight test overview and results

    NASA Technical Reports Server (NTRS)

    Homan, D. J.; Denison, D. E.; Elchert, K. C.

    1980-01-01

    A summary of the approach and landing test phase of the space shuttle program is given from the orbiter/shuttle carrier aircraft separation point of view. The data and analyses used during the wind tunnel testing, simulation, and flight test phases in preparation for the orbiter approach and landing tests are reported.

  12. Control of an all-movable foreplane for a three surfaces aircraft wind tunnel model

    NASA Astrophysics Data System (ADS)

    Ricci, S.; Scotti, A.; Zanotti, D.

    2006-07-01

    This article deals with design and realisation of a canard foreplane control system for an aeroelastic demonstrator, suitable for wind tunnel testing. Hardware and software will be described as the methodology adopted to design, implement and realise the software. Specific attention is devoted to PID application, tuning and fuselage vibration control implementation. Results of preliminary test and simulations are presented and show realistic system effectiveness in damping fuselage bending and torsion. This work describes all the activity performed at Politecnico di Milano before wind tunnel testing at VZLU, Prague, as part of Active Aeroelastic Aircraft Structures (3AS) EU project.

  13. Reconfigurable flight control for high angle of attack fighter aircraft, with wind tunnel study

    NASA Astrophysics Data System (ADS)

    Siddiqui, Bilal Ahmed

    In this work we studied Reconfigurable Flight Control Systems to achieve acceptable performance of a fighter aircraft, even in the event of wing damage to the aircraft at low speeds and high angle of attack, which is typical of many combat maneuvers. Equations of motion for the damaged aircraft were derived, which helped in building simulators. A new methodology combining experimental and numerical aerodynamic prediction was proposed and implemented. For this a wind-tunnel study of a similar configuration was carried out to study the aerodynamics at low speeds and high angle of attack. A baseline control system for undamaged aircraft was developed, and finally a reconfigurable flight control scheme was implemented to keep the aircraft flyable even after the damage.

  14. The rotor systems research aircraft - A flying wind tunnel

    NASA Technical Reports Server (NTRS)

    Linden, A. W.; Hellyar, M. W.

    1974-01-01

    The Sikorsky Aircraft division of United Aircraft Corporation is constructing two uniquely designed Rotor Systems Research Aircraft (RSRA). These aircraft will be used through the 1980's to comparatively test many different types of rotors - articulated, hingeless, teetering, and gimballed, as well as advanced rotor concepts, such as reverse velocity and variable diameter rotors. The RSRA combines a new airframe with existing Sikorsky H-3 (S-61) dynamic components. A force measurement system is incorporated to permit accurate evaluation of significant rotor characteristics. Both rotor and fixed-wing control systems are provided, appropriately integrated for operation in the pure helicopter mode, compound helicopter mode, and fixed-wing mode. The RSRA is the first rotary wing aircraft designed with a crew escape system, including a pyrotechnic system to sever the main rotor blades.

  15. Transport Aircraft System Identification from Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2008-01-01

    Recent studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and rotary dynamic terms but replace conventional acceleration terms with more general indicial functions. In the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced controls technology. This paper describes initial application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle.

  16. Comparison of aircraft noise measured in flight test and in the NASA Ames 40- by 80-foot wind tunnel.

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1973-01-01

    A method to determine free-field aircraft noise spectra from wind-tunnel measurements has been developed. The crux of the method is the correction for reverberations. Calibrated loud speakers are used to simulate model sound sources in the wind tunnel. Corrections based on the difference between the direct and reverberant field levels are applied to wind-tunnel data for a wide range of aircraft noise sources. To establish the validity of the correction method, two research aircraft - one propeller-driven (YOV-10A) and one turbojet-powered (XV-5B) - were flown in free field and then tested in the wind tunnel. Corrected noise spectra from the two environments agree closely.

  17. Rolling flow wind tunnel tests of F-18 aircraft

    NASA Technical Reports Server (NTRS)

    Lutze, F. H.

    1980-01-01

    The lateral directional characteristics of an F-18 aircraft was investigated. Aerodynamic derivatives associated with pure roll rate, or the 'p' derivatives were obtained. The model is described and the procedures used to obtain and correct the data, and a graphical presentation of the results are presented. These results include graphs of the lateral directional static stability derivatives versus angle of attack, and the lateral directional force and moment coefficients versus nondimensional roll rate. Results are presented for several configurations including complete, complete without vertical tails, complete without horizontal tails, fuselage wing and fuselage alone. Each of these configuations was tested with and without wing leading edge extensions. The basic control surfaces were deflected and the results were investigated.

  18. Estimation of Aircraft Nonlinear Unsteady Parameters From Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    Aerodynamic equations were formulated for an aircraft in one-degree-of-freedom large amplitude motion about each of its body axes. The model formulation based on indicial functions separated the resulting aerodynamic forces and moments into static terms, purely rotary terms and unsteady terms. Model identification from experimental data combined stepwise regression and maximum likelihood estimation in a two-stage optimization algorithm that can identify the unsteady term and rotary term if necessary. The identification scheme was applied to oscillatory data in two examples. The model identified from experimental data fit the data well, however, some parameters were estimated with limited accuracy. The resulting model was a good predictor for oscillatory and ramp input data.

  19. Wind tunnel study of wake downwash behind A 6% scale model B1-B aircraft

    SciTech Connect

    Strickland, J.H.; Tadios, E.L.; Powers, D.A.

    1990-05-01

    Parachute system performance issues such a turnover and wake recontact may be strongly influenced by velocities induced by the wake of the delivering aircraft, especially if the aircraft is maneuvering at the time of parachute deployment. The effect of the aircraft on the parachute system is a function of the aircraft size, weight, and flight path. In order to provide experimental data for validation of a computer code to predict aircraft wake velocities, a test was conducted in the NASA 14 {times} 22 ft wind tunnel using a 5.78% model of the B-1B strategic bomber. The model was strut mounted through the top of its fuselage by a mechanism which was capable of pitching the model at moderate rates. In this series of tests, the aircraft was pitched at 10{degree}/sec from a cruise angle of attack of 5.3{degree} to an angle of attack of 11{degree} in order to simulate a 2.2g pullup. Data were also taken for the subsequent pitch down sequence back to the cruise angle of attack. Instantaneous streamwise and vertical velocities were measured in the wake at a number of points using a hot wire anemometer. These data have been reduced to the form of downwash coefficients which are a function of the aircraft angle of attack time-history. Unsteady effects are accounted for by use of a wake convection lag-time correlation. 12 refs., 59 figs., 4 tabs.

  20. The development of cryogenic wind tunnels and their application to maneuvering aircraft technology

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Boyden, R. P.

    1981-01-01

    Cryogenic wind tunnels are considered as a means of studying high Reynolds number (Re) complicated flows encountered by high maneuvering lift and high angles of attack characteristic of modern fighter aircraft. Large decreases in the viscous force while the inertial force remains constant are provided by the use of cryogenic facilities. A 2.5 m square tunnel is nearing completion at the National Transonic Facility (NTF), and will be driven by synchronous motors having a total power of 120,000 hp. The tunnel, using N2 as the cryogenic fluid, will allow large Re sweeps at constant dynamic pressure and dynamic pressure, and aeroelastic sweeps at constant Re; full altitude (air density) and acceleration force simulation will also be possible. Advances in model and strain gage balance technologies for use at the NTF are outlined, and experiments with buffet are described.

  1. Wind-Tunnel Investigation of Air Inlet and Outlet Openings for Aircraft, Special Report

    NASA Technical Reports Server (NTRS)

    Rogallo, Francis M.; Gauvain, William E.

    1938-01-01

    An investigation was made in the NACA 5-foot vertical wind tunnel of a large variety of duct inlets and outlets to obtain information relative to their design for the cooling or the ventilation systems on aircraft. Most of the tests were of openings in a flat plate but, in order to determine the best locations and the effects of interference, a few tests were made of openings in an airfoil. The best inlet location for a system not including a blower was found to be at the forward stagnation point; for one including a blower, the best location was found to be in the region of lowest total head, probably in the boundary layer near the trailing edge. Design recommendations are given, and it is shown that correct design demands a knowledge of the external flow and of the internal requirements in addition to that obtained from the results of the wind tunnel tests.

  2. Analysis of Wind Tunnel Oscillatory Data of the X-31A Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.

    1999-01-01

    Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale model of the X-31A aircraft. These tests were used to study the aerodynamic characteristics of the X-31A in response to harmonic oscillations at six frequencies. In-phase and out-of-phase components of the aerodynamic coefficients were obtained over a range of angles of attack from 0 to 90 deg. To account for the effect of frequency on the data, mathematical models with unsteady terms were formulated by use of two different indicial functions. Data from a reduced set of frequencies were used to estimate model parameters, including steady-state static and dynamic stability derivatives. Both models showed good prediction capability and the ability to accurately fit the measured data. Estimated static stability derivatives compared well with those obtained from static wind tunnel tests. The roll and yaw rate derivative estimates were compared with rotary-balanced wind tunnel data and theoretical predictions. The estimates and theoretical predictions were in agreement at small angles of attack. The rotary-balance data showed, in general, acceptable agreement with the steady-state derivative estimates.

  3. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1999-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  4. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  5. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  6. Modeling of aircraft unsteady aerodynamic characteristics. Part 2: Parameters estimated from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1995-01-01

    Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.

  7. Wind Tunnel Visualization of the Flow Over a Full-Scale F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Crowder, James P.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. This investigation used both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, leading edge extensions (LEXs), and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system. The flow visualization experiments were conducted over an angle of attack range from 20deg to 45deg and over a sideslip range from -10deg to 10deg. The results show regions of attached and separated flow on the forebody, canopy, and wings. Additionally, the vortical flow is clearly visible over the leading-edge extensions, canopy, and wings.

  8. Navier-Stokes, flight, and wind tunnel flow analysis for the F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1994-01-01

    Computational analysis of flow over the F/A-18 aircraft is presented along with complementary data from both flight and wind tunnel experiments. The computational results are based on the three-dimensional thin-layer Navier-Stokes formulation and are obtained from an accurate surface representation of the fuselage, leading-edge extension (LEX), and the wing geometry. However, the constraints imposed by either the flow solver and/or the complexity associated with the flow-field grid generation required certain geometrical approximations to be implemented in the present numerical model. In particular, such constraints inspired the removal of the empennage and the blocking (fairing) of the inlet face. The results are computed for three different free-stream flow conditions and compared with flight test data of surface pressure coefficients, surface tuft flow, and off-surface vortical flow characteristics that included breakdown phenomena. Excellent surface pressure coefficient correlations, both in terms of magnitude and overall trend, are obtained on the forebody throughout the range of flow conditions. Reasonable pressure agreement was obtained over the LEX; the general correlation tends to improve at higher angles of attack. The surface tuft flow and the off-surface vortex flow structures compared qualitatively well with the flight test results. To evaluate the computational results, a wind tunnel investigation was conducted to determine the effects of existing configurational differences between the flight vehicle and the numerical model on aerodynamic characteristics. In most cases, the geometrical approximations made to the numerical model had very little effect on overall aerodynamic characteristics.

  9. Surface flow visualization of separated flows on the forebody of an F-18 aircraft and wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Richwine, David M.; Banks, Daniel W.

    1988-01-01

    A method of in-flight surface flow visualization similar to wind-tunnel-model oil flows is described for cases where photo-chase planes or onboard photography are not practical. This method, used on an F-18 aircraft in flight at high angles of attack, clearly showed surface flow streamlines in the fuselage forebody. Vortex separation and reattachment lines were identified with this method and documented using postflight photography. Surface flow angles measured at the 90 and 270 degrees meridians show excellent agreement with the wind tunnel data for a pointed tangent ogive with an aspect ratio of 3.5. The separation and reattachment line locations were qualitatively similar to the F-18 wind-tunnel-model oil flows but neither the laminar separation bubble nor the boundary-layer transition on the wind tunnel model were evident in the flight surface flows. The separation and reattachment line locations were in fair agreement with the wind tunnel data for the 3.5 ogive. The elliptical forebody shape of the F-18 caused the primary separation lines to move toward the leeward meridian. Little effect of angle of attack on the separation locations was noted for the range reported.

  10. The use of NASTRAN in the design of wind tunnel research aircraft

    NASA Technical Reports Server (NTRS)

    Cooper, Michael

    1987-01-01

    The relationship between NASTRAN and the wind tunnel model design process is discussed. Specific cases illustrating the use of NASTRAN for static, heat transfer, dynamic, and aeroelastic analyses are presented. Advantages and disadvantages of using NASTRAN are summarized.

  11. A Correlation Between Flight-Determined Derivatives and Wind-Tunnel Data for the X-24B Research Aircraft

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1976-01-01

    Longitudinal and lateral-directional estimates of the aerodynamic derivatives of the X-24B research aircraft were obtained from flight data by using a modified maximum likelihooa estimation method. Data were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5deg to 15.7deg. Data are presented for a subsonic and a transonic configuration. The flight derivatives were generally consistent and documented the aircraft well. The correlation between the flight data and wind-tunnel predictions is presented and discussed.

  12. A Correlation Between Flight-Determined Derivatives and Wind-Tunnel Data for the X-24B Research Aircraft

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1997-01-01

    Longitudinal and lateral-directional estimates of the aerodynamic derivatives of the X-24B research aircraft were obtained from flight data by using a modified maximum likelihood estimation method. Data were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5 deg. to 15.7 deg. Data are presented for a subsonic and transonic configuration. The flight derivatives were generally consistent and documented the aircraft well. The correlation between the flight data and wind-tunnel predictions is presented and discussed.

  13. Analysis of Wind Tunnel Lateral Oscillatory Data of the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.; Szyba, Nathan M.

    2004-01-01

    Static and dynamic wind tunnel tests were performed on an 18% scale model of the F-16XL aircraft. These tests were performed over a wide range of angles of attack and sideslip with oscillation amplitudes from 5 deg. to 30 deg. and reduced frequencies from 0.073 to 0.269. Harmonic analysis was used to estimate Fourier coefficients and in-phase and out-of-phase components. For frequency dependent data from rolling oscillations, a two-step regression method was used to obtain unsteady models (indicial functions), and derivatives due to sideslip angle, roll rate and yaw rate from in-phase and out-of-phase components. Frequency dependence was found for angles of attack between 20 deg. and 50 deg. Reduced values of coefficient of determination and increased values of fit error were found for angles of attack between 35 deg. and 45 deg. An attempt to estimate model parameters from yaw oscillations failed, probably due to the low number of test cases at different frequencies.

  14. Probabilistic Design of a Wind Tunnel Model to Match the Response of a Full-Scale Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Stroud, W. Jefferson; Krishnamurthy, T.; Spain, Charles V.; Naser, Ahmad S.

    2005-01-01

    approach is presented for carrying out the reliability-based design of a plate-like wing that is part of a wind tunnel model. The goal is to design the wind tunnel model to match the stiffness characteristics of the wing box of a flight vehicle while satisfying strength-based risk/reliability requirements that prevents damage to the wind tunnel model and fixtures. The flight vehicle is a modified F/A-18 aircraft. The design problem is solved using reliability-based optimization techniques. The objective function to be minimized is the difference between the displacements of the wind tunnel model and the corresponding displacements of the flight vehicle. The design variables control the thickness distribution of the wind tunnel model. Displacements of the wind tunnel model change with the thickness distribution, while displacements of the flight vehicle are a set of fixed data. The only constraint imposed is that the probability of failure is less than a specified value. Failure is assumed to occur if the stress caused by aerodynamic pressure loading is greater than the specified strength allowable. Two uncertain quantities are considered: the allowable stress and the thickness distribution of the wind tunnel model. Reliability is calculated using Monte Carlo simulation with response surfaces that provide approximate values of stresses. The response surface equations are, in turn, computed from finite element analyses of the wind tunnel model at specified design points. Because the response surface approximations were fit over a small region centered about the current design, the response surfaces were refit periodically as the design variables changed. Coarse-grained parallelism was used to simultaneously perform multiple finite element analyses. Studies carried out in this paper demonstrate that this scheme of using moving response surfaces and coarse-grained computational parallelism reduce the execution time of the Monte Carlo simulation enough to make the

  15. Wind-tunnel investigation of a large-scale VTOL aircraft model with wing root and wing thrust augmentors. [Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Aoyagi, K.; Aiken, T. N.

    1979-01-01

    Tests were conducted in the Ames 40 by 80 foot wind tunnel to determine the aerodynamic characteristics of a large-scale V/STOL aircraft model with thrust augmentors. The model had a double-delta wing of aspect ratio 1.65 with augmentors located in the wing root and the wing trailing edge. The supply air for the augmentor primary nozzles was provided by the YJ-97 turbojet engine. The airflow was apportioned approximately 74 percent to the wing root augmentor and 24 percent to wing augmentor. Results were obtained at several trailing-edge flap deflections with the nozzle jet-momentum coefficients ranging from 0 to 7.9. Three-component longitudinal data are presented with the agumentor operating with and without the horizontal tail. A limited amount of six component data are also presented.

  16. Full-scale wind-tunnel tests of a small unpowered jet aircraft with a T-tail

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Aiken, T. N.

    1971-01-01

    The aerodynamic characteristics of a full scale executive type jet transport aircraft with a T-tail were investigated in a 40 x 80 ft (12.2 by 24.4 meter) wind tunnel (subsonic). Static, longitudinal, and lateral stability, and control characteristics were determined at angles of attack from -2 deg to +42 deg. The aircraft wing had 13 deg of sweep and an aspect ratio of 5.02. The aircraft was tested power off with various wing leading- and trailing-edge high lift devices. The basic configuration was tested with and without such components as engine nacelles, wing tip tanks, and empannage. Hinge-moment data were obtained and downwash angles in the horizontal-tail plane location were calculated. The data were obtained at Reynolds numbers of 4.1 million and 8.7 million based on mean aerodynamic chord. The model had static longitudinal stability through initial stall. Severe tail buffet occurred near the angle of attack for maximum lift. Above initial stall the aircraft had pronounced pitch-up, characteristic of T-tail configurations. A stable trim point was possible at angles of attack between 30 deg and 40 deg (depending on c.g. location and flap setting). Hinge-moment data showed no regions with adverse effects on stick force. Comparisons of wind-tunnel data and flight-test are presented.

  17. Wind tunnel and flight development of spoilers for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Seetharam, H. C.; Calhoun, J. T.

    1975-01-01

    Wind tunnel tests have been carried out to develop a spoiler lateral control system for use with the GA(W)-1 airfoil with a 30% Fowler flap. Tests show that unfavorable aerodynamic interactions can occur between spoiler and flap for large flap deflections. Providing venting of lower surface air through the spoiler opening substantially improves performance. Results of tests with a number of spoiler and cavity shapes are presented and discussed. Applications of two-dimensional wind tunnel results to the design of satisfactory manual lateral control systems are discussed.

  18. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    NASA Technical Reports Server (NTRS)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  19. Simulation investigation of the effect of the NASA Ames 80-by 120-foot wind tunnel exhaust flow on light aircraft operating in the Moffett field trafffic pattern

    NASA Technical Reports Server (NTRS)

    Streeter, Barry G.

    1986-01-01

    A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure.

  20. Survey of needs and capabilities for wind tunnel testing of dynamic stability of aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Orlik-Ruckemann, K. J.

    1973-01-01

    A survey was conducted relative to future requirements for dynamic stability information for such aerospace vehicles as the space shuttle and advanced high performance military aircraft. High-angle-of-attack and high-Reynolds number conditions were emphasized. A review was made of the wind-tunnel capabilities in North America for measuring dynamic stability derivatives, revealing an almost total lack of capabilities that could satisfy these requirements. Recommendations are made regarding equipment that should be constructed to remedy this situation. A description is given of some of the more advanced existing capabilities, which can be used to at least partly satisfy immediate demands.

  1. Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Little, B. H., Jr.; Tomlin, K. H.; Aljabri, A. S.; Mason, C. A.

    1988-01-01

    One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate.

  2. 5-Foot Vertical Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of 5-Foot Vertical Wind Tunnel. The 5-Foot Vertical Wind Tunnel was built to study spinning characteristics of aircraft. It was an open throat tunnel capable of a maximum speed of 80 mph. NACA engineer Charles H. Zimmerman designed the tunnel starting in 1928. Construction was completed in December 1929. It was one of two tunnels which replaced the original Atmospheric Wind Tunnel (The other was the 7x10-Foot Wind Tunnel.). In NACA TR 387 (p. 499), Carl Wenzinger and Thomas Harris report that 'the tunnel passages are constructed of 1/8-inch sheet iron, stiffened with angle iron and bolted together at the corners. The over-all dimensions are: Height 31 feet 2 inches; length, 20 feet 3 inches; width, 10 feet 3 inches.' The tunnel was partially constructed in the Langley hanger as indicated by the aircraft in the background. Published in NACA TR 387, 'The Vertical Wind Tunnel of the National Advisory Committee for Aeronautics,' by Carl J. Wenzinger and Thomas A. Harris, 1931.

  3. Wind-tunnel investigation of a full-scale canard-configured general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Coy, P. F.

    1982-01-01

    As part of a broad research program to provide a data base on advanced airplane configurations, a wind-tunnel investigation was conducted in the Langley 30-by 60-Foot Wind Tunnel to determine the aerodynamic characteristics of an advanced canard-configured general aviation airplane. The investigation included measurements of forces and moments of the complete configuration, isolated canard loads, and pressure distributions on the wing, winglet, and canard. Flow visualization was obtained by using surface tufts to determine regions of flow separation and by using a chemical sublimation technique to determine boundary-layer transition locations. Additionally, other tests were conducted to determine simulated rain effects on boundary layer transition. Investigation of configuration effects included variations of canard locations, canard airfoil section, winglet size, and use of a leading-edge droop on the out-board section of the wing.

  4. Comparison of nozzle and afterbody surface pressures from wind tunnel and flight test of the YF-17 aircraft

    NASA Technical Reports Server (NTRS)

    Lucas, E. J.; Fanning, A. E.; Steers, L. I.

    1978-01-01

    Results are reported from the initial phase of an effort to provide an adequate technical capability to accurately predict the full scale, flight vehicle, nozzle-afterbody performance of future aircraft based on partial scale, wind tunnel testing. The primary emphasis of this initial effort is to assess the current capability and identify the cause of limitations on this capability. A direct comparison of surface pressure data is made between the results from an 0.1-scale model wind tunnel investigation and a full-scale flight test program to evaluate the current subscale testing techniques. These data were acquired at Mach numbers 0.6, 0.8, 0.9, 1.2, and 1.5 on four nozzle configurations at various vehicle pitch attitudes. Support system interference increments were also documented during the wind tunnel investigation. In general, the results presented indicate a good agreement in trend and level of the surface pressures when corrective increments are applied for known effects and surface differences between the two articles under investigation.

  5. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  6. Analytic development of improved supersonic cruise aircraft based on wind tunnel data

    NASA Technical Reports Server (NTRS)

    Roensch, R. L.; Page, G. S.

    1980-01-01

    Data obtained from the MDC/NASA cooperative wing tunnel program were used to develop empirical corrections to theory. These methods were then used to develop a 2.2M supersonic cruise aircraft configuration with a cruise trimmed maximum L/D of 10.2. The empirical corrections to the theory are reviewed, and the configuration alternatives examined in the development of the configuration are presented. The benefits of designing for optimum trimmed performance, including the effects of the nacelles, are discussed.

  7. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  8. Wind tunnel investigation of an all flush orifice air data system for a large subsonic aircraft. [conducted in a Langley 8 foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Flechner, S. G.; Siemers, P. M., III

    1980-01-01

    The results of a wind tunnel investigation on an all flush orifice air data system for use on a KC-135A aircraft are presented. The investigation was performed to determine the applicability of fixed all flush orifice air data systems that use only aircraft surfaces for orifices on the nose of the model (in a configuration similar to that of the shuttle entry air data system) provided the measurements required for the determination of stagnation pressure, angle of attack, and angle of sideslip. For the measurement of static pressure, additional flush orifices in positions on the sides of the fuselage corresponding to those in a standard pitot-static system were required. An acceptable but less accurate system, consisting of orifices only on the nose of the model, is defined and discussed.

  9. Multivariable frequency domain controller for magnetic suspension and balance systems. [for wind tunnel aircraft models

    NASA Technical Reports Server (NTRS)

    Baheti, R. S.

    1982-01-01

    The magnetic suspension and balance system for an airplane model in a large wind tunnel is considered. In this system, superconducting coils generate magnetic forces and torques on the magnetized soft iron core of the airplane model. The control system is a position servo where the airplane model, with six degrees of feedom, follows the reference static or dynamic input commands. The controller design, based on the characteristic loci method, minimizes the effects of aerodynamic and inertial cross-couplings, and provides the specified dynamic response.

  10. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    NASA Technical Reports Server (NTRS)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  11. Cryogenic wind tunnels. III

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    Specific problems pertaining to cryogenic wind tunnels, including LN(2) injection, GN(2) exhaust, thermal insulation, and automatic control are discussed. Thermal and other physical properties of materials employed in these tunnels, properties of cryogenic fluids, storage and transfer of liquid nitrogen, strength and toughness of metals and nonmetals at low temperatures, and material procurement and qualify control are considered. Safety concerns with cryogenic tunnels are covered, and models for cryogenic wind tunnels are presented, along with descriptions of major cryogenic wind-tunnel facilities the United States, Europe, and Japan. Problems common to wind tunnels, such as low Reynolds number, wall and support interference, and flow unsteadiness are outlined.

  12. Development and wind tunnel evaluation of a shape memory alloy based trim tab actuator for a civil aircraft

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Jayasankar, S.; Satisha; Sateesh, V. L.; Kamaleshaiah, M. S.; Dayananda, G. N.

    2013-09-01

    This paper presents the development and wind tunnel evaluation of a shape memory alloy (SMA) based smart trim tab for a typical two seater civil aircraft. The SMA actuator was housed in the port side of the elevator for the purpose of actuating the trim tab. Wind tunnel tests were conducted on a full scale horizontal tail model with elevator and trim tab at free stream speeds of 25, 35 and 45 m s-1, and also for a number of deflections of the elevator (30° up, 0° neutral and 25° down) and trim tab (11° and 21° up and 15° and 31° down). To measure the hinge moment experienced by the trim tab under various test conditions, two miniaturized balances were designed and fabricated. A gain scheduled proportional integral (GSPI) controller was developed to control the SMA actuated smart trim tab. It was confirmed during the tests that the trim tab could be controlled at the desired position against the aerodynamic loads acting on it for the various test conditions.

  13. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  14. Wind tunnel measurements of three-dimensional wakes of buildings. [for aircraft safety applications

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Lin, S. H.

    1982-01-01

    Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. A wind tunnel experiment was undertaken to determine the nature of the flow downstream from a gap between two transversely aligned, equal sized models of rectangular cross section. These building models were immersed in an equilibrium turbulent boundary layer which was developed on a smooth floor in a zero longitudinal pressure gradient. Measurements with an inclined (45 degree) hot-wire were made at key positions downstream of models arranged with a large, small, and no gap between them. Hot-wire theory is presented which enables computation of the three mean velocity components, U, V and W, as well as Reynolds stresses. These measurements permit understanding of the character of the wake downstream of laterally spaced buildings. Surface streamline patterns obtained by the oil film method were used to delineate the separation region to the rear of the buildings for a variety of spacings.

  15. V/STOL tilt rotor aircraft study: Wind tunnel tests of a full scale hingeless prop/rotor designed for the Boeing Model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1973-01-01

    The rotor system designed for the Boeing Model 222 tilt rotor aircraft is a soft-in-plane hingeless rotor design, 26 feet in diameter. This rotor has completed two test programs in the NASA Ames 40' X 80' wind tunnel. The first test was a windmilling rotor test on two dynamic wing test stands. The rotor was tested up to an advance ratio equivalence of 400 knots. The second test used the NASA powered propeller test rig and data were obtained in hover, transition and low speed cruise flight. Test data were obtained in the areas of wing-rotor dynamics, rotor loads, stability and control, feedback controls, and performance to meet the test objectives. These data are presented.

  16. 7. VIEW WEST OF SCALE ROOM IN FULLSCALE WIND TUNNEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST OF SCALE ROOM IN FULL-SCALE WIND TUNNEL; SCALES ARE USED TO MEASURE FORCES ACTING ON MODEL AIRCRAFT SUSPENDED ABOVE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  17. Aircraft Engineering Conference 1934 - Full Scale Tunnel

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Gathered together in the only facility big enough to hold them, attendees at Langleys 1934 aircraft Engineering Conference pose in the Full Scale Wind Tunnel underneath a Boeing P-26A Peashooter. Present, among other notables, were Orville Wright, Charles Lindbergh, and Howard Hughes.

  18. NASA Now: Engineering Design: Wind Tunnel Testing

    NASA Video Gallery

    Dr. Norman W. Schaeffler, a NASA aerospace research engineer, describes how wind tunnels work and how aircraft designers use them to understand aerodynamic forces at low speeds. Learn the advantage...

  19. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  20. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  1. Flow Visualization Techniques in Wind Tunnel Tests of a Full-Scale F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Bennett, Mark; Crowder, James P.; Cooper, Don; Olson, Lawrence (Technical Monitor)

    1994-01-01

    The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. The purpose of the flow-visualization experiments was to document the forebody and leading edge extension (LEX) vortex interaction along with the wing flow patterns at high angles of attack and low speed high Reynolds number conditions. This investigation used surface pressures in addition to both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, LEXS, and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system for three-dimension vortex tracking. The flow visualization experiments were conducted over an angle of attack range from 20 deg to 45 deg and over a sideslip range from -10 deg to 10 deg. The various visualization techniques as well as the pressure distributions were used to understand the flow field structure. The results show regions of attached and separated flow on the forebody, canopy, and wings as well as the vortical flow over the leading-edge extensions. This paper will also present flow visualization comparisons with the F-18 HARV flight vehicle and small-scale oil flows on the F-18.

  2. Subsonic wind-tunnel tests of a trailing-cone device for calibrating aircraft static pressure systems

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Ritchie, V. S.

    1973-01-01

    A trailing-cone device for calibrating aircraft static-pressure systems was tested in a transonic wind tunnel to investigate the pressure-sensing characteristics of the device including effects of several configuration changes. The tests were conducted at Mach numbers from 0.30 to 0.95 with Reynolds numbers from (0.9 x one million to 4.1 x one million per foot). The results of these tests indicated that the pressures sensed by the device changed slightly but consistently as the distance between the device pressure orifices and cone was varied from 4 to 10 cone diameters. Differences between such device-indicated pressures and free-stream static pressure were small, however, and corresponded to Mach number differences of less than 0.001 for device configurations with pressure orifices located 5 or 6 cone diameters ahead of the cone. Differences between device-indicated and free-stream static pressures were not greatly influenced by a protection skid at the downstream end of the pressure tube of the device nor by a 2-to-1 change in test Reynolds number.

  3. Validation of Methodology for Estimating Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2003-01-01

    A basic problem in flight dynamics is the mathematical formulation of the aerodynamic model for aircraft. This study is part of an ongoing effort at NASA Langley to develop a more general formulation of the aerodynamic model for aircraft that includes nonlinear unsteady aerodynamics and to develop appropriate test techniques that facilitate identification of these models. A methodology for modeling and testing using wide-band inputs to estimate the unsteady form of the aircraft aerodynamic model was developed previously but advanced test facilities were not available at that time to allow complete validation of the methodology. The new model formulation retained the conventional static and rotary dynamic terms but replaced conventional acceleration terms with more general indicial functions. In this study advanced testing techniques were utilized to validate the new methodology for modeling. Results of static, conventional forced oscillation, wide-band forced oscillation, oscillatory coning, and ramp tests are presented.

  4. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  5. The Design of Wind Tunnels and Wind Tunnel Propellers

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H; Hebbert, C M

    1919-01-01

    Report discusses the theory of energy losses in wind tunnels, the application of the Drzewiecki theory of propeller design to wind tunnel propellers, and the efficiency and steadiness of flow in model tunnels of various types.

  6. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  7. Transport Aircraft System Identification Using Roll and Yaw Oscillatory Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2010-01-01

    Continued studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and dynamic terms but replace conventional acceleration terms with indicial functions. In the Subsonic Fixed Wing Project of the NASA Fundamental Aeronautics Program and the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced simulation and control design technology. This paper continues development and application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle. In the present study models for the lateral-directional aerodynamics are developed.

  8. Wind-tunnel investigation of surface-pressure fluctuations associated with aircraft buffet

    NASA Technical Reports Server (NTRS)

    Riddle, D. W.

    1975-01-01

    Fluctuating pressures and forces that cause aircraft buffeting have been measured on a semispan rigid-wing model of a typical variable-sweep fighter-type aircraft at transonic speeds. The rms spectral and spatial correlation characteristics of wing fluctuating pressures, fluctuating pressure summations, and structural responses are presented and discussed for a Mach number of 0.85, wing sweep angles of 26 and 72 deg, and angles of attack up to 12 deg. The fluctuating pressure characteristics beneath wing shock waves and leading-edge vortices and in regions of attached and separated flows are presented. Results indicate that: (1) the mean and fluctuating static pressure characteristics are related; (2) a circulation oscillation exists for attached flow conditions below buffet onset; and (3) a significant coupling exists between the wing shock-wave oscillation and the wing first torsional mode when shock-induced separation is present.

  9. Acoustic characteristics of a large scale wind-tunnel model of a jet flap aircraft

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aiken, T. N.; Aoyagi, K.

    1975-01-01

    The expanding-duct jet flap (EJF) concept is studied to determine STOL performance in turbofan-powered aircraft. The EJF is used to solve the problem of ducting the required volume of air into the wing by providing an expanding cavity between the upper and lower surfaces of the flap. The results are presented of an investigation of the acoustic characteristics of the EJF concept on a large-scale aircraft model powered by JT15D engines. The noise of the EJF is generated by acoustic dipoles as shown by the sixth power dependence of the noise on jet velocity. These sources result from the interaction of the flow turbulence with flap of internal and external surfaces and the trailing edges. Increasing the trailing edge jet from 70 percent span to 100 percent span increased the noise 2 db for the equivalent nozzle area. Blowing at the knee of the flap rather than the trailing edge reduced the noise 5 to 10 db by displacing the jet from the trailing edge and providing shielding from high-frequency noise. Deflecting the flap and varying the angle of attack modified the directivity of the underwing noise but did not affect the peak noise. A forward speed of 33.5 m/sec (110 ft/sec) reduced the dipole noise less than 1 db.

  10. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  11. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  12. Exploratory low-speed wind-tunnel study of concepts designed to improve aircraft stability and control at high angles of attack. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hahne, D. E.

    1985-01-01

    A wind tunnel investigation of concepts to improve the high angle-of-attack stability and control characteristics of a high performance aircraft was conducted. The effect of vertical tail geometry on stability and the effectiveness of several conventional and unusual control concepts was determined. These results were obtained over a large angle-of-attack range. Vertical tail location, cant angle and leading edge sweep could influence both longitudinal and lateral-directional stability. The control concepts tested were found to be effective and to provide control into the post stall angle-of-attack region.

  13. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  14. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  15. An experimental study of the effect of tail configuration on the spinning characteristics of general aviation aircraft. M.S. Thesis; [static wind tunnel force measurements

    NASA Technical Reports Server (NTRS)

    Ballin, M. G.

    1982-01-01

    The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.

  16. Two-dimensional wind tunnel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on the Japanese National Aerospace Laboratory two dimensional transonic wind tunnel, completed at the end of 1979 is presented. Its construction is discussed in detail, and the wind tunnel structure, operation, test results, and future plans are presented.

  17. Wind Tunnel Balances

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H

    1920-01-01

    Report embodies a description of the balance designed and constructed for the use of the National Advisory Committee for Aeronautics at Langley Field, and also deals with the theory of sensitivity of balances and with the errors to which wind tunnel balances of various types are subject.

  18. V/STOL wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.

    1984-01-01

    Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The planning sequence itself, which includes a short checklist of considerations that could enhance the value of the tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation, model development and test operations, is discussed, and examples of appropriate past and current V/STOL test programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review of several model installations, from two-dimensional to large-scale models of complete aircraft configurations. Model sizing, power simulation, and planning are treated, including three areas is test operations: data-acquisition systems, acoustic measurements in wind tunnels, and flow surveying.

  19. Quiet Supersonic Wind Tunnel Development

    NASA Technical Reports Server (NTRS)

    King, Lyndell S.; Kutler, Paul (Technical Monitor)

    1994-01-01

    The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.

  20. Low-Speed Wind-Tunnel Tests of a Pilotless Aircraft Having Horizontal and Vertical Wings and Cruciform Tail

    NASA Technical Reports Server (NTRS)

    Mastrocola, N; Assadourian, A

    1947-01-01

    Low-speed tests of a pilotless aircraft were conducted in the Langley propeller-research tunnel to provide information for the estimation of the longitudinal stability and. control, to measure the aileron effectiveness, and to calibrate the radome and the Machmeter pitot-static orifices. It was found that the model possessed a stEb.le variation of elevator angle required for trim throughout the speed range at the design angle of attack. A comparison of the airplane with and without JATO units and with an alternate rocket booster showed that a large loss in longitudinal stability and control resulting from the addition of the rocket booster to the aircraft was sufficient to make the rocket-booster assembly unsatisfactory as an alternate for the JATO units. Reversal of the aileron effectiveness was evident at positive deflections of the vertical wing flap indicating that the roll-stabilization system would produce roiling moments in a tight right turn contrary to its design purpose. Vertical-wing-flap deflections caused large errors in the static-pressure reading obtained by the original static-tube installation. A practical installation point on the fuselage was located which should yield reliable measurement of the free-stream static pressure.

  1. 20-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1941-01-01

    The large structure on the left of the photograph is the Free-Spinning Wind Tunnel in which dynamic scale models of modern airplanes are tested to determine their spinning characteristics and ability to recover from spins from movement of the control surfaces. From the information obtained in this manner, the spin recovery characteristics of the full-scale airplane may be predicted. The large sphere on the right is 60 feet in diameter and houses the NACA 12-Foot Free-Flight Wind Tunnel in which dynamic scale models of airplanes are flown in actual controlled flight to provide information from which the stability characteristics of the full-scale airplane may be predicted.

  2. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  3. Comparison of wind tunnel and flight test afterbody and nozzle pressures for a twin-jet fighter aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Nugent, Jack; Pendergraft, Odis C., Jr.

    1987-01-01

    Afterbody and nozzle pressures measured on a 1/12-scale model and in flight on a twin-jet fighter aircraft were compared as Mach number varied from 0.6 to 1.2, Reynolds number from 17.5 million to 302.5 million, and angle of attack from 1 to 7 deg. At Mach 0.6 and 0.8, nozzle pressure coefficient distributions and nozzle axial force coefficients agreed and showed good recompression. At Mach 0.9 and 1.2, flow complexity caused a loss in recompression for both flight and wind tunnel nozzle data. The flight data exhibited less negative values of pressure coefficient and lower axial force coefficients than did the wind tunnel data. Reynolds number effects were noted only at these Mach numbers. Jet temperature and mass flux ratio did not affect the comparisons of nozzle axial flow coefficient. At subsonic speeds, the levels of pressure coefficient distributions on the upper fuselage and lower nacelle surfaces for flight were less negative than those for the model. The model boundary layer thickness at the aft rake station exceeded that for the forward rake station and increased with increasing angle of attack. The flight boundary layer thickness at the aft rake station was less than that for the forward rake station and decreased with increasing angle of attack.

  4. High-speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1936-01-01

    Wind tunnel construction and design is discussed especially in relation to subsonic and supersonic speeds. Reynolds Numbers and the theory of compressible flows are also taken into consideration in designing new tunnels.

  5. Design Guidelines for the Application of Forebody and Nose Strakes to a Fighter Aircraft Based on F-16 Wind Tunnel Testing Experience

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Anderson, C. A.

    1979-01-01

    During the YF-16 and F-16 developmental wind tunnel test program, numerous variations in nose and forebody strakes were investigated. These data were reviewed, and the strake aerodynamic characteristics coalesced into design guidelines for the application of strakes to fighter aircraft. The design guides take the form of general equations governing the modification of forebody strakes to obtain a linear pitching moment curve and the calculation of the resulting lift and drag increments. Additionally, qualitative comments are made concerning the effects of strake geometry on lateral/directional stability. It is concluded that the generation of incremental strake lift is primarily dependent upon the area affected by the strake-induced vortex and that strake planform is of secondary importance. Forebody strakes have small beneficial effects on lateral/directional stability if properly designed; however, significant gains are easily attained with nose strakes.

  6. Wind tunnel tests of a zero length, slotted-lip engine air inlet for a fixed nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.; Beck, W. E., Jr.; Glasgow, E. R.

    1982-01-01

    Zero length, slotted lip inlet performance and associated fan blade stresses were determined during model tests using a 20 inch diameter fan simulator in the NASA-LeRC 9 by 15 foot low speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. The inlet performance was dependent on slot gap width and relatively independent of inlet throat/fan face spacer length and slot flow blockage created by 90 degree slot fillers. Optimum performance was obtained at a slot gap width of 0.36 inch. The zero length, slotted lip inlet satisfied all critical low speed inlet operating requirements for fixed horizontal nacelles subsonic V/STOL aircraft.

  7. Digital control of wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  8. Some lessons learned with wind tunnels

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1986-01-01

    A review is presented of some of the lessons learned from wind tunnel tests since World War II. Wind tunnels achieved a very high productivity rate during the war due in part to development testing of numerous military aircraft concepts. Following the war, in addition to development testing, a rapid increase in basic research testing occurred in order to explore areas of interest revealed by the conduct of war and to expand on advanced technology that became available from Germany and Italy. The research test areas discussed are those primarily related to the transition from subsonic flight to supersonic flight.

  9. The Langley Wind Tunnel Enterprise

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Kumar, Ajay; Kegelman, Jerome T.

    1998-01-01

    After 4 years of existence, the Langley WTE is alive and growing. Significant improvements in the operation of wind tunnels have been demonstrated and substantial further improvements are expected when we are able to truly address and integrate all the processes affecting the wind tunnel testing cycle.

  10. Low-disturbance wind tunnels

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Applin, Z. T.; Stainback, P. C.; Maestrello, L.

    1986-01-01

    During the past years, there was an extensive program under way at the Langley Research Center to upgrade the flow quality in several of the large wind tunnels. This effort has resulted in significant improvements in flow quality in these tunnels and has also increased the understanding of how and where changes in existing and new wind tunnels are most likely to yield the desired improvements. As part of this ongoing program, flow disturbance levels and spectra were measured in several Langley tunnels before and after modifications were made to reduce acoustic and vorticity fluctuations. A brief description of these disturbance control features is given for the Low-Turbulence Pressure Tunnel, the 4 x 7 Meter Tunnel, and the 8 Foot Transonic Pressure Tunnel. To illustrate typical reductions in disturbance levels obtained in these tunnels, data from hot-wire or acoustic sensors are presented. A concept for a subsonic quiet tunnel designed to study boundary layer stability and transition is also presented. Techniques developed at Langley in recent years to eliminate the high intensity and high-frequency acoustic disturbances present in all previous supersonic wind tunnels are described. In conclusion, the low-disturbance levels present in atmospheric flight can now be simulated in wind tunnels over the speed range from low subsonic through high supersonic.

  11. The virtual wind tunnel

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levit, Creon

    1992-01-01

    Consideration is given to the design and implementaion of a virtual environment linked to a graphics workstation for the visualization of complex fluid flows. The user wears a stereo head-tracked display which displays 3D information and an instrumented glove to intuitively position flow-visualization tools. The idea is to create for the user an illusion that he or she is actually in the flow manipulating visualization tools. The user's presence does not disturb the flow so that sensitive flow areas can be easily investigated. The flow is precomputed and can be investigated at any length scale and with control over time. Particular attention is given to the visualization structures and their interfaces in the virtual environment, hardware and software, and the performance of the virtual wind tunnel using flow past a tapered cylinder as an example.

  12. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  13. Flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  14. Low-speed wind-tunnel investigation of a porous forebody and nose strakes for yaw control of a multirole fighter aircraft

    NASA Technical Reports Server (NTRS)

    Fears, Scott P.

    1995-01-01

    Low-speed wind-tunnel tests were conducted in the Langley 12-Foot Low-Speed Tunnel on a model of the Boeing Multirole Fighter (BMRF) aircraft. This single-seat, single-engine configuration was intended to be an F-16 replacement that would incorporate many of the design goals and advanced technologies of the F-22. Its mission requirements included supersonic cruise without afterburner, reduced observability, and the ability to attack both air-to-air and air-to-ground targets. So that it would be effective in all phases of air combat, the ability to maneuver at angles of attack up to and beyond maximum lift was also desired. Traditional aerodynamic yaw controls, such as rudders, are typically ineffective at these higher angles of attack because they are usually located in the wake from the wings and fuselage. For this reason, this study focused on investigating forebody-mounted controls that produces yawing moments by modifying the strong vortex flowfield being shed from the forebody at high angles of attack. Two forebody strakes were tested that varied in planform and chordwise location. Various patterns of porosity in the forebody skin were also tested that differed in their radial coverage and chordwise location. The tests were performed at a dynamic pressure of 4 lb/ft(exp 2) over an angle-of-attack range of -4 deg to 72 deg and a sideslip range of -10 deg to 10 deg. Static force data, static pressures on the surface of the forebody, and videotapes of flow-visualization using laser-illuminated smoke were obtained.

  15. Wind tunnel and ground static investigation of a large scale model of a lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An investigation was conducted in a 40 foot by 80 foot wind tunnel to determine the aerodynamic/propulsion characteristics of a large scale powered model of a lift/cruise fan V/STOL aircraft. The model was equipped with three 36 inch diameter turbotip X376B fans powered by three T58 gas generators. The lift fan was located forward of the cockpit area and the two lift/cruise fans were located on top of the wing adjacent to the fuselage. The three fans with associated thrust vectoring systems were used to provide vertical, and short, takeoff and landing capability. For conventional cruise mode operation, only the lift/cruise fans were utilized. The data that were obtained include lift, drag, longitudinal and lateral-directional stability characteristics, and control effectiveness. Data were obtained up to speeds of 120 knots at one model height of 20 feet for the conventional aerodynamic lift configuration and at several thrust vector angles for the powered lift configuration.

  16. 5-Foot Vertical Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Schematic drawing of 5-Foot Vertical Wind Tunnel. Carl Wenzinger and Thomas Harris describe the tunnel in NACA TR No. 387: 'The tunnel has an open jet, an open test chamber, and a closed return passage. ... The air passes through the test section in a downward direction then enters the exit cone and passes through the first set of guide vanes to a propeller. From here it passes, by way of the return passage, through the successive sets of guide vanes at the corners, then through the honeycomb, and finally through the entrance cone.' In an earlier report, NACA TR 387, Carl Wenzinger and Thomas Harris supply this description of the tunnel: 'The vertical open-throat wind tunnel of the National Advisory Committee for Aeronautics ... was built mainly for studying the spinning characteristics of airplane models, but may be used as well for the usual types of wind-tunnel tests. A special spinning balance is being developed to measure the desired forces and moments with the model simulating the actual spin of an airplane. Satisfactory air flow has been attained with a velocity that is uniform over the jet to within 0.5%. The turbulence present in the tunnel has been compared with that of several other tunnels by means of the results of sphere drag tests and was found to average well with the values of those tunnels. Included also in the report are comparisons of results of stable autorotation and of rolling-moment tests obtained both in the vertical tunnel and in the old horizontal 5-foot atmospheric tunnel.' The design of a vertical tunnel having a 5-foot diameter jet was accordingly started by the National Advisory Committee for Aeronautics in 1928. Actual construction of the new tunnel was completed in 1930, and the calibration tests were then made.'

  17. Wind-Tunnel Tests of a 1/4-Scale Model of the Naval Aircraft Factory Float-Wing Convoy Interceptor, TED No. NACA 2314

    NASA Technical Reports Server (NTRS)

    Wells, Evalyn G.; McKinney, Elizabeth G.

    1947-01-01

    A 1/4 - scale model of the Naval Aircraft Factory float-wing convoy interceptor was tested in the Langley 7-by 10-foot tunnel to determine the longitudinal and lateral stability characteristics. The model was tested in the presence of a ground board to determine the effect of simulating the ground on the longitudinal characteristics.

  18. Research at NASA's NFAC wind tunnels

    NASA Technical Reports Server (NTRS)

    Edenborough, H. Kipling

    1990-01-01

    The National Full-Scale Aerodynamics Complex (NFAC) is a unique combination of wind tunnels that allow the testing of aerodynamic and dynamic models at full or large scale. It can even accommodate actual aircraft with their engines running. Maintaining full-scale Reynolds numbers and testing with surface irregularities, protuberances, and control surface gaps that either closely match the full-scale or indeed are those of the full-scale aircraft help produce test data that accurately predict what can be expected from future flight investigations. This complex has grown from the venerable 40- by 80-ft wind tunnel that has served for over 40 years helping researchers obtain data to better understand the aerodynamics of a wide range of aircraft from helicopters to the space shuttle. A recent modification to the tunnel expanded its maximum speed capabilities, added a new 80- by 120-ft test section and provided extensive acoustic treatment. The modification is certain to make the NFAC an even more useful facility for NASA's ongoing research activities. A brief background is presented on the original facility and the kind of testing that has been accomplished using it through the years. A summary of the modification project and the measured capabilities of the two test sections is followed by a review of recent testing activities and of research projected for the future.

  19. Laser Velocimetry In Low-Speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Orloff, Kenneth L.; Snyder, Philip K.; Reinath, Michael S.

    1990-01-01

    Design and performance of three-dimensional and two-dimensional backscatter laser velocimeter, both used in low-speed wind tunnels, described in report together with historical overview of development of laser velocimetry (LV). Provides measurements of airflow in wind-tunnel tests without perturbing effects of probes and probe-supporting structures. Applicable in such related fields as ventilation engineering and possibly in detection of wing vortexes from large aircraft at airports.

  20. Full scale subsonic wind tunnel requirements and design studies

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mort, K. W.; Hickey, D. H.

    1972-01-01

    The justification and requirements are summarized for a large subsonic wind tunnel capable of testing full-scale aircraft, rotor systems, and advanced V/STOL aircraft propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed. The design studies showed that the structural cost of this facility is the most important cost factor. For this reason (and other considerations such as requirements for engine exhaust gas purging) an open-return wind tunnel having two test sections was selected. The major technical problem in the design of an open-return wind tunnel is maintaining good test section flow quality in the presence of external winds. This problem has been studied extensively, and inlet and exhaust systems which provide satisfactory attenuation of the effects of external winds on test section flow quality were developed.

  1. Smart wing wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; Appa, Kari; Kudva, Jayanth N.; West, Mark N.

    1997-05-01

    The use of smart materials technologies can provide unique capabilities in improving aircraft aerodynamic performance. Northrop Grumman built and tested a 16% scale semi-span wind tunnel model of the F/A-18 E/F for the on-going DARPA/WL Smart Materials and Structures-Smart Wing Program. Aerodynamic performance gains to be validated included increase in the lift to drag ratio, increased pitching moment (Cm), increased rolling moment (Cl) and improved pressure distribution. These performance gains were obtained using hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist via a SMA torque tube and are compared to a conventional wind tunnel model with hinged control surfaces. This paper presents an overview of the results from the first wind tunnel test performed at the NASA Langley's 16 ft Transonic Dynamic Tunnel. Among the benefits demonstrated are 8 - 12% increase in rolling moment due to wing twist, a 10 - 15% increase in rolling moment due to contoured aileron, and approximately 8% increase in lift due to contoured flap, and improved pressure distribution due to trailing edge control surface contouring.

  2. Wind tunnel interference factors for high-lift wings in closed wind tunnels. Ph.D. Thesis - Princeton Univ.

    NASA Technical Reports Server (NTRS)

    Joppa, R. G.

    1973-01-01

    A problem associated with the wind tunnel testing of very slow flying aircraft is the correction of observed pitching moments to free air conditions. The most significant effects of such corrections are to be found at moderate downwash angles typical of the landing approach. The wind tunnel walls induce interference velocities at the tail different from those induced at the wing, and these induced velocities also alter the trajectory of the trailing vortex system. The relocated vortex system induces different velocities at the tail from those experienced in free air. The effect of the relocated vortex and the walls is to cause important changes in the measured pitching moments in the wind tunnel.

  3. The Unitary Plan Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Wedgworth, Kevin; Woo, Alex C.

    1994-01-01

    The Unitary Plan Facility is the most heavily used wind tunnel in all of NASA. Every major commercial transport and almost every fighter built in the United States over the last 30 years has been tested in this tunnel. Also tested in this tunnel complex were models of the Space Shuttle, as well as the Mercury, Gemini, and Apollo capsules. The wind tunnel represents a unique national asset of vital importance to the nation's defense and its competitive position in the world aerospace market. In 1985, the Unitary Plan Facility was named a National Historic Landmark by the National Park Service because of 'its significant associations with the development of the American Space Program.'

  4. SAMPSON smart inlet design overview and wind tunnel test: II. Wind tunnel test

    NASA Astrophysics Data System (ADS)

    Pitt, Dale M.; Dunne, James P.; White, Edward V.

    2002-07-01

    The Smart Aircraft and Marine System Projects Demonstration (SAMPSON) program was a DARPA funded effort conducted by the Boeing Company, General Dynamics - Electric Boat Division, and the Pennsylvania State University. NASA Langley Research Center (NASA LaRC) was technical monitor for the aircraft demonstration, while the Navy's Office of Naval Research (ONR) was technical monitor for the marine demonstration. Dr. Ephrahim Garcia, DARPA/DSO, acted as the DARPA program manager for SAMPSON. The SAMPSON program objectives were to demonstrate smart structures based systems on large/full scale structures in realistic environments. The SAMPSON aircraft demonstration was the wind tunnel testing of a full scale F-15 aircraft inlet that was capable of in-flight structural variations accomplished using smart materials, called the 'SAMPSON Smart Inlet'. The SAMPSON Smart Inlet was removed from an F-15E airframe and structurally modified to interface with the NASA LaRC 16-Foot Transonic Tunnel model support system. This is Part II of two works documenting the SAMPSON Smart Inlet design and testing. A discussion of the two wind tunnel tests will be presented here in Part II. The design of the shape changing components of the Smart Inlet is presented in a separate work, Part I.

  5. Low-speed wind-tunnel investigation of the flight dynamic characteristics of an advanced turboprop business/commuter aircraft configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce

    1990-01-01

    An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.

  6. Results of a low-speed wind tunnel test of the MDC 2.2M supersonic cruise aircraft configuration

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Parlett, L. P.; Roensch, R. L.; Felix, J. E.; Welge, H. R.

    1980-01-01

    Results of a low speed test conducted in the Full Scale Tunnel at NASA Langley using an advanced supersonic cruise vehicle configuration are presented. These tests used a 10 percent scale model of a configuration that had demonstrated high aerodynamic performance at Mach 2.2 during a previous test program. The low speed model has leading and trailing edge flaps designed to improve low speed lift to drag ratios at high lift and includes devices for longitudinal and lateral/directional control. The results obtained during the low speed test program have shown that full span leading edge flaps are required for maximum performance. The amount of deflection of the leading edge flap must increase with C sub L to obtain the maximum benefit. Over 80 percent of full leading edge suction was obtained up to lift off C sub L's of 0.65. A mild pitch up occurred at about 6 deg angle of attack with and without the leading edge flap deflected. The pitch up is controllable with the horizontal tail. Spoilers were found to be preferable to spoiler/deflectors at low speeds. The vertical tail maintained effectiveness up to the highest angle of attack tested but the tail on directional stability deteriorated at high angles of attack. Lateral control was adequate for landing at 72 m/sec in a 15.4 m/sec crosswind.

  7. Comparison of aerodynamic coefficients obtained from theoretical calculations wind tunnel tests and flight tests data reduction for the alpha jet aircraft

    NASA Technical Reports Server (NTRS)

    Guiot, R.; Wunnenberg, H.

    1980-01-01

    The methods by which aerodynamic coefficients are determined and discussed. These include: calculations, wind tunnel experiments and experiments in flight for various prototypes of the Alpha Jet. A comparison of obtained results shows good correlation between expectations and in-flight test results.

  8. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 2: Evaluation of prediction methodologies

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    An evaluation of current prediction methodologies to estimate the aerodynamic uncertainties identified for the E205 configuration is presented. This evaluation was accomplished by comparing predicted and wind tunnel test data in three major categories: untrimmed longitudinal aerodynamics; trimmed longitudinal aerodynamics; and lateral-directional aerodynamic characteristics.

  9. Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Allen, Timothy J.; Funk, Christie J.; Castelluccio, Mark A.; Sexton, Bradley W.; Claggett, Scott; Dykman, John; Coulson, David A.; Bartels, Robert E.

    2015-01-01

    The Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) aeroservoelastic (ASE) wind-tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) and was completed in April, 2014. The primary goals of the test were to identify the open-loop flutter boundary and then demonstrate flutter suppression. A secondary goal was to demonstrate gust load alleviation (GLA). Open-loop flutter and limit cycle oscillation onset boundaries were identified for a range of Mach numbers and various angles of attack. Two sets of control laws were designed for the model and both sets of control laws were successful in suppressing flutter. Control laws optimized for GLA were not designed; however, the flutter suppression control laws were assessed using the TDT Airstream Oscillation System. This paper describes the experimental apparatus, procedures, and results of the TBW wind-tunnel test. Acquired system ID data used to generate ASE models is also discussed.2 study.

  10. Wind tunnel performance of four energy efficient propellers designed for Mach 0.8 cruise. [Lewis 8x6 foot wind tunnel studies for noise reduction in high speed turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mikkelson, D. C.; Blaha, B. J.

    1979-01-01

    Several advanced aerodynamic and acoustic concepts were investigated in recent wind tunnel tests performed in the NASA-Lewis Research Center 8x6 foot wind tunnel. These concepts included aerodynamically integrated propeller/nacelles, area-ruling, blade sweep, reduced blade thickness, and power (disk) loadings several times higher than conventional designs. Four eight-bladed propeller models were tested to determine aerodynamic performance. Relative noise measurements were made on three of the models at cruise conditions. Three of the models were designed with swept blades and one with straight blades. At the design Mach number of 0.8, power coefficient of 1.7, and advance ratio of 3.06, the straight bladed model had the lowest net efficiency of 75.8 percent. Increasing the sweep to 30 deg improved the performance to near 77 percent. Installation of an area-ruled spinner on a 30 deg sweep model further improved the efficiency to about 78 percent. The model with the highest blade sweep (45 deg) and an area-ruled spinner had the highest net efficiency of 78.7 percent, and at lower power loadings the efficiency exceeded 80 percent. At lower Mach numbers the 30 deg swept model had the highest efficiency. Values near 81 percent were obtained for the design loading at speeds to Mach 0.7. Relative noise measurements indicated that the acoustically designed 45 deg sweep model reduced the near field cruise noise by between 5 and 6 dB.

  11. 5-foot Vertical Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1932-01-01

    The researcher is sitting above the exit cone of the 5-foot Vertical Wind Tunnel and is examining the new 6-component spinning balance. This balance was developed between 1930 and 1933. It was an important advance in the technology of rotating or rolling balances. As M.J. Bamber and C.H. Zimmerman wrote in NACA TR 456: 'Data upon the aerodynamic characteristics of a spinning airplane may be obtained in several ways; namely, flight tests with full-scale airplanes, flight tests with balanced models, strip-method analysis of wind-tunnel force and moment tests, and wind-tunnel tests of rotating models.' Further, they note: 'Rolling-balance data have been of limited value because it has not been possible to measure all six force and moment components or to reproduce a true spinning condition. The spinning balance used in this investigation is a 6-component rotating balance from which it is possible to obtain wind-tunnel data for any of a wide range of possible spinning conditions.' Bamber and Zimmerman described the balance as follows: 'The spinning balance consists of a balance head that supports the model and contains the force-measuring units, a horizontal turntable supported by streamline struts in the center of the jet and, outside the tunnel, a direct-current driving motor, a liquid tachometer, an air compressor, a mercury manometer, a pair of indicating lamps, and the necessary controls. The balance head is mounted on the turntable and it may be set to give any radius of spin between 0 and 8 inches.' In an earlier report, NACA TR 387, Carl Wenzinger and Thomas Harris supply this description of the tunnel: 'The vertical open-throat wind tunnel of the National Advisory Committee for Aeronautics ... was built mainly for studying the spinning characteristics of airplane models, but may be used as well for the usual types of wind-tunnel tests. A special spinning balance is being developed to measure the desired forces and moments with the model simulating the actual

  12. Videometric Applications in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Radeztsky, R. H.; Liu, Tian-Shu

    1997-01-01

    Videometric measurements in wind tunnels can be very challenging due to the limited optical access, model dynamics, optical path variability during testing, large range of temperature and pressure, hostile environment, and the requirements for high productivity and large amounts of data on a daily basis. Other complications for wind tunnel testing include the model support mechanism and stringent surface finish requirements for the models in order to maintain aerodynamic fidelity. For these reasons nontraditional photogrammetric techniques and procedures sometimes must be employed. In this paper several such applications are discussed for wind tunnels which include test conditions with Mach number from low speed to hypersonic, pressures from less than an atmosphere to nearly seven atmospheres, and temperatures from cryogenic to above room temperature. Several of the wind tunnel facilities are continuous flow while one is a short duration blowdown facility. Videometric techniques and calibration procedures developed to measure angle of attack, the change in wing twist and bending induced by aerodynamic load, and the effects of varying model injection rates are described. Some advantages and disadvantages of these techniques are given and comparisons are made with non-optical and more traditional video photogrammetric techniques.

  13. SCALING: Wind Tunnel to Flight

    NASA Astrophysics Data System (ADS)

    Bushnell, Dennis M.

    2006-01-01

    Wind tunnels have wide-ranging functionality, including many applications beyond aeronautics, and historically have been the major source of information for technological aerodynamics/aeronautical applications. There are a myriad of scaling issues/differences from flight to wind tunnel, and their study and impacts are uneven and a function of the particular type of extant flow phenomena. Typically, the most serious discrepancies are associated with flow separation. The tremendous ongoing increases in numerical simulation capability are changing and in many aspects have changed the function of the wind tunnel from a (scaled) "predictor" to a source of computational calibration/validation information with the computation then utilized as the flight prediction/scaling tool. Numerical simulations can increasingly include the influences of the various scaling issues. This wind tunnel role change has been occurring for decades as computational capability improves in all aspects. Additional issues driving this trend are the increasing cost (and time) disparity between physical experiments and computations, and increasingly stringent accuracy requirements.

  14. The self streamlining wind tunnel. [wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1975-01-01

    A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.

  15. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 1. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Jet noise spectra obtained at static conditions from an acoustic wind tunnel and an outdoor facility are compared. Data curves are presented for (1) the effect of relative velocity on OASPL directivity (all configurations); (2) the effect of relative velocity on noise spectra (all configurations); (3) the effect of velocity on PNL directivity (coannular nozzle configurations); (4) nozzle exhaust plume velocity profiles; and (5) the effect of relative velocity on aerodynamic performance.

  16. Strain-gage applications in wind tunnel balances

    NASA Astrophysics Data System (ADS)

    Mole, P. J.

    1990-10-01

    Six-component balances used in wind tunnels for precision measurements of air loads on scale models of aircraft and missiles are reviewed. A beam moment-type balance, two-shell balance consisting of an outer shell and inner rod, and air-flow balances used in STOL aircraft configurations are described. The design process, fabrication, gaging, single-gage procedure, and calibration of balances are outlined, and emphasis is placed on computer stress programs and data-reduction computer programs. It is pointed out that these wind-tunnel balances are used in applications for full-scale flight vehicles. Attention is given to a standard two-shell booster balance and an adaptation of a wind-tunnel balance employed to measure the simulated distributed launch loads of a payload in the Space Shuttle.

  17. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE PAGESBeta

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  18. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    SciTech Connect

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, an acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.

  19. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  20. Comparison of field and wind tunnel Darrieus wind turbine data

    SciTech Connect

    Sheldahl, R.E.

    1981-01-01

    A 2-m-dia Darrieus Vertical Axis Wind Turbine with NACA-0012 blades was extensively tested in the Vought Corporation Low Speed Wind Tunnel. This same turbine was installed in the field at the Sandia National Laboratories Wind Turbine Test Site and operated to determine if field data corresponded to data obtained in the wind tunnel. It is believed that the accuracy of the wind tunnel test data was verified and thus the credibility of that data base was further established.

  1. Wind tunnel flow generation section

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E. (Inventor)

    1974-01-01

    A flow generation section for a wind tunnel test facility is described which provides a uniform flow for the wind tunnel test section over a range of different flow velocities. The throat of the flow generation section includes a pair of opposed boundary walls which are porous to the flowing medium in order to provide an increase of velocity by expansion. A plenum chamber is associated with the exterior side of each of such porous walls to separate the same from ambient pressure. A suction manifold is connected by suction lines with each one of the chambers. Valves are positioned in each of the lines to enable the suction manifold to be independently varied.

  2. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  3. RITD – Wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  4. Rain and deicing experiments in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Fasso, G.

    1983-01-01

    Comments on films of tests simulating rain and ice conditions in a wind tunnel are presented, with the aim of studying efficient methods of overcoming the adverse effects of rain and ice on aircraft. In the experiments, lifesize models and models of the Mirave 4 aircraft were used. The equipment used to simulate rain and ice is described. Different configurations of landing and takeoff under conditions of moderate or heavy rain at variable angles of incidence and of skipping and at velocities varying from 30 to 130 m/sec are reproduced in the wind tunnel. The risks of erosion of supersonic aircraft by the rain during the loitering and approach phases are discussed.

  5. Wind tunnel investigation on wind turbine wakes and wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Coëffé, J.; Porté-Agel, F.

    2012-04-01

    The interaction between atmospheric boundary layer and wind farms leads to flow modifications, which need to be deeply characterized in order to relate them to wind farm performance. The wake flow produced from a wind farm is the result of a strong interaction between multiple turbine wakes, so that the wind farm configuration turns out to be one of the dominant features to enhance power production. For the present work a wind tunnel investigation was carried out with hot-wire anemometry and velocity measurements performed with multi-hole pressure probes. The tested wind farms consist of miniature three-bladed wind turbine models. Preliminarily, the wake flow generated from a single wind turbine is surveyed, which is characterized by a strong velocity defect lying in proximity of the wind turbine hub height. The wake gradually recovers by moving downstream; the characteristics of the incoming boundary layer and wind turbulence intensity can strongly affect the wake recovery, and thus performance of following wind turbines. An increased turbulence level is typically detected downstream of each wind turbine for heights comparable to the wind turbine blade top-tip. These wake flow fluctuations produce increased fatigue loads on the following wind turbines within a wind farm, which could represent a significant hazard for real wind turbines. Dynamics of vorticity structures present in wind turbine wakes are also investigated; particular attention is paid to the downstream evolution of the tip helicoidal vortices and to oscillations of the hub vortex. The effect of wind farm layout on power production is deeply investigated. Particular emphasis is placed on studying how the flow adjusts as it moves inside the wind farm and can affect the power production. Aligned and staggered wind farm configurations are analysed, also with varying separation distances in the streamwise and spanwise directions. The present experimental results are being used to test and guide the

  6. SSX MHD plasma wind tunnel

    NASA Astrophysics Data System (ADS)

    Brown, Michael R.; Schaffner, David A.

    2015-06-01

    A new turbulent plasma source at the Swarthmore Spheromak Experiment (SSX) facility is described. The MHD wind tunnel configuration employs a magnetized plasma gun to inject high-beta plasma into a large, well-instrumented, vacuum drift region. This provides unique laboratory conditions approaching that in the solar wind: there is no applied background magnetic field in the drift region and has no net axial magnetic flux; the plasma flow speed is on the order of the local sound speed (M ~ 1), so flow energy density is comparable to thermal energy density; and the ratio of thermal to magnetic pressure is of order unity (plasma β ~ 1) so thermal energy density is also comparable to magnetic energy density. Results presented here and referenced within demonstrate the new capabilities and show how the new platform is proving useful for fundamental plasma turbulence studies.

  7. Wind tunnel and analytical investigation of over-the-wing propulsion/air frame interferences for a short-haul aircraft at Mach numbers from 0.6 to 0.78. [conducted in the Lewis 8 by 6 foot tunnel

    NASA Technical Reports Server (NTRS)

    Wells, O. D.; Lopez, M. L.; Welge, H. R.; Henne, P. A.; Sewell, A. E.

    1977-01-01

    Results of analytical calculations and wind tunnel tests at cruise speeds of a representative four engine short haul aircraft employing upper surface blowing (USB) with a supercritical wing are discussed. Wind tunnel tests covered a range of Mach number M from 0.6 to 0.78. Tests explored the use of three USB nozzle configurations. Results are shown for the isolated wing body and for each of the three nozzle types installed. Experimental results indicate that a low angle nacelle and streamline contoured nacelle yielded the same interference drag at the design Mach number. A high angle powered lift nacelle had higher interference drag primarily because of nacelle boattail low pressures and flow separation. Results of varying the spacing between the nacelles and the use of trailing edge flap deflections, wing upper surface contouring, and a convergent-divergent nozzle to reduce potential adverse jet effects were also discussed. Analytical comparisons with experimental data, made for selected cases, indicate favorable agreement.

  8. Wind tunnel simulations of aerolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1984-01-01

    The characteristics of aerolian (wind) activity as a surface modifying process on Earth, Mars, Venus, and appropriate satellites was determined. A combination of spacecraft data analysis, wind tunnel simulations, and terrestrial field analog studies were used to determine these characteristics. Wind tunnel experiments simulating Venusian surface conditions demonstrate that rolling of particles may be an important mode of transport by winds on Venus and that aerolian processes in the dense atmosphere may share attributes of both aerolian and aqueous environments on Earth.

  9. Models for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1989-01-01

    Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

  10. Effects of spanwise blowing on the pressure field and vortex-lift characteristics of a 44 deg swept trapezoidal wing. [wind tunnel stability tests - aircraft models

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.

  11. Reducing Airborne Debris In Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Sleeper, Robert K.

    1993-01-01

    In proposed technique to trap airborne particles during normal wind-tunnel testing, large sections of single-backed adhesive paper or cloth mounted with adhesive side exposed to flow. Adhesive material securely installed on flow vanes, walls, or other surfaces of wind tunnel in manner facilitating replacement. Installed or replaced anytime permissible to enter tunnel. Provides safe, inexpensive, rugged, passive, continuous, and otherwise inert cleansing action suitable for wind tunnel of any size. Also applied to specialized clean-room environments and to air-conditioning systems in general.

  12. Wind-tunnel investigation of effects of wing-leading-edge modifications on the high angle-of-attack characteristics of a T-tail low-wing general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    White, E. R.

    1982-01-01

    Exploratory tests have been conducted in the NASA-Langley Research Center's 12-Foot Low-Speed wind Tunnel to evaluate the application of wing-leading-edge devices on the stall-departure and spin resistance characteristics of a 1/6-scale model of a T-tail general-aviation aircraft. The model was force tested with an internal strain-gauge balance to obtain aerodynamic data on the complete configuration and with a separate wing balance to obtain aerodynamic data on the outer portion of the wing. The addition of the outboard leading-edge droop eliminated the abrupt stall of the windtip and maintained or increased the resultant-force coefficient up to about alpha = 32 degrees. This change in slope of the resultant-force coefficient curve with angle of attack has been shown to be important for eliminating autorotation and for providing spin resistance.

  13. Aerodynamic characteristics of a fixed arrow-wing supersonic cruise aircraft at Mach numbers of 2.30, 2.70, and 2.95. [Langley Unitary Plan wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Fuller, D. E.; Watson, C. B.

    1978-01-01

    Tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30. 2.70, and 2.95 to determine the performance, static stability, and control characteristics of a model of a fixed-wing supersonic cruise aircraft with a design Mach Number of 2.70 (SCAT 15-F-9898). The configuration had a 74 deg swept warped wing with a reflexed trailing edge and four engine nacelles mounted below the reflexed portion of the wing. A number of variations in the basic configuration were investigated; they included the effect of wing leading edge radius, the effect of various model components, and the effect of model control deflections.

  14. Experimental aerodynamic characteristics of two V/STOL fighter/attack aircraft configurations at Mach numbers from 1.6 to 2.0. [Ames 9 by 7 foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.; Durston, D. A.; Lummus, J. R.

    1981-01-01

    Tests were conducted in the Ames 9 by 7 ft supersonic wind tunnel to measure the aerodynamic characteristics of two horizontal attitude takeoff and landing V/STOL fighter/attack aircraft concepts. One concept featured a jet diffuser ejector for its vertical lift system and the other employed a remote augmentation lift system (RALS). Test results for Mach numbers from 1.6 to 2.0 are reported. Effects of varying the angle of attack (-4 deg to +17 deg), angle of sideslip (-4 deg to +8 deg) Mach number, and configuration building were investigated. The effects of wing trailing edge flap deflections, canard incidence, and vertical tail deflections were also explored as well as the effects of varying the canard longitudinal location and shapes of the inboard nacelle body strakes.

  15. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  16. Limitations on wind-tunnel pressure signature extrapolation

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Darden, Christine M.

    1992-01-01

    Analysis of some recent experimental sonic boom data has revived the hypothesis that there is a closeness limit to the near-field separation distance from which measured wind tunnel pressure signatures can be extrapolated to the ground as though generated by a supersonic-cruise aircraft. Geometric acoustic theory is used to derive an estimate of this distance and the sample data is used to provide a preliminary indication of practical separation distance values.

  17. WT - WIND TUNNEL PERFORMANCE ANALYSIS

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    WT was developed to calculate fan rotor power requirements and output thrust for a closed loop wind tunnel. The program uses blade element theory to calculate aerodynamic forces along the blade using airfoil lift and drag characteristics at an appropriate blade aspect ratio. A tip loss model is also used which reduces the lift coefficient to zero for the outer three percent of the blade radius. The application of momentum theory is not used to determine the axial velocity at the rotor plane. Unlike a propeller, the wind tunnel rotor is prevented from producing an increase in velocity in the slipstream. Instead, velocities at the rotor plane are used as input. Other input for WT includes rotational speed, rotor geometry, and airfoil characteristics. Inputs for rotor blade geometry include blade radius, hub radius, number of blades, and pitch angle. Airfoil aerodynamic inputs include angle at zero lift coefficient, positive stall angle, drag coefficient at zero lift coefficient, and drag coefficient at stall. WT is written in APL2 using IBM's APL2 interpreter for IBM PC series and compatible computers running MS-DOS. WT requires a CGA or better color monitor for display. It also requires 640K of RAM and MS-DOS v3.1 or later for execution. Both an MS-DOS executable and the source code are provided on the distribution medium. The standard distribution medium for WT is a 5.25 inch 360K MS-DOS format diskette in PKZIP format. The utility to unarchive the files, PKUNZIP, is also included. WT was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. PKUNZIP is a registered trademark of PKWare, Inc.

  18. Rudolf Hermann, wind tunnels and aerodynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  19. Full-Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Construction of Full-Scale Tunnel (FST) balance. Smith DeFrance described the 6-component type balance in NACA TR No. 459 (which also includes a schematic diagram of the balance and its various parts). 'Ball and socket fittings at the top of each of the struts hod the axles of the airplane to be tested; the tail is attached to the triangular frame. These struts are secured to the turntable, which is attached to the floating frame. This frame rests on the struts (next to the concrete piers on all four corners), which transmit the lift forces to the scales (partially visible on the left). The drag linkage is attached to the floating frame on the center line and, working against a known counterweight, transmits the drag force to the scale (center, face out). The cross-wind force linkages are attached to the floating frame on the front and rear sides at the center line. These linkages, working against known counterweights, transmit the cross-wind force to scales (two front scales, face in). In the above manner the forces in three directions are measured and by combining the forces and the proper lever arms, the pitching, rolling, and yawing moments can be computed. The scales are of the dial type and are provided with solenoid-operated printing devices. When the proper test condition is obtained, a push-button switch is momentarily closed and the readings on all seven scales are recorded simultaneously, eliminating the possibility of personal errors.'

  20. Wind tunnel pressurization and recovery system

    NASA Technical Reports Server (NTRS)

    Pejack, Edwin R.; Meick, Joseph; Ahmad, Adnan; Lateh, Nordin; Sadeq, Omar

    1988-01-01

    The high density, low toxicity characteristics of refrigerant-12 (dichlorofluoromethane) make it an ideal gas for wind tunnel testing. Present limitations on R-12 emissions, set to slow the rate of ozone deterioration, pose a difficult problem in recovery and handling of large quantities of R-12. This preliminary design is a possible solution to the problem of R-12 handling in wind tunnel testing. The design incorporates cold temperature condensation with secondary purification of the R-12/air mixture by adsorption. Also discussed is the use of Freon-22 as a suitable refrigerant for the 12 foot wind tunnel.

  1. A wind tunnel database using RIM

    NASA Technical Reports Server (NTRS)

    Wray, W. O., Jr.

    1984-01-01

    Engineering data base development which has become increasingly widespread to industry with the availability of data management systems is examined. A large data base was developed for wind tunnel data and related model test information, using RIM as the data base manager. The arrangement of the wind tunnel data into the proper schema for the most efficient database utilization is discussed. The FORTRAN interface program of RIM is used extensively in the loading phases of the data base and by the users. Several examples to illustrate how the Wind Tunnel Data base might be searched for specific data items and test information using RIM are presented.

  2. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for diverting the flow in a wind tunnel from the wing of a tested model is described. The wing is mounted on the wall of a tunnel. A diverter plate is pivotally mounted on the tunnel wall ahead of the model. An actuator fixed to the tunnel is pivotably connected to the diverter plate, by plunger. When the model is about to become unstable during the test the actuator moves the diverter plate from the tunnel wall to divert maintaining stable model conditions. The diverter plate is then retracted to enable normal flow.

  3. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  4. Model of 5-Foot Vertical Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Model of 5-Foot Vertical Wind Tunnel. Carl Wenzinger and Thomas Harris wrote in NACA TR 387: 'The vertical open-throat wind tunnel of the National Advisory Committee for Aeronautics ... was built mainly for studying the spinning characteristics of airplane models, but may be used as well for the usual types of wind-tunnel tests. A special spinning balance is being developed to measure the desired forces and moments with the model simulating the actual spin of an airplane. Satisfactory air flow has been attained with a velocity that is uniform over the jet to within 0.5 per cent. The turbulence present in the tunnel has been compared with that of several other tunnels by means of the results of sphere drag tests and was found to average well with the values of those tunnels. Included also in the report are comparisons of results of stable autorotation and of rolling-moment tests obtained both in the vertical tunnel and in the old horizontal 5-foot atmospheric tunnel.' The design of a vertical tunnel having a 5-foot diameter jet was accordingly started by the National Advisory Committee for Aeronautics in 1928. Actual construction of the new tunnel was completed in 1930, and the calibration tests were then made.'

  5. Field verification of the wind tunnel coefficients

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Mellstrom, J. A.

    1994-01-01

    Accurate information about wind action on antennas is required for reliable prediction of antenna pointing errors in windy weather and for the design of an antenna controller with wind disturbance rejection properties. The wind tunnel data obtained 3 years ago using a scaled antenna model serves as an antenna industry standard, frequently used for the first purpose. The accuracy of the wind tunnel data has often been challenged, since they have not yet been tested in a field environment (full-aized antenna, real wind, actual terrain, etc.). The purpose of this investigation was to obtain selected field measurements and compare them with the available wind tunnel data. For this purpose, wind steady-state torques of the DSS-13 antenna were measured, and dimensionless wind torque coefficients were obtained for a variety of yaw and elevation angles. The results showed that the differences between the wind tunnel torque coefficients and the field torque coefficients were less than 10 percent of their values. The wind-gusting action on the antenna was characterized by the power spectra of the antenna encoder and the antenna torques. The spectra showed that wind gusting primarily affects the antenna principal modes.

  6. Design of Rail Instrumentation for Wind Tunnel Sonic Boom Measurements and Computational-Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.

    2012-01-01

    An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.

  7. The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.

    1985-01-01

    A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.

  8. AMELIA Tests in NASA Wind Tunnel

    NASA Video Gallery

    This report from "This Week @ NASA" describes recent aerodynamic tests of a subscale model of the Advanced Model for Extreme Lift and Improved Aeroacoustics, or "AMELIA," in a NASA wind tunnel. The...

  9. On a new type of wind tunnel

    NASA Technical Reports Server (NTRS)

    Munk, Max

    1921-01-01

    Discussed here is a new type of wind tunnel, its advantages, the difficulties attendant upon its use, and the special methods required for its operation. The main difference between the new type of wind tunnel and the ones now in operation is the use of a different fluid. The idea is to diminish the effect of viscosity If air is compressed, it becomes a fluid with new properties - a fluid that is best suited for reliable and exact tests on models. When air is compressed, its density increases, but its viscosity does not. It is argued that the increase of pressure greatly increases the range and value of wind tunnel tests. Reynolds number, deductions from the Reynolds law, the causes of errors that result in differences between tests on models and actual flights, and the dimensions of a compressed air wind tunnel are covered.

  10. Program Analyzes Performance Of A Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    WT computer program developed to calculate rotor power required by, and output thrust produced by, fan in closed-loop wind tunnel. Uses blade-element theory to calculate aerodynamic forces along each blade of fan. Written in APL2.

  11. Wind-Tunnel/Flight Correlation, 1981

    NASA Technical Reports Server (NTRS)

    Mckinney, L. W. (Editor); Baals, D. D. (Editor)

    1982-01-01

    Wind-tunnel/flight correlation activities are reviewed to assure maximum effectiveness of the early experimental programs of the National Transonic Facility (NTF). Topics included a status report of the NTF, the role of tunnel-to-tunnel correlation, a review of past flight correlation research and the resulting data base, the correlation potential of future flight vehicles, and an assessment of the role of computational fluid dynamics.

  12. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  13. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  14. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  15. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration...

  16. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  17. Water tunnel flow visualization and wind tunnel data analysis of the F/A-18. [leading edge extension vortex effects

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.

    1982-01-01

    Six degree of freedom studies were utilized to extract a band of yawing and rolling moment coefficients from the F/A-18 aircraft flight records. These were compared with 0.06 scale model data obtained in a 16T wind tunnel facility. The results, indicate the flight test yawing moment data exhibit an improvement over the wind tunnel data to near neutral stability and a significant reduction in lateral stability (again to anear neutral level). These data are consistent with the flight test results since the motion was characterized by a relatively slo departure. Flight tests repeated the slow yaw departure at M 0.3. Only 0.16 scale model wind tunnel data showed levels of lateral stability similar to the flight test results. Accordingly, geometric modifications were investigated on the 0.16 scale model in the 30x60 foot wind tunnel to improve high angle of attack lateral stability.

  18. Laminar-flow wind tunnel experiments

    NASA Technical Reports Server (NTRS)

    Harvey, William D.; Harris, Charles D.; Sewall, William G.; Stack, John P.

    1989-01-01

    Although most of the laminar flow airfoils recently developed at the NASA Langley Research Center were intended for general aviation applications, low-drag airfoils were designed for transonic speeds and wind tunnel performance tested. The objective was to extend the technology of laminar flow to higher Mach and Reynolds numbers and to swept leading edge wings representative of transport aircraft to achieve lower drag and significantly improved operation costs. This research involves stabilizing the laminar boundary layer through geometric shaping (Natural Laminar Flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (Laminar-Flow Control, LFC), either through discrete slots or perforated surface. Results show that extensive regions of laminar flow with large reductions in skin friction drag can be maintained through the application of passive NLF boundary-layer control technologies to unswept transonic wings. At even greater extent of laminar flow and reduction in the total drag level can be obtained on a swept supercritical airfoil with active boundary layer-control.

  19. Analytical Models for Rotor Test Module, Strut, and Balance Frame Dynamics in the 40 by 80 Ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1976-01-01

    A mathematical model is developed for the dynamics of a wind tunnel support system consisting of a balance frame, struts, and an aircraft or test module. Data are given for several rotor test modules in the Ames 40 by 80 ft wind tunnel. A model for ground resonance calculations is also described.

  20. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  1. Wind tunnel results of the high-speed NLF(1)-0213 airfoil

    NASA Technical Reports Server (NTRS)

    Sewall, William G.; Mcghee, Robert J.; Hahne, David E.; Jordan, Frank L., Jr.

    1987-01-01

    Wind tunnel tests were conducted to evaluate a natural laminar flow airfoil designed for the high speed jet aircraft in general aviation. The airfoil, designated as the High Speed Natural Laminar Flow (HSNLF)(1)-0213, was tested in two dimensional wind tunnels to investigate the performance of the basic airfoil shape. A three dimensional wing designed with this airfoil and a high lift flap system is also being evaluated with a full size, half span model.

  2. Wind Tunnel Measurements of Windscreen Performance

    NASA Astrophysics Data System (ADS)

    Maniet, Edward R., Jr

    2001-10-01

    Wind noise is recognized as one the primary environmental factors that limits the performance of battlefield acoustic sensors. Microphone windscreens are regularly used to reduce wind noise and the characterization of their performance is an important component of the acoustic sensor design, Textron Systems has extensive experience studying the performance of windscreens and have developed test methodology that allows for repeatable measurements in a controlled environment. Wind noise measurements are performed using a high-speed/laminar-flow, low-noise wind tunnel with an anechoic test section. A special test section is added to the wind tunnel to generate a turbulent flow. The turbulent wind velocity spectrum is measured using multi-axis hot wire anemometers. Comparative performance measurements of several windscreen designs are presented.

  3. Wind shear modeling for aircraft hazard definition

    NASA Technical Reports Server (NTRS)

    Frost, W.; Camp, D. W.; Wang, S. T.

    1978-01-01

    Mathematical models of wind profiles were developed for use in fast time and manned flight simulation studies aimed at defining and eliminating these wind shear hazards. A set of wind profiles and associated wind shear characteristics for stable and neutral boundary layers, thunderstorms, and frontal winds potentially encounterable by aircraft in the terminal area are given. Engineering models of wind shear for direct hazard analysis are presented in mathematical formulae, graphs, tables, and computer lookup routines. The wind profile data utilized to establish the models are described as to location, how obtained, time of observation and number of data points up to 500 m. Recommendations, engineering interpretations and guidelines for use of the data are given and the range of applicability of the wind shear models is described.

  4. Transonic wind tunnel test of a supersonic nozzle installation

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Evelyn, G. B.; Mercer, C.

    1982-01-01

    The design of the propulsion system installation affects strongly the total drag and overall performance of an aircraft, and the concept, placement, and integration details of the exhaust nozzle are major considerations in the configuration definition. As part of the NASA Supersonic Cruise Research (SCR) program, a wind tunnel test program has been conducted to investigate exhaust nozzle-airframe interactions at transonic speeds. First phase testing is to establish guidelines for follow-on testing. A summary is provided of the results of first phase testing, taking into account the test approach, the effect of nozzle closure on aircraft aerodynamic characteristics, nozzle installation effects and nacelle interference drag, and an analytical study of the effects of nozzle closure on the aircraft.

  5. Pilot-aircraft system reponse to wind shear

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Frost, W.

    1980-01-01

    The nonlinear aircraft motion and automatic control model is expanded to incorporate the human pilot into simulations of aircraft response to wind to wind shear. The human pilot is described by a constant gains lag filter. Two runs are carried out using pilot transfer functions. Fixed-stick, autopilot, and manned computer simulations are made with an aircraft having characteristics of a small commuter type aircraft flown through longitudinal winds measured by a Doppler radar beamed along the glide slope. Simulations are also made flying an aircraft through sinusoidal head wind and tail wind shears at the phugoid frequency to evaluate the response of manned aircraft in thunderstorm wind environments.

  6. Aerodynamic characteristics of forebody and nose strakes based on F-16 wind tunnel test experience. Volume 1: Summary and analysis

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Ralston, J. N.; Mann, H. W.

    1979-01-01

    The YF-16 and F-16 developmental wind tunnel test program was reviewed. Geometrical descriptions, general comments, representative data, and the initial efforts toward the development of design guides for the application of strakes to future aircraft are presented.

  7. XV-3 in Ames Reseach Center 40x80ft wind tunnel with K. Edenborough and B. Ramsey, engineers

    NASA Technical Reports Server (NTRS)

    1966-01-01

    XV-3 in Ames Reseach Center 40x80ft wind tunnel with K. Edenborough and B. Ramsey, engineers Published in The History of the XV-15 Tilt Rotor Research Aircraft (from Concept to Flight NASA SP-2000-4517)

  8. Wind-tunnel investigation of the OMAC canard configuration

    NASA Technical Reports Server (NTRS)

    Ingram, W. C.; Yip, L. P.; Cook, E. L.

    1986-01-01

    Wind-tunnel tests were conducted on a 0.175-scale model of the OMAC Laser 300 canard configuration in the NASA Langley 12-Foot Low-Speed Wind Tunnel to determine its low-speed high angel-of-attack aerodynamic characteristics. The Laser 300 is a general aviation turboprop pusher aircraft utilizing a canard configuration. The design incorporates a low forward wing and a high main wing with a leading-edge droop installed on the outboard panel and tip fins mounted on the wing tips. The model was tested over a range of -6 to 50-deg angle-of-attack and 20 to -20 deg sideslip. Static force and moment data were measured, and the longitudinal and lateral-directional characteristics were determined.

  9. Evaluation of a wind-tunnel gust response technique including correlations with analytical and flight test results

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Hanson, P. W.; Wynne, E. C.

    1979-01-01

    A wind tunnel technique for obtaining gust frequency response functions for use in predicting the response of flexible aircraft to atmospheric turbulence is evaluated. The tunnel test results for a dynamically scaled cable supported aeroelastic model are compared with analytical and flight data. The wind tunnel technique, which employs oscillating vanes in the tunnel throat section to generate a sinusoidally varying flow field around the model, was evaluated by use of a 1/30 scale model of the B-52E airplane. Correlation between the wind tunnel results, flight test results, and analytical predictions for response in the short period and wing first elastic modes of motion are presented.

  10. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for constraining models or sections thereof, was wind tunnel tested, deployed at the onset of aeroelastic instability, to forestall destructive vibrations in the model is described. The mechanism includes a pair of arms pivoted to the tunnel wall and straddling the model. Rollers on the ends of the arms contact the model, and are pulled together against the model by a spring stretched between the arms. An actuator mechanism swings the arms into place and back as desired.

  11. Space Shuttle wind tunnel testing program

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Hillje, E. R.

    1984-01-01

    A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.

  12. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  13. 12. VIEW EAST, BUILDING 12 INTERIOR, WIND TUNNEL 157 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW EAST, BUILDING 12 INTERIOR, WIND TUNNEL 157 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  14. 2. VIEW SOUTH OF TRANSONIC WIND TUNNEL BUILDING AND SUPERSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH OF TRANSONIC WIND TUNNEL BUILDING AND SUPERSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  15. 8. VIEW SOUTHWEST, INTERIOR VIEW, WIND TUNNEL 139 Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW SOUTHWEST, INTERIOR VIEW, WIND TUNNEL 139 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  16. 13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  17. 1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  18. 2. VIEW SOUTH OF WIND TUNNEL 138 AND COOLING SYSTEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH OF WIND TUNNEL 138 AND COOLING SYSTEM 140, NORTH ELEVATION - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  19. 7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  20. 5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  1. 2. VIEW SOUTH OF WIND TUNNEL 157, NORTH ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH OF WIND TUNNEL 157, NORTH ELEVATION - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  2. 4. VIEW NORTHWEST OF SUPERSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHWEST OF SUPERSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  3. 3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  4. 6. VIEW OF FIVEFOOT WIND TUNNEL WITH AIR STRAIGHTENER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF FIVE-FOOT WIND TUNNEL WITH AIR STRAIGHTENER AND OPERATOR STATION IN FOREGROUND (1991). - Wright-Patterson Air Force Base, Area B, Building No. 19, Five-Foot Wind Tunnel, Dayton, Montgomery County, OH

  5. Wind tunnel simulation of Martian sand storms

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  6. Spinoff from Wind Tunnel Technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Douglas Juanarena, a former NASA Langley instrument design engineer, found a solution to the problem of long, repetitive tunnel runs needed to measure airflow pressures. Electronically scanned pressure (ESP) replaced mechanical systems with electronic sensors. Juanarena licensed the NASA-patented technology and now manufactures ESP modules for research centers, aerospace companies, etc.

  7. Low speed wind tunnel investigation of span load alteration, forward-located spoilers, and splines as trailing-vortex-hazard alleviation devices on a transport aircraft model

    NASA Technical Reports Server (NTRS)

    Croom, D. R.; Dunham, R. E., Jr.

    1975-01-01

    The effectiveness of a forward-located spoiler, a spline, and span load alteration due to a flap configuration change as trailing-vortex-hazard alleviation methods was investigated. For the transport aircraft model in the normal approach configuration, the results indicate that either a forward-located spoiler or a spline is effective in reducing the trailing-vortex hazard. The results also indicate that large changes in span loading, due to retraction of the outboard flap, may be an effective method of reducing the trailing-vortex hazard.

  8. 7 x 10-Foot Atmospheric Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Force Test set-up in 7 x 10-Foot Atmospheric Wind Tunnel (AWT). In 1928, the NACA decided to replace its original Atmospheric Wind Tunnel (AWT #1) with two tunnels--the 5-foot vertical tunnel and a 7 by 10 foot rectangular throat tunnel. Both were open-throat, closed-return-passage tunnels and were housed in the same building the first wind tunnel had been located in. While the 5-foot vertical tunnel was to be used mainly for spin tests, the 7x10 was an all-purpose tunnel although the main intent was to study stability and control problems. Construction was completed in the summer of 1930; calibration later that same year. The balance was installed and the tunnel went into operation in early 1931. There was a 6-component balance in this wind tunnel. The balance could support either static or rotation tests.

  9. WIND TUNNEL SIMULATIONS OF POLLUTION FROM ROADWAYS

    EPA Science Inventory

    A wind tunnel study has been conducted to examine the influence of roadway configurations and nearby structures on the flow and dispersion of traffic related pollutant concentrations within a few hundred meters of the roadway. The study focused four selected configurations (all w...

  10. AWT aerodynamic design status. [Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Davis, Milt W.

    1984-01-01

    The aerodynamic design of the NASA Altitude Wind Tunnel is presented in viewgraph format. The main topics covered are: analysis of a plenum evacuation system; airline definition and pressure loss code development; contraction geometry and code analysis; and design of the two stage fan. Flow characteristics such as pressure ratio, mach number distribution, adiabatic efficiency, and losses are shown.

  11. Detecting Foreign Particles in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Sharp, H. L.; Hogenson, P. A.; Emde, W. D.

    1986-01-01

    Simple scratch test tells whether particles, which distort results, present in test. Detector developed for tests of abrasion resistance of flexible insulation blankets. Now, when detector indicates particles present in test, results interpreted accordingly. Small pits and scratches on metal foil indicate particles struck surface during wind-tunnel test. Detector used in tests of paints and coatings to determine whether abrasive particles present.

  12. Aeronautical Facilities Catalogue. Volume 1: Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler); Freda, M. S. (Compiler)

    1985-01-01

    Domestic and foreign wind tunnel facilities are enumerated and their technical parameters are described. Data pertinent to managers and engineers are presented. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  13. A construction technique for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Sandefur, P. G., Jr.; Wood, W. H.

    1981-01-01

    High strength, good surface finish, and corrosion resistance are imparted to miniature wind tunnel models by machining pressure channels as integral part of model. Pattern for pressure channels is scribed, machined, or photoetched before channels are drilled. Mating surfaces for channels are flashed and then diffusion brazed together.

  14. Prismatic Blade Measuring on a Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Epikaridis, P.; Sedlak, k.; Stech, J.

    2013-04-01

    The results from measurement on the straight blade cascade are presented in the paper. The cascade is placed at the outlet of wind tunnel in ŠKODA POWER experimental base. The results in the form of velocity and loss fields behind blade cascade as well as the distribution of the loss coefficient in selected cross-section are evaluated.

  15. Hot-film system for transition detection in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Johnson, Charles B.; Carraway, Debra L.; Stainback, P. Calvin; Fancher, M. F.

    1987-01-01

    It is well known that the determination of the location of boundary-layer transition is necessary for the correct interpretation of aerodynamic data in transonic wind tunnels. In the late 1970s the Douglas Aircraft Company developed a vapor deposition hot-film system for transition detection in cryogenic wind tunnels. Tests of the hot-films in a low-speed tunnel demonstrated the ability to obtain on-line transition data with an enhanced simultaneous hot-film data acquisition system. The equipment design and specifications are described.

  16. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Particle Sizes and Wind Speeds for Full... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr...

  17. Study of the integration of wind tunnel and computational methods for aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Browne, Lindsey E.; Ashby, Dale L.

    1989-01-01

    A study was conducted to determine the effectiveness of using a low-order panel code to estimate wind tunnel wall corrections. The corrections were found by two computations. The first computation included the test model and the surrounding wind tunnel walls, while in the second computation the wind tunnel walls were removed. The difference between the force and moment coefficients obtained by comparing these two cases allowed the determination of the wall corrections. The technique was verified by matching the test-section, wall-pressure signature from a wind tunnel test with the signature predicted by the panel code. To prove the viability of the technique, two cases were considered. The first was a two-dimensional high-lift wing with a flap that was tested in the 7- by 10-foot wind tunnel at NASA Ames Research Center. The second was a 1/32-scale model of the F/A-18 aircraft which was tested in the low-speed wind tunnel at San Diego State University. The panel code used was PMARC (Panel Method Ames Research Center). Results of this study indicate that the proposed wind tunnel wall correction method is comparable to other methods and that it also inherently includes the corrections due to model blockage and wing lift.

  18. Study of optical techniques for the Ames unitary wind tunnels. Part 3: Angle of attack

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A review of optical sensors that are capable of accurate angle of attack measurements in wind tunnels was conducted. These include sensors being used or being developed at NASA Ames and Langley Research Centers, Boeing Airplane Company, McDonald Aircraft Company, Arnold Engineering Development Center, National Aerospace Laboratory of the Netherlands, National Research Council of Canada, and the Royal Aircraft Establishment of England. Some commercial sensors that may be applicable to accurate angle measurements were also reviewed. It was found that the optical sensor systems were based on interferometers, polarized light detector, linear or area photodiode cameras, position sensing photodetectors, and laser scanners. Several of the optical sensors can meet the requirements of the Ames Unitary Plan Wind Tunnel. Two of these, the Boeing interferometer and the Complere lateral effect photodiode sensors are being developed for the Ames Unitary Plan Wind Tunnel.

  19. Effect of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft model at supersonic speeds. [in the langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1980-01-01

    The effects of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft configuration at Mach numbers of 1.6, 1.8, and 2.0 was investigated. Five conventional store configurations and six arrangements of a square store configuration were studied. All configurations of the stores produced small, positive increments in the pitching moment throughout the angle-of-attack range, but the configuration with area ruled wing tanks also had a slight decrease on stability at the higher angles of attack. There were some small changes in lift coefficient because of the addition of the stores, causing the drag increment to vary with the lift coefficient. As a result, there were corresponding changes in the increments of the maximum lift drag ratios. The store drag coefficient based on the cross sectional area of the stores ranged from a maximum of 1.1 for the configuration with three Maverick missiles to a minimum of about .040 for the two MK-84 bombs and the arrangements with four square stores touching or two square stores in tandem. Square stores located side by side yielded about 0.50 in the aft position compared to 0.74 in the forward position.

  20. Application Of Artificial Intelligence To Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  1. Calibration of transonic and supersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Pope, T. C.; Cooksey, J. M.

    1977-01-01

    State-of-the art instrumentation and procedures for calibrating transonic (0.6 less than M less than 1.4) and supersonic (M less than or equal to 3.5) wind tunnels were reviewed and evaluated. Major emphasis was given to transonic tunnels. Continuous, blowdown and intermittent tunnels were considered. The required measurements of pressure, temperature, flow angularity, noise and humidity were discussed, and the effects of measurement uncertainties were summarized. A comprehensive review of instrumentation currently used to calibrate empty tunnel flow conditions was included. The recent results of relevant research are noted and recommendations for achieving improved data accuracy are made where appropriate. It is concluded, for general testing purposes, that satisfactory calibration measurements can be achieved in both transonic and supersonic tunnels. The goal of calibrating transonic tunnels to within 0.001 in centerline Mach number appears to be feasible with existing instrumentation, provided correct calibration procedures are carefully followed. A comparable accuracy can be achieved off-centerline with carefully designed, conventional probes, except near Mach 1. In the range 0.95 less than M less than 1.05, the laser Doppler velocimeter appears to offer the most promise for improved calibration accuracy off-centerline.

  2. Preliminary wind tunnel tests on the pedal wind turbine

    NASA Astrophysics Data System (ADS)

    Vinayagalingam, T.

    1980-06-01

    High solidity-low speed wind turbines are relatively simple to construct and can be used advantageously in many developing countries for such direct applications as water pumping. Established designs in this class, such as the Savonius and the American multiblade rotors, have the disadvantage that their moving surfaces require a rigid construction, thereby rendering large units uneconomical. In this respect, the pedal wind turbine recently reported by the author and which incorporates sail type rotors offers a number of advantages. This note reports preliminary results from a series of wind tunnel tests which were carried out to assess the aerodynamic torque and power characteristics of the turbine.

  3. Construction of the 30 x 60 Foot Wind Tunnel at Langley

    NASA Technical Reports Server (NTRS)

    1930-01-01

    This photograph from 1930 shows the 30 x 60 Foot Tunnel during construction. Smith J. de France, a NACA engineer, was in charge of the design team for the new tunnel. Planning involved the construction of a 1/5 scale model of the tunnel. In 1929, the NACA received congresional approval and two year appropriation of $900,000 for construction. The tunnel was built by the J.A. Jones Construction Company. The framework is solid steel. Like many early wind tunnels, the 30 x 60 foot tunnel featured 'inside- out' construction, with structual supports on the outside. The circular frames indicate where the two 35 foot propellers are located today. Built to test full-scale models or actual aircraft, the 30 x 60 foot tunnel was an innovative concept in wind tunnel design. It proved especially valuable during World War II as a majority of the nation's bombers and fighters (as well as several foreign aircraft) were tested in this tunnel. Since the 1970s, one of the unique test techinques used in the 30 x 60 was free flight of dynamically scaled models in the test section. This technique allowed researchers to measure and assess flight characteristics as well as control options. The 30 x 60 is an example of a major facility adapted to serve a multitude of uses that its designers did not initially visualize. The 30 x 60 remained as one of NASA's largest wind tunnels until its closing in September 1995. In 1985 the 30 x 60 foot wind tunnel was designated a National Historic Landmark.

  4. Production of oscillatory flow in wind tunnels

    NASA Astrophysics Data System (ADS)

    Al-Asmi, K.; Castro, I. P.

    1993-06-01

    A method for producing oscillatory flow in open-circuit wind tunnels driven by centrifugal fans is described. Performance characteristics of a new device installed on two such tunnels of greatly differing size are presented. It is shown that sinusoidal variations of the working section flow, having peak-to-peak amplitudes up to at least 30 percent of the mean flow speed and frequencies up to, typically, that corresponding to the acoustic quarter-wave-length frequency determined by the tunnel size, can be obtained with negligible harmonic distortion or acoustic noise difficulties. A brief review of the various methods that have been used previously is included, and the advantages and disadvantages of these different techniques are highlighted. The present technique seems to represent a significant improvement over many of them.

  5. Cryogenic Wind Tunnel Models. Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  6. Review of Potential Wind Tunnel Balance Technologies

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  7. Photogrammetry Applied to Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.

    2000-01-01

    In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.

  8. An Automatic Speed Control for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1928-01-01

    Described here is an automatic control that has been used in several forms in wind tunnels at the Washington Navy Yard. The form now in use with the 8-foot tunnel at the Navy Yard is considered here. Details of the design and operation of the automatic control system are given. Leads from a Pitot tube are joined to an inverted cup manometer located above a rheostat. When the sliding weight of this instrument is set to a given notch, say for 40 m.p.h, the beam tip vibrates between two electric contacts that feed the little motor. Thus, when the wind is too strong or too weak, the motor automatically throws the rheostat slide forward and backward. If it failed to function well, the operator would notice the effect on his meniscus, and would operate the hand control by merely pressing the switch.

  9. Aeroacoustic research in wind tunnels: A status report

    NASA Technical Reports Server (NTRS)

    Bender, J.; Arndt, R. E. A.

    1973-01-01

    The increasing attention given to aerodynamically generated noise brings into focus the need for quality experimental research in this area. To meet this need several specialized anechoic wind tunnels have been constructed. In many cases, however, budgetary constraints and the like make it desirable to use conventional wind tunnels for this work. Three basic problems are inherent in conventional facilities: (1) high background noise, (2) strong frequency dependent reverberation effects, and (3) unique instrumentation problems. The known acoustic characteristics of several conventional wind tunnels are evaluated and data obtained in a smaller 4- x 5-foot wind tunnel which is convertible from a closed jet to an open jet mode are presented. The data from these tunnels serve as a guideline for proposed modifications to a 7- x 10-foot wind tunnel. Consideration is given to acoustic treatment in several different portions of the wind tunnel.

  10. Condensation in hypersonic nitrogen wind tunnels

    NASA Technical Reports Server (NTRS)

    Lederer, Melissa A.; Yanta, William J.; Ragsdale, William C.; Hudson, Susan T.; Griffith, Wayland C.

    1990-01-01

    Experimental observations and a theoretical model for the onset and disappearance of condensation are given for hypersonic flows of pure nitrogen at M = 10, 14 and 18. Measurements include Pitot pressures, static pressures and laser light scattering experiments. These measurements coupled with a theoretical model indicate a substantial non-equilibrium supercooling of the vapor phase beyond the saturation line. Typical results are presented with implications for the design of hypersonic wind tunnel nozzles.

  11. Residual interference and wind tunnel wall adaption

    NASA Technical Reports Server (NTRS)

    Mokry, Miroslav

    1989-01-01

    Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.

  12. Python Engine Installed in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1949-01-01

    An engine mechanic checks instrumentation prior to an investigation of engine operating characteristics and thrust control of a large turboprop engine with counter-rotating propellers under high-altitude flight conditions in the 20-foot-dianieter test section of the Altitude Wind Tunnel at the Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics, Cleveland, Ohio, now known as the John H. Glenn Research Center at Lewis Field.

  13. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  14. Control Room - 10ft x 10ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1955-01-01

    One of three control panels in the control room of the Lewis Unitary Plan Wind Tunnel. The tunnel model (top center) shows position of the valves that control the operating cycle of the tunnel. The TV monitor screens can be connected to any of 3 closed-circuit TV cameras used to monitor tunnel components.

  15. Comparison Between Field Data and NASA Ames Wind Tunnel Data

    SciTech Connect

    Corbus, D.

    2005-11-01

    The objective of this analysis is to compare the measured data from the NASA Ames wind tunnel experiment to those collected in the field at the National Wind Technology Center (NWTC) with the same turbine configuration. The results of this analysis provide insight into what measurements can be made in the field as opposed to wind tunnel testing.

  16. Sound propagation from a simple source in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III

    1975-01-01

    The nature of the acoustic field of a simple source in a wind tunnel under flow conditions was examined theoretically and experimentally. The motivation of the study was to establish aspects of the theoretical framework for interpreting acoustic data taken (in wind) tunnels using in wind microphones. Three distinct investigations were performed and are described in detail.

  17. Wind tunnel tests of a free yawing downwind wind turbine

    NASA Astrophysics Data System (ADS)

    Verelst, D. R. S.; Larsen, T. J.; van Wingerden, J. W.

    2014-12-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.

  18. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  19. Overview of the 1989 Wind Tunnel Calibration Workshop

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur, Jr.; Mckinney, L. Wayne

    1993-01-01

    An overview of the 1989 Wind Tunnel Calibration Workshop held at NASA LaRC in Hampton, VA on 19-20 Apr. 1989 is presented. The purpose of the Workshop was to explore wind tunnel calibration requirements as they relate to test quality and data accuracy, with the ultimate goal of developing wind tunnel calibration requirements for the major NASA wind tunnels at ARC, LaRC, and LeRC. The two sessions addressed the following topics: (1) what constitutes a properly calibrated wind tunnel; and (2) the status of calibration of NASA's major wind tunnels. The most significant contributions to the stated goals are highlighted, and the consensus of the Workshop's conclusions and recommendations regarding formulation and implementation of that goal are presented.

  20. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.

    2016-01-01

    NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.

  1. Curved flow wind tunnnel test of F-18 aircraft

    NASA Technical Reports Server (NTRS)

    Lutze, F. H.

    1980-01-01

    The curved flow capability of a stability wind tunnel was used to investigate the lateral directional characteristics of an F-18 aircraft. The model is described and the procedures used to obtain and correct the data and a graphical presentation of the results are presented. The results include graphs of lateral directional derivatives versus sideslip or static plots, the lateral directional static stability derivatives versus angle of attack, and finally the lateral directional derivatives versus nondimensional yaw rate for different angles of attack and sideslip. Results are presented for several configurations including complete, complete without vertical tails, complete without horizontal tails, fuselage wing and fuselage alone. Each of these were tested with and without wing leading edge extensions.

  2. Blowdown Wind Tunnels: Latest Citations from the Aerospace Database

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, and performance of blowdown wind tunnels. The use of compressed gas, mechanical piston, or combustion exhaust to provide continuous or short-duration operation from transonic to hypersonic approach velocities is discussed. Also covered are invasive and non-invasive aerothermodynamic instrumentation, data acquisition and reduction techniques, and test reports on aerospace components. Comprehensive coverage of wind tunnel force balancing systems and supersonic wind tunnels are covered in separate bibliographies.

  3. 7 x 10 Foot Atmospheric Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction of 7 x 10 Foot Atmospheric Wind Tunnel (AWT). In 1928, the NACA decided to replace its original Atmospheric Wind Tunnel (AWT #1) with two tunnels--the 5-foot vertical tunnel and a 7 by 10 foot rectangular throat tunnel. Both were open-throat, closed-return-passage tunnels. While the 5 foot vertical tunnel was to be used mainly for spin tests, the 7x10 was an all-purpose tunnel although the main intent was to study stability and control problems. Construction was completed in the summer of 1930; calibration later that same year. The balance was installed and the tunnel went into operation in early 1931. The Warwick Machine Co. of Newport News, Virginia had the contract to fabricate and erection the 7x10 Foot tunnel for a total cost of $18,018.90. The balance was made by Fairbanks, Morse and Co., of Baltimore, Maryland for $2,544.00. The honeycomb was made by the Berkley Machine Works and Foundry Co., Inc. of Norfolk, Virginia for $1,580 and the control panel by Clark Controller Co. of Cleveland, OH for $1,153. Published in NACA TR No. 412, 'The 7 by 10 Foot Wind Tunnel of the National Advisory Committee for Aeronautics,' by Thomas A. Harris, 1932; Reference Notes on the 'Atmospheric Wind Tunnel' in the Langley Historical Archives (D. Baals notes on wind tunnels).

  4. Development of an Apparatus for Wind Tunnel Dynamic Experiments at High-alpha

    NASA Technical Reports Server (NTRS)

    Pedreiro, Nelson

    1997-01-01

    A unique experimental apparatus that allows a wind tunnel model two degrees of freedom has been designed and built. The apparatus was developed to investigate the use of new methods to augment aircraft control in the high angle of attack regime. The model support system provides a platform in which the roll-yaw coupling at high angles of attack can be studied in a controlled environment. Active cancellation of external effects is used to provide a system in which the dynamics are dominated by the aerodynamic loads acting on the wind tunnel model.

  5. A Technique for Measuring Rotocraft Dynamic Stability in the 40 by 80 Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.; Bohn, J. G.

    1977-01-01

    An on-line technique is described for the measurement of tilt rotor aircraft dynamic stability in the Ames 40- by 80-Foot Wind Tunnel. The technique is based on advanced system identification methodology and uses the instrumental variables approach. It is particulary applicable to real time estimation problems with limited amounts of noise-contaminated data. Several simulations are used to evaluate the algorithm. Estimated natural frequencies and damping ratios are compared with simulation values. The algorithm is also applied to wind tunnel data in an off-line mode. The results are used to develop preliminary guidelines for effective use of the algorithm.

  6. Aeolian sand transport: a wind tunnel model

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Liu, Xiaoping; Wang, Hongtao; Wang, Xunming

    2003-09-01

    Wind sand transport is an important geological process on earth and some other planets. Formulating the wind sand transport model has been of continuing significance. Majority of the existing models relate sand transport rate to the wind shear velocity based on dynamic analysis. However, the wind shear velocity readapted to blown sand is difficult to determine from the measured wind profiles when sand movement occurs, especially at high wind velocity. Moreover, the effect of grain size on sand transport is open to argument. Detailed wind tunnel tests were carried out with respect to the threshold velocity, threshold shear velocity, and transport rate of differently sized, loose dry sand at different wind velocities to reformulate the transport model. The results suggest that the relationship between threshold shear velocity and grain size basically follow the Bagnold-type equation for the grain size d>0.1 mm. However, the threshold coefficient A in the equation is not constant as suggested by Bagnold, but decreases with the particle Reynolds number. The threshold velocity at the centerline height of the wind tunnel proved to be directly proportional to the square root of grain diameter. Attempts have been made to relate sand transport rate to both the wind velocity and shear velocity readapted to the blown sand movement. The reformulated transport model for loose dry sand follows the modified O'Brien-Rindlaub-type equation: Q= f1( d)(1- Ru) 2( ρ/ g) V3, or the modified Bagnold-type equation: Q= f2( d)(1- Rt) 0.25( ρ/ g) U*3. Where Q is the sand transport rate, the sand flux per unit time and per unit width, in kg m -1 s -1; ρ is the air density, 1.25 kg m -3; g is the acceleration due to gravity, 9.81 m s -2; Ru= Vt/ V; Rt= U*t/ U*; V is the wind velocity at the centerline of the wind tunnel, in m s -1; Vt is the threshold velocity measured at the same height as V, in m s -1; U* is the shear velocity with saltating flux, in m s -1; U*t is threshold shear

  7. Rocket Plume Scaling for Orion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.

    2011-01-01

    A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.

  8. Large-scale V/STOL testing. [in wind tunnels

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Aiken, T. N.; Aoyagi, K.; Falarski, M. D.

    1977-01-01

    Several facets of large-scale testing of V/STOL aircraft configurations are discussed with particular emphasis on test experience in the Ames 40- by 80-foot wind tunnel. Examples of powered-lift test programs are presented in order to illustrate tradeoffs confronting the planner of V/STOL test programs. It is indicated that large-scale V/STOL wind-tunnel testing can sometimes compete with small-scale testing in the effort required (overall test time) and program costs because of the possibility of conducting a number of different tests with a single large-scale model where several small-scale models would be required. The benefits of both high- and full-scale Reynolds numbers, more detailed configuration simulation, and number and type of onboard measurements increase rapidly with scale. Planning must be more detailed at large scale in order to balance the trade-offs between the increased costs, as number of measurements and model configuration variables increase and the benefits of larger amounts of information coming out of one test.

  9. Wind Tunnel Testing for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Schenberger, Deborah; Alvarez, Teresa (Technical Monitor)

    1994-01-01

    NASA Ames Research Center is pursuing the development of SOFIA, the Stratospheric Observatory For Infrared Astronomy. SOFIA will consist of a 2.5 meter telescope mounted aft of the wing of a Boeing 747 aircraft. Since a large portion of the infrared spectrum is not visible at ground level due to absorption by water vapor in the atmosphere below 40,000 feet, it is highly desirable to make observations above this altitude. SOFIA will provide the opportunity for astronomers to conduct high-altitude research for extended periods of time. Current study is focused on wind tunnel testing for the open cavity. If not controlled, air would create resonance and damage the telescope. For this reason, SOFIA will design a boundary layer control device to achieve laminar flow over the cavity. This also provides a clearer flow for seeing, thus improving resolution on infrared sources. Other effects being tested in the wind tunnel are aerodynamic torque loads on the telescope, and flutter loads on the tail.

  10. Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.

    2007-01-01

    The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.

  11. Measuring the 3-D wind vector with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-07-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. Therefore we draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14 %, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31 %) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's trim (53 %), as well as changes in the aircraft lift (16 %) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95 % confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square error) of ≈0.4 m s-1 for the horizontal and ≈0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable Eddy-Covariance flux measurements.

  12. Nano-ADEPT Aeroloads Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; Venkatapathy, Ethiraj; Swanson, Gregory; Gold, Nili

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  13. Lidar wind shear detection for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Bowles, Roland L.

    1991-08-01

    National attention has focused on the critical problem of detecting and avoiding windshear since the crash on August 2, 1985, of a Lockheed L-1011 at Dallas/Fort Worth International Airport. As part of The NASA/FAA National Integrated Windshear Program, the authors have defined a measurable windshear hazard index that can be remotely sensed from an aircraft, to give the pilot information about the wind conditions he will experience at some later time if he continues along the present flight path. The technology analysis and end- to-end performance simulation, which measures signal-to-noise ratios and resulting wind velocity errors for competing coherent lidar systems, shows that a Ho:YAG lidar at a wavelength of 2.1 micrometers and a CO2 lidar at 10.6 micrometers can give the pilot information about the line-of-sight component of a windshear threat in a region extending from his present position to 2 to 4 km in front of the aircraft. This constitutes a warning time of 20 to 40 s, even under conditions of moderately heavy precipitation. Using these results, a Coherent Lidar Airborne Shear Sensor (CLASS), using a Q-switched CO2 laser at 10.6 micrometers , is being designed and developed for flight evaluation in early 1992.

  14. Incremental wind tunnel testing of high lift systems

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Efficiency of trailing edge high lift systems is essential for long range future transport aircrafts evolving in the direction of laminar wings, because they have to compensate for the low performance of the leading edge devices. Modern high lift systems are subject of high performance requirements and constrained to simple actuation, combined with a reduced number of aerodynamic elements. Passive or active flow control is thus required for the performance enhancement. An experimental investigation of reduced kinematics flap combined with passive flow control took place in a low speed wind tunnel. The most important features of the experimental setup are the relatively large size, corresponding to a Reynolds number of about 2 Million, the sweep angle of 30 degrees corresponding to long range airliners with high sweep angle wings and the large number of flap settings and mechanical vortex generators. The model description, flap settings, methodology and results are presented.

  15. National Wind Tunnel Complex (NWTC) Project Archive

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This archive was designed with three purposes in mind. First, it was designed as a medium for providing our program deliverables to our customers-NASA and the industry team. Secondly, it was designed to be "The" critical resource for a program restart. Finally, the archive should serve as an invaluable technical resource for aerodynamic and wind tunnel science. The documents are stored in both native format and, for the majority of the documents, in scanned format. The end user is responsible for having applications for viewing and using native and scanned format documents.

  16. Integral equations for flows in wind tunnels

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Golberg, M. A.

    1979-01-01

    This paper surveys recent work on the use of integral equations for the calculation of wind tunnel interference. Due to the large number of possible physical situations, the discussion is limited to two-dimensional subsonic and transonic flows. In the subsonic case, the governing boundary value problems are shown to reduce to a class of Cauchy singular equations generalizing the classical airfoil equation. The theory and numerical solution are developed in some detail. For transonic flows nonlinear singular equations result, and a brief discussion of the work of Kraft and Kraft and Lo on their numerical solution is given. Some typical numerical results are presented and directions for future research are indicated.

  17. 7 x 10-Foot Atmospheric Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Smoke generator for 7 x 10-Foot Atmospheric Wind Tunnel (AWT) (left center); Force Test Set-Up in the center. In 1928, the NACA decided to replace its original Atmospheric Wind Tunnel (AWT #1) with two tunnels--the 5-foot vertical tunnel and a 7 by 10 foot rectangular throat tunnel. Both were open-throat, closed-return-passage tunnels. While the 5-foot vertical tunnel was to be used mainly for spin tests, the 7x10 was an all-purpose tunnel although the main intent was to study stability and control problems. Construction was completed in the summer of 1930; calibration later that same year. The balance was installed and the tunnel went into operation in early 1931.

  18. Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2005-01-01

    The adaptation of a proven wind tunnel test technique, known as Videogrammetry, to flight testing of full-scale vehicles is presented. A description is presented of the technique used at NASA's Dryden Flight Research Center for the measurement of the change in wing twist and deflection of an F/A-18 research aircraft as a function of both time and aerodynamic load. Requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the flight-testing technique and differences compared to wind tunnel testing are given. Measurement and operational comparisons to an older in-flight system known as the Flight Deflection Measurement System (FDMS) are presented.

  19. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  20. Progress of magnetic suspension and balance systems for wind tunnels in the USSR

    NASA Technical Reports Server (NTRS)

    Kuzin, A. V.; Vyshkov, Y. D.; Shapovalov, G. K.

    1992-01-01

    Magnetic Suspension and Balance Systems (MSBS) for wind tunnels are being developed in order to solve the principal problems of aerodynamics which cannot be solved by conventional means: (1) measurements of aerodynamic loads acting on the aircraft models without the effects of mechanical supporting devices; and (2) the study of base pressure. This paper traces the progress of MSBS for wind tunnels in the Commonwealth of Independent States (CIS). The paper describes electromagnetic configuration, position sensing, and control and calibration systems of two wind tunnel MSBS existing in the CIS. The features of high-angle-of-attack control and roll control are discussed. The results of preliminary experiments on high-angle-of-attack and roll controls, digital control, and aerodynamic testing are also presented.

  1. Supersonic Flow Choking in Engine Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Mitani, Tohru; Miyajima, Hiroshi; Tani, Koichiro; Kouchi, Toshinori; Sakuranaka, Noboru; Watanabe, Syuichi

    Breakdown of diffuser flow was often observed in our scramjet engine tests. This facility operation may damage the engine wind-tunnel and should be prevented. An one-dimensional analysis was applied to the diffuser flow to identify the causes of the flow breakdown. All the losses and gains by engine and friction loss in the diffuser were represented by point-sources of mass, momentum and energy. The thermal choking condition was calculated by uses of a chemical equilibrium code. The fuel rates causing the flow-choking successfully reproduced the limit fuel rates observed in our tests. Inlet-unstart of engine lost the ejector-pumping effect in the diffuser system to trigger the flow choking. The choking was also promoted by the drag of the gas sampling rakes. The choking in diffuser flow and the engine unstart may couple each other to cause hysteresis in the diffuser breakdown, which was also experienced in our tests. A rocket-based, combined-cycle (RBCC) engine will be tested under the Mach 4 condition. The engine easily causes the choking of diffuser because of the large propellant supply rates and the relatively-low specific impulse. Operation of the wind-tunnel was discussed to control the flow choking in the tests.

  2. Hyper-X Wind Tunnel Program

    NASA Technical Reports Server (NTRS)

    McClinton, C. R.; Holland, S. D.; Rock, K. E.; Engelund, W. C.; Voland, R. T.; Huebner, L. D.; Roger, R. C.

    1998-01-01

    This paper provides an overview of NASA's focused hypersonic technology program, called the Hyper-X Program. The Hyper-X Program, a joint NASA Langley and Dryden program, is designed to move hypersonic, air breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated scramjet (supersonic combustion ramjet) propulsion system at true flight conditions and the first opportunity for flight validation of experimental wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the program is experimentally based, both for database development and performance validation. The program is now concentrating on Mach 7 vehicle development, verification and validation and flight test risk reduction. This paper concentrates on the aerodynamic and propulsion experimental programs. Wind tunnel testing of the flight engine and complete airframe integrated scramjet configuration flow-path is expected in 1998 and 1999, respectively, and flight test is planned for 2000.

  3. Wind Tunnel Seeding Systems for Laser Velocimeters

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Compiler); Nichols, C. E., Jr. (Compiler)

    1985-01-01

    The principal motivating factor for convening the Workshop on the Development and Application of Wind Tunnel Seeding Systems for Laser Velocimeters is the necessity to achieve efficient operation and, most importantly, to insure accurate measurements with velocimeter techniques. The ultimate accuracy of particle scattering based laser velocimeter measurements of wind tunnel flow fields depends on the ability of the scattering particle to faithfully track the local flow field in which it is embedded. A complex relationship exists between the particle motion and the local flow field. This relationship is dependent on particle size, size distribution, shape, and density. To quantify the accuracy of the velocimeter measurements of the flow field, the researcher has to know the scattering particle characteristics. In order to obtain optimum velocimeter measurements, the researcher is striving to achieve control of the particle characteristics and to verify those characteristics at the measurement point. Additionally, the researcher is attempting to achieve maximum measurement efficiency through control of particle concentration and location in the flow field.

  4. Wind tunnel studies of Martian aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Iversen, J. D.; Pollack, J. B.; Udovich, N.; White, B.

    1973-01-01

    Preliminary results are reported of an investigation which involves wind tunnel simulations, geologic field studies, theoretical model studies, and analyses of Mariner 9 imagery. Threshold speed experiments were conducted for particles ranging in specific gravity from 1.3 to 11.35 and diameter from 10.2 micron to 1290 micron to verify and better define Bagnold's (1941) expressions for grain movement, particularly for low particle Reynolds numbers and to study the effects of aerodynamic lift and surface roughness. Wind tunnel simulations were conducted to determine the flow field over raised rim craters and associated zones of deposition and erosion. A horseshoe vortex forms around the crater, resulting in two axial velocity maxima in the lee of the crater which cause a zone of preferential erosion in the wake of the crater. Reverse flow direction occurs on the floor of the crater. The result is a distinct pattern of erosion and deposition which is similar to some martian craters and which indicates that some dark zones around Martian craters are erosional and some light zones are depositional.

  5. Hypersonic Wind Tunnels: Latest Citations from the Aerospace Database

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, performance, and use of hypersonic wind tunnels. References cover the design of flow nozzles, diffusers, test sections, and ejectors for tunnels driven by compressed air, high-pressure gases, or cryogenic liquids. Methods for flow calibration, boundary layer control, local and freestream turbulence reduction, and force measurement are discussed. Intrusive and non-intrusive instrumentation, sources of measurement error, and measurement corrections are also covered. The citations also include the testing of inlets, nozzles, airfoils, and other components of hypersonic aerospace vehicles. Comprehensive coverage of supersonic and blowdown wind tunnels, and force balance systems for wind tunnels are covered in separate bibliographies.

  6. Screens Would Protect Wind-Tunnel Fan Blades

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G.

    1992-01-01

    Butterfly screen installed in wind tunnel between test section and fan blades to prevent debris from reaching fan blades if model structure fails. Protective screens deployed manually or automatically. Concept beneficial anywhere wind tunnels employed. Also useful in areas outside of aerospace industry, such as in airflow design of automobiles and other vehicles.

  7. Build an Inexpensive Wind Tunnel to Test CO2 Cars

    ERIC Educational Resources Information Center

    McCormick, Kevin

    2012-01-01

    As part of the technology education curriculum, the author's eighth-grade students design, build, test, and race CO2 vehicles. To help them in refining their designs, they use a wind tunnel to test for aerodynamic drag. In this article, the author describes how to build a wind tunnel using inexpensive, readily available materials. (Contains 1…

  8. Weather hazard simulation in the Modane wind-tunnels

    NASA Technical Reports Server (NTRS)

    Fasso, G.; Leclere, G.; Charpin, F.

    1983-01-01

    Specially designed wind tunnel setups make it possible to simulate various weather hazards, in an imperfect but systematic manner. Systems installed in the Modane wind tunnels for rain and icing tests are described. A qust simulator being developed is also discussed.

  9. Jet engine powers large, high-temperature wind tunnel

    NASA Technical Reports Server (NTRS)

    Benham, T. F.; Mulliken, S. R.

    1967-01-01

    Wind tunnel for large component testing uses a jet engine with afterburner to provide high temperatures /1200 degrees to 2000 degrees F/ and controlled high velocity gas. This economical wind tunnel can accommodate parts ten feet by ten feet or larger, and is a useful technique for qualitative information.

  10. 5. VIEW NORTH OF TEST SECTION IN FULLSCALE WIND TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTH OF TEST SECTION IN FULL-SCALE WIND TUNNEL WITH FREE-FLIGHT MODEL OF A BOEING 737 SUSPENDED FROM A SAFETY CABLE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  11. 14. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  12. 13. EXTERIOR VIEW OF OLD TENFOOT WIND TUNNEL (1991). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. EXTERIOR VIEW OF OLD TEN-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  13. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  14. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  15. Measuring the 3-D wind vector with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-02-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. Therefore we draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14%, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31%) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's aeroelastic wing (53%), as well as sudden changes in wing loading (16%) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95% confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square deviation) of ≈0.4 m s-1 for the horizontal and ≍0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable eddy-covariance flux measurements.

  16. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  17. A throat-bypass stability-bleed system using relief valves to increase the transient stability of a mixed-compression inlet. [YF-12 aircraft inlet tests in the Lewis 10 by 10 ft supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Dustin, M. O.; Cole, G. L.

    1979-01-01

    A stability-bleed system was installed in a YF-12 flight inlet that was subjected to internal and external airflow disturbances in the NASA Lewis 10 by 10 foot supersonic wind tunnel. The purpose of the system is to allow higher inlet performance while maintaining a substantial tolerance (without unstart) to internal and external disturbances. At Mach numbers of 2.47 and 2.76, the inlet tolerance to decreases in diffuser-exit corrected airflow was increased by approximately 10 percent of the operating-point airflow. The stability-bleed system complemented the terminal-shock-control system of the inlet and did not show interaction problems. For disturbances which caused a combined decrease in Mach number and increase in angle of attack, the system with valves operative kept the inlet started 4 to 28 times longer than with the valves inoperative. Hence, the stability system provides additional time for the inlet control system to react and prevent unstart. This was observed for initial Mach numbers of 2.55 and 2.68. For slow increase in angle of attack at Mach 2.47 and 2.76, the system kept the inlet started beyond the steady-state unstart angle. However, the maximum transient angles of attack without unstart could not be determined because wind-tunnel mechanical-stop limits for angle of attack were reached.

  18. Control of Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  19. Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick; Klein, Vladislav

    2011-01-01

    Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.

  20. Cryogenic wind tunnel activities at the University of Southampton. [flow visusalization technique for low speed wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1979-01-01

    The characteristics and behavior of a 0.3m transonic cryogenic wind tunnel are discussed. The wide band of usable Reynolds numbers is analyzed along with a flow visualization technique using propane. The combination of magnetic suspension with the cryogenic wind tunnel is described. An outline of the circuit showing the locations of the magnet system and the features of the tunnel are presented.

  1. Modeling and control design of a wind tunnel model support

    NASA Technical Reports Server (NTRS)

    Howe, David A.

    1990-01-01

    The 12-Foot Pressure Wind Tunnel at Ames Research Center is being restored. A major part of the restoration is the complete redesign of the aircraft model supports and their associated control systems. An accurate trajectory control servo system capable of positioning a model (with no measurable overshoot) is needed. Extremely small errors in scaled-model pitch angle can increase airline fuel costs for the final aircraft configuration by millions of dollars. In order to make a mechanism sufficiently accurate in pitch, a detailed structural and control-system model must be created and then simulated on a digital computer. The model must contain linear representations of the mechanical system, including masses, springs, and damping in order to determine system modes. Electrical components, both analog and digital, linear and nonlinear must also be simulated. The model of the entire closed-loop system must then be tuned to control the modes of the flexible model-support structure. The development of a system model, the control modal analysis, and the control-system design are discussed.

  2. Overview of 6- X 6-foot wind tunnel aero-optics tests. [transonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Buell, D. A.

    1980-01-01

    The splitter-plate arrangement used in tests in the 6 x 6 foot wind tunnel and how it was configured to study boundary layers, both heated and unheated, shear layers over a cavity, separated flows behind spoilers, accelerated flows around a turret, and a turret wake are described. The flows are characterized by examples of the steady-state pressure and of velocity profiles through the various types of flow layers.

  3. Wind tunnel force and pressure tests

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1981-01-01

    Force and surface pressure distributions were measured for a 13% medium speed (NASA MS(1)-0313) airfoil fitted with 20% aileron, 25% slotted flap and 10% slot lip spoiler. All tests were conducted in the Walter Beech Memorial Wind Tunnel at a Reynolds number of 2.2 million and a Mach number of 0.13. Results include lift, drag, pitching moments, control surface normal force and hinge moments, and surface pressure distributions. The basic airfoil exhibits low speed characteristics similar to the GA(W)-2 airfoil. Incremental aileron and spoiler performance are quite comparable to that obtained on the GA(W)-2 airfoil. Slotted flap performance on this section is reduced compared to the GA(W)-2, resulting in a highest c sub l max of 3.00 compared to 3.35 for the GA(W)-2.

  4. Wind tunnel modeling of heavy gas dispersion

    NASA Astrophysics Data System (ADS)

    König-Langlo, G.; Schatzmann, M.

    Assessment of risk attending the manufacturing, storing and transportation of flammable and toxic gases involves the quantification of the ensuing dispersion in case of an accidental release. Worst case considerations have to be applied in order to obtain conservative estimates The paper describes a method for the determination of lower flammability distances for gases heavier than air under unfavorable atmospheric conditions. The method is based on the results of a wind tunnel study investigating the dispersion of instantaneous as well as continuous releases into a boundary-layer shear flow disturbed and undisturbed by surface obstacles. Thermodynamic effects on the dispersing cloud have been taken into account through modification of source parameters. The results have been compared with those from corresponding field trials. The agreement is generally fair. The method has now been converted into a detailed guideline for dispersion calculations within risk assessment studies for flammable and toxic heavy gases (VDI 3783, Part 2, Beuth Verlag, Berlin, 1990).

  5. Advanced recovery systems wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Geiger, R. H.; Wailes, W. K.

    1990-01-01

    Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-Ames 80 by 120 test sections of the National Full-Scale Aerodynamic Complex, Moffett Field, CA. The investigation was conducted to determine the aerodynamic characteristics of two scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems for the Next Generation Space Transportation System. Two models were tested during this investigation. Both the primary test article, a 1/9 geometric scale model with wing area of 1200 square feet and secondary test article, a 1/36 geometric scale model with wing area of 300 square feet, had an aspect ratio of 3. The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.

  6. NASA Glenn Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Roeder, James W.; Stark, David E.; Linne, Alan A.

    2004-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models that are to be tested in the wind tunnel facilities at the NASA Glenn Research Center. This report presents two methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it defines project procedures to test models in the NASA Glenn aeropropulsion facilities. Both customer-furnished and in-house model systems are discussed. The functions of the facility personnel and customers are defined. The format for the pretest meetings, safety permit process, and model reviews are outlined. The format for the model systems report (a requirement for each model that is to be tested at NASA Glenn) is described, the engineers responsible for developing the model systems report are listed, and the timetable for its delivery to the project engineer is given.

  7. Smart-actuated continuous moldline technology (CMT) mini wind tunnel test

    NASA Astrophysics Data System (ADS)

    Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.

    1999-07-01

    The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.

  8. SAMPSON smart inlet design overview and wind tunnel test: I. Design overview

    NASA Astrophysics Data System (ADS)

    Pitt, Dale M.; Dunne, James P.; White, Edward V.

    2002-07-01

    The Smart Aircraft and Marine System Projects Demonstration (SAMPSON) program was a DARPA funded effort conducted by the Boeing Company, General Dynamics - Electric Boat Division, and the Pennsylvania State University. NASA Langley Research Center (NASA LaRC) was technical monitor for the aircraft demonstration, while the Navy's Office of Naval Research (ONR) was technical monitor for the marine demonstration. Dr. Ephrahim Garcia, DARPA/DSO, acted as the DARPA program manager for SAMPSON. The SAMPSON program objectives were to demonstrate smart structures based systems on large/full scale structures in realistic environments. The SAMPSON aircraft demonstration was the wind tunnel testing of a full scale F-15 aircraft inlet that was capable of in-flight structural variations accomplished using smart materials, called the 'SAMPSON Smart Inlet'. The SAMPSON Smart Inlet was removed from an F-15E airframe and structurally modified to interface with the NASA LaRC 16-Foot Transonic Tunnel model support system. This is Part I of two works documenting the SAMPSON Smart Inlet design and testing. A discussion of the design aspects and constraints will be presented here in Part I. The ground and wind tunnel testing of the Smart Inlet is presented in a separate work, Part II.

  9. 7 x 10-Foot Atmospheric Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Engineer is shown adjusting a test model of the Clark-Y airfoil #1 in 7 x 10-Foot Atmospheric Wind Tunnel (AWT). In 1928, the NACA decided to replace its original Atmospheric Wind Tunnel (AWT #1) with two tunnels--the 5-foot vertical tunnel and a 7 by 10 foot rectangular throat tunnel. Both were open-throat, closed-return-passage tunnels and were housed in the same building the first wind tunnel had been located in. While the 5-foot vertical tunnel was to be used mainly for spin tests, the 7x10 was an all-purpose tunnel although the main intent was to study stability and control problems. Construction was completed in the summer of 1930; calibration later that same year. The balance was installed and the tunnel went into operation in early 1931. The test model used to study the coefficients of lift, drag, cross-wind force, and pitching moment was a 'Clark Y airfoil with a 10-inch chord and a 60-inch span, and the model was set at 20 positive yaw.'

  10. Post stall airfoil data for wind turbines: wind tunnel test results

    SciTech Connect

    Ostowari, C.; Naik, D.

    1984-07-01

    Wind turbine blades operate over a wide angle of attack range. Unlike aircraft, a wind turbine's angle of attack range extends deep into stall where the three dimensional performance characteristics of airfoils are not generally known. Peak power predictions upon which wind turbine components are sized depend on a good understanding of a blade's post stall characteristics. The purpose of this wind tunnel study is to characterize the performance characteristics of a blade in stall as a function of its aspect ratio, airfoil thickness and Reynolds number. This report documents results of the wind tunnel investigation of constant chord blades having four aspect ratios, with NACA 44XX series airfoil sections, at angles of attack ranging from -10 to 110/sup 0/. Tests were conducted at Reynolds number ranging from one-quarter million to one million. The thickness ratios studied were 0.18, 0.15, 0.12 and 0.09. The aspect ratios were 6, 9, 12 and infinity. Results of force and pitching moment measurements, over the angle of attack range, for all combinations of Reynolds numbers, thickness and aspect ratios, and the effects of boundary layer tripping, have been presented. Both initial and secondary stall are presented. The maximum drag coefficient is found to occur at an angle of attack of 90/sup 0/. The pitching moment is unstable beyond stall. The lift and post-stall drag coefficients decrease with decreasing aspect ratio. The lift coefficient decreases with decreasing thickness ratio, while the drag coefficient increases. The boundary layer tripping is observed to decrease the lift curve slope and stalling angle of attack. The drag coefficient (with tripping) is significantly affected only at low aspect ratio.

  11. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  12. The NASA Altitude Wind Tunnel (AWT): Its role in advanced icing research and development

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Shaw, R. J.

    1985-01-01

    Currently experimental aircraft icing research is severely hampered by limitations of ground icing simulation facilities. Existing icing facilities do not have the size, speed, altitude, and icing environment simulation capabilities to allow accurate studies to be made of icing problems occurring for high speed fixed wing aircraft and rotorcraft. Use of the currently dormant NASA Lewis Altitude Wind Tunnel (AWT), as a proposed high speed propulsion and adverse weather facility, would allow many such problems to be studied. The characteristics of the AWT related to adverse weather simulation and in particular to icing simulation are discussed, and potential icing research programs using the AWT are also included.

  13. Computational design and analysis of flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-03-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  14. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  15. Aircraft performance and control in downburst wind shear

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.

    1986-01-01

    The methods developed for analyses of the winds and of aircraft performance during an investigation of a downburst wind-shear-induced accident have been utilized in a more general study of aircraft performance in such encounters. The computed responses of a generic, large transport aircraft to take-off and approach encounters with a downburst wind field were used in examining the effects of performance factors and control procedures on the ability of the aircraft to survive. Obvious benefits are seen for higher initial encounter speeds, maximum thrust-weight values typical of two-engined aircraft, and immediacy of pilot response. The results of controlling to a constant, predetermined, pitch attitude are demonstrated. Control algorithms that sacrifice altitude for speed appear to provide a higher level of survivability, but guidance displays more explicitly defining flightpath than those commonly in use might be required.

  16. Hardening Doppler Global Velocimetry Systems for Large Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Fletcher, Mark T.; South, Bruce W.

    2004-01-01

    The development of Doppler Global Velocimetry from a laboratory curiosity to a wind tunnel instrumentation system is discussed. This development includes system advancements from a single velocity component to simultaneous three components, and from a steady state to instantaneous measurement. Improvements to system control and stability are discussed along with solutions to real world problems encountered in the wind tunnel. This on-going development program follows the cyclic evolution of understanding the physics of the technology, development of solutions, laboratory and wind tunnel testing, and reevaluation of the physics based on the test results.

  17. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  18. Transonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration. Volume 1: Experimental data report, base configuration and effects of wing twist and leading-edge configuration. [wind tunnel tests, aircraft models

    NASA Technical Reports Server (NTRS)

    Manro, M. E.; Manning, K. J. R.; Hallstaff, T. H.; Rogers, J. T.

    1975-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient.

  19. Wind Tunnel to Atmospheric Mapping for Static Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Rivera, J. A.

    2004-01-01

    Wind tunnel to Atmospheric Mapping (WAM) is a methodology for scaling and testing a static aeroelastic wind tunnel model. The WAM procedure employs scaling laws to define a wind tunnel model and wind tunnel test points such that the static aeroelastic flight test data and wind tunnel data will be correlated throughout the test envelopes. This methodology extends the notion that a single test condition - combination of Mach number and dynamic pressure - can be matched by wind tunnel data. The primary requirements for affecting this extension are matching flight Mach numbers, maintaining a constant dynamic pressure scale factor and setting the dynamic pressure scale factor in accordance with the stiffness scale factor. The scaling is enabled by capabilities of the NASA Langley Transonic Dynamics Tunnel (TDT) and by relaxation of scaling requirements present in the dynamic problem that are not critical to the static aeroelastic problem. The methodology is exercised in two example scaling problems: an arbitrarily scaled wing and a practical application to the scaling of the Active Aeroelastic Wing flight vehicle for testing in the TDT.

  20. Guide to measurement of winds with instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Paige, Terry S.; Nelius, Andrew E.

    1991-01-01

    Aircraft measurement techniques are reviewed. Review of past and present applications of instrument aircraft to atmospheric observations is presented. Questions to be answered relative to measuring mean wind profiles as contrasted to turbulence measurements are then addressed. Requirements of instrumentation and accuracy, data reduction, data acquisition, and theoretical and certainty analysis are considered.

  1. Procedures and requirements for testing in the Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Wassum, Donald L.; Hyman, Curtis E., Jr.

    1988-01-01

    Information is presented to assist those interested in conducting wind-tunnel testing within the Langley Unitary Plan Wind Tunnel. Procedures, requirements, forms and examples necessary for tunnel entry are included.

  2. A simplified method for calculating temperature time histories in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.

    1976-01-01

    Average temperature time history calculations of the test media and tunnel walls for cryogenic wind tunnels have been developed. Results are in general agreement with limited preliminary experimental measurements obtained in a 13.5-inch pilot cryogenic wind tunnel.

  3. Kasprzyk airfoil. The first wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Wusatowski, T.

    1984-01-01

    The Kasprzyk slotted flap glider airfoil (the Kasper wing) enabling glider flight at 32 km/h and 0.5 m/sec descent speed was wind tunnel tested in the U.S. The test layout is described and reasons offered for discrepancies between wind tunnel results and Polish in flight data: high induced drag caused by relative size of model wing span and tunnel, by vortex attenuators on the model and their proximity to the tunnel wall, nonsimilarity between flow over a smooth wing and flow over the Kasprzyk wing with bound vortices, obstruction of the tunnel test chamber cross section by the model wing, discrepant Reynolds numbers, and model airfoil aspect ratio much smaller than the prototype. The overall results offer partial confirmation of the Kasprzyk theory, but further in tunnel and in flight studies are recommended.

  4. Numerically Controlled Machining Of Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Kovtun, John B.

    1990-01-01

    New procedure for dynamic models and parts for wind-tunnel tests or radio-controlled flight tests constructed. Involves use of single-phase numerical control (NC) technique to produce highly-accurate, symmetrical models in less time.

  5. Low-Hysteresis Flow-Through Wind-Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Kunz, N.; Luna, P. M.; Roberts, A. C.; Smith, R. C.; Horne, W. L.; Smith, K. M.

    1992-01-01

    Improved flow-through wind-tunnel balance includes features minimizing both spurious force readings caused by internal pressurized flow and mechanical hysteresis. Symmetrical forces caused by internal flow cancelled.

  6. The future of wind tunnel technology in Germany

    NASA Technical Reports Server (NTRS)

    Ewald, B.

    1978-01-01

    The practical value of a wind tunnel which is not dependent solely on size or achievable Reynolds number was examined. Measurement, interpretative and evaluative procedures developed in small facilities were also studied.

  7. Continuous-flow variable-density wind tunnel facilities

    NASA Technical Reports Server (NTRS)

    Herrera, J. G.

    1972-01-01

    Unique features of wind tunnel facilities at Jet Propulsion Laboratory permit variety of conventional and novel tests to be performed at supersonic and hypersonic speeds. Facilities and operations are described.

  8. Space shuttle phase B wind tunnel test database

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data were acquired by competing contractors and NASA centers for an extensive variety of configurations with an array of wing and body planforms. This wind tunnel test data has been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings.

  9. A wind tunnel bioassay system for screening mosquito repellents.

    PubMed

    Sharpington, P J; Healy, T P; Copland, M J

    2000-09-01

    A wind tunnel bioassay system to screen mosquito repellents is described. A wind tunnel is utilized to exploit the upwind flight response of host-seeking mosquitoes. Mosquitoes within the wind tunnel are activated with human breath, fly upwind, and land on heated chick skins. This behavioral sequence results in a consistently high percentage of the test population approaching repellent or control stimuli. The bioassay system is calibrated with diethyl methylbenzamide against Aedes aegypti and demonstrates a reproducible dose-response relationship. The persistence of diethyl methyl benzamide after a 1-h period is also recorded. The design of the bioassay system permits simultaneous, independent testing of 3 candidate repellents. The wind tunnel bioassay system is compared to other techniques for evaluating mosquito repellents. PMID:11081652

  10. 7. Detail view west of Arctic Chamber wind tunnel shell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view west of Arctic Chamber wind tunnel shell (typical) in east elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  11. 14. View north of Tropic wind tunnel and frontal view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View north of Tropic wind tunnel and frontal view of main fan (typical). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  12. Oil-smeared models aid wind tunnel measurements

    NASA Technical Reports Server (NTRS)

    Katzoff, S.; Loving, D. K.

    1964-01-01

    For visualizing flow characteristics in wind tunnel tests, model surfaces are smeared with any common petroleum-base oils. These fluoresce under ultraviolet light and the flow patterns are readily visualized.

  13. The 13-inch magnetic suspension and balance system wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, William G., Jr.; Dress, David A.

    1989-01-01

    NASA Langley has a small, subsonic wind tunnel in use with the 13-inch Magnetic Suspension and Balance System (MSBS). The tunnel is capable of speeds up to Mach 0.5. This report presents tunnel design and construction details. It includes flow uniformity, angularity, and velocity fluctuation data. It also compares experimental Mach number distribution data with computed results for the General Electric Streamtube Curvature Program.

  14. Neighboring Optimal Aircraft Guidance in a General Wind Environment

    NASA Technical Reports Server (NTRS)

    Jardin, Matthew R. (Inventor)

    2003-01-01

    Method and system for determining an optimal route for an aircraft moving between first and second waypoints in a general wind environment. A selected first wind environment is analyzed for which a nominal solution can be determined. A second wind environment is then incorporated; and a neighboring optimal control (NOC) analysis is performed to estimate an optimal route for the second wind environment. In particular examples with flight distances of 2500 and 6000 nautical miles in the presence of constant or piecewise linearly varying winds, the difference in flight time between a nominal solution and an optimal solution is 3.4 to 5 percent. Constant or variable winds and aircraft speeds can be used. Updated second wind environment information can be provided and used to obtain an updated optimal route.

  15. Preliminary Tests in the NACA Free-Spinning Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zimmerman, C H

    1937-01-01

    Typical models and the testing technique used in the NACA free-spinning wind tunnel are described in detail. The results of tests on two models afford a comparison between the spinning characteristics of scale models in the tunnel and of the airplanes that they represent.

  16. Detection of boundary-layer transitions in wind tunnels

    NASA Technical Reports Server (NTRS)

    Wood, W. R.; Somers, D. M.

    1978-01-01

    Accelerometer replaces stethoscope in technique for detection of laminar-to-turbulent boundary-layer transitions on wind-tunnel models. Technique allows measurements above or below atmospheric pressure because human operator is not required within tunnel. Data may be taken from accelerometer, and pressure transducer simultaneously, and delivered to systems for analysis.

  17. Recent developments in a wind tunnel magnetic balance.

    NASA Technical Reports Server (NTRS)

    Stephens, T.; Covert, E. E.; Vlajinac, M.; Gilliam, G. D.

    1972-01-01

    A functional description of a prototype six component magnetic balance system for wind tunnel application is presented. The relationship of forces and moments on a ferromagnetic body to applied magnetic fields and gradients is shown. The method of producing the required fields in the prototype balance, its magnet arrangement and its performance are discussed. Aerodynamic data obtained with this balance on several model geometries are presented and compared with wind tunnel and ballistic range results.

  18. Initial investigation of cryogenic wind tunnel model filler materials

    NASA Technical Reports Server (NTRS)

    Rush, H. F.; Firth, G. C.

    1985-01-01

    Various filler materials are being investigated for applicability to cryogenic wind tunnel models. The filler materials will be used to fill surface grooves, holes and flaws. The severe test environment of cryogenic models precludes usage of filler materials used on conventional wind tunnel models. Coefficients of thermal expansion, finishing characteristics, adhesion and stability of several candidate filler materials were examined. Promising filler materials are identified.

  19. Development of Doppler Global Velocimetry for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1994-01-01

    The development of Doppler global velocimetry is described. Emphasis is placed on the modifications necessary to advance this nonintrusive laser based measurement technique from a laboratory prototype to a viable wind tunnel flow diagnostics tool. Several example wind tunnel flow field investigations are described to illustrate the versatility of the technique. Flow conditions ranged from incompressible to Mach 2.8 with measurement distances extending from 1 to 15 m.

  20. Method for Standardizing Sonic-Boom Model Pressure Signatures Measured at Several Wind-Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2007-01-01

    Low-boom model pressure signatures are often measured at two or more wind-tunnel facilities. Preliminary measurements are made at small separation distances in a wind tunnel close at hand, and a second set of pressure signatures is measured at larger separation distances in a wind-tunnel facility with a larger test section. In this report, a method for correcting and standardizing the wind-tunnel-measured pressure signatures obtained in different wind tunnel facilities is presented and discussed.

  1. Noise measurement in wind tunnels, workshop summary

    NASA Technical Reports Server (NTRS)

    Hickley, D. H.; Williams, J.

    1982-01-01

    In reviewing the progress made in acoustic measurements in wind tunnels over the 5-yr span of the workshops, it is evident that a great deal of progress has occurred. Specialized facilities are now on line, special measurement techniques were developed, and corrections were devised and proven. This capability is in the process of creating a new and more correct data bank on acoustic phenomena, and represents a major step forward in acoustics technology. Additional work is still required, but now, rather than concentrating on facilities and techniques, researchers may more profitably concentrate on noise-source modeling, with the simulation of propulsor noise source (in flight) and of propulsor/airframe airflow characteristics. Promising developments in directional acoustic receivers and other discrimination/correlation techniques should now be regularly exploited, in part for model noise-source diagnosis, but also to expedite extraction of the lone source signal from any residual background noise and reverberation in the working chamber and from parasitic noise due to essential rigs or instrumentation inside the airstream.

  2. Wind tunnel seeding particles for laser velocimeter

    NASA Technical Reports Server (NTRS)

    Ghorieshi, Anthony

    1992-01-01

    The design of an optimal air foil has been a major challenge for aerospace industries. The main objective is to reduce the drag force while increasing the lift force in various environmental air conditions. Experimental verification of theoretical and computational results is a crucial part of the analysis because of errors buried in the solutions, due to the assumptions made in theoretical work. Experimental studies are an integral part of a good design procedure; however, empirical data are not always error free due to environmental obstacles or poor execution, etc. The reduction of errors in empirical data is a major challenge in wind tunnel testing. One of the recent advances of particular interest is the use of a non-intrusive measurement technique known as laser velocimetry (LV) which allows for obtaining quantitative flow data without introducing flow disturbing probes. The laser velocimeter technique is based on measurement of scattered light by the particles present in the flow but not the velocity of the flow. Therefore, for an accurate flow velocity measurement with laser velocimeters, two criterion are investigated: (1) how well the particles track the local flow field, and (2) the requirement of light scattering efficiency to obtain signals with the LV. In order to demonstrate the concept of predicting the flow velocity by velocity measurement of particle seeding, the theoretical velocity of the gas flow is computed and compared with experimentally obtained velocity of particle seeding.

  3. Wind tunnel observations of drifting snow

    NASA Astrophysics Data System (ADS)

    Paterna, Enrico; Crivelli, Philip; Lehning, Michael

    2016-04-01

    Drifting snow has a significant impact on snow redistribution in mountains, prairies as well as on glaciers, ice shelves, and sea ice. In all these environments, the local mass balance is highly influenced by drifting snow. Understanding the dynamic of snow saltation is crucial to the accurate description of the process. We applied digital shadowgraphy in a cold wind tunnel to measure drifting snow over natural snow covers. The acquisition and evaluation of time-resolved shadowgraphy images allowed us to resolve a large part of the saltation layer. The technique has been successfully compared to the measurements obtained from a Snow Particle Counter, considered the most robust technique for snow mass-flux measurements so far. The streamwise snow transport is dominated by large-scale events. The vertical snow transport has a more equal distribution of energy across the scales, similarly to what is observed for the flow turbulence velocities. It is hypothesized that the vertical snow transport is a quantity that reflects the local entrainment of the snow crystals into the saltation layer while the streamwise snow transport results from the streamwise development of the trajectories of the snow particles once entrained, and therefore is rather a non-local quantity.

  4. 7 x 10-Foot Atmospheric Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Drawing of 7 x 10-Foot Atmospheric Wind Tunnel (AWT). In 1928, the NACA decided to replace its original Atmospheric Wind Tunnel (AWT #1) with two tunnels--the 5-foot vertical tunnel and a 7 by 10 foot rectangular throat tunnel. Both were open-throat, closed-return-passage tunnels. While the 5-foot vertical tunnel was to be used mainly for spin tests, the 7x10 was an all-purpose tunnel although the main intent was to study stability and control problems. Construction was completed in the summer of 1930; calibration later that same year. The balance was installed and the tunnel went into operation in early 1931. The Warwick Machine Co. of Newport News, Virginia had the contract to fabricate and erection the 7x10-Foot tunnel for a total cost of $18,018.90. The balance was made by Fairbanks, Morse and Co., of Baltimore, Maryland for 2,544.00. The honeycomb was made by the Berkley Machine Works and Foundry Co., Inc. of Norfolk, Virginia for $1,580 and the control panel by Clark Controller Co. of Cleveland, OH for $1,153.

  5. Planar Doppler Velocimetry for Large-Scale Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.

    1997-01-01

    Recently, Planar Doppler Velocimetry (PDV) has been shown by several laboratories to offer an attractive means for measuring three-dimensional velocity vectors everywhere in a light sheet placed in a flow. Unlike other optical means of measuring flow velocities, PDV is particularly attractive for use in large wind tunnels where distances to the sample region may be several meters, because it does not require the spatial resolution and tracking of individual scattering particles or the alignment of crossed beams at large distances. To date, demonstrations of PDV have been made either in low speed flows without quantitative comparison to other measurements, or in supersonic flows where the Doppler shift is large and its measurement is relatively insensitive to instrumental errors. Moreover, most reported applications have relied on the use of continuous-wave lasers, which limit the measurement to time-averaged velocity fields. This work summarizes the results of two previous studies of PDV in which the use of pulsed lasers to obtain instantaneous velocity vector fields is evaluated. The objective has been to quantitatively define and demonstrate PDV capabilities for applications in large-scale wind tunnels that are intended primarily for the production testing of subsonic aircraft. For such applications, the adequate resolution of low-speed flow fields requires accurate measurements of small Doppler shifts that are obtained at distances of several meters from the sample region. The use of pulsed lasers provides the unique capability to obtain not only time-averaged fields, but also their statistical fluctuation amplitudes and the spatial excursions of unsteady flow regions such as wakes and separations. To accomplish the objectives indicated, the PDV measurement process is first modeled and its performance evaluated computationally. The noise sources considered include those related to the optical and electronic properties of Charge-Coupled Device (CCD) arrays and to

  6. Wind Tunnel Database Development using Modern Experiment Design and Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2003-01-01

    A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.

  7. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  8. Wind tunnel tests of space shuttle solid rocket booster insulation material in the aerothermal tunnel c

    NASA Technical Reports Server (NTRS)

    Hartman, A. S.; Nutt, K. W.

    1982-01-01

    Wind tunnel tests of the space shuttle Solid Rocket Booster Insulation were conducted in the von Karman Gas Dynamics Facility Tunnel C. For these tests, Tunnel C was run at Mach 4 with a total temperature of 1100-1440 and a total pressure of 100 psia. Cold wall heating rates were changed by varying the test article support wedge angle. Selected results are presented to illustrate the test techniques and typical data obtained.

  9. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model

    NASA Technical Reports Server (NTRS)

    Matuska, David; Dale, Allen; Lorber, Peter

    1994-01-01

    This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.

  10. Mass flux similarity for slotted transonic-wind-tunnel walls

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Goradia, Suresh H.

    1991-01-01

    A discussion of the flow field measurements obtained in the vertical plane at several stations along the centerline of slots in two different longitudinally slotted wind tunnel walls is presented. The longitudinal and transverse components of the data are then transformed using the concept of flow similarity to demonstrate the applicability of the technique to the development of the viscous shear flow along and through a slotted wall of an airfoil tunnel. Results are presented showing the performance of the similarity transformations with variations in tunnel station, Mach number, and airfoil induced curvature of the tunnel free stream.

  11. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  12. Aerodynamic investigation with focusing schlieren in a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Gartenberg, Ehud; Weinstein, Leonard M.; Lee, Edwin E., Jr.

    1993-01-01

    A flow visualization study was performed using a focusing schlieren system in the 0.3m Transonic Cryogenic Tunnel at NASA Langley Research Center. The design employed proved to be a useful flow visualization tool for flows as low as M = 0.4. This study marked the first verification of the focusing schlieren technique in a major subsonic/transonic wind tunnel, and the first time that high quality, detailed pictures of high-Reynolds number flows were obtained in a cryogenic wind tunnel. This test was part of a development program to implement instrumentation techniques in cryogenic wind tunnels, with the ultimate aim to use them in the National Transonic Facility (NTF).

  13. Aerodynamic Investigation with focusing schlieren in a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Gartenberg, Ehud; Weinstein, Leonard M.; Lee Edwin E., JR.

    1994-01-01

    A flow visualization study was performed using a focusing schlieren system in the 0.3m Transonic Cryogenic Tunnel at NASA Langley Research Center. The system proved to be a useful flow visualization tool for flows as low as M = 0.4. This study marked the first verification of the focusing schlieren technique in a major subsonic/transonic wind tunnel and the first time that high-quality, detailed pictures of high-Reynolds-numbers flows were obtained in a cryogenic wind tunnel. This test was part of a development program to implement instrumentation techniques in cryogenic wind tunnels, with the ultimate aim to use them in the National Transonic Facility (NTF).

  14. Supersonic Wind Tunnels (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, performance, and use of supersonic wind tunnels. References cover the design of flow nozzles, diffusers, test sections, and ejectors for tunnels driven by compressed air, high-pressure gases, or cryogenic liquids. Methods for flow calibration, boundary layer control, local and freestream turbulence reduction, and force measurement are discussed. Instrusive and non-intrusive instrumentation, sources of measurement error, and measurement corrections are also covered. The citations also include the testing of inlets, nozzles, airfoils, and other components of aerospace vehicles that must operate supersonically. Comprehensive coverage of wind tunnel force balancing systems, and blowdown and supersonic wind tunnels are covered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.)

  15. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  16. 11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL OF BOEING 737 AT TOP OF PHOTOGRAPH IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  17. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  18. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.

    2001-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  19. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced Business Jet

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Barnhart, Billy P.; Ratvasky, Thomas P.; Dickes, Edward; Thacker, Michael

    2006-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of a business jet was studied in a rotary-balance wind tunnel. Three types of ice accretions were considered: ice protection system failure shape, pre-activation roughness, and runback shapes that form downstream of the thermal ice protection system. The results were compared with those from a 1/12-scale semi-span wing of the same aircraft at similar Reynolds number. The data showed that the full aircraft and the semi-span wing models showed similar characteristics, especially post stall behavior under iced configuration. However, there were also some discrepancies, such as the magnitude in the reductions in the maximum lift coefficient. Most of the ice-induced effects were limited to longitudinal forces. Rotational and forced oscillation studies showed that the effects of ice on lateral forces were relatively minor.

  20. Wind tunnel performance tests of coannular plug nozzles. [in the Langley 8 x 6 ft. supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Staid, P. S.

    1978-01-01

    Wind tunnel performance test results and data analyses are presented for dual-flow plug nozzles applicable to supersonic cruise aircraft during takeoff and low-speed flight operation. Outer exhaust stream pressure ratios from 1.5 to 3.5 were tested; inner exhaust stream conditions were varied from very low, or bleed flow rates, up to a pressure ratio of 3.5. Mach numbers tested ranged from zero to 0.45. Measured thrust coefficients for the eight model configurations, operating at an external Mach number of 0.36 and an outer flow pressure ratio of 2.5, varied from 0.95 to 0.974 for high inner flow rates. At low inner flow, the performance ranged from 0.88 to 0.97 for the same operating conditions. The primary design variables influencing the performance levels were the annular height of the inner and outer nozzle throats (denoted by radius ratio - the ratio of inner-to-outer flowpath diameter at the nozzle throat), the plug geometry, and the inner stream flow rate.

  1. Design and wind tunnel tests of winglets on a DC-10 wing

    NASA Technical Reports Server (NTRS)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  2. Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Perry, Boyd, III; Tiffany, Sherwood H.; Cole, Stanley R.; Buttrill, Carey S.; Adams, William M., Jr.; Houck, Jacob A.; Srinathkumar, S.; Mukhopadhyay, Vivek; Pototzky, Anthony S.

    1989-01-01

    The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

  3. Wind-tunnel measurements of wing-canard interference and a comparison with various theories

    NASA Technical Reports Server (NTRS)

    Feistel, T. W.; Corsiglia, V. R.; Levin, D. B.

    1981-01-01

    Wind-tunnel tests and analyses of the aerodynamics of wing-canard combinations for low speed applications are presented. Systematic tests are conducted in a 7 x 10 wind tunnel to explore various combinations of wing-canard vertical and horizontal positioning. The goals of the tests are (1) to investigate potential improved stalling characteristics over conventional tail-aft configurations, (2) to investigate the existence of a lift coefficient advantage, and (3) to determine induced drag levels. The measurements obtained are compared with calculations made using the Prandtl-Munk theory, and with a vortex-lattice panel code. Results indicate that the panel code gives excellent results for lift and induced drag at moderate lift coefficient, whereas Prandtl-Munk theory gives conservative results for induced drag. The application is a light transport aircraft used for short-haul operations.

  4. Lewis icing research tunnel test of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

    NASA Technical Reports Server (NTRS)

    Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.

    1992-01-01

    A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.

  5. Using Wind Tunnels to Predict Bird Mortality in Wind Farms: The Case of Griffon Vultures

    PubMed Central

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F. E.

    2012-01-01

    Background Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. Methodology/Principal Findings As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Conclusions Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality. PMID:23152764

  6. De-icing of the altitude wind tunnel turning vanes by electro-magnetic impulse

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Ross, R.

    1986-01-01

    The Altitude Wind Tunnel at the NASA-Lewis facility is being proposed for a refurbishment and moderization. Two major changes are: (1) the increasing of the test section Mach number to 0.90, and (2) the addition of spray nozzles to provide simulation of flight in icing clouds. Features to be retained are the simulation of atmospheric temperature and pressure to 50,000 foot altitude and provision for full-scale aircraft engine operation by the exhausting of the aircraft combustion gases and ingestion of air to replace that used in combustion. The first change required a re-design of the turning vanes in the two corners downstream of the test section due to the higher Mach number at the corners. The second change threatens the operation of the turning vanes by the expected ice build-up, particulary on the first-corner vanes. De-icing by heat has two drawbacks: (1) an extremely large amount of heat is required, and (2) the melted ice would tend to collect as ice on some other surfaces in the tunnel, namely, the tunnel propellers and the cooling coils. An alternate de-icing method had been under development for three years under NASA-Lewis grants to the Wichita State University. This report describes the electro-impulse de-icing (EIDI) method and the testing work done to assess its applicability to wind tunnel turning vane de-icing. Tests were conducted in the structural dynamics laboratory and in the NASA Icing Research Tunnel. Good ice protection was achieved at lower power consumption and at a wide range of tunnel operations conditions. Recommendations for design and construction of the system for this application of the EIDI method are given.

  7. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat; Barmore, Bryan; Swieringa, Kurt

    2015-01-01

    The accuracy of the wind information used to generate trajectories for aircraft performing Interval Management (IM) operations is critical to the success of an IM operation. There are two main forms of uncertainty in the wind information used by the Flight Deck Interval Management (FIM) equipment. The first is the accuracy of the forecast modeling done by the weather provider. The second is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment, resulting in loss of additional information. This study focuses on what subset of forecast data, such as the number and location of the points where the wind is sampled should be made available to uplink to the aircraft.

  8. Single-Vector Calibration of Wind-Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2003-01-01

    An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is

  9. Wind tunnel evaluation of the RAAMP sampler. Final report

    SciTech Connect

    Vanderpool, R.W.; Peters, T.M.

    1994-11-01

    Wind tunnel tests of the Department of Energy RAAMP (Radioactive Atmospheric Aerosol Monitoring Program) monitor have been conducted at wind speeds of 2 km/hr and 24 km/hr. The RAAMP sampler was developed based on three specific performance objectives: (1) meet EPA PM10 performance criteria, (2) representatively sample and retain particles larger than 10 {micro}m for later isotopic analysis, (3) be capable of continuous, unattended operation for time periods up to 2 months. In this first phase of the evaluation, wind tunnel tests were performed to evaluate the sampler as a potential candidate for EPA PM10 reference or equivalency status. As an integral part of the project, the EPA wind tunnel facility was fully characterized at wind speeds of 2 km/hr and 24 km/hr in conjunction with liquid test aerosols of 10 {micro}m aerodynamic diameter. Results showed that the facility and its operating protocols met or exceeded all 40 CFR Part 53 acceptance criteria regarding PM10 size-selective performance evaluation. Analytical procedures for quantitation of collected mass deposits also met 40 CFR Part 53 criteria. Modifications were made to the tunnel`s test section to accommodate the large dimensions of the RAAMP sampler`s instrument case.

  10. CFD wind tunnel test: Field velocity patterns of wind on a building with a refuge floor

    NASA Astrophysics Data System (ADS)

    Cheng, C. K.; Yuen, K. K.; Lam, K. M.; Lo, S. M.

    2005-10-01

    This paper reports a CFD wind tunnel study of wind patterns on a square-plan building with a refuge floor at its mid-height level. In this study, a technique of using calibrated power law equations of velocity and turbulent intensity applied as the boundary conditions in CFD wind tunnel test is being evaluated by the physical wind tunnel data obtained by the Principal Author with wind blowing perpendicularly on the building without a refuge floor. From the evaluated results, an optimised domain of flow required to produce qualitative agreement between the wind tunnel data and simulated results is proposed in this paper. Simulated results with the evaluated technique are validated by the wind tunnel data obtained by the Principal Author. The results contribute to an understanding of the fundamental behaviour of wind flow in a refuge floor when wind is blowing perpendicularly on the building. Moreover, the results reveal that the designed natural ventilation of a refuge floor may not perform desirably when the wind speed on the level is low. Under this situation, the refuge floor may become unsafe if smoke was dispersed in the leeward side of the building at a level immediately below the refuge floor.

  11. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  12. Investigation of a Technique for Measuring Dynamic Ground Effect in a Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.

    1999-01-01

    To better understand the ground effect encountered by slender wing supersonic transport aircraft, a test was conducted at NASA Langley Research Center's 14 x 22 foot Subsonic Wind Tunnel in October, 1997. Emphasis was placed on improving the accuracy of the ground effect data by using a "dynamic" technique in which the model's vertical motion was varied automatically during wind-on testing. This report describes and evaluates different aspects of the dynamic method utilized for obtaining ground effect data in this test. The method for acquiring and processing time data from a dynamic ground effect wind tunnel test is outlined with details of the overall data acquisition system and software used for the data analysis. The removal of inertial loads due to sting motion and the support dynamics in the balance force and moment data measurements of the aerodynamic forces on the model is described. An evaluation of the results identifies problem areas providing recommendations for future experiments. Test results are validated by comparing test data for an elliptical wing planform with an Elliptical wing planform section with a NACA 0012 airfoil to results found in current literature. Major aerodynamic forces acting on the model in terms of lift curves for determining ground effect are presented. Comparisons of flight and wind tunnel data for the TU-144 are presented.

  13. Axisymmetric Calculations of a Low-Boom Inlet in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Hirt, Stefanie M.; Reger, Robert

    2011-01-01

    This paper describes axisymmetric CFD predictions made of a supersonic low-boom inlet with a facility diffuser, cold pipe, and mass flow plug within wind tunnel walls, and compares the CFD calculations with the experimental data. The inlet was designed for use on a small supersonic aircraft that would cruise at Mach 1.6, with a Mach number over the wing of 1.7. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center in the fall of 2010 to demonstrate the performance and stability of a practical flight design that included a novel bypass duct. The inlet design is discussed here briefly. Prior to the test, CFD calculations were made to predict the performance of the inlet and its associated wind tunnel hardware, and to estimate flow areas needed to throttle the inlet. The calculations were done with the Wind-US CFD code and are described in detail. After the test, comparisons were made between computed and measured shock patterns, total pressure recoveries, and centerline pressures. The results showed that the dual-stream inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a large stable operating range. Predicted core recovery agreed well with the experiment but predicted bypass recovery and maximum capture ratio were high. Calculations of offdesign performance of the inlet along a flight profile agreed well with measurements and previous calculations.

  14. Adventures in using a portable wind tunnel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion is a natural process that often occurs wherever loose, dry, erodible soil is exposed to strong erosive winds. The study of wind erosion in the field is quite challenging, with the researcher at the mercy of an unpredictable, large variation in weather factors affecting the outcome. Fie...

  15. Flow Visualization and Laser Velocimetry for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)

    1982-01-01

    The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.

  16. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  17. Structural integrity of wind tunnel wooden fan blades

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wingate, Robert T.; Rooker, James R.; Mort, Kenneth W.; Zager, Harold E.

    1991-01-01

    Information is presented which was compiled by the NASA Inter-Center Committee on Structural Integrity of Wooden Fan Blades and is intended for use as a guide in design, fabrication, evaluation, and assurance of fan systems using wooden blades. A risk assessment approach for existing NASA wind tunnels with wooden fan blades is provided. Also, state of the art information is provided for wooden fan blade design, drive system considerations, inspection and monitoring methods, and fan blade repair. Proposed research and development activities are discussed, and recommendations are provided which are aimed at future wooden fan blade design activities and safely maintaining existing NASA wind tunnel fan blades. Information is presented that will be of value to wooden fan blade designers, fabricators, inspectors, and wind tunnel operations personnel.

  18. Initial Investigation of Cryogenic Wind Tunnel Model Filler Materials

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1985-01-01

    Filler materials are used for surface flaws, instrumentation grooves, and fastener holes in wind tunnel models. More stringent surface quality requirements and the more demanding test environment encountered by cryogenic wind tunnels eliminate filler materials such as polyester resins, plaster, and waxes used on conventional wind tunnel models. To provide a material data base for cryogenic models, various filler materials are investigated. Surface quality requirements and test temperature extremes require matching of coefficients of thermal expansion or interfacing materials. Microstrain versus temperature curves are generated for several candidate filler materials for comparison with cryogenically acceptable materials. Matches have been achieved for aluminum alloys and austenitic steels. Simulated model surfaces are filled with candidate filler materials to determine finishing characteristics, adhesion and stability when subjected to cryogenic cycling. Filler material systems are identified which meet requirements for usage with aluminum model components.

  19. Reducing Wind Tunnel Data Requirements Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Jorgenson, Charles C.; Norgaard, Magnus

    1997-01-01

    The use of neural networks to minimize the amount of data required to completely define the aerodynamic performance of a wind tunnel model is examined. The accuracy requirements for commercial wind tunnel test data are very severe and are difficult to reproduce using neural networks. For the current work, multiple input, single output networks were trained using a Levenberg-Marquardt algorithm for each of the aerodynamic coefficients. When applied to the aerodynamics of a 55% scale model of a U.S. Air Force/ NASA generic fighter configuration, this scheme provided accurate models of the lift, drag, and pitching-moment coefficients. Using only 50% of the data acquired during, the wind tunnel test, the trained neural network had a predictive accuracy equal to or better than the accuracy of the experimental measurements.

  20. Accessing Wind Tunnels From NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  1. Wind Tunnel Studies in Aerodynamic Phenomena at High Speed

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Fales, E N

    1921-01-01

    A great amount of research and experimental work has been done and fair success obtained in an effort to place airplane and propeller design upon an empirical basis. However, one can not fail to be impressed by the apparent lack of data available toward establishing flow phenomena upon a rational basis, such that they may be interpreted in terms of the laws of physics. With this end in view it was the object of the authors to design a wind tunnel differing from the usual type especially in regard to large power and speed of flow. This report describes the wind tunnel at Mccook Field and gives the results of experiments conducted in testing the efficiency of the wind tunnel.

  2. Reverberation cancellation in a closed test section of a wind tunnel using a multi-microphone cesptral method

    NASA Astrophysics Data System (ADS)

    Blacodon, D.; Bulté, J.

    2014-04-01

    Nowadays, although aerodynamic data are still primarily sought after during wind tunnel tests, reliable acoustic measurements also become a priority for aircraft designers. In order to gather both kinds of data, aerodynamic and acoustic tests are carried out simultaneously under the same closed test section. This solution has two major drawbacks: the acoustic signals delivered by microphones may be corrupted by the boundary layer expanding on the wind tunnel walls and by the reverberant noise originating from reflective surfaces. Technological solutions can be deployed to reduce the corruption of the signals by the wind tunnel background noise. Methods based on the power cepstrum can be used to reduce reverberation effects by removing the quefrencies due to the echoes in the cepstral domain.

  3. Design and Development of a Deep Acoustic Lining for the 40-by 80-Foot Wind Tunnel Test Section

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Schmitz, Fredric H.; Allen, Christopher S.; Jaeger, Stephen M.; Sacco, Joe N.; Mosher, Marianne; Hayes, Julie A.

    2002-01-01

    The work described in this report has made effective use of design teams to build a state-of-the-art anechoic wind-tunnel facility. Many potential design solutions were evaluated using engineering analysis, and computational tools. Design alternatives were then evaluated using specially developed testing techniques, Large-scale coupon testing was then performed to develop confidence that the preferred design would meet the acoustic, aerodynamic, and structural objectives of the project. Finally, designs were frozen and the final product was installed in the wind tunnel. The result of this technically ambitious project has been the creation of a unique acoustic wind tunnel. Its large test section (39 ft x 79 ft x SO ft), potentially near-anechoic environment, and medium subsonic speed capability (M = 0.45) will support a full range of aeroacoustic testing-from rotorcraft and other vertical takeoff and landing aircraft to the take-off/landing configurations of both subsonic and supersonic transports.

  4. Cryogenic wind tunnels for high Reynolds number testing

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Kilgore, R. A.; Mcguire, P. D.

    1986-01-01

    A compilation of lectures presented at various Universities over a span of several years is discussed. A central theme of these lectures has been to present the research facility in terms of the service it provides to, and its potential effect on, the entire community, rather than just the research community. This theme is preserved in this paper which deals with the cryogenic transonic wind tunnels at Langley Research Center. Transonic aerodynamics is a focus both because of its crucial role in determining the success of aeronautical systems and because cryogenic wind tunnels are especially applicable to the transonics problem. The paper also provides historical perspective and technical background for cryogenic tunnels, culminating in a brief review of cryogenic wind tunnel projects around the world. An appendix is included to provide up to date information on testing techniques that have been developed for the cryogenic tunnels at Langley Research Center. In order to be as inclusive and as current as possible, the appendix is less formal than the main body of the paper. It is anticipated that this paper will be of particular value to the technical layman who is inquisitive as to the value of, and need for, cryogneic tunnels.

  5. SMART Rotor Development and Wind-Tunnel Test

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  6. Wind tunnel testing of low-drag airfoils

    NASA Technical Reports Server (NTRS)

    Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.

    1986-01-01

    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.

  7. exVis and Wind Tunnel Experiment Data

    NASA Technical Reports Server (NTRS)

    Uselton, Samuel P.; Yamasaki-Gerald, Michael (Technical Monitor)

    1998-01-01

    exVis is a software tool created to support interactive display and analysis of data collected during wind tunnel experiments. It is a result of a continuing project to explore the use of information technology in improving the effectiveness of aeronautical design professionals. The data analysis goals are accomplished by allowing aerodynamicists to display and query data collected by new data acquisition systems and to create traditional wind tunnel plots from this data by interactively interrogating these images. Additional information is contained in the original extended abstract.

  8. Development of an intelligent hypertext system for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Steinle, Frank W.; Wu, Y. C. L. Susan; Hoyt, W. Andes

    1991-01-01

    This paper summarizes the results of a system utilizing artificial intelligence technology to improve the productivity of project engineers who conduct wind tunnel tests. The objective was to create an intelligent hypertext system which integrates a hypertext manual and expert system that stores experts' knowledge and experience. The preliminary (Phase I) effort implemented a prototype IHS module encompassing a portion of the manuals and knowledge used for wind tunnel testing. The effort successfully demonstrated the feasibility of the intelligent hypertext system concept. A module for the internal strain gage balance, implemented on both IBM-PC and Macintosh computers, is presented. A description of the Phase II effort is included.

  9. Integration of computational methods into automotive wind tunnel testing

    SciTech Connect

    Katz, J.

    1989-01-01

    This paper discusses the aerodynamics of a generic, enclosed-wheel racing-car shape without wheels investigated numerically and compared with one-quarter scale wind-tunnel data. Because both methods lack perfection in simulating actual road conditions, a complementary application of these methods was studied. The computations served for correcting the high-blockage wind-tunnel results and provided detailed pressure data which improved the physical understanding of the flow field. The experimental data was used here mainly to provide information on the location of flow-separation lines and on the aerodynamic loads; these in turn were used to validate and to calibrate the computations.

  10. Magnetic Leviation System Design and Implementation for Wind Tunnel Application

    NASA Technical Reports Server (NTRS)

    Lin, Chin E.; Sheu, Yih-Ran; Jou, Hui-Long

    1996-01-01

    This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.

  11. Wind Tunnel Wall Interference Assessment and Correction, 1983

    NASA Technical Reports Server (NTRS)

    Newman, P. A. (Editor); Barnwell, R. W. (Editor)

    1984-01-01

    Technical information focused upon emerging wall interference assessment/correction (WIAC) techniques applicable to transonic wind tunnels with conventional and passively or partially adapted walls is given. The possibility of improving the assessment and correction of data taken in conventional transonic wind tunnels by utilizing simultaneously obtained flow field data (generally taken near the walls) appears to offer a larger, nearer-term payoff than the fully adaptive wall concept. Development of WIAC procedures continues, and aspects related to validating the concept need to be addressed. Thus, the scope of wall interference topics discussed was somewhat limited.

  12. Measurement of Model Noise in a Hard-Wall Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    2006-01-01

    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 d

  13. Dataset from chemical gas sensor array in turbulent wind tunnel.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to "On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines", by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings. PMID:26217739

  14. Dataset from chemical gas sensor array in turbulent wind tunnel

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-01-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to “On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines”, by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings PMID:26217739

  15. A 3-D High Speed Photographic Survey For Bomb Dropping In The Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Junren, Chen; Liangyi, Chen; Yuxian, Nie; Wenxing, Chen

    1989-06-01

    High speed Stereophotography may obtain 3-D information of the motion object. This paper deals with a high speed stereophotographic survey of dropping bomb in wind tunnel and measurement of its displacement, velocity, acceleration, angle of attack and yaw angle. Two high speed cinecameras are used, the two optical axes of the cameras are perpendicular to each other and in a plane being vertical to the plumb line. The optical axis of a camera (front camera) is parallel with the aircraft body, and the another (side camera) is perpendicular. Before taking the object and image distance of the two cameras must be measured by photographic method. The photographic rate is 304 fps.

  16. The Acoustic Environment of the NASA Glenn 9- by 15-foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, David B.

    2015-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel is an acoustic testing facility with a long history of aircraft propulsion noise research. Due to interest in renovating the facility to support future testing of advanced quiet engine designs, a study was conducted to document the background noise level in the facility and investigate the sources of contaminating noise. The anechoic quality of the facility was also investigated using an interrupted noise method. The present report discusses these aspects of the noise environment in this facility.

  17. Airloads research study. Volume 2: Airload coefficients derived from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Bartlett, M. D.; Feltz, T. F.; Olsen, A. D., Jr.; Smith, D. B.; Wildermuth, P. F.

    1984-01-01

    The development of B-1 aircraft rigid wind tunnel data for use in subsequent tasks of the Airloads Research Study is described. Data from the Rockwell International external structural loads data bank were used to generate coefficients of rigid airload shear, bending moment, and torsion at specific component reference stations or both symmetric and asymmetric loadings. Component stations include the movable wing, horizontal and vertical stabilizers, and forward and aft fuselages. The coefficient data cover a Mach number range from 0.7 to 2.2 for a wing sweep position of 67.5 degree.

  18. Wind tunnel investigation of a high lift system with pneumatic flow control

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.

  19. Mixed-Phase Icing Simulation and Testing at the Cox Icing Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel; Irani, Eddie; Miller, Dean

    2003-01-01

    A new capability was developed for indoor simulation of snow and mixed-phase icing conditions. This capability is useful for year-round testing in the Cox closed-loop Icing Wind Tunnel. Certification of aircraft for flight into these types of icing conditions is only required by the JAA in Europe. In an effort to harmonize certification requirements, the FAA in the US sponsored a preliminary program to study the effects of mixed-phase and fully glaciated icing conditions on the performance requirements of thermal ice protection systems. This paper describes the test program and the associated results.

  20. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  1. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1992-01-01

    Aspects of the design and construction of the Laminar Flow Supersonic Wind Tunnel at the NASA-Ames Fluid Mechanics Laboratory are discussed. The wind tunnel is to be used as part of the NASA High Speed Research Program (HSRP).

  2. Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Koning, Witold J. F.

    2015-01-01

    Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tilt Rotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity URANS solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade element model with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at NASA Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A 'quasi linear trim' was used to trim the thrust for the rotor to compare the power as a unique

  3. Design and calibration of the mixing layer and wind tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1989-01-01

    A detailed account of the design, assembly and calibration of a wind tunnel specifically designed for free-shear layer research is contained. The construction of this new facility was motivated by a strong interest in the study of plane mixing layers with varying initial and operating conditions. The Mixing Layer Wind tunnel is located in the Fluid Mechanics Laboratory at NASA Ames Research Center. The tunnel consists of two separate legs which are driven independently by centrifugal blowers connected to variable speed motors. The blower/motor combinations are sized such that one is smaller than the other, giving maximum flow speeds of about 20 and 40 m/s, respectively. The blower speeds can either be set manually or via the Microvax II computer. The two streams are allowed to merge in the test section at the sharp trailing edge of a slowly tapering splitter plate. The test section is 36 cm in the cross-stream direction, 91 cm in the spanwise direction and 366 cm in length. One test section side-wall is slotted for probe access and adjustable so that the streamwise pressure gradient may be controlled. The wind tunnel is also equipped with a computer controlled, three-dimensional traversing system which is used to investigate the flow fields with pressure and hot-wire instrumentation. The wind tunnel calibration results show that the mean flow in the test section is uniform to within plus or minus 0.25 pct and the flow angularity is less than 0.25 deg. The total streamwise free-stream turbulence intensity level is approximately 0.15 pct. Currently the wind tunnel is being used in experiments designed to study the three-dimensional structure of plane mixing layers and wakes.

  4. Microspheres for laser velocimetry in high temperature wind tunnel

    NASA Technical Reports Server (NTRS)

    Ghorieshi, Anthony

    1993-01-01

    The introduction of non-intrusive measurement techniques in wind tunnel experimentation has been a turning point in error free data acquisition. Laser velocimetry has been progressively implemented and utilized in various wind tunnels; e.g. subsonic, transonic, and supersonic. The success of the laser velocimeter technique is based on an accurate measurement of scattered light by seeding particles introduced into the flow stream in the wind tunnel. Therefore, application of appropriate seeding particles will affect, to a large extent the acquired data. The seeding material used depends on the type of experiment being run. Among the seeding material for subsonic tunnel are kerosene, Kaolin, and polystyrene. Polystyrene is known to be the best because of being solid particles, having high index of refraction, capable of being made both spherical and monodisperse. However for high temperature wind tunnel testing seeding material must have an additional characteristic that is high melting point. Typically metal oxide powders such as Al2O3 with melting point 3660 F are used. The metal oxides are, however polydispersed, have a high density, and a tendency to form large agglomerate that does not closely follow the flow velocity. The addition of flame phase silica to metal oxide helps to break up the agglomerates, yet still results in a narrow band of polydispersed seeding. The less desirable utility of metal oxide in high temperature wind tunnels necessitates the search for a better alternative particle seeding which this paper addresses. The Laser Velocimetry (LV) characteristic of polystyrene makes it a prime candidate as a base material in achieving the high temperature particle seeding inexpensively. While polystyrene monodisperse seeding particle reported has been successful in a subsonic wind tunnel, it lacks the high melting point and thus is not practically usable in a high temperature wind tunnel. It is well known that rise in melting point of polystyrene can be

  5. Design, fabrication, and characterization of an anechoic wind tunnel facility

    NASA Astrophysics Data System (ADS)

    Mathew, Jose

    The design, fabrication, and characterization of an anechoic wind tunnel facility at the University of Florida are presented. The objective of this research is to develop and rigorously characterize an anechoic wind tunnel suitable for detailed aerodynamic and aeroacoustic research. A complete tunnel design methodology is developed to optimize the design of the individual components of the wind tunnel circuit, and modern analysis tools, such as computational fluid dynamics and structural finite element analyses, are used to validate the design. The wind tunnel design is an "L-shaped"open circuit with an open jet test section driven by a 300 HP centrifugal fan. Airflow enters the wind tunnel through a settling duct with a honeycomb section and a set of four screens. An optimized, minimum length (3.05 m) 8:1 contraction accelerates the flow into a rectangular test section that measures 0.74 m by 1.12 m by 1.83 m. Mach number similarity dictates the maximum velocity attainable in the test section to be 76 m/s; thus the maximum Reynolds number based on chord (chord=2/3 span) attainable is in the 3-4 million range. The flow leaving the test section enters an acoustically treated and 2D diffuser that simultaneously provides static pressure recovery and attenuates fan noise. The flow then turns a 90° corner with turning vanes and enters a second diffuser. The flow leaving the second diffuser enters the fan through a transition section. The wind tunnel was characterized rigorously at speeds up to 43 m/s to ensure the quality of the future aerodynamic and aeroacoustic measurements. The overall SPL from 100 Hz--20 kHz ranges from 54.8 dB at 18 m/s to 75.7 dB at 43 m/s. The freestream turbulence level has a value of 0.035%, and the flow non uniformity in the test section was found to be < 0.7% for a test section speed of 17 m/s. The outcome of this work is an anechoic wind tunnel with excellent flow quality, low background noise, and the largest Reynolds number capability

  6. Post-stall wind tunnel data for NACA 44XX series airfoil sections

    SciTech Connect

    Ostowari, C.; Naik, D.

    1985-01-01

    Wind turbine blades operate over a wide angle of attach range. Unlike aircraft, a wind turbine's angle of attach range extends deep into stall where the three-dimensional performance characteristics of airfoils are not generally known. Peak power predictions upon which wind turbine components are sized depend on a good understanding of a blade's post-stall characteristics. The purpose of this wind tunnel study is to characterize the performance characteristics of a blade in stall as a function of its aspect ratio, airfoil thickness, and Reynolds number. This report documents results of the wind tunnel investigation of constant chord blades having four aspect ratios, with NACA 44XX series airfoil sections, at angles of attack ranging from -10/sup 0/ to 110/sup 0/. Tests were conducted at Reynolds number ranging from 0.25 x 106 to 1.0 x 106. The thickness ratios studied were 0.18, 0.15, and 0.12, and 0.09. The aspect ratios were 6, 9, 12 and infinity. Results of force and pitching moment measurements over the angle of attack range for all combinations of Reynolds numbers, thickness, and aspect ratios, and the effects of boundary layer tripping are presented.

  7. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  8. Comparison of Full-Scale XV-15 Wind Tunnel and In-Flight Blade-Vortex Interaction Noise

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, Cahit; McCluer, M.; Acree, C. W., Jr.; Warmbrodt, William (Technical Monitor)

    1997-01-01

    An isolated full-scale XV-15 rotor was tested in helicopter mode in the NASA Ames 80 by 120-Foot Wind Tunnel. Extensive acoustic data were obtained to define the rotor operating condition for maximum blade-vortex interaction (BVI) noise. Additional data were obtained at operating conditions simulating flight up to 80 knots. An XV-15 aircraft was also tested under operating conditions corresponding to landing approaches for which BVI is expected to be a maximum. In-flight acoustic data were obtained using the YO-3A acoustic research aircraft. An attempt was made to closely match wind tunnel and flight test operating conditions. Details of the two tests are described and some representative acoustic results are presented. Comparisons are shown between the wind tunnel data and corresponding flight test data. Preliminary results indicate very good correlation of the BVI-related features. However, some differences between flight test and wind tunnel results exist away from the BVI event, thought to arise from differences in the two flow environments.

  9. RSRA sixth scale wind tunnel test. [of scale model of Sikorsky Whirlwind Helicopter

    NASA Technical Reports Server (NTRS)

    Flemming, R.; Ruddell, A.

    1974-01-01

    The sixth scale model of the Sikorsky/NASA/Army rotor systems research aircraft was tested in an 18-foot section of a large subsonic wind tunnel for the purpose of obtaining basic data in the areas of performance, stability, and body surface loads. The model was mounted in the tunnel on the struts arranged in tandem. Basic testing was limited to forward flight with angles of yaw from -20 to +20 degrees and angles of attack from -20 to +25 degrees. Tunnel test speeds were varied up to 172 knots (q = 96 psf). Test data were monitored through a high speed static data acquisition system, linked to a PDP-6 computer. This system provided immediate records of angle of attack, angle of yaw, six component force and moment data, and static and total pressure information. The wind tunnel model was constructed of aluminum structural members with aluminum, fiberglass, and wood skins. Tabulated force and moment data, flow visualization photographs, tabulated surface pressure data are presented for the basic helicopter and compound configurations. Limited discussions of the results of the test are included.

  10. Study of ice accretion on icing wind tunnel components

    NASA Technical Reports Server (NTRS)

    Newton, J. E.; Olsen, W.

    1986-01-01

    In a closed loop icing wind tunnel the icing cloud is simulated by introducing tiny water droplets through an array of nozzles upstream of the test section. This cloud will form ice on all tunnel components (e.g., turning vanes, inlet guide vanes, fan blades, and the heat exchanger) as the cloud flows around the tunnel. These components must have the capacity to handle their icing loads without causing significant tunnel performance degradation during the course of an evening's run. To aid in the design of these components for the proposed Altitude Wind Tunnel (AWT) at NASA Lewis Research Center the existing Icing Research Tunnel (IRT) is used to measure icing characteristics of the IRT's components. The results from the IRT are scaled to the AWT to account for the AWT's larger components and higher velocities. The results show that from 90 to 45 percent of the total spray cloud froze out on the heat exchanger. Furthermore, the first set of turning vanes downstream of the test section, the FOD screen and the fan blades show significant ice formation. The scaling shows that the same results would occur in the AWT.

  11. The 4 x 7 M modeling program. [NASA Langley wind tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachery T.

    1984-01-01

    The use of small scale modeling in defining flow improvements for the Langley 4 x 7 meter wind tunnel is presented. Topics covered in viewgraph format include: description of the 4 x 7 meter wind tunnel, description of the 1/24 scale model, wind tunnel circuit flow characteristics, open test section turbulence characteristics, and conclusions.

  12. 40 CFR 53.62 - Test procedure: Full wind tunnel test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test procedure: Full wind tunnel test... Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.62 Test procedure: Full wind tunnel test. (a) Overview. The full wind tunnel test evaluates the effectiveness of the candidate sampler at...

  13. 40 CFR 53.62 - Test procedure: Full wind tunnel test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test procedure: Full wind tunnel test... Performance Characteristics of Class II Equivalent Methods for PM 2.5 § 53.62 Test procedure: Full wind tunnel test. (a) Overview. The full wind tunnel test evaluates the effectiveness of the candidate sampler at...

  14. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    PubMed

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  15. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    PubMed Central

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-01-01

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°. PMID:25615732

  16. Static and wind tunnel model tests for the development of externally blown flap noise reduction techniques

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.; Swift, G.; Marbert, J. A.

    1975-01-01

    Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.

  17. Comparison of wind tunnel airfoil performance data with wind turbine blade data

    SciTech Connect

    Butterfield, C.P.; Scott, G.; Musial, W. )

    1992-05-01

    Horizontal axis wind turbine (HAWT) performance is usually predicted by using wind tunnel airfoil performance data in a blade element momentum theory analysis. This analysis assumes that the rotating blade airfoils will perform as they do in the wind tunnel. Results to date have shown that unsteady aerodynamics exist during all operating conditions and dynamic stall can exist for high yaw angle operation. Stall hysteresis occurs for even small way angles and delayed stall is a very persistent reality in all operating conditions. delayed stall is indicated by a leading edge suction peak which remains attached through angles of attack (AOA) up to 30 degrees. Wind tunnel results show this peak separating from the leading edge at 18 deg AOA. The effect of this anomaly is to raise normal force coefficients and tangent force coefficients for high AOA. Increase tangent forces will directly affect HAWT performance in high wind speed operation. This paper describes pressure distribution data resulting from both wind tunnel and HAWT tests. A method of bins is used to average the HAWT data which is compared to the wind tunnel data. The analysis technique and the test set-up for each test are described.

  18. Development of an Intelligent Videogrammetric Wind Tunnel Measurement System

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.

    2004-01-01

    A videogrammetric technique developed at NASA Langley Research Center has been used at five NASA facilities at the Langley and Ames Research Centers for deformation measurements on a number of sting mounted and semispan models. These include high-speed research and transport models tested over a wide range of aerodynamic conditions including subsonic, transonic, and supersonic regimes. The technique, based on digital photogrammetry, has been used to measure model attitude, deformation, and sting bending. In addition, the technique has been used to study model injection rate effects and to calibrate and validate methods for predicting static aeroelastic deformations of wind tunnel models. An effort is currently underway to develop an intelligent videogrammetric measurement system that will be both useful and usable in large production wind tunnels while providing accurate data in a robust and timely manner. Designed to encode a higher degree of knowledge through computer vision, the system features advanced pattern recognition techniques to improve automated location and identification of targets placed on the wind tunnel model to be used for aerodynamic measurements such as attitude and deformation. This paper will describe the development and strategy of the new intelligent system that was used in a recent test at a large transonic wind tunnel.

  19. Investigations and Experiments in the Guidonia Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio

    1939-01-01

    This paper is a presentation of the experiments and equipment used in investigations at the Guidonia wind tunnel. The equipment consisted of: a number of subsonic and supersonic cones, an aerodynamic balance, and optical instruments operating on the Schlieren and interferometer principle.

  20. A Modified Bagnold-Type Wind Tunnel for Laboratory Use

    ERIC Educational Resources Information Center

    Logan, Alan

    1975-01-01

    Using the basic Bagnold design, a relatively inexpensive suction-type wind tunnel can be constructed for laboratory demonstration of sand-grain movement, ripple development, and other eolian processes. Its simple design provides no workshop problems and it can be made for a total cost in materials of approximately $225. (Author/CP)

  1. A voice-actuated wind tunnel model leak checking system

    NASA Technical Reports Server (NTRS)

    Larson, W. E.

    1985-01-01

    A voice-actuated wind tunnel model leak checking system was developed. The system uses a voice recognition and response unit to interact with the technician along with a graphics terminal to provide the technician with visual feedback while checking a model for leaks.

  2. Support interference of wind tunnel models: A selective annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Gloss, B. B.

    1981-01-01

    This bibliography, with abstracts, consists of 143 citations arranged in chronological order by dates of publication. Selection of the citations was made for their relevance to the problems involved in understanding or avoiding support interference in wind tunnel testing throughout the Mach number range. An author index is included.

  3. Calibrated cylindrical Mach probe in a plasma wind tunnel

    SciTech Connect

    Zhang, X.; Dandurand, D.; Gray, T.; Brown, M. R.; Lukin, V. S.

    2011-03-15

    A simple cylindrical Mach probe is described along with an independent calibration procedure in a magnetized plasma wind tunnel. A particle orbit calculation corroborates our model. The probe operates in the weakly magnetized regime in which probe dimension and ion orbit are of the same scale. Analytical and simulation models are favorably compared with experimental calibration.

  4. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, aerials of East Area. L5169: Langley's seaplane towing facility (right) and the Full Scale Tunnel (left) were photographed in November of 1930. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 39), by James Schultz.

  5. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  6. Support interference of wind tunnel models: A selective annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Lawing, P. L.

    1984-01-01

    This bibliography, with abstracts, consists of 143 citations arranged in chronological order by dates of publication. Selection of the citations was made for their relevance to the problems involved in understanding or avoiding support interference in wind tunnel testing throughout the Mach number range. An author index is included.

  7. A common geometric data-base approach for computer-aided manufacturing of wind-tunnel models and theoretical aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    See, M. J.; Cozzolongo, J. V.

    1983-01-01

    A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.

  8. The cryogenic wind tunnel concept for high Reynolds number testing

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Goodyer, M. J.; Adcock, J. B.; Davenport, E. E.

    1974-01-01

    Theoretical considerations indicate that cooling the wind-tunnel test gas to cryogenic temperatures will provide a large increase in Reynolds number with no increase in dynamic pressure while reducing the tunnel drive-power requirements. Studies were made to determine the expected variations of Reynolds number and other parameters over wide ranges of Mach number, pressure, and temperature, with due regard to avoiding liquefaction. Practical operational procedures were developed in a low-speed cryogenic tunnel. Aerodynamic experiments in the facility demonstrated the theoretically predicted variations in Reynolds number and drive power. The continuous-flow-fan-driven tunnel is shown to be particularly well suited to take full advantage of operating at cryogenic temperatures.

  9. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    Interval Management (IM) is an ADS-B-enabled suite of applications that use ground and flight deck capabilities and procedures designed to support the relative spacing of aircraft (Barmore et al., 2004, Murdoch et al. 2009, Barmore 2009, Swieringa et al. 2011; Weitz et al. 2012). Relative spacing refers to managing the position of one aircraft to a time or distance relative to another aircraft, as opposed to a static reference point such as a point over the ground or clock time. This results in improved inter-aircraft spacing precision and is expected to allow aircraft to be spaced closer to the applicable separation standard than current operations. Consequently, if the reduced spacing is used in scheduling, IM can reduce the time interval between the first and last aircraft in an overall arrival flow, resulting in increased throughput. Because IM relies on speed changes to achieve precise spacing, it can reduce costly, low-altitude, vectoring, which increases both efficiency and throughput in capacity-constrained airspace without negatively impacting controller workload and task complexity. This is expected to increase overall system efficiency. The Flight Deck Interval Management (FIM) equipment provides speeds to the flight crew that will deliver them to the achieve-by point at the controller-specified time, i.e., assigned spacing goal, after the target aircraft crosses the achieve-by point (Figure 1.1). Since the IM and target aircraft may not be on the same arrival procedure, the FIM equipment predicts the estimated times of arrival (ETA) for both the IM and target aircraft to the achieve-by point. This involves generating an approximate four-dimensional trajectory for each aircraft. The accuracy of the wind data used to generate those trajectories is critical to the success of the IM operation. There are two main forms of uncertainty in the wind information used by the FIM equipment. The first is the accuracy of the forecast modeling done by the weather

  10. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  11. Fast response vanes for sensing flow patterns in helicopter rotor environment. [wind tunnel tests of modified helicopter rotary wing

    NASA Technical Reports Server (NTRS)

    Barna, P. S.; Crossman, G. R.

    1974-01-01

    Wind tunnel experiments were conducted on four small-scale flow-direction vanes for the determination of aerodynamic response. The tests were further extended to include a standard sized low-inertia vane currently employed in aircraft flight testing. The four test vanes had different aspect ratios and were about 35 percent of the surface area of the standard vane. The test results indicate satisfactory damping and frequency response for all vanes tested and compare favorably with the standard design.

  12. An engineering study of hybrid adaptation of wind tunnel walls for three-dimensional testing

    NASA Technical Reports Server (NTRS)

    Brown, Clinton; Kalumuck, Kenneth; Waxman, David

    1987-01-01

    Solid wall tunnels having only upper and lower walls flexing are described. An algorithm for selecting the wall contours for both 2 and 3 dimensional wall flexure is presented and numerical experiments are used to validate its applicability to the general test case of 3 dimensional lifting aircraft models in rectangular cross section wind tunnels. The method requires an initial approximate representation of the model flow field at a given lift with wallls absent. The numerical methods utilized are derived by use of Green's source solutions obtained using the method of images; first order linearized flow theory is employed with Prandtl-Glauert compressibility transformations. Equations are derived for the flexed shape of a simple constant thickness plate wall under the influence of a finite number of jacks in an axial row along the plate centerline. The Green's source methods are developed to provide estimations of residual flow distortion (interferences) with measured wall pressures and wall flow inclinations as inputs.

  13. SOFIA 2 model telescope wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  14. System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.

    2011-01-01

    Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed

  15. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced S-3B Viking

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Barnhart, Billy; Ratvasky, Thomas P.

    2012-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.

  16. Wind tunnel investigation of the effect of high relative velocities on the structural integrity of birds

    NASA Technical Reports Server (NTRS)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a supersonic wind tunnel to determine the effect a sudden high velocity headwind had on the physical deformation and structural breakup characteristics of birds. Several sizes of recently killed birds were dropped into the test section at free-stream Mach numbers ranging from 0.2 to 0.8 and photographed with high-speed motion-picture cameras. These conditions simulated flow conditions encountered when birds are ingested into the inlets of high speed aircraft, thereby constituting a safety hazard to the aircraft and its occupants. The investigation shows that, over the range of headwind conditions tested, the birds remained structurally intact and did not suffer any appreciable deformation or structural breakup.

  17. Wind tunnel tests of a free-wing/free-trimmer model

    NASA Technical Reports Server (NTRS)

    Sandlin, D. R.

    1982-01-01

    The riding qualities of an aircraft with low wing loading can be improved by freeing the wing to rotate about its spanwise axis. A trimming surface also free to rotate about its spanwise axis can be added at the wing tips to permit the use of high lift devices. Wind tunnel tests of the free wing/free trimmer model with the trimmer attached to the wing tips aft of the wing chord were conducted to validate a mathematical model developed to predict the dynamic characteristics of a free wing/free trimmer aircraft. A model consisting of a semispan wing with the trimmer mounted on with the wing on an air bearing and the trimmer on a ball bearing was displaced to various angles of attack and released. The damped oscillations of the wing and trimmer were recorded. Real and imaginary parts of the characteristic equations of motion were determined and compared to values predicted using the mathematical model.

  18. Assessment of Scaled Rotors for Wind Tunnel Experiments.

    SciTech Connect

    Maniaci, David Charles; Kelley, Christopher Lee; Chiu, Phillip

    2015-07-01

    Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor, the G1, designed and built by researchers at the Technical University of München.

  19. Supersonic wind tunnel nozzles: A selected, annotated bibliography to aid in the development of quiet wind tunnel technology

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1990-01-01

    This bibliography, with abstracts, consists of 298 citations arranged in chronological order. The citations were selected to be helpful to persons engaged in the design and development of quiet (low disturbance) nozzles for modern supersonic wind tunnels. Author, subject, and corporate source indexes are included to assist with the location of specific information.

  20. Design and fabrication of large suction panels with perforated surfaces for laminar flow control testing in a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Poppen, W. A., Jr.

    1986-01-01

    Considerable progress has been made in the development of perforated suction surface material for laminar flow control applications. Electron-beam perforated titaniuum skin was used as the suction surface. Critical issues related to suction panel manufacturing were identified and largely resolved. The final product included fabrication of a 7-foot chord by 7-foot span perforated laminar flow control wind tunnel model. Techniques used can be adapted to modern aircraft production lines. The report includes details on panel instrumentation and other features required for testing in a transonic pressure tunnel.

  1. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  2. Full-scale wind-tunnel investigation of an Ayres S2R-800 Thrush Agricultural Airplane

    NASA Technical Reports Server (NTRS)

    Johnson, J. L., Jr.; Mclemore, H. C.; White, R.; Jordan, F. L., Jr.

    1979-01-01

    This paper summarizes the significant results of recent full-scale wind tunnel tests at the NASA-Langley Research Center of the Ayres S2R-800 Thrush Agricultural Aircraft. The purpose of the tests was to provide fundamental aerodynamic, performance, and stability and control information of the airplane and dispersal equipment; and to study near-field wake interaction characteristics behind the aircraft. The aerodynamic tests included the use of a propeller thrust-torque balance to measure the efficiency of the propeller in the presence of the engine and to provide data for determining slipstream interference effects and slip-stream drag.

  3. Fire in Variable Density Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1927-01-01

    Fire gutted interior of Variable-Density Tunnel (VDT). On August 1, 1927 a major fire broke out inside the VDT. Clean-up, repair, redesign and reinstallation of equipment took about 8 months. From the Variable Density Tunnel Log Book: 'Aug. 1. Computation of the previous tests were in progress in the office and the tank had been pumped up to 20 atmospheres and run to equalize the temperatures about 11:25 a.m. The 20 atmosphere run on the M-6 polished air foil was started and two readings had been taken when sparks were seen to pass in the return passage. Mr. Turner yelled 'Fire!' and shut off the drive motor and opened the blow off valve. Through the peep holes it could be seen that the fire had a good start. It soon fogged up inside so that it could no longer be seen. We then waited for the pressure to go down. However, due to the burning inside, the pressure probably continued to rise. We noticed that the blow off pipe was becoming very hot and that smoke was coming out around the propeller shaft. Suddenly (sic) there was a loud bursting noise and every one left the building. This was probably the blowing of the gasket around the blow off valve. Later the top peep hole blew out and the blow off pipe blew out from the valve. The pressure then began to go down and we returned. The building was full of smoke. When the pressure had gone down the blow off was closed. The tank was very hot and the roof of the building somewhat scorched. The office was then partially cleaned up but it was decided to leave the tunnel closed until the next day.' 'Aug. 2. The tunnel door was opened in the morning and the compressor run to expel the gasses. About noon it was possible to swing back then honeycomb. It was apparent that the damage was very wide spread. All of the woodwork seemed to be charred and the upper part of the balance ring and the propeller tips and glass windows near the test section were melted. The remainder of the day was spent ventilating the tunnel and taking

  4. Fire in Variable Density Wind Tunnel

    NASA Technical Reports Server (NTRS)

    1927-01-01

    Fire gutted interior of Variable-Density Tunnel (VDT). On August 1, 1927 a major fire broke out inside the VDT. Clean-up, repair, redesign and reinstallation of equipment took about 8 months. From the Variable Density Tunnel Log Book: 'Aug. 1. Computation of the previous tests were in progress in the office and the tank had been pumped up to 20 atmospheres and run to equalize the temperatures about 11:25 a.m. The 20 atmosphere run on the M-6 polished air foil was started and two readings had been taken when sparks were seen to pass in the return passage. Mr. Turner yelled 'Fire!' and shut off the drive motor and opened the blow off valve. Through the peep holes it could be seen that the fire had a good start. It soon fogged up inside so that it could no longer be seen. We then waited for the pressure to go down. However, due to the burning inside, the pressure probably continued to rise. We noticed that the blow off pipe was becoming very hot and that smoke was coming out around the propeller shaft. Suddenly (sic) there was a loud bursting noise and every one left the building. This was probably the blowing of the gasket around the blow off valve. Later the top peep hole blew out and the blow off pipe blew out from the valve. The pressure then began to go down and we returned. The building was full of smoke. When the pressure had gone down the blow off was closed. The tank was very hot and the roof of the building somewhat scorched. The office was then partially cleaned up but it was decided to leave the tunnel closed until the next day.' 'Aug. 2. The tunnel door was opened in the morning and the compressor run to expel the gasses. About noon it was possible to swing back the honeycomb. It was apparent that the damage was very wide spread. All of the woodwork seemed to be charred and the upper part of the balance ring and the propeller tips and glass windows near the test section were melted. The remainder of the day was spent ventilating the tunnel and taking

  5. Study of optical techniques for the Ames unitary wind tunnel, part 7

    NASA Technical Reports Server (NTRS)

    Lee, George

    1993-01-01

    A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.

  6. Aeroelastic Analysis for Rotorcraft in Flight or in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    An analytical model is developed for the aeroelastic behavior of a rotorcraft in flight or in a wind tunnel. A unified development is presented for a wide class of rotors, helicopters, and operating conditions. The equations of motion for the rotor are derived using an integral Newtonian method, which gives considerable physical insight into the blade inertial and aerodynamic forces. The rotor model includes coupled flap-lag bending and blade torsion degrees of freedom, and is applicable to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The aerodynamic model is valid for both high and low inflow, and for axial and nonaxial flight. The rotor rotational speed dynamics, including engine inertia and damping, and the perturbation inflow dynamics are included. For a rotor on a wind-tunnel support, a normal mode representation of the test module, strut, and balance system is used. The aeroelastic analysis for the rotorcraft in flight is applicable to a general two-rotor aircraft, including single main-rotor and tandem helicopter configurations, and side-by-side or tilting proprotor aircraft configurations.

  7. Wind-tunnel investigation of a flush airdata system at Mach numbers from 0.7 to 1.4

    NASA Technical Reports Server (NTRS)

    Larson, Terry J.; Moes, Timothy R.; Siemers, Paul M., III

    1990-01-01

    Flush pressure orifices installed on the nose section of a 1/7-scale model of the F-14 airplane were evaluated for use as a flush airdata system (FADS). Wing-tunnel tests were conducted in the 11- by 11-ft Unitary Wind Tunnel at NASA Ames Research Center. A full-scale FADS of the same configuration was previously tested using an F-14 aircraft at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden). These tests, which were published, are part of a NASA program to assess accuracies of FADS for use on aircraft. The test program also provides data to validate algorithms for the shuttle entry airdata system developed at the NASA Langley Research Center. The wind-tunnel test Mach numbers were 0.73, 0.90, 1.05, 1.20, and 1.39. Angles of attack were varied in 2 deg increments from -4 deg to 20 deg. Sideslip angles were varied in 4 deg increments from -8 deg to 8 deg. Airdata parameters were evaluated for determination of free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and Mach number. These parameters are, in most cases, the same as the parameters investigated in the flight test program. The basic FADS wind-tunnel data are presented in tabular form. A discussion of the more accurate parameters is included.

  8. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test procedure: Wind tunnel inlet... Testing Performance Characteristics of Class II Equivalent Methods for PM 2.5 § 53.63 Test procedure: Wind... extracts an ambient aerosol at elevated wind speeds. This wind tunnel test uses a single-sized,...

  9. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test procedure: Wind tunnel inlet... Testing Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.63 Test procedure: Wind... extracts an ambient aerosol at elevated wind speeds. This wind tunnel test uses a single-sized,...

  10. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test procedure: Wind tunnel inlet... Testing Performance Characteristics of Class II Equivalent Methods for PM 2.5 § 53.63 Test procedure: Wind... extracts an ambient aerosol at elevated wind speeds. This wind tunnel test uses a single-sized,...

  11. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  12. N-231 High Reynolds Number Channel Facility (An example of a Versatile Wind Tunnel) Tunnel 1 I is a

    NASA Technical Reports Server (NTRS)

    1980-01-01

    N-231 High Reynolds Number Channel Facility (An example of a Versatile Wind Tunnel) Tunnel 1 I is a blowdown Facility that utilizes interchangeable test sections and nozzles. The facility provides experimental support for the fluid mechanics research, including experimental verification of aerodynamic computer codes and boundary-layer and airfoil studies that require high Reynolds number simulation. (Tunnel 1)

  13. A wind tunnel application of large-field focusing schlieren

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Seiner, John M.; Mitchell, L. K.; Manning, James C.; Jansen, Bernard J.; Lagen, Nicholas T.

    1992-01-01

    A large-field focusing schlieren apparatus was installed in the NASA Lewis Research Center 9 by 15 foot wind tunnel in an attempt to determine the density gradient flow field of a free jet issuing from a supersonic nozzle configuration. The nozzle exit geometry was designed to reduce acoustic emissions from the jet by enhancing plume mixing. Thus, the flow exhibited a complex three-dimensional structure which warranted utilizing the sharp focusing capability of this type of schlieren method. Design considerations concerning tunnel limitations, high-speed photography, and video tape recording are presented in the paper.

  14. Cost effective use of liquid nitrogen in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Mcintosh, Glen E.; Lombard, David S.; Martindale, David L.; Dunn, Robert P.

    1987-01-01

    A method of reliquefying from 12 to 19% of the nitrogen exhaust gas from a cryogenic wind tunnel has been developed. Technical feasibility and cost effectiveness of the system depends on performance of an innovative positive displacement expander which requires scale model testing to confirm design studies. The existing cryogenic system at the 0.3-m transonic cryogenic tunnel has been surveyed and extensive upgrades proposed. Upgrades are generally cost effective and may be implemented immediately since they are based on established technology.

  15. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [at Ames 40 by 80 wind tunnel

    NASA Technical Reports Server (NTRS)

    Garland, D. B.; Harris, J. L.

    1980-01-01

    Static and forward speed tests were made in a 40 multiplied by 80 foot wind tunnel of a large-scale, ejector-powered V/STOL aircraft model. Modifications were made to the model following earlier tests primarily to improve longitudinal acceleration capability during transition from hovering to wingborne flight. A rearward deflection of the fuselage augmentor thrust vector was shown to be beneficial in this regard. Other augmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also showed negligible influence on the performance of the wing and of the fuselage augmentor.

  16. Optimal nonlinear estimation for aircraft flight control in wind shear

    NASA Technical Reports Server (NTRS)

    Mulgund, Sandeep S.

    1994-01-01

    The most recent results in an ongoing research effort at Princeton in the area of flight dynamics in wind shear are described. The first undertaking in this project was a trajectory optimization study. The flight path of a medium-haul twin-jet transport aircraft was optimized during microburst encounters on final approach. The assumed goal was to track a reference climb rate during an aborted landing, subject to a minimum airspeed constraint. The results demonstrated that the energy loss through the microburst significantly affected the qualitative nature of the optimal flight path. In microbursts of light to moderate strength, the aircraft was able to track the reference climb rate successfully. In severe microbursts, the minimum airspeed constraint in the optimization forced the aircraft to settle on a climb rate smaller than the target. A tradeoff was forced between the objectives of flight path tracking and stall prevention.

  17. A survey of the three-dimensional high Reynolds number transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Takashima, K.; Sawada, H.; Aoki, T.

    1982-01-01

    The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed.

  18. A method for data base management and analysis for wind tunnel data

    NASA Technical Reports Server (NTRS)

    Biser, Aileen O.

    1987-01-01

    To respond to the need for improved data base management and analysis capabilities for wind-tunnel data at the Langley 16-Foot Transonic Tunnel, research was conducted into current methods of managing wind-tunnel data and a method was developed as a solution to this need. This paper describes the development of the data base management and analysis method for wind-tunnel data. The design and implementation of the software system are discussed and examples of its use are shown.

  19. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  20. Pratt & Whitney Two Dimensional HSR Nozzle Test in the NASA Lewis 9- By 15- Foot Low Speed Wind Tunnel: Aerodynamic Results

    NASA Technical Reports Server (NTRS)

    Wolter, John D.; Jones, Christopher W.

    1999-01-01

    This paper discusses a test that was conducted jointly by Pratt & Whitney Aircraft Engines and NASA Lewis Research Center. The test was conducted in NASA's 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT). The test setup, methods, and aerodynamic results of this test are discussed. Acoustical results are discussed in a separate paper by J. Bridges and J. Marino.

  1. The 2009 ESA/Danish Mars Simulation Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Nornberg, P.; Merrison, J. P.; Gunnlaugsson, H. P.

    2009-04-01

    Simulation of the dynamic environment in immediate proximity to the surface of Mars requires access to simulation facilities which can reproduce the atmospheric properties (pressure, temperature, gas composition, UV-VIS light conditions, wind flow etc.). It also requires access to analogue Martian surface material (soil and dust). Simulations can be carried out in a wind tunnel placed in a tank which can be pumped out, like the 400 mm Ø, 1500 mm long wind tunnel that has operated in the Mars Simulation Laboratory at University of Aarhus, Denmark since 2000 (1). A wide range of applications have taken place, from development, test and calibration of instruments, over tests of solar panels, and aerodynamic studies of granular transport to studies of physical properties of dust materials such as grain electrification, aggregation and magnetic properties (2,3). The Salten Skov I analogue (4) and other Martian regolits and dust analogues have been used in the wind tunnel experiments. With the view to future instrument development, solar panel optimization and future research on Martian surface processes a new ESA supported wind tunnel has been constructed at University of Aarhus, Denmark and is now under building. This wind tunnel will have a cross section of close to 1 x 2 m and be able to reach a wind speed of close to 30 m/s under Martian pressure conditions and with samples cooled down to Martian temperatures. The facility is planned to be finally tested and ready for use in July 2009. ESA, ExoMars use of this facility will have priority. However, research projects in collaboration with external users will also be welcome in the future. Later this year information on access possibilities will be announced at the Mars Simulation Laboratory home page: www.marslab.dk. References: (1) Merrison, J., Bertelsen, P., Frandsen, C., Gunnlaugsson, H.P., Knudsen, J.M., Madsen, M.B., Mossin, L., Nielsen, J., Nørnberg, P., Rasmussen, K.R., Uggerhøj, E. and Weyer, G. 2002

  2. Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.

    2014-01-01

    This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.

  3. Jet noise results from static, wind tunnel, and flight tests of conical and mechanical suppressor nozzles

    NASA Astrophysics Data System (ADS)

    McKinnon, R. A.; Johnson, E. S.; Atencio, A., Jr.

    1981-10-01

    Results of jet noise suppression tests conducted on a Rolls-Royce Viper 601 turbojet engine are reported. Seven exhaust nozzle configurations are tested, including two conical nozzles, two suppressor mixers, and three treated ejector configurations with different ejector inlets. Tests are conducted at the NASA Ames outdoor static test facility and the 40- by 80-ft wind tunnel facility at minimum tunnel flow velocity and normal flow velocities of 230 and 290 ft/sec. Near-field multiple sideline noise levels are projected to the far fields to compare far-field fixed microphone outdoor static noise levels, and wind tunnel near-field noise data are projected to the far field and flight distances to compare with noise levels recorded from an Hs-125 aircraft. Near-field outdoor noise data duplicate the far-field data recorded from fixed microphones within 2 PNdB, and the Douglas mechanical jet noise suppressor/treated ejector exhaust system achieves a noise reduction of 12 EPNdB relative to a conic reference nozzle at equal thrust in flight.

  4. Jet noise results from static, wind tunnel, and flight tests of conical and mechanical suppressor nozzles

    NASA Technical Reports Server (NTRS)

    Mckinnon, R. A.; Johnson, E. S.; Atencio, A., Jr.

    1981-01-01

    Results of jet noise suppression tests conducted on a Rolls-Royce Viper 601 turbojet engine are reported. Seven exhaust nozzle configurations are tested, including two conical nozzles, two suppressor mixers, and three treated ejector configurations with different ejector inlets. Tests are conducted at the NASA Ames outdoor static test facility and the 40- by 80-ft wind tunnel facility at minimum tunnel flow velocity and normal flow velocities of 230 and 290 ft/sec. Near-field multiple sideline noise levels are projected to the far fields to compare far-field fixed microphone outdoor static noise levels, and wind tunnel near-field noise data are projected to the far field and flight distances to compare with noise levels recorded from an Hs-125 aircraft. Near-field outdoor noise data duplicate the far-field data recorded from fixed microphones within 2 PNdB, and the Douglas mechanical jet noise suppressor/treated ejector exhaust system achieves a noise reduction of 12 EPNdB relative to a conic reference nozzle at equal thrust in flight.

  5. DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.

    2001-01-01

    To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  6. DARPA/AFRL Smart Wing Phase 2 wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, C. A.; Sanders, Brian P.; West, Mark N.; Pinkerton-Florance, Jennifer L.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.

    2002-07-01

    Northrop Grumman Corporation built and twice tested a 30 percent scale wind tunnel model of a proposed uninhabited combat air vehicle under the DARPA/AFRL Smart Materials and Structures Development - Smart Wing Phase 2 program to demonstrate the applicability of smart control surfaces on advanced aircraft configurations. The model constructed was a full span, sting mounted model with smart leading and trailing edge control surfaces on the right wing and conventional, hinged trailing edge control surfaces on the left wing. Among the performance benefits that were quantified were increased pitching moment, increased rolling moment and improved pressure distribution of the smart wing over the conventional wing. This paper present an overview of the result from the wind tunnel test performed at NASA Langley Research Center's Transonic Dynamic Tunnel in March 2000 and May 2001. Successful results included: (1) improved aileron effectiveness at high dynamic pressures, (2) demonstrated improvements in lateral and longitudinal effectiveness with smooth contoured smart trailing edge over conventional hinged control surfaces, (3) chordwise and spanwise shape control of the smart trailing edge control surface, and (4) smart trailing edge control surface deflection rates over 80 deg/sec.

  7. The Denis-gruson Six-component Wind-tunnel Balance

    NASA Technical Reports Server (NTRS)

    1935-01-01

    The 6.C.1 balance is the first fully automatic balance assuring a continuous and simultaneous record of the aerodynamic characteristics of an airfoil in a wind tunnel. Because of the rapidity of the measurements a complete polar (six components) requires only about three minutes of wind, that is to say, of motive power, which is of interest for wind tunnels with high efficiency factors and may lead to the economical design of large size wind tunnels.

  8. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, Full Scale entrance cone looking north, exit cone looking south, wind vanes north end, wind vanes north end of east return passage, wind vanes south end of west exit cone looking north east, wind vanes at south end of east exit cone looking north west, entrance cone looking south from north end. Full-Scale Tunnel (FST) entrance cone under construction. Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'The entrance cone is 75 feet in length and in this distance the cross section changes from a rectangle 72 by 110 feet to a 30 by 60 foot elliptic section. The area reduction in the entrance cone is slightly less than 5:1. The shape of the entrance cone was chosen to give as fas as possible a constant acceleration to the air stream and to retain a 9-foot length of nozzle for directing the flow.' (p. 293)

  9. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-10-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  10. Microdunes and Other Aeolian Bedforms on Venus: Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1985-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind tunnel. It is found that the development of specific bedforms, including ripples, dunes, and waves, as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  11. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  12. Laminar flow test installation in the Boeing Research Wind Tunnel

    NASA Technical Reports Server (NTRS)

    George-Falvy, Dezso

    1990-01-01

    This paper describes the initial wind tunnels tests in the 5- by 8-ft Boeing Research Wind Tunnel of a near full-scale (20-foot chord) swept wing section having laminar flow control (LFC) by slot suction over its first 30 percent chord. The model and associated test apparatus were developed for use as a testbed for LFC-related experimentation in support of preliminary design studies done under contract with the National Aeronautics and Space Administration. This paper contains the description of the model and associated test apparatus as well as the results of the initial test series in which the proper functioning of the test installation was demonstrated and new data were obtained on the sensitivity of suction-controlled laminar flow to surface protuberances in the presence of crossflow due to sweep.

  13. Computers vs. wind tunnels for aerodynamic flow simulations

    NASA Technical Reports Server (NTRS)

    Chapman, D. R.; Mark, H.; Pirtle, M. W.

    1975-01-01

    It is pointed out that in other fields of computational physics, such as ballistics, celestial mechanics, and neutronics, computations have already displaced experiments as the principal means of obtaining dynamic simulations. In the case of aerodynamic investigations, the complexity of the computational work involved in solving the Navier-Stokes equations is the reason that such investigations rely currently mainly on wind-tunnel testing. However, because of inherent limitations of the wind-tunnel approach and economic considerations, it appears that at some time in the future aerodynamic studies will chiefly rely on computational flow data provided by the computer. Taking into account projected development trends, it is estimated that computers with the required capabilities for a solution of the complete viscous, time-dependent Navier-Stokes equations will be available in the mid-1980s.

  14. The role of wind tunnel models in helicopter noise research

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Schaeffer, E. G.

    1986-01-01

    A study was conducted to determine the applicability of using small-scale powered helicopter models operating in nonanechoic wind tunnels to predict the sound pressure levels of full-scale rotor harmonic noise components. The investigation included noise generation due to high-tip-speed effects, tandem-rotor blade/vortex interactions, single rotors operating on test towers, and the interaction between main rotor vortices and tail rotors. In all cases it was found that the pressure time history waveforms characteristic of different noise-generating mechanisms were properly reproduced by the models. Corrections for microphone locations, acoustical reverberation, and tunnel wind velocity were developed. Application of these corrections to the model data were found to yield satisfactory correlation with full-scale sound pressure levels except for the isolated single rotor, where highly transient data, both model and full-scale, recluded good agreement of absolute values.

  15. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  16. A low-density boundary-layer wind tunnel facility

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1987-01-01

    This abstract describes a low-density wind-tunnel facility that was established at NASA Ames in order to aid interpretation and understanding of data received from the Mariner and Viking spacecraft through earth-based simulation. The wind tunnel is a boundary-layer type which is capable of operating over a range of air densities ranging from 0.01 to 1.24 kg/cu m, with the lower values being equivalent to the near-surface density of the planet Mars. Although the facility was developed for space and extraterrestrial simulation, it also can serve as a relatively large-scale, low-density aerodynamic test facility. A description of this unique test facility and some Pitot-tube and hot-wire anemometry data acquired in the facility are presented.

  17. Wind tunnel requirements for computational fluid dynamics code verification

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.

    1987-01-01

    The role of experiment in the development of Computational Fluid Dynamics (CFD) for aerodynamic flow field prediction is discussed. Requirements for code verification from two sources that pace the development of CFD are described for: (1) development of adequate flow modeling, and (2) establishment of confidence in the use of CFD to predict complex flows. The types of data needed and their accuracy differs in detail and scope and leads to definite wind tunnel requirements. Examples of testing to assess and develop turbulence models, and to verify code development, are used to establish future wind tunnel testing requirements. Versatility, appropriate scale and speed range, accessibility for nonintrusive instrumentation, computerized data systems, and dedicated use for verification were among the more important requirements identified.

  18. Preparation of polystyrene microspheres for laser velocimetry in wind tunnels

    NASA Technical Reports Server (NTRS)

    Nichols, Cecil E., Jr.

    1987-01-01

    Laser Velocimetry (L/V) had made great strides in replacing intrusive devices for wind tunnel flow measurements. The weakness of the L/V has not been the L/V itself, but proper size seeding particles having known drag characteristics. For many Langley Wind Tunnel applications commercial polystyrene latex microspheres suspended in ethanol, injected through a fluid nozzle provides excellent seeding but was not used due to the high cost. This paper provides the instructions, procedures, and formulations for producing polystyrene latex monodisperse microspheres of 0.6, 1.0, 1.7, 2.0, and 2.7 micron diameters. These are presently being used at Langley Research Center as L/V seeding particles.

  19. Wind tunnel studies of gas dispersion over complex terrain

    NASA Astrophysics Data System (ADS)

    Michálek, Petr; Zacho, David

    2016-03-01

    Wind tunnel studies of gas dispersion over complex terrain model were performed in VZLU Prague. The terrain model with a ground-level emission source was mounted in a boundary layer wind tunnel. Flow and concentration field behind the source was measured. The model presented an area of the Liberec city, 9.0 × 2.4 km in full scale. The emission source was mounted at the position of a heating plant in the model centre and concentration field was measured using flame ionisation detectors. The experimental results will be used for validation and verification of a new computational dispersion model intended for use in case of accidents with dangerous gas leakages in selected areas in Czech Republic.

  20. An electronic scanner of pressure for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Kauffman, Ronald C.; Coe, Charles F.

    1986-01-01

    An electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind tunnel models. An ESOP system consists of up to 20 pressure modules (PMs), each with 48 pressure transducers and a heater, an analog-to-digital (A/D) converter module, a microprocessor, a data controller, a monitor unit, a control and processing unit, and a heater controller. The PMs and the A/D converter module are sized to be installed in the models tested in the Ames Aerodynamics Division wind tunnels. A unique feature of the pressure module is the lack of moving parts such as a pneumatic switch used in other systems for in situ calibrations. This paper describes the ESOP system and the results of the initial testing of the system. The initial results indicate the system meets the original design goal of 0.15 percent accuracy.

  1. Advanced experimental techniques for transonic wind tunnels - Final lecture

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    A philosophy of experimental techniques is presented, suggesting that in order to be successful, one should like what one does, have the right tools, stick to the job, avoid diversions, work hard, interact with people, be informed, keep it simple, be self sufficient, and strive for perfection. Sources of information, such as bibliographies, newsletters, technical reports, and technical contacts and meetings are recommended. It is pointed out that adaptive-wall test sections eliminate or reduce wall interference effects, and magnetic suspension and balance systems eliminate support-interference effects, while the problem of flow quality remains with all wind tunnels. It is predicted that in the future it will be possible to obtain wind tunnel results at the proper Reynolds number, and the effects of flow unsteadiness, wall interference, and support interference will be eliminated or greatly reduced.

  2. Wind Tunnel Test of the SMART Active Flap Rotor

    NASA Technical Reports Server (NTRS)

    Straub, Friedrich K.; Anand, Vaidyanthan R.; Birchette, Terrence S.; Lau, Benton H.

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, DARPA, MIT, UCLA, and U. of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. The Boeing SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing edge flap on each blade. The eleven-week test program evaluated the forward flight characteristics of the active-flap rotor at speeds up to 155 knots, gathered data to validate state-of-the-art codes for rotor aero-acoustic analysis, and quantified the effects of open and closed loop active flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness of the active flap control on noise and vibration was conclusively demonstrated. Results showed significant reductions up to 6dB in blade-vortex-interaction and in-plane noise, as well as reductions in vibratory hub loads up to 80%. Trailing-edge flap deflections were controlled within 0.1 degrees of the commanded value. The impact of the active flap on control power, rotor smoothing, and performance was also demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind-tunnel testing.

  3. Problems associated with operations and measurement in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Blanchard, A.; Delcourt, V.; Plazanet, M.

    1986-01-01

    Cryogenic wind tunnel T'3 under continuous blower operation has been the object of improvements and the installation of auxiliary equipment, dealing in particular with the enlargement of the liquid nitrogen injection reservoir and the hook-up to a fast data acquisition system. Following a brief description of the installation and its functioning, we present the main experimental techniques and the instrumentation used in the cryogenic environment.

  4. Progress towards large wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1984-01-01

    Recent developments and current research efforts leading towards realization of a large scale production wind tunnel Magnetic Suspension and Balance facility are reviewed. Progress has been made in the areas of model roll control, high angle-of-attack testing, digital system control, high magnetic moment superconducting solenoid model cores, and system failure tolerance. Formal design studies of large scale facilities have commenced and are continuing.

  5. Bar-Chart-Monitor System For Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jung, Oscar

    1993-01-01

    Real-time monitor system provides bar-chart displays of significant operating parameters developed for National Full-Scale Aerodynamic Complex at Ames Research Center. Designed to gather and process sensory data on operating conditions of wind tunnels and models, and displays data for test engineers and technicians concerned with safety and validation of operating conditions. Bar-chart video monitor displays data in as many as 50 channels at maximum update rate of 2 Hz in format facilitating quick interpretation.

  6. Wind tunnel model surface gauge for measuring roughness

    NASA Technical Reports Server (NTRS)

    Vorburger, T. V.; Gilsinn, D. E.; Teague, E. C.; Giauque, C. H. W.; Scire, F. E.; Cao, L. X.

    1987-01-01

    The optical inspection of surface roughness research has proceeded along two different lines. First, research into a quantitative understanding of light scattering from metal surfaces and into the appropriate models to describe the surfaces themselves. Second, the development of a practical instrument for the measurement of rms roughness of high performance wind tunnel models with smooth finishes. The research is summarized, with emphasis on the second avenue of research.

  7. An isentropic compression heated Ludwieg tube transient wind tunnel

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J.; Lagraff, John E.

    1988-01-01

    Syracuse University's Ludwieg tube with isentropic compression facility is a transient wind tunnel employing a piston drive that incorporates insentropic compression heating of the test gas located ahead of a piston. The facility is well-suited for experimental investigations concerning supersonic and subsonic vehicles over a wide range of pressures, Reynolds numbers, and temperatures; all three parameters can be almost independently controlled. Work at the facility currently includes wake-induced stagnation point heat transfer and supersonic boundary layer transition.

  8. Development of internal balances for cryogenic wind tunnels

    NASA Astrophysics Data System (ADS)

    Ewald, Bernd F. R.; Graewe, Eberhard

    Thermal effects in the strain gage balance, which has hampered the development of large cryogenic wind tunnels are considered. Approaches for dealing with two of these effects are outlined. The effect of apparent strain over the whole temperature range is minimized by a compensation of each individual gage. A novel arrangement of the axial force systems allows a correct separation of thermal effect and force measurement in spite of temperature gradients in the balance body.

  9. Application of data acquisition systems for on-line definition and control of wind tunnel shape

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1979-01-01

    Improvements in wind tunnel design to reduce test and flight discrepancies are analyzed. Flexible wall streamlining, criteria for tunnel streamlining, and error assessment are discussed. It is concluded that the concept of self-streamlining wind tunnels is suited for on-line computer control.

  10. Tactical Defenses Against Systematic Variation in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2002-01-01

    This paper examines the role of unexplained systematic variation on the reproducibility of wind tunnel test results. Sample means and variances estimated in the presence of systematic variations are shown to be susceptible to bias errors that are generally non-reproducible functions of those variations. Unless certain precautions are taken to defend against the effects of systematic variation, it is shown that experimental results can be difficult to duplicate and of dubious value for predicting system response with the highest precision or accuracy that could otherwise be achieved. Results are reported from an experiment designed to estimate how frequently systematic variations are in play in a representative wind tunnel experiment. These results suggest that significant systematic variation occurs frequently enough to cast doubts on the common assumption that sample observations can be reliably assumed to be independent. The consequences of ignoring correlation among observations induced by systematic variation are considered in some detail. Experimental tactics are described that defend against systematic variation. The effectiveness of these tactics is illustrated through computational experiments and real wind tunnel experimental results. Some tutorial information describes how to analyze experimental results that have been obtained using such quality assurance tactics.

  11. A short history of the European Transonic Wind Tunnel ETW

    NASA Astrophysics Data System (ADS)

    Green, John; Quest, Jürgen

    2011-07-01

    This paper is written as a contribution to the celebration of 50 years of Progress in Aerospace Sciences and of the centenary of the birth of its founder, Dietrich Küchemann. It reviews the evolution of the European Transonic Wind Tunnel, ETW, from early conceptual studies to its entry into service and its current capabilities and achievements. It traces the development, from the earliest days, of experimental aerodynamics and of the basic aerodynamic understanding that gave rise to the main periods of wind tunnel building before and after World War II. By about 1960, this activity appeared to have come to a natural halt. The paper gives an account of the role of Küchemann in arguing the need in 1968 for a further step in wind tunnel capability, to provide transonic testing at high Reynolds numbers. It describes his leading role in gaining acceptance of the concept, formulating the specification and promoting studies of alternative, radical design options for the co-operative European project that became ETW. The progress of ETW through design, construction, commissioning and into full operation is recorded. The paper discusses the many technical innovations that have been introduced in order to meet customer requirements in the challenging field of aerodynamic testing in a cryogenic environment and, finally, looks to the future and the further technical challenges that it holds.

  12. Variable Stiffness Spar Wind-Tunnel Model Development and Testing

    NASA Technical Reports Server (NTRS)

    Florance, James R.; Heeg, Jennifer; Spain, Charles V.; Ivanco, Thomas G.; Wieseman, Carol D.; Lively, Peter S.

    2004-01-01

    The concept of exploiting wing flexibility to improve aerodynamic performance was investigated in the wind tunnel by employing multiple control surfaces and by varying wing structural stiffness via a Variable Stiffness Spar (VSS) mechanism. High design loads compromised the VSS effectiveness because the aerodynamic wind-tunnel model was much stiffer than desired in order to meet the strength requirements. Results from tests of the model include stiffness and modal data, model deformation data, aerodynamic loads, static control surface derivatives, and fuselage standoff pressure data. Effects of the VSS on the stiffness and modal characteristics, lift curve slope, and control surface effectiveness are discussed. The VSS had the most effect on the rolling moment generated by the leading-edge outboard flap at subsonic speeds. The effects of the VSS for the other control surfaces and speed regimes were less. The difficulties encountered and the ability of the VSS to alter the aeroelastic characteristics of the wing emphasize the need for the development of improved design and construction methods for static aeroelastic models. The data collected and presented is valuable in terms of understanding static aeroelastic wind-tunnel model development.

  13. The use of wind tunnel facilities to estimate hydrodynamic data

    NASA Astrophysics Data System (ADS)

    Hoffmann, Kristoffer; Tophøj Rasmussen, Johannes; Hansen, Svend Ole; Reiso, Marit; Isaksen, Bjørn; Egeberg Aasland, Tale

    2016-03-01

    Experimental laboratory testing of vortex-induced structural oscillations in flowing water is an expensive and time-consuming procedure, and the testing of high Reynolds number flow regimes is complicated due to the requirement of either a large-scale or high-speed facility. In most cases, Reynolds number scaling effects are unavoidable, and these uncertainties have to be accounted for, usually by means of empirical rules-of-thumb. Instead of performing traditional hydrodynamic measurements, wind tunnel testing in an appropriately designed experimental setup may provide an alternative and much simpler and cheaper framework for estimating the structural behavior under water current and wave loading. Furthermore, the fluid velocities that can be obtained in a wind tunnel are substantially higher than in a water testing facility, thus decreasing the uncertainty from scaling effects. In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.

  14. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for two- or three-dimensional contractions installed on small, low-speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a three-dimensional numerical panel method. The pressure or velocity distributions are then fed into two-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low-speed contractions it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs if justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a fifth-order polynomial was selected for installation on a newly designed mixing layer wind tunnel.

  15. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.

  16. Ventilation of idealised urban area, LES and wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Kukačka, L.; Fuka, V.; Nosek, Š.; Kellnerová, R.; Jaňour, Z.

    2014-03-01

    In order to estimate the ventilation of vehicle pollution within street canyons, a wind tunnel experiment and a large eddy simulation (LES) was performed. A model of an idealised urban area with apartment houses arranged to courtyards was designed according to common Central European cities. In the wind tunnel, we assembled a set-up for simultaneous measurement of vertical velocity and tracer gas concentration. Due to the vehicle traffic emissions modelling, a new line source of tracer gas was designed and built into the model. As a computational model, the LES model solving the incompressible Navier-Stokes equations was used. In this paper, we focused on the street canyon with the line source situated perpendicular to an approach flow. Vertical and longitudinal velocity components of the flow with the pollutant concentration were obtained from two horizontal grids placed in different heights above the street canyon. Vertical advective and turbulent pollution fluxes were computed from the measured data as ventilation characteristics. Wind tunnel and LES data were qualitatively compared. A domination of advective pollution transport within the street canyon was determined. However, the turbulent transport with an opposite direction to the advective played a significant role within and above the street canyon.

  17. Hot-jet simulation in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Asai, Keisuke

    1989-01-01

    In order to evaluate hot jet simulation capability in cryogenic wind tunnel testing, simple theoretical calculations were performed. The similarity parameters, isentropic flow properties, and normal shock relations were calculated for a variety of jet simulation techniques. The results were compared with those estimated for a full scale flight condition. It was shown that the cryogenic wind tunnel testing provides an opportunity for the most accurate hot jet simulation technique. By using a compressed nitrogen gas at ambient or moderately elevated temperatures as a jet gas, most all of the relevant similarity parameters including the jet temperature and velocity ratios and the Reynolds numbers, can be set to the full scale flight values. The only exception is the ratio of specific heats for jet flow. In an attempt to match the ratio of specific heats for the turbojet flow, gases other than pure nitrogen were considered. It was found that a nitrogen/methane mixture at moderately elevated temperature behaves like the real combustion gas. Using this mixture as a jet gas, complete simulation of the full scale turbojet exhaust becomes possible in cryogenic wind tunnels.

  18. The Influence of Wind-Tunnel Walls on Discrete Frequency Noise

    NASA Astrophysics Data System (ADS)

    Mosher, Marianne

    Enclosures, partial or complete, significantly affect the sound field of a source contained in the enclosure. In particular, wind-tunnel walls effect measurements of the sound field of an aircraft model thereby complicating noise measurements of aircraft in wind tunnels. This work examines the effect of the wind tunnel on sound fields. The acoustic field from a known source in a wind tunnel has been modeled as an acoustic source in uniform subsonic flow, in an infinitely long duct with constant cross-section. The acoustic impedance boundary condition at the wall allows sound absorption. The problem of an aeroacoustic source in a duct is formulated as an inhomogeneous integro-differential equation for the acoustic pressure on the duct surface. The domain is divided into a near field, extending about one duct diameter from the source, and a far field. This model is solved with a numerical panel technique in the near field and matched to an outer analytic solution in the far field. Several sample programs are studied in a rectangular duct with and without flow. A simple model problem, for which an analytic approximation exists, demonstrates that the numerical calculation correctly solves the numerical model. The acoustic fields for many simple sources are examined. The acoustic field from a simple model of helicopter noise is studied in the duct. Results show that the presence of the duct significantly changes the acoustic field. For a given source, the region in the duct near the source resembling the free field increases as the wall absorption increases. Outside this near field the sound depends mostly on the product of source wave number with duct cross dimension. Low subsonic flow (Mach number less than about 0.2) has little effect on the sound pressure level for most cases. Small changes in any parameter when the frequency is near a resonance, can change the outer acoustic field significantly. For low frequency rotor harmonic noise, the sound levels beyond one

  19. Comparison of wind tunnel airfoil performance data with wind turbine blade data

    SciTech Connect

    Butterfield, C.P.; Scott, G.N.; Musial, W.

    1990-07-01

    Horizontal-axis wind turbine (HAWT) performance is usually predicted by using wind tunnel airfoil performance data in a blade element momentum theory analysis. This analysis assumes that the rotating blade airfoils will perform as they do in the wind tunnel. However, when HAWT performance is measured in full-scale operation, it is common to find that peak power levels are significantly greater than those predicted. This has led to empirical corrections to the predictions. Viterna and Corrigan proposed the most popular version of this correction. But very little insight has been gained into the basic cause of this discrepancy. The Solar Energy Research Institute (SERI), funded by the US Department of Energy (DOE), has conducted the first phase of an experiment focused on understanding the basic fluid mechanics of HWAT aerodynamics. Results to date have shown that unsteady aerodynamics exist during all operating conditions and dynamic stall can exist for high yaw angle operation. Stall hysteresis occurs even for small yaw angles, and delayed stall is a very persistent reality in all operating conditions. Delayed stall is the result of a leading-edge suction peak remaining attached through angles of attack (AOAs) up to 30{degree}. Wind tunnel results show this peak separating from the leading edge at 18{degree} AOA. The effect of this anomaly is to raise normal force coefficients and tangent force coefficients for high AOA. Increased tangent forces will directly for high AOA. Increased tangent forces will directly affect HAWT performance in high wind speed operation. This report describes pressure distribution data resulting from both wind tunnel and HAWT tests. A method of bins is used to average the HAWT data, which are compared to the wind tunnel data. The analysis technique and the test setup for each test are described. 10 refs., 15 figs.

  20. The steady-state flow quality in a model of a non-return wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Eckert, W. T.; Kelly, M. W.

    1972-01-01

    The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.

  1. Correlation of Fin Buffet Pressures on an F/A-18 with Scaled Wind-Tunnel Measurements

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1999-01-01

    Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  2. Aeolian transport of biota with dust: A wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  3. Aerodynamic characteristics of an F-8 aircraft configuration with a variable camber wing at Mach numbers from 1.5 to 2.0. [conducted in the Ames 9 by 7 foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1977-01-01

    A 0.1-scale model of an F-8 aircraft was tested over a range of Mach numbers from 1.5 to 2.0. Reynolds number of 4.12 million was based on wing mean-aerodynamic chord for angles of attack varying from -2 deg to +12 deg. The model was equipped with an advanced-technology-conformal-variable-camber wing (ATCVCW) having simple hinge flaps. Data were also obtained for the model equipped with the basic F-8 wing and conventional flaps. Model variables included aileron and wing trailing edge deflections and horizontal tail incidence. The ATCVCW configuration produced slight improvements in lift-curve slope, drag, and static longitudinal stability over that of the basic F-8 wing configuration. Flap effectiveness was essentially the same for both wings.

  4. Wind tunnel modeling of toxic gas releases at industrial facilities

    SciTech Connect

    Petersen, R.L.

    1994-12-31

    Government agencies and the petroleum, chemical and gas industries in the US and abroad have become increasingly concerned about the issues of toxic gas dispersal. Because of this concern, research programs have been sponsored by these various groups to improve the capabilities in hazard mitigation and response. Present computer models used to predict pollutant concentrations at industrial facilities do not properly account for the effects of structures. Structures can act to trap or deflect the cloud and modify the cloud dimensions, thereby possibly increasing or reducing downwind concentrations. The main purpose of this evaluation was to develop a hybrid modeling approach, which combines wind tunnel and dispersion modeling, to obtain more accurate concentration estimates when buildings or structures affect the dispersion of hazardous chemical vapors. To meet the study objectives, wind tunnel testing was performed on a building cluster typical of two industrial settings where accidental releases of toxic gases might occur. This data set was used to test the validity of the AFTOX and SLAB models for estimating concentrations and was used to develop and test two hybrid models. Two accident scenarios were simulated, an evaporating pool of a gas slightly heavier than air (Hydrazine-N{sub 2}H{sub 4}) and a liquid jet release of Nitrogen Tetroxide (N{sub 2}O{sub 4}) where dense gas dispersion effects would be significant. Tests were conducted for a range of wind directions and wind speeds for two different building configurations (low rise and high rise structures).

  5. Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow.

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Pascheke, F.

    2010-09-01

    A second programme of work is about to commence as part of a further four years of funding for the UK-EPSRC SUPERGEN-Wind large-wind-farm consortium. The first part of the initial programme at Surrey was to establish and set up appropriate techniques for both on- and off-shore boundary layers (though with an emphasis on the latter) at a suitable scale, and to build suitable rotating model wind turbines. The EnFlo wind tunnel, a UK-NCAS special facility, is capable of creating scaled neutral, stable and unstable boundary layers in its 20m long working section. The model turbines are 1/300-scale of 5MW-size, speed controlled with phase-lock measurement capability, and the blade design takes into account low Reynolds-number effects. Velocity measurements are primarily made using two-component LDA, combined with a ‘cold-wire' probe in order to measure the local turbulent heat flux. Simulation of off-shore wakes is particularly constrained because i) at wind tunnel scale the inherently low surface roughness can be below that for fully rough conditions, ii) the power required to stratify the flow varies as the square of the flow speed, and could easily be impractically large, iii) low blade Reynolds number. The boundary layer simulations, set up to give near-equilibrium conditions in terms of streamwise development, and the model turbines have been designed against these constraints, but not all constraints can be always met simultaneously in practice. Most measurements so far have been made behind just one or two turbines in neutral off- and on-shore boundary layers, at stations up to 12 disk diameters downstream. These show how, for example, the wake of a turbine affects the development of the wake of a downwind turbine that is laterally off-set by say half or one diameter, and how the unaffected part from the first turbine merges with the affected wake of the second. As expected a lower level of atmospheric turbulence causes the wakes to develop and fill-in more

  6. Technical Seminar: "Quest for Aircraft Stability and Control"

    NASA Video Gallery

    Testing of full-scale aircraft in flight to validate or improve predictions obtained through wind tunnel testing or CFD calculations is expensive and time-consuming. Being able to test aircraft sta...

  7. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  8. Wind Tunnel Simulation of the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2013-11-01

    To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique [Counihan 1969] in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. To examine the development and formation of the artificial ABL hotwire and SPIV measurements were taken at various downstream locations with changes in wall roughness, wall type, and vortex generator arrangements. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained for high Reynolds number flat plate turbulent boundary layers [Hultmark et al. 2010]. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.

  9. Wind Tunnel Simulation of the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2012-11-01

    To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. We report hotwire measurements in a plane normal to the flow direction at various downstream positions and free stream velocities to examine the development and formation of the artificial ABL. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained by Hultmark in 2010 for high Reynolds number flat plate turbulent boundary layers. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.

  10. Wind tunnel test of the S814 thick root airfoil

    SciTech Connect

    Somers, D.M.; Tangler, J.L.

    1996-11-01

    The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil`s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 {times} 10{sup 6}. For the design Reynolds number of 1.5 {times} 10{sup 6}, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil`s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.

  11. The Resistance of Spheres in Wind Tunnels and In Air

    NASA Technical Reports Server (NTRS)

    Bacon, D L; Reid, E G

    1924-01-01

    To supplement the standardization tests now in progress at several laboratories, a broad investigation of the resistance of spheres in wind tunnels and free air has been carried out by the National Advisory Committee for Aeronautics. The subject has been classed in aerodynamic research, and in consequence there is available a great mass of data from previous investigations. This material was given careful consideration in laying out the research, and explanation of practically all the disagreement between former experiments has resulted. A satisfactory confirmation of Reynolds law has been accomplished, the effect of means of support determined, the range of experiment greatly extended by work in the new variable density wind tunnel, and the effects of turbulence investigated by work in the tunnels and by towing and dropping tests in free air. It is concluded that the erratic nature of most of the previous work is due to support interference and differing turbulence conditions. While the question of support has been investigated thoroughly, a systematic and comprehensive study of the effects of scale and quality of turbulence will be necessary to complete the problem, as this phase was given only general treatment.

  12. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  13. The active flexible wing aeroservoelastic wind-tunnel test program

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Perry, Boyd

    1989-01-01

    For a specific application of aeroservoelastic technology, Rockwell International Corporation developed a concept known as the Active Flexible Wing (AFW). The concept incorporates multiple active leading-and trailing-edge control surfaces with a very flexible wing such that wing shape is varied in an optimum manner resulting in improved performance and reduced weight. As a result of a cooperative program between the AFWAL's Flight Dynamics Laboratory, Rockwell, and NASA LaRC, a scaled aeroelastic wind-tunnel model of an advanced fighter was designed, fabricated, and tested in the NASA LaRC Transonic Dynamics Tunnel (TDT) to validate the AFW concept. Besides conducting the wind-tunnel tests NASA provided a design of an Active Roll Control (ARC) System that was implemented and evaluated during the tests. The ARC system used a concept referred to as Control Law Parameterization which involves maintaining constant performance, robustness, and stability while using different combinations of multiple control surface displacements. Since the ARC system used measured control surface stability derivatives during the design, the predicted performance and stability results correlated very well with test measurements.

  14. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    NASA Technical Reports Server (NTRS)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  15. Detailed Uncertainty Analysis for Ares I Ascent Aerodynamics Wind Tunnel Database

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Hanke, Jeremy L.; Walker, Eric L.; Houlden, Heather P.

    2008-01-01

    A detailed uncertainty analysis for the Ares I ascent aero 6-DOF wind tunnel database is described. While the database itself is determined using only the test results for the latest configuration, the data used for the uncertainty analysis comes from four tests on two different configurations at the Boeing Polysonic Wind Tunnel in St. Louis and the Unitary Plan Wind Tunnel at NASA Langley Research Center. Four major error sources are considered: (1) systematic errors from the balance calibration curve fits and model + balance installation, (2) run-to-run repeatability, (3) boundary-layer transition fixing, and (4) tunnel-to-tunnel reproducibility.

  16. Tests of models equipped with TPS in low speed ONERA F1 pressurized wind tunnel

    NASA Astrophysics Data System (ADS)

    Leynaert, J.

    1992-09-01

    The particular conditions of tests of models equipped with a turbofan powered simulator (TPS) at high Reynolds numbers in a pressurized wind tunnel are presented. The high-pressure air supply system of the wind tunnel, the equipment of the balance with the high-pressure traversing flow and its calibration, and the thrust calibration method of the TPS and its verification in the wind tunnel are described.

  17. Development and testing of a unique carousel wind tunnel to experimentally determine the effect of gravity and the interparticle force on the physics of wind-blown particles

    NASA Technical Reports Server (NTRS)

    Leach, R. N.; Greeley, Ronald; White, Bruce R.; Iversen, James D.

    1987-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with the interparticle forces but the two are not separable. A wind tunnel that perimits multiphase flow experiments with wind blown particles at variable gravity was built and experiments were conducted at reduced gravity. The equations of particle motion initiation (saltation threshold) with variable gravity were experimentally verified and the interparticle force was separated. A uniquely design Carousel Wind Tunnel (CWT) allows for the long flow distance in a small sized tunnel since the test section if a continuous loop and develops the required turbulent boundary layer. A prototype model of the tunnel where only the inner drum rotates was built and tested in the KC-135 Weightless Wonder 4 zero-g aircraft. Future work includes further experiments with walnut shell in the KC-135 which sharply graded particles of widely varying median sizes including very small particles to see how interparticle force varies with particle size, and also experiments with other aeolian material.

  18. Low-Noise Potential of Advanced Fan Stage Stator Vane Designs Verified in NASA Lewis Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1999-01-01

    With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.

  19. Wind tunnel simulation of a wind turbine wake in neutral, stable and unstable wind flow

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Zhang, S.; Pascheke, F.; Hayden, P.

    2014-12-01

    Measurements of mean velocity, Reynolds stresses, temperature and heat flux have been made in the wake of a model wind turbine in the EnFlo meteorology wind tunnel, for three atmospheric boundary layer states: the base-line neutral case, stable and unstable. The full-to-model scale is approximately 300:1. Primary instrumentation is two-component LDA combine with cold-wire thermometry to measure heat flux. In terms of surface conditions, the stratified cases are weak, but there is a strong 'imposed' condition in the stable case. The measurements were made between 0.5D and 10D, where D is the turbine disk diameter. In the stable case the velocity deficit decreases more slowly; more quickly in the unstable case. Heights at which quantities are maximum or minimum are greater in the unstable case and smaller in the stable case. In the stable case the wake height is suppressed but the width is increased, while in the unstable case the height is increased and the width (at hub height) reaches a maximum and then decreases. The turbulence in the wake behaves in a complex way. Further work needs to be done, to cover stronger levels of surface condition, requiring more extensive measurements to properly capture the wake development.

  20. Using a commercial CAD system for simultaneous input to theoretical aerodynamic programs and wind-tunnel model construction

    NASA Technical Reports Server (NTRS)

    Enomoto, F.; Keller, P.

    1984-01-01

    The Computer Aided Design (CAD) system's common geometry database was used to generate input for theoretical programs and numerically controlled (NC) tool paths for wind tunnel part fabrication. This eliminates the duplication of work in generating separate geometry databases for each type of analysis. Another advantage is that it reduces the uncertainty due to geometric differences when comparing theoretical aerodynamic data with wind tunnel data. The system was adapted to aerodynamic research by developing programs written in Design Analysis Language (DAL). These programs reduced the amount of time required to construct complex geometries and to generate input for theoretical programs. Certain shortcomings of the Design, Drafting, and Manufacturing (DDM) software limited the effectiveness of these programs and some of the Calma NC software. The complexity of aircraft configurations suggests that more types of surface and curve geometry should be added to the system. Some of these shortcomings may be eliminated as improved versions of DDM are made available.

  1. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    NASA Technical Reports Server (NTRS)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  2. Large-scale V/STOL testing. [conducted in the Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Aiken, T. N.; Aoyagi, K.; Falarshi, M. D.

    1977-01-01

    Several facets of large-scale testing of V/STOL aircraft configurations are discussed with particular emphasis on test experience in the Ames 40- by 80-Foot Wind Tunnel. Examples of powered-lift test programs are presented in order to illustrate tradeoffs confronting the planner of V/STOL test programs. Large-scale V/STOL wind-tunnel testing can sometimes compete with small-scale testing in the effort required (overall test time) and program costs because of the possibility of conducting a number of different tests with a single large-scale model where several small-scale models would be required. The benefits of both high- or full-scale Reynolds numbers, more detailed configuration simulation, and number and type of onboard measurements are studied.

  3. Description and calibration of the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Corlett, W. A.; Monta, W. J.

    1981-01-01

    The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed.

  4. Transonic wind-tunnel tests of a lifting parachute model

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Reed, J. F.; Wynne, E. C.

    1976-01-01

    Wind-tunnel tests have been made in the Langley transonic dynamics tunnel on a 0.25-scale model of Sandia Laboratories' 3.96-meter (13-foot), slanted ribbon design, lifting parachute. The lifting parachute is the first stage of a proposed two-stage payload delivery system. The lifting parachute model was attached to a forebody representing the payload. The forebody was designed and installed in the test section in a manner which allowed rotational freedom about the pitch and yaw axes. Values of parachute axial force coefficient, rolling moment coefficient, and payload trim angles in pitch and yaw are presented through the transonic speed range. Data are presented for the parachute in both the reefed and full open conditions. Time history records of lifting parachute deployment and disreefing tests are included.

  5. An isentropic compression-heated Ludweig tube transient wind tunnel

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J.; Lagraff, John E.

    1991-01-01

    Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th.

  6. An isentropic compression-heated Ludweig tube transient wind tunnel

    SciTech Connect

    Magari, P.J.; Lagraff, J.E. )

    1991-05-01

    Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th. 15 refs.

  7. Practical application of RINO, a smartphone-based dynamic displacement sensing application for wind tunnel tests

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Jeong, Jong-Hyun; Knez, Kyle P.; Min, Jae-Hong; Jo, Hongki

    2016-04-01

    Dynamic displacement is one of the most important measurands in wind tunnel tests of structures. Laser sensors or optical sensors are usually used in wind tunnel tests to measure displacements. However, these commercial sensors have limitations in its use, cost and installation despite of their good performance in accuracy. RINO (Real-time Image- processing for Non-contact monitoring), an iOS software application for dynamic displacement monitoring, has been developed in the previous study. In this study, feasibility of RINO in practical use for wind tunnel tests is explored. Series of wind tunnel tests show that performances of RINO are comparable with those of conventional displacement sensors.

  8. Automation&Characterization of US Air Force Bench Top Wind Tunnels - Summary Report

    SciTech Connect

    Hardy, J.E.

    2006-03-23

    The United States Air Force Precision Measurement Equipment Laboratories (PMEL) calibrate over 1,000 anemometer probes per year. To facilitate a more efficient calibration process for probe-style anemometers, the Air Force Metrology and Calibration Program underwent an effort to modernize the existing PMEL bench top wind tunnels. Through a joint effort with the Department of Energy's Oak Ridge National Laboratory, the performance of PMEL wind tunnels was improved. The improvement consisted of new high accuracy sensors, automatic data acquisition, and a software-driven calibration process. As part of the wind tunnel upgrades, an uncertainty analysis was completed, laser Doppler velocimeter profiling was conducted to characterize the velocities at probe locations in the wind tunnel, and pitot tube calibrations of the wind tunnel were verified. The bench top wind tunnel accuracy and repeatability has been measured for nine prototype wind tunnel systems and valuable field experience has been gained with these wind tunnels at the PMELs. This report describes the requirements for the wind tunnel improvements along with actual implementation strategies and details. Lessons-learned from the automation, the velocity profiling, and the software-driven calibration process will also be discussed.

  9. A remote millivolt multiplexer and amplifier module for wind tunnel data acquisition

    NASA Technical Reports Server (NTRS)

    Juanarena, D. B.; Blumenthal, P. Z.

    1982-01-01

    A 30-channel remotely located multiplexer and amplifier module is developed for the measurement of wind tunnel models, which substantially reduces the amount of wiring necessary and thus provides higher accuracy. The module provides for a wide variety of transducer voltage outputs to be multiplexed and amplified within the model, and all signals are able to exit the module on two wires. The module is self-calibrating, and when coupled with the electronically scanned pressure instrumentation widely used in wind tunnels, it allows the modular wind tunnel models to be fabricated and checked before installation into the wind tunnel.

  10. CFD and experimental data of closed-loop wind tunnel flow.

    PubMed

    Calautit, John Kaiser; Hughes, Ben Richard

    2016-06-01

    The data presented in this article were the basis for the study reported in the research articles entitled 'A validated design methodology for a closed loop subsonic wind tunnel' (Calautit et al., 2014) [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD). The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section. PMID:26958641

  11. Tests of a protective shell passive release mechanism for hypersonic wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Dunn, J. E.

    1979-01-01

    A protective shell mechanism for wind tunnel models was developed and tested. The mechanism is passive in operation, reliable, and imposes no new structural design changes for wind tunnel models. Methods of predicting the release time and the measured loads associated with the release of the shell are given. The mechanism was tested in a series of wind tunnel tests to validate the removal process and measure the pressure loads on the model. The protective shell can be used for wind tunnel models that require a step input of heating and loading such as a thin skin heat transfer model. The mechanism may have other potential applications.

  12. Wind-tunnel and flight evaluation of spoilers as trailing-vortex hazard alleviation devices

    NASA Technical Reports Server (NTRS)

    Croom, D. R.

    1977-01-01

    This paper presents the results of ground-based and flight investigations that have been performed at NASA for the purpose of development of spoilers as trailing-vortex hazard alleviation devices. Based on the results obtained in these investigations, it was found that the induced rolling moment on a trailing model can be reduced by spoilers located near the mid-semispan of a vortex-generating wing. Substantial reductions in induced rolling moment occur when the spoiler vortex attenuator is located well forward on both unswept and swept wing models. In addition, it was found by ground-based model tests and verified by full-scale flight tests that the existing flight spoilers on the B-747 aircraft are effective as trailing vortex attenuators. Based on the results of wind-tunnel investigations of the DC-10-30 and L-1011 aircraft models, the existing flight spoilers on both the DC-10-30 and L-1011 aircraft may also be effective trailing vortex attenuators.

  13. Full Scale Wind Tunnel and Seaplane Tow Channel

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Construction progress, Full Scale exit cone looking south from entrance cone, east switchboard, west switchboard, wind vanes at north end looking north through entrance cone, north end looking south through entrance cone, entrance cone looking north from exit cone, wind vanes south end of west exit cone, wind vanes south end of east exit cone, Tow Channel trolley lines looking north, east and west incline braces at north end. Full-Scale Tunnel (FST) exit cone construction and installation of fan motors. Smith DeFrance describes the entrance cone in NACA TR 459 as follows: 'Forward of the propellers and located on the center line of the tunnel is a smooth fairing which transforms the somewhat elliptic section of the single passage into two circular ones at the propellers. From the propellers aft, the exit cone is divided into two passages and each transforms in the length of 132 feet from a 35-foot 61/2-inch circular section to a 46-foot square. The included angle between the sides of each passage is 6 inches.' (p. 293)

  14. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    SciTech Connect

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions.

  15. Flight and wind tunnel test results of the mechanical jet noise suppressor nozzle

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, R. D.; McKinnon, R. A.; Johnson, E. S.; Brooks, J. R.

    1980-01-01

    Comprehensive acoustic and propulsion data are presented, based on flight and wind tunnel tests, of a mechanical jet noise suppressor designed to satisfy the requirements of an advanced supersonic transport (AST) under study by the McDonnell Douglas Corporation. The flight program was conducted jointly by MDC, Rolls-Royce Ltd., and the British Aerospace Corporation, using an HS-125 aircraft modified to accept an upgraded RR Viper 601 engine with conical reference and mechanical suppressor nozzles and an acoustically treated ejector. The nacelle, engine and nozzle configurations from the HS-125 were also tested in one of NASA's wind tunnels to obtain thrust performance at forward velocity and acoustic data. The acoustic flight test data, when scaled to an AST engine nozzle size and projected to a typical sideline distance, indicate reduction in effective perceived noise level of 16 EPNdB at the takeoff power setting. It is estimated that the in-flight thrust loss for a typical AST suppressor/ejector nozzle configuration (37.5 inch equivalent diameter) would be 5.4 percent at takeoff power settings and 6.6 percent at cutback power settings.

  16. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  17. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  18. Design and fabrication of forward-swept counterrotation blade configuration for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Nichols, G. H.

    1994-01-01

    Work performed by GE Aircraft on advanced counterrotation blade configuration concepts for high speed turboprop system is described. Primary emphasis was placed on theoretically and experimentally evaluating the aerodynamic, aeromechanical, and acoustic performance of GE-defined counterrotating blade concepts. Several blade design concepts were considered. Feasibility studies were conducted to evaluate a forward-swept versus an aft-swept blade application and how the given blade design would affect interaction between rotors. Two blade designs were initially selected. Both designs involved in-depth aerodynamic, aeromechanical, mechanical, and acoustic analyses followed by the fabrication of forward-swept, forward rotor blade sets to be wind tunnel tested with an aft-swept, aft rotor blade set. A third blade set was later produced from a NASA design that was based on wind tunnel test results from the first two blade sets. This blade set had a stiffer outer ply material added to the original blade design, in order to reach the design point operating line. Detailed analyses, feasibility studies, and fabrication procedures for all blade sets are presented.

  19. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  20. A flying superconducting magnet and cryostat for magnetic suspension of wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Britcher, C.; Goodyer, M. J.; Scurlock, R. G.; Wu, Y. Y.

    1984-01-01

    The engineering practicality of a persistent high-field superconducting solenoid cryostat as a magnetic suspension and balance system (MSBS) for wind-tunnel testing of aircraft and missile models is examined. The test apparatus is a simple solenoid of filamentary NbTi superconductor with a cupronickel matrix. The apparatus, with a length-to-diameter ratio of 6 to 1 and a radius of 32 mm, used a 0.25 mm wire with a critical current of 27 A in an external field of 6 T. The total heat inleak of 150 mW was achieved. Helium boiloff rates were tested over a range of operating conditions, including pitch attitudes from 10 deg nose down to 90 deg nose up; the rate was estimated as low, but the aerodynamic acceptability of venting gaseous helium has not been determined. It is shown that the effectiveness of the concept increases with increasing scale, and performance in excess of that of conventional ferromagnets is achievable with reduction in size and costs, and with aptness to transonic wind-tunnel testing. Detailed specifications and schematics are included.