Approximate method of designing a two-element airfoil
NASA Astrophysics Data System (ADS)
Abzalilov, D. F.; Mardanov, R. F.
2011-09-01
An approximate method is proposed for designing a two-element airfoil. The method is based on reducing an inverse boundary-value problem in a doubly connected domain to a problem in a singly connected domain located on a multisheet Riemann surface. The essence of the method is replacement of channels between the airfoil elements by channels of flow suction and blowing. The shape of these channels asymptotically tends to the annular shape of channels passing to infinity on the second sheet of the Riemann surface. The proposed method can be extended to designing multielement airfoils.
Inverse design of airfoils using a flexible membrane method
NASA Astrophysics Data System (ADS)
Thinsurat, Kamon
The Modified Garabedian Mc-Fadden (MGM) method is used to inversely design airfoils. The Finite Difference Method (FDM) for Non-Uniform Grids was developed to discretize the MGM equation for numerical solving. The Finite Difference Method (FDM) for Non-Uniform Grids has the advantage of being used flexibly with an unstructured grids airfoil. The commercial software FLUENT is being used as the flow solver. Several conditions are set in FLUENT such as subsonic inviscid flow, subsonic viscous flow, transonic inviscid flow, and transonic viscous flow to test the inverse design code for each condition. A moving grid program is used to create a mesh for new airfoils prior to importing meshes into FLUENT for the analysis of flows. For validation, an iterative process is used so the Cp distribution of the initial airfoil, the NACA0011, achieves the Cp distribution of the target airfoil, the NACA2315, for the subsonic inviscid case at M=0.2. Three other cases were carried out to validate the code. After the code validations, the inverse design method was used to design a shock free airfoil in the transonic condition and to design a separation free airfoil at a high angle of attack in the subsonic condition.
An inverse method with regularity condition for transonic airfoil design
NASA Technical Reports Server (NTRS)
Zhu, Ziqiang; Xia, Zhixun; Wu, Liyi
1991-01-01
It is known from Lighthill's exact solution of the incompressible inverse problem that in the inverse design problem, the surface pressure distribution and the free stream speed cannot both be prescribed independently. This implies the existence of a constraint on the prescribed pressure distribution. The same constraint exists at compressible speeds. Presented here is an inverse design method for transonic airfoils. In this method, the target pressure distribution contains a free parameter that is adjusted during the computation to satisfy the regularity condition. Some design results are presented in order to demonstrate the capabilities of the method.
Inverse airfoil design procedure using a multigrid Navier-Stokes method
NASA Technical Reports Server (NTRS)
Malone, J. B.; Swanson, R. C.
1991-01-01
The Modified Garabedian McFadden (MGM) design procedure was incorporated into an existing 2-D multigrid Navier-Stokes airfoil analysis method. The resulting design method is an iterative procedure based on a residual correction algorithm and permits the automated design of airfoil sections with prescribed surface pressure distributions. The new design method, Multigrid Modified Garabedian McFadden (MG-MGM), is demonstrated for several different transonic pressure distributions obtained from both symmetric and cambered airfoil shapes. The airfoil profiles generated with the MG-MGM code are compared to the original configurations to assess the capabilities of the inverse design method.
Improved method for transonic airfoil design-by-optimization
NASA Technical Reports Server (NTRS)
Kennelly, R. A., Jr.
1983-01-01
An improved method for use of optimization techniques in transonic airfoil design is demonstrated. FLO6QNM incorporates a modified quasi-Newton optimization package, and is shown to be more reliable and efficient than the method developed previously at NASA-Ames, which used the COPES/CONMIN optimization program. The design codes are compared on a series of test cases with known solutions, and the effects of problem scaling, proximity of initial point to solution, and objective function precision are studied. In contrast to the older method, well-converged solutions are shown to be attainable in the context of engineering design using computational fluid dynamics tools, a new result. The improvements are due to better performance by the optimization routine and to the use of problem-adaptive finite difference step sizes for gradient evaluation.
A Method for the Constrained Design of Natural Laminar Flow Airfoils
NASA Technical Reports Server (NTRS)
Green, Bradford E.; Whitesides, John L.; Campbell, Richard L.; Mineck, Raymond E.
1996-01-01
A fully automated iterative design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. Drag reductions have been realized using the design method over a range of Mach numbers, Reynolds numbers and airfoil thicknesses. The thrusts of the method are its ability to calculate a target N-Factor distribution that forces the flow to undergo transition at the desired location; the target-pressure-N-Factor relationship that is used to reduce the N-Factors in order to prolong transition; and its ability to design airfoils to meet lift, pitching moment, thickness and leading-edge radius constraints while also being able to meet the natural laminar flow constraint. The method uses several existing CFD codes and can design a new airfoil in only a few days using a Silicon Graphics IRIS workstation.
An artificial viscosity method for the design of supercritical airfoils
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.
1979-01-01
A numerical technique is presented for the design of two-dimensional supercritical wing sections with low wave drag. The method is a design mode of the analysis code H which gives excellent agreement with experimental results and is widely used in the aircraft industry. Topics covered include the partial differential equations of transonic flow, the computational procedure and results; the design procedure; a convergence theorem; and description of the code.
Inverse transonic airfoil design including viscous interaction
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1976-01-01
A numerical technique was developed for the analysis of specified transonic airfoils or for the design of airfoils having a prescribed pressure distribution, including the effect of weak viscous interaction. The method uses the full potential equation, a stretched Cartesian coordinate system, and the Nash-MacDonald turbulent boundary layer method. Comparisons with experimental data for typical transonic airfoils show excellent agreement. An example shows the application of the method to design a thick aft-cambered airfoil, and the effects of viscous interaction on its performance are discussed.
Generalized multi-point inverse airfoil design
NASA Technical Reports Server (NTRS)
Selig, Michael S.; Maughmer, Mark D.
1991-01-01
In a rather general sense, inverse airfoil design can be taken to mean the problem of specifying a desired set of airfoil characteristics, such as the airfoil maximum thickness ratio, pitching moment, part of the velocity distribution or boundary-layer development, etc., then from this information determine the corresponding airfoil shape. This paper presents a method which approaches the design problem from this perspective. In particular, the airfoil is divided into segments along which, together with the design conditions, either the velocity distribution or boundary-layer development may be prescribed. In addition to these local desired distributions, single parameters like the airfoil thickness can be specified. The problem of finding the airfoil shape is determined by coupling an incompressible, inviscid, inverse airfoil design method with a direct integral boundary-layer analysis method and solving the resulting nonlinear equations via a multidimensional Newton iteration technique. The approach is fast and easily allows for interactive design. It is also flexible and could be adapted to solving compressible, inverse airfoil design problems.
Airfoil Design and Rotorcraft Performance
NASA Technical Reports Server (NTRS)
Bousman, William G.
2003-01-01
The relationship between global performance of a typical helicopter and the airfoil environment, as represented by the airfoil angles of attack and Mach number, has been examined using the comprehensive analysis CAMRAD II. A general correspondence is observed between global performance parameters, such as rotor L/D, and airfoil performance parameters, such as airfoil L/D, the drag bucket boundaries, and the divergence Mach number. Effects of design parameters such as blade twist and rotor speed variation have been examined and, in most cases, improvements observed in global performance are also observed in terms of airfoil performance. The relations observed between global Performance and the airfoil environment suggests that the emphasis in airfoil design should be for good L/D, while the maximum lift coefficient performance is less important.
Transonic airfoil design using Cartesian coordinates
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1976-01-01
A numerical technique for designing transonic airfoils having a prescribed pressure distribution (the inverse problem) is presented. The method employs the basic features of Jameson's iterative solution for the full potential equation, except that inverse boundary conditions and Cartesian coordinates are used. The method is a direct-inverse approach that controls trailing-edge closure. Examples show the application of the method to design aft-cambered and other airfoils specifically for transonic flight.
Improvements in surface singularity analysis and design methods. [applicable to airfoils
NASA Technical Reports Server (NTRS)
Bristow, D. R.
1979-01-01
The coupling of the combined source vortex distribution of Green's potential flow function with contemporary numerical techniques is shown to provide accurate, efficient, and stable solutions to subsonic inviscid analysis and design problems for multi-element airfoils. The analysis problem is solved by direct calculation of the surface singularity distribution required to satisfy the flow tangency boundary condition. The design or inverse problem is solved by an iteration process. In this process, the geometry and the associated pressure distribution are iterated until the pressure distribution most nearly corresponding to the prescribed design distribution is obtained. Typically, five iteration cycles are required for convergence. A description of the analysis and design method is presented, along with supporting examples.
Low speed airfoil design and analysis
NASA Technical Reports Server (NTRS)
Eppler, R.; Somers, D. M.
1979-01-01
A low speed airfoil design and analysis program was developed which contains several unique features. In the design mode, the velocity distribution is not specified for one but many different angles of attack. Several iteration options are included which allow the trailing edge angle to be specified while other parameters are iterated. For airfoil analysis, a panel method is available which uses third-order panels having parabolic vorticity distributions. The flow condition is satisfied at the end points of the panels. Both sharp and blunt trailing edges can be analyzed. The integral boundary layer method with its laminar separation bubble analog, empirical transition criterion, and precise turbulent boundary layer equations compares very favorably with other methods, both integral and finite difference. Comparisons with experiment for several airfoils over a very wide Reynolds number range are discussed. Applications to high lift airfoil design are also demonstrated.
Inverse transonic airfoil design methods including boundary layer and viscous interaction effects
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1979-01-01
The development and incorporation into TRANDES of a fully conservative analysis method utilizing the artificial compressibility approach is described. The method allows for lifting cases and finite thickness airfoils and utilizes a stretched coordinate system. Wave drag and massive separation studies are also discussed.
Trailing edge flow conditions as a factor in airfoil design
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Maughmer, M. D.
1984-01-01
Some new developments relevant to the design of single-element airfoils using potential flow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally present in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.
An analytical study for the design of advanced rotor airfoils
NASA Technical Reports Server (NTRS)
Kemp, L. D.
1973-01-01
A theoretical study has been conducted to design and evaluate two airfoils for helicopter rotors. The best basic shape, designed with a transonic hodograph design method, was modified to meet subsonic criteria. One airfoil had an additional constraint for low pitching-moment at the transonic design point. Airfoil characteristics were predicted. Results of a comparative analysis of helicopter performance indicate that the new airfoils will produce reduced rotor power requirements compared to the NACA 0012. The hodograph design method, written in CDC Algol, is listed and described.
NASA Technical Reports Server (NTRS)
Bledsoe, M.; Garabedian, P.
1985-01-01
The use of mathematical models to study physical problems of current interest to aeronautical engineers has been made possible by the development of numerical techniques to compute solutions of the differential equations of transonic aerodynamics. These advances have encouraged the improvement of supercritical wing technology. A method to determined steady, shockless flow of an inviscid, compressible fluid past a cascade of airfoils in the (x,y)-plane is considered, taking into account also the case of an isolated airfoil. The method of complex characteristics solves the equations in the hodograph plane by extending all variables into the complex domain, where the notion of type is no longer significant. Attention is given to the mathematical background, the method of complex characteristics, and numerical calculations.
Transonic airfoil analysis and design using Cartesian coordinates
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1975-01-01
An inverse numerical technique for designing transonic airfoils having a prescribed pressure distribution is presented. The method uses the full potential equation, inverse boundary conditions, and Cartesian coordinates. It includes simultaneous airfoil update and utilizes a direct-inverse approach that permits a logical method for controlling trailing edge closure. The method can also be used for the analysis of flowfields about specified airfoils. Comparison with previous results shows that accurate results can be obtained with a Cartesian grid. Examples show the application of the method to design aft-cambered and other airfoils specifically for transonic flight.
Transonic airfoil analysis and design in nonuniform flow
NASA Technical Reports Server (NTRS)
Chang, J. F.; Lan, C. E.
1986-01-01
A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness.
Design optimization of transonic airfoils
NASA Technical Reports Server (NTRS)
Joh, C.-Y.; Grossman, B.; Haftka, R. T.
1991-01-01
Numerical optimization procedures were considered for the design of airfoils in transonic flow based on the transonic small disturbance (TSD) and Euler equations. A sequential approximation optimization technique was implemented with an accurate approximation of the wave drag based on the Nixon's coordinate straining approach. A modification of the Euler surface boundary conditions was implemented in order to efficiently compute design sensitivities without remeshing the grid. Two effective design procedures producing converged designs in approximately 10 global iterations were developed: interchanging the role of the objective function and constraint and the direct lift maximization with move limits which were fixed absolute values of the design variables.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine and compared to earlier methods. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Boundary-layer stability and airfoil design
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.
1986-01-01
Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.
Numerical Airfoil Optimization Using a Reduced Number of Design Coordinates
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Hicks, R. M.
1976-01-01
A method is presented for numerical airfoil optimization whereby a reduced number of design coordinates are used to define the airfoil shape. The approach is to define the airfoil as a linear combination of shapes. These basic shapes may be analytically or numerically defined, allowing the designer to use his insight to propose candidate designs. The design problem becomes one of determining the participation of each such function in defining the optimum airfoil. Examples are presented for two-dimensional airfoil design and are compared with previous results based on a polynomial representation of the airfoil shape. Four existing NACA airfoils are used as basic shapes. Solutions equivalent to previous results are achieved with a factor of more than 3 improvements in efficiency, while superior designs are demonstrated with an efficiency greater than 2 over previous methods. With this shape definition, the optimization process is shown to exploit the simplifying assumptions in the inviscid aerodynamic analysis used here, thus demonstrating the need to use more advanced aerodynamics for airfoil optimization.
Transonic airfoil and wing design using Navier-Stokes codes
NASA Technical Reports Server (NTRS)
Yu, N. J.; Campbell, R. L.
1992-01-01
An iterative design method has been implemented into 2D and 3D Navier-Stokes codes for the design of airfoils or wings with given target pressure distributions. The method begins with the analysis of an initial geometry, and obtains the analysis pressure distributions of that geometry. The differences between analysis pressures and target pressures are used to drive geometry changes through the use of a streamline curvature method. This paper describes the procedure that makes the iterative design method work for Navier-Stokes codes. Examples of 2D airfoil design, and 3D wing design are included. It is demonstrated that the method is highly effective for airfoil or wing design at flow conditions where no substantial separation occurs. Problems encountered in the airfoil design with shock induced flow separations are discussed.
Airfoil family design for large offshore wind turbine blades
NASA Astrophysics Data System (ADS)
Méndez, B.; Munduate, X.; San Miguel, U.
2014-06-01
, compatibility for the different airfoil family members, etc.) and with the ultimate objective that the airfoils will reduce the blade loads. In this paper the whole airfoil design process and the main characteristics of the airfoil family are described. Some force coefficients for the design Reynolds number are also presented. The new designed airfoils have been studied with computational calculations (panel method code and CFD) and also in a wind tunnel experimental campaign. Some of these results will be also presented in this paper.
A computer program for the design and analysis of low-speed airfoils
NASA Technical Reports Server (NTRS)
Eppler, R.; Somers, D. M.
1980-01-01
A conformal mapping method for the design of airfoils with prescribed velocity distribution characteristics, a panel method for the analysis of the potential flow about given airfoils, and a boundary layer method have been combined. With this combined method, airfoils with prescribed boundary layer characteristics can be designed and airfoils with prescribed shapes can be analyzed. All three methods are described briefly. The program and its input options are described. A complete listing is given as an appendix.
Robust, optimal subsonic airfoil shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2008-01-01
Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.
An Approach to the Constrained Design of Natural Laminar Flow Airfoils
NASA Technical Reports Server (NTRS)
Green, Bradford E.
1997-01-01
A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.
An approach to the constrained design of natural laminar flow airfoils
NASA Technical Reports Server (NTRS)
Green, Bradford Earl
1995-01-01
A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.
An assessment of airfoil design by numerical optimization
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Murman, E. M.; Vanderplaats, G. N.
1974-01-01
A practical procedure for optimum design of aerodynamic shapes is demonstrated. The proposed procedure uses an optimization program based on the method of feasible directions coupled with an analysis program that uses a relaxation solution of the inviscid, transonic, small-disturbance equations. Results are presented for low-drag, nonlifting transonic airfoils. Extension of the method to lifting airfoils, other speed regimes, and to three dimensions if feasible.
A systematic method for computer design of supercritical airfoils in cascade
NASA Technical Reports Server (NTRS)
Garabedian, P.; Korn, D.
1976-01-01
A computer code has been developed for the direct calculation of shockless transonic airfoils whose pressure distributions can be assigned within reasonable limits. The partial differential equations of two-dimensional inviscid gas dynamics are solved by analytic continuation into the domain of two independent complex characteristic coordinates. The domain of integration is mapped conformally onto the unit circle in the hodograph plane of one of these coordinates. It is possible to formulate a boundary value problem on this circle for the stream function that is well posed in the case of transonic flow. This enables the formulation of a procedure for the calculation of an airfoil on which the speed is prescribed as a function of the arc length
Numerical design of shockless airfoils
NASA Technical Reports Server (NTRS)
Garabedian, P. R.
1979-01-01
An attempt is made to indicate and briefly discuss only the most significant achievements of the research. The most successful contribution from the contract was the code for two dimensional analysis of airfoils in transonic flow.
A hybrid algorithm for transonic airfoil and wing design
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Smith, Leigh A.
1987-01-01
The present method for the design of transonic airfoils and wings employs a predictor/corrector approach in which an analysis code calculates the flowfield for an initial geometry, then modifies it on the basis of the difference between calculated and target pressures. This allows the design method to be straightforwardly coupled with any existing analysis code, as presently undertaken with several two- and three-dimensional potential flow codes. The results obtained indicate that the method is robust and accurate, even in the cases of airfoils with strongly supercritical flow and shocks. The design codes are noted to require computational resources typical of current pure-inverse methods.
NASA Technical Reports Server (NTRS)
Derkacs, Thomas (Inventor); Fetheroff, Charles W. (Inventor); Matay, Istvan M. (Inventor); Toth, Istvan J. (Inventor)
1983-01-01
Although the method and apparatus of the present invention can be utilized to apply either a uniform or a nonuniform covering of material over many different workpieces, the apparatus (20) is advantageously utilized to apply a thermal barrier covering (64) to an airfoil (22) which is used in a turbine engine. The airfoil is held by a gripper assembly (86) while a spray gun (24) is effective to apply the covering over the airfoil. When a portion of the covering has been applied, a sensor (28) is utilized to detect the thickness of the covering. A control apparatus (32) compares the thickness of the covering of material which has been applied with the desired thickness and is subsequently effective to regulate the operation of the spray gun to adaptively apply a covering of a desired thickness with an accuracy of at least plus or minus 0.0015 of an inch (1.5 mils) despite unanticipated process variations.
Airfoil design by numerical optimization using a minicomputer
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Szelazek, C. A.
1978-01-01
A computer program developed for the automated design of low speed airfoils utilizes a generalized Joukowski method for aerodynamic analysis coupled with a conjugate gradient, penalty function, numerical optimization algorithm to give an efficient calculation technique for use with minicomputers. The program designs airfoils with a prescribed pressure distribution as well as those which minimize or maximize some aerodynamic force coefficient. At present the method is restricted to inviscid, incompressible flow. A typical design problem will execute in 4.5 hr on an HP 9830 minicomputer.
Design of transonic airfoils and wings using a hybrid design algorithm
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Smith, Leigh A.
1987-01-01
A method has been developed for designing airfoils and wings at transonic speeds. It utilizes a hybrid design algorithm in an iterative predictor/corrector approach, alternating between analysis code and a design module. This method has been successfully applied to a variety of airfoil and wing design problems, including both transport and highly-swept fighter wing configurations. An efficient approach to viscous airfoild design and the effect of including static aeroelastic deflections in the wing design process are also illustrated.
Inverse boundary-layer technique for airfoil design
NASA Technical Reports Server (NTRS)
Henderson, M. L.
1979-01-01
A description is presented of a technique for the optimization of airfoil pressure distributions using an interactive inverse boundary-layer program. This program allows the user to determine quickly a near-optimum subsonic pressure distribution which meets his requirements for lift, drag, and pitching moment at the desired flow conditions. The method employs an inverse turbulent boundary-layer scheme for definition of the turbulent recovery portion of the pressure distribution. Two levels of pressure-distribution architecture are used - a simple roof top for preliminary studies and a more complex four-region architecture for a more refined design. A technique is employed to avoid the specification of pressure distributions which result in unrealistic airfoils, that is, those with negative thickness. The program allows rapid evaluation of a designed pressure distribution off-design in Reynolds number, transition location, and angle of attack, and will compute an airfoil contour for the designed pressure distribution using linear theory.
Design analysis of vertical wind turbine with airfoil variation
NASA Astrophysics Data System (ADS)
Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad
2016-03-01
With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1974-01-01
A lifting airfoil theoretically designed for shockless supercritical flow utilizing a complex hodograph method has been evaluated in the Langley 8-foot transonic pressure tunnel at design and off-design conditions. The experimental results are presented and compared with those of an experimentally designed supercritical airfoil which were obtained in the same tunnel.
Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail
NASA Astrophysics Data System (ADS)
Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.
2011-04-01
Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.
Application of numerical optimization to the design of low speed airfoils
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Vanderplaats, G. N.
1975-01-01
A practical procedure for the optimum design of low-speed airfoils is demonstrated. The procedure uses an optimization program based on the method of feasible directions coupled with an aerodynamic analysis program that uses a relaxation solution of the inviscid, full potential equation. Results are presented for airfoils designed to have small adverse pressure gradients, high maximum lift, and low pitching moment.
TRANDESNF: A computer program for transonic airfoil design and analysis in nonuniform flow
NASA Technical Reports Server (NTRS)
Chang, J. F.; Lan, C. Edward
1987-01-01
The use of a transonic airfoil code for analysis, inverse design, and direct optimization of an airfoil immersed in propfan slipstream is described. A summary of the theoretical method, program capabilities, input format, output variables, and program execution are described. Input data of sample test cases and the corresponding output are given.
Control theory based airfoil design using the Euler equations
NASA Technical Reports Server (NTRS)
Jameson, Antony; Reuther, James
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.
Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine
NASA Astrophysics Data System (ADS)
Mu≁oz, A.; Méndez, B.; Munduate, X.
2016-09-01
The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations.
TRANDES: A FORTRAN program for transonic airfoil analysis or design
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1977-01-01
A program called TRANDES is presented that is used for the analysis of steady, irrotational transonic flow over specified two-dimensional airfoils in free air or for the design of airfoils having a prescribed pressure distribution, including the effects of weak viscous interaction. Instructions on program usage, listings of the program, and sample cases are given.
Comparisons of Theoretical Methods for Predicting Airfoil Aerodynamic Characteristics
2010-08-01
Airfoil ,” Airfoils , U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D-107, August 2010. [2] Somers, D.M. and...Maughmer, M.D., “Design and Experimental Results for the S407 Airfoil ,” U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D...S414 Airfoil ,” U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D-112, August 2010. [5] Somers, D.M. and Maughmer
The analysis and design of transonic two-element airfoil systems
NASA Technical Reports Server (NTRS)
Volpe, G.; Grossman, B.
1979-01-01
The multiphase effort in the development of tools for the analysis and design of two-element airfoil systems, that is, airfoils with a slat or a flap at transonic speeds is described. The first phase involved the development of a method to compute the inviscid flow over such configurations. In the second phase the inviscid code was coupled to a boundary layer calculation program in order to compute the loss in performance due to viscous effects. An inverse code that constructs the airfoil system corresponding to a desired pressure distribution is described.
Design and experimental results for the S809 airfoil
Somers, D M
1997-01-01
A 21-percent-thick, laminar-flow airfoil, the S809, for horizontal-axis wind-turbine applications, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.
Design and experimental results for the S805 airfoil
Somers, D.M.
1997-01-01
An airfoil for horizontal-axis wind-turbine applications, the S805, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.
Design of advanced airfoil for stall-regulated wind turbines
NASA Astrophysics Data System (ADS)
Grasso, F.; Coiro, D. P.; Bizzarrini, N.; Calise, G.
2016-09-01
Nowadays, all the modern MW-class wind turbines make use of pitch control to optimize the rotor performance and control the turbine. However, for kW-range machines, stall-regulated solutions are still attractive and largely used for their simplicity and robustness. On the design phase, the aerodynamics plays a crucial role, especially concerning the selection/design of the necessary airfoils. This is because the airfoil performance should guarantee high wind turbine performance, but also the needed machine control capabilities. In the present work, the design of a new airfoil dedicated for stall machines is discussed. The design strategy makes use of numerical optimization scheme where a gradient-based algorithm is coupled with XFOIL code and an original Bezier-curves-based parameterization to describe the airfoil shape. The performances of the new airfoil are compared in free and fixed transition conditions. In addition, the performance of the rotor is analysed comparing the impact of the new geometry with alternative candidates. The results show that the new airfoil offers better performance and control than existing candidates do.
Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil.
Tian, Weijun; Yang, Zhen; Zhang, Qi; Wang, Jiyue; Li, Ming; Ma, Yi; Cong, Qian
2017-01-01
The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.
Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil
Li, Ming
2017-01-01
The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift. PMID:28243053
Design and Experimental Results for the S414 Airfoil
2010-08-01
of most current general-aviation aircraft, including busi - ness jets , as well as unmanned aerial vehicles and all sailplanes. It does, however...RDECOM TR 10-D-112 U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND TITLE: Design and Experimental Results for the S414 Airfoil AUTHOR: Dan M...Somers and Mark D. Maughmer COMPANY NAME: Airfoils , Incorporated COMPANY ADDRESS: 122 Rose Drive Port Matilda PA 16870-7535 DATE: August 2010 FINAL
Design and experimental results for the S814 airfoil
Somers, D.M.
1997-01-01
A 24-percent-thick airfoil, the S814, for the root region of a horizontal-axis wind-turbine blade has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results show good agreement with the exception of maximum lift which is overpredicted. Comparisons with other airfoils illustrate the higher maximum lift and the lower profile drag of the S814 airfoil, thus confirming the achievement of the objectives.
Ristau, Neil; Siden, Gunnar Leif
2015-07-21
An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.
An approach to constrained aerodynamic design with application to airfoils
NASA Technical Reports Server (NTRS)
Campbell, Richard L.
1992-01-01
An approach was developed for incorporating flow and geometric constraints into the Direct Iterative Surface Curvature (DISC) design method. In this approach, an initial target pressure distribution is developed using a set of control points. The chordwise locations and pressure levels of these points are initially estimated either from empirical relationships and observed characteristics of pressure distributions for a given class of airfoils or by fitting the points to an existing pressure distribution. These values are then automatically adjusted during the design process to satisfy the flow and geometric constraints. The flow constraints currently available are lift, wave drag, pitching moment, pressure gradient, and local pressure levels. The geometric constraint options include maximum thickness, local thickness, leading-edge radius, and a 'glove' constraint involving inner and outer bounding surfaces. This design method was also extended to include the successive constraint release (SCR) approach to constrained minimization.
Turbine airfoil to shroud attachment method
Campbell, Christian X; Kulkarni, Anand A; James, Allister W; Wessell, Brian J; Gear, Paul J
2014-12-23
Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) of the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.
Design of a 3 kW wind turbine generator with thin airfoil blades
Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath
2008-09-15
Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)
Blade design trade-offs using low-lift airfoils for stall-regulated HAWTs
Giguere, P.; Selig, M.S.; Tangler, J.L.
1999-11-01
A systematic blade design study was conducted to explore the trade-offs in using low-lift airfoils for a 750-kilowatt stall-regulated wind turbine. Tip-region airfoils having a maximum-lift coefficient ranging from 0.7--1.2 were considered in this study, with the main objective of identifying the practical lower limit for the maximum-life coefficient. Blades were optimized for both maximum annual energy production and minimum cost of energy using a method that takes into account aerodynamic and structural considerations. The results indicate that the effect of the maximum-lift coefficient on the cost of energy is small with a slight advantage to the highest maximum lift coefficient airfoils for the tip-region of the blade become more desirable as machine size increases, provided the airfoils yield acceptable stall characteristics. The conclusions are applicable to large wind turbines that use passive or active stall to regulate peak power.
Robust, Optimal Subsonic Airfoil Shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2014-01-01
A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.
Application of two procedures for dual-point design of transonic airfoils
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.
1994-01-01
Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.
Control of flow separation in airfoil/wing design applications
NASA Technical Reports Server (NTRS)
Gally, Thomas A.
1994-01-01
Existing aerodynamic design methods have generally concentrated on the optimization of airfoil or wing shapes to produce a minimum drag while satisfying some basic constraints such as lift, pitching moment, or thickness. Since the minimization of drag almost always precludes the existence of separated flow, the evaluation and validation of these design methods for their robustness and accuracy when separated flow is present has not been aggressively pursued. However, two new applications for these design tools may be expected to include separated flow and the issues of aerodynamic design with this feature must be addressed. The first application of the aerodynamic design tools is the design of airfoils or wings to provide an optimal performance over a wide range of flight conditions (multipoint design). While the definition of 'optimal performance' in the multipoint setting is currently being hashed out, it is recognized that given a wide enough range of flight conditions, it will not be possible to ensure a minimum drag constraint at all conditions, and in fact some amount of separated flow (presumably small) may have to be allowed at the more demanding flight conditions. Thus a multipoint design method must be tolerant of the existence of separated flow and may include some controls upon its extent. The second application is in the design of wings with extended high speed buffet boundaries of their flight envelopes. Buffet occurs on a wing when regions of flow separation have grown to the extent that their time varying pressures induce possible destructive effects upon the wing structure or adversely effect either the aircraft controllability or the passenger comfort. A conservative approach to the expansion of the buffet flight boundary is to simply expand the flight envelope of nonseparated flow under the assumption that buffet will also thus be alleviated. However, having the ability to design a wing with separated flow and thus to control the location, extent
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.
1973-01-01
Wind-tunnel tests have been conducted to determine the low-speed two-dimensional aerodynamic characteristics of a 17-percent-thick airfoil designed for general aviation applications (GA(W)-1). The results were compared with predictions based on a theoretical method for calculating the viscous flow about the airfoil. The tests were conducted over a Mach number range from 0.10 to 0.28. Reynolds numbers based on airfoil chord varied from 2.0 million to 20.0 million. Maximum section lift coefficients greater than 2.0 were obtained and section lift-drag ratio at a lift coefficient of 1.0 (climb condition) varied from about 65 to 85 as the Reynolds number increased from about 2.0 million to 6.0 million.
NASA Technical Reports Server (NTRS)
Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr
1945-01-01
The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)
NASA Technical Reports Server (NTRS)
Jernell, L. S.
1976-01-01
Two supercritical airfoils were developed specifically for application to span distributed loading cargo aircraft. These airfoils have a thickness-to-chord ratio of 0.20 and design lift coefficients of 0.3 and 0.4, and were derived by modifying a recently developed supercritical airfoil having a thickness-to-chord ratio of 0.18 and a design lift coefficient of 0.5. The aerodynamic characteristics were calculated using a theoretical method which computes the flow field about an airfoil having supercritical surface velocities.
Numerical Grid Generation and Potential Airfoil Analysis and Design
1988-01-01
contents include a discussion of grid generation concepts and schemes in the literature , iter- ative methods for numerical grid generation and two...to multicomponent rN airfoils, arbitrary multiple bodies and cascade grid generation for the first time. We present representative results as a... literature , iter- ative methods for numerical grid generation and two differential grid gen- eration schemes: (1) an elliptic, and (2) a parabolic scheme. A
An airfoil pitch apparatus-modeling and control design
NASA Astrophysics Data System (ADS)
Andrews, Daniel R.
1989-03-01
The study of dynamic stall of rapidly pitching airfoils is being conducted at NASA Ames Research Center. Understanding this physical phenomenon will aid in improving the maneuverability of fighter aircraft as well as civilian aircraft. A wind tunnel device which can linearly pitch and control an airfoil with rapid dynamic response is needed for such tests. To develop a mechanism capable of high accelerations, an accurate model and control system is created. The model contains mathematical representations of the mechanical system, including mass, spring, and damping characteristics for each structural element, as well as coulomb friction and servovalve saturation. Electrical components, both digital and analog, linear and nonlinear, are simulated. The implementation of such a high-performance system requires detailed control design as well as state-of-the-art components. This paper describes the system model, states the system requirements, and presents results of its theoretical performance which maximizes the structural and hydraulic aspects of this system.
Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.
CFD Methods and Tools for Multi-Element Airfoil Analysis
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; George, Michael W. (Technical Monitor)
1995-01-01
This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.
NASA Technical Reports Server (NTRS)
Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.
1988-01-01
A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.
Computer-aided roll pass design in rolling of airfoil shapes
NASA Technical Reports Server (NTRS)
Akgerman, N.; Lahoti, G. D.; Altan, T.
1980-01-01
This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.
NASA Technical Reports Server (NTRS)
Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.
1945-01-01
Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from
Tangler, James L.; Somers, Dan M.
1996-01-01
Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.
Tangler, J.L.; Somers, D.M.
1996-10-08
Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.
Improved methods of vibration analysis of pretwisted, airfoil blades
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1984-01-01
Vibration analysis of pretwisted blades of asymmetric airfoil cross section is performed by using two mixed variational approaches. Numerical results obtained from these two methods are compared to those obtained from an improved finite difference method and also to those given by the ordinary finite difference method. The relative merits, convergence properties and accuracies of all four methods are studied and discussed. The effects of asymmetry and pretwist on natural frequencies and mode shapes are investigated. The improved finite difference method is shown to be far superior to the conventional finite difference method in several respects. Close lower bound solutions are provided by the improved finite difference method for untwisted blades with a relatively coarse mesh while the mixed methods have not indicated any specific bound.
Method for forming a liquid cooled airfoil for a gas turbine
Grondahl, Clayton M.; Willmott, Leo C.; Muth, Myron C.
1981-01-01
A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.
Design procedure for low-drag subsonic airfoils
NASA Technical Reports Server (NTRS)
Peterson, J. B.; Chen, A. B.
1975-01-01
Airfoil has least amount of drag under given restrictions of boundary layer transition position, lift coefficient, thickness ratio, and Reynolds number based on airfoil chord. It is suitable for use as wing and propeller aircraft sections operating at subsonic speeds and for hydrofoil sections and blades for fans, compressors, turbines, and windmills.
Isolated and cascade airfoils with prescribed velocity distribution
NASA Technical Reports Server (NTRS)
Goldstein, Arthur W; Jerison, Meyer
1947-01-01
An exact solution of the problem of designing an airfoil with a prescribed velocity distribution on the suction surface in a given uniform flow of an incompressible perfect fluid is obtained by replacing the boundary of the airfoil by vortices. By this device, a method of solution is developed that is applicable both to isolated airfoils and to airfoils in cascade. The conformal transformation of the designed airfoil into a circle can then be obtained and the velocity distribution at any angle of attack computed. Numerical illustrations of the method are given for the airfoil in cascade.
Natural laminar flow airfoil design considerations for winglets on low-speed airplanes
NASA Technical Reports Server (NTRS)
Vandam, C. P.
1984-01-01
Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.
Blade Design Trade-Offs Using Low-Lift Airfoils for Stall-Regulated HAWTs
Giguere, P.; Selig, M. S.; Tangler, J. L.
1999-04-08
A systematic blade design study was conducted to explore the trade-offs in using low-lift airfoils for a 750-kilowatt stall-regulated wind turbine. Tip-region airfoils having a maximum lift coefficient ranging from 0.7-1.2 were considered in this study, with the main objective of identifying the practical lower limit for the maximum lift coefficient. Blades were optimized for both maximum annual energy production and minimum cost of energy using a method that takes into account aerodynamic and structural considerations. The results indicate that reducing the maximum lift coefficient below the upper limit considered in this study increases the cost of energy independently of the wind regime. As a consequence, higher maximum lift coefficient airfoils for the tip-region of the blade become more desirable as machine size increases, as long as they provide gentle stall characteristics. The conclusions are applicable to large wind turbines that use passive or active stall to regulate peak power.
An airfoil designed for a high-altitude, long endurance remotely piloted vehicle
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Somers, Dan M.
1987-01-01
The preliminary design of high-altitude, long-endurance RPVs is complicated by the paucity of data concerning airfoils with high lift coefficients at low Re numbers. Attention is presently given to a generic airfoil of this type for the design Re number range of 700,000 to 2 million. Low drag is predicted for lift coefficients from 0.4 (for high speed dashes) to 1.5 (for maximum mission endurance). The airfoil is such that its maximum lift coefficient, at 1.8, is unaffected by the surface contamination that would be encountered during takeoffs and landings in rain or over insect-infested runways.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
NASA Technical Reports Server (NTRS)
Goradia, S. H.; Lilley, D. E.
1975-01-01
Theoretical and experimental studies are described which were conducted for the purpose of developing a new generalized method for the prediction of profile drag of single component airfoil sections with sharp trailing edges. This method aims at solution for the flow in the wake from the airfoil trailing edge to the large distance in the downstream direction; the profile drag of the given airfoil section can then easily be obtained from the momentum balance once the shape of velocity profile at a large distance from the airfoil trailing edge has been computed. Computer program subroutines have been developed for the computation of the profile drag and flow in the airfoil wake on CDC6600 computer. The required inputs to the computer program consist of free stream conditions and the characteristics of the boundary layers at the airfoil trailing edge or at the point of incipient separation in the neighborhood of airfoil trailing edge. The method described is quite generalized and hence can be extended to the solution of the profile drag for multi-component airfoil sections.
NASA Technical Reports Server (NTRS)
Somers, Dan M. (Inventor)
2005-01-01
An airfoil having a fore airfoil element, an aft airfoil element, and a slot region in between them. These elements induce laminar flow over substantially all of the fore airfoil element and also provide for laminar flow in at least a portion of the slot region. The method of the invention is one for inducing natural laminar flow over an airfoil. In the method, a fore airfoil element, having a leading and trailing edge, and an aft airfoil element define a slot region. Natural laminar flow is induced over substantially all of the fore airfoil element, by inducing the pressures on both surfaces of the fore airfoil element to decrease to a location proximate the trailing edge of the fore airfoil element using pressures created by the aft airfoil element.
Computational design and analysis of flatback airfoil wind tunnel experiment.
Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.
2008-03-01
A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.
System and method for manufacture of airfoil components
Moors, Thomas Michael
2016-11-29
Embodiments of the present disclosure relate generally to systems and methods for manufacturing an airfoil component. The system can include: a geometrical mold; an elongated flexible sleeve having a closed-off interior and positioned within the geometrical mold, wherein the elongated flexible sleeve is further positioned to have a desired geometry; an infusing channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to communicate a resinous material thereto; a vacuum channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to vacuum seal the closed-off interior of the elongated flexible sleeve; and a glass fiber layer positioned within the closed-off interior of the elongated flexible sleeve.
Numerical design of advanced multi-element airfoils
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Cummings, Russell M.
1994-01-01
The current study extends the application of computational fluid dynamics to three-dimensional high-lift systems. Structured, overset grids are used in conjunction with an incompressible Navier-Stokes flow solver to investigate flow over a two-element high-lift configuration. The computations were run in a fully turbulent mode using the one-equation Baldwin-Barth turbulence model. The geometry consisted of an unswept wing which spanned a wind tunnel test section. Flows over full and half-span Fowler flap configurations were computed. Grid resolution issues were investigated in two dimensional studies of the flapped airfoil. Results of the full-span flap wing agreed well with experimental data and verified the method. Flow over the wing with the half-span was computed to investigate the details of the flow at the free edge of the flap. The results illustrated changes in flow streamlines, separation locations, and surface pressures due to the vortex shed from the flap edge.
Application of numerical optimization to the design of advanced supercritical airfoils
NASA Technical Reports Server (NTRS)
Johnson, R. R.; Hicks, R. M.
1979-01-01
An application of numerical optimization to the design of advanced airfoils for transonic aircraft showed that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while minimizing the drag coefficient at the design Mach number. This multiple design-point numerical optimization has been implemented with the use of airfoil shape functions which permit a wide range of attainable profiles during the optimization process. Analytical data for the starting airfoil shape, a single design-point optimized shape, and a double design-point optimized shape are presented. Experimental data obtained in the NASA Ames two-by two-foot wind tunnel are also presented and discussed.
Design of a family of new advanced airfoils for low wind class turbines
NASA Astrophysics Data System (ADS)
Grasso, Francesco
2014-12-01
In order to maximize the ratio of energy capture and reduce the cost of energy, the selection of the airfoils to be used along the blade plays a crucial role. Despite the general usage of existing airfoils, more and more, families of airfoils specially tailored for specific applications are developed. The present research is focused on the design of a new family of airfoils to be used for the blade of one megawatt wind turbine working in low wind conditions. A hybrid optimization scheme has been implemented, combining together genetic and gradient based algorithms. Large part of the work is dedicated to present and discuss the requirements that needed to be satisfied in order to have a consistent family of geometries with high efficiency, high lift and good structural characteristics. For each airfoil, these characteristics are presented and compared to the ones of existing airfoils. Finally, the aerodynamic design of a new blade for low wind class turbine is illustrated and compared to a reference shape developed by using existing geometries. Due to higher lift performance, the results show a sensitive saving in chords, wetted area and so in loads in idling position.
NASA Technical Reports Server (NTRS)
Kolesar, C. E.
1987-01-01
Research activity on an airfoil designed for a large airplane capable of very long endurance times at a low Mach number of 0.22 is examined. Airplane mission objectives and design optimization resulted in requirements for a very high design lift coefficient and a large amount of laminar flow at high Reynolds number to increase the lift/drag ratio and reduce the loiter lift coefficient. Natural laminar flow was selected instead of distributed mechanical suction for the measurement technique. A design lift coefficient of 1.5 was identified as the highest which could be achieved with a large extent of laminar flow. A single element airfoil was designed using an inverse boundary layer solution and inverse airfoil design computer codes to create an airfoil section that would achieve performance goals. The design process and results, including airfoil shape, pressure distributions, and aerodynamic characteristics are presented. A two dimensional wind tunnel model was constructed and tested in a NASA Low Turbulence Pressure Tunnel which enabled testing at full scale design Reynolds number. A comparison is made between theoretical and measured results to establish accuracy and quality of the airfoil design technique.
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.
NASA Technical Reports Server (NTRS)
Garabedian, P. R.
1979-01-01
Computer codes for the design and analysis of transonic airfoils are considered. The design code relies on the method of complex characteristics in the hodograph plane to construct shockless airfoil. The analysis code uses artificial viscosity to calculate flows with weak shock waves at off-design conditions. Comparisons with experiments show that an excellent simulation of two dimensional wind tunnel tests is obtained. The codes have been widely adopted by the aircraft industry as a tool for the development of supercritical wing technology.
Control theory based airfoil design for potential flow and a finite volume discretization
NASA Technical Reports Server (NTRS)
Reuther, J.; Jameson, A.
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. The goal of our present work is to develop a method which does not depend on conformal mapping, so that it can be extended to treat three-dimensional problems. Therefore, we have developed a method which can address arbitrary geometric shapes through the use of a finite volume method to discretize the potential flow equation. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented, where both target speed distributions and minimum drag are used as objective functions.
NASA Technical Reports Server (NTRS)
Noonan, Kevin W.
1991-01-01
A wind tunnel investigation was conducted to determine the 2-D aerodynamic characteristics of a new rotorcraft airfoil designed for application to the tip region (stations outboard of 85 pct. radius) of a helicopter main rotor blade. The new airfoil, the RC(6)-08, and a baseline airfoil, the RC(3)-08, were investigated in the Langley 6- by 28-inch transonic tunnel at Mach numbers from 0.37 to 0.90. The Reynolds number varied from 5.2 x 10(exp 6) at the lowest Mach number to 9.6 x 10(exp 6) at the highest Mach number. Some comparisons were made of the experimental data for the new airfoil and the predictions of a transonic, viscous analysis code. The results of the investigation indicate that the RC(6)-08 airfoil met the design goals of attaining higher maximum lift coefficients than the baseline airfoil while maintaining drag divergence characteristics at low lift and pitching moment characteristics nearly the same as those of the baseline airfoil. The maximum lift coefficients of the RC(6)-08 varied from 1.07 at M=0.37 to 0.94 at M=0.52 while those of the RC(3)-08 varied from 0.91 to 0.85 over the same Mach number range. At lift coefficients of -0.1 and 0, the drag divergence Mach number of both the RC(6)-08 and the RC(3)-08 was 0.86. The pitching moment coefficients of the RC(6)-08 were less negative than those of the RC(3)-08 for Mach numbers and lift coefficients typical of those that would occur on a main rotor blade tip at high forward speeds on the advancing side of the rotor disk.
Performance of NACA Eight-Stage Axial-Flow Compressor Designed on the Basis of Airfoil Theory
1944-08-01
TEE BASIS OF AIRFOIL THEORY By John T. Slnnette, Jr., Oscar W. Schey, and J. Austin King Aircraft Engine Research Laboratory Cleveland, Ohio FILE...efficiency can he designed by the proper application of airfoil theory. Aircraft Engine Research laboratory, Hational Advisory Committee for Aeronautlos...Basis of Airfoil Theory AUTHORS): Sinnette, John T.; Schey, Oscar W.; and others ORIGINATING AGENCY: Aircraft Engine Research Laboratory, Cleveland
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.
Design and Experimental Results for the S415 Airfoil
2010-08-01
polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 8.) This... suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near the leading edge. Thus, the...pressure distribution should look like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a moderately adverse pressure
Design and Experimental Results for the S411 Airfoil
2010-08-01
unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 8...produces a suction peak at higher lift coefficients, which ensures that tran- sition on the upper surface will occur very near the leading edge. Thus...like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar
Design and Experimental Results for the S406 Airfoil
2010-08-01
point B is not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly...in a leading edge that produces a suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near...3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar flow
Design and Experimental Results for the S825 Airfoil; Period of Performance: 1998-1999
Somers, D. M.
2005-01-01
A 17%-thick, natural-laminar-flow airfoil, the S825, for the 75% blade radial station of 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically and verified experimentally in the NASA Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift, relatively insensitive to roughness and low-profile drag have been achieved. The airfoil exhibits a rapid, trailing-edge stall, which does not meet the design goal of a docile stall. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results generally show good agreement.
NASA Technical Reports Server (NTRS)
Bergrun, N. R.
1951-01-01
An empirical method for the determination of the area, rate, and distribution of water-drop impingement on airfoils of arbitrary section is presented. The procedure represents an initial step toward the development of a method which is generally applicable in the design of thermal ice-prevention equipment for airplane wing and tail surfaces. Results given by the proposed empirical method are expected to be sufficiently accurate for the purpose of heated-wing design, and can be obtained from a few numerical computations once the velocity distribution over the airfoil has been determined. The empirical method presented for incompressible flow is based on results of extensive water-drop. trajectory computations for five airfoil cases which consisted of 15-percent-thick airfoils encompassing a moderate lift-coefficient range. The differential equations pertaining to the paths of the drops were solved by a differential analyzer. The method developed for incompressible flow is extended to the calculation of area and rate of impingement on straight wings in subsonic compressible flow to indicate the probable effects of compressibility for airfoils at low subsonic Mach numbers.
NASA Technical Reports Server (NTRS)
Hylton, Larry D.
1986-01-01
Emphasis is placed on developing more accurate analytical models for predicting turbine airfoil external heat transfer rates. Performance goals of new engines require highly refined, accurate design tools to meet durability requirements. In order to obtain improvements in analytical capabilities, programs are required which focus on enhancing analytical techniques through verification of new models by comparison with relevant experimental data. The objectives of the current program are to develop an analytical approach, based on boundary layer theory, for predicting the effects of airfoil film cooling on downstream heat transfer rates and to verify the resulting analytical method by comparison of predictions with hot cascade data obtained under this program.
Design of a Slotted, Natural-Laminar-Flow Airfoil for Business-Jet Applications
NASA Technical Reports Server (NTRS)
Somers, Dan M.
2012-01-01
A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-jet applications has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The drag-divergence Mach number is predicted to be greater than 0.70.
A direct-inverse method for transonic and separated flows about airfoils
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1990-01-01
A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.
A direct-inverse method for transonic and separated flows about airfoils
NASA Technical Reports Server (NTRS)
Carlson, K. D.
1985-01-01
A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.
Application of numerical optimization to the design of supercritical airfoils without drag-creep
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Vanderplaats, G. N.
1977-01-01
Recent applications of numerical optimization to the design of advanced airfoils for transonic aircraft have shown that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while the drag at the design Mach number is the objective function. Such a procedure doubles the computation time over that for single design-point problems, but the final result is worth the increased cost of computation. The ability to treat such multiple design-point problems by numerical optimization has been enhanced by the development of improved airfoil shape functions. Such functions permit a considerable increase in the range of profiles attainable during the optimization process.
1990-11-01
unique This value is known, together with the relationship H3 2k(Hlk) for unseparated velocity profile of the corresponding as well as for separated flow...Compressor" "Similar Solutions for a Family of Proceedings of the 6th Separated Turbulent Boundary International Symposium of Air Layers" Breathing Engines...with the airfoil is that the upper and lower surface trailing edge relationship between prescribed pressures and the points be separated by prescribed
A comparison of design variables for control theory based airfoil optimization
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work in the area it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler equations with either a conformal mapping or a general coordinate system. We have also explored three-dimensional extensions of these formulations recently. The goal of our present work is to demonstrate the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-spline control points as design variables. The research also demonstrates that the parameterization of the design space is an open question in aerodynamic design.
NASA Technical Reports Server (NTRS)
Noonan, K. W.
1981-01-01
An investigation was conducted in the Langley 6- by 28-Inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics of a 10-percent-thick helicopter rotor airfoil at Mach numbers from 0.33 to 0.87 and respective Reynolds numbers from 4.9 x 10 to the 6th to 9.8 x 10 to the 6th. This airfoil, designated the RC-10(N)-1, was also investigated at Reynolds numbers from 3.0 x 10 to the 6th to 7.3 x 10 to the 6th at respective Mach numbers of 0.33 to 0.83 for comparison wit the SC 1095 (with tab) airfoil. The RC-10(N)-1 airfoil was designed by the use of a viscous transonic analysis code. The results of the investigation indicate that the RC-10(N)-1 airfoil met all the design goals. At a Reynolds number of about 9.4 x 10 to the 6th the drag divergence Mach number at zero normal-force coefficient was 0.815 with a corresponding pitching-moment coefficient of zero. The drag divergence Mach number at a normal-force coefficient of 0.9 and a Reynolds number of about 8.0 x 10 to the 6th was 0.61. The drag divergence Mach number of this new airfoil was higher than that of the SC 1095 airfoil at normal-force coefficients above 0.3. Measurements in the same wind tunnel at comparable Reynolds numbers indicated that the maximum normal-force coefficient of the RC-10(N)-1 airfoil was higher than that of the NACA 0012 airfoil for Mach numbers above about 0.35 and was about the same as that of the SC 1095 airfoil for Mach numbers up to 0.5.
Experimental Optimization Methods for Multi-Element Airfoils
NASA Technical Reports Server (NTRS)
Landman, Drew; Britcher, Colin P.
1996-01-01
A modern three element airfoil model with a remotely activated flap was used to investigate optimum flap testing position using an automated optimization algorithm in wind tunnel tests. Detailed results for lift coefficient versus flap vertical and horizontal position are presented for two angles of attack: 8 and 14 degrees. An on-line first order optimizer is demonstrated which automatically seeks the optimum lift as a function of flap position. Future work with off-line optimization techniques is introduced and aerodynamic hysteresis effects due to flap movement with flow on are discussed.
Progress Towards Computational Method for Circulation Control Airfoils
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rumsey, C. L.; Anders, S. G.
2005-01-01
The compressible Reynolds-averaged Navier-Stokes equations are solved for circulation control airfoil flows. Numerical solutions are computed with both structured and unstructured grid solvers. Several turbulence models are considered, including the Spalart-Allmaras model with and without curvature corrections, the shear stress transport model of Menter, and the k-enstrophy model. Circulation control flows with jet momentum coefficients of 0.03, 0.10, and 0.226 are considered. Comparisons are made between computed and experimental pressure distributions, velocity profiles, Reynolds stress profiles, and streamline patterns. Including curvature effects yields the closest agreement with the measured data.
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.; Watson-Viken, Sally A.; Pfenninger, Werner; Morgan, Harry L., Jr.; Campbell, Richard L.
1987-01-01
The design and testing of Natural Laminar Flow (NLF) airfoils is examined. The NLF airfoil was designed for low speed, having a low profile drag at high chord Reynolds numbers. The success of the low speed NLF airfoil sparked interest in a high speed NLF airfoil applied to a single engine business jet with an unswept wing. Work was also conducted on the two dimensional flap design. The airfoil was decambered by removing the aft loading, however, high design Mach numbers are possible by increasing the aft loading and reducing the camber overall on the airfoil. This approach would also allow for flatter acceleration regions which are more stabilizing for cross flow disturbances. Sweep could then be used to increase the design Mach number to a higher value also. There would be some degradation of high lift by decambering the airfoil overall, and this aspect would have to be considered in a final design.
NASA Technical Reports Server (NTRS)
Noonan, Kevin W.
1990-01-01
A wind tunnel investigation was conducted to determine the 2-D aerodynamic characteristics of two new rotorcraft airfoils designed especially for application to the inboard region of a helicopter main rotor blade. The two new airfoils, the RC(4)-10 and RC(5)-10, and a baseline airfoil, the VR-7, were all studied in the Langley Transonic Tunnel at Mach nos. from about 0.34 to 0.84 and at Reynolds nos. from about 4.7 to 9.3 x 10 (exp 6). The VR-7 airfoil had a trailing edge tab which is deflected upwards 4.6 degs. In addition, the RC(4)-10 airfoil was studied in the Langley Low Turbulence Pressure Tunnel at Mach nos. from 0.10 to 0.44 and at Reynolds nos. from 1.4 to 5.4 x 10 (exp 6) respectively. Some comparisons were made of the experimental data for the new airfoils and the predictions of two different theories. The results of this study indicates that both of the new airfoils offer advantages over the baseline airfoil. These advantages are discussed.
Interference method for obtaining the potential flow past an arbitrary cascade of airfoils
NASA Technical Reports Server (NTRS)
Katzoff, S; Finn, Robert S; Laurence, James C
1947-01-01
A procedure is presented for obtaining the pressure distribution on an arbitrary airfoil section in cascade in a two-dimensional, incompressible, and nonviscous flow. The method considers directly the influence on a given airfoil of the rest of the cascade and evaluates this interference by an iterative process, which appeared to converge rapidly in the cases tried (about unit solidity, stagger angles of 0 degree and 45 degrees). Two variations of the basic interference calculations are described. One, which is accurate enough for most purposes, involves the substitution of sources, sinks, and vortices for the interfering airfoils; the other, which may be desirable for the final approximation, involves a contour integration. The computations are simplified by the use of a chart presented by Betz in a related paper. Illustrated examples are included.
A finite element method for the computation of transonic flow past airfoils
NASA Technical Reports Server (NTRS)
Eberle, A.
1980-01-01
A finite element method for the computation of the transonic flow with shocks past airfoils is presented using the artificial viscosity concept for the local supersonic regime. Generally, the classic element types do not meet the accuracy requirements of advanced numerical aerodynamics requiring special attention to the choice of an appropriate element. A series of computed pressure distributions exhibits the usefulness of the method.
NASA Technical Reports Server (NTRS)
Pearson, H A
1936-01-01
An empirical method is given for estimating the aerodynamic effect of ordinary and split flaps on airfoils similar to the Clark Y. The method is based on a series of charts that have been derived from an analysis of existing wind-tunnel data. Factors are included by which such variables as flap location, flap span, wing aspect ratio, and wing taper may be taken into account. A series of comparisons indicate that the method would be suitable for use in making preliminary performance calculations and in structural design.
Vortex-Airfoil Interaction and Application of Methods for Digital Fringe Analysis.
1986-03-15
Table of Contents 1. Introduction 1 2. A model for vortex paths around a profile and the sound generated by vortex-profile interaction 2"-- 3...I’ S.TTE(d~,t. TYPE OF PIrPORT a PERID COWERED ’. * Vortex-airfoil interaction and application of *methods for digital fringe analysis. 1 6
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1985-01-01
A method of constructing airfoils by inscribing pressure channels on the face of opposing plates, bonding them together to form one plate with integral channels, and contour machining this plate to form an airfoil model is described. The research and development program to develop the bonding technology is described as well as the construction and testing of an airfoil model. Sample aerodynamic data sets are presented and discussed. Also, work currently under way to produce thin airfoils with camber is presented. Samples of the aft section of a 6 percent airfoil with complete pressure instrumentation including the trailing edge are pictured and described. This technique is particularly useful in fabricating models for transonic cryogenic testing, but it should find application in a wide ange of model construction projects, as well as the fabrication of fuel injectors, space hardware, and other applications requiring advanced bonding technology and intricate fluid passages.
NASA Technical Reports Server (NTRS)
Riley, Donald R.
2015-01-01
This paper contains a collection of some results of four individual studies presenting calculated numerical values for airfoil aerodynamic stability derivatives in unseparated inviscid incompressible flow due separately to angle-of-attack, pitch rate, flap deflection, and airfoil camber using a discrete vortex method. Both steady conditions and oscillatory motion were considered. Variables include the number of vortices representing the airfoil, the pitch axis / moment center chordwise location, flap chord to airfoil chord ratio, and circular or parabolic arc camber. Comparisons with some experimental and other theoretical information are included. The calculated aerodynamic numerical results obtained using a limited number of vortices provided in each study compared favorably with thin airfoil theory predictions. Of particular interest are those aerodynamic results calculated herein (such as induced drag) that are not readily available elsewhere.
Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri
1997-01-01
Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.
Spline-Based Smoothing of Airfoil Curvatures
NASA Technical Reports Server (NTRS)
Li, W.; Krist, S.
2008-01-01
Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.; Somers, D. M.
1975-01-01
Wind-tunnel tests were conducted to determine the low-speed section characteristics of a 13 percent-thick airfoil designed for general aviation applications. The results were compared with NACA 12 percent-thick sections and with the 17 percent-thick NASA airfoil. The tests were conducted ovar a Mach number range from 0.10 to 0.35. Chord Reynolds numbers varied from about 2,000,000 to 9,000,000.
NASA Technical Reports Server (NTRS)
Weatherill, W. H.; Ehlers, F. E.
1979-01-01
The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method.
NASA Astrophysics Data System (ADS)
Poozesh, Amin; Mirzaei, Masoud
2017-01-01
In this paper the developed interpolation lattice Boltzmann method is used for simulation of unsteady fluid flow. It combines the desirable features of the lattice Boltzmann and the Joukowski transformation methods. This approach has capability to simulate flow around curved boundary geometries such as airfoils in a body fitted grid system. Simulation of unsteady flow around a cambered airfoil in a non-uniform grid for the first time is considered to show the capability of this method for modeling of fluid flow around complex geometries and complicated long-term periodic flow phenomena. The developed solver is also coupled with a fast adaptive grid generator. In addition, the new approach retains all the advantages of the standard lattice Boltzmann method. The Strouhal number, the pressure, the drag and the lift coefficients obtained from the simulations agree well with classical computational fluid dynamics simulations. Numerical studies for various test cases illustrate the strength of this new approach.
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beaseley, W. D.
1980-01-01
Wind tunnel tests were conducted to determine the low speed two dimensional aerodynamic characteristics of a 17 percent thick medium speed airfoil (MS(1)-0317) designed for general aviation applications. The results were compared with data for the 17 percent thick low speed airfoil (LS(1)-0417) and the 13 percent thick medium speed airfoil (MS(1)-0313). Theoretical predictions of the drag rise characteristics of this airfoil are also provided. The tests were conducted in the Langley low turbulence pressure tunnel over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2 million to 12 million, and an angle of attack range from about -8 to 20 deg.
NASA supercritical airfoils: A matrix of family-related airfoils
NASA Technical Reports Server (NTRS)
Harris, Charles D.
1990-01-01
The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.
Closed loop steam cooled airfoil
Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.
2006-04-18
An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.
TMF design considerations in turbine airfoils of advanced turbine engines
NASA Astrophysics Data System (ADS)
Date, C. G.; Zamrik, S. Y.; Adams, J. H.; Frani, N. E.
A review of thermal-mechanicalfatigue (TMF) in advanced turbine engines is presented. The review includes examples of typical thermal-mechnical loadings encountered in the design of hot section blades and vanes. Specific issues related to TMF behavior are presented and the associated impact on component life analysis and design is discussed.
An improved method for calculating flow past flapping and hovering airfoils
NASA Astrophysics Data System (ADS)
Sengupta, T. K.; Vikas, V.; Johri, A.
2005-12-01
A method is reported here for calculating unsteady aerodynamics of hovering and flapping airfoil for two-dimensional flow via the following improved methodologies: (a) a correct formulation of the problem using stream function (ψ) and vorticity (ω) as dependent variables; (b) calculating loads and moment by a new method to solve the governing pressure Poisson equation (PPE) in a truncated part of the computational domain on a nonstaggered grid; (c) accurate solution using high accuracy compact difference scheme for the vorticity transport equation (VTE) and (d) accelerating the computations by using a high-order filter after each time step of integration. These have been used to solve Navier-Stokes equation for flow past flapping and hovering NACA 0014 and 0015 airfoils at typical Reynolds numbers relevant to the study of unsteady aerodynamics of micro air vehicle (MAV) and insect/bird flight.
Angle-of-attack validation of a new zonal CFD method for airfoil simulations
NASA Technical Reports Server (NTRS)
Yoo, Sungyul; Summa, J. Michael; Strash, Daniel J.
1990-01-01
The angle-of-attack validation of a new concept suggested by Summa (1990) for coupling potential and viscous flow methods has been investigated for two-dimensional airfoil simulations. The fully coupled potential/Navier-Stokes code, ZAP2D (Zonal Aerodynamics Program 2D), has been used to compute the flow field around an NACA 0012 airfoil for a range of angles of attack up to stall at a Mach number of 0.3 and a Reynolds number of 3 million. ZAP2D calculation for various domain sizes from 25 to 0.12 chord lengths are compared with the ARC2D large domain solution as well as with experimental data.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.
1982-01-01
A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. A study is presented of the shock motion associated with an oscillating airfoil and its representation by the harmonic procedure. The effects of the shock motion and the resulting pressure pulse are shown to be included in the harmonic pressure distributions and the corresponding generalized forces. Analytical and experimental pressure distributions for the NACA 64A010 airfoil are compared for Mach numbers of 0.75, 0.80 and 0.842. A typical section, two-degree-of-freedom flutter analysis of a NACA 64A010 airfoil is performed. The results show a sharp transonic bucket in one case and abrupt changes in instability modes.
Computational methods for aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
Design and construction of 2 transonic airfoil models for tests in the NASA Langley C.3-M TCT
NASA Technical Reports Server (NTRS)
Schaechterle, G.; Ludewig, K. H.; Stanewsky, E.; Ray, E. J.
1982-01-01
As part of a NASA/DFVLR cooperation program two transonic airfoils were tested in the NASA Langley 0.3-m TCT. Model design and construction was carried out by DFVLR. The models designed and constructed performed extremely well under cryogenic conditions. Essentially no permanent changes in surface quality and geometric dimensions occurred during the tests. The aerodynamic results from the TCT tests which demonstrate the large sensitivity of the airfoil CAST 10-Z/DOAZ to Reynolds number changes compared well with results from other facilities at ambient temperatures.
NASA Technical Reports Server (NTRS)
Hicks, R. M.
1984-01-01
A recontoured upper surface was designed to increase the maximum lift coefficient of a modified NACA 65 (0.82)(9.9) airfoil section which was tested at Mach numbers of 0.3 and 0.4 and Reynolds numbers of 2.3x10(6) and 4.3x10(6). The original 6-series section was tested for comparison with the recontoured section. The recontoured profile was found to have a higher maximum lift coefficient at all test conditions than the original airfoil. The recontoured airfoil showed less drag and nearly the same pitching moment characteristics as the original 6-series airfoil at all test conditions. The improvements found for the recontoured airfoil of the present study are similar to those found during previous investigations of recontoured 6-series airfoils with less camber.
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.
1979-01-01
Wind tunnel tests were conducted to determine the low speed, two dimensional aerodynamic characteristics of a 13percent thick medium speed airfoil designed for general aviation applications. The results were compared with data for the 13 percent thick low speed airfoil. The tests were conducted over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2.0 x 10 to the 6th power to 12.0 x 10 to the 6th power, and an angle of attack frange from about -8 deg to 10 deg. The objective of retaining good high-lift low speed characteristics for an airfoil designed to have good medium speed cruise performance was achieved.
Comparison of Several Methods of Cyclic De-Icing of a Gas-Heated Airfoil
NASA Technical Reports Server (NTRS)
Gray, Vernon H.; Bowden, Dean T.
1953-01-01
Several methods of cyclic de-icing of a gas-heated airfoil were investigated to determine ice-removal characteristics and heating requirements. The cyclic de-icing system with a spanwise ice-free parting strip in the stagnation region and a constant-temperature gas-supply duct gave the quickest and most reliable ice removal. Heating requirements for the several methods of cyclic de-icing are compared, and the savings over continuous ice prevention are shown. Data are presented to show the relation of surface temperature, rate of surface heating, and heating time to the removal of ice.
Options for Robust Airfoil Optimization under Uncertainty
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Li, Wu
2002-01-01
A robust optimization method is developed to overcome point-optimization at the sampled design points. This method combines the best features from several preliminary methods proposed by the authors and their colleagues. The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of spline control points as design variables yet the resulting airfoil shape does not need to be smoothed, and (3) it allows the user to make a tradeoff between the level of optimization and the amount of computing time consumed. For illustration purposes, the robust optimization method is used to solve a lift-constrained drag minimization problem for a two-dimensional (2-D) airfoil in Euler flow with 20 geometric design variables.
Simulation of a Controlled Airfoil with Jets
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Holt, Maurice; Packard, Andrew
1997-01-01
Numerical simulations of a two-dimensional airfoil, controlled by an applied moment in pitch and an airfoil controlled by jets, were investigated. These simulations couple the Reynolds-averaged Navier-Stokes equations and Euler's equations of rigid body motion, with an active control system. Controllers for both systems were designed to track altitude commands and were evaluated by simulating a closed-loop altitude step response using the coupled system. The airfoil controlled by a pitching moment used an optimal state feedback controller. A closed-loop simulation, of the airfoil with an applied moment, showed that the trajectories compared very well with quasi-steady aerodynamic theory, providing a measure of validation. The airfoil with jets used a controller designed by robust control methods. A linear plant model for this system was identified using open-loop data generated by the nonlinear coupled system. A closed-loop simulation of the airfoil with jets, showed good tracking of an altitude command. This simulation also showed oscillations in the control input as a result of dynamics not accounted for in the control design. This research work demonstrates how computational fluid dynamics, coupled with rigid body dynamics, and a control law can be used to prototype control systems in problematic nonlinear flight regimes.
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Yeh, F. C.; Austin, P. J., Jr.
1987-01-01
Two methods were used to calculate the heat flux to full-coverage film cooled airfoils and, subsequently, the airfoil wall temperatures. The calculated wall temperatures were compared to measured temperatures obtained in the Hot Section Facility operating at real engine conditions. Gas temperatures and pressures up to 1900 K and 18 atm with a Reynolds number up to 1.9 million were investigated. Heat flux was calculated by the convective heat transfer coefficient adiabatic wall method and by the superposition method which incorporates the film injection effects in the heat transfer coefficient. The results of the comparison indicate the first method can predict the experimental data reasonably well. However, superposition overpredicted the heat flux to the airfoil without a significant modification of the turbulent Prandtl number. The results suggest that additional research is required to model the physics of full-coverage film cooling where there is significant temperature/density differences between the gas and the coolant.
A Hybrid Boundary Element-Finite Volume Method for Unsteady Transonic Airfoil Flows
NASA Technical Reports Server (NTRS)
Hu, Hong; Kandil, Osama A.
1996-01-01
A hybrid boundary element finite volume method for unsteady transonic flow computation has been developed. In this method, the unsteady Euler equations in a moving frame of reference are solved in a small embedded domain (inner domain) around the airfoil using an implicit finite volume scheme. The unsteady full-potential equation, written in the same frame of reference and in the form of the Poisson equation. is solved in the outer domain using the integral equation boundary element method to provide the boundary conditions for the inner Euler domain. The solution procedure is a time-accurate stepping procedure, where the outer boundary conditions for the inner domain are updated using the integral equation -- boundary element solution over the outer domain. The method is applied to unsteady transonic flows around the NACA0012 airfoil undergoing pitching oscillation and ramp motion. The results are compared with those of an implicit Euler equation solver, which is used throughout a large computational domain, and experimental data.
Quasi-simultaneous interaction method for solving 2D boundary layer flows over plates and airfoils
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2012-11-01
This paper studies unsteady 2D boundary layer flows over dented plates and a NACA 0012 airfoil. An inviscid flow is assumed to exist outside the boundary layer and is solved iteratively with the boundary layer flow together with the interaction method until a matching solution is achieved. Hereto a quasi-simultaneous interaction method is applied, in which the integral boundary layer equations are solved together with an interaction-law equation. The interaction-law equation is an approximation of the external flow and based on thin-airfoil theory. It is an algebraic relation between the velocity and displacement thickness. The interaction-law equation ensures that the eigenvalues of the system of equations do not have a sign change and that no singularities occur. Three numerical schemes are used to solve the boundary layer flow with the interaction method. These are: a standard scheme, a splitting method and a characteristics solver. All schemes use a finite difference discretization. The three schemes yield comparable results for the simulations carried out. The standard scheme is deviating most from the splitting and characteristics solvers. The results show that the eigenvalues remain positive, even in separation. As expected, the addition of the interaction-law equation prevents a sign change of the eigenvalues. The quasi-simultaneous interaction scheme is applicable to the three numerical schemes tested.
Frey, G.A.; Twardochleb, C.Z.
1998-01-13
Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.
Frey, Gary A.; Twardochleb, Christopher Z.
1998-01-01
Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.
Gust Acoustic Response of a Single Airfoil Using the Space-Time CE/SE Method
NASA Technical Reports Server (NTRS)
Scott, James (Technical Monitor); Wang, X. Y.; Chang, S. C.; Himansu, A.; Jorgenson, P. C. E.
2003-01-01
A 2D parallel Euler code based on the space-time conservation element and solution element (CE/SE) method is validated by solving the benchmark problem I in Category 3 of the Third CAA Workshop. This problem concerns the acoustic field generated by the interaction of a convected harmonic vortical gust with a single airfoil. Three gust frequencies, two gust configurations, and three airfoil geometries are considered. Numerical results at both near and far fields are presented and compared with the analytical solutions, a frequency-domain solver GUST3D solutions, and a time-domain high-order Discontinuous Spectral Element Method (DSEM) solutions. It is shown that the CE/SE solutions agree well with the GUST3D solution for the lowest frequency, while there are discrepancies between CE/SE and GUST3D solutions for higher frequencies. However, the CE/SE solution is in good agreement with the DSEM solution for these higher frequencies. It demonstrates that the CE/SE method can produce accurate results of CAA problems involving complex geometries by using unstructured meshes.
Multiple element airfoils optimized for maximum lift coefficient.
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Chen, A. W.
1972-01-01
Optimum airfoils in the sense of maximum lift coefficient are obtained for incompressible fluid flow at large Reynolds number. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the airfoil upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution is a function of Reynolds number and the trailing edge velocity. Geometries of those airfoils which will generate these optimum pressure distributions are obtained using a direct-iterative method which is developed in this study. This method can be used to design airfoils consisting of any number of elements. Numerical examples of one- and two-element airfoils are given. The maximum lift coefficients obtained range from 2 to 2.5.
The Effects of the Critical Ice Accretion on Airfoil and Wing Performance
NASA Technical Reports Server (NTRS)
Selig, Michael S.; Bragg, Michael B.; Saeed, Farooq
1998-01-01
In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential.
OUT Success Stories: Advanced Airfoils for Wind Turbines
DOE R&D Accomplishments Database
Jones, J.; Green, B.
2000-08-01
New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.
An efficient algorithm for numerical airfoil optimization
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1979-01-01
A new optimization algorithm is presented. The method is based on sequential application of a second-order Taylor's series approximation to the airfoil characteristics. Compared to previous methods, design efficiency improvements of more than a factor of 2 are demonstrated. If multiple optimizations are performed, the efficiency improvements are more dramatic due to the ability of the technique to utilize existing data. The method is demonstrated by application to subsonic and transonic airfoil design but is a general optimization technique and is not limited to a particular application or aerodynamic analysis.
Applications of a transonic wing design method
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Smith, Leigh A.
1989-01-01
A method for designing wings and airfoils at transonic speeds using a predictor/corrector approach was developed. The procedure iterates between an aerodynamic code, which predicts the flow about a given geometry, and the design module, which compares the calculated and target pressure distributions and modifies the geometry using an algorithm that relates differences in pressure to a change in surface curvature. The modular nature of the design method makes it relatively simple to couple it to any analysis method. The iterative approach allows the design process and aerodynamic analysis to converge in parallel, significantly reducing the time required to reach a final design. Viscous and static aeroelastic effects can also be accounted for during the design or as a post-design correction. Results from several pilot design codes indicated that the method accurately reproduced pressure distributions as well as the coordinates of a given airfoil or wing by modifying an initial contour. The codes were applied to supercritical as well as conventional airfoils, forward- and aft-swept transport wings, and moderate-to-highly swept fighter wings. The design method was found to be robust and efficient, even for cases having fairly strong shocks.
Study of viscous flow about airfoils by the integro-differential method
NASA Technical Reports Server (NTRS)
Wu, J. C.; Sampath, S.
1975-01-01
An integro-differential method was used for numerically solving unsteady incompressible viscous flow problems. A computer program was prepared to solve the problem of an impulsively started 9% thick symmetric Joukowski airfoil at an angle of attack of 15 deg and a Reynolds number of 1000. Some of the results obtained for this problem were discussed and compared with related work completed previously. Two numerical procedures were used, an Alternating Direction Implicit (ADI) method and a Successive Line Relaxation (SLR) method. Generally, the ADI solution agrees well with the SLR solution and with previous results are stations away from the trailing edge. At the trailing edge station, the ADI solution differs substantially from previous results, while the vorticity profiles obtained from the SLR method there are in good qualitative agreement with previous results.
A self-adaptive-grid method with application to airfoil flow
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.
Preliminary Design and Evaluation of an Airfoil with Continuous Trailing-Edge Flap
NASA Technical Reports Server (NTRS)
Shen, Jinwei; Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Liu, Yi
2012-01-01
This paper presents the preliminary design and evaluation of an airfoil with active continuous trailing-edge flap (CTEF) as a potential rotorcraft active control device. The development of structural cross-section models of a continuous trailing-edge flap airfoil is described. The CTEF deformations with MFC actuation are predicted by NASTRAN and UM/VABS analyses. Good agreement is shown between the predictions from the two analyses. Approximately two degrees of CTEF deflection, defined as the rotation angle of the trailing edge, is achieved with the baseline MFC-PZT bender. The 2D aerodynamic characteristics of the continuous trailing-edge flap are evaluated using a CFD analysis. The aerodynamic efficiency of a continuous trailing-edge flap is compared to that of a conventional discrete trailing-edge flap (DTEF). It is found that the aerodynamic characteristics of a CTEF are equivalent to those of a conventional DTEF with the same deflection angle but with a smaller flap chord. A fluid structure interaction procedure is implemented to predict the deflection of the continuous trailingedge flap under aerodynamic pressure. The reductions in CTEF deflection are overall small when aerodynamic pressure is applied: 2.7% reduction is shown with a CTEF deflection angle of two degrees and at angle of attack of six degrees. In addition, newly developed MFC-PMN actuator is found to be a good supplement to MFC-PZT when applied as the bender outside layers. A mixed MFC-PZT and MFC-PMN bender generates 3% more CTEF deformation than an MFC-PZT only bender and 5% more than an MFC-PMN only bender under aerodynamic loads.
NASA Technical Reports Server (NTRS)
Kaattari, G. E.
1973-01-01
A method is presented for determining shock envelopes and pressure distributions for two-dimensional airfoils at angles of attack sufficiently large to cause shock detachment and subsonic flow over the windward surface of the airfoil. Correlation functions obtained from exact solutions are used to relate the shock standoff distance at the stagnation and sonic points of the body through a suitable choice for the shock shape. The necessary correlation functions were obtained from perfect gas solutions but may be extended to any gas flow for which the normal shock-density ratio can be specified.
Analysis of a theoretically optimized transonic airfoil
NASA Technical Reports Server (NTRS)
Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.
1978-01-01
Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.
The Analysis and Design of Two-Element Airfoil Configurations in Transonic Flow.
1981-10-01
Experimental Surface Pressure Distribution: NACA 64A010 Airfoil With 18A Slat; M_,z 0.7, a = 6", Re = 7.8 x 106• 26 14 Computed and Experimental Surface...separated flow. In Fig. 13, the computed pressure distribution and the experimental data (Ref 17) for an NACA 64A010 airfoil with a slat at M = 0.7, 0 60 and...T) Fig. 13 Computed and Experimental Surface Pressure Distributions: NACA 64A010 Airfoil With 18A Slat; M = 0.7. c = 60, Re = 7.8 x 10 26 II The
The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.
Griffith, Daniel; Richards, Phillip William
2014-09-01
A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.; Sobieczky, H.
1982-01-01
A user-oriented computer program, CAS22, was developed that is applicable to aerodynamic analysis and transonic shock-free redesign of existing two-dimensional cascades of airfoils. This FORTRAN program can be used: (1) as an analysis code for full-potential, transonic, shocked or shock-free cascade flows; (2) as a design code for shock-free cascades that uses Sobieczky's fictitious-gas concept; and (3) as a shock-free design code followed automatically by the analysis in order to confirm that the newly obtained cascade shape provides for an entirely shock-free transonic flow field. A four-level boundary-conforming grid of an O type is generated. The shock-free design is performed by implementing Sobieczky's fictitious-gas concept of elliptic continuation from subsonic into supersonic flow domains. Recomputation inside each supersonic zone is performed by the method of characteristics in the rheograph plane by using isentropic gas relations. Besides converting existing cascade shapes with multiple shocked supersonic regions into shock-free cascades, CAS22 can also unchoke previously choked cascades and make them shock free.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1975-01-01
This report documents the experimental aerodynamic characteristics of a 14 percent thick supercritical airfoil based on an off design sonic pressure plateau criterion. The design normal force coefficient was 0.7. The results are compared with those of the family related 10 percent thick supercritical airfoil 33. Comparisons are also made between experimental and theoretical characteristics and composite drag rise characteristics derived for a full scale Reynolds number of 40 million.
Performance of NACA Eight-stage Axial-flow Compressor Designed on the Basis of Airfoil Theory
NASA Technical Reports Server (NTRS)
Sinnette, John T; Schey, Oscar W; King, J Austin
1943-01-01
The NACA has conducted an investigation to determine the performance that can be obtained from a multistage axial-flow compressor based on airfoil research. A theory was developed; an eight-stage axial-flow compressor was designed, constructed, and tested. The performance of the compressor was determined for speeds from 5000 to 14,000 r.p.m with varying air flow at each speed. Most of the tests were made with air at room temperature. The performance was determined in accordance with the Committee's recommended procedure for testing superchargers. The expected performance was obtained, showing that a multistage compressor of high efficiency can be designed by the application of airfoil theory.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Carpenter, Mark H.; Malik, Mujeeb R.; Eppink, Jenna; Chang, Chau-Lyan; Streett, Craig L.
2010-01-01
A high fidelity transition prediction methodology has been applied to a swept airfoil design at a Mach number of 0.75 and chord Reynolds number of approximately 17 million, with the dual goal of an assessment of the design for the implementation and testing of roughness based crossflow transition control and continued maturation of such methodology in the context of realistic aerodynamic configurations. Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes in order to weaken the growth of naturally occurring, linearly more unstable instability modes via a nonlinear modification of the mean boundary layer profiles. Therefore, a synthesis of receptivity, linear and nonlinear growth of crossflow disturbances, and high-frequency secondary instabilities becomes desirable to model this form of control. Because experimental data is currently unavailable for passive crossflow transition control for such high Reynolds number configurations, a holistic computational approach is used to assess the feasibility of roughness based control methodology. Potential challenges inherent to this control application as well as associated difficulties in modeling this form of control in a computational setting are highlighted. At high Reynolds numbers, a broad spectrum of stationary crossflow disturbances amplify and, while it may be possible to control a specific target mode using Discrete Roughness Elements (DREs), nonlinear interaction between the control and target modes may yield strong amplification of the difference mode that could have an adverse impact on the transition delay using spanwise periodic roughness elements.
NASA Technical Reports Server (NTRS)
Sewall, William G.; Mcghee, Robert J.; Viken, Jeffery K.; Waggoner, Edgar G.; Walker, Betty S.; Millard, Betty F.
1985-01-01
Two dimensional wind tunnel tests were conducted on a high speed natural laminar flow airfoil in both the Langley 6 x 28 inch Transonic Tunnel and the Langley Low Turbulence Pressure Tunnel. The test conditions consisted of Mach numbers ranging from 0.10 to 0.77 and Reynolds numbers ranging from 3 x 1 million to 11 x 1 million. The airfoil was designed for a lift coefficient of 0.20 at a Mach number of 0.70 and Reynolds number of 11 x 1 million. At these conditions, laminar flow would extend back to 50 percent chord of the upper surface and 70 percent chord of the lower surface. Low speed results were also obtained with a 0.20 chord trailing edge split flap deflected 60 deg.
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
A method for the design of transonic flexible wings
NASA Technical Reports Server (NTRS)
Smith, Leigh Ann; Campbell, Richard L.
1990-01-01
Methodology was developed for designing airfoils and wings at transonic speeds which includes a technique that can account for static aeroelastic deflections. This procedure is capable of designing either supercritical or more conventional airfoil sections. Methods for including viscous effects are also illustrated and are shown to give accurate results. The methodology developed is an interactive system containing three major parts. A design module was developed which modifies airfoil sections to achieve a desired pressure distribution. This design module works in conjunction with an aerodynamic analysis module, which for this study is a small perturbation transonic flow code. Additionally, an aeroelastic module is included which determines the wing deformation due to the calculated aerodynamic loads. Because of the modular nature of the method, it can be easily coupled with any aerodynamic analysis code.
NASA Technical Reports Server (NTRS)
Maresh, J. L.; Bragg, M. B.
1984-01-01
A method has been developed to predict the contamination of an airfoil by insects and the resultant performance penalty. Insect aerodynamics have been modeled and the impingement of insects on an airfoil are solved by calculating their trajectories. Upon impact, insect rupture and the resulting height of the debris is determined based on experimental data. A boundary layer analysis is performed to determine which insects cause boundary layer transition and the resultant drag penalty. A contaminated airfoil figure of merit is presented to be used to compare airfoil susceptibility. Results show that the insect contamination effects depend on accretion conditions, airfoil angle of attack and Reynolds number. The importance of the stagnation region to designing airfoils for minimum drag penalties is discussed.
Advanced technology airfoil research, volume 2. [conferences
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
TRANSEP: A program for high lift separated flow about airfoils
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1980-01-01
A method and program called TRANSEP is presented that can be used for the analysis of the flow about a low speed airfoil under high lift, massive separation conditions. Since the present program is a modification of the direct-inverse TRANDES code, it can also be used for the design and analysis of transonic airfoils, including the effects of weak viscous interaction. Interactions on program usage, program modifications to convert TRANDES to TRANSEP, and sample cases and results are given.
NASA Technical Reports Server (NTRS)
Yon, Steven; Katz, Joseph; Plotkin, Allen
1992-01-01
The practical limit of airfoil thickness ratio for which acceptable engineering results are obtainable with the Dirichlet boundary-condition-based numerical methods is investigated. This is done by studying the effect of thickness on the calculated pressure distribution near the trailing edge and by comparing the aerodynamic coefficients with available exact solutions. The first objective of this study, owing to the wide use of such computational methods, is to demonstrate the numerical symptoms that occur when the body or wing thickness approaches zero and to increase the awareness of potential users of these methods. Additionally, an effort is made to obtain the practical limits of the trailing-edge thickness where such problems will appear in the flow solution, and to propose some possible cures for very thin airfoils or those with cusped trailing edges.
NREL airfoil families for HAWTs
Tangler, J.L.; Somers, D.M.
1995-12-31
The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time nine airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub 1,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.
NREL airfoil families for HAWTs
Tangler, J L; Somers, D M
1995-01-01
The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time seven airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub l,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.
High-flaps for natural laminar flow airfoils
NASA Technical Reports Server (NTRS)
Morgan, Harry L.
1986-01-01
A review of the NACA and NASA low-drag airfoil research is presented with particular emphasis given to the development of mechanical high-lift flap systems and their application to general aviation aircraft. These flap systems include split, plain, single-slotted, and double-slotted trailing-edge flaps plus slat and Krueger leading-edge devices. The recently developed continuous variable-camber high-lift mechanism is also described. The state-of-the-art of theoretical methods for the design and analysis of multi-component airfoils in two-dimensional subsonic flow is discussed, and a detailed description of the Langley MCARF (Multi-Component Airfoil Analysis Program) computer code is presented. The results of a recent effort to design a single- and double-slotted flap system for the NASA high speed natural laminar flow (HSNLF) (1)-0213 airfoil using the MCARF code are presented to demonstrate the capabilities and limitations of the code.
Comparative Study of Airfoil Flow Separation Criteria
NASA Astrophysics Data System (ADS)
Laws, Nick; Kahouli, Waad; Epps, Brenden
2015-11-01
Airfoil flow separation impacts a multitude of applications including turbomachinery, wind turbines, and bio-inspired micro-aerial vehicles. In order to achieve maximum performance, some devices operate near the edge of flow separation, and others use dynamic flow separation advantageously. Numerous criteria exist for predicting the onset of airfoil flow separation. This talk presents a comparative study of a number of such criteria, with emphasis paid to speed and accuracy of the calculations. We evaluate the criteria using a two-dimensional unsteady vortex lattice method, which allows for rapid analysis (on the order of seconds instead of days for a full Navier-Stokes solution) and design of optimal airfoil geometry and kinematics. Furthermore, dynamic analyses permit evaluation of dynamic stall conditions for enhanced lift via leading edge vortex shedding, commonly present in small flapping-wing flyers such as the bumblebee and hummingbird.
Discussion of test results in the design of laminar airfoils for competition gliders
NASA Technical Reports Server (NTRS)
Ostrowski, J.; Skrzynski, S.; Litwinczyk, M.
1980-01-01
The deformation of flow in the boundary layer and the local separation of a laminar layer (laminar bubbles) from various airfoils were investigated. These phenomena were classified and their influence is discussed. Various aerodynamic characteristics are discussed and the principles for prescribing pressure distribution to attain a high value of c sub z max with a possibly low drag coefficient are described.
NASA low- and medium-speed airfoil development
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.; Whitcomb, R. T.
1979-01-01
The status of NASA low and medium speed airfoil research is discussed. Effects of airfoil thickness-chord ratios varying from 9 percent to 21 percent on the section characteristics for a design lift coefficient of 0.40 are presented for the initial low speed family of airfoils. Also, modifications to the 17-percent low-speed airfoil to reduce the pitching-moment coefficient and to the 21-percent low speed airfoil results are shown for two new medium speed airfoils with thickness ratios of 13 percent and 17 percent and design-lift coefficients of 0.30. Applications of NASA-developed airfoils to general aviation aircraft are summarized.
NASA Technical Reports Server (NTRS)
Flemming, Robert J.
1984-01-01
Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.
Evaluation of a research circulation control airfoil using Navier-Stokes methods
NASA Technical Reports Server (NTRS)
Shrewsbury, George D.
1987-01-01
The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.
Turbine airfoil to shround attachment
Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J
2014-05-06
A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.
Airfoil shape for a turbine nozzle
Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael
2002-01-01
A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.
Stiffness characteristics of airfoils under pulse loading
NASA Astrophysics Data System (ADS)
Turner, Kevin Eugene
The turbomachinery industry continually struggles with the adverse effects of contact rubs between airfoils and casings. The key parameter controlling the severity of a given rub event is the contact load produced when the airfoil tips incur into the casing. These highly non-linear and transient forces are difficult to calculate and their effects on the static and rotating components are not well understood. To help provide this insight, experimental and analytical capabilities have been established and exercised through an alliance between GE Aviation and The Ohio State University Gas Turbine Laboratory. One of the early findings of the program is the influence of blade flexibility on the physics of rub events. The core focus of the work presented in this dissertation is to quantify the influence of airfoil flexibility through a novel modeling approach that is based on the relationship between applied force duration and maximum tip deflection. This relationship is initially established using a series of forward, non-linear and transient analyses in which simulated impulse rub loads are applied. This procedure, although effective, is highly inefficient and costly to conduct by requiring numerous explicit simulations. To alleviate this issue, a simplified model, named the pulse magnification model, is developed that only requires a modal analysis and a static analyses to fully describe how the airfoil stiffness changes with respect to load duration. Results from the pulse magnification model are compared to results from the full transient simulation method and to experimental results, providing sound verification for the use of the modeling approach. Furthermore, a unique and highly efficient method to model airfoil geometries was developed and is outlined in this dissertation. This method produces quality Finite Element airfoil definitions directly from a fully parameterized mathematical model. The effectiveness of this approach is demonstrated by comparing modal
Some experience with Barnwell-Sewall type correction to two-dimensional airfoil data
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1984-01-01
A series of airfoils were tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) at Reynolds numbers from 2 to 50 million. The 0.3-m TCT is equipped with Barnwell slots designed to minimize blockage due to the tunnel flow and ceiling. This design suggests that sidewall corrections for blockage is needed, and that a lifting airfoil produces a change in angle of attack. Sidewall correction methods were developed for subsonic and subsonic-transonic flow. Comparisons of theory with experimental data obtained in the 0.3-m TCT for two airfoils, the British NPL 9510 and the German R-4 are presented. The NPL 9510 was tested as part of the NASA/United Kingdom Joint Aeronautical Program and R-4 was tested as part f the DFVLR/NASA Advanced Airfoil Research Program. For the NPL 9510 airfoil, only those test points that one would anticipate being difficult to predict theoretically are presented.
Large-scale aerodynamic characteristics of airfoils as tested in the variable density wind tunnel
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Anderson, Raymond F
1931-01-01
In order to give the large-scale characteristics of a variety of airfoils in a form which will be of maximum value, both for airplane design and for the study of airfoil characteristics, a collection has been made of the results of airfoil tests made at full-scale values of the reynolds number in the variable density wind tunnel of the National Advisory Committee for Aeronautics. They have been corrected for tunnel wall interference and are presented not only in the conventional form but also in a form which facilitates the comparison of airfoils and from which corrections may be easily made to any aspect ratio. An example showing the method of correcting the results to a desired aspect ratio has been given for the convenience of designers. In addition, the data have been analyzed with a view to finding the variation of the aerodynamic characteristics of airfoils with their thickness and camber.
NASA Technical Reports Server (NTRS)
Harvey, William D.; Harris, Charles D.; Brooks, Cuyler W., Jr.
1989-01-01
A swept, supercritical laminar flow control (LFC) airfoil designated NASA SCLFC(1)-0513F was tested at subsonic and transonic speeds in the NASA Langley eight-foot Transonic Pressure Tunnel. This paper examines Tollmien-Schlichting and crossflow disturbance amplification for this airfoil using the linear stability method. The design methodology using linear stability analysis is evaluated and the results of the incompressible and compressible methods are compared. Experimental data on the swept, supercritical LFC airfoil and reference wind tunnel and flight results are used to correlate and evaluate the N-factor method for transition prediction over a speed range M(infinity) from zero to one.
Shock-Free Transonic Airfoil Design by a Hodograph Method.
1984-01-01
Auxiliary Theorems on the * Hypergeometric Functions. III. Flow Round a Body. Proc. Royal Soc., London. Vol A191 (1947), pp. 323-369. Boerstoel , J. W...of the hodograph plane and that the complete solution for the entire hodograph plane is (,e)=Im{ 00n(To)J (1.11) n=o Appendix C and/or Boerstoel 5... Boerstoel added the "additional stream function" which also satisfied the governing equation and represented the complex incompressible potential about
Mach number validation of a new zonal CFD method (ZAP2D) for airfoil simulations
NASA Technical Reports Server (NTRS)
Strash, Daniel J.; Summa, Michael; Yoo, Sungyul
1991-01-01
A closed-loop overlapped velocity coupling procedure has been utilized to combine a two-dimensional potential-flow panel code and a Navier-Stokes code. The fully coupled two-zone code (ZAP2D) has been used to compute the flow past a NACA 0012 airfoil at Mach numbers ranging from 0.3 to 0.84 near the two-dimensional airfoil C(lmax) point for a Reynolds number of 3 million. For these cases, the grid domain size can be reduced to 3 chord lengths with less than 3-percent loss in accuracy for freestream Mach numbers through 0.8. Earlier validation work with ZAP2D has demonstrated a reduction in the required Navier-Stokes computation time by a factor of 4 for subsonic Mach numbers. For this more challenging condition of high lift and Mach number, the saving in CPU time is reduced to a factor of 2.
NASA Technical Reports Server (NTRS)
Allison, D. O.
1976-01-01
A 20.8 percent-thick airfoil shape was designed to have shockless inviscid flow at a Mach number of 0.68 and a lift coefficient of 0.40. In order to determine the actual airfoils which would yield this same shockless flow when viscous effects are included, boundary layer displacement thicknesses were subtracted from the inviscid shape for Reynolds numbers of 100 and 35 million. This process yielded airfoils with thicknesses of 20.7 and 20.6 percent, respectively. Subtraction of boundary layer displacement thicknesses for Reynolds numbers below 35 million yielded nonphysical airfoils, that is airfoils with negative thicknesses near tHe trailing edge. The pitching moment about the quarter-chord point at the design condition was -0.082 for the inviscid shape and, consequently, for both airfoils. Off-design calculations for the two airfoils were made using a computer program which provides for the interaction of the inviscid flow and boundary layer solutions. The pressure distributions of the airfoils were shockless for conditions from the design point to lower Mach numbers and lift coefficients. No boundary layer separation was predicted except in the last 3 percent chord on the upper surface.
Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range
NASA Technical Reports Server (NTRS)
Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.
Garcia-Crespo, Andres Jose
2015-03-03
A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.
NASA Technical Reports Server (NTRS)
Pfenninger, Werner; Vemuru, Chandra S.
1988-01-01
The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.
Evaluation of a stalled airfoil analysis program
NASA Technical Reports Server (NTRS)
Rumsey, C. L.
1985-01-01
The Stalled Airfoil Analysis Program (SAAP) is a computer code for predicting the aerodynamic characteristics of an airfoil up to, and beyond, stall. SAAP is presently evaluated through comparisons with experiments and with two other theoretical methods over an extensive range of airfoils and Reynolds number conditions. SAAP modeled drag more accurately than either of the other methods, and at angles of attack below stall yielded a smoother lift variation with angle of attack.
NASA Technical Reports Server (NTRS)
Omar, E.; Zierten, T.; Mahal, A.
1977-01-01
High-lift systems for a NASA, 9.3%, method for calculating the viscous flow about two-dimensional multicomponent airfoils was evaluated by comparing its predictions with test data. High-lift systems derived from supercritical airfoils were compared in terms of performance to high-lift systems derived from conventional airfoils. The high-lift systems for the supercritical airfoil were designed to achieve maximum lift and consisted of: a single-slotted flap; a double-slotted flap and a leading-edge slat; and a triple-slotted flap and a leading-edge slat. Agreement between theoretical predictions and experimental results are also discussed.
Approximation concepts for numerical airfoil optimization
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1979-01-01
An efficient algorithm for airfoil optimization is presented. The algorithm utilizes approximation concepts to reduce the number of aerodynamic analyses required to reach the optimum design. Examples are presented and compared with previous results. Optimization efficiency improvements of more than a factor of 2 are demonstrated. Improvements in efficiency are demonstrated when analysis data obtained in previous designs are utilized. The method is a general optimization procedure and is not limited to this application. The method is intended for application to a wide range of engineering design problems.
Thin oblique airfoils at supersonic speed
NASA Technical Reports Server (NTRS)
Jone, Robert T
1946-01-01
The well-known methods of thin-airfoil theory have been extended to oblique or sweptback airfoils of finite aspect ratio moving at supersonic speeds. The cases considered thus far are symmetrical airfoils at zero lift having plan forms bounded by straight lines. Because of the conical form of the elementary flow fields, the results are comparable in simplicity to the results of the two-dimensional thin-airfoil theory for subsonic speeds. In the case of untapered airfoils swept back behind the Mach cone the pressure distribution at the center section is similar to that given by the Ackeret theory for a straight airfoil. With increasing distance from the center section the distribution approaches the form given by the subsonic-flow theory. The pressure drag is concentrated chiefly at the center section and for long wings a slight negative drag may appear on outboard sections. (author)
Transonic airfoil flowfield analysis using Cartesian coordinates
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1975-01-01
A numerical technique for analyzing transonic airfoils is presented. The method employs the basic features of Jameson's iterative solution for the full potential equation, except that Cartesian coordinates are used rather than a grid which fits the airfoil, such as the conformal circle-plane or 'sheared parabolic' coordinates which were used previously. Comparison with previous results shows that it is not necessary to match the computational grid to the airfoil surface, and that accurate results can be obtained with a Cartesian grid for lifting supercritical airfoils.
G.E. Fuchs
2007-12-31
Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a
An Efficient Inverse Aerodynamic Design Method For Subsonic Flows
NASA Technical Reports Server (NTRS)
Milholen, William E., II
2000-01-01
Computational Fluid Dynamics based design methods are maturing to the point that they are beginning to be used in the aircraft design process. Many design methods however have demonstrated deficiencies in the leading edge region of airfoil sections. The objective of the present research is to develop an efficient inverse design method which is valid in the leading edge region. The new design method is a streamline curvature method, and a new technique is presented for modeling the variation of the streamline curvature normal to the surface. The new design method allows the surface coordinates to move normal to the surface, and has been incorporated into the Constrained Direct Iterative Surface Curvature (CDISC) design method. The accuracy and efficiency of the design method is demonstrated using both two-dimensional and three-dimensional design cases.
AFSMO/AFSCL- AIRFOIL SMOOTHING AND SCALING
NASA Technical Reports Server (NTRS)
Morgan, H. L
1994-01-01
Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.
Advanced technology airfoil research, volume 1, part 2
NASA Technical Reports Server (NTRS)
1978-01-01
This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
1980-02-01
the elliptic cross section is considered to be more representative of the NACA 64A010 airfoil with boundary layer displacement thickness added on than...section and the flat plate airfoil with Kutta condition. The experimental results are for the NACA 64A010 airfoil at M = 0.5 and Reynolds number between...practice for actual airfoils. The experimental data shown in Fig. 3.5 are for the NACA 4 and 5 digit series airfoils (Ref. 17). The lift curve slope is
Transonic Airfoils with a Given Pressure Distribution,
1981-06-01
erovse sidst necesosar mod Ideatify b lock mmb)L An inverse design procedure for airfoils, based on hodograph techniques, has been developed. For...w L-:- " " -- - r- L i -- _ 9 ABSTRACT An inverse design procedure for airfoils, based on hodograph tech...generated in the hodograph plane by Nieuwand,5 Bauer, Garabedian and Korn,6 Boerstoel and Huizing,7 and Sobieczky.8 More recently, the development of
On the acoustic radiation of a pitching airfoil
NASA Astrophysics Data System (ADS)
Manela, A.
2013-07-01
We examine the acoustic far field of a thin elastic airfoil, immersed in low-Mach non-uniform stream flow, and actuated by small-amplitude sinusoidal pitching motion. The near-field fluid-structure interaction problem is analyzed using potential thin-airfoil theory, combined with a discrete vortex model to describe the evolution of airfoil trailing edge wake. The leading order dipole-sound signature of the system is investigated using Powell-Howe acoustic analogy. Compared with a pitching rigid airfoil, the results demonstrate a two-fold effect of structure elasticity on airfoil acoustic field: at actuation frequencies close to the system least stable eigenfrequency, elasticity amplifies airfoil motion amplitude and associated sound levels; however, at frequencies distant from this eigenfrequency, structure elasticity acts to absorb system kinetic energy and reduce acoustic radiation. In the latter case, and with increasing pitching frequency ωp, a rigid-airfoil setup becomes significantly noisier than an elastic airfoil, owing to an ω _p^{5/2} increase of its direct motion noise component. Unlike rigid airfoil signature, it is shown that wake sound contribution to elastic airfoil radiation is significant for all ωp. Remarkably, this contribution contains, in addition to the fundamental pitching frequency, its odd multiple harmonics, which result from nonlinear interactions between the airfoil and the wake. The results suggest that structure elasticity may serve as a viable means for design of flapping flight noise control methodologies.
Supercritical Flow Past Symmetrical Airfoils.
1980-12-01
about quasi-elliptic airfoil sections. The method was later extended by Boerstoel [1967] to present a catalog of solutions for certain body shapes. Bauer...Lecture Notes in Economics and Mathematical Systems, Springer- Verlag, New York, 1972. Boerstoel , J. W., "A Survey of Symmetrical Transonic Potential
NASA Astrophysics Data System (ADS)
Mughal, Umair Najeeb
2017-01-01
Flow around an airfoil to calculate pressure co-efficient variations at different relative velocities have always been an important/basic part of Aerodynamic Study. Potential flow theory is used to study flow behavior on rankine half body, non-rotating cylinder and rotating cylinder as it is more trackable. Falkan-Skan Similarity Solution is taken to simulate the flow behavior on wedge. However, to use potential flow theory on usable airfoils the author have used conformal mapping to show a relation between realistic airfoil shapes and the knowledge gained from flow about cylinders. This method can further be used in the designing of an airfoil section. The author has used Joukowski Tranform to generate the flow around airfoils of various geometries and then utilized Kutta condition to force the stagnation point at the trailing edge. Co-efficient of pressure over the entire airfoil surface were calculated and corrected using Karman-Tsien compressibility correction equations. On the basis of this, the location of the ports to install the flush measurement system is suggested.
NASA Technical Reports Server (NTRS)
Bunnell, L. Roy; Piippo, Steven W.
1993-01-01
The objective of this educational exercise is to have students build and evaluate simple wing structures, and in doing so, learn about materials choices and lightweight construction methods. A list of equipment and supplies and the procedure for the experiment are presented.
Trailing edge modifications for flatback airfoils.
Kahn, Daniel L.; van Dam, C.P.; Berg, Dale E.
2008-03-01
The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.
Advancements in adaptive aerodynamic technologies for airfoils and wings
NASA Astrophysics Data System (ADS)
Jepson, Jeffrey Keith
required for the airfoil-aircraft matching. Examples are presented to illustrate the flapped-airfoil design approach for a general aviation aircraft and the results are validated by comparison with results from post-design aircraft performance computations. Once the airfoil is designed to incorporate a TE flap, it is important to determine the most suitable flap angles along the wing for different flight conditions. The second part of this dissertation presents a method for determining the optimum flap angles to minimize drag based on pressures measured at select locations on the wing. Computational flow simulations using a panel method are used "in the loop" for demonstrating closed-loop control of the flaps. Examples in the paper show that the control algorithm is successful in correctly adapting the wing to achieve the target lift distributions for minimizing induced drag while adjusting the wing angle of attack for operation of the wing in the drag bucket. It is shown that the "sense-and-adapt" approach developed is capable of handling varying and unpredictable inflow conditions. Such a capability could be useful in adapting long-span flexible wings that may experience significant and unknown atmospheric inflow variations along the span. To further develop the "sense-and-adapt" approach, the method was tested experimentally in the third part of the research. The goal of the testing was to see if the same results found computationally can be obtained experimentally. The North Carolina State University subsonic wind tunnel was used for the wind tunnel tests. Results from the testing showed that the "sense-and-adapt" approach has the same performance experimentally as it did computationally. The research presented in this dissertation is a stepping stone towards further development of the concept, which includes modeling the system in the Simulink environment and flight experiments using uninhabited aerial vehicles.
Supersonic biplane design via adjoint method
NASA Astrophysics Data System (ADS)
Hu, Rui
In developing the next generation supersonic transport airplane, two major challenges must be resolved. The fuel efficiency must be significantly improved, and the sonic boom propagating to the ground must be dramatically reduced. Both of these objectives can be achieved by reducing the shockwaves formed in supersonic flight. The Busemann biplane is famous for using favorable shockwave interaction to achieve nearly shock-free supersonic flight at its design Mach number. Its performance at off-design Mach numbers, however, can be very poor. This dissertation studies the performance of supersonic biplane airfoils at design and off-design conditions. The choked flow and flow-hysteresis phenomena of these biplanes are studied. These effects are due to finite thickness of the airfoils and non-uniqueness of the solution to the Euler equations, creating over an order of magnitude more wave drag than that predicted by supersonic thin airfoil theory. As a result, the off-design performance is the major barrier to the practical use of supersonic biplanes. The main contribution of this work is to drastically improve the off-design performance of supersonic biplanes by using an adjoint based aerodynamic optimization technique. The Busemann biplane is used as the baseline design, and its shape is altered to achieve optimal wave drags in series of Mach numbers ranging from 1.1 to 1.7, during both acceleration and deceleration conditions. The optimized biplane airfoils dramatically reduces the effects of the choked flow and flow-hysteresis phenomena, while maintaining a certain degree of favorable shockwave interaction effects at the design Mach number. Compared to a diamond shaped single airfoil of the same total thickness, the wave drag of our optimized biplane is lower at almost all Mach numbers, and is significantly lower at the design Mach number. In addition, by performing a Navier-Stokes solution for the optimized airfoil, it is verified that the optimized biplane improves
Airfoil self-noise and prediction
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.
1989-01-01
A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of all NASA airfoil research, conducted both in-house and under grant and contract, as well as a broad spectrum of airfoil research outside of NASA is presented. Emphasis is placed on the development of computational aerodynamic codes for airfoil analysis and design, the development of experimental facilities and test techniques, and all types of airfoil applications.
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.
1977-01-01
Airfoil geometries were developed for low speed high lift applications, such as general aviation aircraft, propellers and helicopter rotors. The primary effort was to determine the extent to which the application of turbulent boundary layer separation criteria, plus manipulation of other input parameters, specifically trailing edging velocity ratio, could be utilized to achieve high C sub Lmax airfoils with relatively low drag at C sub Lmax. Both single-element and double-element airfoils were considered. Wind tunnel testing of some airfoils was included.
Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts
NASA Astrophysics Data System (ADS)
Chen, Xiaomin
Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated
Wind tunnel results of the high-speed NLF(1)-0213 airfoil
NASA Technical Reports Server (NTRS)
Sewall, William G.; Mcghee, Robert J.; Hahne, David E.; Jordan, Frank L., Jr.
1987-01-01
Wind tunnel tests were conducted to evaluate a natural laminar flow airfoil designed for the high speed jet aircraft in general aviation. The airfoil, designated as the High Speed Natural Laminar Flow (HSNLF)(1)-0213, was tested in two dimensional wind tunnels to investigate the performance of the basic airfoil shape. A three dimensional wing designed with this airfoil and a high lift flap system is also being evaluated with a full size, half span model.
Quiet airfoils for small and large wind turbines
Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA
2012-06-12
Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.
Performance Trades Study for Robust Airfoil Shape Optimization
NASA Technical Reports Server (NTRS)
Li, Wu; Padula, Sharon
2003-01-01
From time to time, existing aircraft need to be redesigned for new missions with modified operating conditions such as required lift or cruise speed. This research is motivated by the needs of conceptual and preliminary design teams for smooth airfoil shapes that are similar to the baseline design but have improved drag performance over a range of flight conditions. The proposed modified profile optimization method (MPOM) modifies a large number of design variables to search for nonintuitive performance improvements, while avoiding off-design performance degradation. Given a good initial design, the MPOM generates fairly smooth airfoils that are better than the baseline without making drastic shape changes. Moreover, the MPOM allows users to gain valuable information by exploring performance trades over various design conditions. Four simulation cases of airfoil optimization in transonic viscous ow are included to demonstrate the usefulness of the MPOM as a performance trades study tool. Simulation results are obtained by solving fully turbulent Navier-Stokes equations and the corresponding discrete adjoint equations using an unstructured grid computational fluid dynamics code FUN2D.
Ice Accretions on Modern Airfoils Investigated
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.
2000-01-01
The Icing Branch at the NASA Glenn Research Center at Lewis Field initiated and conducted the Modern Airfoils Ice Accretions project to identify ice shapes and determine their effects on the aerodynamic performance of aircraft, particularly on lift and drag. Previous aircraft ice shape and performance documentation focused on a few, older airfoils. This permitted more basic studies of the ice accretion process to be undertaken. However, having established both a working data base of ice shapes and the capability to predict these shapes for basic airfoils, questions arose about how ice might accrete differently on airfoils more representative of those being designed and flown on various aircraft today. Similarly, information about how these ice shapes would affect aerodynamic performance was needed.
Development and testing of airfoils for high-altitude aircraft
NASA Technical Reports Server (NTRS)
Drela, Mark (Principal Investigator)
1996-01-01
Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.
S825 and S826 Airfoils: 1994--1995
Somers, D. M.
2005-01-01
A family of airfoils, the S825 and S826, for 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moments and the airfoil thicknesses have been satisfied. The airfoils should exhibit docile stalls.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
Progress in the direct-inverse wing design method in curvilinear coordinates has been made. This includes the remedying of a spanwise oscillation problem and the assessment of grid skewness, viscous interaction, and the initial airfoil section on the final design. It was found that, in response to the spanwise oscillation problem that designing at every other spanwise station produced the best results for the cases presented, a smoothly varying grid is especially needed for the accurate design at the wing tip, the boundary layer displacement thicknesses must be included in a successful wing design, the design of high and medium aspect ratio wings is possible with this code, and the final airfoil section designed is fairly independent of the initial section.
NASA Technical Reports Server (NTRS)
Mutterperl, William
1944-01-01
A method of conformal transformation is developed that maps an airfoil into a straight line, the line being chosen as the extended chord line of the airfoil. The mapping is accomplished by operating directly with the airfoil ordinates. The absence of any preliminary transformation is found to shorten the work substantially over that of previous methods. Use is made of the superposition of solutions to obtain a rigorous counterpart of the approximate methods of thin-airfoils theory. The method is applied to the solution of the direct and inverse problems for arbitrary airfoils and pressure distributions. Numerical examples are given. Applications to more general types of regions, in particular to biplanes and to cascades of airfoils, are indicated. (author)
Method of making an apparatus for transpiration cooling of substrates such as turbine airfoils
Alvin, Mary Anne; Anderson, Iver; Heidlof, Andy; White, Emma; McMordie, Bruce
2017-02-28
A method and apparatus for generating transpiration cooling using an oxidized porous HTA layer metallurgically bonded to a substrate having micro-channel architectures. The method and apparatus generates a porous HTA layer by spreading generally spherical HTA powder particles on a substrate, partially sintering under O.sub.2 vacuum until the porous HTA layer exhibits a porosity between 20% and 50% and a neck size ratio between 0.1 and 0.5, followed by a controlled oxidation generating an oxidation layer of alumina, chromia, or silica at a thickness of about 20 to about 500 nm. In particular embodiments, the oxidized porous HTA layer and the substrate comprise Ni as a majority element. In other embodiments, the oxidized porous HTA layer and the substrate further comprise Al, and in additional embodiments, the oxidized porous HTA layer and the substrate comprise .gamma.-Ni+.gamma.'-Ni.sub.3Al.
New airfoils for small horizontal axis wind turbines
Giguere, P.; Selig, M.S.
1997-12-31
In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.
Two experimental supercritical laminar-flow-control swept-wing airfoils
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Dagenhart, J. Ray
1987-01-01
Two supercritical laminar-flow-control airfoils were designed for a large-chord swept-wing experiment in the Langley 8-Foot Transonic Pressure Tunnel where suction was provided through most of the model surface for boundary-layer control. The first airfoil was derived from an existing full-chord laminar airfoil by extending the trailing edge and making changes in the two lower-surface concave regions. The second airfoil differed from the first one in that it was designed for testing without suction in the forward concave region of the lower surface. Differences between the first airfoil and the one from which it was derived as well as between the first and second airfoils are discussed. Airfoil coordinates and predicted pressure distributions for the design normal Mach number of 0.755 and section lift coefficient of 0.55 are given for the three airfoils.
Application of direct inverse analogy method (DIVA) and viscous design optimization techniques
NASA Technical Reports Server (NTRS)
Greff, E.; Forbrich, D.; Schwarten, H.
1991-01-01
A direct-inverse approach to the transonic design problem was presented in its initial state at the First International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-1). Further applications of the direct inverse analogy (DIVA) method to the design of airfoils and incremental wing improvements and experimental verification are reported. First results of a new viscous design code also from the residual correction type with semi-inverse boundary layer coupling are compared with DIVA which may enhance the accuracy of trailing edge design for highly loaded airfoils. Finally, the capabilities of an optimization routine coupled with the two viscous full potential solvers are investigated in comparison to the inverse method.
Unsteady Aerodynamic Response of a Linear Cascade of Airfoils in Separated Flow
NASA Technical Reports Server (NTRS)
Capece, Vincent R.; Ford, Christopher; Bone, Christopher; Li, Rui
2004-01-01
The overall objective of this research program was to investigate methods to modify the leading edge separation region, which could lead to an improvement in aeroelastic stability of advanced airfoil designs. The airfoil section used is representative of current low aspect ratio fan blade tip sections. The experimental potion of this study investigated separated zone boundary layer from removal through suction slots. Suction applied to a cavity in the vicinity of the separation onset point was found to be the most effective location. The computational study looked into the influence of front camber on flutter stability. To assess the influence of the change in airfoil shape on stability the work-per-cycle was evaluated for torsion mode oscillations. It was shown that the front camberline shape can be an important factor for stabilizing the predicted work-per-cycle and reducing the predicted extent of the separation zone. In addition, data analysis procedures are discussed for reducing data acquired in experiments that involve periodic unsteady data. This work was conducted in support of experiments being conducted in the NASA Glenn Research Center Transonic Flutter Cascade. The spectral block averaging method is presented. This method is shown to be able to account for variations in airfoil oscillation frequency that can occur in experiments that force oscillate the airfoils to simulate flutter.
Investigation of the Boundary Layer Behavior on Turbine Airfoils.
1979-08-01
turbine airfoil cascade . The airfoil profile was based on a turbine blade design used by Lander ’’4 and employed in previous wake studies by Cox and...simulate the wake from upstream turning vanes or blades , a circular cylinder was placed upstream of the centra l or test airfoil . The displacement of this...of turbine airfoil cascade model s by Cox and Han 15 are very much evident in the graph . It might be noted that the blade stag- nation points are at
A Theory of Unstaggered Airfoil Cascades in Compressible Flow
NASA Technical Reports Server (NTRS)
Spurr, Robert A.; Allen, H. Julian
1947-01-01
By use of the methods of thin airfoil theory, which include effects of compressibility, rela.tio^as are developed which permit the rapid determination of the pressure distribution over an unstaggered cascade of airfoils of a given profile, and the determination of the profile shape necessary to yield a given pressure distribution for small chord gap ratios, For incompressible flow the results of the theory are compared with available examples obtained by the more exact method of conformal transformation. Although the theory is developed for small chord/gap ratios, these comparisons show that it may be extended to chord/gap ratios of order unity, at least for low speed flows. Choking of cascades, a phenomenon of particular importance in compressor design, is considered.
A theory of unstaggered airfoil cascades in compressible flow
NASA Technical Reports Server (NTRS)
Spurr, Robert A; Allen, H Julian
1947-01-01
By use of the methods of thin airfoil theory, which include effects of compressibility, relations are developed which permit the rapid determination of the pressure distribution over an unstaggered cascade of airfoils of a given profile, and the determination of the profile shape necessary to yield a given pressure distribution for small chord/gap ratios. For incompressible flow the results of the theory are compared with available examples obtained by the more exact method of conformal transformation. Although the theory is developed for small chord/gap ratios, these comparisons show that it may be extended to chord/gap ratios of order unity, at least for low-speed flows. Choking cascades, a phenomenon of particular importance in compressor design, is considered.
Plasma Flow Control Optimized Airfoil
NASA Astrophysics Data System (ADS)
Voikov, Vladimir; Patel, Mehul
2005-11-01
Recent advances in flow control research have demonstrated that plasma actuators can be efficient in different aerodynamic applications, particularly in providing flight control without conventional moving surfaces. The concept involves the use of a laminar airfoil design that employs a separation ramp at the trailing edge that can be manipulated by a plasma actuator to control lift, similar to trailing-edge flaps. The advantages are lower drag by a combination of the laminar flow design, and elimination of parasitic drag associated with wing-flap junctions. This work involves numerical simulations and experiments on a HSNLF(1)-0213 airfoil. The numerical results are obtained using an unsteady, compressible Navier-Stokes simulation that includes a model for the plasma actuators. The experiments are performed on a 2-D airfoil section that is mounted on a lift-drag force balance. The results demonstrate lift enhancement produced by the plasma actuator that is comparable to a plane flap. They also reveal an optimum actuator unsteady frequency that scales with the length of the separated region and local velocity, and is associated with the generation of a train of spanwise vortices. Other scaling including the effect of Reynolds number is presented.
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.
1997-01-01
This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.
Propulsion by active and passive airfoil oscillation
NASA Astrophysics Data System (ADS)
Mackowski, A. W.; Williamson, C. H. K.
2013-11-01
Oscillating airfoils have been the subject of much research both as a mechanism of propulsion in engineering devices as well as a model of understanding how fish, birds, and insects produce thrust and maneuvering forces. Additionally, the jet or wake generated by an oscillating airfoil exhibits a multitude of vortex patterns, which are an interesting study in their own right. We present PIV measurements of the vortex flow behind an airfoil undergoing controlled pitching oscillations at moderate Reynolds number. As a method of propulsion, oscillating foils have been found to be capable performers when undergoing both pitching and heaving motions [Anderson et al. 1998]. While an airfoil undergoing only pitching motion is a relatively inefficient propulsor, we examine the effect of adding passive dynamics to the system: for example, actuated pitching with a passive spring in the heave direction. Practically speaking, a mechanical system with such an arrangement has the potential to reduce the cost and complexity of an oscillating airfoil propulsor. To study an airfoil undergoing both active and passive motion, we employ our ``cyber-physical fluid dynamics'' technique [Mackowski & Williamson, 2011] to simulate the effects of passive dynamics in a physical experiment.
Multiple piece turbine airfoil
Kimmel, Keith D; Wilson, Jr., Jack W.
2010-11-02
A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.
Theory and Low-Order Modeling of Unsteady Airfoil Flows
NASA Astrophysics Data System (ADS)
Ramesh, Kiran
Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It
Development of drive mechanism for an oscillating airfoil
NASA Technical Reports Server (NTRS)
Sticht, Clifford D.
1988-01-01
The design and development of an in-draft wind tunnel test section which will be used to study the dynamic stall of airfoils oscillating in pitch is described. The hardware developed comprises a spanned airfoil between schleiren windows, a four bar linkage, flywheels, a drive system and a test section structure.
Wind tunnel test of the S814 thick root airfoil
Somers, D.M.; Tangler, J.L.
1996-11-01
The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil`s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 {times} 10{sup 6}. For the design Reynolds number of 1.5 {times} 10{sup 6}, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil`s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.
Airfoil Vibration Dampers program
NASA Technical Reports Server (NTRS)
Cook, Robert M.
1991-01-01
The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.
Wind tunnel tests of two airfoils for wind turbines operating at high reynolds numbers
Sommers, D.; Tangler, J.
2000-06-29
The objectives of this study were to verify the predictions of the Eppler Airfoil Design and Analysis Code for Reynolds numbers up to 6 x 106 and to acquire the section characteristics of two airfoils being considered for large, megawatt-size wind turbines. One airfoil, the S825, was designed to achieve a high maximum lift coefficient suitable for variable-speed machines. The other airfoil, the S827, was designed to achieve a low maximum lift coefficient suitable for stall-regulated machines. Both airfoils were tested in the NASA Langley Low-Turbulence Pressure Tunnel (LTPT) for smooth, fixed-transition, and rough surface conditions at Reynolds numbers of 1, 2, 3, 4, and 6 x 106. The results show the maximum lift coefficient of both airfoils is substantially underpredicted for Reynolds numbers over 3 x 106 and emphasized the difficulty of designing low-lift airfoils for high Reynolds numbers.
A numerical method for the design and analysis of counter-rotating propellers
NASA Technical Reports Server (NTRS)
Playle, S. C.; Korkan, K. D.; Von Lavante, E.
1986-01-01
A numerical method has been developed using the techniques of Lock and Theodorsen as described by Davidson to design and analyze counter-rotating propellers. The design method develops the optimum propeller geometry by calculating the planform and twist distribution for each propeller disk through the use of specific inputs of engine shaft horsepower, diameter, and disk spacing. The analysis method calculates the performance of a given counter-rotating propeller system at any flight condition. Using the NACA four-digit airfoil family, the performance of a counter-rotating propeller design for a given flight condition was investigated in the design and analysis mode.
NASA Technical Reports Server (NTRS)
Liu, Chao-Qun; Shan, H.; Jiang, L.
1999-01-01
Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.
Reversible airfoils for stopped rotors in high speed flight
NASA Astrophysics Data System (ADS)
Niemiec, Robert; Jacobellis, George; Gandhi, Farhan
2014-10-01
This study starts with the design of a reversible airfoil rib for stopped-rotor applications, where the sharp trailing-edge morphs into the rounded leading-edge, and vice-versa. A NACA0012 airfoil is approximated in a piecewise linear manner and straight, rigid outer profile links used to define the airfoil contour. The end points of the profile links connect to control links, each set on a central actuation rod via an offset. Chordwise motion of the actuation rod moves the control and the profile links and reverses the airfoil. The paper describes the design methodology and evolution of the final design, based on which two reversible airfoil ribs were fabricated and used to assemble a finite span reversible rotor/wing demonstrator. The profile links were connected by Aluminum strips running in the spanwise direction which provided stiffness as well as support for a pre-tensioned elastomeric skin. An inter-rib connector with a curved-front nose piece supports the leading-edge. The model functioned well and was able to reverse smoothly back-and-forth, on application and reversal of a voltage to the motor. Navier-Stokes CFD simulations (using the TURNS code) show that the drag coefficient of the reversible airfoil (which had a 13% maximum thickness due to the thickness of the profile links) was comparable to that of the NACA0013 airfoil. The drag of a 16% thick elliptical airfoil was, on average, about twice as large, while that of a NACA0012 in reverse flow was 4-5 times as large, even prior to stall. The maximum lift coefficient of the reversible airfoil was lower than the elliptical airfoil, but higher than the NACA0012 in reverse flow operation.
NASA Astrophysics Data System (ADS)
Mazaheri, K.; Nejati, A.; Chaharlang Kiani, K.; Taheri, R.
2016-07-01
A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and NACA-64-A010, over a wide range of off-design Mach numbers. All results are compared with the usual single-point optimization. We use numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm to find the optimum location and shape of the SCB. We show that the application of SCBs may increase the aerodynamic performance of an RAE-2822 airfoil by 21.9 and by 22.8 % for a NACA-64-A010 airfoil compared to the no-bump design in a particular flight condition. We have also investigated the simultaneous usage of two bumps for the upper and the lower surfaces of the airfoil. This has resulted in a 26.1 % improvement for the RAE-2822 compared to the clean airfoil in one flight condition.
Tangler, J.L.; Somers, D.M.
2000-05-30
Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.
Tangler, James L.; Somers, Dan M.
2000-01-01
Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.
Transonic flow theory of airfoils and wings
NASA Technical Reports Server (NTRS)
Garabedian, P. R.
1976-01-01
There are plans to use the supercritical wing on the next generation of commercial aircraft so as to economize on fuel consumption by reducing drag. Computer codes have served well in meeting the consequent demand for new wing sections. The possibility of replacing wind tunnel tests by computational fluid dynamics is discussed. Another approach to the supercritical wing is through shockless airfoils. A novel boundary value problem in the hodograph plane is studied that enables one to design a shockless airfoil so that its pressure distribution very nearly takes on data that are prescribed.
Towards Robust Designs Via Multiple-Objective Optimization Methods
NASA Technical Reports Server (NTRS)
Man Mohan, Rai
2006-01-01
evolutionary method (DE) is first used to solve a relatively difficult problem in extended surface heat transfer wherein optimal fin geometries are obtained for different safe operating base temperatures. The objective of maximizing the safe operating base temperature range is in direct conflict with the objective of maximizing fin heat transfer. This problem is a good example of achieving robustness in the context of changing operating conditions. The evolutionary method is then used to design a turbine airfoil; the two objectives being reduced sensitivity of the pressure distribution to small changes in the airfoil shape and the maximization of the trailing edge wedge angle with the consequent increase in airfoil thickness and strength. This is a relevant example of achieving robustness to manufacturing tolerances and wear and tear in the presence of other objectives.
Effects of Airfoil Thickness and Maximum Lift Coefficient on Roughness Sensitivity: 1997--1998
Somers, D. M.
2005-01-01
A matrix of airfoils has been developed to determine the effects of airfoil thickness and the maximum lift to leading-edge roughness. The matrix consists of three natural-laminar-flow airfoils, the S901, S902, and S903, for wind turbine applications. The airfoils have been designed and analyzed theoretically and verified experimentally in the Pennsylvania State University low-speed, low-turbulence wind tunnel. The effect of roughness on the maximum life increases with increasing airfoil thickness and decreases slightly with increasing maximum lift. Comparisons of the theoretical and experimental results generally show good agreement.
NASA Technical Reports Server (NTRS)
Graham, Donald J
1949-01-01
Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined from two-dimensional wind-tunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NACA 6-series airfoils.
NASA Astrophysics Data System (ADS)
Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.
2005-07-01
Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.
Multiple piece turbine airfoil
Kimmel, Keith D
2010-11-09
A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.
1989-03-01
Th usr a toente aninteer a thca sms b esta 1 Fp-ocsing 2. Enter P1 values, lwgt, ldig - > 9 Table I give us proper values. Table 1. PARAMETER TABLE...necessary and identify by block number) In this thesis a control systems analysis package is developed using parameter plane methods. It is an interactive...designer is able to choose values of the parameters which provide a good compromise between cost and dynamic behavior. 20 Distribution Availability of
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)
2014-01-01
A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.
NASA Technical Reports Server (NTRS)
Ratcliff, Robert R.; Carlson, Leland A.
1989-01-01
Progress in the direct-inverse wing design method in curvilinear coordinates has been made. A spanwise oscillation problem and proposed remedies are discussed. Test cases are presented which reveal the approximate limits on the wing's aspect ratio and leading edge wing sweep angle for a successful design, and which show the significance of spanwise grid skewness, grid refinement, viscous interaction, the initial airfoil section and Mach number-pressure distribution compatibility on the final design. Furthermore, preliminary results are shown which indicate that it is feasible to successfully design a region of the wing which begins aft of the leading edge and terminates prior to the trailing edge.
Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils
NASA Technical Reports Server (NTRS)
Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.
1995-01-01
An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B- Splines) for defining the airfoil geometry. An interactive algebraic grid generation technique is employed to generate C-type grids around airfoils. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the airfoil surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the airfoil.
Wind tunnel testing of low-drag airfoils
NASA Technical Reports Server (NTRS)
Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.
1986-01-01
Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.
Low-speed single-element airfoil synthesis
NASA Technical Reports Server (NTRS)
Mcmasters, J. H.; Henderson, M. L.
1979-01-01
The use of recently developed airfoil analysis/design computational tools to clarify, enrich and extend the existing experimental data base on low-speed, single element airfoils is demonstrated. A discussion of the problem of tailoring an airfoil for a specific application at its appropriate Reynolds number is presented. This problem is approached by use of inverse (or synthesis) techniques, wherein a desirable set of boundary layer characteristics, performance objectives, and constraints are specified, which then leads to derivation of a corresponding viscous flow pressure distribution. Examples are presented which demonstrate the synthesis approach, following presentation of some historical information and background data which motivate the basic synthesis process.
Potential flow analysis of glaze ice accretions on an airfoil
NASA Technical Reports Server (NTRS)
Zaguli, R. J.
1984-01-01
The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.
Wilson, David G [Tijeras, NM; Robinett, III, Rush D.
2012-02-21
A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.
S830, S831, and S832 Airfoils: November 2001-November 2002
Somers, D. M.
2005-08-01
A family of quiet, thick, natural-laminar-flow airfoils, the S830, S831, and S832, for 40 - 50-meter-diameter, variable-speed/variable-pitch, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The airfoils should exhibit docile stalls, which meet the design goal. The constraints on the pitching moment and the airfoils thicknesses have been satisfied.
S833, S834, and S835 Airfoils: November 2001--November 2002
Somers, D. M.
2005-08-01
A family of quiet, thick, natural-laminar-flow airfoils, the S833, S834, and S835, for 1 - 3-meter-diameter, variable-speed/variable-pitch, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The airfoils should exhibit docile stalls, which meet the design goal. The constraints on the pitching moment and the airfoils thicknesses have been satisfied.
NASA Technical Reports Server (NTRS)
Barnwell, R. W.; Noonan, K. W.; Mcghee, R. J.
1978-01-01
Tests were conducted in the Langley low-turbulence pressure tunnel to determine the aerodynamic characteristics of climb, cruise, and landing configurations. These tests were conducted over a Mach number range from 0.10 to 0.35, a chord Reynolds number range from 2.0 x 1 million to 20.0 x 1 million, and an angle-of-attack range from -8 deg to 20 deg. Results show that the maximum section lift coefficients increased in the Reynolds number range from 2.0 x 1 million to 9.0 x 1 million and reached values of approximately 2.1, 1.8, and 1.5 for the landing, climb, and cruise configurations, respectively. Stall characteristics, although of the trailing-edge type, were abrupt. The section lift-drag ratio of the climb configuration with fixed transition near the leading edge was about 78 at a lift coefficient of 0.9, a Mach number of 0.15, and a Reynolds number of 4.0 x 1 million. Design lift coefficients of 0.9 and 0.4 for the climb and cruise configurations were obtained at the same angle of attack, about 6 deg, as intended. Good agreement was obtained between experimental results and the predictions of a viscous, attached-flow theoretical method.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
NASA Technical Reports Server (NTRS)
Ott, Eric A.
2005-01-01
Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.
On the Theory of the Unsteady Motion of an Airfoil
NASA Technical Reports Server (NTRS)
Sedov, L. I.
1947-01-01
The paper presents a systematical analysis of the problem of the determination of the unsteady motion about an airfoil moving in an infinite fluid that contains a system of vortices and the determination of the hydrodynamical forces acting on the airfoil. The hydrodynamical problem is reduced to the determination of the function f (xi) which transforms conformally the external region of the airfoil into the interior of a circle. The proposed methods of determining the irrotational motion of a fluid that is produced by any motion of the airfoil are especially simple and effective if the function f (xi) is rational. As an example the flow is determined for the case of an arbitrary motion of an airfoil of the Joukowsky type. The formulas obtained for the determination of the hydrodynamical forces by means of contour integration are similar to those given by S. Chaplygin. These formulas are used to determine the force acting on the airfoil in the cases where the unsteady motion is potential throughout and the circulation about the airfoil is constant and also when the fluid contains a system of vortices. A full discussion is given of the concept of virtual masses together with practical formulas for computing the virtual mass coefficients.
Airfoil Ice-Accretion Aerodynamics Simulation
NASA Technical Reports Server (NTRS)
Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.
2007-01-01
NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.
Aerodynamic Simulation of Ice Accretion on Airfoils
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel
2011-01-01
This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.
An Exploratory Investigation of a Slotted, Natural-Laminar-Flow Airfoil
NASA Technical Reports Server (NTRS)
Somers, Dan M.
2012-01-01
A 15-percent-thick, slotted, natural-laminar-flow (SNLF) airfoil, the S103, for general aviation applications has been designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a rapid stall, which does not meet the design goal. Comparisons of the theoretical and experimental results show good agreement. Comparison with the baseline, NASA NLF(1)-0215F airfoil confirms the achievement of the objectives.
An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications
NASA Astrophysics Data System (ADS)
Murphy, Jeffery T.; Hu, Hui
2010-08-01
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C = 58,000-125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.
NASA Technical Reports Server (NTRS)
Nicks, Oran W.; Korkan, Kenneth D.
1991-01-01
Two reports on student activities to determine the properties of a new laminar airfoil which were delivered at a conference on soaring technology are presented. The papers discuss a wind tunnel investigation and analysis of the SM701 airfoil and verification of the SM701 airfoil aerodynamic charcteristics utilizing theoretical techniques. The papers are based on a combination of analytical design, hands-on model fabrication, wind tunnel calibration and testing, data acquisition and analysis, and comparison of test results and theory.
2011-05-13
sound production from a hydrofoil and identified three mechanisms: (1) low frequency curvature noise associated with interaction of a turbulent...2002). 2 Technical Approach A two-dimensional, dual-slotted, elliptic circulation control airfoil based on the hydrofoil studied by Rogers...airfoil, shown in Figure 1A, is designed based on the geometry of the hydrofoil previously studied by Rogers & Donnelly (2004). The airfoil’s profile
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1983-01-01
The method of complex characteristics and hodograph transformation for the design of shockless airfoils was extended to design supercritical cascades with high solidities and large inlet angles. This capability was achieved by introducing a conformal mapping of the hodograph domain onto an ellipse and expanding the solution in terms of Tchebycheff polynomials. A computer code was developd based on this idea. A number of airfoils designed with the code are presented. Various supercritical and subcritical compressor, turbine and propeller sections are shown. The lag-entrainment method for the calculation of a turbulent boundary layer was incorporated to the inviscid design code. The results of this calculation are shown for the airfoils described. The elliptic conformal transformation developed to map the hodograph domain onto an ellipse can be used to generate a conformal grid in the physical domain of a cascade of airfoils with open trailing edges with a single transformation. A grid generated with this transformation is shown for the Korn airfoil.
NASA Technical Reports Server (NTRS)
Chen, A. W.
1971-01-01
Optimum airfoils in the sense of maximum lift coefficient are obtained by a newly developed method. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution consists of a uniform stagnation pressure on the lower surface, a uniform minimum pressure on the upper surface immediately downstream of the front stagnation point followed by a Stratford zero skin friction pressure rise. When multiple-element airfoils are under consideration, this optimum pressure distribution appears on every element. The parameters used to specify the pressure distribution on each element are the Reynolds number and the normalized trailing edge velocity. The newly developed method of design computes the velocity distribution on a given airfoil and modifies the airfoil contour in a systematic manner until the desired velocity distribution is achieved. There are no limitations on how many elements the airfoil to be designed can have.
Lift enhancing tabs for airfoils
NASA Technical Reports Server (NTRS)
Ross, James C. (Inventor)
1994-01-01
A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.
Flow Visualization of Dynamic Stall on an Oscillating Airfoil
1989-09-01
Dynamic Stall; Dynamic lift, ’Unsteady lift; Helicopter retreating blade stall; Oscillating airfoil ; Flow visualization,’Schlieren method ;k ez.S-,’ .0...the degree of MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September 1989 Author...and moment behavior is quite different from the static stall associated with fixed-wing airfoils . Helicopter retreating blade stall is a dynamic
Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise
NASA Technical Reports Server (NTRS)
2010-01-01
Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.
1993-08-01
desirability of a rotation as a function of the set of planar angles. Criteria for the symmetry of the design (such as the same set of factor levels for...P is -1. Hence there is no theoretical problem in obtaining rotations of a design; there are only the practical questions Why rotate a design? And...star points, which can be represented in a shorthand notation by the permutations of (±1,0, "’" , 0), and (c) factorial points, which are a two- level
Passive Boundary Layer Separation Control on a NACA2415 Airfoil at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
Parikh, Agastya; Hultmark, Marcus
2016-11-01
The design and analysis of a passive flow control system for a NACA2415 airfoil is undertaken. There exists a vast body of knowledge on airfoil boundary layer control with the use of controlled mass flux, but there is little work investigating passive mass flux-based methods. A simple duct system that uses the upper surface pressure gradient to force blowing near the leading edge and suction near the trailing edge is proposed and evaluated. 2D RANS analyses at Rec 1 . 27 ×106 were used to generate potential configurations for experimental tests. Initial computational results suggest drag reductions of approximately 2 - 7 % as well as lift increases of 4 - 5 % at α = 10 .0° and α = 12 .5° . A carbon composite-aluminum structure model that implements the most effective configurations, according to the CFD predictions, has been designed and fabricated. Experiments are being performed to evaluate the CFD results and the feasibility the duct system.
Tests of related forward-camber airfoils in the variable-density wind tunnel
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Pinkerton, Robert M; Greenberg, Harry
1937-01-01
A recent investigation of numerous related airfoils indicated that positions of camber forward of the usual location resulted in an increase of the maximum lift. As an extension of this investigation, a series of forward-camber airfoils has been developed, the members of which show airfoil characteristics superior to those of the airfoils previously investigated. The primary object of this report is to present fully corrected results for airfoils in the useful range of shapes. With the data thus made available, an airplane designer may intelligently choose the best possible airfoil-section shape for a given application and may predict to a reasonable degree the aerodynamic characteristics to be expected in flight from the section shape chosen.
Gradient-based optimum aerodynamic design using adjoint methods
NASA Astrophysics Data System (ADS)
Xie, Lei
2002-09-01
Continuous adjoint methods and optimal control theory are applied to a pressure-matching inverse design problem of quasi 1-D nozzle flows. Pontryagin's Minimum Principle is used to derive the adjoint system and the reduced gradient of the cost functional. The properties of adjoint variables at the sonic throat and the shock location are studied, revealing a log-arithmic singularity at the sonic throat and continuity at the shock location. A numerical method, based on the Steger-Warming flux-vector-splitting scheme, is proposed to solve the adjoint equations. This scheme can finely resolve the singularity at the sonic throat. A non-uniform grid, with points clustered near the throat region, can resolve it even better. The analytical solutions to the adjoint equations are also constructed via Green's function approach for the purpose of comparing the numerical results. The pressure-matching inverse design is then conducted for a nozzle parameterized by a single geometric parameter. In the second part, the adjoint methods are applied to the problem of minimizing drag coefficient, at fixed lift coefficient, for 2-D transonic airfoil flows. Reduced gradients of several functionals are derived through application of a Lagrange Multiplier Theorem. The adjoint system is carefully studied including the adjoint characteristic boundary conditions at the far-field boundary. A super-reduced design formulation is also explored by treating the angle of attack as an additional state; super-reduced gradients can be constructed either by solving adjoint equations with non-local boundary conditions or by a direct Lagrange multiplier method. In this way, the constrained optimization reduces to an unconstrained design problem. Numerical methods based on Jameson's finite volume scheme are employed to solve the adjoint equations. The same grid system generated from an efficient hyperbolic grid generator are adopted in both the Euler flow solver and the adjoint solver. Several
Study of the TRAC Airfoil Table Computational System
NASA Technical Reports Server (NTRS)
Hu, Hong
1999-01-01
The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.
Technology for pressure-instrumented thin airfoil models
NASA Technical Reports Server (NTRS)
Wigley, David A.
1988-01-01
A novel method of airfoil model construction was developed. This Laminated Sheet technique uses 0.8 mm thick sheets of A286 containing a network of pre-formed channels which are vacuum brazed together to form the airfoil. A 6.25 percent model of the X29A canard, which has a 5 percent thick section, was built using this technique. The model contained a total of 96 pressure orifices, 56 in three chordwise rows on the upper surface and 37 in three similar rows on the lower surface. It was tested in the NASA Langley 0.3 m Transonic Cryogenic Tunnel. Unique aerodynamic data was obtained over the full range of temperature and pressure. Part of the data was at transonic Mach numbers and flight Reynolds number. A larger two dimensional model of the NACA 64a-105 airfoil section was also fabricated. Scale up presented some problems, but a testable airfoil was fabricated.
NASA Technical Reports Server (NTRS)
Erwin, John R; Yacobi, Laura A
1953-01-01
A method was devised for estimating the incompressible-flow pressure distribution over compressor blade sections at design angle of attack. The theoretical incremental velocities due to camber and thickness of the section as an isolated airfoil are assumed proportional to the average passage velocity and are modified by empirically determined interference factors. Comparisons were made between estimated and test pressure distributions of NACA 65-series sections for typical conditions. Good agreement was obtained.
NASA Technical Reports Server (NTRS)
Hartman, Edwin P; Biermann, David
1938-01-01
Aerodynamic tests were made of seven full-scale 10-foot-diameter propellers of recent design comprising three groups. The first group was composed of three propellers having Clark y airfoil sections and the second group was composed of three propellers having R.A.F. 6 airfoil sections, the propellers of each group having 2, 3, and 4 blades. The third group was composed of two propellers, the 2-blade propeller taken from the second group and another propeller having the same airfoil section and number of blades but with the width and thickness 50 percent greater. The tests of these propellers reveal the effect of changes in solidity resulting either from increasing the number of blades or from increasing the blade width propeller design charts and methods of computing propeller thrust are included.
Applications of a direct/iterative design method to complex transonic configurations
NASA Technical Reports Server (NTRS)
Smith, Leigh Ann; Campbell, Richard L.
1992-01-01
The current study explores the use of an automated direct/iterative design method for the reduction of drag in transport configurations, including configurations with engine nacelles. The method requires the user to choose a proper target-pressure distribution and then develops a corresponding airfoil section. The method can be applied to two-dimensional airfoil sections or to three-dimensional wings. The three cases that are presented show successful application of the method for reducing drag from various sources. The first two cases demonstrate the use of the method to reduce induced drag by designing to an elliptic span-load distribution and to reduce wave drag by decreasing the shock strength for a given lift. In the second case, a body-mounted nacelle is added and the method is successfully used to eliminate increases in wing drag associated with the nacelle addition by designing to an arbitrary pressure distribution as a result of the redesigning of a wing in combination with a given underwing nacelle to clean-wing, target-pressure distributions. These cases illustrate several possible uses of the method for reducing different types of drag. The magnitude of the obtainable drag reduction varies with the constraints of the problem and the configuration to be modified.
Symmetric airfoil geometry effects on leading edge noise.
Gill, James; Zhang, X; Joseph, P
2013-10-01
Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.
NASA Astrophysics Data System (ADS)
Zhou, Ying
2011-12-01
The development of the high-order accuracy spectral difference (SD) method on hexahedral mesh and its applications in aeroacoustic and aerodynamic problems are carried out in this work. Two absorbing boundary conditions, the absorbing sponge zone and the perfectly matched layer, are developed and implemented for the SD method discretizing the Euler and Navier-Stokes equations on unstructured grids. The performance of both boundary conditions is evaluated and compared with the characteristic boundary condition for a variety of benchmark problems including vortex and acoustic wave propagations. The applications of the perfectly matched layer technique in the numerical simulations of unsteady problems with complex geometries are also presented to demonstrate its capability. Numerical simulations of the low-Reynolds number (Re = 104 ˜ 105) flows over a SD7003 airfoil at moderate incidences (<10°) are performed. A low-frequency convective instability is observed to dominate the spectrum near the leading edge and be responsible for the growth of the disturbance in the attached boundary layer. The characteristic frequency, the growth rate and the wave shape are investigated based on the numerical results. The growth of the low-frequency instability is not in agreement with parallel flow stability theory, nor with leading edge receptivity theory. And it has a higher growth rate than the Tollmien-Schlichting (T-S) wave. The effects of the angle-of-attack (AoA), the Reynolds number and the airfoil geometry on the low-frequency instability are investigated and discussed. The mechanisms in the breakdown process are investigated and discussed. It is observed that the breakdown of the shedding vortices starts at approximately the location with the maximum negative streamwise flow velocity. And the reverse flow in the separation region directly triggers the generation of three dimensional disturbances and the streamwise vorticities. In addition, the secondary instability which
Aircraft digital control design methods
NASA Technical Reports Server (NTRS)
Powell, J. D.; Parsons, E.; Tashker, M. G.
1976-01-01
Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.
NASA Technical Reports Server (NTRS)
Harris, C. D.; Mcghee, R. J.; Allison, D. O.
1980-01-01
The low speed aerodynamic characteristics of a 14 percent thick supercritical airfoil are documented. The wind tunnel test was conducted in the Low Turbulence Pressure Tunnel. The effects of varying chord Reynolds number from 2,000,000 to 18,000,000 at a Mach number of 0.15 and the effects of varying Mach number from 0.10 to 0.32 at a Reynolds number of 6,000,000 are included.
Computational Methods for Aerodynamic Design (Inverse) and Optimization
1990-01-01
Airfoils with Given Velocity Distribution in Incompressible Flow," J. Aircraft, Vol. 10, 1973, pp. 651-659. 7. Polito, L., "Un Metodo Esatto -per 11 Progetto...and the Simpson rule. Using a panel arrangement method with properly increased panel deusity in regions with comparatively large rv -variations, use of
Computer programs for smoothing and scaling airfoil coordinates
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.
1983-01-01
Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.
Airfoil nozzle and shroud assembly
Shaffer, J.E.; Norton, P.F.
1997-06-03
An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.
Airfoil nozzle and shroud assembly
Shaffer, James E.; Norton, Paul F.
1997-01-01
An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.
Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Wei, Y.; Li, C.
2013-12-01
The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT.
Aerodynamic properties of thick airfoils II
NASA Technical Reports Server (NTRS)
Norton, F H; Bacon, D L
1923-01-01
This investigation is an extension of NACA report no. 75 for the purpose of studying the effect of various modifications in a given wing section, including changes in thickness, height of lower camber, taper in thickness, and taper in plan form with special reference to the development of thick, efficient airfoils. The method consisted in testing the wings in the NACA 5-foot wind tunnel at speeds up to 50 meters (164 feet) per second while they were being supported on a new type of wire balance. Some of the airfoils developed showed results of great promise. For example, one wing (no. 81) with a thickness in the center of 4.5 times that of the U. S. A. 16 showed both uniformly high efficiency and a higher maximum lift than this excellent section. These thick sections will be especially useful on airplanes with cantilever construction. (author)
Downwash and Wake Behind Plain and Flapped Airfoils
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S; Bullivant, W Kenneth
1939-01-01
Extensive experimental measurements have been made of the downwash angles and the wake characteristics behind airfoils with and without flaps and the data have been analyzed and correlated with the theory. A detailed study was made of the errors involved in applying lifting-line theory, such as the effects of a finite wing chord, the rolling-up of the trailing vortex sheet, and the wake. The downwash angles, as computed from the theoretical span load distribution by means of the Biot-Savart equation, were found to be in satisfactory agreement with the experimental results. The rolling-up of the trailing vortex sheet may be neglected, but the vertical displacement of the vortex sheet requires consideration. By the use of a theoretical treatment indicated by Prandtl, it has been possible to generalize the available experimental results so the predictions can be made of the important wake parameters in terms of the distance behind the airfoil trailing edge and the profile-drag coefficient. The method of application of the theory to design and the satisfactory agreement between predicted and experimental results when applied to an airplane are demonstrated.
Pressure Distribution Over Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Dryden, H L
1927-01-01
This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.
Development of panel methods for subsonic analysis and design
NASA Technical Reports Server (NTRS)
Bristow, D. R.
1980-01-01
Two computer programs, developed for subsonic inviscid analysis and design are described. The first solves arbitrary mixed analysis design problems for multielement airfoils in two dimensional flow. The second calculates the pressure distribution for arbitrary lifting or nonlifting three dimensional configurations. In each program, inviscid flow is modelled by using distributed source doublet singularities on configuration surface panels. Numerical formulations and representative solutions are presented for the programs.
Nozzle airfoil having movable nozzle ribs
Yu, Yufeng Phillip; Itzel, Gary Michael
2002-01-01
A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.
Boundary Layer Control on Airfoils.
ERIC Educational Resources Information Center
Gerhab, George; Eastlake, Charles
1991-01-01
A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)
Second Stage Turbine Bucket Airfoil.
Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward
2003-05-06
The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
Flatback airfoil wind tunnel experiment.
Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.
2008-04-01
A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.
NASA Technical Reports Server (NTRS)
Street, William G; Ames, Milton B
1939-01-01
Pressure-distribution tests of an N.A.C.A. 0009 airfoil with a 50-percent-chord plain flap and three plain tabs, having chords 10, 20, and 30 percent of the flap chord, were made in the N.A.C.A. 4- by 6- foot vertical tunnel. The tests supplied aerodynamic section data that may be applied to the design of horizontal and vertical tail surfaces. The results are presented as resultant-pressure diagrams for the airfoil with the flap and the 20-percent-chord tab. Plots are also given of increments of normal-force and hinge-moment coefficients for the airfoil, the flap, and the three tabs. The experimental results and values computed by analytical methods are in good agreement for small flap and tab deflections. The results of the tests indicated that the effectiveness of all three tab sizes in reducing flap hinge moments decreased with increasing flap deflection.
Linearized propulsion theory of flapping airfoils revisited
NASA Astrophysics Data System (ADS)
Fernandez-Feria, R.
2016-12-01
A vortical impulse theory is used to compute the thrust force of a plunging and pitching airfoil in forward flight at high Reynolds numbers within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick, which considered only two effects, the leading-edge suction and the projection in the flight direction of the pressure force on the airfoil. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains, in addition to the pressure force projection term, a new term that generalizes the leading-edge suction term in Garrick's theory. This term depends on Theodorsen function C (k ) and on a new complex function C1(k ) of the reduced frequency k . The main qualitative difference with Garrick's theory is that the propulsive efficiency, or ratio of the mean thrust power and the mean input power required to drive the airfoil, tends to zero as the reduced frequency increases to infinity (as k-1), in contrast to Garrick's propulsive efficiency that tends to a constant (1 /2 ). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k →∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining nondimensional parameters. The present analytical results are in good agreement, for small amplitude oscillations, with numerical results from unsteady panel methods, and with experimental data and numerical results from the Navier-Stokes equations, except for small reduced frequencies where viscous effects are obviously important.
Characterization of dynamic stall on 9-15 % thick airfoils using experiment and computation
NASA Astrophysics Data System (ADS)
Davidson, Phillip B.
In recent years, the blade geometry on wind turbines and helicopters has been optimized for a particular span location. Unsteady flow phenomena like dynamic stall limit these designs and need to be better understood and correctly simulated. Currently, empirical and computational fluid dynamics (CFD) methods are used to simulate rotating wind turbine or helicopter blades, but each of these methods has limitations in predicting unsteady separated flows. To address these needs, the present work investigated oscillating airfoils over a range of conditions with an approach that provided fast, low-cost unsteady pressure data combined with a highly resolved flow field to better understand the physics of dynamic stall. An additional objective was to show how such data may be used to assess CFD simulations. This research has yielded interesting results showing characteristics of thin airfoil stall, leading edge stall, and trailing edge stall that were sorted and classified. Classification of the oscillating airfoil behavior with or without dynamic stall was performed using previous definitions for stall regime, separation characteristics, and other qualitative differences in stall pattern. After classifying the unsteady flow for each of the cases, comparison of experimental results and results obtained using an unsteady Reynolds Averaged Navier-Stokes (URANS) solver was performed to assess the ability of the solver to produce the same unsteady effects. Although both experiment and computation produced similar flow features, the timing and magnitude of the features in the dynamic stall and re-attachment process of the pitching cycle exhibited some significant differences.
Recent progress in the analysis of iced airfoils and wings
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue
1992-01-01
Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
The Method of Complex Characteristics for Design of Transonic Compressors.
NASA Astrophysics Data System (ADS)
Bledsoe, Margaret Randolph
We calculate shockless transonic flows past two -dimensional cascades of airfoils characterized by a prescribed speed distribution. The approach is to find solutions of the partial differential equation (c('2)-u('2)) (PHI)(,xx) - 2uv (PHI)(,xy) + (c('2)-v('2)) (PHI)(,yy) = 0 by the method of complex characteristics. Here (PHI) is the velocity potential, so (DEL)(PHI) = (u,v), and c is the local speed of sound. Our method consists in noting that the coefficients of the equation are analytic, so that we can use analytic continuation, conformal mapping, and a spectral method in the hodograph plane to determine the flow. After complex extension we obtain canonical equations for (PHI) and for the stream function (psi) as well as an explicit map from the hodograph plane to complex characteristic coordinates. In the subsonic case, a new coordinate system is defined in which the flow region corresponds to the interior of an ellipse. We construct special solutions of the flow equations in these coordinates by solving characteristic initial value problems in the ellipse with initial data defined by the complete system of Chebyshev polynomials. The condition (psi) = 0 on the boundary of the ellipse is used to determine the series representation of (PHI) and (psi). The map from the ellipse to the complex flow coordinates is found from data specifying the speed q as a function of the arc length s. The transonic problem for shockless flow becomes well posed after appropriate modifications of this procedure. The nonlinearity of the problem is handled by an iterative method that determines the boundary value problem in the ellipse and the map function in sequence. We have implemented this method as a computer code to design two-dimensional cascades of shockless compressor airfoils with gap-to-chord ratios as low as .5 and supersonic zones on both the upper and lower surfaces. The method may be extended to solve more general boundary value problems for second order partial
Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil
NASA Astrophysics Data System (ADS)
Kryštůfek, P.; Kozel, K.
2014-03-01
The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.
A study of test section configuration for shock tube testing of transonic airfoils
NASA Technical Reports Server (NTRS)
Cook, W. J.
1978-01-01
Two methods are investigated for alleviating wall interference effects in a shock tube test section intended for testing two-dimensional transonic airfoils. The first method involves contouring the test section walls to match approximate streamlines in the flow. Contours are matched to each airfoil tested to produce results close to those obtained in a conventional wind tunnel. Data from a previous study and the present study for two different airfoils demonstrate that useful results are obtained in a shock tube using a test section with contoured walls. The second method involves use of a fixed-geometry slotted-wall test section to provide automatic flow compensation for various airfoils. The slotted-wall test section developed exhibited the desired performance characteristics in the approximate Mach number range 0.82 to 0.89, as evidenced by good agreement obtained between shock tube and wind tunnel results for several airfoil flows.
An improved viscid/inviscid interaction procedure for transonic flow over airfoils
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.
1985-01-01
A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.
Numerical modeling of aerodynamics of airfoils of micro air vehicles in gusty environment
NASA Astrophysics Data System (ADS)
Gopalan, Harish
The superior flight characteristics exhibited by birds and insects can be taken as a prototype of the most perfect form of flying machine ever created. The design of Micro Air Vehicles (MAV) which tries mimic the flight of birds and insects has generated a great deal of interest as the MAVs can be utilized for a number of commercial and military operations which is usually not easily accessible by manned motion. The size and speed of operation of a MAV results in low Reynolds number flight, way below the flying conditions of a conventional aircraft. The insensitivity to wind shear and gust is one of the required factors to be considered in the design of airfoil for MAVs. The stability of flight under wind shear is successfully accomplished in the flight of birds and insects, through the flapping motion of their wings. Numerous studies which attempt to model the flapping motion of the birds and insects have neglected the effect of wind gust on the stability of the motion. Also sudden change in flight conditions makes it important to have the ability to have an instantaneous change of the lift force without disturbing the stability of the MAV. In the current study, two dimensional rigid airfoil, undergoing flapping motion is studied numerically using a compressible Navier-Stokes solver discretized using high-order finite difference schemes. The high-order schemes in space and in time are needed to keep the numerical solution economic in terms of computer resources and to prevent vortices from smearing. The numerical grid required for the computations are generated using an inverse panel method for the streamfunction and potential function. This grid generating algorithm allows the creation of single-block orthogonal H-grids with ease of clustering anywhere in the domain and the easy resolution of boundary layers. The developed numerical algorithm has been validated successfully against benchmark problems in computational aeroacoustics (CAA), and unsteady viscous
A supercritical airfoil experiment
NASA Technical Reports Server (NTRS)
Mateer, G. G.; Seegmiller, H. L.; Hand, L. A.; Szodruck, J.
1994-01-01
The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.
NASA Technical Reports Server (NTRS)
Kohl, F. J.
1982-01-01
The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.
NASA Astrophysics Data System (ADS)
Nikoueeyan, Pourya; Magstadt, Andrew; Strike, John; Hind, Michael; Naughton, Jonathan
2014-11-01
To reduce the cost of energy, wind turbine design has moved towards larger blades that are heavier and have lower relative structural stiffness compared to shorter blades. To address the lower blade stiffness, different flow control techniques have been considered. The Gurney flap, a small, low-cost and effective control method, is a promising control actuator. Wind tunnel testing has been performed on a DU97-W-300 10% flatback airfoil undergoing dynamic pitching relevant to flow conditions encountered by wind turbine blades. To mimic blade compliance, the airfoil is actively driven through a torsionally elastic element. Time-resolved surface pressure measurements have been acquired from which lift Cl and moment Cm coefficients were calculated. Changes in Cl and Cm in moderate and deep dynamic stall regimes for different Gurney flap heights were studied for different pitch drive conditions (amplitude and frequency). The results show the significant impact of compliance on the angle of attack (α) range experienced by the airfoil. Shifts in α range result in different hysteresis behavior in both Cl and Cm and demonstrate the effectiveness of the Gurney flap in modifying the aerodynamics of wind turbine blades experiencing dynamic pitching. This work supported by DOE and a gift from BP.
NASA Astrophysics Data System (ADS)
Řidký, V.; Šidlof, P.; Vlček, V.
2013-04-01
The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.
Stochastic Methods for Aircraft Design
NASA Technical Reports Server (NTRS)
Pelz, Richard B.; Ogot, Madara
1998-01-01
The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil - Drag equations
NASA Technical Reports Server (NTRS)
Brooks, Cuyler W., Jr.; Harris, Charles D.; Harvey, William D.
1989-01-01
The Langley Research Center has designed a swept, supercritical airfoil incorporating Laminar Flow Control for testing at transonic speeds. Analytical expressions have been developed and an evaluation made of the experimental section drag, composed of suction drag and wake drag, using theoretical design information and experimental data. The analysis shows that, although the sweep-induced boundary-layer crossflow influence on the wake drag is too large to be ignored and there is not a practical method for evaluating these crossflow effects on the experimental wake data, the conventional unswept 2-D wake-drag computation used in the reduction of the experimental data is at worst 10 percent too high.
Ice Accretions on a Swept GLC-305 Airfoil
NASA Technical Reports Server (NTRS)
Vargas, Mario; Papadakis, Michael; Potapczuk, Mark; Addy, Harold; Sheldon, David; Giriunas, Julius
2002-01-01
An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to obtain castings of ice accretions formed on a 28 deg. swept GLC-305 airfoil that is representative of a modern business aircraft wing. Because of the complexity of the casting process, the airfoil was designed with three removable leading edges covering the whole span. Ice accretions were obtained at six icing conditions. After the ice was accreted, the leading edges were detached from the airfoil and moved to a cold room. Molds of the ice accretions were obtained, and from them, urethane castings were fabricated. This experiment is the icing test of a two-part experiment to study the aerodynamic effects of ice accretions.
Aerodynamic performance of an annular classical airfoil cascade
NASA Technical Reports Server (NTRS)
Bergsten, D. E.; Stauter, R. C.; Fleeter, S.
1983-01-01
Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.
Evolving aerodynamic airfoils for wind turbines through a genetic algorithm
NASA Astrophysics Data System (ADS)
Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI
2017-01-01
Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.
Feasibility of predicting performance degradation of airfoils in heavy rain
NASA Technical Reports Server (NTRS)
Bilanin, A. J.; Quackenbush, T. R.; Feo, A.
1989-01-01
The heavy rain aerodynamic performance penalty program is detailed. This effort supported the design of a fullscale test program as well as examined the feasibility of estimating the degradation of performance of airfoils from first principles. The analytic efforts were supplemented by a droplet splashback test program in an attempt to observe the physics of impact and generation of ejecta. These tests demonstrated that the interaction of rain with an airfoil is a highly complex phenomenon and this interaction is not likely to be analyzed analytically with existing tools.
Root region airfoil for wind turbine
Tangler, James L.; Somers, Dan M.
1995-01-01
A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.
NASA Astrophysics Data System (ADS)
Zhang, Qiang
The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface
Numerical solution of periodic vortical flows about a thin airfoil
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.
1989-01-01
A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.
Supercritical flow past a symmetrical bicircular arc airfoil
NASA Technical Reports Server (NTRS)
Holt, Maurice; Yew, Khoy Chuah
1989-01-01
A numerical scheme is developed for computing steady supercritical flow about symmetrical airfoils, applying it to an ellipse for zero angle of attack. An algorithmic description of this new scheme is presented. Application to a symmetrical bicircular arc airfoil is also proposed. The flow field before the shock is region 1. For transonic flow, singularity can be avoided by integrating the resulting ordinary differential equations away from the body. Region 2 contains the shock which will be located by shock fitting techniques. The shock divides region 2 into supersonic and subsonic regions and there is no singularity problem in this case. The Method of Lines is used in this region and it is advantageous to integrate the resulting ordinary differential equation along the body for shock fitting. Coaxial coordinates have to be used for the bicircular arc airfoil so that boundary values on the airfoil body can be taken with one direction of the coaxial coordinates fixed. To avoid taking boundary values at + or - infinity in the coaxial co-ordinary system, approximate analytical representation of the flow field near the tips of the airfoil is proposed.
Design method of supercavitating pumps
NASA Astrophysics Data System (ADS)
Kulagin, V.; Likhachev, D.; Li, F. C.
2016-05-01
The problem of effective supercavitating (SC) pump is solved, and optimum load distribution along the radius of the blade is found taking into account clearance, degree of cavitation development, influence of finite number of blades, and centrifugal forces. Sufficient accuracy can be obtained using the equivalent flat SC-grid for design of any SC-mechanisms, applying the “grid effect” coefficient and substituting the skewed flow calculated for grids of flat plates with the infinite attached cavitation caverns. This article gives the universal design method and provides an example of SC-pump design.
Airfoil Section Characteristics as Affected by Variations of the Reynolds Number
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Sherman, Albert
1937-01-01
Report presents the results of an investigation of a systematically chosen representative group of related airfoils conducted in the NACA variable-density wind tunnel over a wide range of Reynolds number extending well into the flight range. The tests were made to provide information from which the variations of airfoil section characteristics with changes in the Reynolds number could be inferred and methods of allowing for these variations in practice could be determined. This work is one phase of an extensive and general airfoil investigation being conducted in the variable-density tunnel and extends the previously published researches concerning airfoil characteristics as affected by variations in airfoil profile determined at a single value of the Reynolds number.
Hook nozzle arrangement for supporting airfoil vanes
Shaffer, James E.; Norton, Paul F.
1996-01-01
A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.
SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions
NASA Technical Reports Server (NTRS)
Robinson, R. Craig; Hatton, Kenneth S.
1999-01-01
Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.
Dynamic Stall Characteristics of Drooped Leading Edge Airfoils
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen
2000-01-01
Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.
Direct Numerical Simulations of Plunging Airfoils
2010-01-07
Schmidt and E Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, AIAA paper 81-1259...Ω ( p ∂vj ∂xj − σij ∂v i ∂xj ) dV (4) Definition 1 A numerical scheme to solve the viscous Navier-Stokes equations is said to be Kinetic Energy...Direct Numerical Simulations of Plunging Airfoils Yves Allaneau∗ and Antony Jameson† Stanford University, Stanford, California, 94305, USA This paper
Aspects of Numerical Simulation of Circulation Control Airfoils
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rumsey, C. L.; Anders, S. G.
2005-01-01
The mass-averaged compressible Navier-Stokes equations are solved for circulation control airfoils. Numerical solutions are computed with a multigrid method that uses an implicit approximate factorization smoother. The effects of flow conditions (e.g., free-stream Mach number, angle of attack, momentum coefficient) and mesh on the prediction of circulation control airfoil flows are considered. In addition, the impact of turbulence modeling, including curvature effects and modifications to reduce eddy viscosity levels in the wall jet (i.e., Coanda flow), is discussed. Computed pressure distributions are compared with available experimental data.
Adjoint-based airfoil shape optimization in transonic flow
NASA Astrophysics Data System (ADS)
Gramanzini, Joe-Ray
The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.
Pneumatic Spoiler Controls Airfoil Lift
NASA Technical Reports Server (NTRS)
Hunter, D.; Krauss, T.
1991-01-01
Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.
A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis
NASA Technical Reports Server (NTRS)
Steen, Gregory Glen
1994-01-01
Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.
A numerical method for relating two- and three-dimensional pressure distributions on transonic wings
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Van Der Velden, Alexander J. M.
1990-01-01
This paper presents a preliminary design method for determining a wing's design pressure distribution and geometry based on airfoil normal Mach numbers and airfoil loading. In this method, the perturbation velocities in supercritical regions are computed from airfoil transonic normal Mach numbers and include the influence of local sweep, taper, and three-dimensional induced velocities, so that the appearance and strength of shocks can be expected to resemble those of the airfoil. The velocities in subcritical wing regions are scaled first with simple sweep theory, and then to achieve the desired load distribution. The method was applied to the design of an oblique flying wing, using a linear potential method. The required wing area could be reduced by 14 percent using this method rather than simple sweep theory.
NASA Astrophysics Data System (ADS)
Leroy, A.; Braud, C.; Baleriola, S.; Loyer, S.; Devinant, P.; Aubrun, S.
2016-09-01
In order to reduce the aerodynamic load fluctuations on wind turbine blades by innovative control solutions, strategies of active circulation control acting at the blade airfoil trailing edge are studied, allowing lift increase and decrease. This study presents a comparison of results obtained by performing surface plasma and continuous fluidic jet actuation on a blade airfoil designed with a rounded trailing edge. In the present study, both actuator types are located at the trailing edge. Plasma actuators act uniformly in the spanwise direction, whereas fluidic jets blow through small squared holes distributed along the span, and therefore, provide a three-dimensional action on the flow. Load and velocity field measurements were performed to assess the effectiveness of both actuators and to highlight the flow mechanisms induced by both actuation methods for lift-up configurations. Results are presented for a chord Reynolds number of 2. 105 and for a lift coefficient increase of 0.06.
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1988-01-01
A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.
Modification of k-ω turbulence model for predicting airfoil aerodynamic performance
NASA Astrophysics Data System (ADS)
Peng, Bo; Yan, Hao; Fang, Hong; Wang, Ming
2015-06-01
Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfoil is conducted with k-ω turbulence model at different attack angles. By comparing with experimental data, a new method of modifying k-ω model is proposed. A modifying function is proposed to limit the production term in ω equation based on fluid rotation and deformation. This method improves turbulent viscosity and decreases separating region when the airfoil works at large separating conditions. The predictive accuracy could be improved by using the modified k-ω turbulence model.
On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors
NASA Astrophysics Data System (ADS)
Winstroth, J.; Seume, J. R.
2016-09-01
The manufacture of large wind turbine rotor blades is a difficult task that still involves a certain degree of manual labor. Due to the complexity, airfoil deviations between the design airfoils and the manufactured blade are certain to arise. Presently, the understanding of the impact of manufacturing uncertainties on the aerodynamic performance is still incomplete. The present work analyzes the influence of a series of airfoil deviations likely to occur during manufacturing by means of Computational Fluid Dynamics and the aeroelastic code FAST. The average power production of the NREL 5MW wind turbine is used to evaluate the different airfoil deviations. Analyzed deviations include: Mold tilt towards the leading and trailing edge, thick bond lines, thick bond lines with cantilever correction, backward facing steps and airfoil waviness. The most severe influences are observed for mold tilt towards the leading and thick bond lines. By applying the cantilever correction, the influence of thick bond lines is almost compensated. Airfoil waviness is very dependent on amplitude height and the location along the surface of the airfoil. Increased influence is observed for backward facing steps, once they are high enough to trigger boundary layer transition close to the leading edge.
The method of complex characteristics for design of transonic blade sections
NASA Technical Reports Server (NTRS)
Bledsoe, M. R.
1986-01-01
A variety of computational methods were developed to obtain shockless or near shockless flow past two-dimensional airfoils. The approach used was the method of complex characteristics, which determines smooth solutions to the transonic flow equations based on an input speed distribution. General results from fluid mechanics are presented. An account of the method of complex characteristics is given including a description of the particular spaces and coordinates, conformal transformations, and numerical procedures that are used. The operation of the computer program COMPRES is presented along with examples of blade sections designed with the code. A user manual is included with a glossary to provide additional information which may be helpful. The computer program in Fortran, including numerous comment cards is listed.
On the effect of leading edge blowing on circulation control airfoil aerodynamics
NASA Technical Reports Server (NTRS)
Mclachlan, B. G.
1987-01-01
In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.
Decomposing the aerodynamic forces of low-Reynolds flapping airfoils
NASA Astrophysics Data System (ADS)
Moriche, Manuel; Garcia-Villalba, Manuel; Flores, Oscar
2016-11-01
We present direct numerical simulations of flow around flapping NACA0012 airfoils at relatively small Reynolds numbers, Re = 1000 . The simulations are carried out with TUCAN, an in-house code that solves the Navier-Stokes equations for an incompressible flow with an immersed boundary method to model the presence of the airfoil. The motion of the airfoil is composed of a vertical translation, heaving, and a rotation about the quarter of the chord, pitching. Both motions are prescribed by sinusoidal laws, with a reduced frequency of k = 1 . 41 , a pitching amplitude of 30deg and a heaving amplitude of one chord. Both, the mean pitch angle and the phase shift between pitching and heaving motions are varied, to build a database with 18 configurations. Four of these cases are analysed in detail using the force decomposition algorithm of Chang (1992) and Martín Alcántara et al. (2015). This method decomposes the total aerodynamic force into added-mass (translation and rotation of the airfoil), a volumetric contribution from the vorticity (circulatory effects) and a surface contribution proportional to viscosity. In particular we will focus on the second, analysing the contribution of the leading and trailing edge vortices that typically appear in these flows. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P. The authors thankfully acknowledge the computer resources provided by the Red Española de Supercomputacion.
Root region airfoil for wind turbine
Tangler, J.L.; Somers, D.M.
1995-05-23
A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.
Airfoil seal system for gas turbine engine
None, None
2013-06-25
A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.
Thin airfoil theory based on approximate solution of the transonic flow equation
NASA Technical Reports Server (NTRS)
Spreiter, John R; Alksne, Alberta Y
1958-01-01
A method is presented for the approximate solution of the nonlinear equations of transonic flow theory. Solutions are found for two-dimensional flows at a Mach number of 1 and for purely subsonic and purely supersonic flows. Results are obtained in closed analytic form for a large and significant class of nonlifting airfoils. At a Mach number of 1 general expressions are given for the pressure distribution on an airfoil of specified geometry and for the shape of an airfoil having a prescribed pressure distribution. Extensive comparisons are made with available data, particularly for a Mach number of 1, and with existing solutions.
Thin airfoil theory based on approximate solution of the transonic flow equation
NASA Technical Reports Server (NTRS)
Spreiter, John R; Alksne, Alberta Y
1957-01-01
A method is presented for the approximate solution of the nonlinear equations transonic flow theory. Solutions are found for two-dimensional flows at a Mach number of 1 and for purely subsonic and purely supersonic flows. Results are obtained in closed analytic form for a large and significant class of nonlifting airfoils. At a Mach number of 1 general expressions are given for the pressure distribution on an airfoil of specified geometry and for the shape of an airfoil having a prescribed pressure distribution. Extensive comparisons are made with available data, particularly for a Mach number of 1, and with existing solutions.
Assessment of wind tunnel corrections for multielement airfoils at transonic speeds
NASA Technical Reports Server (NTRS)
Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.
1985-01-01
A finite volume formulation of the Euler equations using Cartesian grids is used to calculate the transonic flow over multielement airfoils and to use the resulting solutions to assess wall interference effects in wind tunnels. Available methods and recommendations for evaluating such effects, which are based on shifts in Mach number and angle of attack, are examined and the results are compared with measurements using the flapped supercritical SKF 1.1 airfoil. Based on the calculations, it is concluded that shifts in Mach number and angle of attack cannot by themselves account for viscous and wall effects on multielement airfoils at transonic speeds.
Numerical analysis of bio-inspired corrugated airfoil at low Reynolds number
NASA Astrophysics Data System (ADS)
Mondal, Partha Protim; Rahman, Md. Masudur; Hasan, A. B. M. Toufique
2016-07-01
A numerical study was conducted to investigate the aerodynamic performance of a bio-inspired corrugated airfoil at the chord Reynolds number of Rec=80,000 to explore the potential advantages of such airfoils at low Reynolds numbers. This study represents the transient nature of corrugated airfoils at low Reynolds number where flow is assumed to be laminar, unsteady, incompressible and two dimensional. The simulations include a sharp interface Cartesian grid based meshing employed with laminar viscous model. The flow field surrounding the corrugated airfoil has been analyzed using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The simulated results revealed that the corrugated airfoil provides high lift with moderate drag and prevents large scale flow separation at higher angles of attack. This happens due to the negative shear drag produced by the recirculation zones which occurs in the valleys of the corrugated airfoils. The existence of small circulation bubbles sitting in the valleys prevents large scale flow separation thus increasing the aerodynamic performance of the corrugated airfoil.
Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Chengchun; Wu, Zhengyang; Wharton, James; Ren, Luquan
2017-04-01
A biomimetic airfoil featuring leading edge waves, trailing edge serrations and surface ridges is proposed in this study, based on flow control with each section meeting the NACA 0012 airfoil profile. Numerical simulations have been conducted to compare aerodynamic and acoustic performances between the NACA 0012 and biomimetic airfoils. These simulations utilize the large eddy simulation (LES) method and aeroacoustic analogy at an angle of attack of 0° and a Reynolds number of 1.0×105, based on using the airfoil chord as the characteristic length. The simulation results reveal the overall sound pressure levels (OASPLs) for all frequencies and at the seven observer points around the biomimetic airfoil, and a decrease of 13.1-13.9 dB is observed, whereas the drag coefficient is almost unchanged. The biomimetic structures can transform the shedding vortices in laminar mode for the NACA 0012 airfoil to regular horseshoe-type vortices in the wake, and reduce the spanwise correlation of the large-scale vortices, thereby restrain the vortex shedding noise around the biomimetic airfoil.
Wavy flow cooling concept for turbine airfoils
Liang, George
2010-08-31
An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.
Schooling behavior of heaving flexible airfoils
NASA Astrophysics Data System (ADS)
Im, Sunghyuk; Sung, Hyung Jin
2016-11-01
The schooling behavior of rigid and flexible NACA0017 airfoils in the heaving motion is experimentally explored in a merry-go-round equipment. The airfoil was attached to the end of a horizontal support bar whose other end was connected to the freely rotating vertical axis. The axis was forced to undergo a sinusoidal motion in the vertical direction to make a pure heaving motion of the airfoils in the frequency range of 0.5 to 5 Hz. The propulsion due to the heaving airfoils is expressed by a horizontally rotating speed of the support bar. This experimental setup is simulating infinite schooling situations of airfoils in an in-phase heaving motion with the streamwise distance d. The ratio of the distance to the chord length d/ c was determined by the number of airfoils (1 <= n <= 8) . The rotational frequency F according to the heaving frequency f was measured with different experimental parameters. The schooling number S = f /(nF), representing the number of heaving oscillations between each airfoil, was introduced to explain the schooling behavior of the airfoils. The effects of the flexibility, d/ c and f on the propulsive performance were examined with the schooling behavior of the airfoils. This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).
Techniques for modifying airfoils and fairings on aircraft using foam and fiberglass
NASA Technical Reports Server (NTRS)
Meyer, M. B.; Jiran, F.
1981-01-01
The concept of using foam and fiberglass reinforced plastic to modify airfoils and fairings was applied successfully to high-speed aircraft at NASA Dryden Flight Research Center. An on-aircraft installation method was used to modify an F-15 wing glove and wing leading edge and an F-104 flap trailing edge in support of the Shuttle tile airload tests. A combination of methods, both an on-aircraft installation and an off-aircraft fabrication for installation on the aircraft, was used to modify a section of an F-111 supercritical wing with a natural laminar flow airfoil. Techniques, methods, problem areas, and recommendations are presented which indicate that using foam and fiberglass to modify airfoils and fairings on high-speed aircraft is a viable means of quickly developing airfoils and fairings with desired aerodynamic characteristics with little risk to the parent or carrier aircraft.
Sensitivity Analysis of Chaotic Flow around Two-Dimensional Airfoil
NASA Astrophysics Data System (ADS)
Blonigan, Patrick; Wang, Qiqi; Nielsen, Eric; Diskin, Boris
2015-11-01
Computational methods for sensitivity analysis are invaluable tools for fluid dynamics research and engineering design. These methods are used in many applications, including aerodynamic shape optimization and adaptive grid refinement. However, traditional sensitivity analysis methods, including the adjoint method, break down when applied to long-time averaged quantities in chaotic fluid flow fields, such as high-fidelity turbulence simulations. This break down is due to the ``Butterfly Effect'' the high sensitivity of chaotic dynamical systems to the initial condition. A new sensitivity analysis method developed by the authors, Least Squares Shadowing (LSS), can compute useful and accurate gradients for quantities of interest in chaotic dynamical systems. LSS computes gradients using the ``shadow trajectory'', a phase space trajectory (or solution) for which perturbations to the flow field do not grow exponentially in time. To efficiently compute many gradients for one objective function, we use an adjoint version of LSS. This talk will briefly outline Least Squares Shadowing and demonstrate it on chaotic flow around a Two-Dimensional airfoil.
The influence of laminar separation and transition on low Reynolds number airfoil hysteresis
NASA Technical Reports Server (NTRS)
Mueller, T. J.
1984-01-01
An experimental study of the Lissaman 7769 and Miley MO6-13-128 airfoils at low chord Reynolds numbers is presented. Although both airfoils perform well near their design Reynolds number of about 600,000, they each produce a different type of hysteresis loop in the lift and drag forces when operated below chord Reynolds numbers of 300,000. The type of hysteresis loop was found to depend upon the relative location of laminar separation and transition. The influence of disturbance environment and experimental procedure on the low Reynolds number airfoil boundary layer behavior is also presented. The use of potential flow solutions to help predict how a given airfoil will behave at low Reynolds numbers is also discussed.
Air/water two-phase flow test tunnel for airfoil studies
NASA Astrophysics Data System (ADS)
Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.
1990-02-01
A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.
Air/water two-phase flow test tunnel for airfoil studies
NASA Astrophysics Data System (ADS)
Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.
1994-01-01
A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.
Nonlinear power flow feedback control for improved stability and performance of airfoil sections
Wilson, David G.; Robinett, III, Rush D.
2013-09-03
A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
Blaylock, Myra L.; Maniaci, David Charles; Resor, Brian R.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.
PROFILE: Airfoil Geometry Manipulation and Display. User's Guide
NASA Technical Reports Server (NTRS)
Collins, Leslie; Saunders, David
1997-01-01
This report provides user information for program PROFILE, an aerodynamics design utility for plotting, tabulating, and manipulating airfoil profiles. A dozen main functions are available. The theory and implementation details for two of the more complex options are also presented. These are the REFINE option, for smoothing curvature in selected regions while retaining or seeking some specified thickness ratio, and the OPTIMIZE option, which seeks a specified curvature distribution. Use of programs QPLOT and BPLOT is also described, since all of the plots provided by PROFILE (airfoil coordinates, curvature distributions, pressure distributions)) are achieved via the general-purpose QPLOT utility. BPLOT illustrates (again, via QPLOT) the shape functions used by two of PROFILE's options. These three utilities should be distributed as one package. They were designed and implemented for the Applied Aerodynamics Branch at NASA Ames Research Center, Moffett Field, California. They are all written in FORTRAN 77 and run on DEC and SGI systems under OpenVMS and IRIX.
Horizontal axis wind turbine post stall airfoil characteristics synthesization
NASA Technical Reports Server (NTRS)
Tangler, James L.; Ostowari, Cyrus
1995-01-01
Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction.
Propulsion of a flapping and oscillating airfoil
NASA Technical Reports Server (NTRS)
Garrick, I E
1937-01-01
Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge.
Airfoil Dynamic Stall and Rotorcraft Maneuverability
NASA Technical Reports Server (NTRS)
Bousman, William G.
2000-01-01
The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.
Measuring Lift with the Wright Airfoils
ERIC Educational Resources Information Center
Heavers, Richard M.; Soleymanloo, Arianne
2011-01-01
In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…
Airfoil shape for flight at subsonic speeds
Whitcomb, Richard T.
1976-01-01
An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.
Numerical Solution of Inviscid Compressible Steady Flows around the RAE 2822 Airfoil
NASA Astrophysics Data System (ADS)
Kryštůfek, P.; Kozel, K.
2015-05-01
The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Euler equations in 2D compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil. The results are compared with the solution using the software Ansys Fluent 15.0.7.
Input description for Jameson's three-dimensional transonic airfoil analysis program
NASA Technical Reports Server (NTRS)
Newman, P. A.; Davis, R. M.
1974-01-01
The input parameters are presented for a computer program which performs calculations for inviscid isentropic transonic flow over three dimensional airfoils with straight leading edges. The free stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where they occur in the flow. The finite difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane.
NASA Astrophysics Data System (ADS)
Manela, A.
2016-07-01
The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.
Study on the rotor design method for a small propeller-type wind turbine
NASA Astrophysics Data System (ADS)
Nishi, Yasuyuki; Yamashita, Yusuke; Inagaki, Terumi
2016-08-01
Small propeller-type wind turbines have a low Reynolds number, limiting the number of usable airfoil materials. Thus, their design method is not sufficiently established, and their performance is often low. The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines. To that end, we designed two rotors: Rotor A, based on the rotor optimum design method from the blade element momentum theory, and Rotor B, in which the chord length of the tip is extended and the chord length distribution is linearized. We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis. Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A, but the maximum output coefficient increased by approximately 38.7%. Rotors A and B experienced a large-scale separation on the hub side, which extended to the mean in Rotor A. This difference in separation had an impact on the significant decrease in Rotor A's output compared to the design value and the increase in Rotor B's output compared to Rotor A.
Turbine airfoil manufacturing technology
Kortovich, C.
1995-10-01
The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.
A transonic-small-disturbance wing design methodology
NASA Technical Reports Server (NTRS)
Phillips, Pamela S.; Waggoner, Edgar G.; Campbell, Richard L.
1988-01-01
An automated transonic design code has been developed which modifies an initial airfoil or wing in order to generate a specified pressure distribution. The design method uses an iterative approach that alternates between a potential-flow analysis and a design algorithm that relates changes in surface pressure to changes in geometry. The analysis code solves an extended small-disturbance potential-flow equation and can model a fuselage, pylons, nacelles, and a winglet in addition to the wing. A two-dimensional option is available for airfoil analysis and design. Several two- and three-dimensional test cases illustrate the capabilities of the design code.
Effects of enviromentally imposed roughness on airfoil performance
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer
1987-01-01
The experimental evidence for the effects of rain, insects, and ice on airfoil performance are examined. The extent to which the available information can be incorporated in a calculation method in terms of change of shape and surface roughness is discussed. The methods described are based on the interactive boundary layer procedure of Cebeci or on the thin layer Navier Stokes procedure developed at NASA. Cases presented show that extensive flow separation occurs on the rough surfaces.
Effects of environmentally imposed roughness on airfoil performance
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer
1987-01-01
The experimental evidence for the effects of rain, insects, and ice on airfoil performance are examined. The extent to which the available information can be incorporated in a calculation method in terms of change of shape and surface roughness is discussed. The methods described are based on the interactive boundary procedure of Cebeci or on the thin layer Navier Stokes procedure developed at NASA. Cases presented show that extensive flow separation occurs on the rough surfaces.
SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.
2008-01-01
The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.
Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil
NASA Technical Reports Server (NTRS)
Sorenson, R. L.
1982-01-01
Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.
Experimental design methods for bioengineering applications.
Keskin Gündoğdu, Tuğba; Deniz, İrem; Çalışkan, Gülizar; Şahin, Erdem Sefa; Azbar, Nuri
2016-01-01
Experimental design is a form of process analysis in which certain factors are selected to obtain the desired responses of interest. It may also be used for the determination of the effects of various independent factors on a dependent factor. The bioengineering discipline includes many different areas of scientific interest, and each study area is affected and governed by many different factors. Briefly analyzing the important factors and selecting an experimental design for optimization are very effective tools for the design of any bioprocess under question. This review summarizes experimental design methods that can be used to investigate various factors relating to bioengineering processes. The experimental methods generally used in bioengineering are as follows: full factorial design, fractional factorial design, Plackett-Burman design, Taguchi design, Box-Behnken design and central composite design. These design methods are briefly introduced, and then the application of these design methods to study different bioengineering processes is analyzed.
Study of a new airfoil used in reversible axial fans
NASA Technical Reports Server (NTRS)
Li, Chaojun; Wei, Baosuo; Gu, Chuangang
1991-01-01
The characteristics of the reverse ventilation of axial flow are analyzed. An s shaped airfoil with a double circular arc was tested in a wind tunnel. The experimental results showed that the characteristics of this new airfoil in reverse ventilation are the same as those in normal ventilation, and that this airfoil is better than the existing airfoils used on reversible axial fans.
Airfoil flutter model suspension system
NASA Technical Reports Server (NTRS)
Reed, Wilmer H. (Inventor)
1987-01-01
A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.
Structural response of a fiber composite compressor fan blade airfoil
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Minich, M. D.
1975-01-01
A theoretical investigation was performed to determine the structural response of a fiber composite airfoil typical of those encountered in high-tip speed compressor fan blades when subjected to load conditions anticipated in such applications. The analysis method consisted of composite mechanics embedded in pre- and post-processors coupled with NASTRAN. The load conditions examined include thermal due to aerodynamic heating, pressure due to aerodynamic forces, and centrifugal. Root reactions due to various load conditions, average composite and ply stresses, ply delaminations, and the fundamental modes and the corresponding reactions were investigated. The results show that the thermal and pressure stresses are negligible compared to those caused by the centrifugal forces. The core-shell concept for composite blades is an inefficient design and is sensitive to interply delaminations. The results are presented in graphical and tabular forms to illustrate the types and amount of data required for the analysis, and to provide quantitative data associated with the various responses which can be helpful in designing composite blades.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.; Hill, A. S.; Ray, E. J.; Rozendaal, R. A.; Butler, T. W.
1982-01-01
A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience.
An airloads theory for morphing airfoils in dynamic stall with experimental correlation
NASA Astrophysics Data System (ADS)
Ahaus, Loren A.
Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.
Aerodynamic data banks for Clark-Y, NACA 4-digit and NACA 16-series airfoil families
NASA Technical Reports Server (NTRS)
Korkan, K. D.; Camba, J., III; Morris, P. M.
1986-01-01
With the renewed interest in propellers as means of obtaining thrust and fuel efficiency in addition to the increased utilization of the computer, a significant amount of progress was made in the development of theoretical models to predict the performance of propeller systems. Inherent in the majority of the theoretical performance models to date is the need for airfoil data banks which provide lift, drag, and moment coefficient values as a function of Mach number, angle-of-attack, maximum thickness to chord ratio, and Reynolds number. Realizing the need for such data, a study was initiated to provide airfoil data banks for three commonly used airfoil families in propeller design and analysis. The families chosen consisted of the Clark-Y, NACA 16 series, and NACA 4 digit series airfoils. The various component of each computer code, the source of the data used to create the airfoil data bank, the limitations of each data bank, program listing, and a sample case with its associated input-output are described. Each airfoil data bank computer code was written to be used on the Amdahl Computer system, which is IBM compatible and uses Fortran.
NASA Technical Reports Server (NTRS)
Brent, J. A.; Cheatham, J. G.; Clemmons, D. R.
1972-01-01
A conventional and a tandem bladed stage were designed for a comparative experimental evaluation in a 0.8 hub/tip ratio single-stage compressor. Based on a preliminary design study, a radially constant work input distribution was selected for the rotor designs. Velocity diagrams and blade leading and trailing edge angles selected for the conventional rotor and stator were used in the design of the tandem blading. The effects of axial velocity ratio and secondary flow on turning were included in the selection of blade leading and trailing edge angles. Design values of rotor tip velocity and stage pressure ratio were 757 ft/sec and 1.26, respectively.
A critical assessment of UH-60 main rotor blade airfoil data
NASA Technical Reports Server (NTRS)
Totah, Joseph
1993-01-01
Many current comprehensive rotorcraft analyses employ lifting-line methods that require main rotor blade airfoil data, typically obtained from wind tunnel tests. In order to effectively evaluate these lifting-line methods, it is of the utmost importance to ensure that the airfoil section data are free of inaccuracies. A critical assessment of the SC1095 and SC1094R8 airfoil data used on the UH-60 main rotor blade was performed for that reason. Nine sources of wind tunnel data were examined, all of which contain SC1095 data and four of which also contain SC1094R8 data. Findings indicate that the most accurate data were generated in 1982 at the 11-Foot Wind Tunnel Facility at NASA Ames Research Center and in 1985 at the 6-inch by 22-inch transonic wind tunnel facility at Ohio State University. It has not been determined if data from these two sources are sufficiently accurate for their use in comprehensive rotorcraft analytical models of the UH-60. It is recommended that new airfoil tables be created for both airfoils using the existing data. Additional wind tunnel experimentation is also recommended to provide high quality data for correlation with these new airfoil tables.
A critical assessment of UH-60 main rotor blade airfoil data
NASA Technical Reports Server (NTRS)
Totah, Joseph
1993-01-01
Many current comprehensive rotorcraft analyses employ lifting-line methods that require main rotor blade airfoil data, typically obtained from wind tunnel tests. In order to effectively evaluate these lifting-line methods, it is of the utmost importance to ensure that the airfoil section data are free of inaccuracies. A critical assessment of the SC1095 and SC1094R8 airfoil data used on the UH-60 main rotor blade was performed for that reason. Nine sources of wind tunnel data were examined, all of which contain SC1095 data and four of which also contain SC1094R8 data. Findings indicate that the most accurate data were generated in 1982 at the 11-Foot Wind Tunnel Facility at NASA Ames Research Center and in 1985 at the 6-inch-by-22-inch transonic wind tunnel facility at Ohio State University. It has not been determined if data from these two sources are sufficiently accurate for their use in comprehensive rotorcraft analytical models of the UH-60. It is recommended that new airfoil tables be created for both airfoils using the existing data. Additional wind tunnel experimentation is also recommended to provide high quality data for correlation with these new airfoil tables.
Turbine Airfoil Deposition Models
NASA Technical Reports Server (NTRS)
Rosner, D. E.
1984-01-01
Gas turbine failures associated with sea-salt ingestion and sulfur-containing fuel impurities have directed attention to alkali sulfate deposition and the associated hot corrosion of gas turbine (GT) blades under some GT operating conditions. These salt deposits form thin, molten films which undermine the protective metal oxide coating normally found on GT blades. The prediction of molten salt deposition, flow and oxide dissolution, and their effects on the lifetime of turbine blades are examined. Goals include rationalizing and helping to predict corrosion patterns on operational GT rotor blades and stators, and ultimately providing some of the tools required to design laboratory simulators and future corrosion-resistant high-performance engines. Necessary background developments are reviewed first, and then recent results and tentative conclusions are presented along with a brief account of the present research plans.
Aerodynamic sound of flow past an airfoil
NASA Technical Reports Server (NTRS)
Wang, Meng
1995-01-01
The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord
Uncertainty Quantification for Airfoil Icing
NASA Astrophysics Data System (ADS)
DeGennaro, Anthony Matteo
Ensuring the safety of airplane flight in icing conditions is an important and active arena of research in the aerospace community. Notwithstanding the research, development, and legislation aimed at certifying airplanes for safe operation, an analysis of the effects of icing uncertainties on certification quantities of interest is generally lacking. The central objective of this thesis is to examine and analyze problems in airfoil ice accretion from the standpoint of uncertainty quantification. We focus on three distinct areas: user-informed, data-driven, and computational uncertainty quantification. In the user-informed approach to uncertainty quantification, we discuss important canonical icing classifications and show how these categories can be modeled using a few shape parameters. We then investigate the statistical effects of these parameters. In the data-driven approach, we build statistical models of airfoil ice shapes from databases of actual ice shapes, and quantify the effects of these parameters. Finally, in the computational approach, we investigate the effects of uncertainty in the physics of the ice accretion process, by perturbing the input to an in-house numerical ice accretion code that we develop in this thesis.
1981-03-01
The two airfoils were NACA 64A010 , a 10% thick airfoil of conventional Chdpe, and NLR 7301, a 16.5"’ thick supercritical airfoil. Results were...program by using a viscous ramp method. Unsteady pressure and co- efficients were computed for a NACA 64A010 airfoil at M 0.80. It was shown that...flutter speeds. A parallel set of results was also obtained for a NACA 64A010 conven- tional airfoil scaled down to the same maximum thickness-to-chord
Airfoil shape for a turbine bucket
Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy
2005-06-28
Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.
Unsteady Airloads on Airfoils in Reverse Flow
NASA Astrophysics Data System (ADS)
Lind, Andrew; Jones, Anya
2014-11-01
This work gives insight into the influence of airfoil characteristics on unsteady airloads for rotor applications where local airfoil sections may operate at high and/or reverse flow angles of attack. Two-dimensional wind tunnel experiments have been performed on four airfoil sections to investigate the effects of thickness, camber, and trailing edge shape on unsteady airloads (lift, pressure drag, and pitching moment). These model rotor blades were tested through 360 deg of incidence for 104 <=Re <=106 . Unsteady pressure transducers were mounted on the airfoil surface to measure the high frequency, dynamic pressure variations. The temporal evolution of chordwise pressure distributions and resulting airloads is quantified for each airfoil in each of the three unsteady wake regimes present in reverse flow. Specifically, the influence of the formation, growth, and shedding of vortices on the surface pressure distribution is quantified and compared between airfoils with a sharp geometric trailing edge and those with a blunt geometric trailing edge. These findings are integral to mitigation of rotor blade vibrations for applications where airfoil sections are subjected to reverse flow, such as high-speed helicopters and tidal turbines.
Customized airfoils and their impact on VAWT (Vertical-Axis Wind Turbine) cost of energy
Berg, D.E.
1990-01-01
Sandia National Laboratories has developed a family of airfoils specifically designed for use in the equatorial portion of a Vertical-Axis Wind Turbine (VAWT) blade. An airfoil of that family has been incorporated into the rotor blades of the DOE/Sandia 34-m diameter VAWT Test Bed. The airfoil and rotor design process is reviewed. Comparisons with data recently acquired from flow visualization tests and from the DOE/Sandia 34-m diameter VAWT Test Bed illustrate the success that was achieved in the design. The economic optimization model used in the design is described and used to evaluate the effect of modifications to the current Test Bed blade. 1 tab., 11 figs., 13 refs.
Leading edge embedded fan airfoil concept -- A new powered high lift technology
NASA Astrophysics Data System (ADS)
Phan, Nhan Huu
A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power
NASA Technical Reports Server (NTRS)
Capece, Vincent R.; Platzer, Max F.
2003-01-01
A major challenge in the design and development of turbomachine airfoils for gas turbine engines is high cycle fatigue failures due to flutter and aerodynamically induced forced vibrations. In order to predict the aeroelastic response of gas turbine airfoils early in the design phase, accurate unsteady aerodynamic models are required. However, accurate predictions of flutter and forced vibration stress at all operating conditions have remained elusive. The overall objectives of this research program are to develop a transition model suitable for unsteady separated flow and quantify the effects of transition on airfoil steady and unsteady aerodynamics for attached and separated flow using this model. Furthermore, the capability of current state-of-the-art unsteady aerodynamic models to predict the oscillating airfoil response of compressor airfoils over a range of realistic reduced frequencies, Mach numbers, and loading levels will be evaluated through correlation with benchmark data. This comprehensive evaluation will assess the assumptions used in unsteady aerodynamic models. The results of this evaluation can be used to direct improvement of current models and the development of future models. The transition modeling effort will also make strides in improving predictions of steady flow performance of fan and compressor blades at off-design conditions. This report summarizes the progress and results obtained in the first year of this program. These include: installation and verification of the operation of the parallel version of TURBO; the grid generation and initiation of steady flow simulations of the NASA/Pratt&Whitney airfoil at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg.; and the investigation of the prediction of laminar separation bubbles on a NACA 0012 airfoil.
Multi-element airfoil viscous-inviscid interactions
NASA Technical Reports Server (NTRS)
Gross, L. W.
1979-01-01
Subsonic viscous-inviscid interactions for multi-element airfoils are predicted by iterating between inviscid and viscous solutions until the performance coefficients converge. Inviscid flow is modelled by using distributed source-vortex singularities on configuration surface panels. Viscous effects are calculated by an existing laminar separation bubble model and a NASA-Lockheed boundary layer-wake method. Numerical formulations and example calculations are presented.
Navier-Stokes computations for circulation controlled airfoils
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.
1986-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Compressibility effects on dynamic stall of airfoils undergoing rapid transient pitching motion
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Platzer, M. F.
1992-01-01
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range.
Turbine airfoil with outer wall thickness indicators
Marra, John J; James, Allister W; Merrill, Gary B
2013-08-06
A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.
Spacesuit Radiation Shield Design Methods
NASA Technical Reports Server (NTRS)
Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.
2006-01-01
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.
A Surrogate Approach to the Experimental Optimization of Multielement Airfoils
NASA Technical Reports Server (NTRS)
Otto, John C.; Landman, Drew; Patera, Anthony T.
1996-01-01
The incorporation of experimental test data into the optimization process is accomplished through the use of Bayesian-validated surrogates. In the surrogate approach, a surrogate for the experiment (e.g., a response surface) serves in the optimization process. The validation step of the framework provides a qualitative assessment of the surrogate quality, and bounds the surrogate-for-experiment error on designs "near" surrogate-predicted optimal designs. The utility of the framework is demonstrated through its application to the experimental selection of the trailing edge ap position to achieve a design lift coefficient for a three-element airfoil.
NASA Technical Reports Server (NTRS)
Muffoletto, A. J.
1982-01-01
An aerodynamic computer code, capable of predicting unsteady and C sub m values for an airfoil undergoing dynamic stall, is used to predict the amplitudes and frequencies of a wing undergoing torsional stall flutter. The code, developed at United Technologies Research Corporation (UTRC), is an empirical prediction method designed to yield unsteady values of normal force and moment, given the airfoil's static coefficient characteristics and the unsteady aerodynamic values, alpha, A and B. In this experiment, conducted in the PSU 4' x 5' subsonic wind tunnel, the wing's elastic axis, torsional spring constant and initial angle of attack are varied, and the oscillation amplitudes and frequencies of the wing, while undergoing torsional stall flutter, are recorded. These experimental values show only fair comparisons with the predicted responses. Predictions tend to be good at low velocities and rather poor at higher velocities.
Effect of oscillation frequency on wind turbine airfoil dynamic stall
NASA Astrophysics Data System (ADS)
Zhou, Z.; Li, C.; Nie, J. B.; Chen, Y.
2013-12-01
At the same oscillation amplitude, Reynolds Number, mean angle of attack, the dynamic stall characteristics of the NREL S809 airfoil undergoing sinusoidal pitch oscillations of different oscillation frequencies were investigated with modified k-ω SST turbulence model of CFD solution for two-dimensional numerical simulation. The predicted lift, drag coefficients and moment coefficients were compared with the Ohio State University wind tunnel test results, which showed a good agreement. The birth, development and breaking off of eddies were analyzed through streamline distribution around airfoil and the influence of oscillation frequencies on dynamic stall characteristics was also described and analyzed in detail, which enrich the database of dynamic stall characteristics needed by the quantization of oscillation frequencies on dynamic characteristics and prove that sliding mesh method is reliable when dealing with dynamic stall problems.
Macro-Fiber Composite actuated simply supported thin airfoils
NASA Astrophysics Data System (ADS)
Bilgen, Onur; Kochersberger, Kevin B.; Inman, Daniel J.; Ohanian, Osgar J., III
2010-05-01
A piezoceramic composite actuator known as Macro-Fiber Composite (MFC) is used for actuation in the design of a variable camber airfoil intended for a ducted fan aircraft. The study focuses on response characterization under aerodynamic loads for circular arc airfoils with variable pinned boundary conditions. A parametric study of fluid-structure interaction is employed to find pin locations along the chordwise direction that result in high lift generation. Wind tunnel experiments are conducted on a 1.0% thick, 127 mm chord MFC actuated bimorph airfoil that is simply supported at 5% and 50% of the chord. Aerodynamic and structural performance results are presented for a flow rate of 15 m s - 1 and a Reynolds number of 127 000. Non-linear effects due to aerodynamic and piezoceramic hysteresis are identified and discussed. A lift coefficient change of 1.46 is observed, purely due to voltage actuation. A maximum 2D L/D ratio of 17.8 is recorded through voltage excitation.
Development of heat flux sensors for turbine airfoils and combustor liners
NASA Astrophysics Data System (ADS)
Atkinson, W. H.
1983-10-01
The design of durable turbine airfoils that use a minimum amount of cooling air requires knowledge of the heat loads on the airfoils during engine operation. Measurement of these heat loads will permit the verification or modification of the analytical models used in the design process and will improve the ability to predict and confirm the thermal performance of turbine airfoil designs. Heat flux sensors for turbine blades and vanes must be compatible with the cast nickel-base and cobalt-base materials used in their fabrication and will need to operate in a hostile environment with regard to temperature, pressure and thermal cycling. There is also a need to miniaturize the sensors to obtain measurements without perturbing the heat flows that are to be measured.
Algebraic Methods to Design Signals
2015-08-27
group theory are employed to investigate the theory of their construction methods leading to new families of these arrays and some generalizations...sequences and arrays with desirable correlation properties. The methods used are very algebraic and number theoretic. Many new families of sequences...context of optical quantum computing, we prove that infinite families of anticirculant block weighing matrices can be obtained from generic weighing
Second-stage turbine bucket airfoil
Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie
2002-01-01
The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.
Third-stage turbine bucket airfoil
Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart
2002-01-01
The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
Pressure Distribution Over Airfoils with Fowler Flaps
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J; Anderson, Walter B
1938-01-01
Report presents the results of tests made of a Clark y airfoil with a Clark y Fowler flap and of an NACA 23012 airfoil with NACA Fowler flaps. Some of the tests were made in the 7 by 10-foot wind tunnel and others in the 5-foot vertical wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section both on the main airfoils and on the flaps for several angles of attack with the flaps located at the maximum-lift settings. A test installation was used in which the model was mounted in the wind tunnel between large end planes so that two-dimensional flow was approximated. The data are given in the form of pressure-distribution diagrams and as plots of calculated coefficients for the airfoil-and-flap combinations and for the flaps alone.
Liang, George [Palm City, FL
2011-01-18
An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.
Modeling and Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.
2007-01-01
SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.
Unsteady Pressure Distributions on Airfoils in Cascade.
1980-04-01
of thin airfoil theory has been used by Henderson (-ftj’ and Bruce (1-7-)’to derive expressions for the unsteady response which includes the cascade...model in conjunction with the assumptions of thin airfoil theory has been used by Henderson (16) and Bruce (17) to derive expressions for the unsteady...effect, that is, a sharp change in the unsteady lift when the disturbance wavelength equals the blade spacing. Bruce (19) further extends this theory to
Design for validation, based on formal methods
NASA Technical Reports Server (NTRS)
Butler, Ricky W.
1990-01-01
Validation of ultra-reliable systems decomposes into two subproblems: (1) quantification of probability of system failure due to physical failure; (2) establishing that Design Errors are not present. Methods of design, testing, and analysis of ultra-reliable software are discussed. It is concluded that a design-for-validation based on formal methods is needed for the digital flight control systems problem, and also that formal methods will play a major role in the development of future high reliability digital systems.
Numerical investigation of multi-element airfoils
NASA Technical Reports Server (NTRS)
Cummings, Russell M.
1993-01-01
The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Yao, Chung-Sheng; Allan, Brian G.
2006-01-01
Recent efforts in extreme short takeoff and landing aircraft configurations have renewed the interest in circulation control wing design and optimization. The key to accurately designing and optimizing these configurations rests in the modeling of the complex physics of these flows. This paper will highlight the physics of the stagnation and separation regions on two typical circulation control airfoil sections.
NASA Technical Reports Server (NTRS)
Allen, H Julian
1938-01-01
A method is presented for the rapid calculation of the incremental chordwise normal-force distribution over an airfoil section due to the deflection of a plain flap or tab, a split flap, or a serially hinged flap. This report is intended as a supplement to NACA Report no. 631, wherein a method is presented for the calculation of the chordwise normal-force distribution over an airfoil without a flap or, as it may be considered, an airfoil with flap (or flaps) neutral. The method enables the determination of the form and magnitude of the incremental normal-force distribution to be made for an airfoil-flap combination for which the section characteristics have been determined. A method is included for the calculation of the flap normal-force and hinge-moment coefficients without necessitating a determination of the normal-force distribution.
Design Methods for Clinical Systems
Blum, B.I.
1986-01-01
This paper presents a brief introduction to the techniques, methods and tools used to implement clinical systems. It begins with a taxonomy of software systems, describes the classic approach to development, provides some guidelines for the planning and management of software projects, and finishes with a guide to further reading. The conclusions are that there is no single right way to develop software, that most decisions are based upon judgment built from experience, and that there are tools that can automate some of the better understood tasks.
Status of advanced airfoil tests in the Langley 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Ladson, C. L.; Ray, E. J.
1984-01-01
A joint NASA/U.S. industry program to test advanced technology airfoils in the Langley 0.3-meter Transonic Tunnel (TCT) was formulated under the Langley ACEE Project Office. The objectives include providing U.S. industry an opportunity to compare their most advanced airfoils to the latest NASA designs by means of high Reynolds number tests in the same facility. At the same time, industry would again experience in the design and construction of cryogenic test techniques. The status and details of the test program are presented. Typical aerodynamic results obtained, to date, are presented at chord Reynolds number up to 45 x 10(6) and are compared to results from other facilities and theory. Details of a joint agreement between NASA and the Deutsche Forschungs- und Versuchsantalt fur Luft- and Raumfahrt e.V. (DFVLR) for tests of two airfoils are also included. Results of these tests will be made available as soon as practical.
Effect of advanced rotorcraft airfoil sections on the hover performance of a small-scale rotor model
NASA Technical Reports Server (NTRS)
Althoff, Susan L.
1988-01-01
A hover test was conducted on a small scale rotor model for two sets of tapered rotor blades. The baseline rotor blade set used a NACA 0012 airfoil section, whereas the second rotor blade set had advanced rotorcraft airfoils distributed along the radius. The experiment was conducted for a range of thrust coefficients and tip speeds, and the data were compared to the predictions of three analytical methods. The data show the advantage of the advanced airfoils at the higher rotor thrust levels; two of the analyses predicted the correct data trends.
NASA Technical Reports Server (NTRS)
Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.
1992-01-01
The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution.
Two inviscid computational simulations of separated flow about airfoils
NASA Technical Reports Server (NTRS)
Barnwell, R. W.
1976-01-01
Two inviscid computational simulations of separated flow about airfoils are described. The basic computational method is the line relaxation finite-difference method. Viscous separation is approximated with inviscid free-streamline separation. The point of separation is specified, and the pressure in the separation region is calculated. In the first simulation, the empiricism of constant pressure in the separation region is employed. This empiricism is easier to implement with the present method than with singularity methods. In the second simulation, acoustic theory is used to determine the pressure in the separation region. The results of both simulations are compared with experiment.
Assessment of PIV-based unsteady load determination of an airfoil with actuated flap
NASA Astrophysics Data System (ADS)
Sterenborg, J. J. H. M.; Lindeboom, R. C. J.; Simão Ferreira, C. J.; van Zuijlen, A. H.; Bijl, H.
2014-02-01
For complex experimental setups involving movable structures it is not trivial to directly measure unsteady loads. An alternative is to deduce unsteady loads indirectly from measured velocity fields using Noca's method. The ultimate aim is to use this method in future work to determine unsteady loads for fluid-structure interaction problems. The focus in this paper is first on the application and assessment of Noca's method for an airfoil with an oscillating trailing edge flap. To our best knowledge Noca's method has not been applied yet to airfoils with moving control surfaces or fluid-structure interaction problems. In addition, wind tunnel corrections for this type of unsteady flow problem are considered.
An exact inverse method for subsonic flows
NASA Technical Reports Server (NTRS)
Daripa, Prabir
1988-01-01
A new inverse method for the aerodynamic design of airfoils is presented for subcritical flows. The pressure distribution in this method can be prescribed as a function of the arclength of the still unknown body. It is shown that this inverse problem is mathematically equivalent to solving only one nonlinear boundary value problem subject to known Dirichlet data on the boundary.
NASA Technical Reports Server (NTRS)
Barger, R. L.
1975-01-01
The theory provides a direct method for resolving an airfoil into a lifting line and a thickness distribution as well as a means of synthesizing thickness and lift components into a resultant airfoil and computing its aerodynamic characteristics. Specific applications of the technique are discussed.
Methods for combinatorial and parallel library design.
Schnur, Dora M; Beno, Brett R; Tebben, Andrew J; Cavallaro, Cullen
2011-01-01
Diversity has historically played a critical role in design of combinatorial libraries, screening sets and corporate collections for lead discovery. Large library design dominated the field in the 1990s with methods ranging anywhere from purely arbitrary through property based reagent selection to product based approaches. In recent years, however, there has been a downward trend in library size. This was due to increased information about the desirable targets gleaned from the genomics revolution and to the ever growing availability of target protein structures from crystallography and homology modeling. Creation of libraries directed toward families of receptors such as GPCRs, kinases, nuclear hormone receptors, proteases, etc., replaced the generation of libraries based primarily on diversity while single target focused library design has remained an important objective. Concurrently, computing grids and cpu clusters have facilitated the development of structure based tools that screen hundreds of thousands of molecules. Smaller "smarter" combinatorial and focused parallel libraries replaced those early un-focused large libraries in the twenty-first century drug design paradigm. While diversity still plays a role in lead discovery, the focus of current library design methods has shifted to receptor based methods, scaffold hopping/bio-isostere searching, and a much needed emphasis on synthetic feasibility. Methods such as "privileged substructures based design" and pharmacophore based design still are important methods for parallel and small combinatorial library design. This chapter discusses some of the possible design methods and presents examples where they are available.
Flow past a self-oscillating airfoil with two degrees of freedom: measurements and simulations
NASA Astrophysics Data System (ADS)
Šidlof, Petr; Štěpán, Martin; Vlček, Václav; Řidký, Václav; Šimurda, David; Horáček, Jaromír
2014-03-01
The paper focuses on investigation of the unsteady subsonic airflow past an elastically supported airfoil for subcritical flow velocities and during the onset of the flutter instability. A physical model of the NACA0015 airfoil has been designed and manufactured, allowing motion with two degrees of freedom: pitching (rotation about the elastic axis) and plunging (vertical motion). The structural mass and stiffness matrix can be tuned to certain extent, so that the natural frequencies of the two modes approach as needed. The model was placed in the measuring section of the wind tunnel in the aerodynamic laboratory of the Institute of Thermomechanics in Nový Knín, and subjected to low Mach number airflow up to the flow velocities when self-oscillation reach amplitudes dangerous for the structural integrity of the model. The motion of the airfoil was registered by a high-speed camera, with synchronous measurement of the mechanic vibration and discrete pressure sensors on the surface of the airfoil. The results of the measurements are presented together with numerical simulation results, based on a finite volume CFD model of airflow past a vibrating airfoil.
Program manual for the Eppler airfoil inversion program
NASA Technical Reports Server (NTRS)
Thomson, W. G.
1975-01-01
A computer program is described for calculating the profile of an airfoil as well as the boundary layer momentum thickness and energy form parameter. The theory underlying the airfoil inversion technique developed by Eppler is discussed.
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M.
1978-01-01
The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump.
An efficient method for inverse problems
NASA Technical Reports Server (NTRS)
Daripa, Prabir
1987-01-01
A new inverse method for aerodynamic design of subcritical airfoils is presented. The pressure distribution in this method can be prescribed in a natural way, i.e. as a function of arclength of the as yet unknown body. This inverse problem is shown to be mathematically equivalent to solving a single nonlinear boundary value problem subject to known Dirichlet data on the boundary. The solution to this problem determines the airfoil, the free stream Mach number M(sub x) and the upstream flow direction theta(sub x). The existence of a solution for any given pressure distribution is discussed. The method is easy to implement and extremely efficient. We present a series of results for which comparisons are made with the known airfoils.
AirfoilPrep.py Documentation: Release 0.1.0
Ning, S. A.
2013-09-01
AirfoilPrep.py provides functionality to preprocess aerodynamic airfoil data. Essentially, the module is an object oriented version of the AirfoilPrep spreadsheet with additional functionality and is written in the Python language. It allows the user to read in two-dimensional aerodynamic airfoil data, apply three-dimensional rotation corrections for wind turbine applications, and extend the datato very large angles of attack. This document discusses installation, usage, and documentation of the module.
Critical Mach Numbers of Thin Airfoil Sections with Plain Flaps
NASA Technical Reports Server (NTRS)
Pardee, Otway O'm.; Heaslet, Max A.
1946-01-01
Critical Mach number as function of lift coefficient is determined for certain moderately thick NACA low-drag airfoils. Results, given graphically, included calculations on same airfoil sections with plain flaps for small flap deflections. Curves indicate optimum critical conditions for airfoils with flaps in such form that they can be compared with corresponding results for zero flap deflections. Plain flaps increase life-coefficient range for which critical Mach number is in region of high values characteristic of low-drag airfoils.
Impeller blade design method for centrifugal compressors
NASA Technical Reports Server (NTRS)
Jansen, W.; Kirschner, A. M.
1974-01-01
The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.
Icing Test Results on an Advanced Two-Dimensional High-Lift Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Shin, Jaiwon; Wilcox, Peter; Chin, Vincent; Sheldon, David
1994-01-01
An experimental study has been conducted to investigate ice accretions on a high-lift, multi-element airfoil in the Icing Research Tunnel at the NASA Lewis Research Center. The airfoil is representative of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between McDonnell Douglas Aerospace and the NASA Lewis Research Center to improve current understanding of ice accretion characteristics on the multi-element airfoil. The experimental effort also provided ice shapes for future aerodynamic tests at flight Reynolds numbers to ascertain high-lift performance effects. Ice shapes documented for a landing configuration over a variety of icing conditions are presented along with analyses.
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J; Shortal, Joseph A
1932-01-01
Aerodynamic force tests on a slotted Clark Y wing were conducted in a vertical wind tunnel to determine the best position for a given auxiliary airfoil with respect to the main wing. A systematic series of 100 changes in location of the auxiliary airfoil were made to cover all the probable useful ranges of slot gap, slot width, and slot depth. The results of the investigation may be applied to the design of automatic or controlled slots on wings with geometric characteristics similar to the wing tested. The best positions of the auxiliary airfoil were covered by the range of the tests, and the position for desired aerodynamic characteristics may easily be obtained from charts prepared especially for the purpose.
An airfoil flutter model suspension system to accommodate large static transonic airloads
NASA Technical Reports Server (NTRS)
Reed, W. H., III
1985-01-01
A pitch/plunge flutter model suspension system and associated two-dimensional MBB-A3 airfoil models is described. The system is designed for installation in the Langley 6-by-19-inch and 6-by-18-inch transonic blowdown wind tunnels to enable systematic study of the transonic flutter characteristics and static pressure distributions of supercritical airfoils at transonic Mach numbers. A compound spring suspension concept is introduced which simultaneously meets requirements for low plunge-mode stiffness, lightweight suspended model, and large steady lift due to angle of attack without the need for excessive static deflections of the plunge spring. The system features variable pitch and plunge frequencies, changeable airfoil rotation axes, and a self aligning control system to maintain a constant mean position of the model with changing airload.
Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine
NASA Astrophysics Data System (ADS)
Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah
2015-12-01
In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.
Investigations of a circulation control airfoil flowfield using an advanced laser velocimeter
NASA Technical Reports Server (NTRS)
Novak, Charles J.; Cornelius, Kenneth C.
1987-01-01
The flowfield of a Circulation Control Airfoil was examined in detail through the use of a specially designed wind tunnel model and test program. Surface pressures on the model were obtained and the velocity field was surveyed in the trailing edge region of the model airfoil using the nonintrusive Laser Velocimetry technique. In this region mean flow and turbulence measurements indicate that, while the flowfield is similar to other wall-bounded jet flows, the external freestream plays an important role in the overall mixing and structure of the wall bounded flow. Finally, the turbulence measurements were used to compute eddy viscosities for the purpose of aiding computational fluid dynamics model development.
Upper-surface modifications for C sub l max improvement of selected NASA 6-series airfoils
NASA Technical Reports Server (NTRS)
Szelazek, C. A.; Hicks, R. M.
1979-01-01
The thickness of the upper surface of 64 airfoils was increased from the leading edge to the position of maximum thickness. The modifications were generated using a numerical optimization routine coupled with an aerodynamic analysis code. The type of modification presented can be used for aircraft design or for the retrofit of current aircraft to improve the stall characteristics and climb performance. The coordinates of the modified airfoils are presented with plots of the forward 45% of the profiles and pressure distributions for both the modified and unmodified sections at an angle of attack of 14 degrees.
Coating-Substrate Systems for Thermomechanically Durable Turbine Airfoils
2015-06-30
Technical Report 4. TITLE AND SUBTITLE Coating - Substrate Systems for Thermomechanically Durable Turbine Airfoils 6. AUTHOR(S) Dr. Tresa Pollock 3...Thermomechanically Durable Turbine Airfoils Final Report ONRGrant#N00014-l 1-1-0616 Technical Contact (Principal Investigator) Tresa M. Pollock Materials...Substrate Systems for Thermomechanically Durable Turbine Airfoils 1. Summary In the severe operating environments encountered in Naval ship
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1976-01-01
The theory, results and user instructions for an aerodynamic computer program are presented. The theory is based on linear lifting surface theory, and the method is the kernel function. The program is applicable to multiple interfering surfaces which may be coplanar or noncoplanar. Local linearization was used to treat nonuniform flow problems without shocks. For cases with imbedded shocks, the appropriate boundary conditions were added to account for the flow discontinuities. The data describing nonuniform flow fields must be input from some other source such as an experiment or a finite difference solution. The results are in the form of small linear perturbations about nonlinear flow fields. The method was applied to a wide variety of problems for which it is demonstrated to be significantly superior to the uniform flow method. Program user instructions are given for easy access.
Model reduction methods for control design
NASA Technical Reports Server (NTRS)
Dunipace, K. R.
1988-01-01
Several different model reduction methods are developed and detailed implementation information is provided for those methods. Command files to implement the model reduction methods in a proprietary control law analysis and design package are presented. A comparison and discussion of the various reduction techniques is included.
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.
1976-01-01
Wind tunnel tests were conducted to determine the effects of airfoil thickness-ratio on the low speed aerodynamic characteristics of an initial family of airfoils. The results were compared with theoretical predictions obtained from a subsonic viscous method. The tests were conducted over a Mach number range from 0.10 to 0.28. Chord Reynolds numbers varied from about 2.0 x 1 million to 9.0 x 1 million.
Unsteady Airloads on a Sinusoidally Oscillating Supercritical Airfoil.
1979-07-01
hodograph method of Boerstoel Codes i/or ( Ref. 1). e" l (*) At present Dr. Yoshihara is employed by the Boeing Co. -3-- rMemorandum AE-79-01 5 Emphasis...nas een performed on a-model of an oscillating supercritical airfoil, 7f which the geometry has been generated with tne hodograph method of Boerstoel ...Te:argest -teviatilons sn’- JW Up r--rte ar ru"r of i arC-’ 1, -..- ero rie . r C-acun1t’e, ;a’ a ar-e bowto" calculated cu;rve. Near th -sun e,4,,, he niessur
NASA Technical Reports Server (NTRS)
Bratanow, T.; Ecer, A.
1973-01-01
A general computational method for analyzing unsteady flow around pitching and plunging airfoils was developed. The finite element method was applied in developing an efficient numerical procedure for the solution of equations describing the flow around airfoils. The numerical results were employed in conjunction with computer graphics techniques to produce visualization of the flow. The investigation involved mathematical model studies of flow in two phases: (1) analysis of a potential flow formulation and (2) analysis of an incompressible, unsteady, viscous flow from Navier-Stokes equations.
On the plane potential flow past a lattice of arbitrary airfoils
NASA Technical Reports Server (NTRS)
Garrick, I E
1944-01-01
The two-dimensional, incompressible potential flow past a lattice of airfoils of arbitrary shape is investigated theoretically. The problem is treated by usual methods of conformal mapping in several stages, one stage corresponding to the mapping of the framework of the arbitrary line lattice and another significant stage corresponding to the Theodorsen method for the mapping of the arbitrary single wing profile into a circle. A particular feature in the theoretical treatment is the special handling of the regions at an infinite distance in front of and behind the lattice. Expressions are given for evaluation of the velocity and pressure distribution at the airfoil boundary. An illustrative numerical example is included.
NASA Technical Reports Server (NTRS)
Stack, John; Lindsey, W F; Littell, Robert E
1939-01-01
Simultaneous air-flow photographs and pressure-distribution measurements were made of the NACA 4412 airfoil at high speeds to determine the physical nature of the compressibility burble. The tests were conducted in the NACA 24-inch high-speed wind tunnel. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations in the 5-inch-chord airfoil by means of a multiple-tube manometer. Following the general program, a few measurements of total-pressure loss in the wake of the airfoil at high speeds were made to illustrate the magnitude of the losses involved and the extent of the disturbed region; and, finally, in order to relate this work to earlier force-test data, a force test of a 5-inch-chord NACA 4412 airfoil was made. The results show the general nature of the phenomenon known as the compressibility burble. The source of the increased drag is shown to be a compression shock that occurs on the airfoil as its speed approaches the speed of sound. Finally, it is indicated that considerable experimentation is needed in order to understand the phenomenon completely.
Control of Vortex Shedding on an Airfoil using Mini Flaps at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Oshiyama, Daisuke; Numata, Daiju; Asai, Keisuke
2015-11-01
In this study, the effects of mini flaps (MFs) on a NACA0012 airfoil were investigated experimentally at low Reynolds number. MFs are small flat plates attached to the trailing edge of an airfoil perpendicularly. All the tests were conducted at the Tohoku-University Basic Aerodynamic Research Tunnel at the chord Reynolds number of 25,000. Aerodynamic forces were measured using a 3-component balance and the surface flow was visualized by luminescent oil film technique. The results of force measurement show that attachment of MFs enhances lift and the enhanced lift increases with MF height. On the other hand, the results of oil flow visualization show that attachment of MFs enlarges the separated region on the airfoil rather than diminishes it. To understand the physical mechanism of MFs for lift enhancement, the flow around the airfoil was visualized by the smoke-wire method and the wake profile behind the airfoil was measured using a hot wire anemometer. It was found that vortices shed periodically from the tip of the MFs and interact with the separated shear layer from the upper surface. This unsteady vortex shedding forms a low-pressure region on the upper surface, generating higher lift. These results suggest that the height of MFs controls the frequency of vortex shedding behind the MF, forcing the separated shear layer on the upper surface flow in unsteady manner.
Efficient simulation of incompressible viscous flow over multi-element airfoils
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan
1993-01-01
The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The solution algorithm employs the method of pseudo compressibility and utilizes an upwind differencing scheme for the convective fluxes, and an implicit line-relaxation scheme. The motivation for this work includes interest in studying high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack up to stall is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared; a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time on a CRAY YMP per element in the airfoil configuration.
A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2001-01-01
An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.
Mixed Methods Research Designs in Counseling Psychology
ERIC Educational Resources Information Center
Hanson, William E.; Creswell, John W.; Clark, Vicki L. Plano; Petska, Kelly S.; Creswell, David J.
2005-01-01
With the increased popularity of qualitative research, researchers in counseling psychology are expanding their methodologies to include mixed methods designs. These designs involve the collection, analysis, and integration of quantitative and qualitative data in a single or multiphase study. This article presents an overview of mixed methods…
Compressor airfoil tip clearance optimization system
Little, David A.; Pu, Zhengxiang
2015-08-18
A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.
Turbine airfoil fabricated from tapered extrusions
Marra, John J
2013-07-16
An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.
Vortex noise from nonrotating cylinders and airfoils
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.; Fink, M. R.
1976-01-01
An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.
Near-wall serpentine cooled turbine airfoil
Lee, Ching-Pang
2013-09-17
A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.
Airbreathing hypersonic vehicle design and analysis methods
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.
1996-01-01
The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.
Iterative methods for design sensitivity analysis
NASA Technical Reports Server (NTRS)
Belegundu, A. D.; Yoon, B. G.
1989-01-01
A numerical method is presented for design sensitivity analysis, using an iterative-method reanalysis of the structure generated by a small perturbation in the design variable; a forward-difference scheme is then employed to obtain the approximate sensitivity. Algorithms are developed for displacement and stress sensitivity, as well as for eignevalues and eigenvector sensitivity, and the iterative schemes are modified so that the coefficient matrices are constant and therefore decomposed only once.
Blowing Circulation Control on a Seaplane Airfoil
NASA Astrophysics Data System (ADS)
Guo, B. D.; Liu, P. Q.; Qu, Q. L.
2011-09-01
RANS simulations are presented for blowing circulation control on a seaplane airfoil. Realizable k-epsilon turbulent model and pressure-based coupled algorithm with second-order discretization were adopted to simulate the compressible flow. Both clear and simple flap configuration were simulated with blowing momentum coefficient Cμ = 0, 0.15 and 0.30. The results show that blowing near the airfoil trailing edge could enhance the Coanda effect, delay the flow separation, and increase the lift coefficient dramatically. The blowing circulation control is promising to apply to taking off and landing of an amphibious aircraft or seaplane.
TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE
NASA Technical Reports Server (NTRS)
Dougherty, F. C.
1994-01-01
The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters
Multi-pass cooling for turbine airfoils
Liang, George
2011-06-28
An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.
Multiple piece turbine engine airfoil with a structural spar
Vance, Steven J.
2011-10-11
A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.
Wind Tunnel Evaluation of a Model Helicopter Main-Rotor Blade With Slotted Airfoils at the Tip
NASA Technical Reports Server (NTRS)
Noonan, Kevin W.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.
2001-01-01
Data for rotors using unconventional airfoils are of interest to permit an evaluation of this technology's capability to meet the U.S. Army's need for increased helicopter mission effectiveness and improved safety and survivability. Thus, an experimental investigation was conducted in the Langley Transonic Dynamics Tunnel (TDT) to evaluate the effect of using slotted airfoils in the rotor blade tip region (85 to 100 percent radius) on rotor aerodynamic performance and loads. Four rotor configurations were tested in forward flight at advance ratios from 0.15 to 0.45 and in hover in-ground effect. The hover tip Mach number was 0.627, which is representative of a design point of 4000-ft geometric altitude and a temperature of 95 F. The baseline rotor configuration had a conventional single-element airfoil in the tip region. A second rotor configuration had a forward-slotted airfoil with a -6 deg slat, a third configuration had a forward-slotted airfoil with a -10 slat, and a fourth configuration had an aft-slotted airfoil with a 3 deg flap (trailing edge down). The results of this investigation indicate that the -6 deg slat configuration offers some performance and loads benefits over the other three configurations.
Theoretical Prediction of Pressure Distributions on Nonlifting Airfoils at High Subsonic Speeds
NASA Technical Reports Server (NTRS)
Spreiter, John R; Alksne, Alberta
1955-01-01
Theoretical pressure distributions on nonlifting circular-arc airfoils in two-dimensional flows with high subsonic free-stream velocity are found by determining approximate solutions, through an iteration process, of an integral equation for transonic flow proposed by Oswatitsch. The integral equation stems directly from the small-disturbance theory for transonic flow. This method of analysis possesses the advantage of remaining in the physical, rather than the hodograph, variable and can be applied in airfoils having curved surfaces. After discussion of the derivation of the integral equation and qualitative aspects of the solution, results of calculations carried out for circular-arc airfoils in flows with free-stream Mach numbers up to unity are described. These results indicate most of the principal phenomena observed in experimental studies.
GRUMFOIL: A computer code for the viscous transonic flow over airfoils
NASA Technical Reports Server (NTRS)
Mead, H. R.; Melnik, R. E.
1985-01-01
A user's manual which describes the operation of the computer program, GRUMFOIL is presented. The program computes the viscous transonic flow over two dimensional airfoils using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by a multigrid method for the full potential equation. The boundary layer solution is based on integral entrainment methods.
Preliminary aerothermodynamic design method for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Petrie, S. L.
1987-01-01
Preliminary design methods are presented for vehicle aerothermodynamics. Predictions are made for Shuttle orbiter, a Mach 6 transport vehicle and a high-speed missile configuration. Rapid and accurate methods are discussed for obtaining aerodynamic coefficients and heat transfer rates for laminar and turbulent flows for vehicles at high angles of attack and hypersonic Mach numbers.
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1984-01-01
The method of complex characteristics and hodograph transformation for the design of shockless airfoils was extended to design supercritical cascades with high solidities and large inlet angles. This capability was achieved by introducing a conformal mapping of the hodograph domain onto an ellipse and expanding the solution in terms of Tchebycheff polynomials. A computer code was developed based on this idea. A number of airfoils designed with the code are presented. Various supercritical and subcritical compressor, turbine and propeller sections are shown. The lag-entrainment method for the calculation of a turbulent boundary layer was incorporated to the inviscid design code. The results of this calculation are shown for the airfoils described. The elliptic conformal transformation developed to map the hodograph domain onto an ellipse can be used to generate a conformal grid in the physical domain of a cascade of airfoils with open trailing edges with a single transformation. A grid generated with this transformation is shown for the Korn airfoil. Previously announced in STAR as N83-24474
An experimental investigation of flowfield about a multielement airfoil
NASA Technical Reports Server (NTRS)
Nakayama, A.; Kreplin, H.-P.; Morgan, H. L.
1988-01-01
Detailed measurements of mean-flow and turbulence quantities around a multielement airfoil model have been made using pressure and hot-wire probes. The results obtained in two test cases at the chord Reynolds number of 3 million and the freestream Mach number of 0.2 show a number of features of the complex flows that are important in accurate modeling of these flows by numerical methods. Many parts of the shear flow vastly deviate from classical flows, and the interaction with the external potential flow is very strong.
Supersonic flow past oscillating airfoils including nonlinear thickness effects
NASA Technical Reports Server (NTRS)
Van Dyke, Milton D
1954-01-01
A solution to second order in thickness is derived for harmonically oscillating two-dimensional airfoils in supersonic flow. For slow oscillations of an arbitrary profile, the result is found as a series including the third power of frequency. For arbitrary frequencies, the method of solution for any specific profile is indicated, and the explicit solution derived for a single wedge. Nonlinear thickness effects are found generally to reduce the torsional damping, and so enlarge the range of Mach numbers within which torsional instability is possible.
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
The linear transonic perturbation integral equation previously derived for nonlifting airfoils is formulated for lifting cases. In order to treat shock wave motions, a strained coordinate system is used in which the shock location is invariant. The tangency boundary conditions are either formulated using the thin airfoil approximation or by using the analytic continuation concept. A direct numerical solution to this equation is derived in contrast to the iterative scheme initially used, and results of both lifting and nonlifting examples indicate that the method is satisfactory.
Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine
NASA Astrophysics Data System (ADS)
Sogukpinar, Haci; Bozkurt, Ismail
2017-02-01
In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.
Analytical Investigation of Icing Limit for Diamond-Shaped Airfoil in Transonic and Supersonic Flow
NASA Technical Reports Server (NTRS)
Callaghan, Edmund E.; Serafini, John S.
1953-01-01
Calculations have been made for the icing limit of a diamond airfoil at zero angle of attack in terms of the stream Mach number, stream temperature, and pressure altitude. The icing limit is defined as a wetted-surface temperature of 320 F and is related to the stream conditions by the method of Hardy. The results show that the point most likely to ice on the airfoil lies immediately behind the shoulder and is subject to possible icing at Mach numbers as high as 1.4.
NASA Technical Reports Server (NTRS)
Scott, James R.
1991-01-01
A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a
Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000
NASA Astrophysics Data System (ADS)
Levy, David-Elie; Seifert, Avraham
2009-07-01
Effective aerodynamics at Reynolds numbers lower than 10 000 is of great technological interest and a fundamental scientific challenge. The current study covers a Reynolds number range of 2000-8000. At these Reynolds numbers, natural insect flight could provide inspiration for technology development. Insect wings are commonly characterized by corrugated airfoils. In particular, the airfoil of the dragonfly, which is able to glide, can be used for two-dimensional aerodynamic study of fixed rigid wings. In this study, a simplified dragonfly airfoil is numerically analyzed in a steady free-stream flow. The aerodynamic performance (such as mean and fluctuating lift and drag), are first compared to a "traditional" low Reynolds number airfoil: the Eppler-E61. The numerical results demonstrate superior performances of the corrugated airfoil. A series of low-speed wind and water tunnel experiments were performed on the corrugated airfoil, to validate the numerical results. The findings indicate quantitative agreement with the mean wake velocity profiles and shedding frequencies while validating the two dimensionality of the flow. A flow physics numerical study was performed in order to understand the underlying mechanism of corrugated airfoils at these Reynolds numbers. Airfoil shapes based on the flow field characteristics of the corrugated airfoil were built and analyzed. Their performances were compared to those of the corrugated airfoil, stressing the advantages of the latter. It was found that the flow which separates from the corrugations and forms spanwise vortices intermittently reattaches to the aft-upper arc region of the airfoil. This mechanism is responsible for the relatively low intensity of the vortices in the airfoil wake, reducing the drag and increasing the flight performances of this kind of corrugated airfoil as compared to traditional low Reynolds number airfoils such as the Eppler E-61.
Multidisciplinary Optimization Methods for Aircraft Preliminary Design
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian
1994-01-01
This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.
Multidisciplinary Optimization Methods for Preliminary Design
NASA Technical Reports Server (NTRS)
Korte, J. J.; Weston, R. P.; Zang, T. A.
1997-01-01
An overview of multidisciplinary optimization (MDO) methodology and two applications of this methodology to the preliminary design phase are presented. These applications are being undertaken to improve, develop, validate and demonstrate MDO methods. Each is presented to illustrate different aspects of this methodology. The first application is an MDO preliminary design problem for defining the geometry and structure of an aerospike nozzle of a linear aerospike rocket engine. The second application demonstrates the use of the Framework for Interdisciplinary Design Optimization (FIDO), which is a computational environment system, by solving a preliminary design problem for a High-Speed Civil Transport (HSCT). The two sample problems illustrate the advantages to performing preliminary design with an MDO process.
Exact solutions in oscillating airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1977-01-01
A result obtained by Williams (1977) for two-dimensional airfoils oscillating in an arbitrary subsonic parallel flowfield is reformulated to show that the pressure distribution induced by any deformation can be construed from the particular solutions for heaving and pitching motions. Specific formulas are presented for an oscillating control surface with a sealed gap.
Turbine airfoil with controlled area cooling arrangement
Liang, George
2010-04-27
A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.
Near-wall serpentine cooled turbine airfoil
Lee, Ching-Pang
2014-10-28
A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.
Analysis Method for Quantifying Vehicle Design Goals
NASA Technical Reports Server (NTRS)
Fimognari, Peter; Eskridge, Richard; Martin, Adam; Lee, Michael
2007-01-01
A document discusses a method for using Design Structure Matrices (DSM), coupled with high-level tools representing important life-cycle parameters, to comprehensively conceptualize a flight/ground space transportation system design by dealing with such variables as performance, up-front costs, downstream operations costs, and reliability. This approach also weighs operational approaches based on their effect on upstream design variables so that it is possible to readily, yet defensively, establish linkages between operations and these upstream variables. To avoid the large range of problems that have defeated previous methods of dealing with the complex problems of transportation design, and to cut down the inefficient use of resources, the method described in the document identifies those areas that are of sufficient promise and that provide a higher grade of analysis for those issues, as well as the linkages at issue between operations and other factors. Ultimately, the system is designed to save resources and time, and allows for the evolution of operable space transportation system technology, and design and conceptual system approach targets.
Axisymmetric inlet minimum weight design method
NASA Technical Reports Server (NTRS)
Nadell, Shari-Beth
1995-01-01
An analytical method for determining the minimum weight design of an axisymmetric supersonic inlet has been developed. The goal of this method development project was to improve the ability to predict the weight of high-speed inlets in conceptual and preliminary design. The initial model was developed using information that was available from inlet conceptual design tools (e.g., the inlet internal and external geometries and pressure distributions). Stiffened shell construction was assumed. Mass properties were computed by analyzing a parametric cubic curve representation of the inlet geometry. Design loads and stresses were developed at analysis stations along the length of the inlet. The equivalent minimum structural thicknesses for both shell and frame structures required to support the maximum loads produced by various load conditions were then determined. Preliminary results indicated that inlet hammershock pressures produced the critical design load condition for a significant portion of the inlet. By improving the accuracy of inlet weight predictions, the method will improve the fidelity of propulsion and vehicle design studies and increase the accuracy of weight versus cost studies.
Optimization methods applied to hybrid vehicle design
NASA Technical Reports Server (NTRS)
Donoghue, J. F.; Burghart, J. H.
1983-01-01
The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.
Assessment of dual-point drag reduction for an executive-jet modified airfoil section
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Mineck, Raymond E.
1996-01-01
This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.
Computer-Aided Drug Design Methods.
Yu, Wenbo; MacKerell, Alexander D
2017-01-01
Computational approaches are useful tools to interpret and guide experiments to expedite the antibiotic drug design process. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) are the two general types of computer-aided drug design (CADD) approaches in existence. SBDD methods analyze macromolecular target 3-dimensional structural information, typically of proteins or RNA, to identify key sites and interactions that are important for their respective biological functions. Such information can then be utilized to design antibiotic drugs that can compete with essential interactions involving the target and thus interrupt the biological pathways essential for survival of the microorganism(s). LBDD methods focus on known antibiotic ligands for a target to establish a relationship between their physiochemical properties and antibiotic activities, referred to as a structure-activity relationship (SAR), information that can be used for optimization of known drugs or guide the design of new drugs with improved activity. In this chapter, standard CADD protocols for both SBDD and LBDD will be presented with a special focus on methodologies and targets routinely studied in our laboratory for antibiotic drug discoveries.
MAST Propellant and Delivery System Design Methods
NASA Technical Reports Server (NTRS)
Nadeem, Uzair; Mc Cleskey, Carey M.
2015-01-01
A Mars Aerospace Taxi (MAST) concept and propellant storage and delivery case study is undergoing investigation by NASA's Element Design and Architectural Impact (EDAI) design and analysis forum. The MAST lander concept envisions landing with its ascent propellant storage tanks empty and supplying these reusable Mars landers with propellant that is generated and transferred while on the Mars surface. The report provides an overview of the data derived from modeling between different methods of propellant line routing (or "lining") and differentiate the resulting design and operations complexity of fluid and gaseous paths based on a given set of fluid sources and destinations. The EDAI team desires a rough-order-magnitude algorithm for estimating the lining characteristics (i.e., the plumbing mass and complexity) associated different numbers of vehicle propellant sources and destinations. This paper explored the feasibility of preparing a mathematically sound algorithm for this purpose, and offers a method for the EDAI team to implement.
Standardized Radiation Shield Design Methods: 2005 HZETRN
NASA Technical Reports Server (NTRS)
Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.
2006-01-01
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
An optimisation method for complex product design
NASA Astrophysics Data System (ADS)
Li, Ni; Yi, Wenqing; Bi, Zhuming; Kong, Haipeng; Gong, Guanghong
2013-11-01
Designing a complex product such as an aircraft usually requires both qualitative and quantitative data and reasoning. To assist the design process, a critical issue is how to represent qualitative data and utilise it in the optimisation. In this study, a new method is proposed for the optimal design of complex products: to make the full use of available data, information and knowledge, qualitative reasoning is integrated into the optimisation process. The transformation and fusion of qualitative and qualitative data are achieved via the fuzzy sets theory and a cloud model. To shorten the design process, parallel computing is implemented to solve the formulated optimisation problems. A parallel adaptive hybrid algorithm (PAHA) has been proposed. The performance of the new algorithm has been verified by a comparison with the results from PAHA and two other existing algorithms. Further, PAHA has been applied to determine the shape parameters of an aircraft model for aerodynamic optimisation purpose.
Statistical Methods in Algorithm Design and Analysis.
ERIC Educational Resources Information Center
Weide, Bruce W.
The use of statistical methods in the design and analysis of discrete algorithms is explored. The introductory chapter contains a literature survey and background material on probability theory. In Chapter 2, probabilistic approximation algorithms are discussed with the goal of exposing and correcting some oversights in previous work. Chapter 3…
Flight Tests of a Supersonic Natural Laminar Flow Airfoil
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.
2015-01-01
A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.
Flight Tests of a Supersonic Natural Laminar Flow Airfoil
NASA Technical Reports Server (NTRS)
Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.
2014-01-01
A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.
Ice Accretions and Icing Effects for Modern Airfoils
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.
2000-01-01
Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.
Flight tests of a supersonic natural laminar flow airfoil
NASA Astrophysics Data System (ADS)
Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.
2015-06-01
A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.
CFD simulation of turbulent airflow around wind turbine airfoils
NASA Astrophysics Data System (ADS)
Halbrooks, David N.
The airflow around wind turbines has proved to be a difficult problem to approach by means of today's Computational Fluid Dynamics (CFD) codes. One reason for this difficulty lies within the stall characteristics of turbine airfoils. For the purposes of this research, the popular commercial CFD code, FLUENT was employed to facilitate the understanding of airflow around wind turbines through the study of various turbulence models. Parallel processing was employed to enhance computational performance as well as lower simulation times. The system used for simulation is the National Renewable Energy Laboratory (NREL) Phase VI Wind Turbine. The coefficients of pressure for the airfoil were extracted from the simulated data and compared against data obtained during the NREL Phase VI Wind Turbine data campaign. Since power is a driving factor of the design of wind turbine blades, the aspect of power was also examined and compared. After the completion of the baseline study, a parametric study was carried out to examine the effects of rotor speed downstream of the turbine blades.
Implementation of CPFD to Control Active and Passive Airfoil Propulsion
NASA Astrophysics Data System (ADS)
Young, Jay; Asselin, Daniel; Williamson, Charles
2016-11-01
The fluid dynamics of biologically-inspired flapping propulsion provides a fertile testing ground for the field of unsteady aerodynamics, serving as important groundwork for the design and development of fast, mobile underwater vehicles and flapping-wing micro air vehicles (MAVs). There has been a recent surge of interest in these technologies as they provide low cost, compact, and maneuverable means for terrain mapping, search and rescue operations, and reconnaissance. Propulsion by unsteady motions has been fundamentally modeled with an airfoil that heaves and pitches, and previous work has been done to show that actively controlling these motions can generate high thrust and efficiency (Read, Hover & Triantafyllou 2003). In this study, we examine the performance of an airfoil with an actuated heave motion coupled with a passively controlled pitch motion created by simulating the presence of a torsional spring using our cyber-physical fluid dynamics (CPFD) approach (Mackowski & Williamson 2011, 2015, 2016). By using passively controlled pitch, we have effectively eliminated an actuator, decreasing cost and mass, an important step for developing efficient vehicles. In many cases, we have achieved comparable or superior thrust and efficiency values to those obtained using two actively controlled degrees of freedom. This work was supported by the National Science Foundation and the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.
Evaluation of Icing Scaling on Swept NACA 0012 Airfoil Models
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Lee, Sam
2012-01-01
Icing scaling tests in the NASA Glenn Icing Research Tunnel (IRT) were performed on swept wing models using existing recommended scaling methods that were originally developed for straight wing. Some needed modifications on the stagnation-point local collection efficiency (i.e., beta(sub 0) calculation and the corresponding convective heat transfer coefficient for swept NACA 0012 airfoil models have been studied and reported in 2009, and the correlations will be used in the current study. The reference tests used a 91.4-cm chord, 152.4-cm span, adjustable sweep airfoil model of NACA 0012 profile at velocities of 100 and 150 knot and MVD of 44 and 93 mm. Scale-to-reference model size ratio was 1:2.4. All tests were conducted at 0deg angle of attack (AoA) and 45deg sweep angle. Ice shape comparison results were presented for stagnation-point freezing fractions in the range of 0.4 to 1.0. Preliminary results showed that good scaling was achieved for the conditions test by using the modified scaling methods developed for swept wing icing.
Automated design of controlled diffusion blades
NASA Technical Reports Server (NTRS)
Sanz, Jose M.
1989-01-01
A numerical automation procedure was developed to be used in conjunction with an inverse hodograph method for the design of controlled diffusion blades. With this procedure a cascade of airfoils with a prescribed solidity, inlet Mach No., inlet air flow angle and air flow turning can be produced automatically. The trailing edge thickness of the airfoil, an important quantity in inverse methods, is also prescribed. The automation procedure consists of a multi-dimensional Newton iteration in which the objective design conditions are achieved by acting on the hodograph input parameters of the underlying inverse code. The method, although more general in scope, is applied to the design of axial flow turbomachinery blade sections, both compressors and turbines. A collaborative effort with U.S. Engine Companies to identify designs of interest to the industry will be described.
Acoustic Treatment Design Scaling Methods. Phase 2
NASA Technical Reports Server (NTRS)
Clark, L. (Technical Monitor); Parrott, T. (Technical Monitor); Jones, M. (Technical Monitor); Kraft, R. E.; Yu, J.; Kwan, H. W.; Beer, B.; Seybert, A. F.; Tathavadekar, P.
2003-01-01
The ability to design, build and test miniaturized acoustic treatment panels on scale model fan rigs representative of full scale engines provides not only cost-savings, but also an opportunity to optimize the treatment by allowing multiple tests. To use scale model treatment as a design tool, the impedance of the sub-scale liner must be known with confidence. This study was aimed at developing impedance measurement methods for high frequencies. A normal incidence impedance tube method that extends the upper frequency range to 25,000 Hz. without grazing flow effects was evaluated. The free field method was investigated as a potential high frequency technique. The potential of the two-microphone in-situ impedance measurement method was evaluated in the presence of grazing flow. Difficulties in achieving the high frequency goals were encountered in all methods. Results of developing a time-domain finite difference resonator impedance model indicated that a re-interpretation of the empirical fluid mechanical models used in the frequency domain model for nonlinear resistance and mass reactance may be required. A scale model treatment design that could be tested on the Universal Propulsion Simulator vehicle was proposed.
The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1992-01-01
A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.
Reliability Methods for Shield Design Process
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.
2002-01-01
Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space operations. In this enabling technology, we have developed methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. An important component of this technology is the estimation of two most commonly identified uncertainties in radiation shield design, the shielding properties of materials used and the understanding of the biological response of the astronaut to the radiation leaking through the materials into the living space. The largest uncertainty, of course, is in the biological response to especially high charge and energy (HZE) ions of the galactic cosmic rays. These uncertainties are blended with the optimization design procedure to formulate reliability-based methods for shield design processes. The details of the methods will be discussed.
A novel method to design flexible URAs
NASA Astrophysics Data System (ADS)
Lang, Haitao; Liu, Liren; Yang, Qingguo
2007-05-01
Aperture patterns play a vital role in coded aperture imaging (CAI) applications. In recent years, many approaches were presented to design optimum or near-optimum aperture patterns. Uniformly redundant arrays (URAs) are, undoubtedly, the most successful for constant sidelobe of their periodic autocorrelation function. Unfortunately, the existing methods can only be used to design URAs with a limited number of array sizes and fixed autocorrelation sidelobe-to-peak ratios. In this paper, we present a novel method to design more flexible URAs. Our approach is based on a searching program driven by DIRECT, a global optimization algorithm. We transform the design question to a mathematical model, based on the DIRECT algorithm, which is advantageous for computer implementation. By changing determinative conditions, we obtain two kinds of types of URAs, including the filled URAs which can be constructed by existing methods and the sparse URAs which have never been mentioned by other authors as far as we know. Finally, we carry out an experiment to demonstrate the imaging performance of the sparse URAs.
Optimization methods for alternative energy system design
NASA Astrophysics Data System (ADS)
Reinhardt, Michael Henry
An electric vehicle heating system and a solar thermal coffee dryer are presented as case studies in alternative energy system design optimization. Design optimization tools are compared using these case studies, including linear programming, integer programming, and fuzzy integer programming. Although most decision variables in the designs of alternative energy systems are generally discrete (e.g., numbers of photovoltaic modules, thermal panels, layers of glazing in windows), the literature shows that the optimization methods used historically for design utilize continuous decision variables. Integer programming, used to find the optimal investment in conservation measures as a function of life cycle cost of an electric vehicle heating system, is compared to linear programming, demonstrating the importance of accounting for the discrete nature of design variables. The electric vehicle study shows that conservation methods similar to those used in building design, that reduce the overall UA of a 22 ft. electric shuttle bus from 488 to 202 (Btu/hr-F), can eliminate the need for fossil fuel heating systems when operating in the northeast United States. Fuzzy integer programming is presented as a means of accounting for imprecise design constraints such as being environmentally friendly in the optimization process. The solar thermal coffee dryer study focuses on a deep-bed design using unglazed thermal collectors (UTC). Experimental data from parchment coffee drying are gathered, including drying constants and equilibrium moisture. In this case, fuzzy linear programming is presented as a means of optimizing experimental procedures to produce the most information under imprecise constraints. Graphical optimization is used to show that for every 1 m2 deep-bed dryer, of 0.4 m depth, a UTC array consisting of 5, 1.1 m 2 panels, and a photovoltaic array consisting of 1, 0.25 m 2 panels produces the most dry coffee per dollar invested in the system. In general this study
Simultaneous monitoring of ice accretion and thermography of an airfoil: an IR imaging methodology
NASA Astrophysics Data System (ADS)
Mohseni, M.; Frioult, M.; Amirfazli, A.
2012-10-01
A novel image analysis methodology based on infrared (IR) imaging was developed for simultaneous monitoring of ice accretion and thermography of airfoils. In this study, an IR camera was calibrated and used to measure the surface temperature of the energized airfoils, and monitor the ice accretion and growth pattern on the airfoils’ surfaces. The methodology comprises the automatic processing of a series of IR video frames with the purpose of detecting ice pattern evolution during the icing test period. A specially developed MATLAB code was used to detect the iced areas in the IR images, and simultaneously monitor surface temperature evolution of the airfoil during an icing test. Knowing the correlation between the icing pattern and surface temperature changes during an icing test is essential for energy efficient design of thermal icing mitigation systems. Processed IR images were also used to determine the ice accumulation rate on the airfoil's surface in a given icing test. The proposed methodology has been demonstrated to work successfully, since the optical images taken at the end of icing tests from the airfoils’ surfaces compared well with the processed IR images detecting the ice grown outward from the airfoils’ leading edge area.
Virtual Shaping of a Two-dimensional NACA 0015 Airfoil Using Synthetic Jet Actuator
NASA Technical Reports Server (NTRS)
Chen, Fang-Jenq; Beeler, George B.
2002-01-01
The Aircraft Morphing Program at NASA Langley envisions an aircraft without conventional control surfaces. Instead of moving control surfaces, the vehicle control systems may be implemented with a combination of propulsive forces, micro surface effectors, and fluidic devices dynamically operated by an intelligent flight control system to provide aircraft maneuverability over each mission segment. As a part of this program, a two-dimensional NACA 0015 airfoil model was designed to test mild maneuvering capability of synthetic jets in a subsonic wind tunnel. The objective of the experiments is to assess the applicability of using unsteady suction and blowing to alter the aerodynamic shape of an airfoil with a purpose to enhance lift and/or to reduce drag. Synthetic jet actuation at different chordwise locations, different forcing frequencies and amplitudes, under different freestream velocities are investigated. The effect of virtual shape change is indicated by a localized increase of surface pressure in the neighborhood of synthetic jet actuation. That causes a negative lift to the airfoil with an upper surface actuation. When actuation is applied near the airfoil leading edge, it appears that the stagnation line is shifted inducing an effect similar to that caused by a small angle of attack to produce an overall lift change.
Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Volino, Ralph J.
2005-01-01
Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.