Science.gov

Sample records for airfoil chord length

  1. Wind-tunnel investigation of NACA 23012, 23021, and 23030 airfoils equipped with 40-percent-chord double slotted flaps

    NASA Technical Reports Server (NTRS)

    Harris, Thomas A; Recant, Isidore G

    1941-01-01

    Report presents the results of an investigation conducted in the NACA 7 by 10-foot win tunnel to determine the effect of the deflection of main and auxiliary slotted flaps on the aerodynamic section characteristics of large-chord NACA 23012, 23021, 23030 airfoils equipped with 40-percent-chord double slotted flaps. The complete aerodynamic section characteristics and envelope polar curves are given for each airfoil-flap combination. The effect of airfoil thickness is shown, and comparisons are made of single slotted flaps with double slotted flaps on each of the airfoils.

  2. Exact Chord-Length Distribution For SEU Calculations

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Luke, Keung L.

    1990-01-01

    Computed rates of SEU's more accurate. Exact integral chord-length distribution derived for use in calculations of rates of single-event upsets (SEU's) (changes in logic states) caused by impingement of cosmic rays or other ionizing radiation on electronic logic circuits.

  3. Wind-Tunnel Investigation of an NACA 23021 Airfoil with a 0.32-Airfoil-Chord Double Slotted Flap

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Riebe, John M

    1944-01-01

    An investigation was made in the LMAL 7- by 10-foot wind tunnel of a NACA 23021 airfoil with a double slotted flap having a chord 32 percent of the airfoil chord (0.32c) to determine the aerodynamic section characteristics with the flaps deflected at various positions. The effects of moving the fore flap and rear flap as a unit and of deflecting or removing the lower lip of the slot were also determined. Three positions were selected for the fore flap and at each position the maximum lift of the airfoil was obtained with the rear flap at the maximum deflection used at that fore-flap position. The section lift of the airfoil increased as the fore flap was extended and maximum lift was obtained with the fore flap deflected 30 deg in the most extended position. This arrangement provided a maximum section lift coefficient of 3.31, which was higher than the value obtained with either a 0.2566c or a 0.40c single-slotted-flap arrangement and 0.25 less than the value obtained with a 0.4c double-slotted-flap arrangement on the same airfoil. The values of the profile-drag coefficient obtained with the 0.32c double slotted flap were larger than those for the 0.2566c or 0.40c single slotted flaps for section lift coefficients between 1.0 and approximately 2.7. At all values of the section lift coefficient above 1.0, the 0.40c double slotted flap had a lower profile drag than the 0.32c double slotted flap. At various values of the maximum section lift coefficient produced by various flap defections, the 0.32c double slotted flap gave negative section pitching-moment coefficients that were higher than those of other slotted flaps on the same airfoil. The 0.32c double slotted flap gave approximately the same maximum section lift coefficient as, but higher profile-drag coefficients over the entire lift range than, a similar arrangement of a 0.30c double slotted flap on an NACA 23012 airfoil.

  4. Pressure-distribution investigation of an N.A.C.A. 0009 airfoil with a 50-percent-chord plain flap and three tabs

    NASA Technical Reports Server (NTRS)

    Street, William G; Ames, Milton B

    1939-01-01

    Pressure-distribution tests of an N.A.C.A. 0009 airfoil with a 50-percent-chord plain flap and three plain tabs, having chords 10, 20, and 30 percent of the flap chord, were made in the N.A.C.A. 4- by 6- foot vertical tunnel. The tests supplied aerodynamic section data that may be applied to the design of horizontal and vertical tail surfaces. The results are presented as resultant-pressure diagrams for the airfoil with the flap and the 20-percent-chord tab. Plots are also given of increments of normal-force and hinge-moment coefficients for the airfoil, the flap, and the three tabs. The experimental results and values computed by analytical methods are in good agreement for small flap and tab deflections. The results of the tests indicated that the effectiveness of all three tab sizes in reducing flap hinge moments decreased with increasing flap deflection.

  5. Chord-length and free-path distribution functions for many-body systems

    NASA Astrophysics Data System (ADS)

    Lu, Binglin; Torquato, S.

    1993-04-01

    We study fundamental morphological descriptors of disordered media (e.g., heterogeneous materials, liquids, and amorphous solids): the chord-length distribution function p(z) and the free-path distribution function p(z,a). For concreteness, we will speak in the language of heterogeneous materials composed of two different materials or ``phases.'' The probability density function p(z) describes the distribution of chord lengths in the sample and is of great interest in stereology. For example, the first moment of p(z) is the ``mean intercept length'' or ``mean chord length.'' The chord-length distribution function is of importance in transport phenomena and problems involving ``discrete free paths'' of point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution function p(z,a) takes into account the finite size of a simple particle of radius a undergoing discrete free-path motion in the heterogeneous material and we show that it is actually the chord-length distribution function for the system in which the ``pore space'' is the space available to a finite-sized particle of radius a. Thus it is shown that p(z)=p(z,0). We demonstrate that the functions p(z) and p(z,a) are related to another fundamentally important morphological descriptor of disordered media, namely, the so-called lineal-path function L(z) studied by us in previous work [Phys. Rev. A 45, 922 (1992)]. The lineal path function gives the probability of finding a line segment of length z wholly in one of the ``phases'' when randomly thrown into the sample. We derive exact series representations of the chord-length and free-path distribution functions for systems of spheres with a polydispersivity in size in arbitrary dimension D. For the special case of spatially uncorrelated spheres (i.e., fully penetrable spheres) we evaluate exactly the aforementioned functions, the mean chord length, and the mean free path. We also obtain corresponding analytical formulas for the case

  6. Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets

    NASA Astrophysics Data System (ADS)

    Turner, David M.; Niezgoda, Stephen R.; Kalidindi, Surya R.

    2016-10-01

    Chord length distributions (CLDs) and lineal path functions (LPFs) have been successfully utilized in prior literature as measures of the size and shape distributions of the important microscale constituents in the material system. Typically, these functions are parameterized only by line lengths, and thus calculated and derived independent of the angular orientation of the chord or line segment. We describe in this paper computationally efficient methods for estimating chord length distributions and lineal path functions for 2D (two dimensional) and 3D microstructure images defined on any number of arbitrary chord orientations. These so called fully angularly resolved distributions can be computed for over 1000 orientations on large microstructure images (5003 voxels) in minutes on modest hardware. We present these methods as new tools for characterizing microstructures in a statistically meaningful way.

  7. Implementation of Chord Length Sampling for Transport Through a Binary Stochastic Mixture

    SciTech Connect

    T.J. Donovan; T.M. Sutton; Y. Danon

    2002-11-18

    Neutron transport through a special case stochastic mixture is examined, in which spheres of constant radius are uniformly mixed in a matrix material. A Monte Carlo algorithm previously proposed and examined in 2-D has been implemented in a test version of MCNP. The Limited Chord Length Sampling (LCLS) technique provides a means for modeling a binary stochastic mixture as a cell in MCNP. When inside a matrix cell, LCLS uses chord-length sampling to sample the distance to the next stochastic sphere. After a surface crossing into a stochastic sphere, transport is treated explicitly until the particle exits or is killed. Results were computed for a simple model with two different fixed neutron source distributions and three sets of material number densities. Stochastic spheres were modeled as black absorbers and varying degrees of scattering were introduced in the matrix material. Tallies were computed using the LCLS capability and by averaging results obtained from multiple realizations of the random geometry. Results were compared for accuracy and figures of merit were compared to indicate the efficiency gain of the LCLS method over the benchmark method. Results show that LCLS provides very good accuracy if the scattering optical thickness of the matrix is small ({le} 1). Comparisons of figures of merit show an advantage to LCLS varying between factors of 141 and 5. LCLS efficiency and accuracy relative to the benchmark both decrease as scattering is increased in the matrix.

  8. Effect of Compressibility on the Pressure and Forces Acting on a Modified NACA 65,3-019 Airfoil Having A 0.20-Chord Flap

    NASA Technical Reports Server (NTRS)

    Lindsey, W F

    1946-01-01

    An investigation has been conducted in the Langley rectangular high-speed tunnel to determine the effect of compressibility on the pressure distribution for a modified NACA 65,3-019 airfoil having a 0.20-chord flap. The investigation was made for an angle-of-attack range extending from -2 to 12 deg at .20 flap deflections from 0 to -12 deg. Test data were obtained for Mach numbers from 0.28 to approximately 0.74. The results show that the effectiveness of the trailing-edge-type control surface rapidly decreased and approached zero as the Mach number increased above the critical value.

  9. Airfoil structure

    SciTech Connect

    Frey, Gary A.; Twardochleb, Christopher Z.

    1998-01-01

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.

  10. Airfoil structure

    DOEpatents

    Frey, G.A.; Twardochleb, C.Z.

    1998-01-13

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

  11. Chord length sampling method for analyzing VHTR unit cells in continuous energy simulations

    SciTech Connect

    Liang, C.; Ji, W.; Brown, F. B.

    2012-07-01

    The chord length sampling method (CLS) is studied in the continuous energy simulations by applying it to analyzing two types of Very High Temperature Gas-cooled Reactor (VHTR) unit cells: the fuel compact cell in the prismatic type VHTR and the fuel pebble cell in the pebble-bed type VHTR. Infinite multiplication factors of the unit cells are calculated by the CLS and compared to the benchmark simulations at different volume packing fractions from 5% to 30%. It is shown that the accuracy of the CLS is affected by the boundary effect, which is induced by the CLS procedure itself and results in a reduction in the total volume packing fraction of the fuel particles. To mitigate the boundary effect, three correction schemes based on the research of 1) Murata et al. 2) Ji and Martin 3) Griesheimer et al. are used to improve the accuracy by applying a corrected value of the volume packing fraction to the CLS. These corrected values are calculated based on 1) a simple linear relationship, 2) an iterative self-consistent simulation correction method, and 3) a theoretically derived non-linear relationship, respectively. The CLS simulation using the corrected volume packing fraction shows excellent improvements in the infinite multiplication factors for the VHTR unit cells. Ji and Martin's self-consistent correction method shows the best improvement. (authors)

  12. Aerodynamic Characteristics of NACA 23012 and 23021 Airfoils with 20-Percent-chord External-Airfoil Flaps of NACA 23012 Section

    NASA Technical Reports Server (NTRS)

    Platt, Robert C; Abbott, Ira H

    1937-01-01

    Report presents the results of an investigation of the general aerodynamic characteristics of the NACA 23012 and 23021 airfoils, each equipped with a 0.20c external flap of NACA 23012 section. The tests were made in the NACA 7 by 10-foot and variable-density wind tunnels and covered a range of Reynolds numbers that included values corresponding to those for landing conditions of a wide range of airplanes. Besides a determination of the variation of lift and drag characteristics with position of the flap relative to the main airfoil, complete aerodynamic characteristics of the airfoil-flap combination with a flap hinge axis selected to give small hinge moments were measured in the two tunnels. Some measurements of air loads on the flap itself in the presence of the wing were made in the 7 by 10-foot wind tunnel.

  13. Impact of Spherical Inclusion Mean Chord Length and Radius Distribution on Three-Dimensional Binary Stochastic Medium Particle Transport

    SciTech Connect

    Brantley, P S; Martos, J N

    2011-03-02

    We describe a parallel benchmark procedure and numerical results for a three-dimensional binary stochastic medium particle transport benchmark problem. The binary stochastic medium is composed of optically thick spherical inclusions distributed in an optically thin background matrix material. We investigate three sphere mean chord lengths, three distributions for the sphere radii (constant, uniform, and exponential), and six sphere volume fractions ranging from 0.05 to 0.3. For each sampled independent material realization, we solve the associated transport problem using the Mercury Monte Carlo particle transport code. We compare the ensemble-averaged benchmark fiducial tallies of reflection from and transmission through the spatial domain as well as absorption in the spherical inclusion and background matrix materials. For the parameter values investigated, we find a significant dependence of the ensemble-averaged fiducial tallies on both sphere mean chord length and sphere volume fraction, with the most dramatic variation occurring for the transmission through the spatial domain. We find a weaker dependence of most benchmark tally quantities on the distribution describing the sphere radii, provided the sphere mean chord length used is the same in the different distributions. The exponential distribution produces larger differences from the constant distribution than the uniform distribution produces. The transmission through the spatial domain does exhibit a significant variation when an exponential radius distribution is used.

  14. Airfoil

    SciTech Connect

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  15. Low speed aerodynamic characteristics of NACA 6716 and NACA 4416 airfoils with 35 percent-chord single-slotted flaps. [low turbulence pressure tunnel tests to determine two dimensional lift and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1974-01-01

    An investigation was conducted in a low-turbulence pressure tunnel to determine the two-dimensional lift and pitching-moment characteristics of an NACA 6716 and an NACA 4416 airfoil with 35-percent-chord single-slotted flaps. Both models were tested with flaps deflected from 0 deg to 45 deg, at angles of attack from minus 6 deg to several degrees past stall, at Reynolds numbers from 3.0 million to 13.8 million, and primarily at a Mach number of 0.23. Tests were also made to determine the effect of several slot entry shapes on performance.

  16. The effect of a cavity on airfoil tones

    NASA Astrophysics Data System (ADS)

    Schumacher, Karn L.; Doolan, Con J.; Kelso, Richard M.

    2014-03-01

    The presence of a cavity in the pressure surface of an airfoil has been found via experiment to play a role in the production of airfoil tones, which was attributed to the presence of an acoustic feedback loop. The cavity length was sufficiently small that cavity oscillation modes did not occur for most of the investigated chord-based Reynolds number range of 70,000-320,000. The airfoil tonal noise frequencies varied as the position of the cavity was moved along a parallel section at the airfoil's maximum thickness: specifically, for a given velocity, the frequency spacing of the tones was inversely proportional to the geometric distance between the cavity and the trailing edge. The boundary layer instability waves considered responsible for the airfoil tones were only detected downstream of the cavity. This may be the first experimental verification of these aspects of the feedback loop model for airfoil tonal noise.

  17. A low speed two-dimensional study of flow separation on the GA(W)-1 airfoil with 30-percent chord Fowler flap

    NASA Technical Reports Server (NTRS)

    Seetharam, H. C.; Wentz, W. H., Jr.

    1977-01-01

    Measurements of flow fields with low speed turbulent boundary layers were made for the GA(W)-1 airfoil with a 0.30 c Fowler flap deflected 40 deg at angles of attack of 2.7 deg, 7.7 deg, and 12.8 deg, at a Reynolds number of 2.2 million, and a Mach number of 0.13. Details of velocity and pressure fields associated with the airfoil flap combination are presented for cases of narrow, optimum and wide slot gaps. Extensive flow field turbulence surveys were also conducted employing hot-film anemometry. For the optimum gap setting, the boundaries of the regions of flow reversal within the wake were determined by this technique for two angles of attack. Local skin friction distributions for the basic airfoil and the airfoil with flap (optimum gap) were obtained using the razor blade technique.

  18. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils

    NASA Astrophysics Data System (ADS)

    Rojratsirikul, P.; Wang, Z.; Gursul, I.

    2010-04-01

    Aerodynamic characteristics of two-dimensional membrane airfoils were experimentally investigated in a wind tunnel. The effects of the membrane pre-strain and excess length on the unsteady aspects of the fluid-structure interaction were studied. The deformation of the membrane as a function of angle of attack and free-stream velocity was measured using a high-speed camera. These measurements were complemented by the measurements of unsteady velocity field with a high frame-rate Particle Image Velocimetry (PIV) system as well as smoke visualization. Membrane airfoils with excess length exhibit higher vibration modes, earlier roll-up of vortices, and smaller separated flow regions, whereas the membranes with pre-strain generally behave more similarly to a rigid airfoil. Measured frequencies of the membrane vibrations suggest a possible coupling with the wake instabilities at high incidences for all airfoils.

  19. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  20. Airfoils for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  1. Turbine airfoil to shroud attachment method

    DOEpatents

    Campbell, Christian X; Kulkarni, Anand A; James, Allister W; Wessell, Brian J; Gear, Paul J

    2014-12-23

    Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) of the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.

  2. Additional flow field studies of the GA(W)-1 airfoil with 30-percent chord Fowler flap including slot-gap variations and cove shape modifications

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Ostowari, C.

    1983-01-01

    Experimental measurements were made to determine the effects of slot gap opening and flap cove shape on flap and airfoil flow fields. Test model was the GA(W)-1 airfoil with 0.30c Fowler flap deflected 35 degrees. Tests were conducted with optimum, wide and narrow gaps, and with three cove shapes. Three test angles were selected, corresponding to pre-stall and post-stall conditions. Reynolds number was 2,200,000 and Mach number was 0.13. Force, surface pressure, total pressure, and split-film turbulence measurements were made. Results were compared with theory for those parameters for which theoretical values were available.

  3. Oscillatory blowing airfoil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    10' NACA 0015 with 30% chord trailing edge flap deflected 20 degrees. Used in 0.3 Meter Transonic Cryogenic Tunnel, this airfoil has a 0.44 mm slot at 70% chord. Oscillatory blowing out of slot used for separation control. Howard Price appears in side view shot, in building 1145, Studio.

  4. A study of flow past an airfoil with a jet issuing from its lower surface

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.; Leopold, D.

    1984-01-01

    The aerodynamics of a NACA 0018 airfoil with a rectangular jet of finite aspect ratio exiting from its lower surface at 90 deg to the chord were investigated. The jet was located at 50% of the wing chord. Measurements include static pressures on the airfoil surface, total pressures in the near wake, and local velocity vectors in different planes of the wake. The effects of jet cross flow interaction on the aerodynamics of the airfoil are studied. It is indicated that at all values of momentum coefficients, the jet cross flow interaction produces a strong contra-rotating vortex structure in the near wake. The flow behind the jet forms a closed recirculation region which extends up to a chord length down stream of the trailing edge which results in the flow field to become highly three dimensional. The various aerodynamic force coefficients vary significantly along the span of the wing. The results are compared with a jet flap configuration.

  5. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics

    PubMed Central

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty. PMID:27347517

  6. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.

    PubMed

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty.

  7. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  8. An exact, closed-form expression of the integral chord-length distribution for the calculation of single-event upsets induced by cosmic rays

    NASA Technical Reports Server (NTRS)

    Luke, Keung L.; Buehler, Martin G.

    1988-01-01

    This paper presents a derivation of an exact closed-form expression of the integral chord-length distribution for the calculation of single-event upsets (SEUs) in an electronic memory cell, caused by cosmic rays. Results computed for two rectangular parallelepipeds using this exact expression are compared with those computed with Bradford's (1979) semiexact expression of C(x). It is found that the values of C(x) are identical for x equal or smaller than b but are vastly different for x greater than b. Moreover, while C(x) of Bradford gives reasonably accurate values of SEU rate for certain sets of computational parameters, it gives values more than 10 times larger than the correct values for other sets of parameters.

  9. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values

  10. Shapes for rotating airfoils

    NASA Technical Reports Server (NTRS)

    Bingham, G. J. (Inventor)

    1984-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft and aircraft propellers is presented. The airfoil thickness distribution, camber and leading edge radius are shaped to locate the airfoil crest at a more aft position along the chord, and to increase the freestream Mach number at which sonic flow is attained at the airfoil crest. The reduced slope of the airfoil causes a reduction in velocity at the airfoil crest at lift coefficients from zero to the maximum lift coefficient. The leading edge radius is adjusted so that the maximum local Mach number at 1.25 percent chord and at the designed maximum lift coefficient is limited to about 0.48 when the Mach number normal to the leading edge is approximately 0.20. The lower surface leading edge radius is shaped so that the maximum local Mach number at the leading edge is limited to about 0.29 when the Mach number normal to the leading edge is approximately 0.20. The drag divergence Mach number associated with the airfoil is moved to a higher Mach number over a range of lift coefficients resulting in superior aircraft performance.

  11. Numerical Investigations of an Optimized Airfoil with a Rotary Cylinder

    NASA Astrophysics Data System (ADS)

    Gada, Komal; Rahai, Hamid

    2015-11-01

    Numerical Investigations of an optimized thin airfoil with a rotary cylinder as a control device for reducing separation and improving lift to drag ratio have been performed. Our previous investigations have used geometrical optimization for development of an optimized airfoil with increased torque for applications in a vertical axis wind turbine. The improved performance was due to contributions of lift to torque at low angles of attack. The current investigations have been focused on using the optimized airfoil for micro-uav applications with an active flow control device, a rotary cylinder, to further control flow separation, especially during wind gust conditions. The airfoil has a chord length of 19.66 cm and a width of 25 cm with 0.254 cm thickness. Previous investigations have shown flow separation at approximately 85% chord length at moderate angles of attack. Thus the rotary cylinder with a 0.254 cm diameter was placed slightly downstream of the location of flow separation. The free stream mean velocity was 10 m/sec. and investigations have been performed at different cylinder's rotations with corresponding tangential velocities higher than, equal to and less than the free stream velocity. Results have shown more than 10% improvement in lift to drag ratio when the tangential velocity is near the free stream mean velocity. Graduate Assistant, Center for Energy and Environmental Research and Services (CEERS), College of Engineering, California State University, Long Beach.

  12. Effects of finite aspect ratio on wind turbine airfoil measurements

    NASA Astrophysics Data System (ADS)

    Kiefer, Janik; Miller, Mark A.; Hultmark, Marcus; Hansen, Martin O. L.

    2016-09-01

    Wind turbines partly operate in stalled conditions within their operational cycle. To simulate these conditions, it is also necessary to obtain 2-D airfoil data in terms of lift and drag coefficients at high angles of attack. Such data has been obtained previously, but often at low aspect ratios and only barely past the stall point, where strong wall boundary layer influence is expected. In this study, the influence of the wall boundary layer on 2D airfoil data, especially in the post stall domain, is investigated. Here, a wind turbine airfoil is tested at different angles of attack and with two aspect ratios of AR = 1 and AR = 2. The tests are conducted in a wind tunnel that is pressurized up to 150 bar in order to achieve a constant Reynolds number of Rec = 3 • 106, despite the variable chord length.

  13. Study on Busemann Biplane Airfoil in Low-Speed Smoke Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Kashitani, Masashi; Yamaguchi, Yutaka; Kai, Yoshiharu; Hirata, Kenichi; Kusunose, Kazuhiro

    The Busemann biplane airfoil is considered one of the candidates for reducing sonic boom. In aircraft designs utilizing the biplane concept, high-lift devices must be used for takeoff and landing in low-speed conditions. In this work, flow visualizations were performed around a Busemann biplane airfoil equipped with leading and trailing edge flaps in a smoke wind tunnel. The lift coefficient of the biplane airfoil was estimated by utilizing a method based on measurements of smoke line patterns. The aspect ratio of the baseline Busemann biplane model was 0.75, the thickness ratio of the single element was 5%, and the wave cancellation condition was designed for Mach number 1.7. The length of each of the flap chords was 30% of the baseline. The Reynolds number, which is based on the chord length of the airfoil, is about 2.8×105. The results of the study are summarized as follows. For the baseline Busemann airfoil without flaps, the lift coefficient increases linearly as the angle of attack increases. The slope of the lift coefficient cl is 0.062 (1/deg.), which is in good agreement with reference data. This indicates that measuring smoke line patterns is a valid method for estimating the lift coefficient of biplane airfoils. Based on the visualization of the flow around the biplane model equipped with deflected leading and trailing edge flaps, confirmed that the separation bubble is smaller than in the baseline model due to the effective increase in camber. When the deflection angle of the trailing edge flap is increased, the lift coefficient also increases. The trend of the increasing cl is similar to that of conventional monoplane airfoil models with trailing edge flaps. Therefore, such flaps can be considered effective high-lift devices for Busemann biplane airfoils.

  14. Flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  15. Flow visualization around a double wedge airfoil model with focusing schlieren system

    NASA Astrophysics Data System (ADS)

    Kashitani, Masashi; Yamaguchi, Yutaka

    2006-03-01

    In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shock tube are dry air. The airfoil model of double wedge has the span of 58 mm, chord length c = 75 mm and its maximum thickness is 7.5 mm. The apex of the double wedge airfoil model is located on the 35% chord length from the leading edge. The range of hot gas Mach numbers are from 0.80 to 0.88, and the Reynolds numbers based on chord length are 3.11 × 105 ˜ 3.49 × 105, respectively. The flow visualizations were performed by the sharp focusing schlieren method which can visualize the three dimensional flow fields. The results show that the present system can visualize the transonic flowfield clearer than the previous system, and the shock wave profiles of the center of span in the test section are visualized

  16. On the lift increments with the occurrence of airfoil tones at low Reynodls numbers

    NASA Astrophysics Data System (ADS)

    Ikeda, Tomoaki; Fujimoto, Daisuke; Inasawa, Ayumu; Asai, Masahito

    2015-11-01

    The aeroacoustic effects on the aerodynamics of an NACA 0006 airfoil are investigated experimentally at relatively low Reynolds numbers, Re = 30 , 000 - 70 , 000 . By employing two wind-testing airfoil models at different chord lengths, L = 40 and 100 [mm], the aerodynamic dependence on Mach number is examined at a given Reynolds number. In a particular range of Reynolds number, tonal peaks of trailing-edge noise are obtained from a shorter-chord airfoil, while no apparent tones are observed with longer chord length at a lower Mach number. Surprisingly, the occurrence of a tonal noise leads to a greater lift slope in the present wind-tunnel experiment, evaluated via a PIV approach. The lift curves obtained experimentally at higher Mach numbers agree well with two-dimensional numerical simulations, performed at M = 0 . 2 . At the Mach number, the numerical results clearly indicate the occurrence of an acoustic feedback loop with discrete tones, within a range of angle of attack. A few three dimensional numerical results are also presented. In the simulation at Re = 50 , 000 , the suppression of tonal noise corresponds to the development of a turbulent wedge in the suction-side boundary layer at the angle of attack 4 . 0 [deg.], which agrees with the experiment. This work was supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (Grant No. 25420139).

  17. Chord Splicing & Joining Detail; Chord & CrossBracing Joint Details; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord Splicing & Joining Detail; Chord & Cross-Bracing Joint Details; Cross Bracing Center Joint Detail; Chord & Diagonal Joint Detail - Vermont Covered Bridge, Highland Park, spanning Kokomo Creek at West end of Deffenbaugh Street (moved to), Kokomo, Howard County, IN

  18. Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie & Diagonal Brace Joint Detail; Chord, Panel Post, Tie & Crossbracing Joint Detail - Dunlapsville Covered Bridge, Spanning East Fork Whitewater River, Dunlapsville, Union County, IN

  19. Reduction of airfoil trailing edge noise by trailing edge blowing

    NASA Astrophysics Data System (ADS)

    Gerhard, T.; Erbslöh, S.; Carolus, T.

    2014-06-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.

  20. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  1. Flow-induced noise of a wall-mounted finite airfoil at low-to-moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Moreau, Danielle J.; Prime, Zebb; Porteous, Ric; Doolan, Con J.; Valeau, Vincent

    2014-12-01

    This paper presents an experimental investigation of the flow-induced noise created by a wall-mounted finite airfoil at low-to-moderate Reynolds number and zero angle of attack. Far-field noise measurements have been taken at a single observer location and with two perpendicular microphone arrays in an anechoic wind tunnel at Reynolds numbers of Rec=9.2×104-1.6×105, based on chord, and for a variety of airfoil aspect ratios (length to chord ratio of L/C=0.2-2, corresponding to length to thickness ratio of L/T=1.7-16.7). Additionally, surface oil-film visualisation images and unsteady velocity measurements taken in the near trailing edge wake are related to far-field noise measurements to determine the flow mechanisms responsible for noise generation. The results show that the wall-mounted finite airfoil radiates noise similar to a two-dimensional airfoil when L/T>8.3. Despite the incoming boundary layer height at the junction being 1.30≤δ/T≤1.46, junction and tip flow suppresses tonal noise production for airfoil's up to L/T=8.3 at Rec=9.2×104-1.2×105. Trailing edge noise is found to be the dominant airfoil noise generation mechanism at frequencies above 1 kHz with the position of the noise source along the trailing edge determined by the proportion of the airfoil span influenced by flow at the airfoil-wall junction.

  2. LES tests on airfoil trailing edge serration

    NASA Astrophysics Data System (ADS)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-09-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x106. In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device.

  3. Design considerations of advanced supercritical low drag suction airfoils

    NASA Technical Reports Server (NTRS)

    Pfenninger, W.; Reed, H. L.; Dagenhart, J. R.

    1980-01-01

    Supercritical low drag suction laminar flow airfoils were laid out for shock-free flow at design freestream Mach = 0.76, design lift coefficient = 0.58, and t/c = 0.13. The design goals were the minimization of suction laminarization problems and the assurance of shock-free flow at freestream Mach not greater than design freestream Mach (for design lift coefficient) as well as at lift coefficient not greater than design lift coefficient (for design freestream Mach); this involved limiting the height-to-length ratio of the supersonic zone at design to 0.35. High design freestream Mach numbers result with extensive supersonic flow (over 80% of the chord) on the upper surface, with a steep Stratford-type rear pressure rise with suction, as well as by carrying lift essentially in front- and rear-loaded regions of the airfoil with high static pressures on the carved out front and rear lower surface.

  4. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  5. The effects of actuation frequency on the separation control over an airfoil using a synthetic jet

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Okada, K.; Nonomura, T.; Fujii, K.

    2015-06-01

    The simulation of separation control using a synthetic jet (SJ) is conducted around an NACA (National Advisory Committee for Aeronautics) 0015 airfoil by large-eddy simulation (LES) with a compact difference scheme. The synthetic jet is installed at the leading edge of the airfoil and the effects of an actuation frequency F+ (normalized by chord length and velocity of freestream) are observed. The lift-drag coefficient is recovered the most for F+ = 6. The relationship between momentum addition by turbulent mixing and large vortex structures is investigated using a phase-averaging procedure based on F+. The Reynolds shear stress is decomposed into periodic and turbulent components where the turbulent components are found to be dominant on the airfoil. The strong turbulent components appear near the large vortex structures that are observed in phase- and span-averaged flow fields.

  6. A visualization study of the interaction of a free vortex with the wake behind an airfoil

    NASA Astrophysics Data System (ADS)

    Świrydczuk, J.

    1990-06-01

    The two-dimensional interaction of a single vortex with a thin symmetrical airfoil and its vortex wake has been investigated in a low turbulence wind tunnel having velocity of about 2 m/s in the measuring section. The flow Reynolds number based on the airfoil chord length was 4.5 × 103. The investigation was carried out using a smoke-wire visualization technique with some support of standard hot-wire measurements. The experiment has proved that under certain conditions the vortex-airfoil-wake interaction leads to the formation of new vortices from the part of the wake positioned closely to the vortex. After the formation, the vortices rotate in the direction opposite to that of the incident vortex.

  7. Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence

    NASA Technical Reports Server (NTRS)

    Paterson, R. W.

    1976-01-01

    A theoretical and experimental investigation of the noise and unsteady surface pressure characteristics of an isolated airfoil in a uniform mean velocity, homogeneous, nearly-isotropic turbulence field was conducted. Wind tunnel experiments were performed with a 23 cm chord, two dimensional NACA 0012 airfoil over a free stream Mach number range of 0.1 to 0.5. Far-field noise spectra and directivity were measured in an anechoic chamber that surrounded the tunnel open jet test section. Spanwise and chordwise distribution of unsteady airfoil surface pressure spectra and surface pressure cross-spectra were obtained. Incident turbulence intensities, length scales, spectra, and spanwise cross-spectra, required in the calculation of far-field noise and surface pressure characteristics were also measured.

  8. Aerodynamic performance of transonic and subsonic airfoils: Effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang

    The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface

  9. An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence

    NASA Technical Reports Server (NTRS)

    Mish, Patrick F.; Devenport, William J.

    2003-01-01

    Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative

  10. Wind-Tunnel Investigation of Wings with Ordinary Ailerons and Full-Span External-Airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Platt, Robert C; Shortal, Joseph A

    1937-01-01

    Report presents an investigation carried out in the NACA 7- by 10-foot wind tunnel of an NACA 23012 airfoil equipped, first, with a full-span NACA 23012 external-airfoil flap having a chord 0.20 of the main airfoil chord and with a full-span aileron with a chord 0.12 of the main airfoil chord on the trailing edge of the main airfoil and equipped second, with a 0.30-chord full-span NACA 23012 external-airfoil flap and a 0.13-chord full-span aileron. The results are arranged in three groups, the first two of which deal with the airfoil characteristics of the two airfoil-flap combinations and with the internal-control characteristics of the airfoil-flap-aileron combinations. The third group of tests deals with several means for balancing ailerons mounted on a special large-chord NACA 23012 external-airfoil flap. The tests included an ordinary aileron, a curtained-nose balance, a frise balance, and a tab.

  11. Lift-Enhancing Tabs on Multielement Airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Storms, Bruce L.; Carrannanto, Paul G.

    1995-01-01

    The use of flat-plate tabs (similar to Gurney flaps) to enhance the lift of multielement airfoils is extended here by placing them on the pressure side and near the trailing edge of the main element rather than just on the furthest downstream wing element. The tabs studied range in height from 0.125 to 1.25% of the airfoil reference chord. In practice, such tabs would be retracted when the high-lift system is stowed. The effectiveness of the concept was demonstrated experimentally and computationally on a two-dimensional NACA 63(sub 2)-215 Mod B airfoil with a single-slotted, 30%-chord flap. Both the experiments and computations showed that the tabs significantly increase the lift at a given angle of attack and the maximum lift coefficient of the airfoil. The computational results showed that the increased lift was a result of additional turning of the flow by the tab that reduced or eliminated now separation on the flap. The best configuration tested, a 0.5%-chord tab placed 0.5% chord upstream of the trailing edge of the main element, increased the maximum lift coefficient of the airfoil by 12% and the maximum lift-to-drag ratio by 40%.

  12. 5. Underside of deck showing lower chords, lower chord connections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Underside of deck showing lower chords, lower chord connections, stringers, and beams, looking east - Main Street Bridge, Spanning Sugar River at Main Street (State Routes 12 & 103), Claremont, Sullivan County, NH

  13. Rediscovering Lost Chords.

    ERIC Educational Resources Information Center

    Anderson, Robert H.

    2000-01-01

    Few great ideas to guide school practice are totally new. Conscientious educators have hit some good chords over the years; the challenge is recapturing that music and building a (pedagogical) symphony around it. Philosophical ideas about teachers' views of children, curriculum, teachers, and organizational structures are discussed. (MLH)

  14. Design procedure for low-drag subsonic airfoils

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Chen, A. B.

    1975-01-01

    Airfoil has least amount of drag under given restrictions of boundary layer transition position, lift coefficient, thickness ratio, and Reynolds number based on airfoil chord. It is suitable for use as wing and propeller aircraft sections operating at subsonic speeds and for hydrofoil sections and blades for fans, compressors, turbines, and windmills.

  15. Cryogenic Tunnel Pressure Measurements on a Supercritical Airfoil for Several Shock Buffet Conditions

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Edwards, John W.

    1997-01-01

    Steady and unsteady experimental data are presented for several fixed geometry conditions from a test in the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The purpose of this test was to obtain unsteady data for transonic conditions on a fixed and pitching supercritical airfoil at high Reynolds numbers. Data and brief analyses for several of the fixed geometry test conditions will be presented here. These are at Reynolds numbers from 6 x 10(exp 6) to 35 x 10(exp 6) bases on chord length, and span a limited range of Mach numbers and angles of attack just below and at the onset of shock buffet. Reynolds scaling effects appear in both the steady pressure data and in the onset of shock buffet at Reynolds numbers of 15 x 10(exp 6) and 3O x 10(exp 6) per chord length.

  16. An experimental evaluation of the application of the Kirchhoff formulation for sound radiation from an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.

    1977-01-01

    The Kirchhoff integral formulation is evaluated for its effectiveness in quantitatively predicting the sound radiated from an oscillating airfoil whose chord length is comparable with the acoustic wavelength. A rigid airfoil section was oscillated at samll amplitude in a medium at rest to produce the sound field. Simultaneous amplitude and phase measurements were made of surface pressure and surface velocity distributions and the acoustic free field. Measured surface pressure and motion are used in applying the theory, and airfoil thickness and contour are taken into account. The result was that the theory overpredicted the sound pressure level by 2 to 5, depending on direction. Differences are also noted in the sound field phase behavior.

  17. The geometry of musical chords.

    PubMed

    Tymoczko, Dmitri

    2006-07-01

    A musical chord can be represented as a point in a geometrical space called an orbifold. Line segments represent mappings from the notes of one chord to those of another. Composers in a wide range of styles have exploited the non-Euclidean geometry of these spaces, typically by using short line segments between structurally similar chords. Such line segments exist only when chords are nearly symmetrical under translation, reflection, or permutation. Paradigmatically consonant and dissonant chords possess different near-symmetries and suggest different musical uses.

  18. Effect of Variation of Chord and Span of Ailerons on Rolling and Yawing Moments at Several Angles of Pitch

    NASA Technical Reports Server (NTRS)

    Heald, R H; Strother, D H; Monish, B H

    1931-01-01

    This report presents the results of an extension to higher angles of attack of the investigation of the rolling and yawing moments due to ailerons of various chords and spans on two airfoils having the Clark Y and U. S. A. 27 wings. The measurements were made at various angles of pitch but at zero angle of roll and yaw, the wing chord being set at an angle of +4 degrees to the fuselage axis. In the case of the Clark Y airfoil the measurements have been extended to a pitch angle of 40 degrees, using ailerons of span equal to 67 per cent of the wing semispan and chord equal to 20 and 30 per cent of the wing chord. The work was conducted on wing models of 60-inch span and 10-inch chord.

  19. Calculation of real-gas effects on airfoil aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Park, Chul; Yoon, Seokkwan

    1990-01-01

    The effects of high temperature thermochemical phenomena on the aerodynamic characteristics at hypersonic speeds are calculated for two-dimensional airfoils in air. The calculations are performed on an airfoil similar to that used for the Space Shuttle Orbiter, and ellipses of thickness ratios varying between 5 and 15 percent. For the airfoil, one flight condition is considered. For the ellipses, the calculations are carried out over a range of chord lengths, flight velocities, flight altitudes, and angles of attack. It is shown that the lift and drag coefficients are consistently reduced by the thermochemical phenomena, and that the behavior can be represented by a specific heat ratio value less than 1.4. The center of pressure shifts forward due to the thermochemical phenomena, but its extent is sensitively affected by the geometry and angle of attack and cannot be represented by a fixed specific heat ratio. The calculated results are in qualitative agreement with the data obtained during the entry flights of the Space Shuttle vehicle.

  20. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  1. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1995-01-01

    An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supersonic flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supersonic region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-geometry, or dynamically deformable leading edge (DDLE), is under development as a unique active flow-control device. The DDLE, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point diffraction interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the pitching airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.

  2. Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow.

    PubMed

    Blandeau, Vincent P; Joseph, Phillip F; Jenkins, Gareth; Powles, Christopher J

    2011-06-01

    An analytical model of the sound power radiated from a flat plate airfoil of infinite span in a 2D turbulent flow is presented. The effects of stagger angle on the radiated sound power are included so that the sound power radiated upstream and downstream relative to the fan axis can be predicted. Closed-form asymptotic expressions, valid at low and high frequencies, are provided for the upstream, downstream, and total sound power. A study of the effects of chord length on the total sound power at all reduced frequencies is presented. Excellent agreement for frequencies above a critical frequency is shown between the fast analytical isolated airfoil model presented in this paper and an existing, computationally demanding, cascade model, in which the unsteady loading of the cascade is computed numerically. Reasonable agreement is also observed at low frequencies for low solidity cascade configurations.

  3. 16. Typical end post, top chord, bottom chord, vertical lattice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Typical end post, top chord, bottom chord, vertical lattice and diagonal connections for the 2nd and 3rd spans. View is of south side of 3rd span just west of its connection with the 4th span. - Cleves Bridge, Spanning Great Miami River on U.S. Highway 50, Cleves, Hamilton County, OH

  4. 27. Typical end post, top chord, bottom chord, vertical lattice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Typical end post, top chord, bottom chord, vertical lattice and diagonal connections for the 1st and 4th spans. View is of south side of 4th span just east of its connection with the 3rd span. - Cleves Bridge, Spanning Great Miami River on U.S. Highway 50, Cleves, Hamilton County, OH

  5. Darrieus wind-turbine airfoil configurations

    SciTech Connect

    Migliore, P.G.; Fritschen, J.R.

    1982-06-01

    The purpose of this study was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Analysis was limited to machines using two blades of infinite aspect ratio, having rotor solidites from seven to twenty-one percent, and operating at maximum Reynolds numbers of approximately three million. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA four-digit airfoils which have historically been chosen for Darrieus turbines. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63/sub 2/-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63/sub 2/-015 airfoil to an appropriate shape.

  6. Airfoil Dynamic Stall and Rotorcraft Maneuverability

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2000-01-01

    The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.

  7. Ground effect on the aerodynamics of a two-dimensional oscillating airfoil

    NASA Astrophysics Data System (ADS)

    Lu, H.; Lua, K. B.; Lim, T. T.; Yeo, K. S.

    2014-07-01

    This paper reports results of an experimental investigation into ground effect on the aerodynamics of a two-dimensional elliptic airfoil undergoing simple harmonic translation and rotational motion. Ground clearance ( D) ranging from 1 c to 5 c (where c is the airfoil chord length) was investigated for three rotational amplitudes ( α m) of 30°, 45° and 60° (which respectively translate to mid-stroke angle of attack of 60°, 45° and 30°). For the lowest rotational amplitude of 30°, results show that an airfoil approaching a ground plane experiences a gradual decrease in cycle-averaged lift and drag coefficients until it reaches D ≈ 2.0 c, below which they increase rapidly. Corresponding DPIV measurement indicates that the initial force reduction is associated with the formation of a weaker leading edge vortex and the subsequent force increase below D ≈ 2.0 c may be attributed to stronger wake capture effect. Furthermore, an airfoil oscillating at higher amplitude lessens the initial force reduction when approaching the ground and this subsequently leads to lift distribution that bears striking resemblance to the ground effect on a conventional fixed wing in steady translation.

  8. Computational design and analysis of flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-03-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  9. Performance predictions of VAWTs with NLF airfoil blades

    SciTech Connect

    Masson, C.; Leclerc, C.; Paraschivoiu, I.

    1997-02-01

    The successful design of an efficient Vertical Axis Wind Turbine (VAWT) can be obtained only when appropriate airfoil sections have been selected. Most VAWTs currently operating worldwide use blades of symmetrical NACA airfoil series. As these blades were designed for aviation applications, Sandia National Laboratories developed a family of airfoils specifically designed for VAWTs in order to decrease the Cost of Energy (COE) of the VAWT (Berg, 1990). Objectives formulated for the blade profile were: modest values of maximum lift coefficient, low drag at low angle of attack, high drag at high angle of attack, sharp stall, and low thickness-to-chord ratio. These features are similar to those of Natural Laminar Flow airfoils (NLF) and gave birth to the SNLA airfoil series. This technical brief illustrates the benefits and losses resulting from using NLF airfoils on VAWT blades. To achieve this goal, the streamtube model of Paraschivoiu (1988) is used to predict the performance of VAWTs equipped with blades of various airfoil shapes. The airfoil shapes considered are the conventional airfoils NACA 0018 and NACA 0021, and the SNLA 0018/50 airfoil designed at Sandia. Furthermore, the potential benefit of reducing the airfoil drag is clearly illustrated by the presentation of the individual contributions of lift and drag to power.

  10. The conformal transformation of an airfoil into a straight line and its application to the inverse problem of airfoil theory

    NASA Technical Reports Server (NTRS)

    Mutterperl, William

    1944-01-01

    A method of conformal transformation is developed that maps an airfoil into a straight line, the line being chosen as the extended chord line of the airfoil. The mapping is accomplished by operating directly with the airfoil ordinates. The absence of any preliminary transformation is found to shorten the work substantially over that of previous methods. Use is made of the superposition of solutions to obtain a rigorous counterpart of the approximate methods of thin-airfoils theory. The method is applied to the solution of the direct and inverse problems for arbitrary airfoils and pressure distributions. Numerical examples are given. Applications to more general types of regions, in particular to biplanes and to cascades of airfoils, are indicated. (author)

  11. Determination of Boundary-Layer Transition on Three Symmetrical Airfoils in the NACA Full-Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Becker, John V

    1938-01-01

    For the purpose of studying the transition from laminar to turbulent flow, boundary-layer measurements were made in the NACA full-scale wind tunnel on three symmetrical airfoils of NACA 0009, 0012, and 0018 sections. The effects of variations in lift coefficient, Reynolds number, and airfoil thickness on transition were investigated. Air speed in the boundary layer was measured by total-head tubes and by hot wires; a comparison of transition as indicated by the two techniques was obtained. The results indicate no unique value of Reynolds number for the transition, whether the Reynolds number is based upon the distance along the chord or upon the thickness of the boundary layer at the transition point. In general, the transition is not abrupt and occurs in a region that varies in length as a function of the test conditions.

  12. Wind-tunnel investigation of effects of trailing-edge geometry on a NASA supercritical airfoil section

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1971-01-01

    Wind-tunnel tests have been conducted at Mach numbers from 0.60 to 0.81 to determine the effects of trailing-edge geometry on the aerodynamic characteristics of a NASA supercritical airfoil shape. Variations in trailing-edge thicknesses from 0 to 1.5 percent of the chord and a cavity in the trailing edge were investigated with airfoils with maximum thicknesses of 10 and 11 percent of the chord.

  13. PIC Detector for Piano Chords

    NASA Astrophysics Data System (ADS)

    Barbancho, Ana M.; Tardón, Lorenzo J.; Barbancho, Isabel

    2010-12-01

    In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.

  14. Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    2008-01-01

    Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

  15. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  16. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  17. Numerical investigation of acoustic radiation from vortex-airfoil interaction

    NASA Astrophysics Data System (ADS)

    Legault, Anne; Ji, Minsuk; Wang, Meng

    2012-11-01

    Numerical simulations of vortices interacting with a NACA 0012 airfoil and a flat-plate airfoil at zero angle of attack are carried out to assess the applicability and accuracy of classical theories. Unsteady lift and sound are computed and compared with the predictions by theories of Sears and Amiet, which assume a thin-plate airfoil in an inviscid flow. A Navier-Stokes solver is used in the simulations, and therefore viscous effects are taken into consideration. For the thin-plate airfoil, the effect of viscosity is negligible. For a NACA 0012 airfoil, the viscous contribution to the unsteady lift and sound mainly comes from coherent vortex shedding in the wake of the airfoil and the interaction of the incoming vortices with the airfoil wake, which become stronger at higher Reynolds numbers for a 2-D laminar flow. When the flow is turbulent at chord Reynolds number of 4 . 8 ×105 , however, the viscous contribution becomes negligible as coherent vortex shedding is not present. Sound radiation from vortex-airfoil interaction at turbulent Reynolds numbers is computed numerically via Lighthill's theory and the result is compared with the predictions of Amiet and Curle. The effect of the airfoil thickness is also examined. Supported by ONR Grant N00014-09-1-1088.

  18. Investigation of wave phenomena on a blunt airfoil with straight and serrated trailing edges

    NASA Astrophysics Data System (ADS)

    Nies, Juliane M.; Gageik, Manuel A.; Klioutchnikov, Igor; Olivier, Herbert

    2015-07-01

    An investigation of pressure waves in compressible subsonic and transonic flow around a generic airfoil is performed in a modified shock tube. New comprehensive results are presented on pressure waves in compressible flow. For the first time, the influence of trailing edge serration will be examined in terms of the reduction in pressure wave amplitude. A generic airfoil is tested in two main configurations, one with blunt trailing edges and the other one with serrated trailing edges in a Mach number range from 0.6 to 0.8 and at chord Reynolds numbers of 1 × 106 < Re c < 5 ×106. The flow of the blunt trailing edge is characterized by a regular vortex street in the wake creating a regular pattern of upstream-moving pressure waves along the airfoil. The observed pressure waves lead to strong pressure fluctuations within the local flow field. A reduction in the trailing edge thickness leads to a proportional increase in the frequency of the vortex street in the wake as well as the frequency of the waves deduced from constant Strouhal number. By serrating the trailing edge, the formation of vortices in the wake is disturbed. Therefore, also the upstream-moving waves are influenced and reduced in their strength resulting in a steadier flow. An increasing length of the saw tooth enhances the three dimensionality of the structures in the wake and causes a strong decrease in the wave amplitude.

  19. Inequalities for Means of Chords, with Application to Isoperimetric Problems

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Harrell, Evans M.; Loss, Michael

    2006-03-01

    We consider a pair of isoperimetric problems arising in physics. The first concerns a Schrödinger operator in L^2(mathbb{R}^2) with an attractive interaction supported on a closed curve Γ, formally given by -Δ-αδ( x-Γ); we ask which curve of a given length maximizes the ground state energy. In the second problem we have a loop-shaped thread Γ in mathbb{R}^3, homogeneously charged but not conducting, and we ask about the (renormalized) potential-energy minimizer. Both problems reduce to purely geometric questions about inequalities for mean values of chords of Γ. We prove an isoperimetric theorem for p-means of chords of curves when p ≤ 2, which implies in particular that the global extrema for the physical problems are always attained when Γ is a circle. The letter concludes with a discussion of the p-means of chords when p > 2.

  20. Composite airfoil assembly

    SciTech Connect

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  1. Tests of N.A.C.A. airfoils in the variable density wind tunnel Series 44 and 64

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Pinkerton, Robert M

    1931-01-01

    This note is one of a series covering an investigation of a number of related airfoils. It presents the results obtained from tests in the N.A.C.A. Variable Density Wind Tunnel of two groups of six airfoils each. One group, the 44 series, has a maximum mean camber of 4 percent of the chord at a position 0.4 of the chord behind the leading edge and the other group, the 64 series, has a maximum mean camber of 6 percent of the chord at the same position. The members within each group differ only in maximum thickness, the maximum thickness/chord ratios being: 0.06, 0.09, 0.12, 0.15, 0.18, and 0.21. The results are analyzed with a view to indicating the variation of the aerodynamic characteristics with profile thickness for airfoils having a certain mean camber line form.

  2. Tests of N.A.C.A. airfoils in the variable-density wind tunnel Series 43 and 63

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Pinkerton, Robert M

    1931-01-01

    This note is one of a series covering an investigation of a family of related airfoils. It gives in preliminary form the results obtained from tests in the N.A.C.A. Variable-Density Wind Tunnel of two groups of six airfoils each. One group, the 43 series, has a maximum mean camber of 4 per cent of the chord at a position 0.3 of the chord from the leading edge; the other group, the 63 series, has a maximum mean camber of 6 per cent of the chord at the same position. The members within each group differ only in maximum thickness, the maximum thickness/chord ratios being:0.06, 0.09, 0.12, 0.15, 0.18, and 0.21. The results are analyzed with a view to indicating the variation of the aerodynamic characteristics with profile thickness for airfoils having a certain mean camber line.

  3. Laminar-flow airfoil

    NASA Technical Reports Server (NTRS)

    Somers, Dan M. (Inventor)

    2005-01-01

    An airfoil having a fore airfoil element, an aft airfoil element, and a slot region in between them. These elements induce laminar flow over substantially all of the fore airfoil element and also provide for laminar flow in at least a portion of the slot region. The method of the invention is one for inducing natural laminar flow over an airfoil. In the method, a fore airfoil element, having a leading and trailing edge, and an aft airfoil element define a slot region. Natural laminar flow is induced over substantially all of the fore airfoil element, by inducing the pressures on both surfaces of the fore airfoil element to decrease to a location proximate the trailing edge of the fore airfoil element using pressures created by the aft airfoil element.

  4. Pressure Distribution Over Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Dryden, H L

    1927-01-01

    This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

  5. Experimental Results for a Flapped Natural-laminar-flow Airfoil with High Lift/drag Ratio

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Viken, J. K.; Pfenninger, W.; Beasley, W. D.; Harvey, W. D.

    1984-01-01

    Experimental results have been obtained for a flapped natural-laminar-flow airfoil, NLF(1)-0414F, in the Langley Low-Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.05 to 0.40 and a chord Reynolds number range from about 3.0 x 10(6) to 22.0 x 10(6). The airfoil was designed for 0.70 chord laminar flow on both surfaces at a lift coefficient of 0.40, a Reynolds number of 10.0 x 10(6), and a Mach number of 0.40. A 0.125 chord simple flap was incorporated in the design to increase the low-drag, lift-coefficient range. Results were also obtained for a 0.20 chord split-flap deflected 60 deg.

  6. Turbulent separated flow over and downstream of a two-element airfoil

    NASA Technical Reports Server (NTRS)

    Adair, D.; Horne, W. C.

    1989-01-01

    Flow characteristics in the vicinity of the flap of a single-slotted airfoil are presented and analyzed. The flow remained attached over the model surfaces, except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8 x 10 to the 6th in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The flow was complicated by the presence of a strong, initially inviscid, jet, emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer.

  7. Subsonic and transonic low-Reynolds-number airfoils with reduced pitching moments

    NASA Technical Reports Server (NTRS)

    Van Dam, C. P.; Hicks, R.; Reuther, J.

    1990-01-01

    A subsonic and a transonic airfoil are presented for application in a high-altitude long-endurance aircraft and a very-high-altitude aircraft, respectively. The subsonic airfoil is designed for a lift coefficient c(l) = 1.4 at a chord Reynolds number Re = 700,000 and a very low Mach number. The transonic airfoil is designed for c(l) = 1.0 at Re = 500,000 and a transonic Mach number M = 0.7. Both airfoils are developed to perform as well or better than previously designed airfoils. However, the present airfoils are developed for a constrained pitching moment to reduce aircraft trim drag and to relieve, to some extent, the torsional loads in the typically high-aspect-ratio wings. The beneficial effects of a cruise flap and of boundary-layer transition control on the off-design performance characteristics are illustrated.

  8. An investigation of the aerodynamic characteristics of a new general aviation airfoil in flight

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Hoffmann, M. J.; Weislogel, G. S.

    1982-01-01

    A low speed airfoil, the GA(W)-2, - a 13% thickness to chord ratio airfoil was evaluated. The wing of a Beech Sundowner was modified at by adding balsa ribs and covered with aluminum skin, to alter the existing airfoil shape to that of the GA(W)-2 airfoil. The aircraft was flown in a flight test program that gathered wing surface pressures and wake data from which the lift drag, and pitching moment of the airfoil could be determined. After the base line performance of the airfoil was measured, the drag due to surface irregularities such as steps, rivets and surface waviness was determined. The potential reduction of drag through the use of surface coatings such as KAPTON was also investigated.

  9. Calculated Low-Speed Steady and Time-Dependent Aerodynamic Derivatives for Some Airfoils Using a Discrete Vortex Method

    NASA Technical Reports Server (NTRS)

    Riley, Donald C.

    2015-01-01

    This paper contains a collection of some results of four individual studies presenting calculated numerical values for airfoil aerodynamic stability derivatives in unseparated inviscid incompressible flow due separately to angle-of-attack, pitch rate, flap deflection, and airfoil camber using a discrete vortex method. Both steady conditions and oscillatory motion were considered. Variables include the number of vortices representing the airfoil, the pitch axis / moment center chordwise location, flap chord to airfoil chord ratio, and circular or parabolic arc camber. Comparisons with some experimental and other theoretical information are included. The calculated aerodynamic numerical results obtained using a limited number of vortices provided in each study compared favorably with thin airfoil theory predictions. Of particular interest are those aerodynamic results calculated herein (such as induced drag) that are not readily available elsewhere.

  10. Influence of airfoil camber on convected gust interaction noise

    NASA Astrophysics Data System (ADS)

    Myers, M. R.; Kerschen, E. J.

    1986-07-01

    This paper investigates the effect of airfoil steady loading on the sound generated by the interaction of an airfoil with a convected disturbance. A previous theory, which included only the incidence angle contribution to the mean loading, is extended to include camber. The theory is based on a linearization of the Euler equations about a nonuniform, 0(1) Mach number subsonic mean flow. The discussion concentrates on the case of a slightly cambered airfoil at small incidence angle, interacting with a gust whose wavelength is short compared to the airfoil chord. The small parameter representing the amount of camber and incidence, and the large parameter representing the ratio of airfoil chord to disturbance wavelength, are utilized in a singular perturbation solution to the governing equations. Acoustic power calculations reveal that the amount of sound generated increases significantly with increased loading. More importantly, it is shown that the radiated acoustic power correlates very well with the strength of the mean flow around the leading edge.

  11. On bimodal flutter behavior of a flexible airfoil

    NASA Astrophysics Data System (ADS)

    Drazumeric, Radovan; Gjerek, Bojan; Kosel, Franc; Marzocca, Pier

    2014-02-01

    The dynamic aeroelastic behavior of an elastically supported airfoil is studied in order to investigate the possibilities of increasing critical flutter speed by exploiting its chord-wise flexibility. The flexible airfoil concept is implemented using a rigid airfoil-shaped leading edge, and a flexible thin laminated composite plate conformally attached to its trailing edge. The flutter behavior is studied in terms of the number of laminate plies used in the composite plate for a given aeroelastic system configuration. The flutter behavior is predicted by using an eigenfunction expansion approach which is also used to design a laminated plate in order to attain superior flutter characteristics. Such an airfoil is characterized by two types of flutter responses, the classical airfoil flutter and the plate flutter. Analysis shows that a significant increase in the critical flutter speed can be achieved with high plunge and low pitch stiffness in the region where the aeroelastic system exhibits a bimodal flutter behavior, e.g., where the airfoil flutter and the plate flutter occur simultaneously. The predicted flutter behavior of a flexible airfoil is experimentally verified by conducting a series of systematic aeroelastic system configurations wind tunnel flutter campaigns. The experimental investigations provide, for each type of flutter, a measured flutter response, including the one with indicated bimodal behavior.

  12. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  13. Tonal noise production from a wall-mounted finite airfoil

    NASA Astrophysics Data System (ADS)

    Moreau, Danielle J.; Doolan, Con J.

    2016-02-01

    This study is concerned with the flow-induced noise of a smooth wall-mounted finite airfoil with flat ended tip and natural boundary layer transition. Far-field noise measurements have been taken at a single observer location and with a microphone array in the Virginia Tech Stability Wind Tunnel for a wall-mounted finite airfoil with aspect ratios of L / C = 1 - 3, at a range of Reynolds numbers (ReC = 7.9 ×105 - 1.6 ×106, based on chord) and geometric angles of attack (α = 0 - 6 °). At these Reynolds numbers, the wall-mounted finite airfoil produces a broadband noise contribution with a number of discrete equispaced tones at non-zero angles of attack. Spectral data are also presented for the noise produced due to three-dimensional vortex flow near the airfoil tip and wall junction to show the contributions of these flow features to airfoil noise generation. Tonal noise production is linked to the presence of a transitional flow state to the trailing edge and an accompanying region of mildly separated flow on the pressure surface. The separated flow region and tonal noise source location shift along the airfoil trailing edge towards the free-end region with increasing geometric angle of attack due to the influence of the tip flow field over the airfoil span. Tonal envelopes defining the operating conditions for tonal noise production from a wall-mounted finite airfoil are derived and show that the domain of tonal noise production differs significantly from that of a two-dimensional airfoil. Tonal noise production shifts to lower Reynolds numbers and higher geometric angles of attack as airfoil aspect ratio is reduced.

  14. A Generalization of the Parabolic Chord Property

    ERIC Educational Resources Information Center

    Mason, John

    2011-01-01

    The well known property of quadratic functions, that the tangents at either end of a chord of a parabola meet in a point aligned vertically with the midpoint of the chord is extended to polynomials of degree d. Given two distinct points on a polynomial of degree d, the Taylor polynomials of degree d - 1 at those points meet in d - 1 points whose…

  15. Statistical error in a chord estimator of correlation dimension: The rule of five''

    SciTech Connect

    Theiler, J. ); Lookman, T. . Dept. of Applied Mathematics)

    1992-09-01

    The statistical precision of a chord method for estimating dimension from a correlation integral is derived. The optimal chord length is determined, and a comparison is made to other estimators. The simple chord estimator is only 25% less precise than the optimal estimator which uses the full resolution and full range of the correlation integral. The analytic calculations are based on the hypothesis that all pairwise distances between the points in the embedding space are statistically independent. The adequacy of this approximation is assessed numerically, and a surprising result is observed in which dimension estimators can be anomalously precise for sets with reasonably uniform (nonfractal) distributions.

  16. Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley low-turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Mcghee, Robert J.; Walker, Betty S.; Millard, Betty F.

    1988-01-01

    Experimental results were obtained for an Eppler 387 airfoil in the Langley Low Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.03 to 0.13 and a chord Reynolds number range for 60,000 to 460,000. Lift and pitching moment data were obtained from airfoil surface pressure measurements and drag data for wake surveys. Oil flow visualization was used to determine laminar separation and turbulent reattachment locations. Comparisons of these results with data on the Eppler 387 airfoil from two other facilities as well as the Eppler airfoil code are included.

  17. Studies of flow separation and stalling on one- and two-element airfoils at low speeds

    NASA Technical Reports Server (NTRS)

    Seetharam, H. C.; Wentz, W. H., Jr.

    1977-01-01

    Research has been conducted on the nature of airfoil behavior at pre- and post-separated angles of attack. Detailed wind tunnel studies have been made of boundary layer and wake fields for the GA(W)-1 airfoil, and the airfoil with a 0.3 chord Fowler flap. Experimental data are compared with theoretical predictions from a multi-element viscous flow computer program. Theoretical predictions are reasonably accurate for unseparated flows, but have serious errors when separation is present. Some recent techniques for modeling post-separated flow behavior are discussed in light of the present experiments.

  18. Pressure distribution over an airfoil section with a flap and tab

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J

    1937-01-01

    Report presents the results of wind tunnel tests made in the NACA 7 by 10-foot wind tunnel of a Clark Y airfoil with a flap and an inset tab. The pressures were measured on both the upper and lower surfaces at one chord section. Calculations were made of the normal-force and pitching-moment coefficients of the airfoil section with flap section with tab, and the normal-force and hinge-moments coefficients of the tab alone. In addition, comparisons were made of the theoretical and experimental values for an airfoil with a multiply hinged flap system.

  19. Natural laminar flow airfoil design considerations for winglets on low-speed airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1984-01-01

    Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.

  20. On the critical exponent in an isoperimetric inequality for chords

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Fraas, Martin; Harrell, Evans M.

    2007-08-01

    The problem of maximizing the L norms of chords connecting points on a closed curve separated by arc length u arises in electrostatic and quantum-mechanical problems. It is known that among all closed curves of fixed length, the unique maximizing shape is the circle for 1⩽p⩽2, but this is not the case for sufficiently large values of p. Here we determine the critical value p(u) of p above which the circle is not a local maximizer finding, in particular, that p(12L)=52. This corrects a claim made in [P. Exner, E.M. Harrell, M. Loss, Lett. Math. Phys. 75 (2006) 225].

  1. Effectiveness of Thermal-Pneumatic Airfoil-Ice-Protection System

    NASA Technical Reports Server (NTRS)

    Gowan, William H., Jr.; Mulholland, Donald R.

    1951-01-01

    Icing and drag investigations were conducted in the NACA Lewis icing research tunnel employing a combination thermal-pneumatic de-icer mounted on a 42-inch-chord NACA 0018 airfoil. The de-icer consisted of a 3-inch-wide electrically heated strip symmetrically located about the leading edge with inflatable tubes on the upper and lower airfoil surfaces aft of the heated area. The entire de-icer extended to approximately 25 percent of chord. A maximum power density of 9.25 watts per square inch was required for marginal ice protection on the airfoil leading edge at an air temperature of 00 F and an airspeed of 300 miles per hour. Drag measurements indicated, that without icing, the de-icer installation increased the section drag to approximately 140 percent of that of the bare airfoil; with the tubes inflated, this value increased to a maximum of approximately 620 percent. A 2-minute tube-inflation cycle prevented excessive ice formation on the inflatable area although small scattered residual Ice formations remained after inflation and were removed intermittently during later cycles. Effects of the time lag of heater temperatures after initial application of power and the insulating effect of ice formations on heater temperatures were also determined.

  2. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  3. Response of a thin airfoil encountering strong density discontinuity

    SciTech Connect

    Marble, F.E.

    1993-12-01

    Airfoil theory for unsteady motion has been developed extensively assuming the undisturbed medium to be of uniform density, a restriction accurate for motion in the atmosphere. In some instances, notably for airfoil comprising fan, compressor and turbine blade rows, the undisturbed medium may carry density variations or ``spots``, resulting from non-uniformities in temperature or composition, of a size comparable to the blade chord. This condition exists for turbine blades, immediately downstream of the main burner of a gas turbine engine where the density fluctuations of the order of 50 percent may occur. Disturbances of a somewhat smaller magnitude arise from the ingestion of hot boundary layers into fans, and exhaust into hovercraft. Because these regions of non-uniform density convect with the moving medium, the airfoil experiences a time varying load and moment which the authors calculate.

  4. The NASA Langley Laminar-Flow-Control Experiment on a Swept Supercritical Airfoil: Basic Results for Slotted Configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1989-01-01

    The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number.

  5. High Reynolds number tests of the cast 10-2/DOA 2 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, phase 2

    NASA Technical Reports Server (NTRS)

    Dress, D. A.; Stanewsky, E.; Mcguire, P. D.; Ray, E. J.

    1984-01-01

    Wind tunnel tests of an advanced technology airfoil, the CAST 10-2/DOA 2, were conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). This was the third of a series of tests conducted in a cooperative airfoil research program between the National Aeronautics and Space Administration and the Deutsche Forschungsund Versuchsanstalt fur Luft- und Raumfahrt e. V. For these tests, temperature was varied from 270 K to 110 K at pressures from 1.5 to 5.75 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 2 to 20 million. The aerodynamic data for the 7.62 cm chord airfoil model used in these tests is presented without analysis. Descriptions of the 0.3-m TCT, the airfoil model, the test instrumentation, and the testing procedures are included.

  6. Two-dimensional wind tunnel test of an oscillating rotor airfoil, volume 1

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.

    1977-01-01

    A two dimensional wind tunnel test was conducted to obtain the quasisteady and unsteady characteristics of an advanced airfoil designed for helicopter rotor applications. Differential pressures were measured at 17 locations along the chord of the airfoil model. The airfoil motions were sinusoidal forced-pitch oscillations about the quarter chord at amplitudes varying from 2.5 to 10.0 degrees and at frequencies from 23 Hz to 90 Hz. The quasisteady tests were conducted at Mach numbers from 0.2 to 0.9, and the oscillatory tests between M = 0.2 and M = 0.7. At quasisteady conditions a limited number of drag measurements were made with a wake-traversing probe.

  7. Chord, Tie Bar & Crossbracing Joint Detail in Plan; Crossbracing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord, Tie Bar & Crossbracing Joint Detail in Plan; Crossbracing Center Joint Detail in Plan; Chord Joining Detail in Plan & Elevation; Chord, Panel Post, Tie Bar, & Diagonal Brace Joint Detail; Crossbracing Center Joint Detail in Section; Chord, Panel Post, Tie Bar & Horizontal Brace Joint Detail - Narrows Bridge, Spanning Sugar Creek at Old County Road 280 East, Marshall, Parke County, IN

  8. Quiet airfoils for small and large wind turbines

    DOEpatents

    Tangler, James L.; Somers, Dan L.

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  9. Extendable chord rotors for helicopter performance improvement and envelope expansion

    NASA Astrophysics Data System (ADS)

    Khoshlahjeh, Maryam

    A helicopter with a fixed geometry rotor, operating at a fixed rotational speed, performs sub-optimally over the vehicle’s flight envelope. On the other hand, if the rotor geometry and RPM can be varied from one flight condition to another, the aircraft performance can be substantially improved over the operating envelope. The geometry change considered in this study is the variation of rotor chord over a spanwise section of the blade. Simulations are based on a UH-60A Blackhawk helicopter with an effective chord increase of 20% realized by extending a Trailing-Edge Plate (TEP) through a slit in the trailing-edge between 63-83% blade span. Rigid and elastic blade models are studied. Since TEP extension changes the baseline SC-1094R8 airfoil profile, 2D aerodynamic coefficients of the modified profile from Navier-Stokes CFD calculations are used, coupled with 12x12 dynamic inflow and Leishman-Beddoes dynamic stall model in the Rotorcraft Comprehensive Analysis System (RCAS). From the simulations, reductions of up to nearly 18% in rotor power requirement are observed for operation at high gross weight and altitude. Further, increases of around 18 kts in maximum speed, 1,500 lbs in maximum gross weight capability, and 1,800 ft in maximum altitude are observed. Moreover, maneuvering flights can benefit from an extended chord. Required power for a steady level turn could be reduced nearly 7% at the maximum turn rate. Vibratory loads also reduce with TEP. Hub vertical shear, in-plane shear, and in-plane moment 4/rev component are reduced up to 47%, 29.6% and 51%, respectively, in a stall dominant condition. Furthermore, rotor speed variations of ±15% nominal RPM are considered in combination with TEP. Rotor speed reduction alone is most beneficial during low and light flight conditions. However, increasing rotor speed to 105% nominal RPM along with TEP offers additional 2,000 lbs payload capability, 5,000 ft gain in maximum altitude and up to 60 kts increase in

  10. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1992-01-01

    The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution.

  11. Low-speed aerodynamic characteristics of a 13-percent-thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.; Somers, D. M.

    1975-01-01

    Wind-tunnel tests were conducted to determine the low-speed section characteristics of a 13 percent-thick airfoil designed for general aviation applications. The results were compared with NACA 12 percent-thick sections and with the 17 percent-thick NASA airfoil. The tests were conducted ovar a Mach number range from 0.10 to 0.35. Chord Reynolds numbers varied from about 2,000,000 to 9,000,000.

  12. Data from tests of a R4 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Johnson, W. G., Jr.; Hill, A. S.; Mueller, R.; Redeker, G.

    1984-01-01

    Aerodynamic data for the DFVLR R4 airfoil are presented in both graphic and tabular form. The R4 was tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) at Mach number from 0.60 to 0.78 at angles of attack from -2.0 to 8.0 degrees. The airfoil was tested at Reynolds numbers of 4, 6, 10, 15, 30, and 40 million based on the 152.32 mm chord.

  13. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr

    1945-01-01

    The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)

  14. Effects of long-chord acoustically treated stator vanes on fan noise. 2: Effect of acoustical treatment

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Scott, J. N.; Leonard, B. R.; Stakolich, E. G.

    1976-01-01

    A set of long chord stator vanes was designed to replace the vanes in an existing fan stage. The long chord stator vanes consisted of a turning section and axial extension pieces, all of which incorporated acoustic damping material. The long chord stator vanes were tested in two lengths, with the long version giving more noise reduction than the short, primarily because of the additional lining material. The noise reduction achieved with the acoustically treated long chord stator vanes was compared with the reduction achieved by an acoustically treated exhaust splitter. The long chord stator was at least as good as the splitter as a method for incorporating acoustic lining material. In addition, comparing an acoustic three ring inlet and an acoustic wall-only inlet discloses that the wall-only inlet could be used in an engine where the noise reduction requirements are not too stringent.

  15. Aerodynamic characteristics and pressure distributions for an executive-jet baseline airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1993-01-01

    A wind tunnel test of an executive-jet baseline airfoil model was conducted in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The primary goal of the test was to measure airfoil aerodynamic characteristics over a wide range of flow conditions that encompass two design points. The two design Mach numbers were 0.654 and 0.735 with corresponding Reynolds numbers of 4.5 x 10(exp 6) and 8.9 x 10(exp 6) based on chord, respectively, and normal-force coefficients of 0.98 and 0.51, respectively. The tests were conducted over a Mach number range from 0.250 to 0.780 and a chord Reynolds number range from 3 x 10(exp 6) to 18 x 10(exp 6). The angle of attack was varied from -2 deg to a maximum below 10 deg with one exception in which the maximum was 14 deg for a Mach number of 0.250 at a chord Reynolds number of 4.5 x 10(exp 6). Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The adaptive-wall test section had flexible top and bottom walls and rigid sidewalls. Wall interference was minimized by the movement of the adaptive walls, and the airfoil aerodynamic characteristics were corrected for any residual top and bottom wall interference.

  16. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.

    1945-01-01

    Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from

  17. Effect of Intercycle Ice Accretions on Airfoil Performance

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.

    2003-01-01

    This paper presents the results of an experimental study designed to characterize and evaluate the aerodynamic performance penalties of residual and intercycle ice accretions that result from the cyclic operation of a typical aircraft deicing system. Icing wind tunnel tests were carried out on a 36-inch chord NACA 23012 airfoil section equipped with a pneumatic deicer for several different FAR 25 Appendix C cloud conditions. Results from the icing tests showed that the intercycle ice accretions were much more severe in terms of size and shape than the residual ice accretions. Molds of selected intercycle ice shapes were made and converted to castings that were attached to the leading edge of a 36-inch chord NACA 23012 airfoil model for aerodynamic testing. The aerodynamic testing revealed that the intercycle ice shapes caused a significant performance degradation. Maximum lift coefficients were typically reduced about 60% from 1.8 (clean) to 0.7 (iced) and stall angles were reduced from 17 deg. (clean) to 9 deg. (iced). Changes in the Reynolds number (from 2.0 x 10(exp 6) to 10.5 x 10(exp 6) and Mach number (from 0.10 to 0.28) did not significantly affect the iced-airfoil performance.

  18. On the general theory of thin airfoils for nonuniform motion

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1944-01-01

    General thin-airfoil theory for a compressible fluid is formulated as boundary problem for the velocity potential, without recourse to the theory of vortex motion. On the basis of this formulation the integral equation of lifting-surface theory for an incompressible fluid is derived with the chordwise component of the fluid velocity at the airfoil as the function to be determined. It is shown how by integration by parts this integral equation can be transformed into the Biot-Savart theorem. A clarification is gained regarding the use of principal value definitions for the integral which occur. The integral equation of lifting-surface theory is used a s the starting point for the establishment of a theory for the nonstationary airfoil which is a generalization of lifting-line theory for the stationary airfoil and which might be called "lifting-strip" theory. Explicit expressions are given for section lift and section moment in terms of the circulation function, which for any given wing deflection is to be determined from an integral equation which is of the type of the equation of lifting-line theory. The results obtained are for airfoils of uniform chord. They can be extended to tapered airfoils. One of the main uses of the results should be that they furnish a practical means for the analysis of the aerodynamic span effect in the problem of wing flutter. The range of applicability of "lifting-strip" theory is the same as that of lifting-line theory so that its results may be applied to airfoils with aspect ratios as low as three.

  19. Comment on "The geometry of musical chords".

    PubMed

    Headlam, Dave; Brown, Matthew

    2007-01-19

    Tymoczko (Reports, 7 July 2006, p. 72) proposed that the familiar sonorities of Western tonal music cluster around the center of a multidimensional orbifold. However, this is not true for all tonal progressions. When prototypical three-voice cadential progressions by Bach converge on the tonic, the chords migrate from the center to the edge of the orbifold.

  20. Application of shock tubes to transonic airfoil testing at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Chaney, M. J.; Presley, L. L.; Chapman, G. T.

    1978-01-01

    Performance analysis of a gas-driven shock tube shows that transonic airfoil flows with chord Reynolds numbers of the order of 100 million can be produced, with limitations being imposed by the structural integrity of the facility or the model. A study of flow development over a simple circular arc airfoil at zero angle of attack was carried out in a shock tube at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photography and airfoil pressure measurements show that steady transonic flows similar to those produced for the same airfoil in a wind tunnel can be generated within the available testing time in a shock tube with properly contoured test section walls.

  1. Effects of a ground vortex on the aerodynamics of an airfoil

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.; Leopold, D.

    1988-01-01

    An experimental investigation was carried out to study the aerodynamics of an airfoil with a rectangular jet exiting from its lower surface at fifty percent of the chord. The airfoil was tested with and without the influence of a ground plane. Surface static pressures were measured on the airfoil at jet to free stream velocity ratios ranging from 0 to 9. From these pressures, the variation of C sub L with velocity ratio was easily determined. The measurements indicated significant positive and negative pressure regions on the lower surface of the airfoil ahead of and after the nozzle exit respectively. The presence of a ground plane enhanced these pressure regions at low velocity ratios, but at a particular ratio for each plane location, a recirculation zone or vortex formed ahead of the jet resulting in decreased pressures and a drop in C sub L.

  2. Pressure distribution over an NACA 23012 airfoil with a slotted and a plain flap

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Delano, James B

    1938-01-01

    Report presents the results of pressure-distribution of an NACA 23012 airfoil equipped with a slotted flap and with a plain flap conducted in the 7 by 10-foot wind tunnel. A test installation was used in which the 7-foot-span airfoil was mounted vertically between the upper and lower sides of the closed test section so that two-dimensional flow was approximated. The pressures were measured on the upper and lower surfaces at one chord section both on the main airfoil and on the flaps for several different flap deflections and at several angles of attack. The data are presented in the form of pressure-distribution diagrams and as graphs of calculated section coefficients for the airfoil-and-flap combinations and also for the flaps alone. The results are useful for application to rib and flap structural design; in addition, the plain-flap data furnish considerable information applicable to the structural design of plain ailerons.

  3. A Systematic Investigation of Pressure Distributions at High Speeds over Five Representative NACA Low-Drag and Conventional Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Graham, Donald J; Nitzberg, Gerald E; Olson, Robert N

    1945-01-01

    Pressure distributions determined from high-speed wind-tunnel tests are presented for five NACA airfoil sections representative of both low-drag and conventional types. Section characteristics of lift, drag, and quarter-chord pitching moment are presented along with the measured pressure distributions for the NACA 65sub2-215 (a=0.5), 66sub2-215 (a=0.6), 0015, 23015, and 4415 airfoils for Mach numbers up to approximately 0.85. A critical study is made of the airfoil pressure distributions in an attempt to formulate a set of general criteria for defining the character of high speed flows over typical airfoil shapes. Comparisons are made of the relative characteristics of the low-drag and conventional airfoils investigated insofar as they would influence the high-speed performance and the high-speed stability and control characteristics of airplanes employing these wing sections.

  4. 12. DETAIL VIEW OF BOTTOM CHORD CONNECTION AT THIRD PANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL VIEW OF BOTTOM CHORD CONNECTION AT THIRD PANAL POINT IN FROM ABUTMENT. NOTE THAT THE BOTTOM CHORD IS CONTINUOUS ACROSS THE CONNECTION - Poffenberger Road Bridge, Spanning Catoctin Creek, Middletown, Frederick County, MD

  5. Chord, Horizontal Tie Bar & Crossbracing Joint Details; Crossbracing Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord, Horizontal Tie Bar & Crossbracing Joint Details; Crossbracing Center Joint Detail; Chord, Panel Posts, Braces & Counterbrace Joint Detail - Brownsville Covered Bridge, Spanning East Fork Whitewater River (moved to Eagle Creek Park, Indianapolis), Brownsville, Union County, IN

  6. 24. PIN CONNECTION AT VERTICAL AND BOTTOM CHORD ON CAMELBACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PIN CONNECTION AT VERTICAL AND BOTTOM CHORD ON CAMELBACK THROUGH TRUSS. VERTICAL AND BOTTOM CHORD MADE OF HAND-FORGED EYE BARS - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  7. 13. UNDERSIDE OF THROUGHWAY SHOWING MAIN CHORDS, SUSPENSION EYEBAR PIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. UNDERSIDE OF THROUGHWAY SHOWING MAIN CHORDS, SUSPENSION EYE-BAR PIN CONNECTORS, LOWER CHORD EYEBARS AND LATERAL BRACING MEMBERS - Spruce Street Bridge, East Spruce Street, 500 Block, spanning Power Canal, Sault Ste. Marie, Chippewa County, MI

  8. 14. Detail, upper chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail, upper chord connection point on upstream side of truss, showing connection of upper chord, laced vertical compression member, strut, counters, and laterals. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA

  9. Wind tunnel results for a high-speed, natural laminar-flow airfoil designed for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Sewall, William G.; Mcghee, Robert J.; Viken, Jeffery K.; Waggoner, Edgar G.; Walker, Betty S.; Millard, Betty F.

    1985-01-01

    Two dimensional wind tunnel tests were conducted on a high speed natural laminar flow airfoil in both the Langley 6 x 28 inch Transonic Tunnel and the Langley Low Turbulence Pressure Tunnel. The test conditions consisted of Mach numbers ranging from 0.10 to 0.77 and Reynolds numbers ranging from 3 x 1 million to 11 x 1 million. The airfoil was designed for a lift coefficient of 0.20 at a Mach number of 0.70 and Reynolds number of 11 x 1 million. At these conditions, laminar flow would extend back to 50 percent chord of the upper surface and 70 percent chord of the lower surface. Low speed results were also obtained with a 0.20 chord trailing edge split flap deflected 60 deg.

  10. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  11. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  12. Chord Panel Post, Vertical X Bracing & Horizontal Tie Joint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord Panel Post, Vertical X Bracing & Horizontal Tie Joint Detail; Chord Joining Block & Spacer Block Detail; Cross Bracing Joint Detail; Chord Panel Post Diagonal & Horizontal Tie Joint Detail - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN

  13. 8. Comparison of construction of bottom and top chords and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Comparison of construction of bottom and top chords and pin connections, bottom chord second panel point, top chords showing third panel point. - Bridge No. 2.4, Spanning Boiling Fork Creek at Railroad Milepost JC-2.4, Decherd, Franklin County, TN

  14. 7. View showing placement of timber deck placement on chord ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View showing placement of timber deck placement on chord and built up construction of top chord and continuous construction through top panel points, eye bar construction on bottom chord - Bridge No. 2.4, Spanning Boiling Fork Creek at Railroad Milepost JC-2.4, Decherd, Franklin County, TN

  15. The leading-edge stall of airfoils with various nose shapes

    NASA Astrophysics Data System (ADS)

    Kraljic, Matthew; Rusak, Zvi; Wang, Shixiao

    2015-11-01

    We study the inception of leading-edge stall on stationary, smooth thin airfoils with various nose shapes of the form xa (where 0 < a < 1 / 2) at low to moderately high chord Reynolds number flows. A reduced-order, multi-scale model problem is developed and solved using numerical simulations. The asymptotic theory demonstrates that a subsonic flow about a thin airfoil can be described in terms of an outer region, around most of the airfoil's chord, and an inner region, around the nose, that asymptotically match each other. The flow in the outer region is dominated by the classical thin airfoil theory. Scaled (magnified) coordinates and a modified (smaller) Reynolds number ReM are used to correctly account for the nonlinear behavior and extreme velocity changes in the inner region, where both the near-stagnation and high suction areas occur. The inner region problem is solved numerically to determine the inception of leading-edge stall on the nose. It is found that stall is delayed to higher angles of attack with the decrease of nose parameter a. Specifically, new airfoil shapes are proposed with increased stall angle at subsonic speeds and higher critical Mach numbers at transonic speeds.

  16. Effects of laminar separation bubbles and turbulent separation on airfoil stall

    SciTech Connect

    Dini, P.; Coiro, D.P.

    1997-12-31

    An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.

  17. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  18. Aerodynamic characteristics of an oscillating airfoil

    NASA Astrophysics Data System (ADS)

    Wickens, R. H.

    1986-03-01

    Results are reported from wind tunnel tests to study the effects of dynamic aerodynamics on the efficiency of a NACA 0018 airfoil used on a Darreius vertical axis wind turbine (VAWT). The topic is of interest because of uncontrolled pitching which occurs during operation and which produces stall, turbulence and separation effects that reduce efficiency. Present stream-tube theory and axial momentum models are not applicable in the unstable regimes. The wind tunnel tests were conducted with a 45 m/sec flow with an Re of 1.5 million. The situation mimicked typical wind turbine operational conditions. The airfoil was mounted on a hydraulic actuator to allow it to rotate about its quarter-chord location and to control the extent and frequency of oscillations. Data were also gathered on the performance in a steady flow for comparative purposes. Summary data are provided on the static and total pressures over a complete cycle of oscillation, and related to the angles of attack, time of onset of stall, and the lift and drag coefficients. The limitations of the study with regard to the absence of consideration of the flow acceleration experienced by an advancing blade are noted.

  19. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  20. Numerical analysis of bio-inspired corrugated airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Mondal, Partha Protim; Rahman, Md. Masudur; Hasan, A. B. M. Toufique

    2016-07-01

    A numerical study was conducted to investigate the aerodynamic performance of a bio-inspired corrugated airfoil at the chord Reynolds number of Rec=80,000 to explore the potential advantages of such airfoils at low Reynolds numbers. This study represents the transient nature of corrugated airfoils at low Reynolds number where flow is assumed to be laminar, unsteady, incompressible and two dimensional. The simulations include a sharp interface Cartesian grid based meshing employed with laminar viscous model. The flow field surrounding the corrugated airfoil has been analyzed using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The simulated results revealed that the corrugated airfoil provides high lift with moderate drag and prevents large scale flow separation at higher angles of attack. This happens due to the negative shear drag produced by the recirculation zones which occurs in the valleys of the corrugated airfoils. The existence of small circulation bubbles sitting in the valleys prevents large scale flow separation thus increasing the aerodynamic performance of the corrugated airfoil.

  1. A two element laminar flow airfoil optimized for cruise. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Steen, Gregory Glen

    1994-01-01

    Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.

  2. Some observations of surface pressures and the near wake of a blunt trailing edge airfoil

    NASA Technical Reports Server (NTRS)

    Digumarthi, R. V.; Koutsoyannis, S. P.; Karamcheti, K.

    1981-01-01

    Experiments with a truncated and untruncated airfoils of profiles NACA 640A10, were carried out in subsonic wind tunnels in a velocity range of 19m/s to 54m/s corresponding to Reynolds numbers of 200,000 to 468,000 based on the chord. Airfoil spanned the test section to achieve two dimensionality of the model. Velocity measurements, pressure measurements, and vortex shedding in the wake were measured using a hotwire and pressure transducers. The measured chordwise static pressure distribution on the smooth trailing edge airfoil along the midspan plane, agreed with the theoretical results calculated on the basis of the potential flow for that airfoil. Boundary layer profiles measured in the midspan plane, behind the maximum thickness of the airfoil show no separation of the flow. Spanwise distribution of the measured static pressure on the upper surface of the airfoil shows uniformity for both configurations with and without the boundary layer trip. This uniformity of pressure distribution and separation indicates that the flow on the airfoil was uniform and two dimensional in character.

  3. Transonic Airfoil Development

    NASA Technical Reports Server (NTRS)

    Whitcomb, R. T.

    1983-01-01

    This lecture consists of three parts, in which discussions are presented of the current state of development of transonic or supercritical airfoils designed for fully turbulent boundary layers on the surfaces, previous research on subcritical airfoils designed to achieve laminar boundary layers on all or parts of the surfaces, and current research on supercritical airfoils designed to achieve laminar boundary layers. In the first part the use of available two dimensional computer codes in the development of supercritical airfoils and the general trends in the design of such airfoils with turbulent boundary layers are discussed. The second part provides the necessary background on laminar boundary layer phenomena. The last part, which constitutes the major portion of the lecture, covers research by NASA on supercritical airfoils utilizing both decreasing pressure gradients and surface suction for stabilizing the laminar boundary layer. An investigation of the former has been recently conducted in fight using gloves on the wing panels of the U.S. Air Force F111 TACT airplane, research on the later is currently being conducted in a transonic wind tunnel which has been modified to greatly reduce the stream turbulence and noise levels in the tests section.

  4. Experimental investigation of the flowfield of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    1992-01-01

    The flowfield of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than or = k less than or = 1.6 is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between angles of attack (alpha) of 5 and 25 degrees. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 degrees at k = 0.2, but is shed at the minimum alpha of 5 degrees at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 degrees) dominates the unsteady fluctuations in the wake.

  5. Experimental investigation of the flowfield of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    1992-01-01

    The flow field of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than k less than 1.6, is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between alpha of 5 deg and 25 deg. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 deg at k = 0.2, but is shed at the minimum alpha of 5 deg at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 deg) dominates the unsteady fluctuations in the wake.

  6. On the attenuating effect of permeability on the low frequency sound of an airfoil

    NASA Astrophysics Data System (ADS)

    Weidenfeld, M.; Manela, A.

    2016-08-01

    The effect of structure permeability on the far-field radiation of a thin airfoil is studied. Assuming low-Mach and high-Reynolds number flow, the near- and far-field descriptions are investigated at flapping-flight and unsteady flow conditions. Analysis is carried out using thin-airfoil theory and compact-body-based calculations for the hydrodynamic and acoustic fields, respectively. Airfoil porosity is modeled via Darcy's law, governed by prescribed distribution of surface intrinsic permeability. Discrete vortex model is applied to describe airfoil wake evolution. To assess the impact of penetrability, results are compared to counterpart predictions for the sound of an impermeable airfoil. Considering the finite-chord airfoil as "acoustically transparent", the leading-order contribution of surface porosity is obtained in terms of an acoustic dipole. It is shown that, at all flow conditions considered, porosity causes attenuation in outcome sound level. This is accompanied by a time-delay in the pressure signal, reflecting the mediating effect of permeability on the interaction of fluid flow with airfoil edge points. To the extent that thin-airfoil theory holds (requiring small normal-to-airfoil flow velocities), the results indicate on a decrease of ~ 10 percent and more in the total energy radiated by a permeable versus an impermeable airfoil. This amounts to a reduction in system sound pressure level of 3 dB and above at pitching flight conditions, where the sound-reducing effect of the seepage dipole pressure becomes dominant. The applicability of Darcy's law to model the effect of material porosity is discussed in light of existing literature.

  7. Low-speed aerodynamic characteristics of a 42 deg swept high-wing model having a double-slotted flap system and a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Goodson, K. W.

    1974-01-01

    A low-speed investigation was conducted over an angle-of-attack range from about -4 deg to 20 deg in the Langley V/STOL tunnel to determine the effects of a double-slotted flap, high-lift system on the aerodynamic characteristics of a 42 deg swept high-wing model having a supercritical airfoil. The wing had an aspect ratio of 6.78 and a taper ratio of 0.36; the double-slotted flap consisted of a 35-percent-chord flap with a 15-percent-chord vane. The model was tested with a 15-percent-chord leading-edge slat.

  8. The guitar chord-generating algorithm based on complex network

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  9. An experimental investigation of the low Reynolds number performance of the Lissaman 7769 airfoil

    NASA Technical Reports Server (NTRS)

    Conigliaro, P. E.

    1983-01-01

    A Lissaman 7769 airfoil, used on the Gossamer Condor and Gossamer Albatross human-powered aircraft, was tested in a low turbulence subsonic wind tunnel. Lift and drag data were collected at chord Reynolds numbers of 100,000, 150,000, 200,000, 250,000, and 300,000; at angles of attack from -10 to +20 deg by using an external strain gage force balance. Lift curves, drag curves, and drag polars were generated from both uncorrected data and data corrected for wind tunnel blockage effects. A flow visualization study was performed to correlate with the force data. The results of the investigation have shown that the airfoil exhibits a significant degradation in performance for chord Reynolds numbers below 150,000.

  10. Turbine airfoil with controlled area cooling arrangement

    DOEpatents

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  11. Parametric study of separation and transition characteristics over an airfoil at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Boutilier, Michael S. H.; Yarusevych, Serhiy

    2012-06-01

    Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0° to 21°. The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the

  12. Wind tunnel test of the S814 thick root airfoil

    SciTech Connect

    Somers, D.M.; Tangler, J.L.

    1996-11-01

    The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil`s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 {times} 10{sup 6}. For the design Reynolds number of 1.5 {times} 10{sup 6}, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil`s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.

  13. Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Adair, Desmond; Horne, W. Clifton

    1988-01-01

    Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.

  14. NASA supercritical airfoils: A matrix of family-related airfoils

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.

    1990-01-01

    The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.

  15. Method of making an airfoil

    NASA Technical Reports Server (NTRS)

    Moracz, Donald J. (Inventor); Cook, Charles R. (Inventor); Toth, Istvan J. (Inventor)

    1984-01-01

    An improved method of making an airfoil includes stacking plies in two groups. A separator ply is positioned between the two groups of plies. The groups of plies and the separator ply are interconnected to form an airfoil blank. The airfoil blank is shaped, by forging or other methods, to have a desired configuration. The material of the separator ply is then dissolved or otherwise removed from between the two sections of the airfoil blank to provide access to the interior of the airfoil blank. Material is removed from inner sides of the two separated sections to form core receiving cavities. After cores have been placed in the cavities, the two sections of the airfoil blank are interconnected and the shaping of the airfoil is completed. The cores are subsequently removed from the completed airfoil.

  16. Method of making an airfoil

    NASA Technical Reports Server (NTRS)

    Moracz, Donald J. (Inventor); Cook, Charles R. (Inventor); Toth, Istvan J. (Inventor)

    1986-01-01

    An improved method of making an airfoil includes stacking plies in two groups. A separator ply is positioned between the two groups of plies. The groups of plies and the separator ply are interconnected to form an airfoil blank. The airfoil blank is shaped, by forging or other methods, to have a desired configuration. The material of the separator ply is then dissolved or otherwise removed from between the two sections of the airfoil blank to provide access to the interior of the airfoil blank. Material is removed from inner sides of the two separated sections to form core receiving cavities. After cores have been placed in the cavities, the two sections of the airfoil blank are interconnected and the shaping of the airfoil is completed. The cores are subsequently removed from the completed airfoil.

  17. Airfoils for wind turbine

    SciTech Connect

    Tangler, J.L.; Somers, D.M.

    2000-05-30

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  18. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  19. Assessment of dual-point drag reduction for an executive-jet modified airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1996-01-01

    This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.

  20. Experimental Study of the Effects of Finite Surface Disturbances and Angle of Attack on the Laminar Boundary Layer of an NACA 64A010 Airfoil with Area Suction

    NASA Technical Reports Server (NTRS)

    Schwartzberg, Milton A; Braslow, Albert L

    1952-01-01

    A Langley low-turbulence wind-tunnel investigation of a porous NACA 64A010 airfoil section has been made to determine the effectiveness of area suction in maintaining full-chord laminar flow behind finite disturbances and at angles of attacks other than 0 degrees. Aero suction resulted in only a small increase in the size of a finite disturbance required to cause premature boundary-layer transition as compared with that for the airfoil without suction. Combined wake and suction drags lower than the drag of the plain airfoil were obtained through a range of low lift coefficient by the use of area suction.

  1. R4 airfoil data corrected for sidewall boundary-layer effects in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1986-01-01

    Corrected aerodynamic data for the R4 airfoil at Mach numbers from 0.60 to 0.78 and angles of attack from -2.0 deg. to 4.5 deg. are presented. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, and 40 million based on the 152.32-mm chord of the airfoil. Corrections for data were previously published in NASA Technical Memorandum 85739. The design goal of a normal-force coefficient of 0.65 at a Mach number of 0.73 and a Reynolds number of 30 million was successfully obtained with this airfoil.

  2. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  3. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D

    2010-11-09

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

  4. Flight tests of a supersonic natural laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  5. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  6. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  7. 15. Detail, lower chord connection point on downstream side, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail, lower chord connection point on downstream side, showing pinned connection of lower chord eye bars, laced vertical compression member, diagonal eye bar tension members, turnbuckled diagonal counters, and floor beam. Note also timber floor stringers supported by floor beam, and exposed ends of timber deck members visible at left above lower chord eye bar. View to northwest. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA

  8. 12. Detail, lower chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail, lower chord connection point on upstream side of truss, showing pinned connection of lower chord eye bars, laced vertical compression member, diagonal eye bar tension members, turnbuckled diagonal counters, and floor beam. Note also timber floor stringers supported by floor beam, and exposed ends of timber deck members visible at left above lower chord eye bar. View to northwest. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  9. Comparative Drag Measurements at Transonic Speeds of Rectangular Sweptback NACA 65-009 Airfoils Mounted on a Freely Falling Body

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W; Thompson, Jim Rogers

    1950-01-01

    Directly comparable drag measurements have been made of an airfoil with a conventional rectangular plan form and an airfoil with a sweptback plan form mounted on freely falling bodies. Both airfoils had NACA 65-009 sections and were identical in span, frontal area, and chord perpendicular to the leading edge. The sweptback plan form incorporated a sweepback angle of 45 degrees. The data obtained have been used to establish the relation between the airfoil drag coefficients and the free-stream Mach number over a range of Mach numbers from 0.90 to 1.27. The results of the measurements indicate that the drag of the sweptback plan form is less than 0.3 that of the rectangular plan form at a Mach number of 1.00 and is less than 0.4 that at a Mach number of 1.20.

  10. A natural low frequency oscillation in the wake of an airfoil near stalling conditions

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Mckinzie, D. J.

    1988-01-01

    An unusually low frequency oscillation in the flow over an airfoil was explored experimentally. Wind tunnel measurements were carried out with a two dimensional airfoil model at a chord Reynolds number of 100,000. During deep stall the usual bluff-body shedding occurred at a Strouhal number. But at the onset of stall a low frequency periodic oscillation occurred, the corresponding Strouhal number being an order of magnitude lower. The phenomenon occurred in relatively unclean flow when the freestream turbulence was raised to 0.4 percent, but did not in the cleaner flow with turbulence intensity of 0.1 percent. It could also be produced by certain high frequency acoustic excitation. Details of the flow field are compared between a case of low frequency oscillation at alpha = 15 deg and a case of bluff-body shedding at alpha = 22.5 deg. The origin of the low frequency oscillation traces to the upper surface of the airfoil and is seemingly associated with the periodic formation and breakdown of a large separation bubble. The intense flow fluctuations impart significant unsteady forces to the airfoil but diminish rapidly within a distance of one chord from the trailing edge.

  11. A natural low frequency oscillation in the wake of an airfoil near stalling conditions

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Mckinzie, D. J.

    1987-01-01

    An unusually low frequency oscillation in the flow over an airfoil was explored experimentally. Wind tunnel measurements were carried out with a two dimensional airfoil model at a chord Reynolds number of 100,000. During deep stall the usual bluff-body shedding occurred at a Strouhal number. But at the onset of stall a low frequency periodic oscillation occurred, the corresponding Strouhal number being an order of magnitude lower. The phenomenon occurred in relatively unclean flow when the freestream turbulence was raised to 0.4 percent, but did not in the cleaner flow with turbulence intensity of 0.1 percent. It could also be produced by certain high frequency acoustic excitation. Details of the flow field are compared between a case of low frequency oscillation at alpha = 15 deg and a case of bluff-body shedding at alpha = 22.5 deg. The origin of the low frequency oscillation traces to the upper surface of the airfoil and is seemingly associated with the periodic formation and breakdown of a large separation bubble. The intense flow fluctuations impart significant unsteady forces to the airfoil but diminish rapidly within a distance of one chord from the trailing edge.

  12. Aerodynamic effects of leading-edge serrations on a two-dimensional airfoil

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.

    1972-01-01

    An investigation was conducted to determine the flow field and aerodynamic effects of leading-edge serrations on a two-dimensional airfoil at a Mach number of 0.13. The model was a NACA 66-012 airfoil section with a 0.76 m (30 in.) chord, 1.02 m (40 in.) span, and floor and end plates. It was mounted in the Ames 7- by 10-Foot Wind Tunnel. Serrated brass strips of various sizes and shapes were attached to the model in the region of the leading edge. Force and moment data, and photographs of tuft patterns and of oil flow patterns are presented. Results indicated that the smaller serrations, when properly placed on the airfoil, created vortices that increased maximum lift and angle of attack for maximum lift. The drag of the airfoil was not increased by these serrations at airfoil angles of attack near zero and was decreased at large angles of attack. Important parameters were serration size, position on the airfoil, and spacing between serrations.

  13. Aerodynamic data banks for Clark-Y, NACA 4-digit and NACA 16-series airfoil families

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Camba, J., III; Morris, P. M.

    1986-01-01

    With the renewed interest in propellers as means of obtaining thrust and fuel efficiency in addition to the increased utilization of the computer, a significant amount of progress was made in the development of theoretical models to predict the performance of propeller systems. Inherent in the majority of the theoretical performance models to date is the need for airfoil data banks which provide lift, drag, and moment coefficient values as a function of Mach number, angle-of-attack, maximum thickness to chord ratio, and Reynolds number. Realizing the need for such data, a study was initiated to provide airfoil data banks for three commonly used airfoil families in propeller design and analysis. The families chosen consisted of the Clark-Y, NACA 16 series, and NACA 4 digit series airfoils. The various component of each computer code, the source of the data used to create the airfoil data bank, the limitations of each data bank, program listing, and a sample case with its associated input-output are described. Each airfoil data bank computer code was written to be used on the Amdahl Computer system, which is IBM compatible and uses Fortran.

  14. Design of a family of new advanced airfoils for low wind class turbines

    NASA Astrophysics Data System (ADS)

    Grasso, Francesco

    2014-12-01

    In order to maximize the ratio of energy capture and reduce the cost of energy, the selection of the airfoils to be used along the blade plays a crucial role. Despite the general usage of existing airfoils, more and more, families of airfoils specially tailored for specific applications are developed. The present research is focused on the design of a new family of airfoils to be used for the blade of one megawatt wind turbine working in low wind conditions. A hybrid optimization scheme has been implemented, combining together genetic and gradient based algorithms. Large part of the work is dedicated to present and discuss the requirements that needed to be satisfied in order to have a consistent family of geometries with high efficiency, high lift and good structural characteristics. For each airfoil, these characteristics are presented and compared to the ones of existing airfoils. Finally, the aerodynamic design of a new blade for low wind class turbine is illustrated and compared to a reference shape developed by using existing geometries. Due to higher lift performance, the results show a sensitive saving in chords, wetted area and so in loads in idling position.

  15. High Reynolds number tests of the CAST 10-2/DOA 2 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, phase 1

    NASA Technical Reports Server (NTRS)

    Dress, D. A.; Mcguire, P. D.; Stanewsky, E.; Ray, E. J.

    1983-01-01

    A wind tunnel investigation of an advanced technology airfoil, the CAST 10-2/DOA 2, was conducted in the Langley 0.3 meter Transonic Cryogenic Tunnel (0.3 m TCT). This was the first of a series of tests conducted in a cooperative National Aeronautics and Space Administration (NASA) and the Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e. V. (DFVLR) airfoil research program. Test temperature was varied from 280 K to 100 K to pressures from slightly above 1 to 5.8 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 4 x 10 to the 8th power to 45 x 10 to the 6th power. This report presents the experimental aerodynamic data obtained for the airfoil and includes descriptions of the airfoil model, the 0.3 m TCT, the test instrumentation, and the testing procedures.

  16. Multi-Element Airfoil System

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)

    2014-01-01

    A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.

  17. Transient technique for measuring heat transfer coefficients on stator airfoils in a jet engine environment

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Proctor, M. P.

    A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.

  18. Transient technique for measuring heat transfer coefficients on stator airfoils in a jet engine environment

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Proctor, M. P.

    1985-01-01

    A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.

  19. Status of advanced airfoil tests in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, C. L.; Ray, E. J.

    1984-01-01

    A joint NASA/U.S. industry program to test advanced technology airfoils in the Langley 0.3-meter Transonic Tunnel (TCT) was formulated under the Langley ACEE Project Office. The objectives include providing U.S. industry an opportunity to compare their most advanced airfoils to the latest NASA designs by means of high Reynolds number tests in the same facility. At the same time, industry would again experience in the design and construction of cryogenic test techniques. The status and details of the test program are presented. Typical aerodynamic results obtained, to date, are presented at chord Reynolds number up to 45 x 10(6) and are compared to results from other facilities and theory. Details of a joint agreement between NASA and the Deutsche Forschungs- und Versuchsantalt fur Luft- and Raumfahrt e.V. (DFVLR) for tests of two airfoils are also included. Results of these tests will be made available as soon as practical.

  20. Unsteady two dimensional airloads acting on oscillating thin airfoils in subsonic ventilated wind tunnels

    NASA Technical Reports Server (NTRS)

    Fromme, J.; Golberg, M.

    1978-01-01

    The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump.

  1. Wind-tunnel Tests of the NACA 45-125 Airfoil: A Thick Airfoil for High-Speed Airplanes

    NASA Technical Reports Server (NTRS)

    Delano, James B.

    1940-01-01

    Investigations of the pressure distribution, the profile drag, and the location of transition for a 30-inch-chord 25-percent-thick N.A,C.A. 45-125 airfoil were made in the N.A.C.A 8-foot high-speed wind tunnel for the purpose of aiding in the development of a thick wing for high-speed airplanes. The tests were made at a lift coefficient of 0.1 for Reynolds Numbers from 1,750,000 to 8,690,000, corresponding to speeds from 80 to 440 miles per hour at 59 F. The effect on the profile drag of fixing the transition point was also investigated. The effect of compressibility on the rate of increase of pressure coefficients was found to be greater than that predicted by a simplified theoretical expression for thin wings. The results indicated that, for a lift coefficient of 0.1, the critical speed of the N.A.C,A. 45-125 airfoil was about 460 miles per hour at 59 F,. The value of the profile-drag coefficient at a Reynolds Number of 4,500,000 was 0.0058, or about half as large as the value for the N.A,C,A. 0025 airfoil. The increase in the profile-drag coefficient for a given movement of the transition point was about three times as large as the corresponding increase for the N.A.C,A. 0012 airfoil. Transition determinations indicated that, for Reynolds Numbers up to ?,000,000, laminar boundary 1ayers were maintained over approximately 40 percent of the upper and the lower surfaces of the airfoil.

  2. Turbine airfoil manufacturing technology

    SciTech Connect

    Kortovich, C.

    1995-12-31

    The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

  3. To speak in chords about sexuality.

    PubMed

    Bermant, G

    1995-01-01

    Sexuality emerges from the interdependencies of biology, awareness, and the facts and artifacts of public life. A useful metaphor is that correct accountings of sexuality are not one-finger melodies--they are chords. Unfortunately, the physical vs. mental and nature vs. nurture controversies remain alive, well, and mischievous in regard to the correct understanding of human sexuality. Active political and legal disputes about homosexuality exemplify a continuing reliance on reductionistic models of the causes of conduct. Discourse relying on public misapprehension about biological causality can alter the course of subsequent science and public opinion and thus affect personal experience as well. Both dualistic and reductionistic models are traps and bar progress; the models should not be smuggled into accounts of sexuality.

  4. Transesophageal echocardiography in NeoChord procedure

    PubMed Central

    Demetrio, Pittarello; Andrea, Colli; Gianclaudio, Falasco; Antonio, Marcassa; Gino, Gerosa; Carlo, Ori

    2015-01-01

    Background: Transapical off-pump mitral valve intervention with neochord implantation for degenerative mitral valve disease have been recently introduced in the surgical practice. The procedure is performed under 2D-3D transesophageal echocardiography guidance. Methods: The use of 3D real-time transesophageal echocardiography provides more accurate information than 2D echocardiography only in all the steps of the procedure. In particular 3D echocardiography is mandatory for preoperative assessment of the morphology of the valve, for correct positioning of the neochord on the diseased segment, for the final tensioning of the chordae and for the final evaluation of the surgical result. Result and Conclusion: This article is to outline the technical aspects of the transesophageal echocardiography guidance of the NeoChord procedure showing that the procedure can be performed only with a close and continuous interaction between the anesthesiologist and the cardiac surgeon. PMID:25849688

  5. To speak in chords about sexuality.

    PubMed

    Bermant, G

    1995-01-01

    Sexuality emerges from the interdependencies of biology, awareness, and the facts and artifacts of public life. A useful metaphor is that correct accountings of sexuality are not one-finger melodies--they are chords. Unfortunately, the physical vs. mental and nature vs. nurture controversies remain alive, well, and mischievous in regard to the correct understanding of human sexuality. Active political and legal disputes about homosexuality exemplify a continuing reliance on reductionistic models of the causes of conduct. Discourse relying on public misapprehension about biological causality can alter the course of subsequent science and public opinion and thus affect personal experience as well. Both dualistic and reductionistic models are traps and bar progress; the models should not be smuggled into accounts of sexuality. PMID:7630588

  6. An experimental study of transonic flow about a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Spaid, F. W.; Dahlin, J. A.; Bachalo, W. D.; Stivers, L. S., Jr.

    1983-01-01

    A series of experiments was conducted on flow fields about two airfoil models whose sections are slight modifications of the original Whitcomb supercritical airfoil section. Data obtained include surface static-pressure distributions, far-wake surveys, oil-flow photographs, pitot-pressure surveys in the viscous regions, and holographic interferograms. These data were obtained for different combinations of lift coefficient and free-stream Mach number, which included both subcritical cases and flows with upper-surface shock waves. The availability of both pitot-pressure data and density data from interferograms allowed determination of flow-field properties in the vicinity of the trailing edge and in the wake without recourse to any assumptions about the local static pressure. The data show that significant static-pressure gradients normal to viscous layers exist in this region, and that they persist to approximately 10% chord downstream of the trailing edge. Comparisons are made between measured boundary-layer properties and results from boundary-layer computations that employed measured static-pressure distributions, as well as comparisons between data and results of airfoil flow-field computations.

  7. Improved Techniques for Automatic Chord Recognition from Music Audio Signals

    ERIC Educational Resources Information Center

    Cho, Taemin

    2014-01-01

    This thesis is concerned with the development of techniques that facilitate the effective implementation of capable automatic chord transcription from music audio signals. Since chord transcriptions can capture many important aspects of music, they are useful for a wide variety of music applications and also useful for people who learn and perform…

  8. 16. Detail, lower chord connection point on downstream side at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail, lower chord connection point on downstream side at end panel showing lower chord eye bars, vertical tension eye bar, original and supplemental floor beams, turnbuckled lower laterals. View to northwest. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA

  9. 27. 100 foot through truss a typical lower chord ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. 100 foot through truss - a typical lower chord pin connection, located below the vertical member junction with the end post and upper chord. View shows one diagonal member. There are four of these per through truss for a total of 8, also shows the four inch conduit. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  10. 3. GENERAL VIEW OF LOWER CHORD, LOOKING SOUTH. NOTE THAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW OF LOWER CHORD, LOOKING SOUTH. NOTE THAT FLOOR BEAMS ARE LOCATED MIDWAY BETWEEN THE UPPER AND LOWER CHORDS. BUILT IN THE BASIC FORM OF A PRATT TRUSS (VERTICAL COMPRESSION MEMBERS, DIAGONAL TENSION MEMBERS), THE BRIDGE CAN TECHNICALLY BE REFERRED TO AS A BALTIMORE HALF-THROUGH TRUSS. - Seventh Street Bridge, Richmond, Independent City, VA

  11. 7. VIEW OF TRICOMPOSITE ROOF STRUCTURE. TOP CHORDS ARE TIMBER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF TRICOMPOSITE ROOF STRUCTURE. TOP CHORDS ARE TIMBER. TENSION RODS (THIN METAL RODS EXTENDING DIAGONALLY FROM THE HORIZONTAL TIMBER BRACE) ARE WROUGHT IRON. SOLID CRUCIFORM SHAPED COMPRESSION MEMBERS EXTENDING DOWNWARD FROM THE TIMBER TOP CHORD ARE MADE OF CAST IRON - North Central Railroad, Baltimore Freight House, Guilford & Centre Streets, Baltimore, Independent City, MD

  12. 13. Detail, upper chord connection point on upstream side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail, upper chord connection point on upstream side of truss, showing connection of upper chord, laced vertical compression member, knee-braced strut, counters, and laterals. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  13. Prediction of laminar-turbulent transition on an airfoil at high level of free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Chernoray, V.

    2015-06-01

    Prediction of laminar-turbulent transition at high level of free-stream turbulence in boundary layers of airfoil geometries with external pressure gradient changeover is in focus. The aim is a validation of a transition model for transition prediction in turbomachinery applications. Numerical simulations have been performed by using a transition model by Langtry and Menter for a number of different cases of pressure gradient, at Reynolds-number range, based on the airfoil chord, 50 000 ≤ Re ≤ 500 000, and free-stream turbulence intensities 2% and 4%. The validation of the computational results against the experimental data showed good performance of used turbulence model for all test cases.

  14. Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1996-01-01

    An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

  15. Experimental Droplet Impingement on Several Two-Dimensional Airfoils with Thickness Ratios of 6 to 16 Percent

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Smyers, William H., Jr.; VonGlahn, Uwe

    1956-01-01

    The rate and area of cloud droplet impingement on several two-dimensional swept and unswept airfoils were obtained experimentally in the NACA Lewis icing tunnel with a dye-tracer technique. Airfoil thickness ratios of 6 to 16 percent; angles of attack from 0 deg to 12 deg, and chord sizes from 13 to 96 inches were included in the study. The data were obtained at 152 knots and are extended to other conditions by dimensionless impingement parameters. In general, the data show that the total and local collection efficiencies and impingement limits are primary functions of the modified inertia parameter (in which airspeed, droplet size, and body size are the most significant variables) and the airfoil thickness ratio. Local collection efficiencies and impingement limits also depend on angle of attack. Secondary factors affecting impingement characteristics are airfoil shape, camber, and sweep angle. The impingement characteristics obtained experimentally for the airfoils were within +/-10 percent on the average of the characteristics calculated from theoretical trajectories. Over the range of conditions studied, the experimental data demonstrate that a specific method can be used to predict the impingement characteristics of swept airfoils with large aspect ratios from the data for unswept airfoils of the same series.

  16. High Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.; Ray, E. J.; Rozendaal, R. A.; Butler, T. W.

    1982-01-01

    A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  17. Shape Changing Airfoil

    NASA Technical Reports Server (NTRS)

    Ott, Eric A.

    2005-01-01

    Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

  18. Modeling an increase in the lift and aerodynamic efficiency of a thick Göttingen airfoil with optimum arrangement

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Sudakov, A. G.; Usachov, A. E.; Kharchenko, V. B.

    2015-06-01

    The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow line have been numerically solved jointly with the energy equation. The obtained solution has been used to calculate subsonic flow (at M = 0.05 and 5° angle of attack) past a thick (24% chord) Göttingen airfoil with variable arrangement of a small-sized (about 10% chord) circular vortex cell with fixed distributed suction Cq = 0.007 from the surface of a central body. It is established that the optimum arrangement of the vortex cell provides a twofold decrease in the bow drag coefficient Cx, a threefold increase in the lift coefficient Cy, and an about fivefold increase in the aerodynamic efficiency at Re = 105 in comparison to the smooth airfoil.

  19. Tabulation of data from tests of an NPL 9510 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1983-01-01

    The tabulated data from tests of a six inch chord NPL 9510 airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The tests were performed over the following range of conditions: Mach numbers of 0.35 to 0.82, total temperature of 94 K to 300 K, total pressure of 1.20 to 5.81 atm, Reynolds number based on chord of 1.34 x 10 to the 6th to 48.23 x 10 to the 6th, and angle of attack of 0 deg to 6 deg. The NPL 9510 airfoil was observed to have decreasing drag coefficient up to the highest test Reynolds number.

  20. Mild Dissonance Preferred Over Consonance in Single Chord Perception.

    PubMed

    Lahdelma, Imre; Eerola, Tuomas

    2016-05-01

    Previous research on harmony perception has mainly been concerned with horizontal aspects of harmony, turning less attention to how listeners perceive psychoacoustic qualities and emotions in single isolated chords. A recent study found mild dissonances to be more preferred than consonances in single chord perception, although the authors did not systematically vary register and consonance in their study; these omissions were explored here. An online empirical experiment was conducted where participants (N = 410) evaluated chords on the dimensions of Valence, Tension, Energy, Consonance, and Preference; 15 different chords were played with piano timbre across two octaves. The results suggest significant differences on all dimensions across chord types, and a strong correlation between perceived dissonance and tension. The register and inversions contributed to the evaluations significantly, nonmusicians distinguishing between triadic inversions similarly to musicians. The mildly dissonant minor ninth, major ninth, and minor seventh chords were rated highest for preference, regardless of musical sophistication. The role of theoretical explanations such as aggregate dyadic consonance, the inverted-U hypothesis, and psychoacoustic roughness, harmonicity, and sharpness will be discussed to account for the preference of mild dissonance over consonance in single chord perception. PMID:27433333

  1. Mild Dissonance Preferred Over Consonance in Single Chord Perception

    PubMed Central

    Eerola, Tuomas

    2016-01-01

    Previous research on harmony perception has mainly been concerned with horizontal aspects of harmony, turning less attention to how listeners perceive psychoacoustic qualities and emotions in single isolated chords. A recent study found mild dissonances to be more preferred than consonances in single chord perception, although the authors did not systematically vary register and consonance in their study; these omissions were explored here. An online empirical experiment was conducted where participants (N = 410) evaluated chords on the dimensions of Valence, Tension, Energy, Consonance, and Preference; 15 different chords were played with piano timbre across two octaves. The results suggest significant differences on all dimensions across chord types, and a strong correlation between perceived dissonance and tension. The register and inversions contributed to the evaluations significantly, nonmusicians distinguishing between triadic inversions similarly to musicians. The mildly dissonant minor ninth, major ninth, and minor seventh chords were rated highest for preference, regardless of musical sophistication. The role of theoretical explanations such as aggregate dyadic consonance, the inverted-U hypothesis, and psychoacoustic roughness, harmonicity, and sharpness will be discussed to account for the preference of mild dissonance over consonance in single chord perception. PMID:27433333

  2. Effect of Flap Deflection on Section Characteristics of S813 Airfoil; Period of Performance: 1993--1994

    SciTech Connect

    Somers, D. M.

    2005-01-01

    The effect of small deflections of a 30% chord, simple flap on the section characteristics of a tip airfoil, the S813, designed for 20- to 30-meter, stall-regulated, horizontal-axis wind turbines has been evaluated theoretically. The decrease in maximum lift coefficient due to leading-edge roughness increases in magnitude with increasing, positive flap deflection and with decreasing Reynolds number.

  3. Detailed measurements of the flowfield in the vicinity of an airfoil with glaze ice

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Coirier, W. J.

    1985-01-01

    An experimental study has been conducted in the OSU subsonic tunnel to measure the characteristics of the separation bubble on an airfoil with glaze ice. A measured glaze ice accretion on a NACA 0012 airfoil was simulated in wood for this dry tunnel test. The 21 inch chord model was pressure belted and the ice shape internally tapped to obtain surface pressures, lift and moment coefficients. A wake survey probe was used to obtain airfoil drag. The separation bubble was explored by measuring the time averaged velocities using a split film probe. The probe was positioned using a computer controlled two-dimensional traversing system. In this paper, airfoil lift, drag, and moment coefficient data are compared for the airfoil with and without glaze ice. Velocity profiles in the separation bubble are presented for several chordwise stations at three angles of attack. The ice shape caused a severe lift and drag penalty. The velocity profiles show clearly the large bubble geometry, regions of reversed flow, and bubble reattachment.

  4. Control of Vortex Shedding on an Airfoil using Mini Flaps at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Oshiyama, Daisuke; Numata, Daiju; Asai, Keisuke

    2015-11-01

    In this study, the effects of mini flaps (MFs) on a NACA0012 airfoil were investigated experimentally at low Reynolds number. MFs are small flat plates attached to the trailing edge of an airfoil perpendicularly. All the tests were conducted at the Tohoku-University Basic Aerodynamic Research Tunnel at the chord Reynolds number of 25,000. Aerodynamic forces were measured using a 3-component balance and the surface flow was visualized by luminescent oil film technique. The results of force measurement show that attachment of MFs enhances lift and the enhanced lift increases with MF height. On the other hand, the results of oil flow visualization show that attachment of MFs enlarges the separated region on the airfoil rather than diminishes it. To understand the physical mechanism of MFs for lift enhancement, the flow around the airfoil was visualized by the smoke-wire method and the wake profile behind the airfoil was measured using a hot wire anemometer. It was found that vortices shed periodically from the tip of the MFs and interact with the separated shear layer from the upper surface. This unsteady vortex shedding forms a low-pressure region on the upper surface, generating higher lift. These results suggest that the height of MFs controls the frequency of vortex shedding behind the MF, forcing the separated shear layer on the upper surface flow in unsteady manner.

  5. Separated shear layer transition over an airfoil at a low Reynolds number

    NASA Astrophysics Data System (ADS)

    Boutilier, Michael S. H.; Yarusevych, Serhiy

    2012-08-01

    Shear layer development over a NACA 0018 airfoil at a chord Reynolds number of 100 000 was investigated using a combination of flow visualization, velocity field mapping, surface pressure fluctuation measurements, and stability analysis. The results provide a detailed description of shear layer transition on an airfoil at low Reynolds numbers. An extensive comparison of measured surface pressure and velocity fluctuations demonstrated that time-resolved surface pressure sensor arrays can be used to identify the presence of flow separation, estimate the extent of the separated flow region, and measure disturbance growth rate spectra in significantly less time than is required by conventional techniques. Surface pressure sensor measurements of disturbance growth rate, wave number, and convection speed are found to compare well with predictions of linear stability theory, supporting the claim that convection speeds measured in separation bubbles over low Reynolds number airfoils are associated with wave packets of growing disturbances propagating through the shear layer. Through a comparison of measured convection speeds in this investigation and prior low Reynolds number airfoil experiments, it is shown that disturbance convection speeds of between 30% and 50% of the edge velocity are typical for this type of flow, consistent with phase speed estimates from previous analytical studies on transitional separation bubbles. Modal RMS velocity profiles were measured and found to be reasonably predicted by stability theory. The results suggest that, even for the relatively thick NACA 0018 airfoil profile, disturbance development over the majority of the laminar separated shear layer is primarily governed by a linear inviscid mechanism.

  6. NREL airfoil families for HAWTs

    NASA Astrophysics Data System (ADS)

    Tangler, J. L.; Somers, D. M.

    1995-01-01

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time seven airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c(sub l,max)) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  7. NREL airfoil families for HAWTs

    SciTech Connect

    Tangler, J L; Somers, D M

    1995-01-01

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time seven airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub l,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  8. Nonlinear effects of flow unsteadiness on the acoustic radiation of a heaving airfoil

    NASA Astrophysics Data System (ADS)

    Manela, Avshalom

    2013-12-01

    The study considers the combined effects of boundary animation (small-amplitude heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic signature of a thin rigid airfoil in low-Mach number flow. The potential-flow problem is analysed using the Brown and Michael equation, yielding the incident vortex trajectory and time evolution of trailing edge wake. The dynamical description serves as an effective source term to evaluate the far-field sound using Powell-Howe analogy. The results identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance of nonlinear eddy-airfoil interactions on the acoustic radiation. Based on the value of scaled heaving frequency ωa/U (with ω the dimensional heaving frequency, a the airfoil half-chord, and U the mean flow speed), the system behaviour can be divided into two characteristic regimes: (i) for ωa/U≪1, the effect of heaving is minor, and the acoustic response is well approximated by considering the interaction of a line vortex with a stationary airfoil; (ii) for ωa/U≫1, the impact of heaving is dominant, radiating sound through an “airfoil motion” dipole oriented along the direction of heaving. In between (for ωa/U~O(1)), an intermediate regime takes place. The results indicate that trailing edge vorticity has a two-fold impact on the acoustic far field: while reducing pressure fluctuations generated by incident vortex interaction with the airfoil, trailing edge vortices transmit sound along the mean-flow direction, characterized by airfoil heaving frequency. The “silencing” effect of trailing edge vorticity is particularly efficient when the incident vortex passes close to the airfoil trailing edge: at that time, application of the Kutta condition implies the release of a trailing edge vortex in the opposite direction to the incident vortex; the released vortex then detaches from the airfoil and follows the incident vortex, forming a “silent” vortex pair

  9. Turbine airfoil to shround attachment

    DOEpatents

    Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

    2014-05-06

    A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

  10. Detail of lower chord connections Waterville Bridge, Spanning Swatara ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of lower chord connections - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  11. 10. DETAIL OF JUNCTION BETWEEN LOWER CHORD, VERTICAL LACED CHANNEL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF JUNCTION BETWEEN LOWER CHORD, VERTICAL LACED CHANNEL, FLOOR BEAM, EYE BAR, AND U-BOLT. WEST ABUTMENT. - River Road Bridge, Spanning Spring Creek in Spring Creek Township, Hallton, Elk County, PA

  12. 8. SOUTH VIEW, RIVETED CONNECTION POINT OF TOP CHORD, DIAGONAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SOUTH VIEW, RIVETED CONNECTION POINT OF TOP CHORD, DIAGONAL TENSION MEMBER, INCLINED END POST AND VERTICAL MEMBER - Jordan Narrows Bridge, Crossing Jordan River at 9600 North, Lehi, Utah County, UT

  13. 17. LOWER CHORD CONNECTION, FLOOR BEAM & STRINGER SYSTEMS, WALKWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. LOWER CHORD CONNECTION, FLOOR BEAM & STRINGER SYSTEMS, WALKWAY CANTILEVER SUPPORTS; WALKWAY CANTILEVER SUPPORTS; LOOKING N - Traer Street Bridge, Spanning Shell Rock River at Traer Street, Greene, Butler County, IA

  14. 10. View of end portals, top chords, diagonals, verticals and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of end portals, top chords, diagonals, verticals and strut connections. Looking from east span to east end of west span. - Boomershine Bridge, Spanning Twin Creek, Farmersville, Montgomery County, OH

  15. 10. DETAIL OF UNDERSIDE OF ARCH, SHOWING LOWER CHORDS, VERTICALS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF UNDERSIDE OF ARCH, SHOWING LOWER CHORDS, VERTICALS, LATERAL BRACES AND ABUTMENTS, VIEW TO SOUTHEAST. - Navajo Bridge, Spanning Colorado River at U.S. Highway 89 Alternate, Page, Coconino County, AZ

  16. 7. VIEW OF SOUTHERN PACIFIC RAILROAD BRIDGE, LOWER CHORD, LATERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF SOUTHERN PACIFIC RAILROAD BRIDGE, LOWER CHORD, LATERAL BRACING AND FLOOR SYSTEM, LOOKING WEST. - Southern Pacific Railroad Bridge, Spanning Rio Grande at Southern Pacific Railroad, El Paso, El Paso County, TX

  17. 11. DETAIL VIEW OF LOWER CHORD AND CONNECTIONS OF VERTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF LOWER CHORD AND CONNECTIONS OF VERTICAL AND DIAGONAL BARS TO FLOOR BEAM ON WESTERN ELEVATION. FACING EAST. - Mercer County Bridge No. 2631, Spanning Pine Run at Cribbs Road, Mercer, Mercer County, PA

  18. 5. DETAIL VIEW OF UPPER CHORD MEMBER, SHOWING MAKER'S PLATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF UPPER CHORD MEMBER, SHOWING MAKER'S PLATE STATING 'KING IRON BRIDGE & MFG. CO., K & F & Z KING PATENT, CLEVELAND, O.' - Smith Road Bowstring Arch Bridge, Spanning Sycamore Creek at Smith Road (TR 62), Lykens, Crawford County, OH

  19. 5. DETAIL VIEW OF LOWER CHORD CONNECTION FROM UNDERNEATH BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF LOWER CHORD CONNECTION FROM UNDERNEATH BRIDGE, SHOWING DECK BEAM AND STIRRUP - John Bright No. 1 Iron Bridge, Spanning Poplar Creek at Havenport Road (TR 263), Carroll, Fairfield County, OH

  20. 22. Top Lateral Bracing & Top Chord, Vertical Tension Member ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Top Lateral Bracing & Top Chord, Vertical Tension Member 6, end Vertical Compression Members 5 & 4; South Swing Span; looking N. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  1. 44. Fixed Span, Floor Beam, Lower Chord Connection, Vertical Tension ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Fixed Span, Floor Beam, Lower Chord Connection, Vertical Tension Member Connection at 2R; looking WNW. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  2. Detail showing lower chord tension members, concrete piers, vertical and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail showing lower chord tension members, concrete piers, vertical and diagonal members at the eastern end of the main truss - William B. Crumpton Bridge, Spanning Tombigbee River on Alabama State Highway 10, Nanafalia, Marengo County, AL

  3. 13. Detail, connection point of end post, top chord, portal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail, connection point of end post, top chord, portal strut, and tension members at upstream side of west portal, view to northwest. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA

  4. 43. Fixed Span, Detail of Floor Beam, Lower Chord Connection, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Fixed Span, Detail of Floor Beam, Lower Chord Connection, Vertical Tension Member connection at 5L; looking NNW. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  5. 21. Typical lower chord tension member and diagonal tension member ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Typical lower chord tension member and diagonal tension member pinning. View is of north side of 3rd span looking west. - Cleves Bridge, Spanning Great Miami River on U.S. Highway 50, Cleves, Hamilton County, OH

  6. 20. Typical lower chord tension member, vertical lattice and diagonal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Typical lower chord tension member, vertical lattice and diagonal tension bar pinning. View is of north side of 3rd span looking east. - Cleves Bridge, Spanning Great Miami River on U.S. Highway 50, Cleves, Hamilton County, OH

  7. 8. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & GUSSET PLATE, ONE DIAGONAL BRACE - Enterprise Parker Truss Bridge, Spanning Smoky Hill River on K-43 Highway, Enterprise, Dickinson County, KS

  8. 7. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & GUSSET PLATE, TWO DIAGONAL BRACES - Enterprise Parker Truss Bridge, Spanning Smoky Hill River on K-43 Highway, Enterprise, Dickinson County, KS

  9. 6. Pin connection and eye bar nest, lower chord, up ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Pin connection and eye bar nest, lower chord, up river truss, 321-4 Span 3. - Monongahela Connecting Railroad Company, Main Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  10. 7. Pin connections and eye bar nest, lower chord, up ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Pin connections and eye bar nest, lower chord, up river truss, 321-4 Span 3. - Monongahela Connecting Railroad Company, Main Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  11. 8. Pin connecting and eye bar nest, lower chord, down ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Pin connecting and eye bar nest, lower chord, down river truss 132-0 Span 2 from Hot Metal Bridge. - Monongahela Connecting Railroad Company, Main Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  12. 14. UNDERSIDE OF BRIDGE, SHOWING BOTTOM CHORDS, FLOOR BEAMS, STRINGERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. UNDERSIDE OF BRIDGE, SHOWING BOTTOM CHORDS, FLOOR BEAMS, STRINGERS AND BOTTOM LATERAL BRACING. VIEW TO SOUTH. - Holbrook Bridge, Spanning Little Colorado River at AZ 77, Holbrook, Navajo County, AZ

  13. 12. DETAIL OF UNDERSIDE OF BRIDGE, SHOWING LOWER CHORDS, FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL OF UNDERSIDE OF BRIDGE, SHOWING LOWER CHORDS, FLOOR BEAMS, STRINGERS AND UNDERSIDE OF STEEL DECKING. VIEW TO WEST. - Whispering Pines Bridge, Spanning East Verde River at Forest Service Control Road, Payson, Gila County, AZ

  14. 32. VERTICAL / STRUT / UPPER CHORD DETAIL AT PINCONNECTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VERTICAL / STRUT / UPPER CHORD DETAIL AT PIN-CONNECTED EXPANSION JOINT BETWEEN CANTILEVER ARM AND SUSPENDED SPAN. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  15. 8. DETAIL VIEW OF NORTHEAST WEB AND TOP CHORD, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF NORTHEAST WEB AND TOP CHORD, SHOWING LATERAL BRACING, STRUTS, HIP VERTICALS, LATTICE BRACING AND EYEBARS, LOOKING NORTH - Nepesta Bridge, Spanning Arkansas River on County Road 613, Boone, Pueblo County, CO

  16. 31. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. VIEW TO NORTH. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  17. 32. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. VIEW TO NORTH. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  18. Comparison of pressure distributions on model and full-scale NACA 64-621 airfoils with ailerons for wind turbine application

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Kuniega, R. J.; Nyland, T. W.

    1988-01-01

    The aerodynamic similarity between a small (4-inch chord) wind tunnel model and a full-scale wind turbine blade (24-foot tip section with a 36-inch chord) was evaluated by comparing selected pressure distributions around the geometrically similar cross sections. The airfoils were NACA 64-621 sections, including trailing-edge ailerons with a width equal to 38 percent of the airfoil chord. The model airfoil was tested in the OSU 6- by 12-inch High Reynolds Number Wind Tunnel; the full-scale blade section was tested in the NASA Langley Research Center 30- by 60-foot Subsonic Wind Tunnel. The model airfoil contained 61 pressure taps connected by embedded tubes to pressure transducers. A belt containing 29 pressure taps was fixed to the full-scale section at midspan to obtain surface pressure data. Lift coefficients were obtained by integrating pressures, and corrections were made for the 3-D effects of blade twist and downwash in the blade tip section. The results of the two different experimental methods correlated well for angles of attack from minus 4 to 36 degrees and aileron reflections from 0 to 90 degrees.

  19. 19. 80 foot pony truss view of upper chord ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. 80 foot pony truss - view of upper chord pin connection at the end post, typical of the five 80 foot trusses and similar to the 64 foot tress. There are two pair per pony truss for a total of 24. Shown are the vertical lace post, end post, top chord member, and a diagonal member. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  20. Dynamic stall on a pitching and surging airfoil

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve; McKeon, Beverley J.

    2015-08-01

    Vertical axis wind turbine blades undergo dynamic stall due to the large angle of attack variation they experience during a turbine rotation. The flow over a single blade was modeled using a sinusoidally pitching and surging airfoil in a non-rotating frame with a constant freestream flow at a mean chord Reynolds number of . Two-dimensional, time-resolved velocity fields were acquired using particle image velocimetry. Vorticity contours were used to visualize shear layer and vortex activity. A low-order model of dynamic stall was developed using dynamic mode decomposition, from which primary and secondary dynamic separation modes were identified. The interaction between these two modes was able to capture the physics of dynamic stall and as such can be extended to other turbine configurations and problems in unsteady aerodynamics. Results from the linear pitch/surge frame are extrapolated to the rotating VAWT frame to investigate the behavior of identified flow structures.

  1. Low-speed aerodynamic characteristics of a 13 percent thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1979-01-01

    Wind tunnel tests were conducted to determine the low speed, two dimensional aerodynamic characteristics of a 13percent thick medium speed airfoil designed for general aviation applications. The results were compared with data for the 13 percent thick low speed airfoil. The tests were conducted over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2.0 x 10 to the 6th power to 12.0 x 10 to the 6th power, and an angle of attack frange from about -8 deg to 10 deg. The objective of retaining good high-lift low speed characteristics for an airfoil designed to have good medium speed cruise performance was achieved.

  2. Aerodynamic Characteristics of Twenty-Four Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Brigg, L J; Dryden, H L

    1930-01-01

    The aerodynamic characteristics of 24 airfoils are given for speeds of 0.5, 0.65, 0.8, 0.95, and 1.08 times the speed of sound, as measured in an open-jet air stream 2 inches in diameter, using models of 1-inch chord. The 24 airfoils belong to four general groups. The first is the standard R. A. F. family in general use by the Army and Navy for propeller design, the members of the family differing only in thickness. This family is represented by nine members ranging in thickness from 0.04 to 0.20 inch. The second group consists of five members of the Clark Y family, the members of the family again differing only in thickness. The third group, comprising six members, is a second R. A. F. Family in which the position of the maximum ordinate is varied. Combined with two members of the first R.A.F. family, this group represents a variation of maximum ordinate position from 30 to 60 percent of the chord in two camber ratios, 0.08 and 0.16. The fourth group consists of three geometrical forms, a flat plate, a wedge, and a segment of a right circular cylinder. In addition one section used in the reed metal propeller was included. These measurements form a part of a general program outlined at a Conference on Propeller Research organized by the National Advisory Committee for Aeronautics and the work was carried out with the financial assistance of the committee (author)

  3. The Influences of Progression Type and Distortion on the Perception of Terminal Power Chords

    ERIC Educational Resources Information Center

    Juchniewicz, Jay; Silverman, Michael J.

    2013-01-01

    The purpose of this study was to investigate the tonal perception and restoration of thirds within power chords with the instruments and sounds idiosyncratic to the Western rock/pop genre. Four separate chord sequences were performed on electric guitar in four versions; as full chord and power chord versions as well as under both clean-tone and…

  4. A direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Samtaney, Ravi

    2015-05-01

    We present results of direct numerical simulations of a synthetic jet (SJ) based separation control of flow past a NACA-0018 (National Advisory Committee for Aeronautics) airfoil, at 10° angle of attack and Reynolds number 104 based on the airfoil chord length C and uniform inflow velocity U0. The actuator of the SJ is modeled as a spanwise slot on the airfoil leeward surface and is placed just upstream of the leading edge separation position of the uncontrolled flow. The momentum coefficient of the SJ is chosen at a small value 2.13 × 10-4 normalized by that of the inflow. Three forcing frequencies are chosen for the present investigation: the low frequency (LF) F+ = feC/U0 = 0.5, the medium frequency (MF) F+ = 1.0, and the high frequency (HF) F+ = 4.0. We quantify the effects of forcing frequency for each case on the separation control and related vortex dynamics patterns. The simulations are performed using an energy conservative fourth-order parallel code. Numerical results reveal that the geometric variation introduced by the actuator has negligible effects on the mean flow field and the leading edge separation pattern; thus, the separation control effects are attributed to the SJ. The aerodynamic performances of the airfoil, characterized by lift and lift-to-drag ratio, are improved for all controlled cases, with the F+ = 1.0 case being the optimal one. The flow in the shear layer close to the actuator is locked to the jet, while in the wake this lock-in is maintained for the MF case but suppressed by the increasing turbulent fluctuations in the LF and HF cases. The vortex evolution downstream of the actuator presents two modes depending on the frequency: the vortex fragmentation and merging mode in the LF case where the vortex formed due to the SJ breaks up into several vortices and the latter merge as convecting downstream; the discrete vortices mode in the HF case where discrete vortices form and convect downstream without any fragmentation and merging

  5. Shock Wave/Stable Vortex Interaction over A NACA 0012 Airfoil: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Alammar, Khalid

    2002-11-01

    While many studies have been conducted on shock wave/vortex interaction in general, not much attention has been given to shock wave/stable vortex interaction over airfoils or wings, and the affect of vortices on transonic airfoil performance. This work is intended to numerically investigate shock wave/stable vortex interaction over airfoils, and to quantify vortex affect on airfoil performance at transonic speeds. To accomplish the objective, a steady, transonic turbulent flow around a 0.5-m NACA 0012 airfoil at alpha = 1 degree was simulated. The simulation was carried out using one, three, and no vortices. The stable vortices were placed on the suction side using cavities (dimples of 15-mm diameter). The simulation was conducted using the commercial code "Fluent". The second-order, coupled solver was invoked. Spalart-Almaras model was used in the formulation. The ideal-gas model and Sutherland's law were used for density and viscosity calculations, respectively. The computation was carried out at Mach 0.8 and Reynolds number of 9.1x106. Due to geometric complexity of the dimples, an unstructured mesh was used. The commercial code "Gambit" was utilized to construct the mesh. Three mesh blocks were generated to accommodate the boundary layer, the wake region, and the remainder of the computational space. A 3-mm, 20-layer boundary layer was constructed, and the first row was 0.01-mm high. The mesh consisted of 156,000 cells (tetrahedral for the domain and wedges for the boundary layer). Grid independence was checked by doubling the number of cells around the airfoil and in the wake region. No significant changes in the results were observed. The far field was 20 chords away from the surface. The simulation revealed the stable vortical flow structure inside the dimples. Small separation and reattachment was Predicted in all cases. It was found that the shock wave on the suction side of the airfoil was pushed up-stream by the stable vortices. Three vortices induced

  6. Effects of surface roughness and vortex generators on the NACA 4415 airfoil

    SciTech Connect

    Reuss, R.L.; Hoffman, M.J.; Gregorek, G.M.

    1995-12-01

    Wind turbines in the field can be subjected to many and varying wind conditions, including high winds with rotor locked or with yaw excursions. In some cases the rotor blades may be subjected to unusually large angles of attack that possibly result in unexpected loads and deflections. To better understand loadings at unusual angles of attack, a wind tunnel test was performed. An 18-inch constant chord model of the NACA 4415 airfoil section was tested under two dimensional steady state conditions in the Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 7 x 10 Subsonic Wind Tunnel (7 x 10). The objective of these tests was to document section lift and moment characteristics under various model and air flow conditions. These included a normal angle of attack range of {minus}20{degree} to +40{degree}, an extended angle of attack range of {minus}60{degree} to +230{degree}, applications of leading edge grit roughness (LEGR), and use of vortex generators (VGs), all at chord Reynolds numbers as high as possible for the particular model configuration. To realistically satisfy these conditions the 7 x 10 offered a tunnel-height-to-model-chord ratio of 6.7, suggesting low interference effects even at the relatively high lift and drag conditions expected during the test. Significantly, it also provided chord Reynolds numbers up to 2.0 million. 167 figs., 13 tabs.

  7. Unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Hess, R. W.

    1989-01-01

    Steady and unsteady pressures were measured on a 14 percent supercritical airfoil at transonic Mach numbers at Reynolds numbers from 6,000,000 to 35,000,000. Instrumentation techniques were developed to measure unsteady pressures in a cryogenic tunnel at flight Reynolds numbers. Experimental steady data, corrected for wall effects show very good agreement with calculations from a full potential code with an interacted boundary layer. The steady and unsteady pressures both show a shock position that is dependent on Reynolds number. For a supercritical pressure distribution at a chord Reynolds number of 35,000,000 laminar flow was observed between the leading edge and the shock wave at 45 percent chord.

  8. Active Control of Separation From the Flap of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2003-01-01

    Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.

  9. Experimental determination of the laminar separation bubble characteristics on an airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Omeara, M. M.; Mueller, T. J.

    1986-01-01

    An experimental investigation was conducted in order to document the structure and behavior of laminar separation bubbles at low Reynolds numbers. Data of this type is necessary if the currently insufficient analytical and numerical models are to be improved. The laminar separation bubble which forms on a NACA 66(3)-018 airfoil model was surveyed at chord Reynolds numbers ranging from 50,000 to 200,000 at angles of attack from 8 to 12 degrees. The effects of the various testing conditions on the separation bubble were isolated, and the data was analyzed in relation to existing separation bubble correlations in order to test their low Reynolds number applicability. This analysis indicated that the chord Reynolds number and the disturbance environment strongly influence the experimental pressure distributions. These effects must be included in any analytic prediction technique applied to the low Reynolds number flight regime.

  10. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  11. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  12. High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.

    2007-01-01

    Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.

  13. URANS simulations of separated flow with stall cells over an NREL S826 airfoil

    NASA Astrophysics Data System (ADS)

    Sarlak, H.; Nishino, T.; Sørensen, J. N.

    2016-06-01

    A series of wind tunnel measurements and oil flow visualization was recently carried out at the Technical University of Denmark in order to investigate flow characteristics over a 14% thick NREL S826 airfoil at low Reynolds numbers. This paper aims at presenting numerical simulations of the same airfoil using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. Results of the simulations are demonstrated in terms of mean flow velocity, lift and drag, as well as pressure distribution, and validated against available experimental data. The simulations are carried out with a wide computational domain (with a span-to-chord ratio of 5) and it is illustrated that the URANS approach is capable of predicting 3D spanwise structures, known as stall cells.

  14. Large-eddy simulation of flow around an airfoil on a structured mesh

    NASA Technical Reports Server (NTRS)

    Kaltenbach, Hans-Jakob; Choi, Haecheon

    1995-01-01

    The diversity of flow characteristics encountered in a flow over an airfoil near maximum lift taxes the presently available statistical turbulence models. This work describes our first attempt to apply the technique of large-eddy simulation to a flow of aeronautical interest. The challenge for this simulation comes from the high Reynolds number of the flow as well as the variety of flow regimes encountered, including a thin laminar boundary layer at the nose, transition, boundary layer growth under adverse pressure gradient, incipient separation near the trailing edge, and merging of two shear layers at the trailing edge. The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The corresponding angle of attack was determined independently by Wadcock (1987) and Hastings & Williams (1984, 1987) to be close to 12 deg. The simulation matches the chord Reynolds number U(sub infinity)c/v = 1.64 x 10(exp 6) of Wadcock's experiment.

  15. Evaluation of Icing Scaling on Swept NACA 0012 Airfoil Models

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Lee, Sam

    2012-01-01

    Icing scaling tests in the NASA Glenn Icing Research Tunnel (IRT) were performed on swept wing models using existing recommended scaling methods that were originally developed for straight wing. Some needed modifications on the stagnation-point local collection efficiency (i.e., beta(sub 0) calculation and the corresponding convective heat transfer coefficient for swept NACA 0012 airfoil models have been studied and reported in 2009, and the correlations will be used in the current study. The reference tests used a 91.4-cm chord, 152.4-cm span, adjustable sweep airfoil model of NACA 0012 profile at velocities of 100 and 150 knot and MVD of 44 and 93 mm. Scale-to-reference model size ratio was 1:2.4. All tests were conducted at 0deg angle of attack (AoA) and 45deg sweep angle. Ice shape comparison results were presented for stagnation-point freezing fractions in the range of 0.4 to 1.0. Preliminary results showed that good scaling was achieved for the conditions test by using the modified scaling methods developed for swept wing icing.

  16. Second Stage Turbine Bucket Airfoil.

    DOEpatents

    Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward

    2003-05-06

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  17. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  18. Analysis of a theoretically optimized transonic airfoil

    NASA Technical Reports Server (NTRS)

    Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.

    1978-01-01

    Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.

  19. Nozzle airfoil having movable nozzle ribs

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  20. Recent work on airfoil theory

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1940-01-01

    The basic ideas of a new method for treating the problem of the airfoil are presented, and a review is given of the problems thus far computed for incompressible and supersonic flows. Test results are reported for the airfoil of circular plan form and the results are shown to agree well with the theory. As a supplement, a theory based on the older methods is presented for the rectangular of small aspect ratio.

  1. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  2. A Study of Sound Generation by an Airfoil via Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Tam, Christopher; Ju, Hongbin

    2004-11-01

    Direct numerical simulations of sound generation associated with flow past a NACA0012 airfoil with a blunt trailing edge are performed. The simulations use the high resolution Dispersion-Relation-Preserving (DRP) time marching scheme and a body fitted grid constructed by conformal mapping. It is known experimentally that at Mach number around 0.1 and chord Reynolds number around 200,000 a strong tone is emitted. The primary objective of this study is to investigate the tone generation mechanism. We are also interested to determine the tone frequency and directivity. In the present numerical simulation, vortex shedding at the blunt trailing edge of the airfoil and the emission of a strong tone are observed. The tone frequencies over a range of Reynolds numbers measured in the simulations are in good agreement with experimental measurements. The directivity of the tones resembles closely to that of an oscillating dipole placed with the dipole axis perpendicular to the flow. An examination of the simulation data reveals that vortices are shed at the blunt trailing of the airfoil. However, after a very careful investigation of the wake flow it is believed that the vortex shedding process is not directly responsible for sound generation. The wake flow is highly unstable. A Kelvin-Helmholtz instability wave is excited slightly downstream of the airfoil trailing edge. The processes that generate the instability wave appear to generate the tone as a by-product.

  3. Computations of two-dimensional airfoil-vortex interactions. [helicopter rotor flowfields

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.

    1985-01-01

    A procedure for calculating the interaction of a vortex with a two dimensional airfoil in a uniform free stream is presented along with results for several test cases. A Lamb like anaytical vortex having a finite core and convect in a uniform free stream interacts with the flowfield of NACA 0012 or NACA 64A006 airfoil in transonic and subsonic flow. Euler and thin layer Navier-Stokes solutions are computed and the results are compared with the results from transonic small disturbance code and available experimental results. For interactions within the limits of transonic small disturbance assumptions, the three methods gave qualitatively similar results of a two bladed helicopter rotor and suggest that the time lag effects of the free stream velocity approaching the blade may be important and should be considered in the analysis. In general, the results show a tremendous influence of the interacting vortex on the flowfield around the airfoil. This is particularly true when the vortex is stationary. For a convecting vortex, the most dramatic changes in the flowfield seem to occur when the vortex is within one chord of the airfoil.

  4. Effects of mean flow convection, quadrupole sources and vortex shedding on airfoil overall sound pressure level

    NASA Astrophysics Data System (ADS)

    Wolf, William R.; Azevedo, João L. F.; Lele, Sanjiva K.

    2013-12-01

    This paper presents a further analysis of results of airfoil self-noise prediction obtained in the previous work using large eddy simulation and acoustic analogy. The physical mechanisms responsible for airfoil noise generation in the aerodynamic flows analyzed are a combination of turbulent and laminar boundary layers, as well as vortex shedding (VS) originated due to trailing edge bluntness. The primary interest here consists of evaluating the effects of mean flow convection, quadrupole sources and vortex shedding tonal noise on the overall sound pressure level (OASPL) of a NACA0012 airfoil at low and moderate freestream Mach numbers. The overall sound pressure level is the measured quantity which eventually would be the main concern in terms of noise generation for aircraft and wind energy companies, and regulating agencies. The Reynolds number based on the airfoil chord is fixed at Rec=408,000 for all flow configurations studied. The results demonstrate that, for moderate Mach numbers, mean flow effects and quadrupole sources considerably increase OASPL and, therefore, should be taken into account in the acoustic prediction. For a low Mach number flow with vortex shedding, it is observed that OASPL is higher when laminar boundary layer separation is the VS driving mechanism compared to trailing edge bluntness.

  5. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    NASA Technical Reports Server (NTRS)

    Zaman, KBMQ; Fagan, A. F.; Mankbadi, M. R.

    2016-01-01

    An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.

  6. Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    1999-01-01

    An experimental investigation, aimed at delaying flow separation due to the occurrence of a shock-wave-boundary-layer interaction, is reported. The experiment was performed using a NACA 0012 airfoil and a NACA 0015 airfoil at high Reynolds number incompressible and compressible flow conditions. The effects of Mach and Reynolds numbers were identified, using the capabilities of the cryogenic-pressurized facility to maintain one parameter fixed and change the other. Significant Reynolds number effects were identified in the baseline compressible flow conditions even at Reynolds number of 10 and 20 million. The main objectives of the experiment were to study the effects of periodic excitation on airfoil drag-divergence and to alleviate the severe unsteadiness associated with shock-induced separation (known as "buffeting"). Zero-mass-flux oscillatory blowing was introduced through a downstream directed slot located at 10% chord on the upper surface of the NACA 0015 airfoil. The effective frequencies generated 2-4 vortices over the separated region, regardless of the Mach number. Even though the excitation was introduced upstream of the shock-wave, due to experimental limitations, it had pronounced effects downstream of it. Wake deficit (associated with drag) and unsteadiness (associated with buffeting) were significantly reduced. The spectral content of the wake pressure fluctuations indicates of steadier flow throughout the frequency range when excitation was applied. This is especially important at low frequencies which are more likely to interact with the airframe.

  7. Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade

    NASA Technical Reports Server (NTRS)

    Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.

    1985-01-01

    Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfroils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.

  8. Multi-chord fiber-coupled interferometry of supersonic plasma jets (invited)

    SciTech Connect

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Thoma, Carsten; Loverich, John; Hsu, Scott C.

    2012-10-15

    A multi-chord fiber-coupled interferometer is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which both positive and negative phase shift values are observed depending on the ionization fraction. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity ({approx}15-50 km/s), jet length ({approx}20-100 cm), and 3D expansion.

  9. Low-speed aerodynamic characteristics of a 14-percent-thick NASA phase 2 supercritical airfoil designed for a lift coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.; Mcghee, R. J.; Allison, D. O.

    1980-01-01

    The low speed aerodynamic characteristics of a 14 percent thick supercritical airfoil are documented. The wind tunnel test was conducted in the Low Turbulence Pressure Tunnel. The effects of varying chord Reynolds number from 2,000,000 to 18,000,000 at a Mach number of 0.15 and the effects of varying Mach number from 0.10 to 0.32 at a Reynolds number of 6,000,000 are included.

  10. Tables of properties of airfoil polynomials

    NASA Technical Reports Server (NTRS)

    Desmarais, Robert N.; Bland, Samuel R.

    1995-01-01

    This monograph provides an extensive list of formulas for airfoil polynomials. These polynomials provide convenient expansion functions for the description of the downwash and pressure distributions of linear theory for airfoils in both steady and unsteady subsonic flow.

  11. High Reynolds number tests of a Douglas DLBA 032 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Charles B.; Dress, David A.; Hill, Acquilla S.; Wilcox, Peter A.; Bui, Minh H.

    1986-01-01

    A wind-tunnel investigation of a Douglas advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). The temperature was varied from 227 K (409 R) to 100 K (180 R) at pressures ranging from about 159 kPa (1.57 atm) to about 514 kPa (5.07 atm). Mach number was varied from 0.50 to 0.78. These variables provided a Reynolds number range (based on airfoil chord) from 6.0 to 30.0 x 10 to the 6th power. This investigation was specifically designed to: (1) test a Douglas airfoil from moderately low to flight-equivalent Reynolds numbers, and (2) evaluate sidewall-boundary-layer effects on transonic airfoil performance characteristics by a systematic variation of Mach number, Reynolds number, and sidewall-boundary-layer removal. Data are included which demonstrate the effects of fixing transition, Mach number, Reynolds number, and sidewall-boundary-layer removal on the aerodynamic characteristics of the airfoil. Also included are remarks on model design and model structural integrity.

  12. Airfoil deposition model

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.

    1982-01-01

    The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.

  13. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  14. A supercritical airfoil experiment

    NASA Technical Reports Server (NTRS)

    Mateer, G. G.; Seegmiller, H. L.; Hand, L. A.; Szodruck, J.

    1994-01-01

    The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.

  15. Interior detail, building 810, view to north showing curved chord ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail, building 810, view to north showing curved chord sections of roof trusses, 90mm lens plus electronic flash fill lighting. - Travis Air Force Base, B-36 Hangar, Between Woodskill Avenue & Ellis, adjacent to Taxiway V & W, Fairfield, Solano County, CA

  16. 28. 100 foot through truss a typical lower chord ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. 100 foot through truss - a typical lower chord pin connection, located below each vertical lace post on the through trusses. Each truss has four of these for a total of eight. Shown is the floor beam below the pin connection, and the four inch conduit. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  17. 35. View is the underside of a lower chord pin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. View is the underside of a lower chord pin connection showing the top strut, along with lateral and diagonal members. There are four of these per through truss for a total of eight. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  18. 14. VIEW OF BRACING AND LOWER CHORD, SPAN NO. 23, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF BRACING AND LOWER CHORD, SPAN NO. 23, SHOWING EFFECT OF COMPRESSIVE FORCE ON TENSILE MEMBERS. (EYEBARS IN UPPER LEFT-HAND CORNER OF VIEW.) - Smith Avenue High Bridge, Smith Avenue between Cherokee Avenue & Cliff Street, Saint Paul, Ramsey County, MN

  19. 14. Detail, connection point of upper chord and end post, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail, connection point of upper chord and end post, showing aforementioned members, vertical and diagonal tension members, lateral, latticed portal strut and decorative strut bracing. Note also decorative fluted Classical urn atop end post. View to west of upstream side of northwest portal. - Red Bank Creek Bridge, Spanning Red Bank Creek at Rawson Road, Red Bluff, Tehama County, CA

  20. Analyzing Sound Waves Produced by Musical Notes & Chords.

    ERIC Educational Resources Information Center

    Cassidy, Michael

    This project description is designed to show how graphing calculators and calculator-based laboratories (CBL) can be used to explore topics in the physics of sound. The activities address topics such as sound waves, musical notes, and chords. Teaching notes, calculator instructions, and blackline masters are included. (MM)

  1. 74. CENTER GIRDER SECTION FOR THE BOTTOM CHORD OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. CENTER GIRDER SECTION FOR THE BOTTOM CHORD OF THE IOWA SWING SPAN LOADED ON A DOLLY READY TO BE ROLLED OUT TO THE BRIDGE TO BE PLACER ON THE DRUM. PROBABLY TAKEN SEPTEMBER 7, 1895. - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  2. 13. DETAIL OF CONNECTION BETWEEN TOP CHORD AND POST IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF CONNECTION BETWEEN TOP CHORD AND POST IN WEST TRUSS, SHOWING CHANNELS AND REINFORCED CAST-IRON LACING, I-BEAMS FASTENED TOGETHER WITH RIVETTED PLATES, AND ASSEMBLY OF DIAGONAL EYE BEAM AND BOLT; VIEW FROM EAST SIDE. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  3. 31. DECK / VERTICAL / UPPER CHORD DETAIL OF THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DECK / VERTICAL / UPPER CHORD DETAIL OF THROUGH TRUSS AT PIN-CONNECTED EXPANSION JOINT BETWEEN CANTILEVER ARM AND SUSPENDED SPAN. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  4. Dust trailing from the top chord, the bridge falls toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dust trailing from the top chord, the bridge falls toward the river, as the southwest end (right) falls first. View southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  5. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  6. Shape optimization of corrugated airfoils

    NASA Astrophysics Data System (ADS)

    Jain, Sambhav; Bhatt, Varun Dhananjay; Mittal, Sanjay

    2015-12-01

    The effect of corrugations on the aerodynamic performance of a Mueller C4 airfoil, placed at a 5° angle of attack and Re=10{,}000, is investigated. A stabilized finite element method is employed to solve the incompressible flow equations in two dimensions. A novel parameterization scheme is proposed that enables representation of corrugations on the surface of the airfoil, and their spontaneous appearance in the shape optimization loop, if indeed they improve aerodynamic performance. Computations are carried out for different location and number of corrugations, while holding their height fixed. The first corrugation causes an increase in lift and drag. Each of the later corrugations leads to a reduction in drag. Shape optimization of the Mueller C4 airfoil is carried out using various objective functions and optimization strategies, based on controlling airfoil thickness and camber. One of the optimal shapes leads to 50 % increase in lift coefficient and 23 % increase in aerodynamic efficiency compared to the Mueller C4 airfoil.

  7. Advanced technology airfoil research, volume 2. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  8. Root region airfoil for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  9. Investigation of the near and far wake of a bluff airfoil model with trailing edge modifications using time-resolved particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Krentel, Daniel; Nitsche, Wolfgang

    2013-07-01

    Experimental investigations on the topology and the structure of the near and far wake of a quasi-2D blunt NACA0012 airfoil cut at 80 % of the original chord length c master have been performed by means of time-resolved particle image velocimetry. The experiments took place in a closed-loop water tunnel at a model-thickness H-based Reynolds number of Re H = 44,000. The periodic and alternating vortex formation process at the base of the bluff model with a dimensionless frequency of Sr h = 0.2 (relating to the trailing edge height h) was investigated in detail. Subsequently, four modifications of the trailing edge geometry (broken trailing edge, square-wave base, stepped afterbody and extension of the reference model by Δ c/c_master = 7.5 %) have been investigated in order to mitigate the periodic vortex formation and the alternating shedding process. In the far wake, a considerable decrease in momentum loss and resulting drag force in the range of 29 % has been achieved for this specific Reynolds number. Investigations of the time-resolved flow field proved that the periodic, alternating flow separation can be attenuated resulting in an optimized recirculation region and a low-loss wake. It can be inferred that passive flow control means like modifications of the rear end geometry of quasi-2D blunt models are a capable method to improve the flow field with respect to a minimization of momentum losses in the wake.

  10. The Effect of Rivet Heads on the Characteristics of a 6 by 36 Foot Clark Y Metal Airfoil

    NASA Technical Reports Server (NTRS)

    Dearborn, Clinton H

    1933-01-01

    An investigation was conducted in the N.A.C.A. full-scale wind tunnel to determine the effects of exposed rivet heads on the aerodynamic characteristics of a metal-covered 6 by 36 foot Clasky airfoil. Lead punching simulating 1/8inch rivet heads were attached in full-span rows at a pitch of 1 inch at various chord positions. Tests were made at velocities varying from 40 to 120 miles per hour to investigate the scale effect. Rivets at the 5 percent chord position the upper surface of the airfoil produced the greatest increase in drag for a single row. Nine rows of rivets on both surfaces, simulating rivet spacing of multispan construction, increased the drag coefficients by a constant amount at velocities between 100 and 120 miles per hour. Accordingly, if rivets spaced the same as those on the test airfoil were used on a Clark Y wing of 300 square feet area and operated at 200 miles per hour, the drag would be increased over that for the smooth wing by 55 pounds and the power required would be increased by 29 horsepower.

  11. The acoustics and unsteady wall pressure of a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Silver, Jonathan C.

    A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.

  12. Advanced Airfoils Boost Helicopter Performance

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  13. Computer-Based Recognition of Perceptual Patterns in Chord Quality Dictation Exercises.

    ERIC Educational Resources Information Center

    Hofstetter, Fred T.

    1980-01-01

    This experiment measured the achievement of 18 college freshmen music majors in the Graded Units for Interactive Dictation Operations (GUIDO) chord quality program and determined the pattern of student responses to chord quality dictation exercises. (Author/KC)

  14. Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale

    1996-01-01

    An experimental and computational investigation of the effect of lift enhancing tabs on a two-element airfoil was conducted. The objective of the study was to develop an understanding of the flow physics associated with lift enhancing tabs on a multi-element airfoil. A NACA 63(sub 2)-215 ModB airfoil with a 30 percent chord Fowler flap was tested in the NASA Ames 7 by 10 foot wind tunnel. Lift enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computer results predict all of the trends in the experimental data quite well. When the flow over the flap upper surface is attached, tabs mounted at the main element trailing edge (cove tabs) produce very little change in lift. At high flap deflections. however, the flow over the flap is separated and cove tabs produce large increases in lift and corresponding reductions in drag by eliminating the separated flow. Cove tabs permit high flap deflection angles to be achieved and reduce the sensitivity of the airfoil lift to the size of the flap gap. Tabs attached to the flap training edge (flap tabs) are effective at increasing lift without significantly increasing drag. A combination of a cove tab and a flap tab increased the airfoil lift coefficient by 11 percent relative to the highest lift tab coefficient achieved by any baseline configuration at an angle of attack of zero percent and the maximum lift coefficient was increased by more than 3 percent. A simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift enhancing tabs work. The tabs were modeled by a point vortex at the training edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift enhancing tabs on a multi-element airfoil. Results of the modeling

  15. Hook nozzle arrangement for supporting airfoil vanes

    SciTech Connect

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.

  16. Airfoil shape for a turbine nozzle

    DOEpatents

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  17. Hook nozzle arrangement for supporting airfoil vanes

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-02-20

    A gas turbine engine`s nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic. 8 figs.

  18. The mean aerodynamic chord and the aerodynamic center of a tapered wing

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1942-01-01

    A preliminary study of pitching-moment data on tapered wings indicated that excellent agreement with test data was obtained by locating the quarter-chord point of the average chord on the average quarter-chord point of the semispan. The study was therefore extended to include most of the available data on tapered-wing models tested by the NACA.

  19. Wind-tunnel test of the S814 thick root airfoil

    SciTech Connect

    Somers, D.M.; Tangler, J.L.

    1995-01-01

    The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient (c{sub 1,max} designed to be largely insensitive to leading edge roughness effects. The 24-percent-thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil`s maximum lift-to-drag ratio was designed to occur it a high lift coefficient. To accomplish the objective, a two-dimensional wind-tunnel test of the S814 thick root airfog was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory. Data were obtained for transition-free and transition-fixed conditions at Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 {times} 10{sup 6}. For the design Reynolds numbers of 1.5 {times} l0{sup 6}, the transition-free c{sub 1,max} is 1.3 which satisfies the design specification. However, this value is significantly lower than the predicted c{sub 1,max} of almost l.6. With transition-fixed at the is 1.2. The difference in c{sub 1,max} between the transition-free and transition-fixed conditions demonstrates the airfoil`s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low c{sub 1,max} tip-region airfoils for rotor blades 10 to 15 meters in length.

  20. Increasing prototype airfoil fabrication efficiency through the use of sectional molds

    NASA Astrophysics Data System (ADS)

    Karges, Adam T.

    Airfoil development has always been important in the aeronautics industry. Current airfoil development techniques are being applied to design larger and more efficient wind turbine blades. To verify simulation results, a prototype blade must be built and tested. Current wing or blade structures are fabricated using traditional molding techniques. These large molds, particularly those used for wind turbine blades, can be fabricated from composite materials formed over a master shape. This process can be time and material intensive. This project develops techniques and methodology to build cavity molds using sectional pieces directly fabricated by computer numerically controlled (CNC) milling. A mold cavity was machined into tooling foam using CNC milling. This process allowed for mold creation without fabricating a master airfoil. Employment of several mold sections makes the machining process much easier and allows machine shops to produce larger, previously unfeasible, airfoil molds using limited machining length.

  1. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; Burke, Kevin M.; Nolan, Gerald J.; Brown, Dennis

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  2. Chord-wise Tip Actuation on Flexible Flapping Plates

    NASA Astrophysics Data System (ADS)

    Martin, Nathan; Gharib, Morteza

    2015-11-01

    The aerodynamic characteristics of low aspect ratio flapping plates are strongly influenced by the interaction between tip and edge vortices. This has led to the development of tip actuation mechanisms which bend the tip towards the root of the plate in the span-wise direction during oscillation to investigate its impact. In our current work, a tip actuation mechanism to bend a flat plate's two free corners towards one another in the chord-wise direction is developed using a shape memory alloy. The aerodynamic forces and resulting flow field are investigated from dynamically altering the tip chord-wise curvature while flapping. The frequency of oscillation, stroke angle, flexibility, and tip actuation timing are independently varied to determine their individual effects. These results will further the fundamental understanding of flapping wing aerodynamics. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144469.

  3. Chords and harmonies in mixed optical and acoustical stimuli

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Dannenberg, Florian; Dörfler, Joachim; Weber, Bernhard; Weyer, Cornelia; Gercke-Hahn, Harald; Freimuth, Steffen; Heucke, Sören; Gutzmann, Holger Ludwig

    2014-09-01

    The paper is a follow up of the work presented in last year's Optics and Music session on the perception of coherence between low frequency power modulated light and periodical acoustic stimuli. The composition of chords and harmonies from power modulated light sources and their effect as stand-alone stimulus and in conjunction with the equivalent acoustic signal is discussed. Of special interest here is the modulation near perceptible flicker frequency. The substitution of acoustical chord components by their optical counterpart and vice versa is investigated. Further, concepts of a training application for trombone players and other instrumentalists are presented: since the mean slide of the trombone does not have fixed positions, the note must be found and two players might influence each other. The possibility of helping them to synchronize by optical stimuli derived from their playing is investigated. Beside possible applications in emotional reinforcing multimedia oriented entertainment and training support for musicians, again implications for occupational medicine are discussed.

  4. Preliminary Investigation of Cyclic De-Icing of an Airfoil Using an External Electric Heater

    NASA Technical Reports Server (NTRS)

    Lewis, James P.; Bowden, Dean T.

    1952-01-01

    An investigation was conducted in the NACA Lewis icing research tunnel to determine the characteristics and requirements of cyclic deicing of a 65,2-216 airfoil by use of an external electric heater. The present investigation was limited to an airspeed of 175 miles per hour. Data are presented to show the effects of variations in heat-on and heat-off periods, ambient air temperature, liquid-water content, angle of attack, and. heating distribution on the requirements for cyclic deicing. The external heat flow at various icing and heating conditions is also presented. A continuously heated parting strip at the airfoil leading edge was found necessary for quick, complete, and consistent ice removal. The cyclic power requirements were found to be primarily a function of the datum temperature and heat-on time, with the other operating and meteorological variables having a second-order effect. Short heat-on periods and high power densities resulted in the most efficient ice removal, the minimum energy input, and the minimum runback ice formations. The optimum chordwise heating distribution pattern was found to consist of a uniform distribution of cycled power density in the impingement region. Downstream of the impingement region the power density decreased to the limits of heating which, for the conditions investigated, extended from 5.7 percent chord on the upper surface of the airfoil to 8.9 percent chord on the lower surface. Ice removal did not take place at a heater surface temperature of 32 F; surface temperatures of approximately 50 to 100 F were required to effect removal. Better de-icing performance and greater energy savings would be possible with a heater having a higher thermal efficiency.

  5. 20. 80 foot pony truss an upper chord pin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. 80 foot pony truss - an upper chord pin connection at a vertical post other than at the end post. Common to the five 80 foot trusses and similar to the 64 foot truss, there are two pairs per 80 foot truss and one pair on the 64 foot truss for a total of 22. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  6. Closeup view showing portion of continuous bottom chord of truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view showing portion of continuous bottom chord of truss with other web members and posts of the truss connected thereto at a joint by the use of a large steel pin. Note: The timber ties supporting the track (not shown but above) span transversely from truss to truss which are on 16' -0 centers. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  7. 20. Underside of swingspan showing bottom truss chords, floor beams ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Underside of swing-span showing bottom truss chords, floor beams and stringers. The draw rests on the end-lift pedestals (end ram supports) at each side of the masonry rest pier. The end-lift drive shaft is supported from the center of the draw. (Nov. 25, 1988) - University Heights Bridge, Spanning Harlem River at 207th Street & West Harlem Road, New York County, NY

  8. Musicianship facilitates the processing of Western music chords--an ERP and behavioral study.

    PubMed

    Virtala, P; Huotilainen, M; Partanen, E; Tervaniemi, M

    2014-08-01

    The present study addressed the effects of musicianship on neural and behavioral discrimination of Western music chords. In abstract oddball paradigms, minor chords and inverted major chords were presented in the context of major chords to musician and non-musician participants in a passive listening task (with EEG recordings) and in an active discrimination task. Both sinusoidal sounds and harmonically rich piano sounds were used. Musicians outperformed non-musicians in the discrimination task. Change-related mismatch negativity (MMN) was evoked to minor and inverted major chords in musicians only, and N1 amplitude was larger in musicians than non-musicians. While MMN was absent in non-musicians, both groups showed decreased N1 in response to minor compared to major chords. The results indicate that processing of complex musical stimuli is enhanced in musicians both behaviorally and neurally, but that major-minor chord categorization is present to some extent also in the absence of music training.

  9. Experimental Investigation of Dynamic Stall on a NACA0012 Airfoil Undergoing Sinusoidal Pitching

    NASA Astrophysics Data System (ADS)

    Bohl, Douglas; Green, Melissa

    2015-11-01

    In this work, the flow field around a NACA0012 Airfoil undergoing large amplitude sinusoidal pitching is investigated using Particle Image Velocimetry (PIV). The airfoil is pitched symmetrically about the quarter chord point with a peak angle of 20 deg, at reduced frequencies of k =0.2-0.6 and Rec = 12000. Sixteen different Fields of View are phase averaged and combined to quantify the flow field from 0.75c upstream of the leading edge to 1c downstream of the trailing edge. This provides spatially and temporally resolved data sets that include the downstream evolution of the flow fields. The velocity and vorticity fields, both around the airfoil and downstream of the trailing edge, will be investigated as a function of the reduced frequency to better understand the dynamics (i.e. formation, separation and development) of the leading edge vortex and the resulting downstream flow evolution. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

  10. Interaction of an Artificially Thickened Boundary Layer with a Vertically Mounted Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2011-11-01

    Wind energy represents a large portion of the growing market in alternative energy technologies and the current landscape has been dominated by the more prevalent horizontal axis wind turbine. However, there are several advantages to the vertical axis wind turbine (VAWT) or Darrieus type design and yet there is much to be understood about how the atmospheric boundary layer (ABL) affects their performance. In this study the ABL was simulated in a wind tunnel through the use of elliptical shaped vortex generators, a castellated wall, and floor roughness elements as described in the method of Counihan (1967) and then verified its validity by hot wire measurement of the mean velocity profile as well as the turbulence intensity. The motion of an blade element around a vertical axis is approximated through the use of a pitching airfoil. The wake of the airfoil is investigated through hot wire anemometry in both uniform flow and in the simulated boundary layer both at Re = 1 . 37 ×105 based on the chord of the airfoil. Sponsored by Hopewell Wind Power (Hong Kong) Limited.

  11. Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Hannon, Judith; Yao, Chung-Sheng; Harris, Jerome

    2008-01-01

    Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results.

  12. A Wind Tunnel Study of Icing Effects on a Business Jet Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Zoeckler, Joesph G.; Lee, Sam

    2003-01-01

    Aerodynamic wind tunnel tests were conducted to study the effects of various ice accretions on the aerodynamic performance of a 36-inch chord, two-dimensional business jet airfoil. Eight different ice shape configurations were tested. Four were castings made from molds of ice shapes accreted in an icing wind tunnel. Two were made using computationally smoothed tracings of two of the ice shapes accreted in the icing tunnel. These smoothed profiles were then extended in the spanwise direction to form a two-dimensional ice shape. The final two configurations were formed by applying grit to the smoothed ice shapes. The ice shapes resulted in as much as 48% reduction in maximum lift coefficient from that of the clean airfoil. Large increases in drag and changes in pitching moment were also observed. The castings and their corresponding smoothed counterparts yielded similar results. Little change in performance was observed with the addition of grit to the smoothed ice shapes. Changes in the Reynolds number (from 3 x 10(exp 6) to 10.5 x 10(exp 6) and Mach number (from 0.12 to 0.28) did not significantly affect the iced-airfoil performance coefficients.

  13. Full-scale Force and Pressure-distribution Tests on a Tapered U.S.A. 45 Airfoil

    NASA Technical Reports Server (NTRS)

    Parsons, John F

    1935-01-01

    This report presents the results of force and pressure-distribution tests on a 2:1 tapered USA 45 airfoil as determined in the full-scale wind tunnel. The airfoil has a constant-chord center section and rounded tips and is tapered in thickness from 18 percent at the root to 9 percent at the tip. Force tests were made throughout a Reynolds Number range of approximately 2,000,000 to 8,000,000 providing data on the scale effect in addition to the conventional characteristics. Pressure-distribution data were obtained from tests at a Reynolds Number of approximately 4,000,000. The aerodynamic characteristics given by the usual dimensionless coefficients are presented graphically.

  14. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    PubMed

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  15. OUT Success Stories: Advanced Airfoils for Wind Turbines

    DOE R&D Accomplishments Database

    Jones, J.; Green, B.

    2000-08-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.

  16. Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier

    2010-01-01

    The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.

  17. Flow visualization of the effect of pitch amplitude changes on the vortical signatures behind a three-dimensional flapping airfoil

    NASA Astrophysics Data System (ADS)

    Parker, Kamalluddien; von Ellenrieder, K. D.; Soria, J.

    2003-04-01

    The structure of the vortical flow behind a symmetrical airfoil of finite aspect ratio undergoing combinations of heave and pitch motions is investigated using qualitative dye flow visualization. The results are contrasted with flow visualizations obtained using electrolytic precipitation. The effect of changing the pitch amplitude is observed from the plan from view and wingtip view of the airfoil. With a Strouhal number of 0.35, Reyholds number based on airfoil chord of 164 and a phase angle of 90o, the maximum pitch amplitude is varied from 0° to 20°. The geometry of the downstream vortical flow is observed to change suggesting that the induced velocity from interacting structures decreases at lower pitch amplitudes. The rate of dynamic stall development may also be affected by variations in pitch amplitude since it appears that the timing of leading edge separation is affected. The flow field of an airfoil flapping periodically about a fixed axis appears to be influenced by the amplitude of pitching oscillations. At the tested Strouhal numbers the vortex formations appear to be primarily dependent on airfoil oscillation rather than heave translation. Furthermore, the results suggest that the wake structures originating from the dynamic stall process are important for the analysis of these complex flows. While the results from the two flow visualization techniques are similar, the dye flow visualization images provide greater qualitative insight. Inherently, precipitative techniques such as the one used here could provide good flow visualizations since the smoke/particles leave the surface of the airfoil, but the setup is found to be very sensitive to potential changes. The ion content in the electrolytic material was also found to play a role. Furthermore, the high ablation rate of the technique presented some practical problems.

  18. Aerodynamic characteristics of airfoils with ice accretions

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Gregorek, G. M.

    1982-01-01

    Results of a wind tunnel test to evaluate the performance of an airfoil with simulated rime ice are presented with theoretical comparisons. A NACA 65A413 airfoil was tested in the OSU 6 x 22 inch Transonic Airfoil Wind Tunnel at a Reynolds number near three million and Mach numbers from 0.20 to 0.80. The model was tested in four configurations to determine the aero-dynamic effects of the roughness and shape of a rime ice accretion. The simulated rime ice shape was obtained analytically using a time-stepping dry ice accretion computer code. Lift, drag, moment coefficients, and pressure distributions for the clean and simulated rime ice cases are reported. The measured degradation in airfoil performance is compared to an analytical method which uses existing airfoil analysis computer codes with empirical corrections for the surface roughness. A discussion of the empirical surface roughness correction and uses of other airfoil computer methods is included.

  19. Measurement of local convective heat transfer coefficients from a smooth and roughened NACA-0012 airfoil: Flight test data

    NASA Technical Reports Server (NTRS)

    Newton, James E.; Vanfossen, G. James; Poinsatte, Phillip E.; Dewitt, Kenneth J.

    1988-01-01

    Wind tunnels typically have higher free stream turbulence levels than are found in flight. Turbulence intensity was measured to be 0.5 percent in the NASA Lewis Icing Research Tunnel (IRT) with the cloud making sprays off and around 2 percent with cloud making equipment on. Turbulence intensity for flight conditions was found to be too low to make meaningful measurements for smooth air. This difference between free stream and wing tunnel conditions has raised questions as to the validity of results obtained in the IRT. One objective of these tests was to determine the effect of free stream turbulence on convective heat transfer for the NASA Lewis LEWICE ice growth prediction code. These tests provide in-flight heat transfer data for a NASA-0012 airfoil with a 533 cm chord. Future tests will measure heat transfer data from the same airfoil in the Lewis Icing Research Tunnel. Roughness was obtained by the attachment of small, 2 mm diameter hemispheres of uniform size to the airfoil in three different patterns. Heat transfer measurements were recorded in flight on the NASA Lewis Twin Otter Icing Research Aircraft. Measurements were taken for the smooth and roughened surfaces at various aircraft speeds and angles of attack up to four degrees. Results are presented as Frossling number versus position on the airfoil for various roughnesses and angles of attack.

  20. Heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis icing research tunnel. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.

    1990-01-01

    Local heat transfer coefficients from a smooth and roughened NACA 0012 airfoil were measured using a steady state heat flux method. Heat transfer measurements on the specially constructed 0.533 meter chord airfoil were made both in flight on the NASA Lewis Twin Otter Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of small, 2 mm diameter, hemispheres of uniform size to the airfoil surface in four distinct patterns. The flight data was taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range of 1.24x10(exp 6) to 2.50x10(exp 6) and at various angles of attack up to 4 degrees. During these flight tests the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). The wind tunnel data was taken in the Reynolds number range of 1.20x10(exp 6) to 4.52x10(exp 6) and at angles of attack from -4 degrees to +8 degrees. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud making spray off. Results for both the flight and tunnel tests are presented as Frossling number based on chord versus position on the airfoil surface for various roughnesses and angle of attack. A table of power law curve fits of Nusselt number as a function of Reynolds number is also provided. The higher level of turbulence in the IRT versus flight had little effect on heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the higher Reynolds numbers. Turning on the cloud making spray air in the IRT did not alter the heat transfer. Roughness generally increased the heat transfer by locally disturbing the boundary layer flow. Finally, the present data was not only compared with previous airfoil data where applicable, but also with leading edge cylinder and flat plate heat transfer values which are often used to estimate airfoil heat transfer in computer codes.

  1. Evaluation of a stalled airfoil analysis program

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.

    1985-01-01

    The Stalled Airfoil Analysis Program (SAAP) is a computer code for predicting the aerodynamic characteristics of an airfoil up to, and beyond, stall. SAAP is presently evaluated through comparisons with experiments and with two other theoretical methods over an extensive range of airfoils and Reynolds number conditions. SAAP modeled drag more accurately than either of the other methods, and at angles of attack below stall yielded a smoother lift variation with angle of attack.

  2. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  3. Root region airfoil for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1995-05-23

    A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.

  4. Airfoil seal system for gas turbine engine

    SciTech Connect

    Diakunchak, Ihor S.

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  5. Computation of airfoil buffet boundaries

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.; Bailey, H. E.

    1981-01-01

    The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.

  6. Inverse transonic airfoil design including viscous interaction

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1976-01-01

    A numerical technique was developed for the analysis of specified transonic airfoils or for the design of airfoils having a prescribed pressure distribution, including the effect of weak viscous interaction. The method uses the full potential equation, a stretched Cartesian coordinate system, and the Nash-MacDonald turbulent boundary layer method. Comparisons with experimental data for typical transonic airfoils show excellent agreement. An example shows the application of the method to design a thick aft-cambered airfoil, and the effects of viscous interaction on its performance are discussed.

  7. Wavy flow cooling concept for turbine airfoils

    DOEpatents

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  8. An Experimental Study on Active Flow Control Using Synthetic Jet Actuators over S809 Airfoil

    NASA Astrophysics Data System (ADS)

    Gul, M.; Uzol, O.; Akmandor, I. S.

    2014-06-01

    This study investigates the effect of periodic excitation from individually controlled synthetic jet actuators on the dynamics of the flow within the separation and re-attachment regions of the boundary layer over the suction surface of a 2D model wing that has S809 airfoil profile. Experiments are performed in METUWIND's C3 open-loop suction type wind tunnel that has a 1 m × 1 m cross-section test section. The synthetic jet array on the wing consists of three individually controlled actuators driven by piezoelectric diaphragms located at 28% chord location near the mid-span of the wing. In the first part of the study, surface pressure, Constant Temperature Anemometry (CTA) and Particle Image Velocimetry (PIV) measurements are performed over the suction surface of the airfoil to determine the size and characteristics of the separated shear layer and the re-attachment region, i.e. the laminar separation bubble, at 2.3x105 Reynolds number at zero angle of attack and with no flow control as a baseline case. For the controlled case, CTA measurements are carried out under the same inlet conditions at various streamwise locations along the suction surface of the airfoil to investigate the effect of the synthetic jet on the boundary layer properties. During the controlled case experiments, the synthetic jet actuators are driven with a sinusoidal frequency of 1.45 kHz and 300Vp-p. Results of this study show that periodic excitation from the synthetic jet actuators eliminates the laminar separation bubble formed over the suction surface of the airfoil at 2.3x105 Reynolds number at zero angle of attack.

  9. Effect of Chord Size on Weight and Cooling Characteristics of Air-Cooled Turbine Blades

    NASA Technical Reports Server (NTRS)

    Esgar, Jack B; Schum, Eugene F; Curren, Arthur N

    1958-01-01

    An analysis has been made to determine the effect of chord size on the weight and cooling characteristics of shell-supported, air-cooled gas-turbine blades. In uncooled turbines with solid blades, the general practice has been to design turbines with high aspect ratio (small blade chord) to achieve substantial turbine weight reduction. With air-cooled blades, this study shows that turbine blade weight is affected to a much smaller degree by the size of the blade chord.

  10. Airfoil profile in a nonuniform flow

    NASA Technical Reports Server (NTRS)

    Polasek, J.

    1978-01-01

    A theory of airfoil section past two dimensional nonuniform flow is developed. The theory is based on representation of airfoil section by vortex and source distributions and it can be used for calculation of aircraft wings in homogeneous and inhomogeneous flow, as well as for calculation of straight and radial blade and vane-cascades.

  11. AFSMO/AFSCL- AIRFOIL SMOOTHING AND SCALING

    NASA Technical Reports Server (NTRS)

    Morgan, H. L

    1994-01-01

    Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.

  12. Measuring Lift with the Wright Airfoils

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  13. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  14. Ground influence on airfoils

    NASA Technical Reports Server (NTRS)

    Raymond, Arthur E

    1921-01-01

    The question of ground influence on airplanes has recently attracted some attention in view of the claims made by certain designers that the landing speed of their airplanes is much decreased by an increase in lift coefficient due to the proximity of the ground in landing. The results of wind tunnel tests indicate that ground effect is not entirely beneficial. It decreases the landing speed and cushions the landing shock somewhat. However, it does so at the expense of an increased length of preliminary skimming over the ground. By decreasing the drag and increasing the lift, it lengthens the distance necessary for the airplane to travel before losing enough speed to land. On the other hand, its influence is helpful in taking off, especially in the case of flying boats with their low-lying wings. In the conventional tractor airplane, the height of the wings above the ground is determined largely by propeller clearance. However, a small low-speed airplane like the Pischoff and large low-speed commercial aircraft with engines between wings can utilize ground influence to good advantage.

  15. Multi-chord fiber-coupled interferometry of supersonic plasma jets andcomparisons with synthetic data

    SciTech Connect

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Thoma, Carsten; Loverich, John; Hsu, Scott C.

    2012-05-03

    A multi-chord fiber-coupled interferometer [Merritt et al., Rev. Sci. Instrum. 83, 033506 (2012)] is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment [Hsu et al., Bull. Amer. Phys. Soc. 56, 307 (2011)]. The long coherence length of the laser (> 10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which an initially positive phase shift becomes negative when the ionization fraction drops below a certain threshold. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity ({approx} 15-50 km/s), jet length ({approx} 20-100 cm), and 3D expansion.

  16. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  17. The Influence of Sweep on the Aerodynamic Loading of an Oscillating NACA0012 Airfoil. Volume 2: Data Report

    NASA Technical Reports Server (NTRS)

    St.hilaire, A. O.; Carta, F. O.

    1979-01-01

    The effect of sweep on the dynamic response of the NACA 0012 airfoil was investigated. Unsteady chordwise distributed pressure data were obtained from a tunnel spanning wing equipped with 21 single surface transducers (13 on the suction side and 8 on the pressure side of the airfoil). The pressure data were obtained at pitching amplitudes of 8 and 10 degrees over a tunnel Mach number range of 0.10 to 0.46 and a pitching frequency range of 2.5 to 10.6 cycles per second. The wing was oscillated in the unswept and swept positions about the quarter-chord pivot axis relative to mean incidence angle settings of 0, 9, 12, and 15 degrees. A compilation of all the response data obtained during the test program is presented. These data are in the form of normal force, chord force, lift force, pressure drag, and moment hysteresis loops derived from chordwise integrations of the unsteady pressure distributions. The hysteresis loops are organized in two main sections. In the first section, the loop data are arranged to show the effect of sweep (lambda = 0 and 30 deg) for all available combinations of mean incidence angle, pitching amplitude, reduced frequency, and chordwise Mach number. The second section shows the effect of chordwise Mach number (MC = 0.30 and MC = 0.40) on the swept wing response for all available combinations of mean incidence angle, pitching amplitude, and reduced frequency.

  18. Design optimization of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Joh, C.-Y.; Grossman, B.; Haftka, R. T.

    1991-01-01

    Numerical optimization procedures were considered for the design of airfoils in transonic flow based on the transonic small disturbance (TSD) and Euler equations. A sequential approximation optimization technique was implemented with an accurate approximation of the wave drag based on the Nixon's coordinate straining approach. A modification of the Euler surface boundary conditions was implemented in order to efficiently compute design sensitivities without remeshing the grid. Two effective design procedures producing converged designs in approximately 10 global iterations were developed: interchanging the role of the objective function and constraint and the direct lift maximization with move limits which were fixed absolute values of the design variables.

  19. Airfoil flutter model suspension system

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H. (Inventor)

    1987-01-01

    A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.

  20. Study of a new airfoil used in reversible axial fans

    NASA Technical Reports Server (NTRS)

    Li, Chaojun; Wei, Baosuo; Gu, Chuangang

    1991-01-01

    The characteristics of the reverse ventilation of axial flow are analyzed. An s shaped airfoil with a double circular arc was tested in a wind tunnel. The experimental results showed that the characteristics of this new airfoil in reverse ventilation are the same as those in normal ventilation, and that this airfoil is better than the existing airfoils used on reversible axial fans.

  1. Further wind tunnel investigation of the SM701 airfoil with aileron and turbulators

    NASA Technical Reports Server (NTRS)

    Steen, Gregory; Nicks, Oran; Heffner, Michael

    1992-01-01

    Wind tunnel tests were performed on a two-dimensional model of the SM701 airfoil designed for use on the World Class gliders. The test covered a range of Reynolds numbers from 500,000 to 1.7 million. Aerodynamic forces and moments were measured with an external balance. Momentum loss method measurements of the section drag coefficient were also made. Flow visualization techniques provided information on transition from laminar to turbulent flow. Lift, drag, and pitching moment were analyzed and comparisons were made with predicted and previously obtained experimental data. The effects of V-tape turbulators for use in turbulent drag reduction were studied. The performance of a 25 percent chord aileron deflected through plus or minus 20 degrees was researched. The model was designed, constructed, and tested by students at Texas A&M University.

  2. User's manual for airfoil flow field computer code SRAIR

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.

    1985-01-01

    A two dimensional unsteady Navier-Stokes calculation procedure with specific application to the isolated airfoil problem is presented. The procedure solves the full, ensemble averaged Navier-Stokes equations with turbulence represented by a mixing length model. The equations are solved in a general nonorthogonal coordinate system which is obtained via an external source. Specific Cartesian locations of grid points are required as input for this code. The method of solution is based upon the Briley-McDonald LBI procedure. The manual discusses the analysis, flow of the program, control steam, input and output.

  3. The aerodynamic design of an advanced rotor airfoil

    NASA Technical Reports Server (NTRS)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  4. Comparative wind tunnel test at high Reynolds numbers of NACA 64 621 airfoils with two aileron configurations

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.

    1995-01-01

    An experimental program to measure the aerodynamic characteristics of the NACA 64-621 airfoil when equipped with plain ailerons of 0.38 chord and 0.30 chord and with 0.38 chord balanced aileron has been conducted in the pressurized O.S.U. 6 x 12 ft High Reynolds Number Wind Tunnel. Surface pressures were measured and integrated to yield lift and pressure drag coefficients for angles of attack from -3 to +42 deg and for selected aileron deflections from 0 to -90 deg at nominal Mach and Reynolds numbers of 0.25 and 5 x 10(exp 6). When resolved into thrust coefficient for wind turbine aerodynamic control applications, the data indicated the anticipated decrease in thrust coefficient with negative aileron deflection at low angles of attack; however, as angle of attack increased, thrust coefficients eventually became positive. All aileron configurations, even at -90 deg deflections showed this trend. Hinge moments for each configuration complete the data set.

  5. Trailing edge modifications for flatback airfoils.

    SciTech Connect

    Kahn, Daniel L.; van Dam, C.P.; Berg, Dale E.

    2008-03-01

    The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

  6. Unsteady Airloads on Airfoils in Reverse Flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2014-11-01

    This work gives insight into the influence of airfoil characteristics on unsteady airloads for rotor applications where local airfoil sections may operate at high and/or reverse flow angles of attack. Two-dimensional wind tunnel experiments have been performed on four airfoil sections to investigate the effects of thickness, camber, and trailing edge shape on unsteady airloads (lift, pressure drag, and pitching moment). These model rotor blades were tested through 360 deg of incidence for 104 <=Re <=106 . Unsteady pressure transducers were mounted on the airfoil surface to measure the high frequency, dynamic pressure variations. The temporal evolution of chordwise pressure distributions and resulting airloads is quantified for each airfoil in each of the three unsteady wake regimes present in reverse flow. Specifically, the influence of the formation, growth, and shedding of vortices on the surface pressure distribution is quantified and compared between airfoils with a sharp geometric trailing edge and those with a blunt geometric trailing edge. These findings are integral to mitigation of rotor blade vibrations for applications where airfoil sections are subjected to reverse flow, such as high-speed helicopters and tidal turbines.

  7. Airfoil shape for a turbine bucket

    DOEpatents

    Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy

    2005-06-28

    Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.

  8. Timbre influences chord discrimination in black-capped chickadees (Poecile atricapillus) but not humans (Homo sapiens).

    PubMed

    Hoeschele, Marisa; Cook, Robert G; Guillette, Lauren M; Hahn, Allison H; Sturdy, Christopher B

    2014-11-01

    Timbre is an important attribute of sound both in music and nature. Previously, using an operant conditioning paradigm, we found that black-capped chickadees and humans show similar response patterns in discriminating triadic chords of the same timbre and transferred this discrimination to a novel key center (novel absolute pitch). The current study examined how varying the timbre of the chords influenced discrimination. Using a similar operant conditioning procedure, we trained humans (Experiment 1) and chickadees (Experiments 2 and 3) to discriminate a major chord from 6 other chord types that had semitone deviations from the major chord. The pattern of errors of the 2 species replicated our previous findings. We then tested participants with novel timbres. We found that humans readily transferred their discrimination to novel timbres, suggesting they were attending to triadic pitch relations. The chickadees failed to transfer to novel timbres, suggesting they were using a different strategy to perform the original chord discrimination. We conducted an acoustic analysis examining frequency ranges that are biologically relevant to chickadees. We found that the relative intensity within each chord of the frequencies used in black-capped chickadee song significantly correlated with chickadees' percent response during probe testing. In Experiment 3, we trained a new set of chickadees by including either expanded pitch or timbre training before testing. Although chickadees showed some transfer to novel chords following this expanded training, we found that neither type of expanded training helped the chickadees when probe tested with novel stimuli.

  9. The Tonal Function of a Task-Irrelevant Chord Modulates Speed of Visual Processing

    ERIC Educational Resources Information Center

    Escoffier, N.; Tillmann, B.

    2008-01-01

    Harmonic priming studies have provided evidence that musical expectations influence sung phoneme monitoring, with facilitated processing for phonemes sung on tonally related (expected) chords in comparison to less-related (less-expected) chords [Bigand, Tillmann, Poulin, D'Adamo, and Madurell (2001). "The effect of harmonic context on phoneme…

  10. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    NASA Astrophysics Data System (ADS)

    Shahrabi, Arireza F.

    as well as F+ were evaluated and discussed. The computational model predictions showed good agreement with the experimental data. It was observed that different angles of attack and flap angles have different requirements for the minimum value of the momentum coefficient, Cμ, in order for the SJA to be effective for control of separation. It was also found that the variation of F + noticeably affects the lift and drag forces acting on the airfoil. The optimum values of parameters during open loop control simulations have been applied in order to introduce the optimal open loop control outcome. An innovative approach has been implemented to formulate optimal frequencies and momentum ratios of vortex shedding which depends on angle of attack and static pressure of the separation zone in the upper chord. Optimal open loop results have been compared with the optimal closed loop results. Cumulative case studies in the matter of angle of attacks, flap angles, Re, Cμ and F+ provide a convincing collection of evidence to the following conclusion. An improvement of a direct closed loop control was demonstrated, and an analytical formula describing the properties of a separated flow and vortex shedding was proposed. Best AFC solutions are offered by providing optimal frequencies and momentum ratios at a variety of flow conditions.

  11. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  12. Amygdala activity can be modulated by unexpected chord functions during music listening.

    PubMed

    Koelsch, Stefan; Fritz, Thomas; Schlaug, Gottfried

    2008-12-01

    Numerous earlier studies have investigated the cognitive processing of musical syntax with regular and irregular chord sequences. However, irregular sequences may also be perceived as unexpected, and therefore have a different emotional valence than regular sequences. We provide behavioral data showing that irregular chord functions presented in chord sequence paradigms are perceived as less pleasant than regular sequences. A reanalysis of functional MRI data showed increased blood oxygen level-dependent signal changes bilaterally in the amygdala in response to music-syntactically irregular (compared with regular) chord functions. The combined data indicate that music-syntactically irregular events elicit brain activity related to emotional processes, and that, in addition to intensely pleasurable music or highly unpleasant music, single chord functions can also modulate amygdala activity.

  13. Active Control of Separation From the Flap of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2006-01-01

    Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation.

  14. An airfoil parameterization method for the representation and optimization of wind turbine special airfoil

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Song, Xiancheng

    2015-04-01

    A new airfoil shape parameterization method is developed, which extended the Bezier curve to the generalized form with adjustable shape parameters. The local control parameters at airfoil leading and trailing edge regions are enhanced, where have significant effect on the aerodynamic performance of wind turbine. The results show this improved parameterization method has advantages in the fitting characteristics of geometry shape and aerodynamic performance comparing with other three common airfoil parameterization methods. The new parameterization method is then applied to airfoil shape optimization for wind turbine using Genetic Algorithm (GA), and the wind turbine special airfoil, DU93-W-210, is optimized to achieve the favorable Cl/Cd at specified flow conditions. The aerodynamic characteristic of the optimum airfoil is obtained by solving the RANS equations in computational fluid dynamics (CFD) method, and the optimization convergence curves show that the new parameterization method has good convergence rate in less number of generations comparing with other methods. It is concluded that the new method not only has well controllability and completeness in airfoil shape representation and provides more flexibility in expressing the airfoil geometry shape, but also is capable to find efficient and optimal wind turbine airfoil. Additionally, it is shown that a suitable parameterization method is helpful for improving the convergence rate of the optimization algorithm.

  15. Experimental Test Results of Energy Efficient Transport (EET) High-Lift Airfoil in Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.

    2002-01-01

    This report describes the results of an experimental study conducted in the Langley Low-Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of the Langley Energy Efficient Transport (EET) High-Lift Airfoil. The high-lift airfoil was a supercritical-type airfoil with a thickness-to- chord ratio of 0.12 and was equipped with a leading-edge slat and a double-slotted trailing-edge flap. The leading-edge slat could be deflected -30 deg, -40 deg, -50 deg, and -60 deg, and the trailing-edge flaps could be deflected to 15 deg, 30 deg, 45 deg, and 60 deg. The gaps and overlaps for the slat and flaps were fixed at each deflection resulting in 16 different configurations. All 16 configurations were tested through a Reynolds number range of 2.5 to 18 million at a Mach number of 0.20. Selected configurations were also tested through a Mach number range of 0.10 to 0.35. The plotted and tabulated force, moment, and pressure data are available on the CD-ROM supplement L-18221.

  16. Wind-tunnel tests of a Clark Y wing with a narrow auxiliary airfoil in different positions

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Bamber, Millard J

    1933-01-01

    Aerodynamic force tests were made on a combination of a Clark Y wing and a narrow auxiliary airfoil to find the best location of the auxiliary airfoil with respect to the main wing. The auxiliary was a highly cambered airfoil of medium thickness having a chord 14.5 per cent that of the main wing. It was tested in 141 different positions ahead of, above, and behind the nose portion of the main wing, the range of the test points being extended until the best aerodynamic conditions were covered. A range of positions was found in which the combination of main wing and auxiliary gave substantially greater aerodynamic efficiency and higher maximum lift coefficients (based on total area) than the main Clark Y wing alone. In the optimum position tested, considering both the maximum lift and the speed-range ratio, the combination of main wing and auxiliary gave an increase in the maximum lift coefficient of 32 per cent together with an increase in the ratio of 21 per cent of the respective values for the main Clark Y wing alone.

  17. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    PubMed Central

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics

  18. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Nishino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-12-01

    Large-eddy simulations are performed of a turbulent Coanda jet separating from a rounded trailing edge of a simplified circulation control airfoil model. The freestream Reynolds number based on the airfoil chord is 0.49×106, the jet Reynolds number based on the jet slot height is 4470, and the ratio of the peak jet velocity to the freestream velocity is 3.96. Three different grid resolutions are used to show that their effect is very small on the mean surface pressure distribution, which agrees very well with experiments, as well as on the mean velocity profiles over the Coanda surface. It is observed that the Coanda jet becomes fully turbulent just downstream of the jet exit, accompanied by asymmetric alternating vortex shedding behind a thin (but blunt) jet blade splitting the jet and the external flow. A number of "backward-tilted" hairpin vortices (i.e., the head of each hairpin being located upstream of the legs) are observed around the outer edge of the jet over the Coanda surface. These hairpins create strong upwash between the legs and weak downwash around them, contributing to turbulent mixing of the high-momentum jet below the hairpins and the low-momentum external flow above them. The probability density distribution of velocity fluctuations is shown to be highly asymmetric in this region, consistent with the observation that the hairpin vortices create strong upwash and weak downwash. Turbulent structures inside the jet, its spreading rate, and self-similarity are also discussed.

  19. Preliminary Results of Cyclical De-Icing of a Gas-Heated Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Bowden, D. T.; VonGlahn, U.

    1952-01-01

    An NACA 65(sub 1)-212 airfoil of 8-foot chord was provided with a gas-heated leading edge for investigations of cyclical de-icing. De-icing was accomplished with intermittent heating of airfoil segments that supplied hot gas to chordwise passages in a double-skin construction. Ice removal was facilitated by a spanwise leading-edge parting strip which was continuously heated from the gas-supply duct. Preliminary results demonstrate that satisfactory cyclical ice removal occurs with ratios of cycle time to heat-on period (cycle ratio) from 10 to 26. For minimum runback, efficient ice removal, and minimum total heat input, short heat-on periods of about 15 seconds with heat-off periods of 260 seconds gave the best results. In the range of conditions investigated, the prime variables in the determination of the required heat input for cyclical ice removal were the air temperature and the cycle ratio; heat-off period, liquid water content, airspeed, and angle of attack had only secondary effects on heat input rate.

  20. A Quantitative Investigation of Surface Roughness Effects on Airfoil Boundary Layer Transition Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Beeby, Todd Daniel

    An investigation of the impact of subcritical leading edge distributed roughness elements on airfoil boundary layer transition location has been undertaken using infrared thermography. In particular, a quantitative approach to boundary layer transition location detection using a differential energy balance method was implemented using a heating pad to produce constant heat flux. This was performed on a S809 airfoil model at Re c = 0.75 and 1.0 x 106, using roughness elements of height k/c = 3.75, 4.25 and 5.00 x 10 --4, pattern densities of 2 to 10 %, and roughness locations of 1 to 6 % chord. Turbulator tape of height k/c = 6.67 x 10--4 was also examined. Results indicate significant impact on transition for all roughness cases, and a more pronounced influence of roughness density as compared to roughness element height. The phenomenon of early laminar bubble collapse was also found to occur for some roughness configurations. The quantitative method used was found to be an effective means for automated transition location determination.

  1. Prediction of ice accretion on a swept NACA 0012 airfoil and comparisons to flight test results

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    1992-01-01

    In the winter of 1989-90, an icing research flight project was conducted to obtain swept wing ice accretion data. Utilizing the NASA Lewis Research Center's DHC-6 DeHavilland Twin Otter aircraft, research flights were made into known icing conditions in Northeastern Ohio. The icing cloud environment and aircraft flight data were measured and recorded by an onboard data acquisition system. Upon entry into the icing environment, a 24 inch span, 15 inch chord NACA 0012 airfoil was extended from the aircraft and set to the desired sweep angle. After the growth of a well defined ice shape, the airfoil was retracted into the aircraft cabin for ice shape documentation. The ice accretions were recorded by ice tracings and photographs. Ice accretions were mostly of the glaze type and exhibited scalloping. The ice was accreted at sweep angles of 0, 30, and 45 degrees. A 3-D ice accretion prediction code was used to predict ice profiles for five selected flight test runs, which include sweep angle of zero, 30, and 45 degrees. The code's roughness input parameter was adjusted for best agreement. A simple procedure was added to the code to account for 3-D ice scalloping effects. The predicted ice profiles are compared to their respective flight test counterparts. This is the first attempt to predict ice profiles on swept wings with significant scalloped ice formations.

  2. A numerical study of the effects of wind tunnel wall proximity on an airfoil model

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark; Roberts, Leonard

    1990-01-01

    A procedure was developed for modeling wind tunnel flows using computational fluid dynamics. Using this method, a numerical study was undertaken to explore the effects of solid wind tunnel wall proximity and Reynolds number on a two-dimensional airfoil model at low speed. Wind tunnel walls are located at varying wind tunnel height to airfoil chord ratios and the results are compared with freestream flow in the absence of wind tunnel walls. Discrepancies between the constrained and unconstrained flows can be attributed to the presence of the walls. Results are for a Mach Number of 0.25 at angles of attack through stall. A typical wind tunnel Reynolds number of 1,200,000 and full-scale flight Reynolds number of 6,000,000 were investigated. At this low Mach number, wind tunnel wall corrections to Mach number and angle of attack are supported. Reynolds number effects are seen to be a consideration in wind tunnel testing and wall interference correction methods. An unstructured grid Navier-Stokes code is used with a Baldwin-Lomax turbulence model. The numerical method is described since unstructured flow solvers present several difficulties and fundamental differences from structured grid codes, especially in the area of turbulence modeling and grid generation.

  3. Airfoil for a gas turbine

    SciTech Connect

    Liang, George

    2011-01-18

    An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.

  4. Third-stage turbine bucket airfoil

    DOEpatents

    Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart

    2002-01-01

    The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  5. Second-stage turbine bucket airfoil

    DOEpatents

    Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie

    2002-01-01

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.

  6. Airfoil self-noise and prediction

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.

    1989-01-01

    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

  7. Modeling and Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  8. TAIR: A transonic airfoil analysis computer code

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.; Holst, T. L.; Grundy, K. L.; Thomas, S. D.

    1981-01-01

    The operation of the TAIR (Transonic AIRfoil) computer code, which uses a fast, fully implicit algorithm to solve the conservative full-potential equation for transonic flow fields about arbitrary airfoils, is described on two levels of sophistication: simplified operation and detailed operation. The program organization and theory are elaborated to simplify modification of TAIR for new applications. Examples with input and output are given for a wide range of cases, including incompressible, subcritical compressible, and transonic calculations.

  9. Analysis of Non-symmetrical Flapping Airfoils

    NASA Astrophysics Data System (ADS)

    Beng Tay, Wee; Lim, Kah Bin

    2007-11-01

    Simulations have been done to assess the performance of different types of non-symmetrical airfoils on lift, thrust and propulsive efficiency under different flapping configurations at a Reynolds number of 10,000. The variables studied include the Stroudal number, reduced frequency, pitch angle and phase angle difference. In order to analyze the variables more efficiently, the Design of Experiments using the response surface methodology is applied. The simulation results show that besides the flapping configuration, airfoil shape also has a profound effect on the efficiency, thrust and lift production. The 4 factors have different levels of significance on the responses, indicating the shape of the airfoil plays a part as well. Thrust production depends more heavily on these parameters, rather than the shape of the airfoil. On the other hand, lift production is primarily dominated by its airfoil shape. Efficiency falls somewhere in between. Two-factor interactions among the variables also exist in efficiency and thrust production. Vorticity plots are analyzed to explain some of the results. Overall, the s1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results can be used to help in the design of a better ornithopter's wing.

  10. Propulsion by active and passive airfoil oscillation

    NASA Astrophysics Data System (ADS)

    Mackowski, A. W.; Williamson, C. H. K.

    2013-11-01

    Oscillating airfoils have been the subject of much research both as a mechanism of propulsion in engineering devices as well as a model of understanding how fish, birds, and insects produce thrust and maneuvering forces. Additionally, the jet or wake generated by an oscillating airfoil exhibits a multitude of vortex patterns, which are an interesting study in their own right. We present PIV measurements of the vortex flow behind an airfoil undergoing controlled pitching oscillations at moderate Reynolds number. As a method of propulsion, oscillating foils have been found to be capable performers when undergoing both pitching and heaving motions [Anderson et al. 1998]. While an airfoil undergoing only pitching motion is a relatively inefficient propulsor, we examine the effect of adding passive dynamics to the system: for example, actuated pitching with a passive spring in the heave direction. Practically speaking, a mechanical system with such an arrangement has the potential to reduce the cost and complexity of an oscillating airfoil propulsor. To study an airfoil undergoing both active and passive motion, we employ our ``cyber-physical fluid dynamics'' technique [Mackowski & Williamson, 2011] to simulate the effects of passive dynamics in a physical experiment.

  11. Boundary-Layer Transition on the N.A.C.A. 0012 and 23012 Airfoils in the 8-Foot High-Speed Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Becker, John V.

    1940-01-01

    Determinations of boundary-layer transition on the NACA 0012 and 2301 airfoils were made in the 8-foot high-speed wind tunnel over a range of Reynolds Numbers from 1,600,000 to 16,800,000. The results are of particular significance as compared with flight tests and tests in wind tunnels of appreciable turbulence because of the extremely low turbulence in the high-speed tunnel. A comparison of the results obtained on NACA 0012 airfoils of 2-foot and 5-foot chord at the same Reynolds Number permitted an evaluation of the effect of compressibility on transition. The local skin friction along the surface of the NACA 0012 airfoil was measured at a Reynolds Number of 10,000,000. For all the lift coefficient at which tests were made, transition occurred in the region of estimated laminar separation at the low Reynolds Numbers and approach the point of minimum static pressure as a forward limit at the high Reynolds Numbers. The effect of compressibility on transition was slight. None of the usual parameters describing the local conditions in the boundary layer near the transition point served as an index for locating the transition point. As a consequence of the lower turbulence in the 8-foot high-speed tunnel, the transition points occurred consistently farther back along the chord than those measured in the NACA full-scale tunnel. An empirical relation for estimating the location of the transition point for conventional airfoils on the basis of static-pressure distribution and Reynolds Number is presented.

  12. A comparison of two- and three-dimensional S809 airfoil properties for rough and smooth HAWT (horizontal-axis wind turbine) rotor operation

    SciTech Connect

    Musial, W.D.; Butterfield, C.P.; Jenks, M.D.

    1990-02-01

    At the Solar Energy Research Institute (SERI), we carried out tests to measure the effects of leading-edge roughness on an S809 airfoil using a 10-m, three-bladed, horizontal-axis wind turbine (HAWT). The rotor employed a constant-chord (.457 m) blade geometry with zero twist. Blade structural loads were measured with strain gages mounted at 9 spanwise locations. Airfoil pressure measurements were taken at the 80% spanwise station using 32 pressure taps distributed around the airfoil surface. Detailed inflow measurements were taken using nine R.M. Young Model 8002 propvane anemometers on a vertical plane array (VPA) located 10 m upwind of the test turbine in the prevailing wind direction. The major objective of this test was to determine the sensitivity of the S809 airfoil to roughness on a rotating wind turbine blade. We examined this effect by comparing several parameters. We compared power curves to show the sensitivity of whole rotor performance to roughness. We used pressure measurements to generate pressure distributions at the 80% span which operates at a Reynolds number (Re) of 800,000. We then integrated these distributions to determine the effect of roughness on the section's lift and pressure-drag coefficients. We also used the shapes of these distributions to understand how roughness affects the aerodynamic forces on the airfoil. We also compared rough and smooth wind tunnel data to the rotating blade data to study the effects of blade rotation on the aerodynamic behavior of the airfoil below, near, and beyond stall. 13 refs., 11 figs.

  13. A rapidly settled closed-loop control for airfoil aerodynamics based on plasma actuation

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Wong, C. W.; Wang, L.; Lu, Z.; Zhu, Y.; Zhou, Y.

    2015-08-01

    This paper presents an experimental investigation on the response of the slope seeking with extended Kalman filter (EKF) deployed in a closed-loop system for airfoil aerodynamics control. A novel dielectric barrier discharge (DBD) plasma actuator was used to manipulate the flow around the NACA 0015 airfoil. Experiments were performed under different freestream velocities U ∞, covering the chord Reynolds number Re from 4.4 × 104 to 7.7 × 104. Firstly, the advantages of applying this DBD plasma actuator (hereafter called sawtooth plasma actuator) on the airfoil were examined in an open-loop system at Re = 7.7 × 104. The sawtooth plasma actuator led to a delay in the stall angle α stall by 5° and an increase in the maximum lift coefficient by about 9 %. On the other hand, at the same input power, the traditional DBD plasma actuator managed a delay in α stall by only 3° and an increase in by about 3 %. Secondly, the convergence time t c of the lift force F L at Re from 4.4 × 104 to 7.7 × 104 was investigated for two closed-loop systems. It has been demonstrated that the t c was about 70 % less under the slope seeking with EKF than that under the conventional slope seeking with high-pass (HP) and low-pass (LP) filters at Re = 7.7 × 104. The reduction in t c was also observed at a different Re. Finally, the slope seeking with EKF showed excellent robustness over a moderate Re range; that is, the voltage amplitude determined by the control algorithm promptly responded to a change in Re, much faster than that of the conventional slope seeking with HP and LP filters.

  14. Effects of grit roughness and pitch oscillations on the S801 airfoil

    SciTech Connect

    Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M.

    1996-01-01

    Horizontal axis wind turbine rotors experience unsteady aerodynamics due to wind shear when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the calculation of rotor performance and loads. The rotors also experience performance degradation due to surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can be used to validate analytical computer codes. A S801 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3x5 subsonic wind tunnel (3x5) under steady flow and stationary model conditions, as well as with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers used for steady state conditions were 0.75, 1, 1.25, and 1.5 million, while the angle of attack ranged from -20{degrees} to +40{degrees}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.4 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used, {plus_minus} 5.5 {degrees}and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees} 14{degrees} and 20{degrees} For purposes herein, any reference to unsteady conditions means that the airfoil model was in pitch oscillation about the quarter chord.

  15. A comparison of two-and three-dimensional S809 airfoil properties for rough and smooth HAWT (Horizontal-Axis Wind Tunnel) rotor operation

    NASA Astrophysics Data System (ADS)

    Musial, W. D.; Butterfield, C. P.; Jenks, M. D.

    1990-02-01

    At the Solar Energy Research Institute (SERI), we carried out tests to measure the effects of leading-edge roughness on an S809 airfoil using a 10-m, three-bladed, horizontal-axis wind turbine (HAWT). The rotor employed a constant-chord (.457 m) blade geometry with zero twist. Blade structural loads were measured with strain gages mounted at 9 spanwise locations. Airfoil pressure measurements were taken at the 80 percent spanwise station using 32 pressure taps distributed around the airfoil surface. Detailed inflow measurements were taken using nine R.M. Young Model 8002 propvane anemometers on a vertical plane array (VPA) located 10 m upwind of the test turbine in the prevailing wind direction. The major objective of this test was to determine the sensitivity of the S809 airfoil to roughness on a rotating wind turbine blade. We examined this effect by comparing several parameters. We compared power curves to show the sensitivity of whole rotor performance to roughness. We used pressure measurements to generate pressure distributions at the 80 percent span which operates at a Reynolds number (Re) of 800,000. We then integrated these distributions to determine the effect of roughness on the section's lift and pressure-drag coefficients.

  16. Pressure distributions from high Reynolds number tests of a Boeing BAC 1 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.

    1985-01-01

    A wind-tunnel investigation designed to test a Boeing advanced-technology airfoil from low to flight-equivalent Reynolds numbers has been completed in the Langley 0.3-Meter Transonic Cryogenic Tunnel. This investigation represents the first in a series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from 4.4 X 10 to the 6th power to 50.0 X 10 to the 6th power. All the test objectives were met. The pressure data are presented without analysis in plotted and tabulated formats for use in conjunction with the aerodynamic coefficient data published as NASA TM-81922. At the time of the test, these pressure data were considered proprietary and have only recently been made available by Boeing for general release. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  17. Pitch-class distribution modulates the statistical learning of atonal chord sequences.

    PubMed

    Daikoku, Tatsuya; Yatomi, Yutaka; Yumoto, Masato

    2016-10-01

    The present study investigated whether neural responses could demonstrate the statistical learning of chord sequences and how the perception underlying a pitch class can affect the statistical learning of chord sequences. Neuromagnetic responses to two chord sequences of augmented triads that were presented every 0.5s were recorded from fourteen right-handed participants. One sequence was a series of 360 chord triplets, each of which consisted of three chords in the same pitch class (clustered pitch-classes sequences). The other sequence was a series of 360 chord triplets, each of which consisted of three chords in different pitch classes (dispersed pitch-classes sequences). The order of the triplets was constrained by a first-order Markov stochastic model such that a forthcoming triplet was statistically defined by the most recent triplet (80% for one; 20% for the other two). We performed a repeated-measures ANOVA with the peak amplitude and latency of the P1m, N1m and P2m. In the clustered pitch-classes sequences, the P1m responses to the triplets that appeared with higher transitional probability were significantly reduced compared with those with lower transitional probability, whereas no significant result was detected in the dispersed pitch-classes sequences. Neuromagnetic significance was concordant with the results of familiarity interviews conducted after each learning session. The P1m response is a useful index for the statistical learning of chord sequences. Domain-specific perception based on the pitch class may facilitate the domain-general statistical learning of chord sequences. PMID:27429093

  18. Application for calculation of mean aerodynamic chord of arbitrary wing planform

    NASA Astrophysics Data System (ADS)

    Vogeltanz, Tomáš

    2016-06-01

    This paper presents an application for the calculation of the mean aerodynamic chord (MAC) of an arbitrary wing planform. The MAC is most often used in the aerodynamic and stability analysis. The calculation uses a method where the MAC is defined by an array of chords. The MAC of each chord is computed as separated trapezoidal wing and then, the final MAC is calculated. This approach may find the accurate solution of complicated wing planforms, including elliptical, in the regime of low subsonic speeds. The first section describes the MAC and essential equations used for the computation. Finally, the application and two various examples of calculation are illustrated and discussed.

  19. 14. Detail, end post/top chord connection point, west end of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail, end post/top chord connection point, west end of upstream truss, view to east, 210mm lens. The inclined end post is visible at right, with the top chord at left; the vertical member is a hanger. The latticed portal strut is partially visible at upper right, while paired diagonals approach the connection point from lower left, and a latticed top lateral member is visible above the top chord. - Southern Pacific Railroad Shasta Route, Bridge No. 310.58, Milepost 310.58, Sims, Shasta County, CA

  20. Program manual for the Eppler airfoil inversion program

    NASA Technical Reports Server (NTRS)

    Thomson, W. G.

    1975-01-01

    A computer program is described for calculating the profile of an airfoil as well as the boundary layer momentum thickness and energy form parameter. The theory underlying the airfoil inversion technique developed by Eppler is discussed.

  1. Reversed cowl flap inlet thrust augmentor. [with adjustable airfoil

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y. (Inventor)

    1975-01-01

    An adjustable airfoil is described for varying the geometry of a jet inlet and an ejector inlet in a jet engine for providing thrust augmentation and noise reduction. The airfoil comprises essentially a plurality of segments which are extended radially outward and retracted relative to the longitudinal axis of the engine as a function of a change in the pressure differential between the upstream and downstream surfaces of the airfoil. A servo mechanism responsive to the change in the pressure differential is coupled to the airfoil to extend and retract the airfoil segments to maintain the pressure at a maximum on the downstream side of the airfoil relative to the pressure on the upstream side of the airfoil. At low speeds, such as at take-offs and landings, the airfoil is fully extended while at high speeds it is fully retracted.

  2. About the effects of an oscillating miniflap upon the wake on an airfoil, all immersed in turbulent flow

    NASA Astrophysics Data System (ADS)

    S, Delnero J.; J, Marañón Di Leo; Colman; J; M, Camocardi; Sainz M, García; F, Muñoz

    2011-12-01

    The present research analyzes the asymmetry in the rolling up shear layers behind the blunt trailing edge of an airfoil 4412 with a miniflap acting as active flow control device and its wake organization. Experimental investigations relating the asymmetry of the vortex flow in the near wake region, able to distort the flow increasing the downwash of an airfoil, have been performed. All of these in a free upstream turbulent flow (1.8% intensity). We examine the near wake region characteristics of a wing model with a 4412 airfoil without and with a rotating miniflap located on the lower surface, near the trailing edge. The flow in the near wake, for 3 x-positions (along chord line) and 20 vertical points in each x-position, was explored, for three different rotating frequencies, in order to identify signs of asymmetry of the initial counter rotating vortex structures. Experimental evidence is presented showing that for typical lifting conditions the shear layer rollup process within the near wake is different for the upper and lower vortices: the shear layer separating from the pressure side of the airfoil begins its rollup immediately behind the trailing edge, creating a stronger vortex while the shear layer from the suction side begins its rollup more downstream creating a weaker vortex. The experimental data were processed by classical statistics methods. Aspects of a mechanism connecting the different evolution and pattern of these initial vortex structures with lift changes and wake alleviating processes, due to these miniflaps, will be studied in future works.

  3. TOP CHORD, CENTRAL BRACING DETAIL. AveryBartholomew Patent Railroad Iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOP CHORD, CENTRAL BRACING DETAIL. - Avery-Bartholomew Patent Railroad Iron Bridge, Town park south of Route 222, west of Owasco Inlet (moved from Elm Street Extension spanning Fall Creek, Nubia, NY), Groton, Tompkins County, NY

  4. 9. DETAIL VIEW OF BOTTOM CHORD/FLOOR BEAM/IBAR PIN CONNECTION. WELDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL VIEW OF BOTTOM CHORD/FLOOR BEAM/I-BAR PIN CONNECTION. WELDED PLATE AT PIN CONNECTION IS 20TH CENTURY REVISION. - Bucks County Bridge No. 313, Spanning Delaware Canal at Letchworth Avenue, Yardley, Bucks County, PA

  5. Critical Mach Numbers of Thin Airfoil Sections with Plain Flaps

    NASA Technical Reports Server (NTRS)

    Pardee, Otway O'm.; Heaslet, Max A.

    1946-01-01

    Critical Mach number as function of lift coefficient is determined for certain moderately thick NACA low-drag airfoils. Results, given graphically, included calculations on same airfoil sections with plain flaps for small flap deflections. Curves indicate optimum critical conditions for airfoils with flaps in such form that they can be compared with corresponding results for zero flap deflections. Plain flaps increase life-coefficient range for which critical Mach number is in region of high values characteristic of low-drag airfoils.

  6. AirfoilPrep.py Documentation: Release 0.1.0

    SciTech Connect

    Ning, S. A.

    2013-09-01

    AirfoilPrep.py provides functionality to preprocess aerodynamic airfoil data. Essentially, the module is an object oriented version of the AirfoilPrep spreadsheet with additional functionality and is written in the Python language. It allows the user to read in two-dimensional aerodynamic airfoil data, apply three-dimensional rotation corrections for wind turbine applications, and extend the datato very large angles of attack. This document discusses installation, usage, and documentation of the module.

  7. Numerical simulations of iced airfoils and wings

    NASA Astrophysics Data System (ADS)

    Pan, Jianping

    A numerical study was conducted to understand the effects of simulated ridge and leading-edge ice shapes on the aerodynamic performance of airfoils and wings. In the first part of this study, a range of Reynolds numbers and Mach numbers, as well as ice-shape sizes and ice-shape locations were examined for various airfoils with the Reynolds-Averaged Navier-Stokes approach. Comparisons between simulation results and experimental force data showed favorable comparison up to stall conditions. At and past stall condition, the aerodynamic forces were typically not predicted accurately for large upper-surface ice shapes. A lift-break (pseudo-stall) condition was then defined based on the lift curve slope change. The lift-break angles compared reasonably with experimental stall angles, and indicated that the critical ice-shape location tended to be near the location of minimum pressure and the location of the most adverse pressure gradient. With the aim of improving the predictive ability of the stall behavior for iced airfoils, simulations using the Detached Eddy Simulation (DES) approach were conducted in the second part of this numerical investigation. Three-dimensional DES computations were performed for a series of angles of attack around stall for the iced NACA 23012 and NLF 0414 airfoils. The simulations for both iced airfoils provided the maximum lift coefficients and stall behaviors qualitatively consistent with experiments.

  8. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  9. Symbolic regression modeling of noise generation at porous airfoils

    NASA Astrophysics Data System (ADS)

    Sarradj, Ennes; Geyer, Thomas

    2014-07-01

    Based on data sets from previous experimental studies, the tool of symbolic regression is applied to find empirical models that describe the noise generation at porous airfoils. Both the self noise from the interaction of a turbulent boundary layer with the trailing edge of an porous airfoil and the noise generated at the leading edge due to turbulent inflow are considered. Following a dimensional analysis, models are built for trailing edge noise and leading edge noise in terms of four and six dimensionless quantities, respectively. Models of different accuracy and complexity are proposed and discussed. For the trailing edge noise case, a general dependency of the sound power on the fifth power of the flow velocity was found and the frequency spectrum is controlled by the flow resistivity of the porous material. Leading edge noise power is proportional to the square of the turbulence intensity and shows a dependency on the fifth to sixth power of the flow velocity, while the spectrum is governed by the flow resistivity and the integral length scale of the incoming turbulence.

  10. Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings, and an S-duct Engine Inlet

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Hung, Kuohsing E.; Vu, Giao T.; Yeong, Hsiung Wei; Bidwell, Colin S.; Breer, Martin D.; Bencic, Timothy J.

    2002-01-01

    Validation of trajectory computer codes, for icing analysis, requires experimental water droplet impingement data for a wide range of aircraft geometries as well as flow and icing conditions. This report presents improved experimental and data reduction methods for obtaining water droplet impingement data and provides a comprehensive water droplet impingement database for a range of test geometries including an MS(1)-0317 airfoil, a GLC-305 airfoil, an NACA 65(sub 2)-415 airfoil, a commercial transport tail section, a 36-inch chord natural laminar flow NLF(1)-0414 airfoil, a 48-inch NLF(1)-0414 section with a 25 percent chord simple flap, a state-of-the-art three-element high lift system, a NACA 64A008 finite span swept business jet tail, a full-scale business jet horizontal tail section, a 25 percent-scale business jet empennage, and an S-duct turboprop engine inlet. The experimental results were obtained at the NASA Glenn Icing Research Tunnel (IRT) for spray clouds with median volumetric diameter (MVD) of 11, 11.5, 21, 92, and 94 microns and for a range of angles of attack. The majority of the impingement experiments were conducted at an air speed of 175 mph corresponding to a Reynolds number of approximately 1.6 million per foot. The maximum difference of repeated tests from the average ranged from 0.24 to 12 percent for most of the experimental results presented. This represents a significant improvement in test repeatability compared to previous experimental studies. The increase in test repeatability was attributed to improvements made to the experimental and data reduction methods. Computations performed with the LEWICE-2D and LEWICE-3D computer codes for all test configurations are presented in this report. For the test cases involving median volumetric diameters of 11 and 21 microns, the correlation between the analytical and experimental impingement efficiency distributions was good. For the median volumetric diameters of 92 and 94-micron cases, however

  11. Preliminary Report on Laminar-Flow Airfoils and New Methods Adopted for Airfoil and Boundary-Layer Investigations

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N.

    1939-01-01

    Recent developments in airfoil-testing methods and fundamental air-flow investigations, as applied to airfoils, are discussed. Preliminary test results, obtained under conditions relatively free from stream turbulence and other disturbances, are presented. Suitable airfoils and airfoil-design principles were developed to take advantage of the unusually extensive laminar boundary layers that may be maintained under the improved testing conditions. The results are of interest mainly in range of below 6,000,000.

  12. Airfoil noise in a uniform flow

    NASA Astrophysics Data System (ADS)

    Garcia, P.

    An experimental analysis was made of the noise radiated by a NACA 0012 airfoil in a uniform flow in the CEPRA 19 anechoic wind tunnel. The investigations concerned the estimate of the radiated noise from existing theories developed in particular by Chandiramani, Chase and Howe. They required experimental characterization of the pressure field induced by the turbulent boundary layer in the trailing edge region of the airfoil. This work is original in that it allows the noise to be predicted from wave number spectrum measurements made using a sensor array. The prediction is not limited to low frequencies as is the case for computations using the measured integral scales of Corcos. This approach was also applied to airfoils at an incidence.

  13. Feedback in separated flows over symmetric airfoils

    NASA Technical Reports Server (NTRS)

    Atassi, H. M.

    1984-01-01

    For a flow over an airfoil with laminar separation, a feedback cycle may exist whereby a Kelvin-Helmholtz instability wave emanating from the separation point on the airfoil surface grows along the shear layer and is diffracted as it interacts with the sharp trailing edge of the airfoil, causing acoustic radiation which, in turn, propagates upstream and regenerates the initial instability wave. The analysis is restricted to the high frequency limit. Solutions to the boundary-value problem are obtained using the slowly varying approximation and the method of matched asymptotic expansions. Resonant solutions exist for certain discrete values of the Reynolds and Strouhal numbers. The results are discussed and compared with available data.

  14. Comparative Study of Airfoil Flow Separation Criteria

    NASA Astrophysics Data System (ADS)

    Laws, Nick; Kahouli, Waad; Epps, Brenden

    2015-11-01

    Airfoil flow separation impacts a multitude of applications including turbomachinery, wind turbines, and bio-inspired micro-aerial vehicles. In order to achieve maximum performance, some devices operate near the edge of flow separation, and others use dynamic flow separation advantageously. Numerous criteria exist for predicting the onset of airfoil flow separation. This talk presents a comparative study of a number of such criteria, with emphasis paid to speed and accuracy of the calculations. We evaluate the criteria using a two-dimensional unsteady vortex lattice method, which allows for rapid analysis (on the order of seconds instead of days for a full Navier-Stokes solution) and design of optimal airfoil geometry and kinematics. Furthermore, dynamic analyses permit evaluation of dynamic stall conditions for enhanced lift via leading edge vortex shedding, commonly present in small flapping-wing flyers such as the bumblebee and hummingbird.

  15. Near-wall serpentine cooled turbine airfoil

    DOEpatents

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  16. Compressor airfoil tip clearance optimization system

    DOEpatents

    Little, David A.; Pu, Zhengxiang

    2015-08-18

    A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.

  17. Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhou, Y.; Alam, Md. Mahbub; Yang, H.

    2014-11-01

    This work investigates the aerodynamics of a NACA 0012 airfoil at the chord-based Reynolds numbers (Rec) from 5.3 × 103 to 2.0 × 104. The lift and drag coefficients, CL and CD, of the airfoil, along with the flow structure, were measured as the turbulent intensity Tu of oncoming flow varies from 0.6% to 6.0%. The analysis of the present data and those in the literature unveils a total of eight distinct flow structures around the suction side of the airfoil. Four Rec regimes, i.e., the ultra-low (<1.0 × 104), low (1.0 × 104-3.0 × 105), moderate (3.0 × 105-5.0 × 106), and high Rec (>5.0 × 106), are proposed based on their characteristics of the CL-Rec relationship and the flow structure. It has been observed that Tu has a more pronounced effect at lower Rec than at higher Rec on the shear layer separation, reattachment, transition, and formation of the separation bubble. As a result, CL, CD, CL/CD and their dependence on the airfoil angle of attack all vary with Tu. So does the critical Reynolds number Rec,cr that divides the ultra-low and low Rec regimes. It is further noted that the effect of increasing Tu bears similarity in many aspects to that of increasing Rec, albeit with differences. The concept of the effective Reynolds number Rec,eff advocated for the moderate and high Rec regimes is re-evaluated for the low and ultra-low Rec regimes. The Rec,eff treats the non-zero Tu effect as an addition of Rec and is determined based on the presently defined Rec,cr. It has been found that all the maximum lift data from both present measurements and previous reports collapse into a single curve in the low and ultra-low Rec regimes if scaled with Rec,eff.

  18. TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.

    1994-01-01

    The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters

  19. Blowing Circulation Control on a Seaplane Airfoil

    NASA Astrophysics Data System (ADS)

    Guo, B. D.; Liu, P. Q.; Qu, Q. L.

    2011-09-01

    RANS simulations are presented for blowing circulation control on a seaplane airfoil. Realizable k-epsilon turbulent model and pressure-based coupled algorithm with second-order discretization were adopted to simulate the compressible flow. Both clear and simple flap configuration were simulated with blowing momentum coefficient Cμ = 0, 0.15 and 0.30. The results show that blowing near the airfoil trailing edge could enhance the Coanda effect, delay the flow separation, and increase the lift coefficient dramatically. The blowing circulation control is promising to apply to taking off and landing of an amphibious aircraft or seaplane.

  20. Multi-pass cooling for turbine airfoils

    DOEpatents

    Liang, George

    2011-06-28

    An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

  1. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise

    PubMed Central

    Pallesen, Karen Johanne; Bailey, Christopher J.; Brattico, Elvira; Gjedde, Albert; Palva, J. Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4–8 Hz) alpha (8–14 Hz), beta- (14–30 Hz) and gamma- (30–80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality. PMID:26291324

  2. Advanced technology airfoil research, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  3. Multiple piece turbine engine airfoil with a structural spar

    DOEpatents

    Vance, Steven J.

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  4. Comparison of Full-Scale Propellers Having R.A.F.-6 and Clark Y Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Freeman, Hugh B

    1932-01-01

    In this report the efficiencies of two series of propellers having two types of blade sections are compared. Six full-scale propellers were used, three having R. A. F.-6 and three Clark Y airfoil sections with thickness/chord ratios of 0.06, 0.08, and 0.10. The propellers were tested at five pitch setting, which covered the range ordinarily used in practice. The propellers having the Clark Y sections gave the highest peak efficiency at the low pitch settings. At the high pitch settings, the propellers with R. A. F.-6 sections gave about the same maximum efficiency as the Clark Y propellers and were more efficient for the conditions of climb and take-off.

  5. Wing chord extension on D-558-2

    NASA Technical Reports Server (NTRS)

    1953-01-01

    This 1953 NACA High-Speed Flight Research Station photograph shows the wing chord extensions added to D-558-2 #3. The added width on the outer wing panels was one attempt made to solve the tendence of the D-558-2 aircraft to 'pitch-up' during flight. Other modifications tested included fixed and free-floating slats, one- or two-wing fences, and a slat and wing fence. None of these additions proved truly effective, and the chord extension actually aggravated the pitch-up. The research program nevertheless added greatly to the store of knowledge about how to deal with pitch-up (as well as how not to deal with it, itself valuable information). The best solution was to place the horizontal stabilizer low on the aft fuselage, where it would be below the downwash from the wing and the wing wake. The Douglas D-558-2 'Skyrockets' were among the early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of the single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA), with its flight research done at the NACA's Muroc Flight Test Unit in Calif., redesignated in 1949 the High-Speed Flight Research Station (HSFRS). Also partners in the flight research were the Navy-Marine Corps and the Douglas Aircraft Co. The HSFRS became the High-Speed Flight Station in 1954 and is now known as the NASA Dryden Flight Research Center. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. The 2 in the aircraft's designation referred to the fact that the Skyrocket was the phase-two version of what had originally been conceived as a three-phase program, with the phase-one aircraft having straight wings. The third phase, which never came to fruition, would have involved constructing a mock-up of a combat-type aircraft embodying the results from the testing of the phase one and two aircraft. Douglas pilot John F. Martin made the first flight at Muroc

  6. On the acoustic radiation of a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2013-07-01

    We examine the acoustic far field of a thin elastic airfoil, immersed in low-Mach non-uniform stream flow, and actuated by small-amplitude sinusoidal pitching motion. The near-field fluid-structure interaction problem is analyzed using potential thin-airfoil theory, combined with a discrete vortex model to describe the evolution of airfoil trailing edge wake. The leading order dipole-sound signature of the system is investigated using Powell-Howe acoustic analogy. Compared with a pitching rigid airfoil, the results demonstrate a two-fold effect of structure elasticity on airfoil acoustic field: at actuation frequencies close to the system least stable eigenfrequency, elasticity amplifies airfoil motion amplitude and associated sound levels; however, at frequencies distant from this eigenfrequency, structure elasticity acts to absorb system kinetic energy and reduce acoustic radiation. In the latter case, and with increasing pitching frequency ωp, a rigid-airfoil setup becomes significantly noisier than an elastic airfoil, owing to an ω _p^{5/2} increase of its direct motion noise component. Unlike rigid airfoil signature, it is shown that wake sound contribution to elastic airfoil radiation is significant for all ωp. Remarkably, this contribution contains, in addition to the fundamental pitching frequency, its odd multiple harmonics, which result from nonlinear interactions between the airfoil and the wake. The results suggest that structure elasticity may serve as a viable means for design of flapping flight noise control methodologies.

  7. Trailing edge flow conditions as a factor in airfoil design

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Maughmer, M. D.

    1984-01-01

    Some new developments relevant to the design of single-element airfoils using potential flow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally present in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.

  8. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Aérospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model

  9. Near-wall serpentine cooled turbine airfoil

    SciTech Connect

    Lee, Ching-Pang

    2014-10-28

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  10. Analysis of non-symmetrical flapping airfoils

    NASA Astrophysics Data System (ADS)

    Tay, W. B.; Lim, K. B.

    2009-08-01

    Simulations have been done to assess the lift, thrust and propulsive efficiency of different types of non-symmetrical airfoils under different flapping configurations. The variables involved are reduced frequency, Strouhal number, pitch amplitude and phase angle. In order to analyze the variables more efficiently, the design of experiments using the response surface methodology is applied. Results show that both the variables and shape of the airfoil have a profound effect on the lift, thrust, and efficiency. By using non-symmetrical airfoils, average lift coefficient as high as 2.23 can be obtained. The average thrust coefficient and efficiency also reach high values of 2.53 and 0.61, respectively. The lift production is highly dependent on the airfoil’s shape while thrust production is influenced more heavily by the variables. Efficiency falls somewhere in between. Two-factor interactions are found to exist among the variables. This shows that it is not sufficient to analyze each variable individually. Vorticity diagrams are analyzed to explain the results obtained. Overall, the S1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results aid in the design of a better ornithopter’s wing.

  11. Causal mechanisms in airfoil-circulation formation

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Liu, T. S.; Liu, L. Q.; Zou, S. F.; Wu, J. Z.

    2015-12-01

    In this paper, we trace the dynamic origin, rather than any kinematic interpretations, of lift in two-dimensional flow to the physical root of airfoil circulation. We show that the key causal process is the vorticity creation by tangent pressure gradient at the airfoil surface via no-slip condition, of which the theoretical basis has been given by Lighthill ["Introduction: Boundary layer theory," in Laminar Boundary Layers, edited by L. Rosenhead (Clarendon Press, 1963), pp. 46-113], which we further elaborate. This mechanism can be clearly revealed in terms of vorticity formulation but is hidden in conventional momentum formulation, and hence has long been missing in the history of one's efforts to understand lift. By a careful numerical simulation of the flow around a NACA-0012 airfoil, and using both Eulerian and Lagrangian descriptions, we illustrate the detailed transient process by which the airfoil gains its circulation and demonstrate the dominating role of relevant dynamical causal mechanisms at the boundary. In so doing, we find that the various statements for the establishment of Kutta condition in steady inviscid flow actually correspond to a sequence of events in unsteady viscous flow.

  12. Some experiments on autorotation of an airfoil

    NASA Technical Reports Server (NTRS)

    Ober, Shatswell

    1929-01-01

    These experiments show that the rate of auto rotation of a monoplane airfoil is reduced by sweepback, ceasing entirely when the sweepback is 30 degrees. In addition a very serious increase in rate and range of auto rotation with yaw is shown.

  13. Chord-based image reconstruction in cone-beam CT with a curved detector

    SciTech Connect

    Zuo Nianming; Xia Dan; Zou Yu; Jiang Tianzi; Pan Xiaochuan

    2006-10-15

    Modern computed tomography (CT) scanners use cone-beam configurations for increasing volume coverage, improving x-ray-tube utilization, and yielding isotropic spatial resolution. Recently, there have been significant developments in theory and algorithms for exact image reconstruction from cone-beam projections. In particular, algorithms have been proposed for image reconstruction on chords; and advantages over the existing algorithms offered by the chord-based algorithms include the high flexibility of exact image reconstruction for general scanning trajectories and the capability of exact reconstruction of images within a region of interest from truncated data. These chord-based algorithms have been developed only for flat-panel detectors. Many cone-beam CT scanners employ curved detectors for important practical considerations. Therefore, in this work, we have derived chord-based algorithms for a curved detector so that they can be applied to reconstructing images directly from data acquired by use of a CT scanner with a curved detector. We have also conducted preliminary numerical studies to demonstrate and evaluate the reconstruction properties of the derived chord-based algorithms for curved detectors.

  14. Flight Test Results of Rocket-Propelled Buffet-Research Models Having 45 Degree Sweptback Wings and 45 Degree Sweptback Tails Located in the Wing Chord Plane

    NASA Technical Reports Server (NTRS)

    Mason, Homer P.

    1953-01-01

    Three rocket-propelled buffet-research models have been flight tested to determine the buffeting characteristics of a swept-wing- airplane configuration with the horizontal tail operating near the wing wake. The models consisted of parabolic bodies having 45deg sweptback wings of aspect ratio 3.56, at aspect ratio of 0.3, NACA 64A007 airfoil sections, and tail surfaces of geometry and section identical to the wings. Two tests were conducted with the horizontal tail located in the wing chord plane with fixed incidence angles of -1.5deg on one model and 0deg on the other model. The third test was conducted with no horizontal tail. Results of these tests are presented as incremental accelerations in the body due to buffeting, trim angles of attack, trim normal- and side-force coefficients, wing-tip helix angles, static-directional-stability derivatives , and drag coefficients plotted against Mach number. These data indicate that mild low-lift buffeting was experienced by all models over a range of Mach number from approximately 0.7 to 1.4. It is further indicated that this buffeting was probably induced by wing-body interference and was amplified at transonic speeds by the horizontal tail operating in the wing wake. A longitudinal trim change was encountered by the tail-on models at transonic speeds, but no large changes in side force and no wing dropping were indicated.

  15. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  16. Effects of grit roughness and pitch oscillations on the S809 airfoil

    SciTech Connect

    Ramsay, R.F.; Hoffman, M.J.; Gregorek, G.M.

    1995-12-01

    An S809 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3{times}5 subsonic wind tunnel (3{times}5) under steady flow and stationary model conditions, and also with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was developed to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25, and 1.5 million, while the angle of attack ranged from {minus}20, to +40 {degrees}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.4 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used; {plus_minus} 5.5{degrees} and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions means the model was in pitch oscillation about the quarter chord. In general, the unsteady maximum lift coefficient was from 4% to 86% higher than the steady state maximum lift coefficient, and variation in the quarter chord pitching moment coefficient magnitude was from {minus}83% to 195% relative to steady state values at high angles of attack. These findings indicate the importance of considering the unsteady flow behavior occurring in wind turbine operation to obtain accurate load estimates.

  17. New chording text entry methods combining physical and virtual buttons on a mobile phone.

    PubMed

    Wu, Fong-Gong; Huang, Yu-Chun; Wu, Meng-Long

    2014-07-01

    Traditional mobile phones depend on MultiTap, virtual or physical QWERTY keyboard for text entry, and they had some respective drawbacks include low input performance, occupying too large an area, high error rates, lack of feedbacks, etc. Therefore, some researches utilized the characteristics of the chording keyboard to improve input performance. Yet, as the learning efficiency of the chording keyboard is too low, users are not highly willing to learn. In view of that, this study combines the physical and virtual keys, and develops two chording input methods, MagArea and MemoryTap. After three days of learning, the fourteen experiment participants show effectively reduce error rates on MagArea, and they enhance their input speed on MemoryTap. In addition, excellent learning efficiency is found in the two methods, will be more motivated and willing to employ.

  18. Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces

    NASA Astrophysics Data System (ADS)

    Andersen, Jørgen E.; Chekhov, Leonid O.; Penner, R. C.; Reidys, Christian M.; Sułkowski, Piotr

    2013-01-01

    We introduce and study the Hermitian matrix model with potential V(x)=x2/2-stx/(1-tx), which enumerates the number of linear chord diagrams with no isolated vertices of fixed genus with specified numbers of backbones generated by s and chords generated by t. For the one-cut solution, the partition function, correlators and free energies are convergent for small t and all s as a perturbation of the Gaussian potential, which arises for st=0. This perturbation is computed using the formalism of the topological recursion. The corresponding enumeration of chord diagrams gives at once the number of RNA complexes of a given topology as well as the number of cells in Riemann's moduli spaces for bordered surfaces. The free energies are computed here in principle for all genera and explicitly in genus less than four.

  19. Report on tests of a CAST 10 airfoil with fixed transition in the T2 transonic cryogenic wind tunnel with self-adaptive walls

    NASA Technical Reports Server (NTRS)

    Seraudie, A.; Blanchard, A.; Breil, J. F.

    1985-01-01

    Described are tests on the CAST 10 airfoil in tripped-transition, carried out in the cryogenic and transonic wind-tunnel T2 fitted with self-adaptive walls. These tests follow those which were performed in natural transition and were presented in a previous note. Firstly, a complement was realized to pinpoint the location of the natural transition on the upper surface of the airfoil; this was done by a longitudinal exploration in the boundary layer. Secondly, in a first stage, the transition was only tripped on the lower surface with a carborundum strip of 0.045 mm thickness, situated at 5% of chord (T 1/2 D). These tests were performed here to separate the phenomena in relation to the lower surface and those in relation to the upper surface which occur in natural transition (TN). In a second stage, the transition was normally tripped on both sides of the profile (TD), likewise at x/c = 5% and h = 0.045 mm. The test configurations of the previous serial were experimented again and results obtained in the three cases (TN), (T 1/2 N) and (TD) were compared, in particular those concerned with the effect of the Reynolds number on aerodynamic coefficients of the airfoil. The gathering of the experimental values around a Reynolds number of 20 millions is observed; but before this number, the evolutions of the curves in the three cases tested are different.

  20. Analysis of unswept and swept wing chordwise pressure data from an oscillating NACA 0012 airfoil experiment. Volume 1: Technical Report

    NASA Technical Reports Server (NTRS)

    St.hilaire, A. O.; Carta, F. O.

    1983-01-01

    The unsteady chordwise force response on the airfoil surface was investigated and its sensitivity to the various system parameters was examined. A further examination of unsteady aerodynamic data on a tunnel spanning wing (both swept and unswept), obtained in a wind tunnel, was performed. The main body of this data analysis was carried out by analyzing the propagation speed of pressure disturbances along the chord and by studying the behavior of the unsteady part of the chordwise pressure distribution at various points of the airfoil pitching cycle. It was found that Mach number effects dominate the approach to and the inception of both static and dynamic stall. The stall angle decreases as the Mach number increases. However, sweep dominates the load behavior within the stall regime. Large phase differences between unswept and swept responses, that do not exist at low lift coefficient, appear once the stall boundary is penetrated. It was also found that reduced frequency is not a reliable indicator of the unsteady aerodynamic response in the high angle of attack regime.

  1. Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS)

    NASA Astrophysics Data System (ADS)

    Daniels, M. D.; Graves, S. J.; Kerkez, B.; Chandrasekar, V.; Vernon, F.; Martin, C. L.; Maskey, M.; Keiser, K.; Dye, M. J.

    2015-12-01

    The Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) project, funded as part of NSF's EarthCube initiative, addresses the ever-increasing importance of real-time scientific data, particularly in mission critical scenarios, where informed decisions must be made rapidly. Advances in the distribution of real-time data are leading many new transient phenomena in space-time to be observed, however, real-time decision-making is infeasible in many cases as these streaming data are either completely inaccessible or only available to proprietary in-house tools or displays. This lack of accessibility prohibits advanced algorithm and workflow development that could be initiated or enhanced by these data streams. Small research teams do not have resources to develop tools for the broad dissemination of their valuable real-time data and could benefit from an easy to use, scalable, cloud-based solution to facilitate access. CHORDS proposes to make a very diverse suite of real-time data available to the broader geosciences community in order to allow innovative new science in these areas to thrive. This presentation will highlight recently developed CHORDS portal tools and processing systems aimed at addressing some of the gaps in handling real-time data, particularly in the provisioning of data from the "long-tail" scientific community through a simple interface deployed in the cloud. The CHORDS system will connect these real-time streams via standard services from the Open Geospatial Consortium (OGC) and does so in a way that is simple and transparent to the data provider. Broad use of the CHORDS framework will expand the role of real-time data within the geosciences, and enhance the potential of streaming data sources to enable adaptive experimentation and real-time hypothesis testing. Adherence to community data and metadata standards will promote the integration of CHORDS real-time data with existing standards-compliant analysis, visualization and modeling

  2. Effects of grit roughness and pitch oscillations on the S815 airfoil

    SciTech Connect

    Reuss Ramsay, R.; Hoffman, M.J.; Gregorek, G.M.

    1996-07-01

    Horizontal axis wind turbine rotors experience unsteady aerodynamics due to wind shear when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the calculation of rotor performance and loads. The rotors also experience performance degradation due to surface roughness. These surface irregularities are cause by the accumulation of insect debris, ice, and the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can be used to validate analytical computer codes. A S815 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3 x 5 subsonic wind tunnel (3 x 5) under steady flow and stationary model conditions, as well as with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers used for steady state conditions were 0.75, 1, 1.25, and 1.4 million, while the angle of attack ranged from {minus}20{degree} to +40{degree}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.4 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used; {+-}5.5{degree} and {+-}10{degree}, at mean angles of attack of 8{degree}, 14{degree}, and 20{degree}. For purposes herein, any reference to unsteady conditions means that the model was in pitch oscillation about the quarter chord.

  3. Effects of grit roughness and pitch oscillations on the LS(1)-0417MOD airfoil

    SciTech Connect

    Janiszewska, J.M.; Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M.

    1996-01-01

    Horizontal axis wind turbine rotors experience unsteady aerodynamics due to wind shear when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the calculations of rotor performance and loads. The rotors also experience performance degradation caused by surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and/or the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can be used to validate analytical computer codes. An LS(l)-0417MOD airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3{times}5 subsonic wind tunnel (3{times}5) under steady flow and stationary model conditions, as well as with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25, and 1.5 million, while the angle of attack ranged from {minus}20{degrees} to +40{degrees}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.5 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used, {plus_minus} 5.5%{degrees} and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions foil model was in pitch oscillation about the quarter chord.

  4. A fast approach to designing airfoils from given pressure distribution in compressible flows

    NASA Technical Reports Server (NTRS)

    Daripa, Prabir

    1987-01-01

    A new inverse method for aerodynamic design of airfols is presented for subcritical flows. The pressure distribution in this method can be prescribed as a function of the arc length of the as-yet unknown body. This inverse problem is shown to be mathematically equivalent to solving only one nonlinear boundary value problem subject to known Dirichlet data on the boundary. The solution to this problem determines the airfoil, the freestream Mach number, and the upstream flow direction. The existence of a solution to a given pressure distribution is discussed. The method is easy to implement and extremely efficient. A series of results for which comparisons are made with the known airfoils is presented.

  5. Investigation of low-speed turbulent separated flow around airfoils

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.

    1987-01-01

    Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.

  6. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  7. Turbine airfoil with laterally extending snubber having internal cooling system

    DOEpatents

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  8. S825 and S826 Airfoils: 1994--1995

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A family of airfoils, the S825 and S826, for 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moments and the airfoil thicknesses have been satisfied. The airfoils should exhibit docile stalls.

  9. S904 and S905 Airfoils: May 1998--January 1999

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A family of natural-laminar-flow airfoils, the S904 and S905, for cooling-tower fans has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The constraint on the lift a zero angle of attack has not been satisfied. The constraints on the pitching moment and the airfoil thicknesses have essentially been satisfied. The airfoils should exhibit docile stalls.

  10. S829 Airfoil; Period of Performance: 1994--1995

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A 16%-thick, natural-laminar-flow airfoil, the S829, for the tip region of 20- to 40-meter-diameter, stall-regulated, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil should exhibit a docile stall.

  11. Separated transonic airfoil flow calculations with a nonequilibrium turbulence model

    NASA Technical Reports Server (NTRS)

    King, L. S.; Johnson, D. A.

    1985-01-01

    Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.

  12. Turbine engine airfoil and platform assembly

    DOEpatents

    Campbell, Christian X.; James, Allister W.; Morrison, Jay A.

    2012-07-31

    A turbine airfoil (22A) is formed by a first process using a first material. A platform (30A) is formed by a second process using a second material that may be different from the first material. The platform (30A) is assembled around a shank (23A) of the airfoil. One or more pins (36A) extend from the platform into holes (28) in the shank (23A). The platform may be formed in two portions (32A, 34A) and placed around the shank, enclosing it. The two platform portions may be bonded to each other. Alternately, the platform (30B) may be cast around the shank (23B) using a metal alloy with better castability than that of the blade and shank, which may be specialized for thermal tolerance. The pins (36A-36D) or holes for them do not extend to an outer surface (31) of the platform, avoiding stress concentrations.

  13. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  14. Turbomachinery Airfoil Design Optimization Using Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine and compared to earlier methods. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.

  15. Turbomachinery Airfoil Design Optimization Using Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.

  16. Low Reynolds number airfoil survey, volume 1

    NASA Technical Reports Server (NTRS)

    Carmichael, B. H.

    1981-01-01

    The differences in flow behavior two dimensional airfoils in the critical chordlength Reynolds number compared with lower and higher Reynolds number are discussed. The large laminar separation bubble is discussed in view of its important influence on critical Reynolds number airfoil behavior. The shortcomings of application of theoretical boundary layer computations which are successful at higher Reynolds numbers to the critical regime are discussed. The large variation in experimental aerodynamic characteristic measurement due to small changes in ambient turbulence, vibration, and sound level is illustrated. The difficulties in obtaining accurate detailed measurements in free flight and dramatic performance improvements at critical Reynolds number, achieved with various types of boundary layer tripping devices are discussed.

  17. Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.

  18. An Experimental Study of Airfoil Icing Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.; Sotos, R. G.; Solano, F. R.

    1982-01-01

    A full scale general aviation wing with a NACA 63 sub 2 A415 airfoil section was tested to determine icing characteristics for representative rime and glaze icing conditions. Measurements were made of ice accretion shapes and resultant wing section drag coefficient levels. It was found that the NACA 63 sub 2 A415 wing section was less sensitive to rime and glaze icing encounters for climb conditions.

  19. Transonic airfoil and axial flow rotary machine

    SciTech Connect

    Nagai, Naonori; Iwatani, Junji

    2015-09-01

    Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.

  20. An analytical study for the design of advanced rotor airfoils

    NASA Technical Reports Server (NTRS)

    Kemp, L. D.

    1973-01-01

    A theoretical study has been conducted to design and evaluate two airfoils for helicopter rotors. The best basic shape, designed with a transonic hodograph design method, was modified to meet subsonic criteria. One airfoil had an additional constraint for low pitching-moment at the transonic design point. Airfoil characteristics were predicted. Results of a comparative analysis of helicopter performance indicate that the new airfoils will produce reduced rotor power requirements compared to the NACA 0012. The hodograph design method, written in CDC Algol, is listed and described.

  1. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  2. Airfoil shape and thickness effects on transonic airloads and flutter

    NASA Technical Reports Server (NTRS)

    Bland, S. R.; Edwards, J. W.

    1983-01-01

    A transient pulse technique is used to obtain harmonic forces from a time-marching solution of the complete unsteady transonic small perturbation potential equation. The unsteady pressures and forces acting on a model of the NACA 64A010 conventional airfoil and the MBB A-3 supercritical airfoil over a range of Mach numbers are examined in detail. Flutter calculations at constant angle of attack show a similar flutter behavior for both airfoils, except for a boundary shift in Mach number associated with corresponding Mach number shift in the unsteady aerodynamic forces. Differences in the static aeroelastic twist behavior for the two airfoils are significant.

  3. Airfoil shape and thickness effects on transonic airloads and flutter

    NASA Technical Reports Server (NTRS)

    Bland, S. R.; Edwards, J. W.

    1983-01-01

    A transient pulse technique is used to obtain harmonic forces from a time-marching solution of the complete unsteady transonic small perturbation potential evaluation. The unsteady pressures and forces acting on a model of the NACA 64A010 conventional airfoil and the MBB A-3 supercritical airfoil over a range of Mach numbers are examined in detail. Flutter calculations at constant angle of attack show a similar flutter behavior for both airfoils, except for a boundary shift in Mach number associated with a corresponding Mach number shift in the unsteady aerodynamic forces. Differences in the static aeroelastic twist behavior for the two airfoils are significant.

  4. Development and testing of airfoils for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark (Principal Investigator)

    1996-01-01

    Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.

  5. Damping element for reducing the vibration of an airfoil

    SciTech Connect

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  6. Numerical study of porous airfoils in transonic flow

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Chow, C. Y.; Holst, T. L.; Vandalsem, W. R.

    1985-01-01

    A numerical study was made to examine the effect of a porous surface on the aerodynamic performance of a transonic airfoil. The pressure jump across the normal shock wave on the upper surface of the airfoil was reduced by making the surface below the shock porous. The weakened shock is preceded by an oblique shock at the upstream end of the porous surface where air is blown out of the cavity. The lambda shock structure shown in the numerical result qualitatively agrees with that observed in the wind tunnel. According to the present analysis, the porous airfoil has a smaller drag and a higher lift than the solid airfoil.

  7. Aerodynamic Flow Control of a Maneuvering Airfoil

    NASA Astrophysics Data System (ADS)

    Brzozowski, Daniel P.; Culp, John; Glezer, Ari

    2010-11-01

    The unsteady aerodynamic forces and moments on a maneuvering, free-moving airfoil are varied in wind tunnel experiments by controlling vorticity generation/accumulation near the surface using hybrid synthetic jet actuators. The dynamic characteristics of the airfoil that is mounted on a 2-DOF traverse are controlled using position and attitude feedback loops that are actuated by servo motors. Bi-directional changes in the pitching moment are induced using controllable trapped vorticity concentrations on the suction and pressure surfaces near the trailing edge. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and velocity measurements that are taken phase-locked to the commanded actuation waveform. The time scales associated with the actuation process is determined from PIV measurements of vorticity flux downstream of the trailing edge. Circulation time history shows that the entire flow over the airfoil readjusts within about 1.5 TCONV, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales commensurate with the flow's convective time scale, and that the maneuver response is only limited by the inertia of the platform. Supported by AFSOR.

  8. Control of Flow Separation Using Adaptive Airfoils

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature. Interestingly, the flow over a nearly semicircular nosed airfoil was separated even at low angles.

  9. Theory and algorithms for image reconstruction on chords and within regions of interest.

    PubMed

    Zou, Yu; Pan, Xiaochuan; Sidky, Emil Y

    2005-11-01

    We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.

  10. 21. Photograph of a line drawing. SHEET 2AS, BOTTOM CHORD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photograph of a line drawing. SHEET 2A-S, BOTTOM CHORD FRAMING PLAN; 9-9-1940. Assembly Building for Tank Plant for the Chrysler Corporation, Macomb County, Michigan. Design: Miehls. Delineators: G. H. M. and W. G. M. - Detroit Arsenal, 6501 East Eleven Mile Road, Warren, Macomb County, MI

  11. Airfoil shape for flight at subsonic speeds. [design analysis and aerodynamic characteristics of the GAW-1 airfoil

    NASA Technical Reports Server (NTRS)

    Whitcomb, R. T. (Inventor)

    1976-01-01

    An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.

  12. Chord-based versus voxel-based methods of electron transport in the skeletal tissues

    SciTech Connect

    Shah, Amish P.; Jokisch, Derek W.; Rajon, Didier A.; Watchman, Christopher J.; Patton, Phillip W.; Bolch, Wesley E.

    2005-10-15

    Anatomic models needed for internal dose assessment have traditionally been developed using mathematical surface equations to define organ boundaries, shapes, and their positions within the body. Many researchers, however, are now advocating the use of tomographic models created from segmented patient computed tomography (CT) or magnetic resonance (MR) scans. In the skeleton, however, the tissue structures of the bone trabeculae, marrow cavities, and endosteal layer are exceedingly small and of complex shape, and thus do not lend themselves easily to either stylistic representations or in-vivo CT imaging. Historically, the problem of modeling the skeletal tissues has been addressed through the development of chord-based methods of radiation particle transport, as given by studies at the University of Leeds (Leeds, UK) using a 44-year male subject. We have proposed an alternative approach to skeletal dosimetry in which excised sections of marrow-intact cadaver spongiosa are imaged directly via microCT scanning. The cadaver selected for initial investigation of this technique was a 66-year male subject of nominal body mass index (22.7 kg m{sup -2}). The objectives of the present study were to compare chord-based versus voxel-based methods of skeletal dosimetry using data from the UF 66-year male subject. Good agreement between chord-based and voxel-based transport was noted for marrow irradiation by either bone surface or bone volume sources up to 500-1000 keV (depending upon the skeletal site). In contrast, chord-based models of electron transport yielded consistently lower values of the self-absorbed fraction to marrow tissues than seen under voxel-based transport at energies above 100 keV, a feature directly attributed to the inability of chord-based models to account for nonlinear electron trajectories. Significant differences were also noted in the dosimetry of the endosteal layer (for all source tissues), with chord-based transport predicting a higher fraction

  13. Time-domain inflow boundary condition for turbulence-airfoil interaction noise prediction using synthetic turbulence modeling

    NASA Astrophysics Data System (ADS)

    Kim, Daehwan; Heo, Seung; Cheong, Cheolung

    2015-03-01

    The present paper deals with development of the synthetic turbulence inflow boundary condition (STIBC) to predict inflow broadband noise generated by interaction between turbulence and an airfoil/a cascade of airfoils in the time-domain. The STIBC is derived by combining inflow boundary conditions that have been successfully applied in external and internal computational aeroacoustics (CAA) simulations with a synthetic turbulence model. The random particle mesh (RPM) method based on a digital filter is used as the synthetic turbulence model. Gaussian and Liepmann spectra are used to define the filters for turbulence energy spectra. The linearized Euler equations are used as governing equations to evaluate the suitability of the STIBC in time-domain CAA simulations. First, the velocity correlations and energy spectra of the synthesized turbulent velocities are compared with analytic ones. The comparison results reveal that the STIBC can reproduce a turbulent velocity field satisfying the required statistical characteristics of turbulence. Particularly, the Liepmann filter representing a non-Gaussian filter is shown to be effectively described by superposing the Gaussian filters. Each Gaussian filter has a different turbulent kinetic energy and integral length scale. Second, two inflow noise problems are numerically solved using the STIBC: the turbulence-airfoil interaction and the turbulence-a cascade of airfoils interaction problems. The power spectrum of noise due to an isolated flat plate airfoil interacting with incident turbulence is predicted, and its result is successfully validated against Amiet's analytic model (Amiet, 1975) [4]. The prediction results of the upstream and downstream acoustic power spectra from a cascade of flat plates are then compared with Cheong's analytic model (Cheong et al., 2006) [30]. These comparisons are also in excellent agreement. On the basis of these illustrative computation results, the STIBC is expected to be applied to

  14. Active Control of Separation on a Low Reynolds Number Airfoil Using Synthetic Jet Actuation

    NASA Astrophysics Data System (ADS)

    Feero, Mark

    Wind tunnel experiments were used to study the effect of excitation amplitude and frequency on flow separation using synthetic jet actuation. A synthetic jet actuator was located near the leading edge of a NACA0025 airfoil at a chord-based Reynolds number of 100,000 and angle-of-attack of 10°. Under these flow conditions, the boundary layer separated from the suction surface and failed to reattach. Low-frequency excitation was used to target flow instabilities, while high-frequency excitation was performed at time scales an order of magnitude smaller. Low-frequency excitation at the separated shear layer frequency was found to be the most effective technique for flow reattachment and drag reduction. The results suggested that flow reattachment depended on exceeding a threshold momentum coefficient that varied with excitation frequency. Furthermore, a local minimum in drag independent of excitation frequency was achieved when the momentum coefficient corresponded to an average jet velocity that matched the freestream velocity.

  15. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  16. Nonlinear switched models for control of unsteady forces on a rapidly pitching airfoil

    NASA Astrophysics Data System (ADS)

    Dawson, Scott; Brunton, Steven; Rowley, Clarence

    2013-11-01

    The unsteady aerodynamic forces incident on a pitching flat plate airfoil at a Reynolds number of 100 are investigated through direct numerical simulation. Linear state-space models, identified from impulse response data via the eigensystem realization algorithm, are used to accurately track rapid changes in lift coefficient through either feedback or feedforward control, even in the presence of gust disturbances. We develop a technique to project between states of linear models obtained at different angles of attack using primal and pseudo-adjoint balanced POD modes. This allows for the formation of a nonlinear switched model that is accurate over a wide range of angles of attack, in both pre- and post-stall regimes. We additionally investigate phenomena that are not captured by linear models, such as an increase in mean lift that occurs when vortex shedding frequencies are excited. The effect of changing the pitch axis is also investigated, where it is found that pitching aft of the mid-chord results in right half plane zeros that increase the difficulty of the control problem. This work was supported by AFOSR grant FA9550-12-1-0075.

  17. Roughness Based Crossflow Transition Control for a Swept Airfoil Design Relevant to Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Carpenter, Mark H.; Malik, Mujeeb R.; Eppink, Jenna; Chang, Chau-Lyan; Streett, Craig L.

    2010-01-01

    A high fidelity transition prediction methodology has been applied to a swept airfoil design at a Mach number of 0.75 and chord Reynolds number of approximately 17 million, with the dual goal of an assessment of the design for the implementation and testing of roughness based crossflow transition control and continued maturation of such methodology in the context of realistic aerodynamic configurations. Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes in order to weaken the growth of naturally occurring, linearly more unstable instability modes via a nonlinear modification of the mean boundary layer profiles. Therefore, a synthesis of receptivity, linear and nonlinear growth of crossflow disturbances, and high-frequency secondary instabilities becomes desirable to model this form of control. Because experimental data is currently unavailable for passive crossflow transition control for such high Reynolds number configurations, a holistic computational approach is used to assess the feasibility of roughness based control methodology. Potential challenges inherent to this control application as well as associated difficulties in modeling this form of control in a computational setting are highlighted. At high Reynolds numbers, a broad spectrum of stationary crossflow disturbances amplify and, while it may be possible to control a specific target mode using Discrete Roughness Elements (DREs), nonlinear interaction between the control and target modes may yield strong amplification of the difference mode that could have an adverse impact on the transition delay using spanwise periodic roughness elements.

  18. Navier-Stokes analysis of airfoils with leading edge ice accretions

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.

  19. Development of heat flux sensors in turbine airfoils

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1984-01-01

    The objective is to develop heat flux sensors suitable for use on turbine airfoils and to verify the operation of the heat flux measurement techniques through laboratory experiments. The requirements for a program to investigate the measurement of heat flux on airfoils in areas of strong non-one-dimensional flow were also identified.

  20. Sealing apparatus for airfoils of gas turbine engines

    SciTech Connect

    Jones, Russell B.

    1998-01-01

    An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed.

  1. S822 and S823 Airfoils: October 1992--December 1993

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A family of thick airfoils for 3- to 10-meter, stall-regulated, horizontal-axis wind turbines, the S822 and S823, has been designed and analyzed theoretically. The primary objectives of restrained maximum lift, insensitive to roughness, and low profile have been achieved. The constraints on the pitching moments and airfoil thicknesses have been satisfied.

  2. Analytical studies of new airfoils for wind turbines

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Calhoun, J. T.

    1981-01-01

    Computer studies were conducted to analyze the potential gains associated with utilizing new airfoils for large wind turbine rotor blades. Attempts to include 3-dimensional stalling effects were inconclusive. It is recommended that blade pressure measurements be made to clarify the nature of blade stalling. It is also recommended that new laminar flow airfoils be used as rotor blade sections.

  3. Sealing apparatus for airfoils of gas turbine engines

    DOEpatents

    Jones, R.B.

    1998-05-19

    An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed. 17 figs.

  4. Airfoil family design for large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  5. The flow over a thin airfoil subjected to elevated levels of freestream turbulence at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Ravi, Sridhar; Watkins, Simon; Watmuff, Jon; Massey, Kevin; Petersen, Phred; Marino, Matthew; Ravi, Anuradha

    2012-09-01

    Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulence conditions of nominally the same longitudinal integral length scale (Lxx/c = 1) but with significantly different intensities (Ti = 7.2 % and 12.3 %) were generated within a wind tunnel; time-varying surface pressure measurements, smoke flow visualization, and wake velocity measurements were made on a thin flat plate airfoil. Rapid changes in oncoming flow pitch angle resulted in the shear layer to separate from the leading edge of the airfoil even at lower geometric angles of attack. At higher geometric angles of attack, massive flow separation occurred at the leading edge followed by enhanced roll up of the shear layer. This lead to the formation of large Leading Edge Vortices (LEVs) that advected at a rate much lower than the mean flow speed while imparting high pressure fluctuations over the airfoil. The rate of LEV formation was dependent on the angle of attack until 10° and it was independent of the turbulence properties tested. The fluctuations in surface pressures and consequently aerodynamic loads were considerably limited on the airfoil bottom surface due to the favorable pressure gradient.

  6. Turbine airfoil having outboard and inboard sections

    SciTech Connect

    Mazzola, Stefan; Marra, John J

    2015-03-17

    A turbine airfoil usable in a turbine engine and formed from at least an outboard section and an inboard section such that an inner end of the outboard section is attached to an outer end of the inboard section. The outboard section may be configured to provide a tip having adequate thickness and may extend radially inward from the tip with a generally constant cross-sectional area. The inboard section may be configured with a tapered cross-sectional area to support the outboard section.

  7. Ice Prevention on Aircraft by Means of Engine Exhaust Heat and a Technical Study of Heat Transmission from a Clark Y Airfoil

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Clay, William C

    1933-01-01

    This investigation was conducted to study the practicability of employing heat as a means of preventing the formation of ice on airplane wings. The report relates essentially to technical problems regarding the extraction of heat from the exhaust gases and its proper distribution over the exposed surfaces. In this connection a separate study has been made to determine the variation of the coefficient of heat transmission along the chord of a Clark Y airfoil. Experiments on ice prevention both in the laboratory and in flight show conclusively that it is necessary to heat only the front portion of the wing surface to effect complete prevention. Experiments in flight show that a vapor-heating system which extracts heat from the exhaust and distributes it to the wings is an entirely practical and efficient method for preventing ice formation.

  8. An old-fashioned connectionist approach to a Cajun chord change problem

    NASA Astrophysics Data System (ADS)

    Berkeley, I.; Raine, R.

    2011-09-01

    In this paper, the problem of changing chords when playing Cajun music is introduced. A number of connectionist network simulations are then described, in which the networks attempted to learn to predict chord changes correctly in a particular Cajun song, 'Bayou Pompon'. In the various sets of simulations, the amount of information provided to the network was varied. While the network had difficulty in solving the problem with six one-eighths of a bar of melody information, performance radically improved when the network was provided with seven one-eighths of a bar of melody information. A post-training analysis of a trained network revealed a 'rule' for solving the problem. In addition to providing useful insight for scholars interested in traditional Cajun music, the results described here also illustrate how a traditional connectionist network, trained with the familiar backpropagation learning algorithm, can be used to generate a theory of the task.

  9. An investigation of the performance of novel chorded keyboards in combination with pointing input devices.

    PubMed

    Shi, Wen-Zhou; Wu, Fong-Gong

    2015-01-01

    Rapid advances in computing power have driven the development of smaller and lighter technology products, with novel input devices constantly being produced in response to new user behaviors and usage contexts. The aim of this research was to investigate the feasibility of operating chorded keyboard control modules in concert with pointing devices such as styluses and mice. We compared combinations of two novel chorded keyboards with different pointing devices in hopes of finding a better combination for future electronic products. Twelve participants were recruited for simulation testing, and paired sample t testing was conducted to determine whether input and error rates for the novel keyboards were improved significantly over those of traditional input methods. The most efficient input device combination tested was the combination of a novel cross-shaped key keyboard and a stylus, suggesting the high potential for use of this combination with future mobile IT products.

  10. Airfoil for a gas turbine engine

    SciTech Connect

    Liang, George

    2011-05-24

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  11. Control of Flow Separation Using Adaptive Airfoils

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    A novel way of controlling flow separation is reported. The approach involves using an adaptive airfoil geometry that changes its leading edge shape to adjust to the instantaneous flow at high angles of attack such that the flow over it remains attached. In particular, a baseline NACA 0012 airfoil, whose leading edge curvature could be changed dynamically by 400% was tested under quasi-steady compressible flow conditions. A mechanical drive system was used to produce a rounded leading edge to reduce the strong local flow acceleration around its nose and thus reduce the strong adverse pressure gradient that follows such a rapid acceleration. Tests in steady flow showed that at M = 0.3, the flow separated at about 14 deg. angle of attack for the NACA 0012 profile but could be kept attached up to an angle of about 18 deg by changing the nose curvature. No significant hysteresis effects were observed; the flow could be made to reattach from its separated state at high angles by changing the leading edge curvature.

  12. Unsteady Newton-Busemann flow theory. I - Airfoils

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1981-01-01

    Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.

  13. On the Theory of the Unsteady Motion of an Airfoil

    NASA Technical Reports Server (NTRS)

    Sedov, L. I.

    1947-01-01

    The paper presents a systematical analysis of the problem of the determination of the unsteady motion about an airfoil moving in an infinite fluid that contains a system of vortices and the determination of the hydrodynamical forces acting on the airfoil. The hydrodynamical problem is reduced to the determination of the function f (xi) which transforms conformally the external region of the airfoil into the interior of a circle. The proposed methods of determining the irrotational motion of a fluid that is produced by any motion of the airfoil are especially simple and effective if the function f (xi) is rational. As an example the flow is determined for the case of an arbitrary motion of an airfoil of the Joukowsky type. The formulas obtained for the determination of the hydrodynamical forces by means of contour integration are similar to those given by S. Chaplygin. These formulas are used to determine the force acting on the airfoil in the cases where the unsteady motion is potential throughout and the circulation about the airfoil is constant and also when the fluid contains a system of vortices. A full discussion is given of the concept of virtual masses together with practical formulas for computing the virtual mass coefficients.

  14. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    SciTech Connect

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-15

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  15. Buffeting of NACA 0012 airfoil at high angle of attack

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Dowell, Earl

    2014-11-01

    Buffeting is a fluid instability caused by flow separation or shock wave oscillations in the flow around a bluff body. Typically there is a dominant frequency of these flow oscillations called Strouhal or buffeting frequency. In prior work several researchers at Duke University have noted the analogy between the classic Von Karman Vortex Street behind a bluff body and the flow oscillations that occur for flow around a NACA 0012 airfoil at sufficiently large angle of attack. Lock-in is found for certain combinations of airfoil oscillation (pitching motion) frequencies and amplitudes when the frequency of the airfoil motion is sufficiently close to the buffeting frequency. The goal of this paper is to explore the flow around a static and an oscillating airfoil at high angle of attack by developing a method for computing buffet response. Simulation results are compared with experimental data. Conditions for the onset of buffeting and lock-in of a NACA 0012 airfoil at high angle of attack are determined. Effects of several parameters on lift coefficient and flow response frequency are studied including Reynolds number, angle of attack and blockage ratio of the airfoil size to the wind tunnel dimensions. Also more detailed flow field characteristics are determined. For a static airfoil, a universal Strouhal number scaling has been found for angles of attack from 30° to 90°, where the flow around airfoil is fully separated. For an oscillating airfoil, conditions for lock-in are discussed. Differences between the lock-in case and the unlocked case are also studied. The second affiliation: Duke University.

  16. Design and experimental results for the S805 airfoil

    SciTech Connect

    Somers, D.M.

    1997-01-01

    An airfoil for horizontal-axis wind-turbine applications, the S805, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.

  17. Design and experimental results for the S809 airfoil

    SciTech Connect

    Somers, D M

    1997-01-01

    A 21-percent-thick, laminar-flow airfoil, the S809, for horizontal-axis wind-turbine applications, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.

  18. Experiences with optimizing airfoil shapes for maximum lift over drag

    NASA Technical Reports Server (NTRS)

    Doria, Michael L.

    1991-01-01

    The goal was to find airfoil shapes which maximize the ratio of lift over drag for given flow conditions. For a fixed Mach number, Reynolds number, and angle of attack, the lift and drag depend only on the airfoil shape. This then becomes a problem in optimization: find the shape which leads to a maximum value of lift over drag. The optimization was carried out using a self contained computer code for finding the minimum of a function subject to constraints. To find the lift and drag for each airfoil shape, a flow solution has to be obtained. This was done using a two dimensional Navier-Stokes code.

  19. Broadband Noise Predictions for an Airfoil in a Turbulent Stream

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.; Mish, P. F.; Devenport, W. J.

    2003-01-01

    Loading noise is predicted from unsteady surface pressure measurements on a NACA 0015 airfoil immersed in grid-generated turbulence. The time-dependent pressure is obtained from an array of synchronized transducers on the airfoil surface. Far field noise is predicted by using the time-dependent surface pressure as input to Formulation 1A of Farassat, a solution of the Ffowcs Williams - Hawkings equation. Acoustic predictions are performed with and without the effects of airfoil surface curvature. Scaling rules are developed to compare the present far field predictions with acoustic measurements that are available in the literature.

  20. MATE program: Erosion resistant compressor airfoil coating, volume 2

    NASA Technical Reports Server (NTRS)

    Freling, Melvin

    1987-01-01

    The performance of candidate erosion resistant airfoil coatings installed in ground tested experimental JT8D and JT9D engines and subjected to cyclic endurance at idle, takeoff and intermediate power conditions has been evaluated. Engine tests were terminated prior to the scheduled 1000 cycles of endurance test due to high cycle fatigue fracture of the Gator-Gard plasma sprayed 88WC-12Co coating on titanium alloy airfoils. Coated steel (AMS5616) and nickel base alloy (Incoloy 901) performed well in both engine tests. Post test airfoil analyses consisted of binocular, scanning electron microscope and metallographic examinations.

  1. Predictions of airfoil aerodynamic performance degradation due to icing

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Potapezuk, Mark G.; Bidwell, Colin S.

    1988-01-01

    An overview of NASA's ongoing efforts to develop an airfoil icing analysis capability is developed. An indication is given to the approaches being followed to calculate the water droplet trajectories past the airfoil, the buildup of ice on the airfoil, and the resultant changes in aerodynamic performance due to the leading edge ice accretion. Examples are given of current code capabilities/limitations through comparisons of predictions with experimental data gathered in various calibration/validation experiments. A brief discussion of future efforts to extend the analysis to handle three dimensional components is included.

  2. Wind tunnel testing of low-drag airfoils

    NASA Technical Reports Server (NTRS)

    Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.

    1986-01-01

    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.

  3. Second-order subsonic airfoil theory including edge effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1956-01-01

    Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack

  4. Low-speed single-element airfoil synthesis

    NASA Technical Reports Server (NTRS)

    Mcmasters, J. H.; Henderson, M. L.

    1979-01-01

    The use of recently developed airfoil analysis/design computational tools to clarify, enrich and extend the existing experimental data base on low-speed, single element airfoils is demonstrated. A discussion of the problem of tailoring an airfoil for a specific application at its appropriate Reynolds number is presented. This problem is approached by use of inverse (or synthesis) techniques, wherein a desirable set of boundary layer characteristics, performance objectives, and constraints are specified, which then leads to derivation of a corresponding viscous flow pressure distribution. Examples are presented which demonstrate the synthesis approach, following presentation of some historical information and background data which motivate the basic synthesis process.

  5. Influence of airfoil thickness on convected gust interaction noise

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Tsai, C. T.

    1989-01-01

    The case of a symmetric airfoil at zero angle of attack is considered in order to determine the influence of airfoil thickness on sound generated by interaction with convected gusts. The analysis is based on a linearization of the Euler equations about the subsonic mean flow past the airfoil. Primary sound generation is found to occur in a local region surrounding the leading edge, with the size of the local region scaling on the gust wavelength. For a parabolic leading edge, moderate leading edge thickness is shown to decrease the noise level in the low Mach number limit.

  6. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  7. Heat Transfer of Airfoils and Plates

    NASA Technical Reports Server (NTRS)

    Seibert, Otto

    1943-01-01

    The few available test data on the heat dissipation of wholly or partly heated airfoil models are compared with the corresponding data for the flat plate as obtained by an extension of Prandtl's momentum theory, with differentiation between laminar and turbulent boundary layer and transitional region between both, the extent and appearance of which depend upon certain critical factors. The satisfactory agreement obtained justifies far-reaching conclusions in respect to other profile forms and arrangements of heated surface areas. The temperature relationship of the material quantities in its effect on the heat dissipation is discussed as far as is possible at tk.e present state of research, and it is shown that the profile drag of heated wing surfaces can increase or decrease with the temperature increase depending upon the momentarily existent structure of the boundary layer.

  8. Turbine airfoil with a compliant outer wall

    DOEpatents

    Campbell, Christian X.; Morrison, Jay A.

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  9. Three-dimensional effects on airfoils

    NASA Technical Reports Server (NTRS)

    Chevallier, J. P.

    1983-01-01

    The effects of boundary layer flows along the walls of wind tunnels were studied to validate the transfer of two dimensional calculations to three dimensional transonic flowfield calculations. Results from trials in various wind tunnels were examind to determine the effects of the wall boundary flow on the control surfaces of an airfoil. Models sliding along a groove in the wall of a channel at sub- and transonic speeds were examined, with the finding that with either nonuniformities in the groove, or even if the channel walls are uniform, the lateral boundary layer can cause variations in the central flow region or alter the onset of shock at the transition point. Models for the effects in both turbulence and in the absence of turbulence are formulated, and it is noted that the characteristics of individual wind tunnels must be studied to quantify any existing three dimensional effects.

  10. Cooled airfoil in a turbine engine

    SciTech Connect

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  11. Steady and Unsteady Aerodynamics of Thin Airfoils with Porosity Gradients

    NASA Astrophysics Data System (ADS)

    Hajian, Rozhin; Jaworski, Justin W.

    2015-11-01

    Porous treatments have been shown in previous studies to reduce turbulence noise generation from the edges of wings and blades. However, this acoustical benefit can come at the cost of aerodynamic performance that is degraded by seepage flow through the wing. To better understand the trade-off between acoustic stealth and the desired airfoil performance, the aerodynamic loads of a thin airfoil in uniform flow with a prescribed porosity distribution are determined analytically in closed form, provided that the distribution is Hölder-continuous. The theoretical model is extended to include unsteady heaving and pitching motions of the airfoil section, which has applications to the performance estimation of biologically-inspired swimmers and fliers and to the future assessment of vortex noise production from porous airfoils.

  12. Design and experimental results for the S814 airfoil

    SciTech Connect

    Somers, D.M.

    1997-01-01

    A 24-percent-thick airfoil, the S814, for the root region of a horizontal-axis wind-turbine blade has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results show good agreement with the exception of maximum lift which is overpredicted. Comparisons with other airfoils illustrate the higher maximum lift and the lower profile drag of the S814 airfoil, thus confirming the achievement of the objectives.

  13. First-stage high pressure turbine bucket airfoil

    DOEpatents

    Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar

    2004-05-25

    The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  14. Study of the TRAC Airfoil Table Computational System

    NASA Technical Reports Server (NTRS)

    Hu, Hong

    1999-01-01

    The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.

  15. Comparison of Analytical and CAA Solutions: Single Airfoil Gust Response

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2000-01-01

    The purpose of this problem is to test the ability of a computational fluid dynamics/computational aeroacoustics code to accurately predict the unsteady aerodynamic and aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.

  16. Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.

    SciTech Connect

    Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica; Simley, Eric

    2010-06-01

    The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

  17. Unsteady transonic flow control around an airfoil in a channel

    NASA Astrophysics Data System (ADS)

    Hamid, Md. Abdul; Hasan, A. B. M. Toufique; Ali, Mohammad; Mitsutake, Yuichi; Setoguchi, Toshiaki; Yu, Shen

    2016-04-01

    Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings (perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square (RMS) of pressure oscillation around the airfoil have been reduced with the control method.

  18. High-flaps for natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L.

    1986-01-01

    A review of the NACA and NASA low-drag airfoil research is presented with particular emphasis given to the development of mechanical high-lift flap systems and their application to general aviation aircraft. These flap systems include split, plain, single-slotted, and double-slotted trailing-edge flaps plus slat and Krueger leading-edge devices. The recently developed continuous variable-camber high-lift mechanism is also described. The state-of-the-art of theoretical methods for the design and analysis of multi-component airfoils in two-dimensional subsonic flow is discussed, and a detailed description of the Langley MCARF (Multi-Component Airfoil Analysis Program) computer code is presented. The results of a recent effort to design a single- and double-slotted flap system for the NASA high speed natural laminar flow (HSNLF) (1)-0213 airfoil using the MCARF code are presented to demonstrate the capabilities and limitations of the code.

  19. Experimental study of airfoil separation control using synthetic jets

    NASA Astrophysics Data System (ADS)

    Xia, Xi; Mohseni, Kamran

    2010-11-01

    The flow control over an airfoil is studied experimentally in a wind tunnel. Synthetic jets are placed on the top surface of the airfoil as flow actuators. The position and the angle of the jet orifice, together with the frequency and jet strength could be varied in order to adjust the separation or reattachment points on the surface. An Array of hot-film sensors are located on the surface in order to detect the location of the reattachment point. The airfoil is mounted on a 6 d.o.f force balance system to dynamically measure the drag and lift forces on the airfoil. Results from the hot-film sensor array measurement are correlated to the measured drag and lift forces.

  20. Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.

    1995-01-01

    An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B- Splines) for defining the airfoil geometry. An interactive algebraic grid generation technique is employed to generate C-type grids around airfoils. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the airfoil surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the airfoil.