Science.gov

Sample records for airfoil performance characteristics

  1. Airfoil Design and Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2003-01-01

    The relationship between global performance of a typical helicopter and the airfoil environment, as represented by the airfoil angles of attack and Mach number, has been examined using the comprehensive analysis CAMRAD II. A general correspondence is observed between global performance parameters, such as rotor L/D, and airfoil performance parameters, such as airfoil L/D, the drag bucket boundaries, and the divergence Mach number. Effects of design parameters such as blade twist and rotor speed variation have been examined and, in most cases, improvements observed in global performance are also observed in terms of airfoil performance. The relations observed between global Performance and the airfoil environment suggests that the emphasis in airfoil design should be for good L/D, while the maximum lift coefficient performance is less important.

  2. Performance characteristics from wind-tunnel tests of a low-Reynolds-number airfoil

    NASA Technical Reports Server (NTRS)

    Mcghee, Robert J.; Jones, Gregory S.; Jouty, Remi

    1988-01-01

    Wind tunnel lift and pitching-moment data have been obtained from pressure measurements, and drag data from wake surveys, for an Eppler 387 low Reynolds number airfoil over the Re range of 60,000 to 460,000; oil flow visualizations were also used to determine laminar separation and turbulent reattachment locations. Airfoil performance is found to be dominated by laminar separation bubbles below Re 200,000, and two flow regimes, namely laminar separations with and without turbulent reattachment, were observed at the same angle-of-attack for an Re of 60,000.

  3. Computer program to prepare airfoil characteristic data for use in helicopter performance calculations

    NASA Technical Reports Server (NTRS)

    Jones, H. E.

    1977-01-01

    A computer program developed to prepare wind tunnel generated airfoil data for input into helicopter performance prediction programs is described. The program provides for numerically cross plotting the data, plotting the data, and tabulating and punching the tabulated result into computer cards for use in the rotorcraft flight simulation model.

  4. Experimental ice shape and performance characteristics for a multi-element airfoil in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Berkowitz, Brian M.; Potapczuk, Mark G.; Namdar, Bahman S.; Langhals, Tammy J.

    1991-01-01

    A study of the ice accretion patterns and performance of characteristics of a multi-element airfoil was undertaken at the NASA-Lewis Icing Research Tunnel. Several configurations were examined to determine the ice shape and performance characteristics. The testing included glaze, rime, and mixed icing regimes. Tunnel cloud conditions were set to correspond to those typical of the operating environment for commercial transport aircraft. Measurements acquired included ice profile tracings and aerodynamic forces both during the accretion process and in a post-accretion evaluation over a range of angle of attack. Substantial ice accretions developed on the main wing, flaps, and slat surfaces. Force measurements indicate severe performance degradation, especially near CL max, for both light and heavy ice accretion. Frost was seen on the lower surface of the airfoil which was found to contribute significantly to the force components.

  5. Advanced Airfoils Boost Helicopter Performance

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  6. Effect of Flap Deflection on Section Characteristics of S813 Airfoil; Period of Performance: 1993--1994

    SciTech Connect

    Somers, D. M.

    2005-01-01

    The effect of small deflections of a 30% chord, simple flap on the section characteristics of a tip airfoil, the S813, designed for 20- to 30-meter, stall-regulated, horizontal-axis wind turbines has been evaluated theoretically. The decrease in maximum lift coefficient due to leading-edge roughness increases in magnitude with increasing, positive flap deflection and with decreasing Reynolds number.

  7. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  8. An Experimental Study of Airfoil Icing Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.; Sotos, R. G.; Solano, F. R.

    1982-01-01

    A full scale general aviation wing with a NACA 63 sub 2 A415 airfoil section was tested to determine icing characteristics for representative rime and glaze icing conditions. Measurements were made of ice accretion shapes and resultant wing section drag coefficient levels. It was found that the NACA 63 sub 2 A415 wing section was less sensitive to rime and glaze icing encounters for climb conditions.

  9. Description and Performance Characteristics of a Captive Airfoil Balloon System Used in the Initial Phase of the Aeropalynologic Survey Project

    NASA Technical Reports Server (NTRS)

    Silbert, Mendel N.

    1967-01-01

    The purpose of this paper is to present results of a system analysis and operational evaluation of a captive airfoil balloon system. The system was used operationally in support of an Aeropalynologic Survey Project at NASA Wallops Island, Virginia, during the summer of 1966.

  10. Horizontal axis wind turbine post stall airfoil characteristics synthesization

    SciTech Connect

    Tangler, J.L. . Wind Energy Research Center); Ostowari, C. )

    1991-06-01

    Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction. 5 refs., 3 figs.

  11. Horizontal axis wind turbine post stall airfoil characteristics synthesization

    NASA Technical Reports Server (NTRS)

    Tangler, James L.; Ostowari, Cyrus

    1995-01-01

    Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction.

  12. The Aerodynamic Characteristics of Airfoils as Affected by Surface Roughness

    NASA Technical Reports Server (NTRS)

    HOCKER RAY W

    1933-01-01

    The effect on airfoil characteristics of surface roughness of varying degrees and types at different locations on an airfoil was investigated at high values of the Reynolds number in a variable density wind tunnel. Tests were made on a number of National Advisory Committee for Aeronautics (NACA) 0012 airfoil models on which the nature of the surface was varied from a rough to a very smooth finish. The effect on the airfoil characteristics of varying the location of a rough area in the region of the leading edge was also investigated. Airfoils with surfaces simulating lap joints were also tested. Measurable adverse effects were found to be caused by small irregularities in airfoil surfaces which might ordinarily be overlooked. The flow is sensitive to small irregularities of approximately 0.0002c in depth near the leading edge. The tests made on the surfaces simulating lap joints indicated that such surfaces cause small adverse effects. Additional data from earlier tests of another symmetrical airfoil are also included to indicate the variation of the maximum lift coefficient with the Reynolds number for an airfoil with a polished surface and with a very rough one.

  13. Performance predictions of VAWTs with NLF airfoil blades

    SciTech Connect

    Masson, C.; Leclerc, C.; Paraschivoiu, I.

    1997-02-01

    The successful design of an efficient Vertical Axis Wind Turbine (VAWT) can be obtained only when appropriate airfoil sections have been selected. Most VAWTs currently operating worldwide use blades of symmetrical NACA airfoil series. As these blades were designed for aviation applications, Sandia National Laboratories developed a family of airfoils specifically designed for VAWTs in order to decrease the Cost of Energy (COE) of the VAWT (Berg, 1990). Objectives formulated for the blade profile were: modest values of maximum lift coefficient, low drag at low angle of attack, high drag at high angle of attack, sharp stall, and low thickness-to-chord ratio. These features are similar to those of Natural Laminar Flow airfoils (NLF) and gave birth to the SNLA airfoil series. This technical brief illustrates the benefits and losses resulting from using NLF airfoils on VAWT blades. To achieve this goal, the streamtube model of Paraschivoiu (1988) is used to predict the performance of VAWTs equipped with blades of various airfoil shapes. The airfoil shapes considered are the conventional airfoils NACA 0018 and NACA 0021, and the SNLA 0018/50 airfoil designed at Sandia. Furthermore, the potential benefit of reducing the airfoil drag is clearly illustrated by the presentation of the individual contributions of lift and drag to power.

  14. Ice-induced unsteady flowfield effects on airfoil performance

    NASA Astrophysics Data System (ADS)

    Gurbacki, Holly Marie

    Numerical prediction of iced-airfoil performance prior to and at maximum lift is often inaccurate due to large-scale flow unsteadiness. New computational models are being developed to improve predictions of complex separated flowfields; however, experimental data are required to improve and validate these algorithms. The objective of this investigation was to examine the unsteady flow behavior and the time-dependent performance of an iced airfoil to determine the flowfield characteristics with the most influence on airfoil performance, especially near stall. A NACA 0012 airfoil with two-dimensional and three-dimensional leading-edge simulated glaze ice shapes was tested in a wind tunnel at Reynolds numbers 1.8 x 106 and 1.0 x 106. Time-dependent surface pressure measurements were used to calculate root-mean-square lift and quarter-chord pitching-moment coefficients. Surface and flowfield visualization and wake hot-wire data were acquired. Spectral, correlation and phase-angle analyses were performed. The most significant unsteady flowfield effect on the iced-airfoil performance was a low-frequency flow phenomenon on the order of 10 Hz that resulted in Strouhal numbers of 0.0048--0.0101. The low-frequency oscillation produced large-scale pressure fluctuations nears eparation at high angles of attack and elevated lift and moment fluctuations as low as alpha = 4°. The low-frequency motion of surface pressure coefficients convected downstream at velocities 4%--34% of the freestream value and in one case, upstream at 0.18Uinfinity. The iced-airfoil flowfield exhibited a separation bubble of varying thickness and fluctuating reattachment, characteristics similar to those associated with the low-frequency shear-layer flapping and bubble growth and decay of other separated and reattached flows. Vortex structures observed in the shear layer were presumed to be the cause of large-scale pressure fluctuations upstream of reattachment at small angles of attack. Pressure

  15. Stiffness characteristics of airfoils under pulse loading

    NASA Astrophysics Data System (ADS)

    Turner, Kevin Eugene

    The turbomachinery industry continually struggles with the adverse effects of contact rubs between airfoils and casings. The key parameter controlling the severity of a given rub event is the contact load produced when the airfoil tips incur into the casing. These highly non-linear and transient forces are difficult to calculate and their effects on the static and rotating components are not well understood. To help provide this insight, experimental and analytical capabilities have been established and exercised through an alliance between GE Aviation and The Ohio State University Gas Turbine Laboratory. One of the early findings of the program is the influence of blade flexibility on the physics of rub events. The core focus of the work presented in this dissertation is to quantify the influence of airfoil flexibility through a novel modeling approach that is based on the relationship between applied force duration and maximum tip deflection. This relationship is initially established using a series of forward, non-linear and transient analyses in which simulated impulse rub loads are applied. This procedure, although effective, is highly inefficient and costly to conduct by requiring numerous explicit simulations. To alleviate this issue, a simplified model, named the pulse magnification model, is developed that only requires a modal analysis and a static analyses to fully describe how the airfoil stiffness changes with respect to load duration. Results from the pulse magnification model are compared to results from the full transient simulation method and to experimental results, providing sound verification for the use of the modeling approach. Furthermore, a unique and highly efficient method to model airfoil geometries was developed and is outlined in this dissertation. This method produces quality Finite Element airfoil definitions directly from a fully parameterized mathematical model. The effectiveness of this approach is demonstrated by comparing modal

  16. Performance measurements of an airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Mcghee, Robert J.; Walker, Betty S.

    1989-01-01

    Performance characteristics of an Eppler 387 airfoil using both direct (force) and indirect (pressure) measurement techniques have been obtained at Reynolds numbers from 60,000 to 460,000 in the Langley Low-Turbulence Pressure Tunnel. Lift, drag, and pitching-moment data were obtained from two internally-mounted strain-gage balances specifically designed for small aerodynamic loads. Comparisons of these results with data from a pressure model of an Eppler 387 airfoil are included. Drag data for both models using the wake traverse method are compared with the balance data. Oil flow visualization and surface mounted hot-film sensors were used to determine laminar-separation and turbulent-reattachment locations. Problems associated with obtaining accurate wind-tunnel data at low Reynolds numbers are discussed.

  17. Two-dimensional Aerodynamic Characteristics of 34 Miscellaneous Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K , Jr; Smith, Hamilton A

    1949-01-01

    The aerodynamic characteristics of 34 miscellaneous airfoils tested in the Langley two-dimensional low-turbulence tunnels are presented. The data include lift, drag, and in some cases, pitching-moment characteristics, for Reynolds numbers between 3.0 x 10 (exp 6) and 9.0 x 10 (exp 6).

  18. The development of cambered airfoil sections having favorable lift characteristics at supercritical Mach numbers

    NASA Technical Reports Server (NTRS)

    Graham, Donald J

    1949-01-01

    Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined from two-dimensional wind-tunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NACA 6-series airfoils.

  19. Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence

    NASA Technical Reports Server (NTRS)

    Paterson, R. W.

    1976-01-01

    A theoretical and experimental investigation of the noise and unsteady surface pressure characteristics of an isolated airfoil in a uniform mean velocity, homogeneous, nearly-isotropic turbulence field was conducted. Wind tunnel experiments were performed with a 23 cm chord, two dimensional NACA 0012 airfoil over a free stream Mach number range of 0.1 to 0.5. Far-field noise spectra and directivity were measured in an anechoic chamber that surrounded the tunnel open jet test section. Spanwise and chordwise distribution of unsteady airfoil surface pressure spectra and surface pressure cross-spectra were obtained. Incident turbulence intensities, length scales, spectra, and spanwise cross-spectra, required in the calculation of far-field noise and surface pressure characteristics were also measured.

  20. Desirable airfoil characteristics for large variable-speed horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-08-01

    In an effort to define the desirable airfoil characteristics for large variable-speed wind turbines, a systematic study was performed using a series of airfoils designed to have similar aerodynamic properties, except for the amount of lift, which varied over a wide range. For several airfoil combinations, blade shapes were designed for a 750-kW wind turbine with a 48.8-m diameter rotor using the optimization code PROPGA together with PROPID, which is an inverse design method for horizontal-axis wind turbines. Roughness effects, including the consideration of dirty-blade performance in the blade-shape optimization process, were also considered and are discussed. The results and conclusions reveal practical design implications that should aid in the aerodynamic blade design of not only large but also other sizes of variable-speed wind turbines.

  1. Airfoil

    NASA Technical Reports Server (NTRS)

    Derkacs, Thomas (Inventor); Fetheroff, Charles W. (Inventor); Matay, Istvan M. (Inventor); Toth, Istvan J. (Inventor)

    1983-01-01

    Although the method and apparatus of the present invention can be utilized to apply either a uniform or a nonuniform covering of material over many different workpieces, the apparatus (20) is advantageously utilized to apply a thermal barrier covering (64) to an airfoil (22) which is used in a turbine engine. The airfoil is held by a gripper assembly (86) while a spray gun (24) is effective to apply the covering over the airfoil. When a portion of the covering has been applied, a sensor (28) is utilized to detect the thickness of the covering. A control apparatus (32) compares the thickness of the covering of material which has been applied with the desired thickness and is subsequently effective to regulate the operation of the spray gun to adaptively apply a covering of a desired thickness with an accuracy of at least plus or minus 0.0015 of an inch (1.5 mils) despite unanticipated process variations.

  2. Performance of advanced wind turbine airfoils with vortex generators

    SciTech Connect

    Wetzel, K.K.; Farokhi, S.

    1995-12-31

    The performance of the NREL S807 airfoil is experimentally determined via wind tunnel testing. The tests are conducted at Reynolds numbers of 0.5, 1.0, and 1.5{sm_bullet}10{sup 6}, with a clean surface, with two levels of leading edge surface roughness, and with surface roughness and large wishbone vortex generators. The results show that the S807 maximum lift coefficient drops with the application of leading edge surface roughness. The wishbone vortex generators are successful in restoring most of the loss in maximum lift coefficient at the cost of significant increase in profile drag at pre-stall angles of attack. The aerodynamic characteristics of the S807 with and without vortex generators are used as the input to the PROP93 and SEACC computer models to simulate the performance of an advanced wind turbine employing vortex generators. The results demonstrate that vortex generators could improve the performance of advanced wind turbines using the NREL airfoils by up to 4%.

  3. Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.

    SciTech Connect

    Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica; Simley, Eric

    2010-06-01

    The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

  4. The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1932-01-01

    Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.

  5. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  6. Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD

    SciTech Connect

    Wolfe, W.P.; Ochs, S.S.

    1997-09-01

    An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

  7. Airfoil

    DOEpatents

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  8. Automated CFD for Generation of Airfoil Performance Tables

    NASA Technical Reports Server (NTRS)

    Strawn, Roger; Mayda, E. Q.; vamDam, C. P.

    2009-01-01

    A method of automated computational fluid dynamics (CFD) has been invented for the generation of performance tables for an object subject to fluid flow. The method is applicable to the generation of tables that summarize the effects of two-dimensional flows about airfoils and that are in a format known in the art as C81. (A C81 airfoil performance table is a text file that lists coefficients of lift, drag, and pitching moment of an airfoil as functions of angle of attack for a range of Mach numbers.) The method makes it possible to efficiently generate and tabulate data from simulations of flows for parameter values spanning all operational ranges of actual or potential interest. In so doing, the method also enables filling of gaps and resolution of inconsistencies in C81 tables generated previously from incomplete experimental data or from theoretical calculations that involved questionable assumptions.

  9. Aerodynamic performance of an annular classical airfoil cascade

    NASA Technical Reports Server (NTRS)

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  10. Atmospheric performance of the special-purpose Solar Energy Research Institute (SERI) thin-airfoil family

    SciTech Connect

    Tangler, J; Smith, B; Jager, D; Olsen, T

    1990-09-01

    The Solar Energy Research Institute (SERI), in cooperation with SeaWest Energy Group, has completed extensive atmospheric testing of the special-purpose SERI thin-airfoil family during the 1990 wind season. The purpose of this test program was to experimentally verify the predicted performance characteristics of the thin-airfoil family on a geometrically optimized blade, and to compare it to original-equipment blades under atmospheric wind conditions. The tests were run on two identical Micon 65/13 horizontal-axis wind turbines installed side-by-side in a wind farm. The thin-airfoil family 7.96 m blades were installed on one turbine, and AeroStar 7.41 m blades were installed on the other. This paper presents final performance results of the side-by-side comparative field test for both clean and dirty blade conditions. 7 refs., 11 figs., 1 tab.

  11. Flow field characteristics study of a flapping airfoil using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Amiralaei, M. R.; Alighanbari, H.; Hashemi, S. M.

    2011-10-01

    The flow field of a flapping airfoil in Low Reynolds Number (LRN) flow regime is associated with complex nonlinear vortex shedding and viscous phenomena. The respective fluid dynamics of such a flow is investigated here through Computational Fluid Dynamics (CFD) based on the Finite Volume Method (FVM). The governing equations are the unsteady, incompressible two-dimensional Navier-Stokes (N-S) equations. The airfoil is a thin ellipsoidal geometry performing a modified figure-of-eight-like flapping pattern. The flow field and vortical patterns around the airfoil are examined in detail, and the effects of several unsteady flow and system parameters on the flow characteristics are explored. The investigated parameters are the amplitude of pitching oscillations, phase angle between pitching and plunging motions, mean angle of attack, Reynolds number (Re), Strouhal number (St) based on the translational amplitudes of oscillations, and the pitching axis location ( x / c ). It is shown that these parameters change the instantaneous force coefficients quantitatively and qualitatively. It is also observed that the strength, interaction, and convection of the vortical structures surrounding the airfoil are significantly affected by the variations of these parameters.

  12. The potential influence of rain on airfoil performance

    NASA Technical Reports Server (NTRS)

    Dunham, R. Earl, Jr.

    1987-01-01

    The potential influence of heavy rain on airfoil performance is discussed. Experimental methods for evaluating rain effects are reviewed. Important scaling considerations for extrapolating model data are presented. It is shown that considerable additional effort, both analytical and experimental, is necessary to understand the degree of hazard associated with flight operations in rain.

  13. Aerodynamic Characteristics of a Number of Modified NACA Four-Digit-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K., Jr.; Cohen, Kenneth G.

    1947-01-01

    Theoretical pressure distributions and measured lift, drag, and pitching moment characteristics at three values of Reynolds number are presented for a group of NACA four-digit-series airfoil sections modified for high-speed applications. The effectiveness of flaps applied to these airfoils and the effect of standard leading-edge roughness were also investigated at one value of Reynolds number. Results are also presented of tests of three conventional NACA four-digit-series airfoil sections.

  14. Flow structure and performance of a flexible plunging airfoil

    NASA Astrophysics Data System (ADS)

    Akkala, James Marcus

    An investigation was performed with the intent of characterizing the effect of flexibility on a plunging airfoil, over a parameter space applicable to birds and flapping MAVs. The kinematics of the motion was determined using of a high speed camera, and the deformations and strains involved in the motion were examined. The vortex dynamics associated with the plunging motion were mapped out using particle image velocimetry (PIV), and categorized according to the behavior of the leading edge vortex (LEV). The development and shedding process of the LEVs was also studied, along with their flow trajectories. Results of the flexible airfoils were compared to similar cases performed with a rigid airfoil, so as to determine the effects caused by flexibility. Aerodynamic loads of the airfoils were also measured using a force sensor, and the recorded thrust, lift and power coefficients were analyzed for dependencies, as was the overall propulsive efficiency. Thrust and power coefficients were found to scale with the Strouhal number defined by the trialing edge amplitude, causing the data of the flexible airfoils to collapse down to a single curve. The lift coefficient was likewise found to scale with trailing edge Strouhal number; however, its data tended to collapse down to a linear relationship. On the other hand, the wake classification and the propulsive efficiency were more successfully scaled by the reduced frequency of the motion. The circulation of the LEV was determined in each case and the resulting data was scaled using a parameter developed for this specific study, which provided significant collapse of the data throughout the entire parameter space tested.

  15. The Development of Cambered Airfoil Sections Having Favorable Lift Characteristics at Supercritical Mach Numbers

    NASA Technical Reports Server (NTRS)

    Graham, Donald J

    1948-01-01

    Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.

  16. Analysis of a theoretically optimized transonic airfoil

    NASA Technical Reports Server (NTRS)

    Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.

    1978-01-01

    Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.

  17. Large-scale aerodynamic characteristics of airfoils as tested in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Anderson, Raymond F

    1931-01-01

    In order to give the large-scale characteristics of a variety of airfoils in a form which will be of maximum value, both for airplane design and for the study of airfoil characteristics, a collection has been made of the results of airfoil tests made at full-scale values of the reynolds number in the variable density wind tunnel of the National Advisory Committee for Aeronautics. They have been corrected for tunnel wall interference and are presented not only in the conventional form but also in a form which facilitates the comparison of airfoils and from which corrections may be easily made to any aspect ratio. An example showing the method of correcting the results to a desired aspect ratio has been given for the convenience of designers. In addition, the data have been analyzed with a view to finding the variation of the aerodynamic characteristics of airfoils with their thickness and camber.

  18. An investigation of the aerodynamic characteristics of a new general aviation airfoil in flight

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Hoffmann, M. J.; Weislogel, G. S.

    1982-01-01

    A low speed airfoil, the GA(W)-2, - a 13% thickness to chord ratio airfoil was evaluated. The wing of a Beech Sundowner was modified at by adding balsa ribs and covered with aluminum skin, to alter the existing airfoil shape to that of the GA(W)-2 airfoil. The aircraft was flown in a flight test program that gathered wing surface pressures and wake data from which the lift drag, and pitching moment of the airfoil could be determined. After the base line performance of the airfoil was measured, the drag due to surface irregularities such as steps, rivets and surface waviness was determined. The potential reduction of drag through the use of surface coatings such as KAPTON was also investigated.

  19. Low-speed aerodynamic characteristics of a 13 percent thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1979-01-01

    Wind tunnel tests were conducted to determine the low speed, two dimensional aerodynamic characteristics of a 13percent thick medium speed airfoil designed for general aviation applications. The results were compared with data for the 13 percent thick low speed airfoil. The tests were conducted over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2.0 x 10 to the 6th power to 12.0 x 10 to the 6th power, and an angle of attack frange from about -8 deg to 10 deg. The objective of retaining good high-lift low speed characteristics for an airfoil designed to have good medium speed cruise performance was achieved.

  20. Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.

    2009-01-01

    Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of

  1. Airfoil Section Characteristics as Affected by Variations of the Reynolds Number

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Sherman, Albert

    1937-01-01

    Report presents the results of an investigation of a systematically chosen representative group of related airfoils conducted in the NACA variable-density wind tunnel over a wide range of Reynolds number extending well into the flight range. The tests were made to provide information from which the variations of airfoil section characteristics with changes in the Reynolds number could be inferred and methods of allowing for these variations in practice could be determined. This work is one phase of an extensive and general airfoil investigation being conducted in the variable-density tunnel and extends the previously published researches concerning airfoil characteristics as affected by variations in airfoil profile determined at a single value of the Reynolds number.

  2. Effects of environmentally imposed roughness on airfoil performance

    NASA Technical Reports Server (NTRS)

    Cebeci, Tuncer

    1987-01-01

    The experimental evidence for the effects of rain, insects, and ice on airfoil performance are examined. The extent to which the available information can be incorporated in a calculation method in terms of change of shape and surface roughness is discussed. The methods described are based on the interactive boundary procedure of Cebeci or on the thin layer Navier Stokes procedure developed at NASA. Cases presented show that extensive flow separation occurs on the rough surfaces.

  3. Effects of enviromentally imposed roughness on airfoil performance

    NASA Technical Reports Server (NTRS)

    Cebeci, Tuncer

    1987-01-01

    The experimental evidence for the effects of rain, insects, and ice on airfoil performance are examined. The extent to which the available information can be incorporated in a calculation method in terms of change of shape and surface roughness is discussed. The methods described are based on the interactive boundary layer procedure of Cebeci or on the thin layer Navier Stokes procedure developed at NASA. Cases presented show that extensive flow separation occurs on the rough surfaces.

  4. F-5-L Boat Seaplane : performance characteristics

    NASA Technical Reports Server (NTRS)

    Diehl, W S

    1922-01-01

    Performance characteristics for the F-5-L Boat Seaplane are given. Characteristic curves for the RAF-6 airfoil and the F-5-L wings, parasite resistance and velocity data, engine and propeller characteristics, effective and maximum horsepower, and cruising performance are discussed.

  5. Prediction of the Effect of Vortex Generators on Airfoil Performance

    NASA Astrophysics Data System (ADS)

    Sørensen, Niels N.; Zahle, F.; Bak, C.; Vronsky, T.

    2014-06-01

    Vortex Generators (VGs) are widely used by the wind turbine industry, to control the flow over blade sections. The present work describes a computational fluid dynamic procedure that can handle a geometrical resolved VG on an airfoil section. After describing the method, it is applied to two different airfoils at a Reynolds number of 3 million, the FFA- W3-301 and FFA-W3-360, respectively. The computations are compared with wind tunnel measurements from the Stuttgart Laminar Wind Tunnel with respect to lift and drag variation as function of angle of attack. Even though the method does not exactly capture the measured performance, it can be used to compare different VG setups qualitatively with respect to chord- wise position, inter and intra-spacing and inclination of the VGs already in the design phase.

  6. Evaluation of CFD to Determine Two-Dimensional Airfoil Characteristics for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Smith, Marilyn J.; Wong, Tin-Chee; Potsdam, Mark; Baeder, James; Phanse, Sujeet

    2004-01-01

    The efficient prediction of helicopter rotor performance, vibratory loads, and aeroelastic properties still relies heavily on the use of comprehensive analysis codes by the rotorcraft industry. These comprehensive codes utilize look-up tables to provide two-dimensional aerodynamic characteristics. Typically these tables are comprised of a combination of wind tunnel data, empirical data and numerical analyses. The potential to rely more heavily on numerical computations based on Computational Fluid Dynamics (CFD) simulations has become more of a reality with the advent of faster computers and more sophisticated physical models. The ability of five different CFD codes applied independently to predict the lift, drag and pitching moments of rotor airfoils is examined for the SC1095 airfoil, which is utilized in the UH-60A main rotor. Extensive comparisons with the results of ten wind tunnel tests are performed. These CFD computations are found to be as good as experimental data in predicting many of the aerodynamic performance characteristics. Four turbulence models were examined (Baldwin-Lomax, Spalart-Allmaras, Menter SST, and k-omega).

  7. Notes on the theoretical characteristics of two-dimensional supersonic airfoils

    NASA Technical Reports Server (NTRS)

    Ivey, H Reese

    1947-01-01

    The shock expansion method of the NACA TN No. 1143 was used to determine the principal aerodynamic characteristics of two-dimensional supersonic airfoils. A discussion is given of the effect of thickness ratio, free-stream Mach number, angle of attack, camber, thickness distribution, and aileron deflection. The calculations indicated that the minimum drag of supersonic airfoils is obtained when the maximum thickness is behind the 0.50 chord. The center of pressure obtained for a symmetrical supersonic airfoil was found to be ahead of the 0.50 chord.

  8. Trends of Reynolds number effects on two-dimensional airfoil characteristics for helicopter rotor analyses

    NASA Technical Reports Server (NTRS)

    Yamauchi, G. K.; Johnson, W.

    1983-01-01

    The primary effects of Reynolds number on two dimensional airfoil characteristics are discussed. Results from an extensive literature search reveal the manner in which the minimum drag and maximum lift are affected by the Reynolds number. C sub d sub min and C sub l sub max are plotted versus Reynolds number for airfoils of various thickness and camber. From the trends observed in the airfoil data, universal scaling laws and easily implemented methods are developed to account for Reynolds number effects in helicopter rotor analyses.

  9. The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Ward, Kenneth E; Pinkerton, Robert M

    1933-01-01

    An investigation of a large group of related airfoils was made in the NACA variable-density wind tunnel at a large value of the Reynolds number. The tests were made to provide data that may be directly employed for a rational choice of the most suitable airfoil section for a given application. The variation of the aerodynamic characteristics with variations in thickness and mean-line form were systematically studied. (author)

  10. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  11. Airfoil structure

    DOEpatents

    Frey, G.A.; Twardochleb, C.Z.

    1998-01-13

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

  12. Airfoil structure

    DOEpatents

    Frey, Gary A.; Twardochleb, Christopher Z.

    1998-01-01

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.

  13. Flow characteristics over NACA4412 airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Genç, Mustafa Serdar; Koca, Kemal; Hakan Açıkel, Halil; Özkan, Gökhan; Sadık Kırış, Mehmet; Yıldız, Rahime

    2016-03-01

    In this study, the flow phenomena over NACA4412 were experimentally observed at various angle of attack and Reynolds number of 25000, 50000 and 75000, respectively. NACA4412 airfoil was manufactured at 3D printer and each tips of the wing were closed by using plexiglas to obtain two-dimensional airfoil. The experiments were conducted at low speed wind tunnel. The force measurement and hot-wire experiments were conducted to obtain data so that the flow phenomenon at the both top and bottom of the airfoil such as the flow separation and vortex shedding were observed. Also, smoke-wire experiment was carried out to visualize the surface flow pattern. After obtaining graphics from both force measurement experiment and hot-wire experiment compared with smoke wire experiment, it was noticed that there is a good coherence among the experiments. It was concluded that as Re number increased, the stall angle increased. And the separation bubble moved towards leading edge over the airfoil as the angle of attack increased.

  14. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  15. S829 Airfoil; Period of Performance: 1994--1995

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A 16%-thick, natural-laminar-flow airfoil, the S829, for the tip region of 20- to 40-meter-diameter, stall-regulated, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil should exhibit a docile stall.

  16. Numerical Simulations of the Steady and Unsteady Aerodynamic Characteristics of a Circulation Control Wing Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.

    2003-01-01

    The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.

  17. Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier

    2010-01-01

    The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.

  18. Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Adair, Desmond; Horne, W. Clifton

    1988-01-01

    Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.

  19. Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil

    NASA Astrophysics Data System (ADS)

    Adair, Desmond; Horne, W. Clifton

    1988-02-01

    Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.

  20. Rime ice accretion and its effect on airfoil performance. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.

    1982-01-01

    A methodology was developed to predict the growth of rime ice, and the resulting aerodynamic penalty on unprotected, subcritical, airfoil surfaces. The system of equations governing the trajectory of a water droplet in the airfoil flowfield is developed and a numerical solution is obtained to predict the mass flux of super cooled water droplets freezing on impact. A rime ice shape is predicted. The effect of time on the ice growth is modeled by a time-stepping procedure where the flowfield and droplet mass flux are updated periodically through the ice accretion process. Two similarity parameters, the trajectory similarity parameter and accumulation parameter, are found to govern the accretion of rime ice. In addition, an analytical solution is presented for Langmuir's classical modified inertia parameter. The aerodynamic evaluation of the effect of the ice accretion on airfoil performance is determined using an existing airfoil analysis code with empirical corrections. The change in maximum lift coefficient is found from an analysis of the new iced airfoil shape. The drag correction needed due to the severe surface roughness is formulated from existing iced airfoil and rough airfoil data. A small scale wind tunnel test was conducted to determine the change in airfoil performance due to a simulated rime ice shape.

  1. An experimental investigation of multi-element airfoil ice accretion and resulting performance degradation

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Berkowitz, Brian M.

    1989-01-01

    An investigation of the ice accretion pattern and performance characteristics of a multi-element airfoil was undertaken in the NASA Lewis 6- by 9-Foot Icing Research Tunnel. Several configurations of main airfoil, slat, and flaps were employed to examine the effects of ice accretion and provide further experimental information for code validation purposes. The text matrix consisted of glaze, rime, and mixed icing conditions. Airflow and icing cloud conditions were set to correspond to those typical of the operating environment anticipated tor a commercial transport vehicle. Results obtained included ice profile tracings, photographs of the ice accretions, and force balance measurements obtained both during the accretion process and in a post-accretion evaluation over a range of angles of attack. The tracings and photographs indicated significant accretions on the slat leading edge, in gaps between slat or flaps and the main wing, on the flap leading-edge surfaces, and on flap lower surfaces. Force measurments indicate the possibility of severe performance degradation, especially near C sub Lmax, for both light and heavy ice accretion and performance analysis codes presently in use. The LEWICE code was used to evaluate the ice accretion shape developed during one of the rime ice tests. The actual ice shape was then evaluated, using a Navier-Strokes code, for changes in performance characteristics. These predicted results were compared to the measured results and indicate very good agreement.

  2. The Aerodynamic Characteristics of a Slotted Clark Y Wing as Affected by the Auxiliary Airfoil Position

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Shortal, Joseph A

    1932-01-01

    Aerodynamic force tests on a slotted Clark Y wing were conducted in a vertical wind tunnel to determine the best position for a given auxiliary airfoil with respect to the main wing. A systematic series of 100 changes in location of the auxiliary airfoil were made to cover all the probable useful ranges of slot gap, slot width, and slot depth. The results of the investigation may be applied to the design of automatic or controlled slots on wings with geometric characteristics similar to the wing tested. The best positions of the auxiliary airfoil were covered by the range of the tests, and the position for desired aerodynamic characteristics may easily be obtained from charts prepared especially for the purpose.

  3. Aerodynamic characteristics of an improved 10-percent-thick NASA supercritical airfoil. [Langley 8 foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1974-01-01

    Refinements in a 10 percent thick supercritical airfoil produced improvements in the overall drag characteristics at normal force coefficients from about 0.30 to 0.65 compared with earlier supercritical airfoils which were developed for a normal force coefficient of 0.7. The drag divergence Mach number of the improved supercritical airfoil (airfoil 26a) varied from approximately 0.82 at a normal force coefficient to of 0.30, to 0.78 at a normal force coefficient of 0.80 with no drag creep evident. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.

  4. Aerodynamic Characteristics of NACA 23012 and 23021 Airfoils with 20-Percent-chord External-Airfoil Flaps of NACA 23012 Section

    NASA Technical Reports Server (NTRS)

    Platt, Robert C; Abbott, Ira H

    1937-01-01

    Report presents the results of an investigation of the general aerodynamic characteristics of the NACA 23012 and 23021 airfoils, each equipped with a 0.20c external flap of NACA 23012 section. The tests were made in the NACA 7 by 10-foot and variable-density wind tunnels and covered a range of Reynolds numbers that included values corresponding to those for landing conditions of a wide range of airplanes. Besides a determination of the variation of lift and drag characteristics with position of the flap relative to the main airfoil, complete aerodynamic characteristics of the airfoil-flap combination with a flap hinge axis selected to give small hinge moments were measured in the two tunnels. Some measurements of air loads on the flap itself in the presence of the wing were made in the 7 by 10-foot wind tunnel.

  5. Low speed aerodynamic characteristics of a 17 percent thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1973-01-01

    Wind-tunnel tests have been conducted to determine the low-speed two-dimensional aerodynamic characteristics of a 17-percent-thick airfoil designed for general aviation applications (GA(W)-1). The results were compared with predictions based on a theoretical method for calculating the viscous flow about the airfoil. The tests were conducted over a Mach number range from 0.10 to 0.28. Reynolds numbers based on airfoil chord varied from 2.0 million to 20.0 million. Maximum section lift coefficients greater than 2.0 were obtained and section lift-drag ratio at a lift coefficient of 1.0 (climb condition) varied from about 65 to 85 as the Reynolds number increased from about 2.0 million to 6.0 million.

  6. A unique measurement technique to study laminar-separation bubble characteristics on an airfoil

    NASA Technical Reports Server (NTRS)

    Stack, J. P.; Mangalam, S. M.; Berry, S. A.

    1987-01-01

    A 'nonintrusive', multielement heat-transfer sensor was designed to study laminar-separation bubble characteristics on a NASA LRN (1)-1010 low-Reynolds number airfoil. The sensor consists of 30 individual nickel films, vacuum-deposited on a thin substrate (0.05 mm) that was bonded to the airfoil model with the sensor array placed streamwise on the airfoil upper surface. Experiments were conducted on a 15-cm chord model in the 50,000-300,000 chord Reynolds number range. Time history as well as spectral analysis of signals from surface film gauges were simultaneously obtained to determine the location of laminar separation and the subsequent behavior of the separated shear layer. In addition to the successful determination of laminar separation, a new phenomenon involving a large phase shift in dynamic shear stresses across the separation and reattachment points was observed.

  7. Airfoil shape for flight at subsonic speeds. [design analysis and aerodynamic characteristics of the GAW-1 airfoil

    NASA Technical Reports Server (NTRS)

    Whitcomb, R. T. (Inventor)

    1976-01-01

    An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.

  8. Effect of In-Flight Ice Accretion on the Performance of a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah; Dominik, Chet; Shin, Jaiwon; Miller, Dean

    1995-01-01

    The effects of potential in-flight ice accretion on the aerodynamic performance of a multi-element high-lift airfoil have been investigated at moderate-to-high Reynolds numbers. The investigation was conducted in the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley Research Center. Simulated ice shapes obtained from earlier testing in the Icing Research Tunnel (IRT) at NASA Lewis Research Center were used on all three elements of the multi-element configuration. Incremental performance effects due to the ice accretion are presented for both smooth and rough ice accretions. Reynolds number effects on the measured performance characteristics were also assessed. The present results confirm the importance of avoiding any ice accretions on the forward element of a lifting configuration.

  9. The further development of circulation control airfoils

    NASA Technical Reports Server (NTRS)

    Wood, N. J.

    1987-01-01

    The performance trends of circulation control airfoils are reviewed and observations are made as to where improvements in performance and expansion of the flight envelope may be feasible. A new analytically defined family of airfoils is suggested, all of which maintain the fore and aft symmetry required for stopped rotor application. It is important to recognize that any improvements in section capabilities may not be totally applicable to the present vehicle operation. It remains for the designers of the rotor system to reappraise the three dimensional operating environment in view of the different airfoil operating characteristics and for the airfoil definitions to be flexible while maintaining satisfactory levels of performance.

  10. Aerodynamic performance of transonic and subsonic airfoils: Effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang

    The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface

  11. Prediction of ice shapes and their effect on airfoil performance

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Berkowitz, Brian; Chen, Hsun; Cebeci, Tuncer

    1991-01-01

    Calculations of ice shapes and the resulting drag increases are presented for experimental data on a NACA 0012 airfoil. They were made with a combination of LEWICE and interactive boundary-layer codes for a wide range of conditions which include air speed and temperature, the droplet size and liquid water content of the cloud, and the angle of attack of the airfoil. In all cases, the calculated results account for the drag increase due to ice accretion and, in general, show good agreement.

  12. Progress in development of a Navier-Stokes solver for evaluation of iced airfoil performance

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Gerhart, P. M.

    1985-01-01

    A method is being developed for evaluation of the flow field behavior about an airfoil with significant ice accretion on the leading edge. The computer code, being evaluated for this purpose, solves the Navier-Stokes equations in a body-fitted curvilinear coordinate system. This requires the use of a grid generation code to transform the x-y coordinates of the physical space into xi-eta coordinates of the computational space. Evaluation of the suitability of these two codes for predicting iced airfoil performance is presently being carried out in anticipation of use in an overall icing analysis effort. Results of this evaluation to date indicate good correlation with known information on clean airfoils. Preliminary results for rime and glaze, iced airfoil shapes are also presented.

  13. Two-dimensional aerodynamic characteristics of the OLS/TAAT airfoil

    NASA Technical Reports Server (NTRS)

    Watts, Michael E.; Cross, Jeffrey L.; Noonan, Kevin W.

    1988-01-01

    Two flight tests have been conducted that obtained extension pressure data on a modified AH-1G rotor system. These two tests, the Operational Loads Survey (OLS) and the Tip Aerodynamics and Acoustics Test (TAAT) used the same rotor set. In the analysis of these data bases, accurate 2-D airfoil data is invaluable, for not only does it allow comparison studies between 2- and 3-D flow, but also provides accurate tables of the airfoil characteristics for use in comprehensive rotorcraft analysis codes. To provide this 2-D data base, a model of the OLS/TAAT airfoil was tested over a Reynolds number range from 3 x 10 to the 6th to 7 x 10 to the 7th and between Mach numbers of 0.34 to 0.88 in the NASA Langley Research Center's 6- by 28-Inch Transonic Tunnel. The 2-D airfoil data is presented as chordwise pressure coefficient plots, as well as lift, drag, and pitching moment coefficient plots and tables.

  14. Low-speed aerodynamic characteristics of a 13.1-percent-thick, high-lift airfoil

    NASA Technical Reports Server (NTRS)

    Sivier, K. R.; Ormsbee, A. I.; Awker, R. W.

    1974-01-01

    Low speed sectional characteristics of a high lift airfoil are studied and a comparison is made of those characteristics with the predictions of the theoretical methods used in the airfoil's design. The 13.1 percent-thick, UI-1720 airfoil was found to achieve the predicted maximum lift coefficient of nearly 2.0. No upper-surface, flow separation was found below the stall angle of attack of 16 degrees; it appeared that stall was due to an abrupt leading edge flow separation.

  15. Low-speed aerodynamic characteristics of a 13.1-percent-thick, high-lift airfoil

    NASA Technical Reports Server (NTRS)

    Sivier, K. R.; Ormsbee, A. I.; Awker, R. W.

    1974-01-01

    Experimental study of the low-speed, sectional characteristics of a high-lift airfoil, and comparison of these characteristics with the predictions of the theoretical methods used in the airfoil's design. The 13.1% thick UI-1720 airfoil was found to achieve the predicted maximum lift coefficient of nearly 2.0. No upper-surface flow separation was found below the stall angle of attack of 16 deg; it appeared that stall was due to an abrupt leading-edge flow separation.

  16. The method of complex characteristics for transonic airfoil design, with an application to compressors

    NASA Technical Reports Server (NTRS)

    Bledsoe, M.; Garabedian, P.

    1985-01-01

    The use of mathematical models to study physical problems of current interest to aeronautical engineers has been made possible by the development of numerical techniques to compute solutions of the differential equations of transonic aerodynamics. These advances have encouraged the improvement of supercritical wing technology. A method to determined steady, shockless flow of an inviscid, compressible fluid past a cascade of airfoils in the (x,y)-plane is considered, taking into account also the case of an isolated airfoil. The method of complex characteristics solves the equations in the hodograph plane by extending all variables into the complex domain, where the notion of type is no longer significant. Attention is given to the mathematical background, the method of complex characteristics, and numerical calculations.

  17. Wind tunnel evaluation of air-foil performance using simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Zaguli, R. J.; Gregorek, G. M.

    1982-01-01

    A two-phase wind tunnel test was conducted in the 6 by 9 foot Icing Research Tunnel (IRT) at NASA Lewis Research Center to evaluate the effect of ice on the performance of a full scale general aviation wing. In the first IRT tests, rime and glaze shapes were carefully documented as functions of angle of attack and free stream conditions. Next, simulated ice shapes were constructed for two rime and two glaze shapes and used in the second IRT tunnel entry. The ice shapes and the clean airfoil were tapped to obtain surface pressures and a probe used to measure the wake characteristics. These data were recorded and processed, on-line, with a minicomputer/digital data acquisition system. The effect of both rime and glaze ice on the pressure distribution, Cl, Cd, and Cm are presented.

  18. Improving turbine engine compressor performance retention through airfoil coatings

    NASA Technical Reports Server (NTRS)

    Friedrich, L. A.

    1981-01-01

    In order to evaluate the potential effectiveness of coatings in limiting erosive damage to compressor airfoils, an effort was initiated to evaluate candidate coatings for substrate alloys typically used in commercial engine high compressor blades. Laboratory and rig erosion testing of plasma deposited and diffusion coatings described in this paper have shown the potential of a two to four fold improvement in erosion life. The selective application of these coatings to approximately the outer third of the airfoil avoids coating the fatigue critical region of the blade, thus providing erosion resistance potentially without compromising the fatigue strength of the blade. Both the plasma and the diffusion coatings also offer the advantage of low initial cost and a multi-source production base.

  19. Numerical and Experimental Study on Aerodynamic Characteristics of Basic Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuya; Kawakita, Masatoshi; Iijima, Takayoshi; Koga, Mitsuhiro; Kihira, Mitsuhiko; Funaki, Jiro

    The aerodynamic characteristics of airfoils have been researched in higher Reynolds-number ranges more than 106, in a historic context closely related with the developments of airplanes and fluid machineries in the last century. However, our knowledge is not enough at low and middle Reynolds-number ranges. So, in the present study, we investigate such basic airfoils as a NACA0015, a flat plate and the flat plates with modified fore-face and after-face geometries at Reynolds number Re < 1.0×105, using two- and three-dimensional computations together with wind-tunnel and water-tank experiments. As a result, we have revealed the effect of the Reynolds number Re upon the minimum drag coefficient CDmin. Besides, we have shown the effects of attack angle α upon various aerodynamic characteristics such as the lift coefficient CL, the drag coefficient CD and the lift-to-drag ratio CL/CD at Re = 1.0×102, discussing those effects on the basis of both near-flow-field information and surface-pressure profiles. Such results suggest the importance of sharp leading edges, which implies the possibility of an inversed NACA0015. Furthermore, concerning the flat-plate airfoil, we investigate the influences of fore-face and after-face geometries upon such effects.

  20. Aerodynamic characteristics and pressure distributions for an executive-jet baseline airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1993-01-01

    A wind tunnel test of an executive-jet baseline airfoil model was conducted in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The primary goal of the test was to measure airfoil aerodynamic characteristics over a wide range of flow conditions that encompass two design points. The two design Mach numbers were 0.654 and 0.735 with corresponding Reynolds numbers of 4.5 x 10(exp 6) and 8.9 x 10(exp 6) based on chord, respectively, and normal-force coefficients of 0.98 and 0.51, respectively. The tests were conducted over a Mach number range from 0.250 to 0.780 and a chord Reynolds number range from 3 x 10(exp 6) to 18 x 10(exp 6). The angle of attack was varied from -2 deg to a maximum below 10 deg with one exception in which the maximum was 14 deg for a Mach number of 0.250 at a chord Reynolds number of 4.5 x 10(exp 6). Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The adaptive-wall test section had flexible top and bottom walls and rigid sidewalls. Wall interference was minimized by the movement of the adaptive walls, and the airfoil aerodynamic characteristics were corrected for any residual top and bottom wall interference.

  1. Airfoil section characteristics as applied to the prediction of air forces and their distribution on wings

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Rhode, R V

    1938-01-01

    The results of previous reports dealing with airfoil section characteristics and span load distribution data are coordinated into a method for determining the air forces and their distribution on airplane wings. Formulas are given from which the resultant force distribution may be combined to find the wing aerodynamic center and pitching moment. The force distribution may also be resolved to determine the distribution of chord and beam components. The forces are resolved in such a manner that it is unnecessary to take the induced drag into account. An illustration of the method is given for a monoplane and a biplane for the conditions of steady flight and a sharp-edge gust. The force determination is completed by outlining a procedure for finding the distribution of load along the chord of airfoil sections.

  2. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  3. Low-speed aerodynamic characteristics of a 17-percent-thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beaseley, W. D.

    1980-01-01

    Wind tunnel tests were conducted to determine the low speed two dimensional aerodynamic characteristics of a 17 percent thick medium speed airfoil (MS(1)-0317) designed for general aviation applications. The results were compared with data for the 17 percent thick low speed airfoil (LS(1)-0417) and the 13 percent thick medium speed airfoil (MS(1)-0313). Theoretical predictions of the drag rise characteristics of this airfoil are also provided. The tests were conducted in the Langley low turbulence pressure tunnel over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2 million to 12 million, and an angle of attack range from about -8 to 20 deg.

  4. Effectiveness of spoilers on the GA(W)-1 airfoil with a high performance Fowler flap

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1975-01-01

    Two-dimensional wind-tunnel tests were conducted to determine effectiveness of spoilers applied to the GA(W)-1 airfoil. Tests of several spoiler configurations show adequate control effectiveness with flap nested. It is found that providing a vent path allowing lower surface air to escape to the upper surface as the spoiler opens alleviates control reversal and hysteresis tendencies. Spoiler cross-sectional shape variations generally have a modest influence on control characteristics. A series of comparative tests of vortex generators applied to the (GA-W)-1 airfoil show that triangular planform vortex generators are superior to square planform vortex generators of the same span.

  5. Effects of icing on the aerodynamic performance of high lift airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, L. N.; Phaengsook, N.; Bangalore, A.

    1993-01-01

    A 2D compressible Navier-Stokes solver capable of analyzing multi-element airfoils is described. The flow field is divided into multiple zones. In each zone, the governing equations are solved using an implicit finite difference scheme. The flow solver is validated through a study of the aerodynamic characteristics of a GA(W)-1 configuration, for which good quality measured surface pressure data and load data are available. The solver is next applied to a study of the effects of icing on an iced 5-element airfoil configuration, experimentally studied at NASA Lewis Research Center. It is demonstrated that the formation of ice over the leading edge slat and the main airfoil can lead to significant flow separation, and a significant loss in lift, compared to clean configurations.

  6. Effects of thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1976-01-01

    Wind tunnel tests were conducted to determine the effects of airfoil thickness-ratio on the low speed aerodynamic characteristics of an initial family of airfoils. The results were compared with theoretical predictions obtained from a subsonic viscous method. The tests were conducted over a Mach number range from 0.10 to 0.28. Chord Reynolds numbers varied from about 2.0 x 1 million to 9.0 x 1 million.

  7. Low-speed aerodynamic characteristics of a 13-percent-thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.; Somers, D. M.

    1975-01-01

    Wind-tunnel tests were conducted to determine the low-speed section characteristics of a 13 percent-thick airfoil designed for general aviation applications. The results were compared with NACA 12 percent-thick sections and with the 17 percent-thick NASA airfoil. The tests were conducted ovar a Mach number range from 0.10 to 0.35. Chord Reynolds numbers varied from about 2,000,000 to 9,000,000.

  8. The development of a facility for full-scale testing of airfoil performance in simulated rain

    NASA Technical Reports Server (NTRS)

    Taylor, John T.; Moore, Cadd T., III; Campbell, Bryan A.; Melson, W. EDWARD., Jr.

    1988-01-01

    NASA Langley's Aircraft Landing Dynamics Facility has been adapted in order to test the performance of airfoils in a simulated rain environment, at rainfall rates of 2, 10, 30, and 40 inches/hour, and thereby derive the scaling laws associated with simulated rain in wind tunnel testing. A full-scale prototype of the rain-generation system has been constructed and tested for suitable rain intensity, uniformity, effects of crosswinds on uniformity, and drop size range. The results of a wind tunnel test aimed at ascertaining the minimum length of the simulated rain field required to yield an airfoil performance change due to the rain environment are presented.

  9. Flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  10. Low-speed aerodynamic characteristics of an airfoil optimized for maximum lift coefficient

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Chen, A. W.

    1972-01-01

    An investigation has been conducted in the Langley low-turbulence pressure tunnel to determine the two-dimensional characteristics of an airfoil optimized for maximum lift coefficient. The design maximum lift coefficient was 2.1 at a Reynolds number of 9.7 million. The airfoil with a smooth surface and with surface roughness was tested at angles of attack from 6 deg to 26 deg, Reynolds numbers (based on airfoil chord) from 2.0 million to 12.9 million, and Mach numbers from 0.10 to 0.35. The experimental results are compared with values predicted by theory. The experimental pressure distributions observed at angles of attack up to at least 12 deg were similar to the theoretical values except for a slight increase in the experimental upper-surface pressure coefficients forward of 26 percent chord and a more severe gradient just behind the minimum-pressure-coefficient location. The maximum lift coefficients were measured with the model surface smooth and, depending on test conditions, varied from 1.5 to 1.6 whereas the design value was 2.1.

  11. Experimental study of full-scale iced-airfoil aerodynamic performance using sub-scale simulations

    NASA Astrophysics Data System (ADS)

    Busch, Greg T.

    Determining the aerodynamic effects of ice accretion on aircraft surfaces is an important step in aircraft design and certification. The goal of this work was to develop a complete sub-scale wind tunnel simulation methodology based on knowledge of the detailed iced-airfoil flowfield that allows the accurate measurement of aerodynamic penalties associated with the accretion of ice on an airfoil and to validate this methodology using full-scale iced-airfoil performance data obtained at near-flight Reynolds numbers. In earlier work, several classifications of ice shape were developed based on key aerodynamic features in the iced-airfoil flowfield: ice roughness, streamwise ice, horn ice, and tall and short spanwise-ridge ice. Castings of each of these classifications were acquired on a full-scale NACA 23012 airfoil model and the aero-dynamic performance of each was measured at a Reynolds number of 12.0 x 106 and a Mach number = 0.20. In the current study, sub-scale simple-geometry and 2-D smooth simulations of each of these castings were constructed based on knowledge of iced-airfoil flowfields. The effects of each simulation on the aerodynamic performance of an 18-inch chord NACA 23012 airfoil model was measured in the University of Illinois 3 x 4 ft. wind tunnel at a Reynolds number of 1.8 x 106 and a Mach number of 0.18 and compared with that measured for the corresponding full-scale casting at high Reynolds number. Geometrically-scaled simulations of the horn-ice and tall spanwise-ridge ice castings modeled C l,maxto within 2% and Cd,min to within 15%. Good qualitative agreement in the Cp distributions suggests that important geometric features such as horn and ridge height, surface location, and angle with respect to the airfoil chordline were appropriately modeled. Geometrically-scaled simulations of the ice roughness, streamwise ice, and short-ridge ice tended to have conservative C l,max and Cd. The aerodynamic performance of simulations of these types of

  12. Porous airfoil and process

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M. (Inventor)

    1992-01-01

    A porous airfoil having venting cavities with contoured barrier walls, formed by a core piece, placed beneath a porous upper and lower surface area that stretches over the nominal chord of an airfoil is employed, to provide an airfoil configuration that becomes self-adaptive to very dissimilar flow conditions to thereby improve the lift and drag characteristics of the airfoil at both subcritical and supercritical conditions.

  13. Airfoil Heat Transfer Characteristics in Syngas and Hydrogen Turbines

    SciTech Connect

    Mazzotta, D.W.; Chyu, M.K.; Alvin, M.A.

    2007-05-01

    Hydrogen or coal-derivative syngas turbines promise increased efficiency with exceptionally low NOx emissions compared to the natural gas based turbines. To reach this goal, turbine inlet temperature (TIT) will need to be elevated to a level exceeding 1700°C [1, 2]. The thermal load induced by such a temperature increase alone will lead to immense challenges in maintaining material integrity of turbine components. In addition, as working fluid in the gas path will primarily be steam, possibly mixed with carbon oxides, the aero-thermal characteristic in a hydrogen turbine is expected to be far different from that of air/nitrogen enriched gas stream in a gas turbine. For instance, steam has distinctly higher density and specific heat in comparison to a mixture of air and combustion gases as they are expanded in a conventional gas turbine. Even if the temperature limits remain about the same, the expansion in a hydrogen turbine will have to proceed with a greater enthalpy drop and therefore requires a larger number of stages. This also implies that the flow areas may need to be expanded and blade span to be enlarged. Meanwhile, a greater number of stages and hot surfaces need to be protected. This also suggests that current cooling technology available for modern day gas turbines has to be significantly improved. The ultimate goal of the present study is to systematically investigate critical issues concerning cooling technology as it is applicable to oxy-fuel and hydrogen turbine systems, and the main scope is to develop viable means to estimate the thermal load on the turbine “gas side”, that is eventually to be removed from the “coolant side”, and to comparatively quantify the implication of external heat load and potential thermal barrier coating (TBC) degradation on the component durability and lifing. The analysis is based on two well-tested commercial codes, FLUENT and ANSYS.

  14. Status of the special-purpose airfoil families

    NASA Astrophysics Data System (ADS)

    Tangler, J. L.; Somers, D. M.

    1987-12-01

    This work is directed at developing thin and thick airfoil families, for rotors with diameters of 10 to 30 m, that enhance energy output at low to medium wind speeds and provide more consistent operating characteristics with lower fatigue loads at high wind speeds. Performance is enhanced through the use of laminar flow, while more consistent rotor operating characteristics at high wind speeds are achieved by tailoring the airfoil such that the maximum lift coefficient C sub 1 max is largely independent of roughness effects. Using the Eppler airfoil design code, two thin and one thick airfoil family were designed; each family has a root, outboard, and tip airfoil. Two-dimensional wind-tunnel tests were conducted to verify the predicted performance characteristics for both a thin and thick outboard airfoil from these families. Atmospheric tests on full-scale wind turbines will complete the verification process.

  15. Status of the special-purpose airfoil families

    SciTech Connect

    Tangler, J.L.; Somers, D.M.

    1987-12-01

    This work is directed at developing thin and thick airfoil families, for rotors with diameters of 10 to 30 m, that enhance energy output at low to medium wind speeds and provide more consistent operating characteristics with lower fatigue loads at high wind speeds. Performance is enhanced through the use of laminar flow, while more consistent rotor operating characteristics at high wind speeds are achieved by tailoring the airfoil such that the maximum lift coefficient C/sub 1,max/ is largely independent of roughness effects. Using the Eppler airfoil design code, two thin and one thick airfoil family were designed; each family has a root, outboard, and tip airfoil. Two-dimensional wind-tunnel tests were conducted to verify the predicted performance characteristics for both a thin and thick outboard airfoil from these families. Atmospheric tests on full-scale wind turbines will complete the verification process. 3 refs., 7 figs., 3 tabs.

  16. Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000

    NASA Astrophysics Data System (ADS)

    Levy, David-Elie; Seifert, Avraham

    2009-07-01

    Effective aerodynamics at Reynolds numbers lower than 10 000 is of great technological interest and a fundamental scientific challenge. The current study covers a Reynolds number range of 2000-8000. At these Reynolds numbers, natural insect flight could provide inspiration for technology development. Insect wings are commonly characterized by corrugated airfoils. In particular, the airfoil of the dragonfly, which is able to glide, can be used for two-dimensional aerodynamic study of fixed rigid wings. In this study, a simplified dragonfly airfoil is numerically analyzed in a steady free-stream flow. The aerodynamic performance (such as mean and fluctuating lift and drag), are first compared to a "traditional" low Reynolds number airfoil: the Eppler-E61. The numerical results demonstrate superior performances of the corrugated airfoil. A series of low-speed wind and water tunnel experiments were performed on the corrugated airfoil, to validate the numerical results. The findings indicate quantitative agreement with the mean wake velocity profiles and shedding frequencies while validating the two dimensionality of the flow. A flow physics numerical study was performed in order to understand the underlying mechanism of corrugated airfoils at these Reynolds numbers. Airfoil shapes based on the flow field characteristics of the corrugated airfoil were built and analyzed. Their performances were compared to those of the corrugated airfoil, stressing the advantages of the latter. It was found that the flow which separates from the corrugations and forms spanwise vortices intermittently reattaches to the aft-upper arc region of the airfoil. This mechanism is responsible for the relatively low intensity of the vortices in the airfoil wake, reducing the drag and increasing the flight performances of this kind of corrugated airfoil as compared to traditional low Reynolds number airfoils such as the Eppler E-61.

  17. Aerodynamic Characteristics of Four Republic Airfoil Sections from Tests in Langley Two-Dimensional Low-Turbulence Tunnels

    NASA Technical Reports Server (NTRS)

    Klein, Milton M.

    1945-01-01

    Four airfoils sections, designed by the Republic Aviation Corporation for the root and tip sections of the XF-12 airplane, were tested in the Langley two-dimensional low-turbulence tunnels to obtain their aerodynamic characteristics. Lift characteristics were obtained at Reynolds numbers of 3,000,000, 6,000,000, 9,000,000, and 14,000,000, whereas drag characteristics were obtained at Reynolds numbers of 3,000,000, 6,000,000, and 9,000,000. Pressure distributions were obtained for one of the root sections for several angles of attack at a Reynolds number of 2,600,000. Comparison of the root section that appeared best from the tests with the corresponding NACA 65-series section shows the Republic section has a higher maximum lift and higher calculated critical speeds, but a higher minimum drag. In addition, with standard roughness applied to the leading edge, the maximum lift of the Republic airfoil is lower than that of the NACA airfoil. Comparison of the Republic tip section with the corresponding NACA 65-series section shows the Republic airfoil has a lower maximum lift and a higher minimum drag than the NACA airfoil. The calculated critical speeds of the Republic section are slightly higher than those of the NACA section.

  18. The effect of wall interference upon the aerodynamic characteristics of an airfoil spanning a closed-throat circular wind tunnel

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Graham, Donald J

    1946-01-01

    The results of a theoretical and experimental investigation of wall interference for an airfoil spanning a closed-throat circular wind tunnel are presented. Analytical equations are derived which relate the characteristics of an airfoil in the tunnel at subsonic speeds with the characteristics in free air. The analysis takes into consideration the effect of fluid compressibility and is based upon the assumption that the chord of the airfoil is small as compared with the diameter of the tunnel. The development is restricted to an untwisted, constant-chord airfoil spanning the middle of the tunnel. Brief theoretical consideration is also given to the problem of choking at high speeds. Results are then presented of tests to determine the low-speed characteristics of an NACA 4412 airfoil for two chord-diameter ratios. While, on the basis of these experiments, no appraisal is possible of the accuracy of the corrections at high speeds, the data indicate that at low Mach numbers the analytical results are valid, even for relatively large values of the chord-diameter ratio.

  19. Effect of Axial Velocity Density Ratio on the Performance of a Controlled Diffusion Airfoil Compressor Cascade

    NASA Astrophysics Data System (ADS)

    Senthil Kumaran, R.; Kamble, Sachin; Swamy, K. M. M.; Nagpurwala, Q. H.; Bhat, Ananthesha

    2015-12-01

    Axial Velocity Density Ratio (AVDR) is an important parameter to check the two-dimensionality of cascade flows. It can have significant influence on the cascade performance and the secondary flow structure. In the present study, the effect of AVDR has been investigated on a highly loaded Controlled Diffusion airfoil compressor cascade. Detailed 3D Computational Fluid Dynamics (CFD) studies were carried out with the cascade at five different AVDRs. Key aerodynamic performance parameters and flow structure through the cascade were analyzed in detail. CFD results of one AVDR were validated with the experimental cascade test data and were seen to be in good agreement. Loss characteristics of the cascade varied significantly with change in AVDR. Increase in AVDR postponed the point of separation on the suction surface, produced thinner boundary layers and caused substantial drop in the pressure loss coefficient. Strong end wall vortices were noticed at AVDR of 1.177. At higher AVDRs, the flow was well guided even close to the end wall and the secondary flows diminished. The loading initially improved with increase in AVDR. Beyond a certain limit, further increase in AVDR offered no improvements to the loading but rather resulted in drop in diffusion and deviation.

  20. Experimental and Analytical Investigation of the Coolant Flow Characteristics in Cooled Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Damerow, W. P.; Murtaugh, J. P.; Burggraf, F.

    1972-01-01

    The flow characteristics of turbine airfoil cooling system components were experimentally investigated. Flow models representative of leading edge impingement, impingement with crossflow (midchord cooling), pin fins, feeder supply tube, and a composite model of a complete airfoil flow system were tested. Test conditions were set by varying pressure level to cover the Mach number and Reynolds number range of interest in advanced turbine applications. Selected geometrical variations were studied on each component model to determine these effects. Results of these tests were correlated and compared with data available in the literature. Orifice flow was correlated in terms of discharge coefficients. For the leading edge model this was found to be a weak function of hole Mach number and orifice-to-impinged wall spacing. In the impingement with crossflow tests, the discharge coefficient was found to be constant and thus independent of orifice Mach number, Reynolds number, crossflow rate, and impingement geometry. Crossflow channel pressure drop showed reasonable agreement with a simple one-dimensional momentum balance. Feeder tube orifice discharge coefficients correlated as a function of orifice Mach number and the ratio of the orifice-to-approach velocity heads. Pin fin data was correlated in terms of equivalent friction factor, which was found to be a function of Reynolds number and pin spacing but independent of pin height in the range tested.

  1. Transonic airfoil analysis and design in nonuniform flow

    NASA Technical Reports Server (NTRS)

    Chang, J. F.; Lan, C. E.

    1986-01-01

    A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness.

  2. An experimental investigation of the low Reynolds number performance of the Lissaman 7769 airfoil

    NASA Technical Reports Server (NTRS)

    Conigliaro, P. E.

    1983-01-01

    A Lissaman 7769 airfoil, used on the Gossamer Condor and Gossamer Albatross human-powered aircraft, was tested in a low turbulence subsonic wind tunnel. Lift and drag data were collected at chord Reynolds numbers of 100,000, 150,000, 200,000, 250,000, and 300,000; at angles of attack from -10 to +20 deg by using an external strain gage force balance. Lift curves, drag curves, and drag polars were generated from both uncorrected data and data corrected for wind tunnel blockage effects. A flow visualization study was performed to correlate with the force data. The results of the investigation have shown that the airfoil exhibits a significant degradation in performance for chord Reynolds numbers below 150,000.

  3. The Influence of Viscous Effects on Ice Accretion Prediction and Airfoil Performance Predictions

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Wright, William B.

    2005-01-01

    A computational study was conducted to evaluate the effectiveness of using a viscous flow solution in an ice accretion code and the resulting accuracy of aerodynamic performance prediction. Ice shapes were obtained for one single-element and one multi-element airfoil using both potential flow and Navier-Stokes flowfields in the LEWICE ice accretion code. Aerodynamics were then calculated using a Navier-Stokes flow solver.

  4. Maximum Mean Lift Coefficient Characteristics at Low Tip Mach Numbers of a Hovering Helicopter Rotor Having an NACA 64(1)A012 Airfoil Section

    NASA Technical Reports Server (NTRS)

    Powell, Robert D., Jr.

    1959-01-01

    An investigation has been conducted on the Langley helicopter test tower to determine experimentally the maximum mean lift-coefficient characteristics at low tip Mach number and a limited amount of drag- divergence data at high tip Mach number of a helicopter rotor having an NACA 64(1)AO12 airfoil section and 8 deg of linear washout. Data are presented for blade tip Mach numbers M(t) of 0.29 to 0.74 with corresponding values 6 6 of tip Reynolds number of 2.59 x 10(exp 6) and 6.58 x 10(exp 6). Comparisons are made between the data from the present rotor with results previously obtained from two other rotors: one having NACA 0012 airfoil sections and the other having an NACA 0009 airfoil tip section. At low tip Mach numbers, the maximum mean lift coefficient for the blade having the NACA 64(1)AO12 section was about 0.08 less than that obtained with the blade having the NACA 0009 tip section and 0.21 less than the value obtained with the blade having the NACA 0012 tip section. Blade maximum mean lift coefficient values were not obtained for Mach number values greater than 0.47 because of a blade failure encountered during the tests. The effective mean lift-curve slope required for predicting rotor thrust varied from 5.8 for the tip Mach nuniber range of 0.29 to 0.55 to a value of 6.65 for a tip Mach number of 0.71. The blade pitching-moment coefficients were small and relatively unaffected by changes in thrust coefficient and Mach number. In the instances in which stall was reached, the break in the blade pitching-moment curve was in a stable direction. The efficiency of the rotor decreased with an increase in tip speed. Expressed as figure of merit, at a tip Mach number of 0.29 the maximum value was about 0.74. Similar measurements made on another rotor having an NACA 0012 airfoil and with a rotor having an NACA 0009 tip section, showed a value of 0.75. Synthesized section lift and profile-drag characteristics for the rotor-blade airfoil section are presented as an

  5. Figures of merit for airfoil/aircraft design integration

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Somers, Dan M.

    1988-01-01

    Because the airfoil can so strongly impact other aspects of an aircraft configuration, it is important that the airfoil design process be integrated with that of the aircraft to achieve the best possible performance of a new flight vehicle. To aid in preliminary design efforts, several aerodynamic figures of merit are presented which facilitate the matching of the airfoil performance characteristics to those of the aircraft. These figures of merit are fairly general and can assist the airfoil design process for flight vehicles designed for maximum endurance, range, or ceiling. Although specifically applicable to vehicles for which the wing area is sized by some required minimum airspeed, the discussion is pertinent to all airfoil/aircraft matching situations and points the way for developing similar figures of merit to aid the airfoil/aircraft design process for any flight vehicle.

  6. Airfoil modification effects on subsonic and transonic pressure distributions and performance for the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Sewall, William G.

    1995-01-01

    Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.

  7. An analytical study for the design of advanced rotor airfoils

    NASA Technical Reports Server (NTRS)

    Kemp, L. D.

    1973-01-01

    A theoretical study has been conducted to design and evaluate two airfoils for helicopter rotors. The best basic shape, designed with a transonic hodograph design method, was modified to meet subsonic criteria. One airfoil had an additional constraint for low pitching-moment at the transonic design point. Airfoil characteristics were predicted. Results of a comparative analysis of helicopter performance indicate that the new airfoils will produce reduced rotor power requirements compared to the NACA 0012. The hodograph design method, written in CDC Algol, is listed and described.

  8. Icing characteristics of a natural-laminar-flow, a medium-speed, and a swept, medium-speed airfoil

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.

    1991-01-01

    Tests were conducted at the Icing Research Tunnel at the NASA Lewis Research Center to determine the icing characteristics of three modern airfoils, a natural laminar flow, a medium speed and a swept medium speed airfoil. Tests measured the impingement characteristics and drag degradation for angles of attack typifying cruise and climb for cloud conditions typifying the range that might be encountered in flight. The maximum degradation occurred for the cruise angle of attack for the long glaze ice condition for all three airfoils with increases over baseline drag being 486 percent, 510 percent, and 465 percent for the natural laminar flow, the medium speed and the swept medium speed airfoil respectively. For the climb angle of attack, the maximum drag degradation (and extent of impingement) observed were also for the long glaze ice condition, and were 261 percent, 181 percent and 331 percent respectively. The minimum drag degradation (and extent of impingement) occurred for the cruise condition and for the short, rime spray which increases over baseline drag values of 47 percent, 28 percent and 46 percent respectively.

  9. Aerodynamics Characteristics of Multi-Element Airfoils at -90 Degrees Incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.

  10. Characteristics of the NACA 23012 Airfoil from Tests in the Full-Scale and Variable-Density Tunnels

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Clay, William C

    1936-01-01

    This report gives the results of tests in the NACA full-scale and variable-density tunnels of a new wing section, the NACA 23012, which is one of the more promising of an extended series of related airfoils recently developed. The tests were made at several values of the Reynolds number between 1,000,000 and 8,000,000. The new airfoil develops a reasonably high maximum lift and a low profile drag, which results in an unusually high value of the speed-range index. In addition, the pitching-moment coefficient is very small. The superiority of the new section over well-known and commonly used sections of small camber and moderate thickness is indicated by making a direct comparison with variable-density tests of the NACA 2212, the well-known NACA family airfoil that most nearly resembles it. The superiority is further indicated by comparing the characteristics with those obtained from full-scale-tunnel tests of the Clark y airfoil.

  11. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr

    1945-01-01

    The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)

  12. Method and apparatus for automatically generating airfoil performance tables

    NASA Technical Reports Server (NTRS)

    van Dam, Cornelis P. (Inventor); Mayda, Edward A. (Inventor); Strawn, Roger Clayton (Inventor)

    2006-01-01

    One embodiment of the present invention provides a system that facilitates automatically generating a performance table for an object, wherein the object is subject to fluid flow. The system operates by first receiving a description of the object and testing parameters for the object. The system executes a flow solver using the testing parameters and the description of the object to produce an output. Next, the system determines if the output of the flow solver indicates negative density or pressure. If not, the system analyzes the output to determine if the output is converging. If converging, the system writes the output to the performance table for the object.

  13. Performance improvement through indexing of turbine airfoils. Part 2: Numerical simulation

    SciTech Connect

    Griffin, L.W.; Huber, F.W.; Sharma, O.P. |

    1996-10-01

    An experimental/analytical study has been conducted to determine the performance improvements achievable by circumferentially indexing succeeding rows of turbine stator airfoils. A series of tests was conducted to experimentally investigate stator wake clocking effects on the performance of the space shuttle main engine (SSME) alternate turbopump development (ATD) fuel turbine test article (TTA). The results from this study indicate that significant increases in stage efficiency can be attained through application of this airfoil clocking concept. Details of the experiment and its results are documented in part of this paper. In order to gain insight into the mechanisms of the performance improvement, extensive computational fluid dynamics (CFD) simulations were executed. The subject of the present paper is the initial results from the CFD investigation of the configurations and conditions detailed in part 1 of the paper. To characterize the aerodynamic environments in the experimental test series, two-dimensional, time-accurate, multistage, viscous analyses were performed at the TTA midspan. Computational analyses for five different circumferential positions of the first stage stator have been completed. Details of the computational procedure and the results are presented. The analytical results verify the experimentally demonstrated performance improvement and are compared with data whenever possible. Predictions of time-averaged turbine efficiencies as well as gas conditions throughout the flow field are presented. An initial understanding of the turbine performance improvement mechanism based on the results from this investigation is described.

  14. Performance Improvement Through Indexing of Turbine Airfoils. Part 2; Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.; Huber, Frank W.; Sharma, Om P.

    1996-01-01

    An experimental/analytical study has been conducted to determine the performance improvements achievable by circumferentially indexing succeeding rows of turbine stator airfoils. A series of tests was conducted to experimentally investigate stator wake clocking effects on the performance of the space shuttle main engine (SSME) alternate turbopump development (ATD) fuel turbine test article (TTA). The results from this study indicate that significant increases in stage efficiency can be attained through application of this airfoil clocking concept. Details of the experiment and its results are documented in part 1 of this paper. In order to gain insight into the mechanisms of the performance improvement, extensive computational fluid dynamics (CFD) simulations were executed. The subject of the present paper is the initial results from the CFD investigation of the configurations and conditions detailed in part 1 of the paper. To characterize the aerodynamic environments in the experimental test series, two-dimensional (2D), time accurate, multistage, viscous analyses were performed at the TTA midspan. Computational analyses for five different circumferential positions of the first stage stator have been completed. Details of the computational procedure and the results are presented. The analytical results verify the experimentally demonstrated performance improvement and are compared with data whenever possible. Predictions of time-averaged turbine efficiencies as well as gas conditions throughout the flow field are presented. An initial understanding of the turbine performance improvement mechanism based on the results from this investigation is described.

  15. Two-dimensional aerodynamic characteristics of three rotorcraft airfoils at Mach numbers from 0.35 to 0.90

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1982-01-01

    Three airfoils designed for helicopter rotor application were investigated in the Langley 6- by 28-inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics at Mach numbers from 0.34 to 0.88 and respective Reynolds numbers from about 4.4 x 10(6) power to 9.5 x 10(6) power. The airfoils have thickness-to-chord ratios of 0.08, 0.10, and 0.12. Trailing-edge reflex was applied to minimize pitching moment. The maximum normal-force coefficient of the RC(3)-12 airfoil is from 0.1 to 0.2 higher, depending on Mach number M, than that of the NACA 0012 airfoil tested in the same facility. The maximum normal-force coefficient of the RC(3)-10 is about equal to that of the NACA 0012 at Mach numbers to 0.40 and is higher than that of the NACA 0012 at Mach numbers above 0.40. The maximum normal force coefficient of the RC(3)-08 is about 0.19 lower than that of the NACA 0012 at a Mach number of 0.35 and about 0.05 lower at a Mach number of 0.54. The drag divergence Mach number of the RC(3)-08 airfoil at normal-force coefficients below 0.1 was indicated to be greater than the maximum test Mach number of 0.88. At zero lift, the drag-divergence Mach numbers of the RC(3)-12 and the RC(3)-10 are about 0.77 and 0.82, respectively.

  16. Trailing edge modifications for flatback airfoils.

    SciTech Connect

    Kahn, Daniel L.; van Dam, C.P.; Berg, Dale E.

    2008-03-01

    The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

  17. Unsteady Airloads on Airfoils in Reverse Flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2014-11-01

    This work gives insight into the influence of airfoil characteristics on unsteady airloads for rotor applications where local airfoil sections may operate at high and/or reverse flow angles of attack. Two-dimensional wind tunnel experiments have been performed on four airfoil sections to investigate the effects of thickness, camber, and trailing edge shape on unsteady airloads (lift, pressure drag, and pitching moment). These model rotor blades were tested through 360 deg of incidence for 104 <=Re <=106 . Unsteady pressure transducers were mounted on the airfoil surface to measure the high frequency, dynamic pressure variations. The temporal evolution of chordwise pressure distributions and resulting airloads is quantified for each airfoil in each of the three unsteady wake regimes present in reverse flow. Specifically, the influence of the formation, growth, and shedding of vortices on the surface pressure distribution is quantified and compared between airfoils with a sharp geometric trailing edge and those with a blunt geometric trailing edge. These findings are integral to mitigation of rotor blade vibrations for applications where airfoil sections are subjected to reverse flow, such as high-speed helicopters and tidal turbines.

  18. Aerodynamic characteristics of wing-body configuration with two advanced general aviation airfoil sections and simple flap systems

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Paulson, J. W., Jr.

    1977-01-01

    Aerodynamic characteristics of a general aviation wing equipped with NACA 65 sub 2-415, NASA GA(W)-1, and NASA GA(PC)-1 airfoil sections were examined. The NASA GA(W)-1 wing was equipped with plain, split, and slotted partial- and full-span flaps and ailerons. The NASA GA(PC)-1 wing was equipped with plain, partial- and full-span flaps. Experimental chordwise static-pressure distribution and wake drag measurements were obtained for the NASA GA(PC)-1 wing at the 22.5-percent spanwise station. Comparisons were made between the three wing configurations to evaluate the wing performance, stall, and maximum lift capabilities. The results of this investigation indicated that the NASA GA(W)-1 wing had a higher maximum lift capability and almost equivalent drag values compared with both the NACA 65 sub 2-415 and NASA GA(PC)-1 wings. The NASA GA(W)-1 had a maximum lift coefficient of 1.32 with 0 deg flap deflection, and 1.78 with 41.6 deg deflection of the partial-span slotted flap. The effectiveness of the NASA GA(W)-1 plain and slotted ailerons with differential deflections were equivalent. The NASA GA(PC)-1 wing with full-span flaps deflected 0 deg for the design climb configuration showed improved lift and drag performance over the cruise flap setting of -10 deg.

  19. Comparison of wind tunnel airfoil performance data with wind turbine blade data

    SciTech Connect

    Butterfield, C.P.; Scott, G.; Musial, W. )

    1992-05-01

    Horizontal axis wind turbine (HAWT) performance is usually predicted by using wind tunnel airfoil performance data in a blade element momentum theory analysis. This analysis assumes that the rotating blade airfoils will perform as they do in the wind tunnel. Results to date have shown that unsteady aerodynamics exist during all operating conditions and dynamic stall can exist for high yaw angle operation. Stall hysteresis occurs for even small way angles and delayed stall is a very persistent reality in all operating conditions. delayed stall is indicated by a leading edge suction peak which remains attached through angles of attack (AOA) up to 30 degrees. Wind tunnel results show this peak separating from the leading edge at 18 deg AOA. The effect of this anomaly is to raise normal force coefficients and tangent force coefficients for high AOA. Increase tangent forces will directly affect HAWT performance in high wind speed operation. This paper describes pressure distribution data resulting from both wind tunnel and HAWT tests. A method of bins is used to average the HAWT data which is compared to the wind tunnel data. The analysis technique and the test set-up for each test are described.

  20. Loads and propulsive efficiency of a flexible airfoil performing sinusoidal deformations

    NASA Astrophysics Data System (ADS)

    Ulrich, Xialing; Peters, David

    2014-02-01

    This paper presents the application of state-space airloads theory to a flexible airfoil performing sinusoidal deformations at high Reynolds numbers. Given the two-dimensional motion of a flexible airfoil, we derived the closed forms for the propulsive force, lift force, generalized forces of pitching and bending as functions of reduced frequency k, dimensionless wavelength z, and dimensionless amplitude A/(2b). We also calculate the power required to perform this sinusoidal deformation and the propulsive efficiency. Our results show a positive, time-averaged propulsive force for all k>k0=π/z, which is when the wave speed is greater than the moving speed. At k=k0, which is when the moving speed reaches the wave speed, the motion reaches a steady-state with all forces being zero. When kairfoil to vibrate. For the propulsive case, the propulsive efficiency decreases from 1.0 to 0.5 as k goes to ∞, or k0 goes to 0. If there were no wake, the propulsive force would be zero at wavelengths of z=0.569 and z=1.3 for all k, and local optimum at z=0.82. Though these extrema of propulsive force with wavelength are smoothed out by the wake effect, one can still see around z=1.3 (k=2.4) the slope transitions of all three powers in Fig. 9. When k<2.4, the cost for high propulsion become more expensive as more power input is used by wake, thus less efficiency.

  1. The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, N.; Kelso, R. M.; Dally, B. B.; Hansen, K. L.

    2013-11-01

    In spite of its mammoth physical size, the humpback whale's manoeuvrability in hunting has captured the attention of biologists as well as fluid mechanists. It has now been established that the protrusions on the leading-edges of the humpback's pectoral flippers, known as tubercles, account for this species' agility and manoeuvrability. In the present work, Prandtl's nonlinear lifting-line theory was employed to propose a hypothesis that the favourable traits observed in the performance of tubercled lifting bodies are not exclusive to this form of leading-edge configuration. Accordingly, a novel alternative to tubercles was introduced and incorporated into the design of four airfoils that underwent wind tunnel force and pressure measurement tests in the transitional flow regime. In addition, a Computation Fluid Dynamics study was performed using the Shear Stress Transport transitional model in the context of unsteady Reynolds-Averaged Navier-Stokes at several attack angles. The results from the numerical investigation are in reasonable agreement with those of the experiments, and suggest the presence of features that are also observed in flows over tubercled foils, most notably a distinct pair of streamwise vortices for each wavelength of the tubercle-like feature.

  2. Numerical evaluations of the effect of leading-edge protuberances on the static and dynamic stall characteristics of an airfoil

    NASA Astrophysics Data System (ADS)

    Cai, C.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Wang, F. B.

    2013-12-01

    Wavy leading edge modifications of airfoils through imitating humpback whale flippers has been considered as a viable passive way to control flow separation. In this paper, flows around a baseline 634-021 airfoil and one with leading-edge sinusoidal protuberances were simulated using S-A turbulence model. When studying the static stall characteristics, it is found that the modified airfoil does not stall in the traditional manner, with increasing poststall lift coefficients. At high angles of attack, the flows past the wavy leading edge stayed attached for a distance, while the baseline foil is in a totally separated flow condition. On this basis, the simulations of pitch characteristic were carried out for both foils. At high angles of attack mild variations in lift and drag coefficients of the modified foil can be found, leading to a smaller area of hysteresis loop. The special structure of wavy leading edge can help maintain high consistency of the flow field in dynamic pitching station within a particular range of angles of attack.

  3. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.

    1945-01-01

    Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from

  4. Influence of heat transfer on the aerodynamic performance of a plunging and pitching NACA0012 airfoil at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Alighanbari, Hekmat; Breitsamter, Christian

    2013-02-01

    The unsteady low Reynolds number aerodynamics phenomena around flapping wings are addressed in several investigations. Elsewhere, airfoils at higher Mach numbers and Reynolds numbers have been treated quite comprehensively in the literature. It is duly noted that the influence of heat transfer phenomena on the aerodynamic performance of flapping wings configurations is not well studied. The objective of the present study is to investigate the effect of heat transfer upon the aerodynamic performance of a pitching and plunging NACA0012 airfoil in the low Reynolds number flow regime with particular emphasis upon the airfoil's lift and drag coefficients. The compressible Navier-Stokes equations are solved using a finite volume method. To consider the variation of fluid properties with temperature, the values of dynamic viscosity and thermal diffusivity are evaluated with Sutherland's formula and the Eucken model, respectively. Instantaneous and mean lift and drag coefficients are calculated for several temperature differences between the airfoil surface and freestream within the range 0-100 K. Simulations are performed for a prescribed airfoil motion schedule and flow parameters. It is learnt that the aerodynamic performance in terms of the lift CL and drag CD behavior is strongly dependent upon the heat transfer rate from the airfoil to the flow field. In the plunging case, the mean value of CD tends to increase, whereas the amplitude of CL tends to decrease with increasing temperature difference. In the pitching case, on the other hand, the mean value and the amplitude of both CD and CL decrease. A spectral analysis of CD and CL in the pitching case shows that the amplitudes of both CD and CL decrease with increasing surface temperature, whereas the harmonic frequencies are not affected.

  5. The Effects of the Critical Ice Accretion on Airfoil and Wing Performance

    NASA Technical Reports Server (NTRS)

    Selig, Michael S.; Bragg, Michael B.; Saeed, Farooq

    1998-01-01

    In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential.

  6. Peak power and blade loads on stall-regulated rotors as influenced by different airfoil families

    SciTech Connect

    Tangler, J.L.; Tu, P.K.C.

    1988-08-01

    At the Solar Energy Research Institute (SERI), new airfoils have been developed to help improve the performance and economics of horizontal-axis wind turbines (HAWTS). The objective of this study was to compare the performance characteristics of one of these airfoil families to other commonly used airfoil series for a typical three-bladed, stall-regulated HAWT. The traditional airfoil series chosen for comparison with SERI's new thin airfoil family were the NACA 23XXX, NACA 44XX, and NASA LS(1). The Micon 110 wind turbine was chosen because it is a typical three-bladed, stall-regulated rigid rotor system. The performance characteristics of the different airfoil series were derived analytically using the Eppler airfoil design code in the analysis mode. On a relative basis, this approach to comparing airfoils was considered more accurate than using airfoil performance characteristics based on wind-tunnel test data. After generating the performance characteristics for each airfoil series, the subsequent rotor performance and blade loads were calculated using SERI's PROPSH computer code. Resulting annual energy output, which is dependent on the wind-speed distribution, was calculated using SERI's Systems Engineering and Analysis Computer Code (SEACC). The results of the study show that fixed-wing airfoils generally result in excessive peak power for stall regulated, rigid rotors. By operating the wind turbine at a less desirable blade pitch angle, peak power can be reduced at the expense of higher mean blade loads and lower annual energy output. In contrast, the thin airfoil family was designed to reduce peak power at optimum blade pitch to minimize blade loads and maximize annual energy output. 7 refs., 12 figs.

  7. Assessment of the aerodynamic characteristics of thick airfoils in high Reynolds and moderate Ma numbers using CFD modeling

    NASA Astrophysics Data System (ADS)

    Prospathopoulos, John M.; Papadakis, Giorgos; Sieros, Giorgos; Voutsinas, Spyros G.; Chaviaropoulos, Takis K.; Diakakis, Kostas

    2014-06-01

    The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average CL is found to decrease up to ~24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow.

  8. S827 and S828 Airfoils; Period of Performance: 1994--1995

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A family of thick, natural-laminar-flow airfoils, the S827 and S828, for 40- to 50-meter, stall -regulated, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moments and the airfoil thicknesses have been satisfied. The airfoils should exhibit docile stalls.

  9. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  10. Comparison of wind tunnel airfoil performance data with wind turbine blade data

    SciTech Connect

    Butterfield, C.P.; Scott, G.N.; Musial, W.

    1990-07-01

    Horizontal-axis wind turbine (HAWT) performance is usually predicted by using wind tunnel airfoil performance data in a blade element momentum theory analysis. This analysis assumes that the rotating blade airfoils will perform as they do in the wind tunnel. However, when HAWT performance is measured in full-scale operation, it is common to find that peak power levels are significantly greater than those predicted. This has led to empirical corrections to the predictions. Viterna and Corrigan proposed the most popular version of this correction. But very little insight has been gained into the basic cause of this discrepancy. The Solar Energy Research Institute (SERI), funded by the US Department of Energy (DOE), has conducted the first phase of an experiment focused on understanding the basic fluid mechanics of HWAT aerodynamics. Results to date have shown that unsteady aerodynamics exist during all operating conditions and dynamic stall can exist for high yaw angle operation. Stall hysteresis occurs even for small yaw angles, and delayed stall is a very persistent reality in all operating conditions. Delayed stall is the result of a leading-edge suction peak remaining attached through angles of attack (AOAs) up to 30{degree}. Wind tunnel results show this peak separating from the leading edge at 18{degree} AOA. The effect of this anomaly is to raise normal force coefficients and tangent force coefficients for high AOA. Increased tangent forces will directly for high AOA. Increased tangent forces will directly affect HAWT performance in high wind speed operation. This report describes pressure distribution data resulting from both wind tunnel and HAWT tests. A method of bins is used to average the HAWT data, which are compared to the wind tunnel data. The analysis technique and the test setup for each test are described. 10 refs., 15 figs.

  11. Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2003-01-01

    Two airfoils are used on the main rotor blade of the UH-60A helicopter, the SC1095 and the SC1094 R8. Measurements of the section lift, drag, and pitching moment have been obtained in ten wind tunnel tests for the SC1095 airfoil, and in five of these tests, measurements have also been obtained for the SC1094 R8. The ten wind tunnel tests are characterized and described in the present study. A number of fundamental parameters measured in these tests are compared and an assessment is made of the adequacy of the test data for use in look-up tables required by lifting-line calculation methods.

  12. The impact of unilateral vibrations on aerodynamic characteristics of airfoils in transonic flow

    NASA Astrophysics Data System (ADS)

    Zamuraev, V.; Kalinina, A.

    2016-06-01

    The work is devoted to the mathematical modeling of the influence of forced vibrations of a surface element on one side of the airfoil on the shock-wave structure of transonic flow around. The influence of parameters of oscillations on the airfoil wave drag and the lift force were qualitatively and quantitatively investigated for constant maximum velocity amplitude, which is close in magnitude to the sound velocity in the incoming flow, and for a wide range of frequencies. The arising of additional lift force is shown.

  13. Development of a Fowler flap system for a high performance general aviation airfoil

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Seetharam, H. C.

    1974-01-01

    A two-dimensional wind-tunnel evaluation of two Fowler flap configurations on the new GA(W)-1 airfoil was conducted. One configuration used a computer-designed 29-percent chord Fowler flap. The second configuration was modified to have increased Fowler action with a 30-percent chord flap. Force, pressure, and flow-visualization data were obtained at Reynolds numbers of 2.2 million to 2.9 million. Optimum slot geometry and performance were found to be close to computer predictions. A C sub L max of 3.8 was achieved. Optimum flap deflection, slot gap, and flap overlap are presented as functions of C sub L. Tests were made with the lower surface cusp filled in to show the performance penalties that result. Some data on the effects of adding vortex generators and hinged-plate spoilers were obtained.

  14. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; Burke, Kevin M.; Nolan, Gerald J.; Brown, Dennis

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  15. Catalog of low-Reynolds-number airfoil data for wind-turbine applications

    SciTech Connect

    Miley, S.J.

    1982-02-01

    A literature survey was performed to acquire airfoil data at low Reynolds numbers which would be applicable to small wind energy conversion systems. The data were screened and the most reliable compiled into a catalog. Each entry includes airfoil coordinates, lift, drag and pitching moment characteristics in both graphical and tabular form. A discussion in elementary terms is given concerning airfoil behavior and the effects of Reynolds number, surface roughness and turbulence.

  16. Low speed aerodynamic characteristics of NACA 6716 and NACA 4416 airfoils with 35 percent-chord single-slotted flaps. [low turbulence pressure tunnel tests to determine two dimensional lift and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1974-01-01

    An investigation was conducted in a low-turbulence pressure tunnel to determine the two-dimensional lift and pitching-moment characteristics of an NACA 6716 and an NACA 4416 airfoil with 35-percent-chord single-slotted flaps. Both models were tested with flaps deflected from 0 deg to 45 deg, at angles of attack from minus 6 deg to several degrees past stall, at Reynolds numbers from 3.0 million to 13.8 million, and primarily at a Mach number of 0.23. Tests were also made to determine the effect of several slot entry shapes on performance.

  17. A new airfoil design concept

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Gregg, R. D.

    1989-01-01

    The present airfoil design concept is based on utilizing unconventional geometry characteristics near the airfoil trailing edge which include a finite trailing edge thickness, strongly divergent trailing edge upper and lower surfaces, and high surface curvature on the lower surface at or near the lower surface trailing edge. This paper presents computational analyses of airfoils and a wing utilizing the concept, airfoil validation wind tunnel test results of several configurations, and wing-validation wind tunnel test results for a complete wing design. In addition to validating the concept, the airfoil and wing testing provided additional detailed data to better understand the aerodynamic advantage of such an unconventional trailing edge configuration. It is demonstrated that the concept represents a significant step in airfoil technology beyond that achieved with the Supercritical Airfoil. This concept provides the aerodynamicist an additional degree of design freedom and flexibility previously unrecognized.

  18. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications

    NASA Astrophysics Data System (ADS)

    Murphy, Jeffery T.; Hu, Hui

    2010-08-01

    An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C = 58,000-125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.

  19. Low-speed wind-tunnel results for symmetrical NASA LS(1)-0013 airfoil

    NASA Technical Reports Server (NTRS)

    Ferris, James C.; Mcghee, Robert J.; Barnwell, Richard W.

    1987-01-01

    A wind-tunnel test has been conducted in the Langley Low-Turbulence Pressure Tunnel to evaluate the performance of a symmetrical NASA LS(1)-0013 airfoil which is a 13-percent-thick, low-speed airfoil. The airfoil contour was obtained from the thickness distribution of a 13-percent-thick, high-performance airfoil developed for general aviation airplanes. The tests were conducted at Mach numbers from 0.10 tp 0.37 over a Reynolds number range from about 0.6 to 12.0 X 10 to the 6th power. The angle of attack varied from about -8 to 20 degrees. The results indicate that the aerodynamic characteristics of the present airfoil are similar to, but slightly better than, those of the NACA 0012 airfoil.

  20. Performance of NACA Eight-stage Axial-flow Compressor Designed on the Basis of Airfoil Theory

    NASA Technical Reports Server (NTRS)

    Sinnette, John T; Schey, Oscar W; King, J Austin

    1943-01-01

    The NACA has conducted an investigation to determine the performance that can be obtained from a multistage axial-flow compressor based on airfoil research. A theory was developed; an eight-stage axial-flow compressor was designed, constructed, and tested. The performance of the compressor was determined for speeds from 5000 to 14,000 r.p.m with varying air flow at each speed. Most of the tests were made with air at room temperature. The performance was determined in accordance with the Committee's recommended procedure for testing superchargers. The expected performance was obtained, showing that a multistage compressor of high efficiency can be designed by the application of airfoil theory.

  1. Verification of performance results for a low-speed 15 percent elliptical circulation control airfoil

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Wood, N. J.

    1986-01-01

    Low-speed wind tunnel tests performed by the Naval Ship Research and Development Center (NSRDC) on a circulation control airfoil model was repeated by the Joint Institute for Aerodynamics and Acoustics in an attempt to reproduce the performance results. The model used was a 15% ellipse with interchangeable trailing edges. Surface pressure measurements were taken to obtain lift and pitching moment coefficients as functions of jet blowing momentum, and the momentum deficit in the wake was measured and used to calculate the drag coefficient. The effects of spanwise slot height variation and of leading edge blowing on performance were also investigated. The performance results showed that of the three slot heights tested, a slot height/chord ratio of 0.0022 produced the most lift coefficient for a given blowing rate. Lift obtained in the current test ranged from 2 to 35% lower than the NSRDC test. However, the two data sets compared reasonably well considering wind tunnel and wall blowing scheme differences. The spanwise lift distribution showed less change in lift due to a variation in slot height than expected. The leading edge blowing results demonstrated that although lift initially decreased, a positive lift increment was possible at higher leading edge blowing rates.

  2. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    SciTech Connect

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  3. Study of a new airfoil used in reversible axial fans

    NASA Technical Reports Server (NTRS)

    Li, Chaojun; Wei, Baosuo; Gu, Chuangang

    1991-01-01

    The characteristics of the reverse ventilation of axial flow are analyzed. An s shaped airfoil with a double circular arc was tested in a wind tunnel. The experimental results showed that the characteristics of this new airfoil in reverse ventilation are the same as those in normal ventilation, and that this airfoil is better than the existing airfoils used on reversible axial fans.

  4. Subsonic natural-laminar-flow airfoils

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    1992-01-01

    An account is given of the development history of natural laminar-flow (NLF) airfoil profiles under guidance of an experimentally well-verified theoretical method for the design of airfoils suited to virtually all subcritical applications. This method, the Eppler Airfoil Design and Analysis Program, contains a conformal-mapping method for airfoils having prescribed velocity-distribution characteristics, as well as a panel method for the analysis of potential flow about given airfoils and a boundary-layer method. Several of the NLF airfoils thus obtained are discussed.

  5. Aerodynamic characteristics of airfoils V : continuation of reports nos. 93, 124, 182, and 244

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This collection of data on airfoils has been made from published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of tests.

  6. Aerodynamic characteristics of airfoils VI : continuation of reports nos. 93, 124, 182, 244, and 286

    NASA Technical Reports Server (NTRS)

    1930-01-01

    This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of test.

  7. Computational design and analysis of flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-03-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  8. Aerodynamic characteristics of wings with cambered external airfoil flaps, including lateral control, with a full-span flap

    NASA Technical Reports Server (NTRS)

    Platt, Robert C

    1936-01-01

    The results of a wind-tunnel investigation of the NACA 23012, the NACA 23021, and the Clark Y airfoils, each equipped with a cambered external-airfoil flap, are presented in this report. The purpose of the research was to determine the relative merit of the various airfoils in combination with the cambered flap and to investigate the use of the flap as a combined lateral-control and high-lift device.

  9. Design and Experimental Results for the S825 Airfoil; Period of Performance: 1998-1999

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A 17%-thick, natural-laminar-flow airfoil, the S825, for the 75% blade radial station of 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically and verified experimentally in the NASA Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift, relatively insensitive to roughness and low-profile drag have been achieved. The airfoil exhibits a rapid, trailing-edge stall, which does not meet the design goal of a docile stall. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results generally show good agreement.

  10. Design and Experimental Results for the S827 Airfoil; Period of Performance: 1998--1999

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A 21%-thick, natural-laminar-flow airfoil, the S827, for the 75% blade radial station of 40- to 50-meter, stall-regulated, horizontal-axis wind turbines has been designed and analyzed theoretically and verified experimentally in the NASA Langley Low-Turbulence Pressure Tunnel. The primary objective of restrained maximum lift has not been achieved, although the maximum lift is relatively insensitive to roughness, which meets the design goal. The airfoil exhibits a relatively docile stall, which meets the design goal. The primary objective of low profile drag has been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results generally show good agreement with the exception of maximum lift, which is significantly underpredicted.

  11. A computer program for estimating the aerodynamic characteristics of NACA 16-series airfoils

    NASA Technical Reports Server (NTRS)

    Maksymiuk, C. M.; Watson, S. A.

    1983-01-01

    A computer program written in a table ""look-up'' format, is presented which provides a comprehensive data base on NACA 16-series airfoils. The geometry covered is limited to cambers for a design-lift coefficient from 0.0 to 0.7 and thickness ratios from 4 to 21%. The data include Mach numbers from 0.3 to 1.6, angles of attack from -4 to 8 degrees, and lift coefficients from 0.0 to 0.8. Extrapolation is used to obtain data from Mach numbers, angles of attack, and lift coefficients beyond those for which data are available. A routine to adjust the lift and drag coefficients beyond stall is included. The uses and limitations of the program are also discussed.

  12. Aerodynamic characteristics of airfoils III : continuation of reports nos. 93 and 124

    NASA Technical Reports Server (NTRS)

    1924-01-01

    This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this is the one most suited for international use and yet is one for which a desired transformation can be easily made. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and date of test.

  13. Experimental determination of the laminar separation bubble characteristics on an airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Omeara, M. M.; Mueller, T. J.

    1986-01-01

    An experimental investigation was conducted in order to document the structure and behavior of laminar separation bubbles at low Reynolds numbers. Data of this type is necessary if the currently insufficient analytical and numerical models are to be improved. The laminar separation bubble which forms on a NACA 66(3)-018 airfoil model was surveyed at chord Reynolds numbers ranging from 50,000 to 200,000 at angles of attack from 8 to 12 degrees. The effects of the various testing conditions on the separation bubble were isolated, and the data was analyzed in relation to existing separation bubble correlations in order to test their low Reynolds number applicability. This analysis indicated that the chord Reynolds number and the disturbance environment strongly influence the experimental pressure distributions. These effects must be included in any analytic prediction technique applied to the low Reynolds number flight regime.

  14. Results of an experimental program investigating the effects of simulated ice on the performance of the NACA 63A415 airfoil with flap

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.; Bragg, M. B.; Gregorek, G. M.

    1984-01-01

    Aerodynamic data from a test program in the Icing Research Tunnel are reported for a NACA 63A415 airfoil, with fowler flap, clean and with simulated ice shapes. The effect of three ice shapes on airfoil performance are presented, two of the simulated ice shapes are from earlier Icing Tunnel tests. Lift, drag, and moment coefficients are reported for the airfoil, clean and with ice, for angles of attack from approximately zero lift to maximum lift and for flap deflections of 0, 10, 20, and 30 degrees. Surface pressure distribution plots for the airfoil and flap are presented for all runs. Some preliminary oil flow visualization data are also discussed. Large drag penalties were measured in all instances. Maximum lift penalties were in general serious, and depend upon the ice shape and flap deflection.

  15. Measured performance of a tip-controlled, teetered rotor with an NACA 64/sub 3/-618 tip airfoil

    SciTech Connect

    Corrigan, R.D.; Glasgow, J.C.; Sirocky, P.J.

    1982-01-01

    Tests were conducted on the Mod-0 100 kW Wind Turbine to determine the performance of a tip-controlled rotor having an NACA 64/sub 3/-618 airfoil over the moveable outboard 30% of the blade, while operating at nominal rotor speeds of 21 and 31 rpm. Tests were conducted at two rotor speeds to assess the performance improvement which could be realized with 2-speed operation. Test data are compared with analytical predictions and concluding remarks are presented. The results indicate a clear performance improvement for the 2-speed operation.

  16. Measured performance of a tip-controlled, teetered rotor with an NACA 64 sub 3-618 tip airfoil

    NASA Technical Reports Server (NTRS)

    Corrigan, R. D.; Glasgow, J. C.; Sirocky, P. J.

    1982-01-01

    Tests were conducted on the Mod-O 100 kW Wind Turbine to determine the performance of a tip-controlled rotor having an NACA 64 sub-618 airfoil over the moveable outboard 30% of the blade, while operating at nominal rotor speeds of 21 and 31 rpm. Tests were conducted at two rotor speeds to assess the performance improvement which could be realized with 2-speed operation. Test data are compared with analytical predictions and concluding remarks are presented. The results indicate a clear performance improvement for the 2-speed operation.

  17. The effects of variations in Reynolds number between 3.0 x 10sub6 and 25.0 x 10sub6 upon the aerodynamic characteristics of a number of NACA 6-series airfoil sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K, Jr; Bursnall, William J

    1950-01-01

    Results are presented of an investigation made to determine the two-dimensional lift and drag characteristics of nine NACA 6-series airfoil section at Reynolds numbers of 15.0 x 10sub6, 20.0 x 10sub6, and 25.0 x 10sub6. Also presented are data from NACA Technical Report 824 for the same airfoils at Reynolds numbers of 3.0 x 10sub6, 6.0 x 10sub6, and 9.0 x 10sub6. The airfoils selected represent sections having variations in the airfoil thickness, thickness form, and camber. The characteristics of an airfoil with a split flap were determined in one instance, as was the effect of surface roughness. Qualitative explanations in terms of flow behavior are advanced for the observed types of scale effect.

  18. Status of NASA advanced LFC airfoil high-lift study

    NASA Technical Reports Server (NTRS)

    Applin, Z. T.

    1982-01-01

    The design of a high lift system for the NASA advanced LFC airfoil designed by Pfenninger is described. The high lift system consists of both leading and trailing edge flaps. A 3 meter semispan, 1 meter chord wing model using the above airfoil and high lift system is under construction and will be tested in the NASA Langley 4 by 7 meter tunnel. This model will have two separate full span leading edge flaps (0.10c and 0.12c) and one full span trailing edge flap (0.25c). The performance of this high lift system was predicted by the NASA two dimensional viscous multicomponent airfoil program. This program was also used to predict the characteristics of the LFC airfoils developed by the Douglas Aircraft Company and Lockheed-Georgia Aircraft Company.

  19. Pneumatic Flap Performance for a 2D Circulation Control Airfoil, Steady and Pulsed

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.

    2005-01-01

    Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike, yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements cor Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.

  20. Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation

    NASA Technical Reports Server (NTRS)

    Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.

  1. Natural laminar flow airfoil design considerations for winglets on low-speed airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1984-01-01

    Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.

  2. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  3. Low-speed aerodynamic characteristics of a 14-percent-thick NASA phase 2 supercritical airfoil designed for a lift coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.; Mcghee, R. J.; Allison, D. O.

    1980-01-01

    The low speed aerodynamic characteristics of a 14 percent thick supercritical airfoil are documented. The wind tunnel test was conducted in the Low Turbulence Pressure Tunnel. The effects of varying chord Reynolds number from 2,000,000 to 18,000,000 at a Mach number of 0.15 and the effects of varying Mach number from 0.10 to 0.32 at a Reynolds number of 6,000,000 are included.

  4. NREL airfoil families for HAWTs

    NASA Astrophysics Data System (ADS)

    Tangler, J. L.; Somers, D. M.

    1995-01-01

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time seven airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c(sub l,max)) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  5. NREL airfoil families for HAWTs

    SciTech Connect

    Tangler, J.L.; Somers, D.M.

    1995-12-31

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time nine airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub 1,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  6. NREL airfoil families for HAWTs

    SciTech Connect

    Tangler, J L; Somers, D M

    1995-01-01

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time seven airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub l,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  7. A study of test section configuration for shock tube testing of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1978-01-01

    Two methods are investigated for alleviating wall interference effects in a shock tube test section intended for testing two-dimensional transonic airfoils. The first method involves contouring the test section walls to match approximate streamlines in the flow. Contours are matched to each airfoil tested to produce results close to those obtained in a conventional wind tunnel. Data from a previous study and the present study for two different airfoils demonstrate that useful results are obtained in a shock tube using a test section with contoured walls. The second method involves use of a fixed-geometry slotted-wall test section to provide automatic flow compensation for various airfoils. The slotted-wall test section developed exhibited the desired performance characteristics in the approximate Mach number range 0.82 to 0.89, as evidenced by good agreement obtained between shock tube and wind tunnel results for several airfoil flows.

  8. A Systematic Investigation of Pressure Distributions at High Speeds over Five Representative NACA Low-Drag and Conventional Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Graham, Donald J; Nitzberg, Gerald E; Olson, Robert N

    1945-01-01

    Pressure distributions determined from high-speed wind-tunnel tests are presented for five NACA airfoil sections representative of both low-drag and conventional types. Section characteristics of lift, drag, and quarter-chord pitching moment are presented along with the measured pressure distributions for the NACA 65sub2-215 (a=0.5), 66sub2-215 (a=0.6), 0015, 23015, and 4415 airfoils for Mach numbers up to approximately 0.85. A critical study is made of the airfoil pressure distributions in an attempt to formulate a set of general criteria for defining the character of high speed flows over typical airfoil shapes. Comparisons are made of the relative characteristics of the low-drag and conventional airfoils investigated insofar as they would influence the high-speed performance and the high-speed stability and control characteristics of airplanes employing these wing sections.

  9. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 3: Data and performance for stage C

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D.

    1972-01-01

    Stage C, comprised of tandem-airfoil rotor C and tandem-airfoil stator B, was designed and tested to establish performance data for comparison with the performance of conventional single-airfoil blading. Velocity diagrams and blade leading and trailing edge metal angles selected for the conventional rotor and stator blading were used in the design of the tandem blading. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. At design equivalent rotor speed, rotor C achieved a maximum adiabatic efficiency of 91.8% at a pressure ratio of 1.31. The stage maximum adiabatic efficiency was 86.5% at a pressure ratio of 1.31.

  10. Turbine airfoil film cooling

    NASA Astrophysics Data System (ADS)

    Hylton, Larry D.

    1986-10-01

    Emphasis is placed on developing more accurate analytical models for predicting turbine airfoil external heat transfer rates. Performance goals of new engines require highly refined, accurate design tools to meet durability requirements. In order to obtain improvements in analytical capabilities, programs are required which focus on enhancing analytical techniques through verification of new models by comparison with relevant experimental data. The objectives of the current program are to develop an analytical approach, based on boundary layer theory, for predicting the effects of airfoil film cooling on downstream heat transfer rates and to verify the resulting analytical method by comparison of predictions with hot cascade data obtained under this program.

  11. Darrieus wind-turbine airfoil configurations

    NASA Astrophysics Data System (ADS)

    Migliore, P. G.; Fritschen, J. R.

    1982-06-01

    The purpose was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63 sub 2-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63 sub 2-015 airfoil to an appropriate shape.

  12. The effect of incidence angle on the overall three-dimensional aerodynamic performance of a classical annular airfoil cascade

    NASA Technical Reports Server (NTRS)

    Bergsten, D. E.; Fleeter, S.

    1983-01-01

    To be of quantitative value to the designer and analyst, it is necessary to experimentally verify the flow modeling and the numerics inherent in calculation codes being developed to predict the three dimensional flow through turbomachine blade rows. This experimental verification requires that predicted flow fields be correlated with three dimensional data obtained in experiments which model the fundamental phenomena existing in the flow passages of modern turbomachines. The Purdue Annular Cascade Facility was designed specifically to provide these required three dimensional data. The overall three dimensional aerodynamic performance of an instrumented classical airfoil cascade was determined over a range of incidence angle values. This was accomplished utilizing a fully automated exit flow data acquisition and analysis system. The mean wake data, acquired at two downstream axial locations, were analyzed to determine the effect of incidence angle, the three dimensionality of the cascade exit flow field, and the similarity of the wake profiles. The hub, mean, and tip chordwise airfoil surface static pressure distributions determined at each incidence angle are correlated with predictions from the MERIDL and TSONIC computer codes.

  13. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Aérospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model

  14. Experimental Study of Thin and Thick Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Durgesh, Vibhav; Garcia, Elifalet; Johari, Hamid

    2015-11-01

    A recent surge in applications of unmanned air vehicles in various fields has led to increased interest in understanding the characteristics of airfoils at Reynolds number regime ~104. At these low Re numbers, aerodynamics of an airfoil is influenced by laminar separation and its possible reattachment, which is in contrast to airfoil behavior at high Re numbers. This study focused on comparing the load characteristics of symmetric, thin (NACA-0009) and thick (NACA-0021) airfoils at low Re numbers ~2 - 4 × 104, and angles of attack between 2° to 12°, along with simultaneous flow visualization. The experiments were performed in a low speed flow visualization water tunnel facility, and two-component Laser Doppler Velocimetry was used to quantify the inflow conditions and turbulence intensity. A high precision force/torque transducer was used for the load measurements, while hydrogen bubble technique was used for flow visualization on the suction side of the airfoils. The presentation will discuss the correlation between observed flow structures and instantaneous load on the airfoils, as well as the aerodynamic load characteristics of thin and thick airfoils at low Re numbers.

  15. Wind-Tunnel Investigation of the Effects of Profile Modification and Tabs on the Characteristics of Ailerons on a Low-Drag Airfoil

    NASA Technical Reports Server (NTRS)

    Crane, Robert M; Holtzclaw, Ralph W

    1944-01-01

    An investigation has been made to determine the effect of control-surface profile modifications on the aerodynamic characteristics of an NACA low-drag airfoil equipped with a 0.20-chord and a 0.15-chord aileron. Tab characteristics have been obtained for 0.20-aileron chord tabs on two of the 0.20-chord ailerons. Basic data are presented from which the effect of tabs can be calculated for specific cases. The data are sufficient for the solution of problems of fixed tabs with a differential linkage, as well as simple and spring-linked balancing tabs.

  16. High-Lift, Low-Pitching-Moment Airfoils

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.

    1987-01-01

    Two families of airfoil shapes improve rotor performance. Improvements enhance performances of helicopters and other rotorcraft but also applicable to aircraft propellers. Airfoil shapes best suited for inboard segment of rotor blade.

  17. Composite airfoil assembly

    SciTech Connect

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  18. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  19. Airfoils for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  20. Low-speed aerodynamic characteristics of a 42 deg swept high-wing model having a double-slotted flap system and a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Goodson, K. W.

    1974-01-01

    A low-speed investigation was conducted over an angle-of-attack range from about -4 deg to 20 deg in the Langley V/STOL tunnel to determine the effects of a double-slotted flap, high-lift system on the aerodynamic characteristics of a 42 deg swept high-wing model having a supercritical airfoil. The wing had an aspect ratio of 6.78 and a taper ratio of 0.36; the double-slotted flap consisted of a 35-percent-chord flap with a 15-percent-chord vane. The model was tested with a 15-percent-chord leading-edge slat.

  1. Sound and vibration produced by an airfoil tip in a turbulent boundary layer flow with an elastic end wall.

    NASA Astrophysics Data System (ADS)

    Slaboch, Paul

    2005-11-01

    Predicting the far field acoustics of an airfoil tip immersed in a turbulent boundary layer over an elastic end plate is a complicated problem. The unsteady lift of the airfoil and the local end wall vibration pattern form a coupled system of hydrodynamic and acoustic pressures. An experiment has been performed, incorporating as much of the flow physics as possible while maintaining the simplest possible boundary conditions. Specifically, a stationary airfoil tip in a turbulent boundary layer over an elastic end wall was used in an anechoic wind tunnel to relate the unsteady lift of the airfoil to the vibration patterns of the end wall. The vibration patterns were acquired using a scanning laser Doppler vibrometer. This talk will present results of experiments completed with both a rigid and elastic end wall. Preliminary data suggest that the unsteady lift of the airfoil is dependent upon the vibrational characteristics of the end wall.

  2. Low Reynolds number airfoil survey, volume 1

    NASA Technical Reports Server (NTRS)

    Carmichael, B. H.

    1981-01-01

    The differences in flow behavior two dimensional airfoils in the critical chordlength Reynolds number compared with lower and higher Reynolds number are discussed. The large laminar separation bubble is discussed in view of its important influence on critical Reynolds number airfoil behavior. The shortcomings of application of theoretical boundary layer computations which are successful at higher Reynolds numbers to the critical regime are discussed. The large variation in experimental aerodynamic characteristic measurement due to small changes in ambient turbulence, vibration, and sound level is illustrated. The difficulties in obtaining accurate detailed measurements in free flight and dramatic performance improvements at critical Reynolds number, achieved with various types of boundary layer tripping devices are discussed.

  3. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0 x 10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  4. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0×10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  5. Effect of advanced rotorcraft airfoil sections on the hover performance of a small-scale rotor model

    NASA Technical Reports Server (NTRS)

    Althoff, Susan L.

    1988-01-01

    A hover test was conducted on a small scale rotor model for two sets of tapered rotor blades. The baseline rotor blade set used a NACA 0012 airfoil section, whereas the second rotor blade set had advanced rotorcraft airfoils distributed along the radius. The experiment was conducted for a range of thrust coefficients and tip speeds, and the data were compared to the predictions of three analytical methods. The data show the advantage of the advanced airfoils at the higher rotor thrust levels; two of the analyses predicted the correct data trends.

  6. Computational Analysis of Dual Radius Circulation Control Airfoils

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Vatsa, V. N.; Rumsey, C. L.

    2006-01-01

    The goal of the work is to use multiple codes and multiple configurations to provide an assessment of the capability of RANS solvers to predict circulation control dual radius airfoil performance and also to identify key issues associated with the computational predictions of these configurations that can result in discrepancies in the predicted solutions. Solutions were obtained for the Georgia Tech Research Institute (GTRI) dual radius circulation control airfoil and the General Aviation Circulation Control (GACC) dual radius airfoil. For the GTRI-DR airfoil, two-dimensional structured and unstructured grid computations predicted the experimental trend in sectional lift variation with blowing coefficient very well. Good code to code comparisons between the chordwise surface pressure coefficients and the solution streamtraces also indicated that the detailed flow characteristics were matched between the computations. For the GACC-DR airfoil, two-dimensional structured and unstructured grid computations predicted the sectional lift and chordwise pressure distributions accurately at the no blowing condition. However at a moderate blowing coefficient, although the code to code variation was small, the differences between the computations and experiment were significant. Computations were made to investigate the sensitivity of the sectional lift and pressure distributions to some of the experimental and computational parameters, but none of these could entirely account for the differences in the experimental and computational results. Thus, CFD may indeed be adequate as a prediction tool for dual radius CC flows, but limited and difficult to obtain two-dimensional experimental data prevents a confident assessment at this time.

  7. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 7: Data and performance for stage E

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.

    1974-01-01

    An axial flow compressor stage, having tandem airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor has an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of single-airfoil blading designed for the same vector diagrams and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design.

  8. Hybrid airfoil design methods for full-scale ice accretion simulation

    NASA Astrophysics Data System (ADS)

    Saeed, Farooq

    from the icing tests on both the full-scale and the hybrid model, performed at the NASA Lewis Research Center's Icing Research Tunnel (IRT), indicate that hybrid airfoils designed to simulate full-scale droplet impingement characteristics can be used to simulate full-scale ice accretions and, therefore, show that the hybrid airfoil design method has great application potential. The results also indicate important limitations of the flap-based hybrid airfoil design that arise due to the onset of flow separation. To alleviate this problem, the study demonstrates the advantages of using boundary-layer control through slot-suction as an alternative to using the flap. The study also revisits some of the old ideas for the design of slot-suction airfoils to show the usefulness of the new design tool in many of the applications related to the advanced-concept wings. Finally, the study suggests some useful recommendations to further enhance the scope of the two design methods.

  9. Generalized multi-point inverse airfoil design

    NASA Technical Reports Server (NTRS)

    Selig, Michael S.; Maughmer, Mark D.

    1991-01-01

    In a rather general sense, inverse airfoil design can be taken to mean the problem of specifying a desired set of airfoil characteristics, such as the airfoil maximum thickness ratio, pitching moment, part of the velocity distribution or boundary-layer development, etc., then from this information determine the corresponding airfoil shape. This paper presents a method which approaches the design problem from this perspective. In particular, the airfoil is divided into segments along which, together with the design conditions, either the velocity distribution or boundary-layer development may be prescribed. In addition to these local desired distributions, single parameters like the airfoil thickness can be specified. The problem of finding the airfoil shape is determined by coupling an incompressible, inviscid, inverse airfoil design method with a direct integral boundary-layer analysis method and solving the resulting nonlinear equations via a multidimensional Newton iteration technique. The approach is fast and easily allows for interactive design. It is also flexible and could be adapted to solving compressible, inverse airfoil design problems.

  10. High Lift, Low Pitching Moment Airfoils

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W. (Inventor)

    1988-01-01

    Two families of airfoil sections which can be used for helicopter/rotorcraft rotor blades or aircraft propellers of a particular shape are prepared. An airfoil of either family is one which could be produced by the combination of a camber line and a thickness distribution or a thickness distribution which is scaled from these. An airfoil of either family has a unique and improved aerodynamic performance. The airfoils of either family are intended for use as inboard sections of a helicopter rotor blade or an aircraft propeller.

  11. Inverse transonic airfoil design including viscous interaction

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1976-01-01

    A numerical technique was developed for the analysis of specified transonic airfoils or for the design of airfoils having a prescribed pressure distribution, including the effect of weak viscous interaction. The method uses the full potential equation, a stretched Cartesian coordinate system, and the Nash-MacDonald turbulent boundary layer method. Comparisons with experimental data for typical transonic airfoils show excellent agreement. An example shows the application of the method to design a thick aft-cambered airfoil, and the effects of viscous interaction on its performance are discussed.

  12. High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion

    NASA Astrophysics Data System (ADS)

    Yu, Meilin; Wang, Z. J.; Hu, Hui

    2013-10-01

    High-fidelity numerical simulations with the spectral difference (SD) method are carried out to investigate the unsteady flow over a series of oscillating NACA 4-digit airfoils. Airfoil thickness and kinematics effects on the flapping airfoil propulsion are highlighted. It is confirmed that the aerodynamic performance of airfoils with different thickness can be very different under the same kinematics. Distinct evolutionary patterns of vortical structures are analyzed to unveil the underlying flow physics behind the diverse flow phenomena associated with different airfoil thickness and kinematics and reveal the synthetic effects of airfoil thickness and kinematics on the propulsive performance. Thickness effects at various reduced frequencies and Strouhal numbers for the same chord length based Reynolds number (=1200) are then discussed in detail. It is found that at relatively small Strouhal number (=0.3), for all types of airfoils with the combined pitching and plunging motion (pitch angle 20°, the pitch axis located at one third of chord length from the leading edge, pitch leading plunge by 75°), low reduced frequency (=1) is conducive for both the thrust production and propulsive efficiency. Moreover, relatively thin airfoils (e.g. NACA0006) can generate larger thrust and maintain higher propulsive efficiency than thick airfoils (e.g. NACA0030). However, with the same kinematics but at relatively large Strouhal number (=0.45), it is found that airfoils with different thickness exhibit diverse trend on thrust production and propulsive efficiency, especially at large reduced frequency (=3.5). Results on effects of airfoil thickness based Reynolds numbers indicate that relative thin airfoils show superior propulsion performance in the tested Reynolds number range. The evolution of leading edge vortices and the interaction between the leading and trailing edge vortices play key roles in flapping airfoil propulsive performance.

  13. Shape Changing Airfoil

    NASA Technical Reports Server (NTRS)

    Ott, Eric A.

    2005-01-01

    Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

  14. Low-speed aerodynamic characteristics of a model having a 42 deg swept low wing with a supercritical airfoil, double-slotted flaps, and a T-tail

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Sleeman, W. C., Jr.

    1972-01-01

    A low speed wind tunnel test was conducted in the Langley V/STOL tunnel to determine the static longitudinal and lateral stability characteristics of a general research model which simulated an advance configuration for a commercial transport airplane with a T tail. The model had a 42 deg swept, aspect ratio 6.78 wing with a supercritical airfoil and a high lift system which consisted of a leading edge slat and a double slotted flap. Various slat and flap deflection combinations represented clean, take off, and landing configurations. Effects on the longitudinal and lateral aerodynamic characteristics were determined for two flow through, simulated engine nacelles located on the sides of the fuselage near the rear of the model.

  15. Airfoil Dynamic Stall and Rotorcraft Maneuverability

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2000-01-01

    The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.

  16. Design of a family of new advanced airfoils for low wind class turbines

    NASA Astrophysics Data System (ADS)

    Grasso, Francesco

    2014-12-01

    In order to maximize the ratio of energy capture and reduce the cost of energy, the selection of the airfoils to be used along the blade plays a crucial role. Despite the general usage of existing airfoils, more and more, families of airfoils specially tailored for specific applications are developed. The present research is focused on the design of a new family of airfoils to be used for the blade of one megawatt wind turbine working in low wind conditions. A hybrid optimization scheme has been implemented, combining together genetic and gradient based algorithms. Large part of the work is dedicated to present and discuss the requirements that needed to be satisfied in order to have a consistent family of geometries with high efficiency, high lift and good structural characteristics. For each airfoil, these characteristics are presented and compared to the ones of existing airfoils. Finally, the aerodynamic design of a new blade for low wind class turbine is illustrated and compared to a reference shape developed by using existing geometries. Due to higher lift performance, the results show a sensitive saving in chords, wetted area and so in loads in idling position.

  17. Design of a 3 kW wind turbine generator with thin airfoil blades

    SciTech Connect

    Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath

    2008-09-15

    Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

  18. Characteristics of deformable leading edge for high performance helicopter rotor

    NASA Technical Reports Server (NTRS)

    Lee, Soogab; Mcalister, K. W.; Tung, Chee

    1993-01-01

    The deformable leading edge (DLE) concept to improve the blade capability in lift, drag and pitching moments has been investigated for the purpose of meeting new rotor maneuverability and susceptibility requirements. The advantages and disadvantages of this concept have been carefully examined with limited computational and experimental results. This work showed that this concept achieves a substantial improvement in lift capability and also reduces the drag and pitching moment at the same time. Effects of various parameters, such as Reynolds number, reduced frequency, mean angle of oscillation, and airfoil shape, on the performance of these airfoils were also investigated.

  19. Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number

    SciTech Connect

    Blaylock, Myra L.; Maniaci, David Charles; Resor, Brian R.

    2015-04-01

    New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.

  20. Shape optimization of corrugated airfoils

    NASA Astrophysics Data System (ADS)

    Jain, Sambhav; Bhatt, Varun Dhananjay; Mittal, Sanjay

    2015-12-01

    The effect of corrugations on the aerodynamic performance of a Mueller C4 airfoil, placed at a 5° angle of attack and Re=10{,}000, is investigated. A stabilized finite element method is employed to solve the incompressible flow equations in two dimensions. A novel parameterization scheme is proposed that enables representation of corrugations on the surface of the airfoil, and their spontaneous appearance in the shape optimization loop, if indeed they improve aerodynamic performance. Computations are carried out for different location and number of corrugations, while holding their height fixed. The first corrugation causes an increase in lift and drag. Each of the later corrugations leads to a reduction in drag. Shape optimization of the Mueller C4 airfoil is carried out using various objective functions and optimization strategies, based on controlling airfoil thickness and camber. One of the optimal shapes leads to 50 % increase in lift coefficient and 23 % increase in aerodynamic efficiency compared to the Mueller C4 airfoil.

  1. A new direct design method for the medium thickness wind turbine airfoil

    NASA Astrophysics Data System (ADS)

    Wang, Quan; Chen, Jin; Pang, Xiaoping; Li, Songlin; Guo, Xiaofeng

    2013-11-01

    The newly developed integral function of airfoil profiles based on Trajkovski conformal transform theory could be used to optimize the profiles for the thin thickness airfoil. However, it is hard to adjust the coefficients of the integral function for the medium thickness airfoil. B-spline curve has an advantage of local adjustment, which makes it to effectively control the airfoil profiles at the trailing edge. Therefore, a new direct design method for the medium thickness wind turbine airfoil based on airfoil integral expression and B-spline curve is presented in this paper. An optimal mathematical model of an airfoil is built. Two new airfoils with similar thickness, based on the new designed method and the original integral method, are designed. According to the comparative analysis, the CQU-A25 airfoil designed based on the new method exhibits better results than that of the CQU-I25 airfoil which is designed based on the original method. It is demonstrated that the new method is feasible to design wind turbine airfoils. Meanwhile, the comparison of the aerodynamic performance for the CQU-A25 airfoil and for the DU91-W2-250 airfoil is studied. Results show that the maximum lift coefficient and the maximum lift/drag ratio of the CQU-A25 airfoil are higher than the ones of DU91-W2-250 airfoil in the same condition. This new airfoil design method would make it possible to design other airfoils with different thicknesses.

  2. Darrieus wind-turbine airfoil configurations

    SciTech Connect

    Migliore, P.G.; Fritschen, J.R.

    1982-06-01

    The purpose of this study was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Analysis was limited to machines using two blades of infinite aspect ratio, having rotor solidites from seven to twenty-one percent, and operating at maximum Reynolds numbers of approximately three million. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA four-digit airfoils which have historically been chosen for Darrieus turbines. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63/sub 2/-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63/sub 2/-015 airfoil to an appropriate shape.

  3. The Surface Pressure Response of a NACA 0015 Airfoil Immersed in Grid Turbulence. Volume 1; Characteristics of the Turbulence

    NASA Technical Reports Server (NTRS)

    Bereketab, Semere; Wang, Hong-Wei; Mish, Patrick; Devenport, William J.

    2000-01-01

    Two grids have been developed for the Virginia Tech 6 ft x 6 ft Stability wind tunnel for the purpose of generating homogeneous isotropic turbulent flows for the study of unsteady airfoil response. The first, a square bi-planar grid with a 12" mesh size and an open area ratio of 69.4%, was mounted in the wind tunnel contraction. The second grid, a metal weave with a 1.2 in. mesh size and an open area ratio of 68.2% was mounted in the tunnel test section. Detailed statistical and spectral measurements of the turbulence generated by the two grids are presented for wind tunnel free stream speeds of 10, 20, 30 and 40 m/s. These measurements show the flows to be closely homogeneous and isotropic. Both grids produce flows with a turbulence intensity of about 4% at the location planned for the airfoil leading edge. Turbulence produced by the large grid has an integral scale of some 3.2 inches here. Turbulence produced by the small grid is an order of magnitude smaller. For wavenumbers below the upper limit of the inertial subrange, the spectra and correlations measured with both grids at all speeds can be represented using the von Karman interpolation formula with a single velocity and length scale. The spectra maybe accurately represented over the entire wavenumber range by a modification of the von Karman interpolation formula that includes the effects of dissipation. These models are most accurate at the higher speeds (30 and 40 m/s).

  4. Transonic airfoil design code

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Garabedian, P.; Korn, D.

    1980-01-01

    Program aids in design of shockless airfoils, assists development of fuel-conserving, supercritical wings. Algorithm calculates approximate airfoil shape given prescribed pressure distribution. This allows design of families of transonic airfoils for use in aircraft wings or turbine and compressor blades. Program is written in FORTRAN IV for batch execution on CDC-6000.

  5. Self-sustained shock oscillations on airfoils at transonic speeds

    NASA Astrophysics Data System (ADS)

    Lee, B. H. K.

    2001-02-01

    Self-sustained shock wave oscillations on airfoils at transonic flow conditions are associated with the phenomenon of buffeting. The physical mechanisms of the periodic shock motion are not yet fully understood even though experiments performed over fifty years ago have demonstrated the presence of oscillatory shock waves on the airfoil surfaces at high subsonic speeds. The unsteady pressure fluctuations generated by the low-frequency large-amplitude shock motions are highly undesirable from the structural integrity and aircraft maneuverability point of view. For modern supercritical wing design with thick profiles, the shock-induced fluctuations are particularly severe and methods to reduce the shock wave amplitudes to lower values or even to delay the oscillations to higher Mach numbers or incidence angles will result in expanding the buffet boundary of the airfoil. This review begins with a recapitulation of the classical work on shock-induced bubble separation and trailing edge separation of a turbulent boundary layer. The characteristics of the unsteady pressure fluctuations are used to classify the types of shock-boundary layer interaction. The various modes of shock wave motion for different flow conditions and airfoil configurations are described. The buffet boundaries obtained using the standard trailing edge pressure divergence technique and an alternative approach of measuring the divergence of normal fluctuating forces are compared to show the equivalence. The mechanisms of self-sustained shock oscillations are discussed for symmetrical circular-arc airfoils at zero incidence and for supercritical airfoils at high incidence angles with fully separated flows. The properties of disturbances in the wake are examined from linear stability analysis of two-dimensional compressible flows. The advances in high-speed computing make predictions of buffeting flows possible. Navier-Stokes solvers and approximate boundary layer-inviscid flow interaction methods are

  6. Vortex shedding and aerodynamic performance of an airfoil with multi-scale trailing edge modifications

    NASA Astrophysics Data System (ADS)

    Nedic, Jovan; Vassilicos, J. Christos

    2014-11-01

    An experimental investigation was conducted into the aerodynamic performance and nature of the vortex shedding generated by truncated and non-flat serrated trailing edges of a NACA 0012 wing section. The truncated trailing edge generates a significant amount of vortex shedding, whilst increasing both the maximum lift and drag coefficients, resulting in an overall reduction in the maximum lift-to-drag ratio (L/D) compared to a plain NACA0012 wing section. By decreasing the chevron angle (ϕ) of the non-flat trailing edge serrations (i.e. by making them sharper), the energy of the vortex shedding significantly decreases and L/D increase compared to a plain NACA0012 wing section. Fractal/multi-scale patterns were also investigated with a view to further improve performance. It was found that the energy of the vortex shedding increases with increasing fractal iteration if the chevron is broad (ϕ ~65°), but decreases for sharper chevrons (ϕ =45°). It is believed that if ϕ is too big, the multi-scale trailing edges are too far away from each other to interact and break down the vortex shedding mechanism. Fractal/multi-scale trailing edges are also able to improve aerodynamic performance compared to the NACA 0012 wing section.

  7. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    NASA Astrophysics Data System (ADS)

    Sun, Quan; Cheng, Bangqin; Li, Yinghong; Cui, Wei; Jin, Di; Li, Jun

    2013-11-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation.

  8. Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: October 31, 2002--January 31, 2003

    SciTech Connect

    Selig, M. S.; McGranahan, B. D.

    2004-10-01

    Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbinesrepresents the fourth installment in a series of volumes documenting the ongoing work of th University of Illinois at Urbana-Champaign Low-Speed Airfoil Tests Program. This particular volume deals with airfoils that are candidates for use on small wind turbines, which operate at low Reynolds numbers.

  9. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  10. Aerodynamic characteristics of three helicopter rotor airfoil sections at Reynolds number from model scale to full scale at Mach numbers from 0.35 to 0.90. [conducted in Langley 6 by 28 inch transonic tunnel

    NASA Technical Reports Server (NTRS)

    Noonan, K. W.; Bingham, G. J.

    1980-01-01

    An investigation was conducted in the Langely 6 by 28 inch transonic tunnel to determine the two dimensional aerodynamic characteristics of three helicopter rotor airfoils at Reynolds numbers from typical model scale to full scale at Mach numbers from about 0.35 to 0.90. The model scale Reynolds numbers ranged from about 700,00 to 1,500,000 and the full scale Reynolds numbers ranged from about 3,000,000 to 6,600,000. The airfoils tested were the NACA 0012 (0 deg Tab), the SC 1095 R8, and the SC 1095. Both the SC 1095 and the SC 1095 R8 airfoils had trailing edge tabs. The results of this investigation indicate that Reynolds number effects can be significant on the maximum normal force coefficient and all drag related parameters; namely, drag at zero normal force, maximum normal force drag ratio, and drag divergence Mach number. The increments in these parameters at a given Mach number owing to the model scale to full scale Reynolds number change are different for each of the airfoils.

  11. Modeling and computation of flow in a passage with 360 deg turning and multiple airfoils

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Vu, T. C.

    1991-06-01

    Numerical modeling of the three-dimensional flows in a spiral casing of a hydraulic turbine, containing a passage of 360-deg turning and multiple elements of airfoils (the so-called distributor), is made. The physical model is based on a novel two-level approach, comprising of (1) a global model that adequately accounts for the geometry of the spiral casing but smears out the details of the distributor and represents the multiple airfoils by a porous medium treatment; and (2) a local model that performs detailed analysis of flow in the distributor region. The global analysis supplies the inlet flow condition for the individual cascade of distributor airfoils, while the distributor analysis yields the information needed for modeling the characteristics of the porous medium. Comparisons of pressure and velocity profiles between measurement and prediction have been made to assess the validity of the present approach. Flow characteristics in the spiral casing are also discussed.

  12. Single-stage experimental evaluation of tandem-airfoil rotor stator blading for compressors. Part 6: Data and performance for stage D

    NASA Technical Reports Server (NTRS)

    Clemmons, D. R.

    1973-01-01

    An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.

  13. A computer program for the design and analysis of low-speed airfoils

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Somers, D. M.

    1980-01-01

    A conformal mapping method for the design of airfoils with prescribed velocity distribution characteristics, a panel method for the analysis of the potential flow about given airfoils, and a boundary layer method have been combined. With this combined method, airfoils with prescribed boundary layer characteristics can be designed and airfoils with prescribed shapes can be analyzed. All three methods are described briefly. The program and its input options are described. A complete listing is given as an appendix.

  14. An airfoil pitch apparatus-modeling and control design

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel R.

    1989-01-01

    The study of dynamic stall of rapidly pitching airfoils is being conducted at NASA Ames Research Center. Understanding this physical phenomenon will aid in improving the maneuverability of fighter aircraft as well as civilian aircraft. A wind tunnel device which can linearly pitch and control an airfoil with rapid dynamic response is needed for such tests. To develop a mechanism capable of high accelerations, an accurate model and control system is created. The model contains mathematical representations of the mechanical system, including mass, spring, and damping characteristics for each structural element, as well as coulomb friction and servovalve saturation. Electrical components, both digital and analog, linear and nonlinear, are simulated. The implementation of such a high-performance system requires detailed control design as well as state-of-the-art components. This paper describes the system model, states the system requirements, and presents results of its theoretical performance which maximizes the structural and hydraulic aspects of this system.

  15. An airfoil pitch apparatus-modeling and control design

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel R.

    1989-01-01

    The study of dynamic stall of rapidly pitching airfoils is being conducted at NASA Ames Research Center. Understanding this physical phenomenon will aid in improving the maneuverability of fighter aircraft as well as civilian aircraft. A wind tunnel device which can linearly pitch and control an airfoil with rapid dynamic reponse is needed for such tests. To develop a mechanism capable of high accelerations, an accurate model and control system is created. The model contains mathematical representations of the mechanical system, including mass, spring, and damping characteristics for each structural element, as well as coulomb friction and servovalve saturation. Electrical components, both digital and analog, linear and nonlinear, are simulated. The implementation of such a high-performance system requires detailed control design as well as state-of-the-art components. This paper describes the system model, states the system requirements, and presents results of its theoretical performance which maximizes the structural and hydraulic aspects of this system.

  16. An airfoil pitch apparatus-modeling and control design

    NASA Astrophysics Data System (ADS)

    Andrews, Daniel R.

    1989-03-01

    The study of dynamic stall of rapidly pitching airfoils is being conducted at NASA Ames Research Center. Understanding this physical phenomenon will aid in improving the maneuverability of fighter aircraft as well as civilian aircraft. A wind tunnel device which can linearly pitch and control an airfoil with rapid dynamic response is needed for such tests. To develop a mechanism capable of high accelerations, an accurate model and control system is created. The model contains mathematical representations of the mechanical system, including mass, spring, and damping characteristics for each structural element, as well as coulomb friction and servovalve saturation. Electrical components, both digital and analog, linear and nonlinear, are simulated. The implementation of such a high-performance system requires detailed control design as well as state-of-the-art components. This paper describes the system model, states the system requirements, and presents results of its theoretical performance which maximizes the structural and hydraulic aspects of this system.

  17. Spline-Based Smoothing of Airfoil Curvatures

    NASA Technical Reports Server (NTRS)

    Li, W.; Krist, S.

    2008-01-01

    Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been

  18. Effects of laminar separation bubbles and turbulent separation on airfoil stall

    SciTech Connect

    Dini, P.; Coiro, D.P.

    1997-12-31

    An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.

  19. The calculation of flow over iced airfoils

    NASA Technical Reports Server (NTRS)

    Cebeci, Tuncer

    1988-01-01

    Progress toward the development of a method for predicting the flowfield of an iced airfoil is described and shown to offer the prospect of a priori calculations of the effects of ice accretion and roughness on airfoil performance. The approach is based on interaction of inviscid flow solutions obtained by a panel method and improved upon by a finite-difference boundary-layer method which, operating in an inverse mode, incorporates viscous effects including those associated with separated flows. Results are presented for smooth, rough and iced airfoils as a function of angle of attack. Those for smooth and rough airfoils confirm the accuracy of the method and its applicability to surfaces with roughness similar to that associated with insect deposition and some forms of ice. Two procedures have been developed to deal with large ice accretion and their performance is examined and shown to be appropriate to the engineering requirements.

  20. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1998-05-01

    In a continuing effort to enhance the performance of small wind energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1--5 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  1. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  2. Icing Test Results on an Advanced Two-Dimensional High-Lift Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Wilcox, Peter; Chin, Vincent; Sheldon, David

    1994-01-01

    An experimental study has been conducted to investigate ice accretions on a high-lift, multi-element airfoil in the Icing Research Tunnel at the NASA Lewis Research Center. The airfoil is representative of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between McDonnell Douglas Aerospace and the NASA Lewis Research Center to improve current understanding of ice accretion characteristics on the multi-element airfoil. The experimental effort also provided ice shapes for future aerodynamic tests at flight Reynolds numbers to ascertain high-lift performance effects. Ice shapes documented for a landing configuration over a variety of icing conditions are presented along with analyses.

  3. Numerical Simulation of Shock-stall Flutter of an Airfoil using the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Isogai, K.

    1993-08-01

    In order to confirm qualitatively that the experimentally observed, unusual flutter phenomenon for a high-aspect-ratio (non-tailored) forward swept wing model is indeed shock-stall flutter, the aeroelastic response calculation of a two-dimensional airfoil whose vibration characteristics are similar to those of the typical section of a forward swept wing, has been performed by solving the compressible Navier-Stokes equations. By examination of the flow pattern, pressure distribution and the behavior of the unsteady aerodynamic forces during the diverging oscillation of the airfoil, it is concluded that (i) this is a shock-stall flutter, in which the large-scale shock-induced flow separation plays a dominant role and (ii) there is a mechanism of energy input into the elastic system of the airfoil, leading to nearly a single-degree-of-freedom flutter.

  4. Aerodynamic Characteristics at High and Low Subsonic Mach Numbers of the NACA 0012, 64(sub 2)-015, and 64(sub 3)-018 Airfoil Sections at Angles of Attack from -2 Degrees to 30 Degrees

    NASA Technical Reports Server (NTRS)

    Critzos, Chris C.

    1954-01-01

    An investigation has been made in the Langley low-turbulence pressure tunnel of the aerodynamic characteristics of the NACA 0012, 64(sub 2)-015, and 64(sub 3)-018 airfoil sections. Data were obtained at Mach numbers from 0.3 to that for tunnel choke, at angles of attack from -2deg to 30deg, and with the surface. of each airfoil smooth-and with roughness applied at the leading edge.The Reynolds numbers of the tests ranged from 0.8 x 10(exp 6) to 4.4 x 10(exp 6). The results are presented as variations of lift, drag, and quarter-chord pitching-moment coefficients with Mach number.

  5. Low speed aerodynamic characteristics of a transport model having 42.33 deg swept low wing with supercritical airfoil, double-slotted flaps, and T-tail or low tail

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.

    1975-01-01

    A low-speed investigation was conducted in the Langley V/STOL tunnel over an angle-of-attack range of approximately 4 deg to 24 deg to determine the static longitudinal stability characteristics and high lift performance of a general research model which represented an advanced subsonic transport configuration. The model had a 42.33 deg swept, aspect ratio 7.05 wing with a supercritical airfoil and high lift system consisting of a leading edge device (slat or Kruger flap) and a double-slotted flap. The flaps were deflected for take off and landing configurations and were not deflected for tests of the clean configuration. The model was tested with the horizontal tail in either a T tail or low tail position. The effects of various arrangements of flowthrough nacelles which represent a three engine configuration (two large wing-mounted nacelles and a vertical tail mounted nacelle) and a four engine configuration (four smaller wing-mounted nacelles) were determined.

  6. Design and test of a natural laminar flow/large Reynolds number airfoil with a high design cruise lift coefficient

    NASA Technical Reports Server (NTRS)

    Kolesar, C. E.

    1987-01-01

    Research activity on an airfoil designed for a large airplane capable of very long endurance times at a low Mach number of 0.22 is examined. Airplane mission objectives and design optimization resulted in requirements for a very high design lift coefficient and a large amount of laminar flow at high Reynolds number to increase the lift/drag ratio and reduce the loiter lift coefficient. Natural laminar flow was selected instead of distributed mechanical suction for the measurement technique. A design lift coefficient of 1.5 was identified as the highest which could be achieved with a large extent of laminar flow. A single element airfoil was designed using an inverse boundary layer solution and inverse airfoil design computer codes to create an airfoil section that would achieve performance goals. The design process and results, including airfoil shape, pressure distributions, and aerodynamic characteristics are presented. A two dimensional wind tunnel model was constructed and tested in a NASA Low Turbulence Pressure Tunnel which enabled testing at full scale design Reynolds number. A comparison is made between theoretical and measured results to establish accuracy and quality of the airfoil design technique.

  7. The design and analysis of low-speed airfoils

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Somers, D. M.

    1981-01-01

    PROFILE program solves diverse and inverse airfoil-flow problems. It combines conformational mapping method for design of airfoils with prescribed velocity-distribution characteristics, panel method for potential-flow analysis, and boundary-layer method. PROFILE is written in FORTRAN IV for implementation on CDC 6000-series computer.

  8. Separated transonic airfoil flow calculations with a nonequilibrium turbulence model

    NASA Technical Reports Server (NTRS)

    King, L. S.; Johnson, D. A.

    1985-01-01

    Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.

  9. Performance characteristics of STIS detectors

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1992-01-01

    We report quantum efficiency measurements of back-illuminated, ion-implanted, laser-annealed charge coupled devices (CCD's) in the wavelength range 13-10,000 A. The equivalent quantum efficiency (EQE = effective photons detected per incident photon) ranges from a minimum of 5 percent as 1216 A to a maximum of 87 percent at 135 A. Using a simple relationship for the charge collection efficiency of the CCD pixels as a function of depth, we present a semi-empirical model with few parameters which reproduces our measurements with a fair degree of accuracy. The advantage of this model is that is can be used to predict CCD QE performance for shallow backside implanted devices without detailed solution of a system of differential equations, as in conventional approaches, and yields a simple analytic form for the charge collection efficiency which is adequate for detector calibration purposes. Making detailed assumptions about the dopant profile, we also solve the carrier density and continuity equations in order to relate our semi-empirical model parameters to surface and bulk device properties. The latter procedure helps to better establish device processing parameters for a given level of CCD QE performance.

  10. Aerodynamic, aeroacoustic, and aeroelastic investigations of airfoil-vortex interaction using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Ilie, Marcel

    In helicopters, vortices (generated at the tip of the rotor blades) interact with the next advancing blades during certain flight and manoeuvring conditions, generating undesirable levels of acoustic noise and vibration. These Blade-Vortex Interactions (BVIs), which may cause the most disturbing acoustic noise, normally occur in descent or high-speed forward flight. Acoustic noise characterization (and potential reduction) is one the areas generating intensive research interest to the rotorcraft industry. Since experimental investigations of BVI are extremely costly, some insights into the BVI or AVI (2-D Airfoil-Vortex Interaction) can be gained using Computational Fluid Dynamics (CFD) numerical simulations. Numerical simulation of BVI or AVI has been of interest to CFD for many years. There are still difficulties concerning an accurate numerical prediction of BVI. One of the main issues is the inherent dissipation of CFD turbulence models, which severely affects the preservation of the vortex characteristics. Moreover this is not an issue only for aerodynamic and aeroacoustic analysis but also for aeroelastic investigations as well, especially when the strong (two-way) aeroelastic coupling is of interest. The present investigation concentrates mainly on AVI simulations. The simulations are performed for Mach number, Ma = 0.3, resulting in a Reynolds number, Re = 1.3 x 106, which is based on the chord, c, of the airfoil (NACA0012). Extensive literature search has indicated that the present work represents the first comprehensive investigation of AVI using the LES numerical approach, in the rotorcraft research community. The major factor affecting the aerodynamic coefficients and aeroacoustic field as a result of airfoil-vortex interaction is observed to be the unsteady pressure generated at the location of the interaction. The present numerical results show that the aerodynamic coefficients (lift, moment, and drag) and aeroacoustic field are strongly dependent on

  11. Quiet airfoils for small and large wind turbines

    DOEpatents

    Tangler, James L.; Somers, Dan L.

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  12. Airfoil System for Cruising Flight

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)

    2014-01-01

    An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.

  13. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    SciTech Connect

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  14. Modeling and Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  15. Airfoil design for variable RPM horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Bjoerck, Anders

    1990-01-01

    The design criteria for new airfoils for a variable speed horizontal axis wind turbine are described. The two series of airfoils developed are characterized by high design lift coefficients in order to achieve small blade chords, high lift drag ratios for the airfoil sections designed for the outer part of the blade, performance insensitivity to surface roughness, and a gentle stall at an angle of attack in order to reduce excessive loads. Each series consists of airfoils with varying thickness to chord ratios for different radial stations. Interpolation between the two series is possible.

  16. Propulsion by active and passive airfoil oscillation

    NASA Astrophysics Data System (ADS)

    Mackowski, A. W.; Williamson, C. H. K.

    2013-11-01

    Oscillating airfoils have been the subject of much research both as a mechanism of propulsion in engineering devices as well as a model of understanding how fish, birds, and insects produce thrust and maneuvering forces. Additionally, the jet or wake generated by an oscillating airfoil exhibits a multitude of vortex patterns, which are an interesting study in their own right. We present PIV measurements of the vortex flow behind an airfoil undergoing controlled pitching oscillations at moderate Reynolds number. As a method of propulsion, oscillating foils have been found to be capable performers when undergoing both pitching and heaving motions [Anderson et al. 1998]. While an airfoil undergoing only pitching motion is a relatively inefficient propulsor, we examine the effect of adding passive dynamics to the system: for example, actuated pitching with a passive spring in the heave direction. Practically speaking, a mechanical system with such an arrangement has the potential to reduce the cost and complexity of an oscillating airfoil propulsor. To study an airfoil undergoing both active and passive motion, we employ our ``cyber-physical fluid dynamics'' technique [Mackowski & Williamson, 2011] to simulate the effects of passive dynamics in a physical experiment.

  17. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines

    SciTech Connect

    Sheldahl, R E; Klimas, P C

    1981-03-01

    When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).

  18. An experimental investigation of the effect of vortex generators on the aerodynamic characteristics of a NACA 0021 airfoil undergoing large amplitude pitch oscillations

    SciTech Connect

    Rueger, M.L.; Gregorek, G.M. . Dept. of Aeronautical and Astronautical Engineering)

    1991-04-01

    A NACA 0021 14-chord airfoil was subjected to large amplitude pitch oscillations in The Ohio State University Low Speed Wind Tunnel at a Reynolds number of 1.2 {times} 10{sup 6}. Surface pressures were measured with an electronically scanned pressure measurement system at sampling rates up to 50 Hz. Data were acquired for the clean airfoil and for the airfoil with vortex generators located at 0.1 and 0.3 chord distances aft of the leading edge. The vortex generators increase the maximum lift coefficient and the lift curve slope for both the static and dynamic tests. The magnitude and detail of the vortex generator effects were found to depend on the amplitude and frequency of the pitch oscillations. 18 refs., 76 figs., 21 tabs.

  19. The Aerodynamic Characteristics of Full-Scale Propellers Having 2, 3, and 4 Blades of Clark Y and R.A.F. 6 Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P; Biermann, David

    1938-01-01

    Aerodynamic tests were made of seven full-scale 10-foot-diameter propellers of recent design comprising three groups. The first group was composed of three propellers having Clark y airfoil sections and the second group was composed of three propellers having R.A.F. 6 airfoil sections, the propellers of each group having 2, 3, and 4 blades. The third group was composed of two propellers, the 2-blade propeller taken from the second group and another propeller having the same airfoil section and number of blades but with the width and thickness 50 percent greater. The tests of these propellers reveal the effect of changes in solidity resulting either from increasing the number of blades or from increasing the blade width propeller design charts and methods of computing propeller thrust are included.

  20. Prediction of circulation control performance characteristics for Super STOL and STOL applications

    NASA Astrophysics Data System (ADS)

    Naqvi, Messam Abbas

    due to the lack of a simple prediction capability. This research effort was focused on the creation of a rapid prediction capability of Circulation Control Aerodynamic Characteristics which could help designers with rapid performance estimates for design space exploration. A morphological matrix was created with the available set of options which could be chosen to create this prediction capability starting with purely analytical physics based modeling to high fidelity CFD codes. Based on the available constraints, and desired accuracy meta-models have been created around the two dimensional circulation control performance results computed using Navier Stokes Equations (Computational Fluid Dynamics). DSS2, a two dimensional RANS code written by Professor Lakshmi Sankar was utilized for circulation control airfoil characteristics. The CFD code was first applied to the NCCR 1510-7607N airfoil to validate the model with available experimental results. It was then applied to compute the results of a fractional factorial design of experiments array. Metamodels were formulated using the neural networks to the results obtained from the Design of Experiments. Additional validation runs were performed to validate the model predictions. Metamodels are not only capable of rapid performance prediction, but also help generate the relation trends of response matrices with control variables and capture the complex interactions between control variables. Quantitative as well as qualitative assessments of results were performed by computation of aerodynamic forces & moments and flow field visualizations. Wing characteristics in three dimensions were obtained by integration over the whole wing using Prandtl's Wing Theory. The baseline Super STOL configuration [3] was then analyzed with the application of circulation control technology. The desired values of lift and drag to achieve the target values of Takeoff & Landing performance were compared with the optimal configurations obtained

  1. Russian Laminar Flow Airfoils 3rd Part: Measurements on the Profile No. 2315 BIS with Ava-Nose Flap

    NASA Technical Reports Server (NTRS)

    Riegels, F.

    1947-01-01

    The tests on the Russian airfoil 2315 Bis were continued. This airfoil shows, according to Moscow tests, good laminar flow characteristics. Several tests were prepared in the large wind tunnel at Gottingen; partial results were obtained.

  2. Forcing function effects on unsteady aerodynamic gust response. II - Low solidity airfoil row response

    NASA Technical Reports Server (NTRS)

    Henderson, Gregory H.; Fleeter, Sanford

    1992-01-01

    The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady period flow field is generated by rotating flows of perforated plates and airfoil cascades, with the resulting unsteady periodic chordwise pressure response of a downstream low solidity stator row determined by miniature pressure transducers embedded within selected airfoils. When the forcing function exhibited the characteristics of a linear-theory gust, the resulting response on the downstream stator airfoils was in excellent agreement with the linear-theory models. When the forcing function did not exhibit linear-theory gust characteristics, the resulting unsteady aerodynamic response of the downstream stators was much more complex and correlated poorly with the linear-theory gust predictions. It is shown that the forcing function generator significantly affects the resulting gust response, with the complexity of the response characteristics increasing from the perforated-plate to the airfoil-cascade forcing functions.

  3. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  4. Low-speed aerodynamic characteristics of a 16-percent-thick variable-geometry airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.; Noonan, K. W.; Mcghee, R. J.

    1978-01-01

    Tests were conducted in the Langley low-turbulence pressure tunnel to determine the aerodynamic characteristics of climb, cruise, and landing configurations. These tests were conducted over a Mach number range from 0.10 to 0.35, a chord Reynolds number range from 2.0 x 1 million to 20.0 x 1 million, and an angle-of-attack range from -8 deg to 20 deg. Results show that the maximum section lift coefficients increased in the Reynolds number range from 2.0 x 1 million to 9.0 x 1 million and reached values of approximately 2.1, 1.8, and 1.5 for the landing, climb, and cruise configurations, respectively. Stall characteristics, although of the trailing-edge type, were abrupt. The section lift-drag ratio of the climb configuration with fixed transition near the leading edge was about 78 at a lift coefficient of 0.9, a Mach number of 0.15, and a Reynolds number of 4.0 x 1 million. Design lift coefficients of 0.9 and 0.4 for the climb and cruise configurations were obtained at the same angle of attack, about 6 deg, as intended. Good agreement was obtained between experimental results and the predictions of a viscous, attached-flow theoretical method.

  5. Hodograph design of lifting airfoils with high critical mach numbers

    NASA Astrophysics Data System (ADS)

    Kropinski, M. C. A.; Schwendeman, D. W.; Cole, J. D.

    1995-05-01

    We wish to construct airfoils that have the highest free-stream Mach number M ∞ for a given set of geometric constraints for which the flow is nowhere supersonic. Nonlifting airfoils which maximize M ∞ for a given thickness ratio δ are known to possess long sonic segments at their critical speed. To construct lifting airfoils, we proceed under the conjecture that the optimal airfoil satisfying a given set of constraints is the one possessing the longest possible arc length of sonic velocity. A boundary-value problem is formulated in the hodograph plane using transonic small-disturbance theory whose solution determines an airfoil with long sonic arcs. For small lift coefficients, the hodograph domain covers two Riemann sheets and a finite-difference method is used to solve the boundary-value problem on this domain. A numerical integration of the solution around the boundary yields an airfoil shape, and three examples are discussed. The performance of these airfoils is compared with standard airfoils having the same lift coefficient and δ, and it is shown that the calculated airfoils have a 6% 10% increase in critical M ∞.

  6. Flow control at low Reynolds numbers using periodic airfoil morphing

    NASA Astrophysics Data System (ADS)

    Jones, Gareth; Santer, Matthew; Papadakis, George; Bouremel, Yann; Debiasi, Marco; Imperial-NUS Joint PhD Collaboration

    2014-11-01

    The performance of airfoils operating at low Reynolds numbers is known to suffer from flow separation even at low angles of attack as a result of their boundary layers remaining laminar. The lack of mixing---a characteristic of turbulent boundary layers---leaves laminar boundary layers with insufficient energy to overcome the adverse pressure gradient that occurs in the pressure recovery region. This study looks at periodic surface morphing as an active flow control technique for airfoils in such a flight regime. It was discovered that at sufficiently high frequencies an oscillating surface is capable of not only reducing the size of the separated region---and consequently significantly reducing drag whilst simultaneously increasing lift---but it is also capable of delaying stall and as a result increasing CLmax. Furthermore, by bonding Macro Fiber Composite actuators (MFCs) to the underside of an airfoil skin and driving them with a sinusoidal frequency, it is shown that this control technique can be practically implemented in a lightweight, energy efficient way. Imperial-NUS Joint Ph.D. Programme.

  7. Smoothing and scaling airfoil coordinates on a personal computer

    SciTech Connect

    Tu, P.K.C.; Scott, G.N.

    1989-12-01

    A mainframe computer program written for smoothing and scaling successfully coordinates by Harry L. Morgan, Jr., of NASA Langley Research Center was successfully adapted for use on personal computers (IBM PC or compatible microcomputers). The program was modified with a new format for input/output files, keyboard selection of plotting and printing options, and the ability to preview plots on a PC monitor before pen plotting. The new source code was then recompiled on a PC and used mainly for the purpose of supporting in-house aerodynamic research work. It was made compatible with other in-house codes. This report lists the system specifications for PCs and describes briefly the NASA Langley program and its theories used for smoothing and scaling airfoil coordinates. A flow chart of the program and the input/output files are explained in detail. A step-by-step manual of executing the code on a PC and the results of sample runs are included. Also included is an evaluation section of airfoil performance characteristics by using a low Reynolds number airfoil design and analysis computer code created by Dr. Eppler to demonstrate the significance or any discrepancies as a result of the smoothing and scaling. 5 refs., 7 figs.

  8. Wind tunnel results of the high-speed NLF(1)-0213 airfoil

    NASA Technical Reports Server (NTRS)

    Sewall, William G.; Mcghee, Robert J.; Hahne, David E.; Jordan, Frank L., Jr.

    1987-01-01

    Wind tunnel tests were conducted to evaluate a natural laminar flow airfoil designed for the high speed jet aircraft in general aviation. The airfoil, designated as the High Speed Natural Laminar Flow (HSNLF)(1)-0213, was tested in two dimensional wind tunnels to investigate the performance of the basic airfoil shape. A three dimensional wing designed with this airfoil and a high lift flap system is also being evaluated with a full size, half span model.

  9. The design of an airfoil for a high-altitude, long-endurance remotely piloted vehicle

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Somers, Dan M.

    1987-01-01

    Airfoil design efforts are studied. The importance of integrating airfoil and aircraft designs was demonstrated. Realistic airfoil data was provided to aid future high altitude, long endurance aircraft preliminary design. Test cases were developed for further validation of the Eppler program. Boundary layer, not pressure distribution or shape, was designed. Substantial improvement was achieved in vehicle performance through mission specific airfoil designed utilizing the multipoint capability of the Eppler program.

  10. Closed loop steam cooled airfoil

    SciTech Connect

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  11. High Reynolds number tests of a Douglas DLBA 032 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Charles B.; Dress, David A.; Hill, Acquilla S.; Wilcox, Peter A.; Bui, Minh H.

    1986-01-01

    A wind-tunnel investigation of a Douglas advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). The temperature was varied from 227 K (409 R) to 100 K (180 R) at pressures ranging from about 159 kPa (1.57 atm) to about 514 kPa (5.07 atm). Mach number was varied from 0.50 to 0.78. These variables provided a Reynolds number range (based on airfoil chord) from 6.0 to 30.0 x 10 to the 6th power. This investigation was specifically designed to: (1) test a Douglas airfoil from moderately low to flight-equivalent Reynolds numbers, and (2) evaluate sidewall-boundary-layer effects on transonic airfoil performance characteristics by a systematic variation of Mach number, Reynolds number, and sidewall-boundary-layer removal. Data are included which demonstrate the effects of fixing transition, Mach number, Reynolds number, and sidewall-boundary-layer removal on the aerodynamic characteristics of the airfoil. Also included are remarks on model design and model structural integrity.

  12. Some new airfoils

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1979-01-01

    A computer approach to the design and analysis of airfoils and some common problems concerning laminar separation bubbles at different lift coefficients are briefly discussed. Examples of application to ultralight airplanes, canards, and sailplanes with flaps are given.

  13. Performance characteristics of anthropomorphic prosthetic hands.

    PubMed

    Belter, Joseph T; Dollar, Aaron M

    2011-01-01

    In this paper we set forth a review of performance characteristics for both common commercial prosthetics as well as anthropomorphic research devices. Based on these specifications as well as surveyed results from prosthetic users, ranges of hand attributes are evaluated and discussed. End user information is used to describe the performance requirements for prosthetic hands for clinical use. PMID:22275674

  14. Aerodynamic performance and pressure distributions for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, Renaldo V.; Hill, Acquilla S.; Ray, Edward J.

    1988-01-01

    This report presents in graphic and tabular forms the aerodynamic coefficient and surface pressure distribution data for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The test was another in a series of tests involved in the joint NASA/U.S. Industry Advanced Technology Airfoil Tests program. This 14% thick supercritical airfoil was tested at Mach numbers from 0.6 to 0.76 and angles of attack from -2.0 to 6.0 degrees. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, 40 million, and 45 million.

  15. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  16. Numerical and Experimental Investigation of Plasma Actuator Control of Modified Flat-back Airfoil

    NASA Astrophysics Data System (ADS)

    Mertz, Benjamin; Corke, Thomas

    2010-11-01

    Flat-back airfoil designs have been proposed for use on the inboard portion of large wind turbine blades because of their good structural characteristics. These structural characteristics are achieved by adding material to the aft portion of the airfoil while maintaining the camber of the origional airfoil shape. The result is a flat vertical trailing edge which increases the drag and noise produced by these airfoils. In order to improve the aerodynamic efficiency of these airfoils, the use of single dielectric barrier discharge (SDBD) plasma actuators was investigated experimentally and numerically. To accomplish this, a rounded trailing edge was added to traditional flat-back airfoil and plasma actuators were used symmetrically to control the flow separation casued by the blunt trailing edge. The actuators were used asymmetrically in order to vector the wake and increase the lift produced by the airfoil similar to adding camber.

  17. Wind tunnel results of the low-speed NLF(1)-0414F airfoil

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Mcghee, Robert J.; Jordan, Frank L., Jr.; Davis, Patrick J.; Viken, Jeffrey K.

    1987-01-01

    The large performance gains predicted for the Natural Laminar Flow (NLF)(1)-0414F airfoil were demonstrated in two-dimensional airfoil tests and in wind tunnel tests conducted with a full scale modified Cessna 210. The performance gains result from maintaining extensive areas of natural laminar flow, and were verified by flight tests conducted with the modified Cessna. The lift, stability, and control characteristics of the Cessna were found to be essentially unchanged when boundary layer transition was fixed near the wing leading edge. These characteristics are very desirable from a safety and certification view where premature boundary layer transition (due to insect contamination, etc.) must be considered. The leading edge modifications were found to enhance the roll damping of the Cessna at the stall, and were therefore considered effective in improving the stall/departure resistance. Also, the modifications were found to be responsible for only minor performance penalties.

  18. An experimental low Reynolds number comparison of a Wortmann FX67-K170 airfoil, a NACA 0012 airfoil and a NACA 64-210 airfoil in simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Craig, Anthony P.; Hansman, R. John

    1987-01-01

    Wind tunnel experiments were conducted on Wortmann FX67-K170, NACA 0012, and NACA 64-210 airfoils at rain rates of 1000 mm/hr and Reynolds numbers of 310,000 to compare the aerodynamic performance degradation of the airfoils and to attempt to identify the various mechanisms which affect performance in heavy rain conditions. Lift and drag were measured in dry and wet conditions, a variety of flow visualization techniques were employed, and a computational code which predicted airfoil boundary layer behavior was used. At low angles of attack, the lift degradation in wet conditions varied significantly between the airfoils. The Wortmann section had the greatest overall lift degradation and the NACA 64-210 airfoil had the smallest. At high angles of attack, the NACA 64-210 and 0012 airfoils had improved aerodynamic performance in rain conditions due to an apparent reduction of the boundry layer separation. Performance degradation in heavy rain for all three airfoils at low angles of attack could be emulated by forced boundary layer transition near the leading edge. The secondary effect occurs at time scales consistent with top surface water runback times. The runback layer is thought to effectively alter the airfoil geometry. The severity of the performance degradation for the airfoils varied. The relative differences appeared to be related to the susceptibility of each airfoil to premature boundary layer transition.

  19. Experimental study of flow separation control on a low- Re airfoil using leading-edge protuberance method

    NASA Astrophysics Data System (ADS)

    Zhang, M. M.; Wang, G. F.; Xu, J. Z.

    2014-04-01

    An experimental study of flow separation control on a low- Re c airfoil was presently investigated using a newly developed leading-edge protuberance method, motivated by the improvement in the hydrodynamics of the giant humpback whale through its pectoral flippers. Deploying this method, the control effectiveness of the airfoil aerodynamics was fully evaluated using a three-component force balance, leading to an effectively impaired stall phenomenon and great improvement in the performances within the wide post-stall angle range (22°-80°). To understand the flow physics behind, the vorticity field, velocity field and boundary layer flow field over the airfoil suction side were examined using a particle image velocimetry and an oil-flow surface visualization system. It was found that the leading-edge protuberance method, more like low-profile vortex generator, effectively modified the flow pattern of the airfoil boundary layer through the chordwise and spanwise evolutions of the interacting streamwise vortices generated by protuberances, where the separation of the turbulent boundary layer dominated within the stall region and the rather strong attachment of the laminar boundary layer still existed within the post-stall region. The characteristics to manipulate the flow separation mode of the original airfoil indicated the possibility to further optimize the control performance by reasonably designing the layout of the protuberances.

  20. Theory and Low-Order Modeling of Unsteady Airfoil Flows

    NASA Astrophysics Data System (ADS)

    Ramesh, Kiran

    Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It

  1. NASA supercritical airfoils: A matrix of family-related airfoils

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.

    1990-01-01

    The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.

  2. Method of making an airfoil

    NASA Technical Reports Server (NTRS)

    Moracz, Donald J. (Inventor); Cook, Charles R. (Inventor); Toth, Istvan J. (Inventor)

    1984-01-01

    An improved method of making an airfoil includes stacking plies in two groups. A separator ply is positioned between the two groups of plies. The groups of plies and the separator ply are interconnected to form an airfoil blank. The airfoil blank is shaped, by forging or other methods, to have a desired configuration. The material of the separator ply is then dissolved or otherwise removed from between the two sections of the airfoil blank to provide access to the interior of the airfoil blank. Material is removed from inner sides of the two separated sections to form core receiving cavities. After cores have been placed in the cavities, the two sections of the airfoil blank are interconnected and the shaping of the airfoil is completed. The cores are subsequently removed from the completed airfoil.

  3. Method of making an airfoil

    NASA Technical Reports Server (NTRS)

    Moracz, Donald J. (Inventor); Cook, Charles R. (Inventor); Toth, Istvan J. (Inventor)

    1986-01-01

    An improved method of making an airfoil includes stacking plies in two groups. A separator ply is positioned between the two groups of plies. The groups of plies and the separator ply are interconnected to form an airfoil blank. The airfoil blank is shaped, by forging or other methods, to have a desired configuration. The material of the separator ply is then dissolved or otherwise removed from between the two sections of the airfoil blank to provide access to the interior of the airfoil blank. Material is removed from inner sides of the two separated sections to form core receiving cavities. After cores have been placed in the cavities, the two sections of the airfoil blank are interconnected and the shaping of the airfoil is completed. The cores are subsequently removed from the completed airfoil.

  4. Thermic diode performance characteristics and design manual

    NASA Technical Reports Server (NTRS)

    Bernard, D. E.; Buckley, S.

    1979-01-01

    Thermic diode solar panels are a passive method of space and hot water heating using the thermosyphon principle. Simplified methods of sizing and performing economic analyses of solar heating systems had until now been limited to passive systems. A mathematical model of the thermic diode including its high level of stratification has been constructed allowing its performance characteristics to be studied. Further analysis resulted in a thermic diode design manual based on the f-chart method.

  5. Dynamic and Performance Characteristics of Baseball Bats

    ERIC Educational Resources Information Center

    Bryant, Fred O.; And Others

    1977-01-01

    The dynamic and performance characteristics of wooden and aluminum baseball bats were investigated in two phases; the first dealing with the velocity of the batted balls, and the second with a study of centers of percussion and impulse response at the handle. (MJB)

  6. Performance Characteristics of an Isothermal Freeze Valve

    SciTech Connect

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  7. Airfoil family design for large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    , compatibility for the different airfoil family members, etc.) and with the ultimate objective that the airfoils will reduce the blade loads. In this paper the whole airfoil design process and the main characteristics of the airfoil family are described. Some force coefficients for the design Reynolds number are also presented. The new designed airfoils have been studied with computational calculations (panel method code and CFD) and also in a wind tunnel experimental campaign. Some of these results will be also presented in this paper.

  8. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  9. Airfoils for wind turbine

    SciTech Connect

    Tangler, J.L.; Somers, D.M.

    2000-05-30

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  10. Wind tunnel tests of two airfoils for wind turbines operating at high reynolds numbers

    SciTech Connect

    Sommers, D.; Tangler, J.

    2000-06-29

    The objectives of this study were to verify the predictions of the Eppler Airfoil Design and Analysis Code for Reynolds numbers up to 6 x 106 and to acquire the section characteristics of two airfoils being considered for large, megawatt-size wind turbines. One airfoil, the S825, was designed to achieve a high maximum lift coefficient suitable for variable-speed machines. The other airfoil, the S827, was designed to achieve a low maximum lift coefficient suitable for stall-regulated machines. Both airfoils were tested in the NASA Langley Low-Turbulence Pressure Tunnel (LTPT) for smooth, fixed-transition, and rough surface conditions at Reynolds numbers of 1, 2, 3, 4, and 6 x 106. The results show the maximum lift coefficient of both airfoils is substantially underpredicted for Reynolds numbers over 3 x 106 and emphasized the difficulty of designing low-lift airfoils for high Reynolds numbers.

  11. An Approach to the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.

    1997-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  12. An approach to the constrained design of natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford Earl

    1995-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  13. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  14. Wind tunnel test of the S814 thick root airfoil

    SciTech Connect

    Somers, D.M.; Tangler, J.L.

    1996-11-01

    The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil`s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 {times} 10{sup 6}. For the design Reynolds number of 1.5 {times} 10{sup 6}, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil`s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.

  15. Influence of characteristics on combined sewer performance.

    PubMed

    Möderl, M; Kleidorfer, M; Rauch, W

    2012-01-01

    Elements of combined sewer systems are among others sub-catchments, junctions, conduits and weirs with or without storage units. The spatial distribution and attributes of all these elements influence both system characteristics and sewer performance. Until today, little work has been done to analyse the influence of such characteristics in a case unspecific approach. In this study, 250 virtual combined sewer systems are analysed by defining groups of systems, which are representative for their different characteristics. The set was created with a further development of the case study generator (CSG), a tool for automatic generation of branched sewer systems. Combined sewer overflow and flooding is evaluated using performance indicators based on hydrodynamic simulations. The analysis of system characteristics, like those presented in this paper, helps researchers to understand coherences and aids practitioners in designing combined sewers. For instance, it was found that characteristics that have a positive influence on emission reduction frequently have a negative influence on flooding avoidance and vice versa. PMID:22797234

  16. Modifying Airfoils for Low Reynolds Flight

    NASA Astrophysics Data System (ADS)

    Ong, Christopher; Carnasciali, Maria-Isabel

    2015-11-01

    There has been increased interest in Micro Air Vehicles (MAV) by both the private and government sectors. MAVs are miniature classed-UAVs that can operate in tighter spaces in urban or wooded regions. Sizes vary - from that of an insect to that of small bird - depending on intended functionality and usually operate at much lower speeds. Studies have shown that the aerodynamic performance of well-known airfoils can change significantly at low Reynolds numbers. In this work, we examine via parametric CFD analysis tools the behavior of airfoils at low Reynolds values. Furthermore, we investigate the impact of adding bio-inspired features to the airfoils such as humps or dimples. Results will be presented in comparison to established values.

  17. Comparative Study of Airfoil Flow Separation Criteria

    NASA Astrophysics Data System (ADS)

    Laws, Nick; Kahouli, Waad; Epps, Brenden

    2015-11-01

    Airfoil flow separation impacts a multitude of applications including turbomachinery, wind turbines, and bio-inspired micro-aerial vehicles. In order to achieve maximum performance, some devices operate near the edge of flow separation, and others use dynamic flow separation advantageously. Numerous criteria exist for predicting the onset of airfoil flow separation. This talk presents a comparative study of a number of such criteria, with emphasis paid to speed and accuracy of the calculations. We evaluate the criteria using a two-dimensional unsteady vortex lattice method, which allows for rapid analysis (on the order of seconds instead of days for a full Navier-Stokes solution) and design of optimal airfoil geometry and kinematics. Furthermore, dynamic analyses permit evaluation of dynamic stall conditions for enhanced lift via leading edge vortex shedding, commonly present in small flapping-wing flyers such as the bumblebee and hummingbird.

  18. Options for Robust Airfoil Optimization under Uncertainty

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Li, Wu

    2002-01-01

    A robust optimization method is developed to overcome point-optimization at the sampled design points. This method combines the best features from several preliminary methods proposed by the authors and their colleagues. The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of spline control points as design variables yet the resulting airfoil shape does not need to be smoothed, and (3) it allows the user to make a tradeoff between the level of optimization and the amount of computing time consumed. For illustration purposes, the robust optimization method is used to solve a lift-constrained drag minimization problem for a two-dimensional (2-D) airfoil in Euler flow with 20 geometric design variables.

  19. Wind tunnel testing of low-drag airfoils

    NASA Technical Reports Server (NTRS)

    Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.

    1986-01-01

    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.

  20. Reynolds number, thickness and camber effects on flapping airfoil propulsion

    NASA Astrophysics Data System (ADS)

    Ashraf, M. A.; Young, J.; Lai, J. C. S.

    2011-02-01

    The effect of varying airfoil thickness and camber on plunging and combined pitching and plunging airfoil propulsion at Reynolds number Re=200, 2000, 20 000 and 2×106 was studied by numerical simulations for fully laminar and fully turbulent flow regimes. The thickness study was performed on 2-D NACA symmetric airfoils with 6-50% thick sections undergoing pure plunging motion at reduced frequency k=2 and amplitudes h=0.25 and 0.5, and for combined pitching and plunging motion at k=2, h=0.5, phase ϕ=90°, pitch angle θo=15° and 30° and the pitch axis was located at 1/3 of chord from leading edge. At Re=200 for motions where positive thrust is generated, thin airfoils outperform thick airfoils. At higher Re significant gains could be achieved both in thrust generation and propulsive efficiency by using a thicker airfoil section for plunging and combined motion with low pitch amplitude. The camber study was performed on 2-D NACA airfoils with varying camber locations undergoing pure plunging motion at k=2, h=0.5 and Re=20 000. Little variation in thrust performance was found with camber. The underlying physics behind the alteration in propulsive performance between low and high Reynolds numbers has been explored by comparing viscous Navier-Stokes and inviscid panel method results. The role of leading edge vortices was found to be key to the observed performance variation.

  1. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D

    2010-11-09

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

  2. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  3. Characteristics and performance of MEMS accelerometers

    SciTech Connect

    Kant, R.A.; Nagel, D.J.

    1996-04-01

    Until recently, accelerometer manufacturing appeared to be a reasonably mature field. But, this situation changed rapidly when researchers began to build miniature accelerometers using micron scale lithographic techniques developed for producing integrated circuits. Several micro- electro-mechanical systems (MEMS) accelerometers are now available commercially. The MEMS devices are attractive because they are relatively inexpensive to produce and they include electronic circuits to perform a variety control and signal processing functions on the same chip. How does the performance of these new devices compare to their older and larger competitors? The physics of the scaling laws suggests that performance should decrease with size. The MEMS technology may be well positioned to take advantage of new, small-scale sensing and actuating methods and, in the process, MEMS fabricated accelerometers may avoid or overcome the engineering limitations of older generation devices by using high precision micro-machining, arrays of sensors, on-chip temperature control circuitry, etc. This study compares the performance and physical characteristics of micro-machined and conventional accelerometers. We review the physical operating principles and describe the basic scaling laws and other factors that ultimately limit accelerometer performance. Then we tabulate and discuss the current performance and characteristics of diverse types of commercial accelerometers. {copyright} {ital 1996 American Institute of Physics.}

  4. Effects of Performers' External Characteristics on Performance Evaluations.

    ERIC Educational Resources Information Center

    Bermingham, Gudrun A.

    2000-01-01

    States that fairness has been a major concern in the field of music adjudication. Reviews the research literature to reveal information about three external characteristics (race, gender, and physical attractiveness) that may affect judges' performance evaluations and influence fairness of music adjudication. Includes references. (CMK)

  5. An experimental study of airfoil-spoiler aerodynamics

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Karamcheti, K.

    1985-01-01

    The steady/unsteady flow field generated by a typical two dimensional airfoil with a statically deflected flap type spoiler was investigated. Subsonic wind tunnel tests were made over a range of parameters: spoiler deflection, angle of attack, and two Reynolds numbers; and comprehensive measurements of the mean and fluctuating surface pressures, velocities in the boundary layer, and velocities in the wake. Schlieren flow visualization of the near wake structure was performed. The mean lift, moment, and surface pressure characteristics are in agreement with previous investigations of spoiler aerodynamics. At large spoiler deflections, boundary layer character affects the static pressure distribution in the spoiler hingeline region; and, the wake mean velocity fields reveals a closed region of reversed flow aft of the spoiler. It is shown that the unsteady flow field characteristics are as follows: (1) the unsteady nature of the wake is characterized by vortex shedding; (2) the character of the vortex shedding changes with spoiler deflection; (3) the vortex shedding characteristics are in agreement with other bluff body investigations; and (4) the vortex shedding frequency component of the fluctuating surface pressure field is of appreciable magnitude at large spoiler deflections. The flow past an airfoil with deflected spoiler is a particular problem in bluff body aerodynamics is considered.

  6. Multi-Element Airfoil System

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)

    2014-01-01

    A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.

  7. MATE program: Erosion resistant compressor airfoil coating, volume 2

    NASA Technical Reports Server (NTRS)

    Freling, Melvin

    1987-01-01

    The performance of candidate erosion resistant airfoil coatings installed in ground tested experimental JT8D and JT9D engines and subjected to cyclic endurance at idle, takeoff and intermediate power conditions has been evaluated. Engine tests were terminated prior to the scheduled 1000 cycles of endurance test due to high cycle fatigue fracture of the Gator-Gard plasma sprayed 88WC-12Co coating on titanium alloy airfoils. Coated steel (AMS5616) and nickel base alloy (Incoloy 901) performed well in both engine tests. Post test airfoil analyses consisted of binocular, scanning electron microscope and metallographic examinations.

  8. The Role of Separation Bubbles on the Aerodynamic Characteristics of Airfoils, Including Stall and Post-Stall, at Low Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Chen, Hsun H.; Cebeci, Tuncer

    2007-01-01

    Airfoils at high Reynolds numbers, in general, have small separation bubbles that are usually confined to the leading edge. Since the Reynolds number is large, the turbulence model for the transition region between the laminar and turbulent flow is not important. Furthermore, the onset of transition occurs either at separation or prior to separation and can be predicted satisfactorily by empirical correlations when the incident angle is small and can be assumed to correspond to laminar separation when the correlations do not apply, i.e., at high incidence angles.

  9. Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail

    NASA Astrophysics Data System (ADS)

    Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.

    2011-04-01

    Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.

  10. Navier-Stokes analysis of airfoils with leading edge ice accretions

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.

  11. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  12. Turbine airfoil manufacturing technology

    SciTech Connect

    Kortovich, C.

    1995-12-31

    The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

  13. Post-stall wind tunnel data for NACA 44XX series airfoil sections

    SciTech Connect

    Ostowari, C.; Naik, D.

    1985-01-01

    Wind turbine blades operate over a wide angle of attach range. Unlike aircraft, a wind turbine's angle of attach range extends deep into stall where the three-dimensional performance characteristics of airfoils are not generally known. Peak power predictions upon which wind turbine components are sized depend on a good understanding of a blade's post-stall characteristics. The purpose of this wind tunnel study is to characterize the performance characteristics of a blade in stall as a function of its aspect ratio, airfoil thickness, and Reynolds number. This report documents results of the wind tunnel investigation of constant chord blades having four aspect ratios, with NACA 44XX series airfoil sections, at angles of attack ranging from -10/sup 0/ to 110/sup 0/. Tests were conducted at Reynolds number ranging from 0.25 x 106 to 1.0 x 106. The thickness ratios studied were 0.18, 0.15, and 0.12, and 0.09. The aspect ratios were 6, 9, 12 and infinity. Results of force and pitching moment measurements over the angle of attack range for all combinations of Reynolds numbers, thickness, and aspect ratios, and the effects of boundary layer tripping are presented.

  14. Buffeting of NACA 0012 airfoil at high angle of attack

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Dowell, Earl

    2014-11-01

    Buffeting is a fluid instability caused by flow separation or shock wave oscillations in the flow around a bluff body. Typically there is a dominant frequency of these flow oscillations called Strouhal or buffeting frequency. In prior work several researchers at Duke University have noted the analogy between the classic Von Karman Vortex Street behind a bluff body and the flow oscillations that occur for flow around a NACA 0012 airfoil at sufficiently large angle of attack. Lock-in is found for certain combinations of airfoil oscillation (pitching motion) frequencies and amplitudes when the frequency of the airfoil motion is sufficiently close to the buffeting frequency. The goal of this paper is to explore the flow around a static and an oscillating airfoil at high angle of attack by developing a method for computing buffet response. Simulation results are compared with experimental data. Conditions for the onset of buffeting and lock-in of a NACA 0012 airfoil at high angle of attack are determined. Effects of several parameters on lift coefficient and flow response frequency are studied including Reynolds number, angle of attack and blockage ratio of the airfoil size to the wind tunnel dimensions. Also more detailed flow field characteristics are determined. For a static airfoil, a universal Strouhal number scaling has been found for angles of attack from 30° to 90°, where the flow around airfoil is fully separated. For an oscillating airfoil, conditions for lock-in are discussed. Differences between the lock-in case and the unlocked case are also studied. The second affiliation: Duke University.

  15. Geometry Modeling and Grid Generation for Computational Aerodynamic Simulations Around Iced Airfoils and Wings

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)

    2002-01-01

    Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.

  16. Broadband Noise Predictions for an Airfoil in a Turbulent Stream

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.; Mish, P. F.; Devenport, W. J.

    2003-01-01

    Loading noise is predicted from unsteady surface pressure measurements on a NACA 0015 airfoil immersed in grid-generated turbulence. The time-dependent pressure is obtained from an array of synchronized transducers on the airfoil surface. Far field noise is predicted by using the time-dependent surface pressure as input to Formulation 1A of Farassat, a solution of the Ffowcs Williams - Hawkings equation. Acoustic predictions are performed with and without the effects of airfoil surface curvature. Scaling rules are developed to compare the present far field predictions with acoustic measurements that are available in the literature.

  17. Steady and Unsteady Aerodynamics of Thin Airfoils with Porosity Gradients

    NASA Astrophysics Data System (ADS)

    Hajian, Rozhin; Jaworski, Justin W.

    2015-11-01

    Porous treatments have been shown in previous studies to reduce turbulence noise generation from the edges of wings and blades. However, this acoustical benefit can come at the cost of aerodynamic performance that is degraded by seepage flow through the wing. To better understand the trade-off between acoustic stealth and the desired airfoil performance, the aerodynamic loads of a thin airfoil in uniform flow with a prescribed porosity distribution are determined analytically in closed form, provided that the distribution is Hölder-continuous. The theoretical model is extended to include unsteady heaving and pitching motions of the airfoil section, which has applications to the performance estimation of biologically-inspired swimmers and fliers and to the future assessment of vortex noise production from porous airfoils.

  18. Tests on an Airfoil with Two Slots Suitable for an Aircraft of High Performance : Lift, Drag, Rolling and Yawing Moment Measurements

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1926-01-01

    The results that are described in this article form a complete series of tests on an airfoil fitted with front and rear slots, the rear slot being formed between the portion of the wing aft of the rear spar and the forward portion of the flap.

  19. Performance characteristics of new superficially porous particles☆

    PubMed Central

    DeStefano, Joseph J.; Schuster, Stephanie A.; Lawhorn, Jason M.; Kirkland, Joseph J.

    2013-01-01

    Superficially porous particles (also called Fused-Core, core shell or porous shell particles) show distinct advantages over comparable totally porous particles for separating small molecules. Columns of Fused-Core particles exhibit very high efficiency because of superior eddy dispersion properties (smaller van Deemter A term). The efficiency for columns of 2.7 μm Fused-Core particles actually rivals that for sub-2 μm totally porous particles with only about one-half the back pressure. These Fused-Core particles show special advantages with larger molecules for fast separations at high mobile phase velocities because of superior mass transfer (kinetic) properties (smaller van Deemter C term). This report describes the effect of different particle size and porous shell thicknesses on chromatographic performance for Fused-Core particles. Particle characteristics can significantly affect factors of separation importance. For example, the reduced plate height of packed columns is affected by particle diameter. Interestingly, larger Fused-Core particles show smaller reduced plate heights than smaller Fused-Core particles. Also, porous shell thickness has a strong effect on solute retention as well as separation efficiency, and particle surface area has a direct influence on sample loading characteristics. Fused-Core particles with a wide range of physical characteristics have been developed that allows the preparation of stable, efficient packed columns. PMID:22939204

  20. Robust Airfoil Optimization in High Resolution Design Space

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon L.

    2003-01-01

    The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of B-spline control points as design variables yet the resulting airfoil shape is fairly smooth, and (3) it allows the user to make a trade-off between the level of optimization and the amount of computing time consumed. The robust optimization method is demonstrated by solving a lift-constrained drag minimization problem for a two-dimensional airfoil in viscous flow with a large number of geometric design variables. Our experience with robust optimization indicates that our strategy produces reasonable airfoil shapes that are similar to the original airfoils, but these new shapes provide drag reduction over the specified range of Mach numbers. We have tested this strategy on a number of advanced airfoil models produced by knowledgeable aerodynamic design team members and found that our strategy produces airfoils better or equal to any designs produced by traditional design methods.

  1. Effects of wing height on low-speed aerodynamic characteristics of a model having a 42 deg swept wing, a supercritical airfoil, double-slotted flaps, and a low tail

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Sleeman, W. C., Jr.

    1973-01-01

    A low speed investigation was conducted in the Langley V/STOL tunnel to determine the static longitudinal lateral stability characteristics of a general research model with the wing in a high position and a low position on the fuselage. The model had a wing with a quarter chord sweep of 42 deg, an aspect ratio of 6.78, a supercritical airfoil, and a high lift system which consisted of a leading edge slat and a double slotted flap. Various slat and flap deflections represented clean, take off, and landing configurations. A 45 deg swept horizontal tail located slightly below the fuselage center line was investigated with both the low and high wing configurations.

  2. Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.

  3. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  4. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chougule, Prasad; Nielsen, Søren R. K.

    2014-06-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.

  5. Transonic airfoil and axial flow rotary machine

    SciTech Connect

    Nagai, Naonori; Iwatani, Junji

    2015-09-01

    Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.

  6. Characterization of dynamic stall on 9-15 % thick airfoils using experiment and computation

    NASA Astrophysics Data System (ADS)

    Davidson, Phillip B.

    In recent years, the blade geometry on wind turbines and helicopters has been optimized for a particular span location. Unsteady flow phenomena like dynamic stall limit these designs and need to be better understood and correctly simulated. Currently, empirical and computational fluid dynamics (CFD) methods are used to simulate rotating wind turbine or helicopter blades, but each of these methods has limitations in predicting unsteady separated flows. To address these needs, the present work investigated oscillating airfoils over a range of conditions with an approach that provided fast, low-cost unsteady pressure data combined with a highly resolved flow field to better understand the physics of dynamic stall. An additional objective was to show how such data may be used to assess CFD simulations. This research has yielded interesting results showing characteristics of thin airfoil stall, leading edge stall, and trailing edge stall that were sorted and classified. Classification of the oscillating airfoil behavior with or without dynamic stall was performed using previous definitions for stall regime, separation characteristics, and other qualitative differences in stall pattern. After classifying the unsteady flow for each of the cases, comparison of experimental results and results obtained using an unsteady Reynolds Averaged Navier-Stokes (URANS) solver was performed to assess the ability of the solver to produce the same unsteady effects. Although both experiment and computation produced similar flow features, the timing and magnitude of the features in the dynamic stall and re-attachment process of the pitching cycle exhibited some significant differences.

  7. Airfoil with nested cooling channels

    SciTech Connect

    Levengood, J.L.; Auxier, T.A.

    1988-06-28

    A turbine blade is described which consists of a root portion and wall means integral with the root portion defining an airfoil, the wall means including a pressure sidewall and a suction sidewall, joined together to define a forwardly located leading edge and rearwardly located trailing edge of the airfoil and spaced apart to define a spanwise and chordwise extending coolant cavity within the airfoil, and root portion including root passage means therethrough for receiving coolant fluid form outside the blade and for directing the fluid into the airfoil cavity.

  8. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  9. Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads

    NASA Technical Reports Server (NTRS)

    Gangwani, S. T.

    1983-01-01

    A detailed analysis of dynamic stall experiments has led to a set of relatively compact analytical expressions, called synthesized unsteady airfoil data, which accurately describe in the time-domain the unsteady aerodynamic characteristics of stalled airfoils. An analytical research program was conducted to expand and improve this synthesized unsteady airfoil data method using additional available sets of unsteady airfoil data. The primary objectives were to reduce these data to synthesized form for use in rotor airload prediction analyses and to generalize the results. Unsteady drag data were synthesized which provided the basis for successful expansion of the formulation to include computation of the unsteady pressure drag of airfoils and rotor blades. Also, an improved prediction model for airfoil flow reattachment was incorporated in the method. Application of this improved unsteady aerodynamics model has resulted in an improved correlation between analytic predictions and measured full scale helicopter blade loads and stress data.

  10. Impingement of Water Droplets on NACA 65A004 Airfoil at 8 deg Angle of Attack

    NASA Technical Reports Server (NTRS)

    Brun, R. J.; Gallagher, H. M.; Vogt, D. E.

    1954-01-01

    The trajectories of droplets in the air flowing past an NACA 65AO04 airfoil at an angle of attack of 8 deg were determined.. The amount of water in droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented to cover a large range of flight and atmospheric conditions. These impingement characteristics are compared briefly with those previously reported for the same airfoil at an angle of attack of 4 deg.

  11. Natural laminar flow airfoil analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.

  12. Numerical and experimental study of blowing jet on a high lift airfoil

    NASA Astrophysics Data System (ADS)

    Bobonea, A.; Pricop, M. V.

    2013-10-01

    Active manipulation of separated flows over airfoils at moderate and high angles of attack in order to improve efficiency or performance has been the focus of a number of numerical and experimental investigations for many years. One of the main methods used in active flow control is the usage of blowing devices with constant and pulsed blowing. Through CFD simulation over a 2D high-lift airfoil, this study is trying to highlight the impact of pulsed blowing over its aerodynamic characteristics. The available wind tunnel data from INCAS low speed facility are also beneficial for the validation of the numerical analysis. This study intends to analyze the impact of the blowing jet velocity and slot geometry on the efficiency of an active flow control.

  13. CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades

    NASA Astrophysics Data System (ADS)

    Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.

    2014-12-01

    The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.

  14. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.

    2014-10-01

    Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

  15. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  16. The role of airfoil geometry in minimizing the effect of insect contamination of laminar flow sections

    NASA Technical Reports Server (NTRS)

    Maresh, J. L.; Bragg, M. B.

    1984-01-01

    A method has been developed to predict the contamination of an airfoil by insects and the resultant performance penalty. Insect aerodynamics have been modeled and the impingement of insects on an airfoil are solved by calculating their trajectories. Upon impact, insect rupture and the resulting height of the debris is determined based on experimental data. A boundary layer analysis is performed to determine which insects cause boundary layer transition and the resultant drag penalty. A contaminated airfoil figure of merit is presented to be used to compare airfoil susceptibility. Results show that the insect contamination effects depend on accretion conditions, airfoil angle of attack and Reynolds number. The importance of the stagnation region to designing airfoils for minimum drag penalties is discussed.

  17. Experimental studies of the Eppler 61 airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Burns, T. F.; Mueller, T. J.

    1982-01-01

    The results of an experimental study to document the effects of separation and transition on the performance of an airfoil designed for low Reynolds number operation are presented. Lift, drag and flow visualization data were obtained for the Eppler 61 airfoil section for chord Reynolds numbers from about 30,000 to over 200,000. Smoke flow visualization was employed to document the boundary layer behavior and was correlated with the Eppler airfoil design and analysis computer program. Laminar separation, transition and turbulent reattachment had significant effects on the performance of this airfoil.

  18. Active Control of Flow Separation Over an Airfoil

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  19. A finite-difference method for transonic airfoil design.

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Klineberg, J. M.

    1972-01-01

    This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.

  20. Development of the highly loaded axial flow turbine airfoils, making use of the improved inverse channel flow design method

    NASA Astrophysics Data System (ADS)

    Hashimoto, K.

    1985-11-01

    To reduce the number of the turbine airfoils or the solidity as far as possible without increasing energy loss, a study of highly loaded turbine airfoils was conducted. These airfoils were designed for the typical velocity diagrams of the first and second stages of a jet engine low pressure turbine. With regard to the design procedures, an improved inverse method, and also a boundary layer analysis technique were employed to optimize the airfoil shapes. These airfoils, and state-of-the-art aft loaded conventional airfoils designed for almost equivalent velocity diagrams were tested in the high speed cascade wind tunnel. The airfoils showed lower kinetic energy loss coefficient characteristics and wider useful incidence ranges over the wider range extended to the high subsonic regime compared with the aft loaded ones, in spite of their higher loading. In addition to some main parts of the design procedures, theoretical and experimental results are discussed.

  1. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  2. Multiple Solutions of Transonic Flow over NACA0012 Airfoil

    NASA Astrophysics Data System (ADS)

    Xiong, Juntao; Liu, Ya; Liu, Feng; Luo, Shijun; Zhao, Zijie; Ren, Xudong; Gao, Chao

    2012-11-01

    Multiple solutions of the small-disturbance potential equation and full potential equation were known for the NACA0012 airfoil in a certain range of transonic Mach numbers and at zero angle of attack. However the multiple solutions for this airfoil were not observed using Euler or Navier-Stokes equations under the above flow conditions. In the present work, both the Unsteady Reynolds-Averaged Navier-Stokes (URANS) computations and transonic wind tunnel experiments are performed under certain Reynolds numbers to further study the problem. The results of the two methods reveal that buffet appears in a narrow Mach number range where the potential flow methods predict multiple solutions. Boundary layer displacement thickness computed from URANS at the same flow condition is used to modify the geometry of the airfoil. Euler equations are then solved for the modified geometry. The results show that the addition of the boundary layer displacement thickness creates multiple solutions for the NACA0012 airfoil. Global linear stability analysis is also performed on the original and the modified airfoils. This shows a close relationship between the viscous unsteady shock buffet phenomenon of transonic airfoil flow and the existence of multiple solutions of the external inviscid flow. Postdoctoral Research Assistant.

  3. Turbine airfoil to shround attachment

    SciTech Connect

    Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

    2014-05-06

    A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

  4. An experimental investigation of the aerodynamics of a NACA 64A010 airfoil-flap combination with and without flap oscillations. Part 1: Steady-state characteristics

    NASA Technical Reports Server (NTRS)

    Buell, Donald A.; Malcolm, Gerald N.

    1986-01-01

    A NACA 64A010 airfoil with a sealed-gap 1/4-chord flap was tested between splitter plates in the NASA Ames 11- by 11-Foot Transonic Wind Tunnel at Mach numbers from 0.50 to 0.85, and Reynolds numbers based on chord from 3 to 13 million. Although the main purpose of the test was to obtain unsteady pressure data with the flap oscillating, no unsteady data are presented in this paper. The steady-state data are presented and compared with other test data to provide a basis for evaluating the results. Pressure data at two span stations are used to deduce early boundary-layer transitions at the midspan at higher Mach numbers, angles of attack, and flap angles. The effects of flap angle on pressures, normal force, pitching moment, and hinge moment are also presented in the report. Mach number errors caused by the splitter-plate configuration and the angle of attack are evaluated using pressure measurements near the floor and ceiling of the wind tunnel.

  5. Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines

    SciTech Connect

    Migliore, P.G.

    1983-07-01

    The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7 to 21% and operating at a Reynolds number of 3 X 10/sup 6/, Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18%, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yeild peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63/sub 2/-015 airfoil showed an annual energy output increase of 17-27%, depending on rotor solidity, compared to an NACA 0015 airfoil.

  6. Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines

    NASA Astrophysics Data System (ADS)

    Migliore, P. G.

    1983-08-01

    The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7-21 percent and operating at a Reynolds number of 3 x 10 to the 6th. Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18 percent, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yield peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63(2)-015 airfoil showed an annual energy output increase of 17-27 percent, depending on rotor solidity, compared to an NACA 0015 airfoil.

  7. Airfoil treatments for vertical axis wind turbines

    SciTech Connect

    Klimas, P.C.

    1985-01-01

    Sandia National Laboratories (SNL) has taken three airfoil related approaches to decreasing the cost of energy of vertical axis wind turbine (VAWT) systems; airfoil sections designed specifically for VAWTs, vortex generators (VGs), and ''pumped spoiling.'' SNL's blade element airfoil section design effort has led to three promising natural laminar flow (NLF) sections. One section is presently being run on the SNL 17-m turbine. Increases in peak efficiency and more desirable dynamic stall regulation characteristics have been observed. Vane-type VGs were fitted on one DOE/Alcoa 100 kW VAWT. With approximately 12% of span having VGs, annual energy production increased by 5%. Pumped spoiling utilizes the centrifugal pumping capabilities of hollow blades. With the addition of small perforations in the surface of the blades and valves controlled by windspeed at the ends of each blade, lift spoiling jets may be generated inducing premature stall and permitting lower capacity, lower cost drivetrain components. SNL has demonstrated this concept on its 5-m turbine and has wind tunnel tested perforation geometries on one NLF section.

  8. Pressure Distribution Over Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Dryden, H L

    1927-01-01

    This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

  9. Wind-Tunnel Investigation of Wings with Ordinary Ailerons and Full-Span External-Airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Platt, Robert C; Shortal, Joseph A

    1937-01-01

    Report presents an investigation carried out in the NACA 7- by 10-foot wind tunnel of an NACA 23012 airfoil equipped, first, with a full-span NACA 23012 external-airfoil flap having a chord 0.20 of the main airfoil chord and with a full-span aileron with a chord 0.12 of the main airfoil chord on the trailing edge of the main airfoil and equipped second, with a 0.30-chord full-span NACA 23012 external-airfoil flap and a 0.13-chord full-span aileron. The results are arranged in three groups, the first two of which deal with the airfoil characteristics of the two airfoil-flap combinations and with the internal-control characteristics of the airfoil-flap-aileron combinations. The third group of tests deals with several means for balancing ailerons mounted on a special large-chord NACA 23012 external-airfoil flap. The tests included an ordinary aileron, a curtained-nose balance, a frise balance, and a tab.

  10. Wind-tunnel investigation of NACA 23012, 23021, and 23030 airfoils equipped with 40-percent-chord double slotted flaps

    NASA Technical Reports Server (NTRS)

    Harris, Thomas A; Recant, Isidore G

    1941-01-01

    Report presents the results of an investigation conducted in the NACA 7 by 10-foot win tunnel to determine the effect of the deflection of main and auxiliary slotted flaps on the aerodynamic section characteristics of large-chord NACA 23012, 23021, 23030 airfoils equipped with 40-percent-chord double slotted flaps. The complete aerodynamic section characteristics and envelope polar curves are given for each airfoil-flap combination. The effect of airfoil thickness is shown, and comparisons are made of single slotted flaps with double slotted flaps on each of the airfoils.

  11. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  12. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  13. Drag reduction of a blunt trailing-edge airfoil

    NASA Astrophysics Data System (ADS)

    Baker, Jonathon Paul

    Wind-tunnel experimentation and Reynolds-averaged Navier--Stokes simulations were used to analyze simple, static trailing-edge devices applied to an FB-3500-1750 airfoil, a 35% thick airfoil with a 17.5% chord blunt trailing edge, in order to mitigate base drag. The drag reduction devices investigated include Gurney-type tabs, splitter plates, base cavities, and offset cavities. The Gurney-type tabs consisted of small tabs, attached at the trailing edge and distributed along the span, extending above the upper and lower surfaces of the airfoil. The Gurney-type devices were determined to have little drag reduction capabilities for the FB-3500-1750 airfoil. Splitter plates, mounted to the center of the trailing edge, with lengths between 50% and 150% of the trailing-edge thickness and various plate angles (0° and +/-10° from perpendicular) were investigated and shown to influence the lift and drag characteristics of the baseline airfoil. Drag reductions of up to 50% were achieved with the addition of a splitter plate. The base cavity was created by adding two plates perpendicular to the trailing edge, extending from the upper and lower surfaces of the airfoil. The base cavity demonstrated possible drag reductions of 25%, but caused significant changes to lift, primarily due to the method of device implementation. The offset cavity, created by adding two splitter plates offset from the upper and lower surfaces by 25% of the trailing-edge thickness, was shown to improve on the drag reductions of the splitter plate, while also eliminating unsteady vortex shedding prior to airfoil stall.

  14. Key Characteristics of Middle School Performance

    ERIC Educational Resources Information Center

    Styron, Ronald A., Jr.; Nyman, Terri R.

    2008-01-01

    This research project examined student performance in middle schools with a grade configuration of six through eight. Schools were categorized into two groups: high-performing middle schools--middle schools making adequate yearly progress for two consecutive school years, and low-performing middle schools--middle schools not making adequate yearly…

  15. Impact of Airfoils on Aerodynamic Optimization of Heavy Lift Rotorcraft

    NASA Technical Reports Server (NTRS)

    Acree, Cecil W., Jr.; Martin Preston B.; Romander, Ethan A.

    2006-01-01

    Rotor airfoils were developed for two large tiltrotor designs, the Large Civil Tilt Rotor (LCTR) and the Military Heavy Tilt Rotor (MHTR). The LCTR was the most promising of several rotorcraft concepts produced by the NASA Heavy Lift Rotorcraft Systems Investigation. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots cruise at 30,000 ft altitude. A parallel design, the MHTR, had a notional mission of 40,000 Ib payload, 500 nm range, and 300 knots cruise at 4000 ft, 95 F. Both aircraft were sized by the RC code developed by the U. S. Army Aeroflightdynamics Directorate (AFDD). The rotors were then optimized using the CAMRAD II comprehensive analysis code. Rotor airfoils were designed for each aircraft, and their effects on performance analyzed by CAMRAD II. Airfoil design criteria are discussed for each rotor. Twist and taper optimization are presented in detail for each rotor, with discussions of performance improvements provided by the new airfoils, compared to current technology airfoils. Effects of stall delay and blade flexibility on performance are also included.

  16. Nozzle airfoil having movable nozzle ribs

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  17. Second Stage Turbine Bucket Airfoil.

    DOEpatents

    Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward

    2003-05-06

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  18. Langley airfoil-research program

    NASA Technical Reports Server (NTRS)

    Bobbitt, P. J.

    1979-01-01

    An overview of past, present, and future airfoil research activities at the Langley Research Center is given. The immediate past and future occupy most of the discussion; however, past accomplishments and milestones going back to the early NACA years are dealt with in a broad-brush way to give a better perspective of current developments and programs. In addition to the historical perspective, a short description of the facilities which are now being used in the airfoil program is given. This is followed by a discussion of airfoil developments, advances in airfoil design and analysis tools (mostly those that have taken place over the past 5 or 6 years), and tunnel-wall-interference predictive methods and measurements. Future research requirements are treated.

  19. An analytic study of nonsteady two-phase laminar boundary layer around an airfoil

    NASA Technical Reports Server (NTRS)

    Hsu, Yu-Kao

    1989-01-01

    Recently, NASA, FAA, and other organizations have focused their attention upon the possible effects of rain on airfoil performance. Rhode carried out early experiments and concluded that the rain impacting the aircraft increased the drag. Bergrum made numerical calculation for the rain effects on airfoils. Luers and Haines did an analytic investigation and found that heavy rain induces severe aerodynamic penalties including both a momentum penalty due to the impact of the rain and a drag and lift penalty due to rain roughening of the airfoil and fuselage. More recently, Hansman and Barsotti performed experiments and declared that performance degradation of an airfoil in heavy rain is due to the effective roughening of the surface by the water layer. Hansman and Craig did further experimental research at low Reynolds number. E. Dunham made a critical review for the potential influence of rain on airfoil performance. Dunham et al. carried out experiments for the transport type airfoil and concluded that there is a reduction of maximum lift capability with increase in drag. There is a scarcity of published literature in analytic research of two-phase boundary layer around an airfoil. Analytic research is being improved. The following assumptions are made: the fluid flow is non-steady, viscous, and incompressible; the airfoil is represented by a two-dimensional flat plate; and there is only a laminar boundary layer throughout the flow region. The boundary layer approximation is solved and discussed.

  20. Profile Optimization Method for Robust Airfoil Shape Optimization in Viscous Flow

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2003-01-01

    Simulation results obtained by using FUN2D for robust airfoil shape optimization in transonic viscous flow are included to show the potential of the profile optimization method for generating fairly smooth optimal airfoils with no off-design performance degradation.

  1. Optimization of an Advanced Design Three-Element Airfoil at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Dominik, Chet J.

    1995-01-01

    New high-lift components have been designed for a three-element advanced high-lift research airfoil using a state-of-the-art computational method. The new components were designed with the aim to provide high maximum-lift values while maintaining attached flow on the single-segment flap at approach conditions. This three-element airfoil has been tested in the NASA Langley Low-Turbulence Pressure Tunnel at chord Reynolds number up to 16 million. The performance of the NASA research airfoil is compared to a reference advanced high-lift research airfoil. Effects of Reynolds number on slat and flap rigging have been studied experimentally. The performance trend of this new high-lift design is comparable to that predicted by the computational method over much of the angle of attack range. Nevertheless, the method did not accurately predict the airfoil performance or the configuration-based trends near maximum lift.

  2. Experimental Investigation of Dynamic Stall on an Airfoil with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2013-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils modeled after whale flippers has centered on the static aerodynamic characteristics of these airfoils. In the current work, NACA 0012 airfoils modified with leading edge tubercles are investigated to determine the effect of the tubercles on the dynamic characteristics, specifically on dynamic stall vortex formation, of the airfoils. Molecular Tagging Velocimetry (MTV) is used to measure the flow field around the modified airfoils at nondimensional pitch rates of Ω = 0.1, 0.2, and 0.4. The results show that the characteristics of the dynamics stall vortex are dependent on the location relative to the peak or valley of the leading edge bumps. These characteristics are also found to be different than those observed in dynamic stall on a smooth leading edge airfoil. In specific, the location of the dynamic stall vortex appears to form further aft on the airfoil for the tubercle case versus the smooth case. This work supported by NSF Grant # 0845882.

  3. Recent work on airfoil theory

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1940-01-01

    The basic ideas of a new method for treating the problem of the airfoil are presented, and a review is given of the problems thus far computed for incompressible and supersonic flows. Test results are reported for the airfoil of circular plan form and the results are shown to agree well with the theory. As a supplement, a theory based on the older methods is presented for the rectangular of small aspect ratio.

  4. Drag Measurements at Transonic Speeds of NACA 65-009 Airfoils Mounted on a Freely Falling Body to Determine the Effects of Sweepback and Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.; Thompson, Jim Rogers

    1947-01-01

    Drag measurements at transonic speeds on rectangular airfoils and on airfoils swept back 450 are reported. These airfoils, which were mounted on cylindrical test bodies, are part of a series being tested in free drops from high altitude to determine the effect of variation of basic airfoil parameters on airfoil drag characteristics at transonic speeds. These rectangular and swept-back airfoils had the same span, airfoil section (NACA 65-009), and chord perpendicular to the leading edge. The tests were made to compare the drag of rectangular and sweptback airfoils at a higher aspect ratio than had been used in a similar comparison reported previously. The results showed that the drag of the swept-back airfoil was less than 0.15 that of the rectangular airfoil at a Mach number of 1.00 and less than 0.30 that of the rectangular airfoil at a Mach number of 1.17. A comparison of these swept-back airfoils with similar airfoils of lower aspect ratio previously tested by the same method indicated that in the investigated speed range reduction in aspect ratio results in increased drag. In the highest part of the investigated speed range, however, the drag coefficient of the high-aspect-ratio swept-back airfoils showed a tendency to approach that of the lower-aspect-ratio swept-back airfoils. A similar comparison for the rectangular airfoils showed that delay in the drag rise and a reduction in drag at supercritical speeds can be realIzed through reduction in aspect ratio. These results confirm those reported in NACA ACR No. L5J16.

  5. Numerical simulation of the process of airfoil icing in the presence of large supercooled water drops

    NASA Astrophysics Data System (ADS)

    Prykhodko, O. A.; Alekseyenko, S. V.

    2014-10-01

    We have developed a software package and related methodology that can be used to simulate the process of airfoil icing during flight in the presence of large supercooled liquid water drops in the oncoming airflow. The motion of a carrier medium is described using the Navier-Stokes equations for a compressible gas. The motion of water drops is described using an inertial model. The process of water deposition and its subsequent freezing on an airfoil surface are described by the method of control volumes based on the equations of conservation of mass, momentum, and energy for each element of the surface. The main results of simulations are presented for the icing of an NACA 0012 airfoil profile with "barrier" ice formation in the absence and presence of heating of the leading edge. The influence of the ice-growth thickness and position on the airfoil chord on the pattern of airflow and aerodynamic characteristics of airfoil is analyzed.

  6. Unsteady aerodynamic behavior of an airfoil with and without a slat

    NASA Technical Reports Server (NTRS)

    Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

    1993-01-01

    Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

  7. An improved viscid/inviscid interaction procedure for transonic flow over airfoils

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.

    1985-01-01

    A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.

  8. Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads

    NASA Technical Reports Server (NTRS)

    Gangwani, S. T.

    1984-01-01

    The synthesized unsteady airfoil data method, which accurately describes the unsteady aerodynamic characteristics of stalled airfoils in the time domain, is expanded and improved. Nine sets of unsteady drag data are synthesized, providing a basis for the successful expansion of the method to include the computation of unsteady pressure drag of airfoils and rotor blades. An improved prediction model for airfoil flow reattachment is incorporated into the method. Application of the model results in a better correlation of analytic predictions with measured full-scale helicopter blade loads and stress data. The results show that it is feasible to generalize the empirical parameters embedded in the method over a range of angles of attack, Mach number, airfoil shape, and sweep angle.

  9. Wake instability issues: From circular cylinders to stalled airfoils

    NASA Astrophysics Data System (ADS)

    Meneghini, J. R.; Carmo, B. S.; Tsiloufas, S. P.; Gioria, R. S.; Aranha, J. A. P.

    2011-07-01

    Some recent results regarding the global dynamical behaviour of the wake of circular cylinders and airfoils with massive separation are reviewed in this paper. In order to investigate the effect of interference, the three-dimensional instability modes are analysed for the flow around two circular cylinders in tandem. In the same way, the flow around a stalled airfoil is investigated in order to provide a better understanding of the three-dimensional characteristics of wakes forming downstream of a lifting body with massive separation. These results are compared with those found for an isolated cylinder. Some fundamental differences among these flows are discussed.

  10. Reproducible measurements of MPI performance characteristics.

    SciTech Connect

    Gropp, W.; Lusk, E.

    1999-06-25

    In this paper we describe the difficulties inherent in making accurate, reproducible measurements of message-passing performance. We describe some of the mistakes often made in attempting such measurements and the consequences of such mistakes. We describe mpptest, a suite of performance measurement programs developed at Argonne National Laboratory, that attempts to avoid such mistakes and obtain reproducible measures of MPI performance that can be useful to both MPI implementers and MPI application writers. We include a number of illustrative examples of its use.

  11. Vortex scale of unsteady separation on a pitching airfoil.

    PubMed

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment. PMID:12495998

  12. Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri

    1997-01-01

    Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.

  13. Design analysis of vertical wind turbine with airfoil variation

    NASA Astrophysics Data System (ADS)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  14. Scaling laws for testing of high lift airfoils under heavy rainfall

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.

    1985-01-01

    The results of studies regarding the effect of rainfall about aircraft are briefly reviewed. It is found that performance penalties on airfoils have been identified in subscale tests. For this reason, it is of great importance that scaling laws be dveloped to aid in the extrapolation of these data to fullscale. The present investigation represents an attempt to develop scaling laws for testing subscale airfoils under heavy rain conditions. Attention is given to rain statistics, airfoil operation in heavy rain, scaling laws, thermodynamics of condensation and/or evaporation, rainfall and airfoil scaling, aspects of splash back, film thickness, rivulets, and flap slot blockage. It is concluded that the extrapolation of airfoil performance data taken at subscale under simulated heavy rain conditions to fullscale must be undertaken with caution.

  15. Theoretical and Experimental Data for a Number of NACA 6A-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K., Jr.

    1946-01-01

    The NACA 6A-series airfoil sections were designed to eliminate the trailing-edge cusp which is characteristic of the NACA 6-series sections. Theoretical data are presented for NACA 6A-series basic thickness forms having the position of minimum pressure at 30-, 40-, and 50-percent chord and with thickness ratios varying from 6 percent to 15 percent. Also presented are data for a mean line designed to maintain straight sides on the cambered sections. The experimental results of a two dimensional wind tunnel investigation of the aerodynamic characteristics of five NACA 64A-series airfoil sections and two NACA 63A-series airfoil sections are presented. An analysis of these results, which were obtained at Reynolds numbers of 3 x 10(exp 6), 6 x 10(exp 6), and 9 x 10(exp 6), indicates that the section minimum drag and maximum lift characteristics of comparable NACA 6-series and 6A-series airfoil sections are essentially the same. The quarter-chord pitching-moment coefficients and angles of zero lift of NACA 6A-series airfoil sections are slightly more negative than those of corresponding NACA 6-series airfoil sections. The position of the aerodynamic center and the lift-curve slope of smooth NACA 6-series sections. The addition of standard leading-edge roughness causes the lift-curve slope of the newer sections to decrease with increasing airfoil thickness ratio.

  16. A Numerical Evaluation of Icing Effects on a Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Chung, James J.; Addy, Harold E., Jr.

    2000-01-01

    As a part of CFD code validation efforts within the Icing Branch of NASA Glenn Research Center, computations were performed for natural laminar flow (NLF) airfoil, NLF-0414. with 6 and 22.5 minute ice accretions. Both 3-D ice castings and 2-D machine-generated ice shapes were used in wind tunnel tests to study the effects of natural ice is well as simulated ice. They were mounted in the test section of the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley that the 2-dimensionality of the flow can be maintained. Aerodynamic properties predicted by computations were compared to data obtained through the experiment by the authors at the LTPT. Computations were performed only in 2-D and in the case of 3-D ice, the digitized ice shape obtained at one spanwise location was used. The comparisons were mainly concentrated on the lift characteristics over Reynolds numbers ranging from 3 to 10 million and Mach numbers ranging from 0.12 to 0.29. WIND code computations indicated that the predicted stall angles were in agreement with experiment within one or two degrees. The maximum lift values obtained by computations were in good agreement with those of the experiment for the 6 minute ice shapes and the minute 3-D ice, but were somewhat lower in the case of the 22.5 minute 2-D ice. In general, the Reynolds number variation did not cause much change in the lift values while the variation of Mach number showed more change in the lift. The Spalart-Allmaras (S-A) turbulence model was the best performing model for the airfoil with the 22.5 minute ice and the Shear Stress Turbulence (SST) turbulence model was the best for the airfoil with the 6 minute ice and also for the clean airfoil. The pressure distribution on the surface of the iced airfoil showed good agreement for the 6 minute ice. However, relatively poor agreement of the pressure distribution on the upper surface aft of the leading edge horn for the 22.5 minute ice suggests that improvements are needed in the grid or

  17. Post stall airfoil data for wind turbines: wind tunnel test results

    SciTech Connect

    Ostowari, C.; Naik, D.

    1984-07-01

    Wind turbine blades operate over a wide angle of attack range. Unlike aircraft, a wind turbine's angle of attack range extends deep into stall where the three dimensional performance characteristics of airfoils are not generally known. Peak power predictions upon which wind turbine components are sized depend on a good understanding of a blade's post stall characteristics. The purpose of this wind tunnel study is to characterize the performance characteristics of a blade in stall as a function of its aspect ratio, airfoil thickness and Reynolds number. This report documents results of the wind tunnel investigation of constant chord blades having four aspect ratios, with NACA 44XX series airfoil sections, at angles of attack ranging from -10 to 110/sup 0/. Tests were conducted at Reynolds number ranging from one-quarter million to one million. The thickness ratios studied were 0.18, 0.15, 0.12 and 0.09. The aspect ratios were 6, 9, 12 and infinity. Results of force and pitching moment measurements, over the angle of attack range, for all combinations of Reynolds numbers, thickness and aspect ratios, and the effects of boundary layer tripping, have been presented. Both initial and secondary stall are presented. The maximum drag coefficient is found to occur at an angle of attack of 90/sup 0/. The pitching moment is unstable beyond stall. The lift and post-stall drag coefficients decrease with decreasing aspect ratio. The lift coefficient decreases with decreasing thickness ratio, while the drag coefficient increases. The boundary layer tripping is observed to decrease the lift curve slope and stalling angle of attack. The drag coefficient (with tripping) is significantly affected only at low aspect ratio.

  18. Performance characteristics of the Lysholm engine

    SciTech Connect

    Berger, R.E.

    1980-01-01

    The performance of a 5 in. diameter rotor Lysholm engine prototype running on simulated geothermal flows from 16 to 100% quality is described. Staging was performed with conventional Westinghouse 25 kW steam turbines demonstrating that such a process is feasible. Maximum efficiency and power noted were 37.2% and 26.3 kW respectively, but inhibiting factors were discovered which, upon correction, should allow efficiencies around 50% and powers up to 35 kW. Larger engines with minor modifications should get better efficiencies. Data was taken for inlet pressures of 75 to 120 psia and speeds of 3000 to 9000 rpm's. Further testing under similar conditions is planned.

  19. Annual Cycle Energy System characteristics and performance

    SciTech Connect

    Abbatiello, L.A.

    1980-01-01

    The Annual Cycle Energy System (ACES) provides space heating, air conditioning, and domestic water heating while using substantially less energy than competing systems providing the same services. The ACES is based on an electrically driven, unidirectional heat pump that extracts heat from an insulated tank of water during the heating season. As the heat is extracted, most of the water freezes, and the stored ice provides air conditioning in the summer. A single-family residence near Knoxville, Tennessee is being used to demonstrate the energy conserving features of the ACES. A second similar house, the control house, has been used to compare the performance of the ACES to both an electric resistance heating and hot water with central air conditioning system and an air-to-air heat pump system. The results of the first year's operation from November 1977 through mid-September 1978 showed that the ACES consumed 9012 kWh of electricity while delivering an annual coefficient of performance (COP) of 2.78. The control house consumed 20,523 kWh of electricity while delivering an annual COP of 1.13. The second annual cycle was started on December 1978. The ACES was compared with an air-to-air heat pump during this period. During the ice storage portion of this test year, December 1, 1978 to September 1, 1979, 5705 kWh of electricity was used by the ACES, compared to 12,014 kWh for the control house. The respective COPs are 1.40 for the control house with the heat pump and 2.99 for the ACES house during this period. Annual energy consumption for the test year was 6597 kWh and the annual COPs were 1.41 for the control house and 2.81 for ACES. ACES is achieving its anticipated performance. The ACES concept and its general engineering performance as compared to conventional HVAC system are described and discussed.

  20. Numerical computation of viscous flow about unconventional airfoil shapes

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Tannehill, J. C.

    1990-01-01

    A new two-dimensional computer code was developed to analyze the viscous flow around unconventional airfoils at various Mach numbers and angles of attack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium turbulence closure model was developed for computing turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present code was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the present code in conjunction with the new nonequilibrium turbulence model gives excellent results.

  1. Performance characteristics of wind profiling radars

    NASA Technical Reports Server (NTRS)

    Strauch, R. G.; Frisch, A. S.; Weber, B. L.

    1986-01-01

    Doppler radars used to measure winds in the troposphere and lower stratosphere for weather analysis and forecasting are lower-sensitivity versions of mesosphere-stratosphere-troposphere radars widely used for research. The term wind profiler is used to denote these radars because measurements of vertical profiles of horizontal and vertical wind are their primary function. It is clear that wind profilers will be in widespread use within five years: procurement of a network of 30 wind profilers is underway. The Wave Propagation Laboratory (WPL) has operated a small research network of radar wind profilers in Colorado for about two and one-half years. The transmitted power and antenna aperture for these radars is given. Data archiving procedures have been in place for about one year, and this data base is used to evaluate the performance of the radars. One of the prime concerns of potential wind profilers users is how often and how long wind measurements are lacking at a given height. Since these outages constitute an important part of the performance of the wind profilers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz, (wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both the number of outages at each frequency and annual variations in outages.

  2. Electrodeless Plasma Thruster Design Characteristics and Performances

    NASA Astrophysics Data System (ADS)

    Emsellem, G.

    2004-10-01

    The Elwing company has designed and modelled an electrode-less plasma thruster. This new concept has been designed to overcome fundamental limitations of existing solutions such as Hall Effect Thrusters and Gridded Ion Thrusters. In order to solve reliability and lifetime concerns as well as erosion and contamination problems known on these devices, Elwing's thruster has no component immersed in the discharge and does not require any neutralizer. Furthermore, as the function of ionization and acceleration are distinct, this new thruster concept is suitable for flexible operations as it can be fully throttled in both specific impulse and thrust while remaining at high efficiency above 50%. This design also introduces efficient non-mechanical thrust vectoring capability. Many features of the basic concept are discussed to show how this concept can be tailored to various operating conditions for power varying from 200W to 50kW. The thruster operations have been simulated and scaling laws established. The most significant performance achieved by this design is a thrust density in the range of 10N/m2 to more than 500 N/m2 which increases with available power. Obtained performances range from 5.9mN/4200s at 200W, an efficiency of 61%, up to 2.79N/3350s at 50kW with an efficiency of 91%.

  3. Inverse Design of a Thick Supercritical Airfoil

    NASA Astrophysics Data System (ADS)

    Pambagjo, Tjoetjoek Eko; Nakahashi, Kazuhiro; Obayashi, Shigeru

    In this paper, a study on designing a thick supercritical airfoil by utilizing Takanashi’s inverse design method is discussed. One of the problems to design a thick supercritical airfoil by Takanashi’s method is that an oscillation of the geometry may occur during the iteration process. To reduce the oscillation, an airfoil parameterization method is utilized as the smoothing procedure. A guideline to determine the target pressure distribution to realize the thick airfoil is also discussed.

  4. High Reynolds Number Configuration Development of a High-Lift Airfoil

    NASA Technical Reports Server (NTRS)

    Valarezo, Walter O.; Dominik, Chet J.; Mcghee, Robert J.; Goodman, Wesley L.

    1993-01-01

    An experimental program has been conducted to assess performance of a transport multielement airfoil at flight Reynolds numbers. The studies were performed at chord Reynolds numbers as high as 16 million in the NASA Langley Low Turbulence Pressure Tunnel. Sidewall boundary-layer control to enforce flow two dimensionality was provided via an endplate suction system. The basic airfoil was an 11.55 percent thick supercritical airfoil representative of the stall critical station of a new-generation transport aircraft wing. The multielement airfoil was configured as a three-element airfoil with slat and flap chord ratios of 14.48 percent and 30 percent respectively. Testing focused on the development of landing configurations with high maximum lift capability and the assessment of Reynolds and Mach number effects. Also assessed were high-lift performance effects due to devices such as drooped spoilers and trailing-edge wedges. The present experimental studies revealed significant effects on high-lift airfoil performance due to Reynolds and Mach number variations and favorable lift increments at approach angles of attack due to the use of drooped spoilers or trailing-edge wedges. However, no substantial improvements in maximum lift capability were identified. A recently developed high performance single-segment flap was also tested and results indicated considerable improvements in lift and drag performance over existing airfoils. Additionally, it was found that this new flap shape at its optimum rigging was less sensitive to Reynolds number variations than previous designs.

  5. Airfoil deposition model

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.

    1982-01-01

    The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.

  6. Root region airfoil for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  7. Advanced technology airfoil research, volume 2. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  8. Addendum to a catalog of low Reynolds number airfoil data for wind turbine applications

    SciTech Connect

    Miley, S.J.

    1985-02-01

    The prediction of wind turbine performance requires airfoil data at Reynolds numbers lower than those used for aircraft operation. A Catalog of Low Reynolds Number Airfoil Data for Wind Turbine Applications, published in 1982 by Rockwell International Corporation, included airfoil data up to a Reynolds number of 3,000,000. After the catalog was finished, it was brought to the author's attention that the cubic spline fitting routine used in generating the curves from discrete data caused inaccuracies in some of the airfoils. A point-to-point curve fitting routing produced more accurate results. This addendum corrects the daag data for the affected airfoils, and is formatted to correlate with the original catalog.

  9. Wind-tunnel investigation of an NACA 23030 airfoil with various arrangements of slotted flaps

    NASA Technical Reports Server (NTRS)

    Recant, I G

    1940-01-01

    AN investigation was made of a large-chord NACA 23030 airfoil with a 40- and a 25.66 percent-chord slotted flap to determine the section aerodynamic characteristics of the airfoil affected by flap chord, slot shape, flap position, and flap deflection. The flap positions for maximum lift, the position for minimum drag at moderate and high lift coefficients, and the complete section aerodynamic characteristics of selected optimum arrangements are given. Envelope polar of various flap arrangements are included. The relative merits of slotted flaps of different chords on the NACA 23030 airfoil are discussed, and a comparison is made of each flap size with a corresponding flap size on the NACA 23021 and 23012 airfoils. The lowest profile drags at moderate lift coefficients were obtained with an easy entrance to the slot. The 25.66-percent-chord slotted flap gave lower drag than the 40-percent-chord flap for lift coefficients less than 1.8, but the 40-percent-chord flap gave considerably lower drag for lift coefficients. The drag coefficients at moderate and high lift coefficients were greater with both sizes of flap on the NACA 23030 airfoil than on either the NACA 23021 or the NACA 23012 airfoil. The maximum lift coefficient for the deflections tested with either flap was practically independent of airfoil.

  10. Toward large eddy simulation of turbulent flow over an airfoil

    NASA Technical Reports Server (NTRS)

    Choi, Haecheon

    1993-01-01

    The flow field over an airfoil contains several distinct flow characteristics, e.g. laminar, transitional, turbulent boundary layer flow, flow separation, unstable free shear layers, and a wake. This diversity of flow regimes taxes the presently available Reynolds averaged turbulence models. Such models are generally tuned to predict a particular flow regime, and adjustments are necessary for the prediction of a different flow regime. Similar difficulties are likely to emerge when the large eddy simulation technique is applied with the widely used Smagorinsky model. This model has not been successful in correctly representing different turbulent flow fields with a single universal constant and has an incorrect near-wall behavior. Germano et al. (1991) and Ghosal, Lund & Moin have developed a new subgrid-scale model, the dynamic model, which is very promising in alleviating many of the persistent inadequacies of the Smagorinsky model: the model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model has been remarkably successful in prediction of several turbulent and transitional flows. We plan to simulate turbulent flow over a '2D' airfoil using the large eddy simulation technique. Our primary objective is to assess the performance of the newly developed dynamic subgrid-scale model for computation of complex flows about aircraft components and to compare the results with those obtained using the Reynolds average approach and experiments. The present computation represents the first application of large eddy simulation to a flow of aeronautical interest and a key demonstration of the capabilities of the large eddy simulation technique.

  11. Dynamic stall modeling and correlation with experimental data on airfoils and rotors

    NASA Technical Reports Server (NTRS)

    Carlson, R. G.; Blackwell, R. H.; Commerford, G. L.; Mirick, P. H.

    1974-01-01

    Two methods for modeling dynamic stall have been developed. The alpha, A, B method generates lift and pitching moments as functions of angle of attack and its first two time derivatives. The coefficients are derived from experimental data for oscillating airfoils. The Time Delay Method generates the coefficients from steady state airfoil characteristics and an associated time delay in stall beyond the steady state stall angle. Correlation with three types of test data shows that the alpha, A, B method is somewhat better for use in predicting helicopter rotor response in forward flight. Correlation with lift and moment hysteresis loops generated for oscillating airfoils was good for both models.

  12. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  13. Hook nozzle arrangement for supporting airfoil vanes

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-02-20

    A gas turbine engine`s nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic. 8 figs.

  14. Hook nozzle arrangement for supporting airfoil vanes

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.

  15. An airfoil design method for viscous flows

    NASA Technical Reports Server (NTRS)

    Malone, J. B.; Narramore, J. C.; Sankar, L. N.

    1990-01-01

    An airfoil design procedure is described that has been incorporated into an existing two-dimensional Navier-Stokes airfoil analysis method. The resulting design method, an iterative procedure based on a residual-correction algorithm, permits the automated design of airfoil sections with prescribed surface pressure distributions. This paper describes the inverse design method and the technique used to specify target pressure distributions. An example airfoil design problem is described to demonstrate application of the inverse design procedure. It shows that this inverse design method develops useful airfoil configurations with a reasonable expenditure of computer resources.

  16. Airfoil shape for a turbine nozzle

    SciTech Connect

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  17. Effects of Compressibility on the Maximum Lift Characteristics and Spanwise Load Distribution of a 12-Foot-Span Fighter-Type Wing of NACA 230-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    West, F E

    1945-01-01

    Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.

  18. Performance and Safety Characteristics in Ice-Climbing Equipment Selection.

    ERIC Educational Resources Information Center

    Wells, W. Tom

    This study sought to determine whether Alaskan ice climbers place more emphasis on performance characteristics or on safety characteristics when selecting their various ice-climbing equipment. A survey distributed to members of the Alaska Alpine Club and the Alaska Alpine Rescue Group was developed to contain responses related to both safety and…

  19. Sensor Technology Performance Characteristics- Field and Laboratory Observations

    EPA Science Inventory

    Observed Intangible Performance Characteristics RH and temperature impacts may be significant for some devices Internal battery lifetimes range from 4 to 24 hoursSensor packaging can interfere with accurate measurements (reactivity)Wireless communication protocols are not foolpr...

  20. Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail

    NASA Astrophysics Data System (ADS)

    Alansatan, Sait

    An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24

  1. Numerical Investigations of an Optimized Airfoil with a Rotary Cylinder

    NASA Astrophysics Data System (ADS)

    Gada, Komal; Rahai, Hamid

    2015-11-01

    Numerical Investigations of an optimized thin airfoil with a rotary cylinder as a control device for reducing separation and improving lift to drag ratio have been performed. Our previous investigations have used geometrical optimization for development of an optimized airfoil with increased torque for applications in a vertical axis wind turbine. The improved performance was due to contributions of lift to torque at low angles of attack. The current investigations have been focused on using the optimized airfoil for micro-uav applications with an active flow control device, a rotary cylinder, to further control flow separation, especially during wind gust conditions. The airfoil has a chord length of 19.66 cm and a width of 25 cm with 0.254 cm thickness. Previous investigations have shown flow separation at approximately 85% chord length at moderate angles of attack. Thus the rotary cylinder with a 0.254 cm diameter was placed slightly downstream of the location of flow separation. The free stream mean velocity was 10 m/sec. and investigations have been performed at different cylinder's rotations with corresponding tangential velocities higher than, equal to and less than the free stream velocity. Results have shown more than 10% improvement in lift to drag ratio when the tangential velocity is near the free stream mean velocity. Graduate Assistant, Center for Energy and Environmental Research and Services (CEERS), College of Engineering, California State University, Long Beach.

  2. Transonic airfoil design for helicopter rotor applications

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed A.; Jackson, B.

    1989-01-01

    Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.

  3. Exploration in optimal design of an airfoil with a leading edge rotating cylinder

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan-Yuan; Huang, Dian-Gui; Sun, Xiao-Jing; Wu, Guo-Qing

    2010-08-01

    Based on the theory of moving surface boundary layer control (MSBC), a concept of an airfoil having a rotating cylinder at the leading edge has been developed and experimentally proven to have good aerodynamic performance even at large angles of attack. Thus, this research aims to give guidance on optimizing the design of this kind of airfoil with high lift coefficients. Using computational fluid dynamics (CFD) technique, the CFD simulation results have been compared with the experimental results available in the literature, and then the SST two-equation model is selected as the appropriate turbulence model. At a given cylinder surface velocity ratio, the cylinder diameter d, the drop height of trailing edge δ and the curvatures of the pressure and suction surfaces of the airfoil are regarded as the optimal design parameters and the airfoil lift coefficient is considered as the optimization objective function. Therefore, using orthogonal optimization method, we herein develop a new design of airfoil favorable for having a rotating leading edge. It has been numerically proven that the resulting airfoil has good capability of achieving a substantially superior performance when compared to the airfoils of the prior art.

  4. Numerical analysis of bio-inspired corrugated airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Mondal, Partha Protim; Rahman, Md. Masudur; Hasan, A. B. M. Toufique

    2016-07-01

    A numerical study was conducted to investigate the aerodynamic performance of a bio-inspired corrugated airfoil at the chord Reynolds number of Rec=80,000 to explore the potential advantages of such airfoils at low Reynolds numbers. This study represents the transient nature of corrugated airfoils at low Reynolds number where flow is assumed to be laminar, unsteady, incompressible and two dimensional. The simulations include a sharp interface Cartesian grid based meshing employed with laminar viscous model. The flow field surrounding the corrugated airfoil has been analyzed using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The simulated results revealed that the corrugated airfoil provides high lift with moderate drag and prevents large scale flow separation at higher angles of attack. This happens due to the negative shear drag produced by the recirculation zones which occurs in the valleys of the corrugated airfoils. The existence of small circulation bubbles sitting in the valleys prevents large scale flow separation thus increasing the aerodynamic performance of the corrugated airfoil.

  5. Relationships of physician characteristics to performance quality and improvement.

    PubMed Central

    Payne, B C; Lyons, T F; Neuhaus, E

    1984-01-01

    The quality of ambulatory medical care provided by 1,135 physicians in five separate practice settings in the Midwest was measured using predetermined process criteria. Specialists performed better in their own areas of specialized training than did family/general practitioners or specialists performing outside their specialty areas. Physicians with fewer years of practice performed somewhat better than physicians with more years since medical school graduation. Board certification was not consistently related to performance. Performances of the physicians improved following quality assurance interventions in these sites. Differences in the rates of change in performance quality were not consistently related to any of the physician characteristics studied. PMID:6746295

  6. Wind-tunnel test of the S814 thick root airfoil

    SciTech Connect

    Somers, D.M.; Tangler, J.L.

    1995-01-01

    The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient (c{sub 1,max} designed to be largely insensitive to leading edge roughness effects. The 24-percent-thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil`s maximum lift-to-drag ratio was designed to occur it a high lift coefficient. To accomplish the objective, a two-dimensional wind-tunnel test of the S814 thick root airfog was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory. Data were obtained for transition-free and transition-fixed conditions at Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 {times} 10{sup 6}. For the design Reynolds numbers of 1.5 {times} l0{sup 6}, the transition-free c{sub 1,max} is 1.3 which satisfies the design specification. However, this value is significantly lower than the predicted c{sub 1,max} of almost l.6. With transition-fixed at the is 1.2. The difference in c{sub 1,max} between the transition-free and transition-fixed conditions demonstrates the airfoil`s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low c{sub 1,max} tip-region airfoils for rotor blades 10 to 15 meters in length.

  7. A flight investigation of basic performance characteristics of a teetering-rotor attack helicopter

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1979-01-01

    Flight data were obtained with an instrumented AH-16 helicopter having uninstrumented, standard main-rotor blades. The data are presented to facilitate the analysis of data taken when the same vehicle was flown with instrumented main-rotor blades built with new airfoils. Test results include data on performance, flight-state parameters, pitch-link loads and blade angles for level flight, descending turns and pull-ups. Flight test procedures and the effects of both trim variations and transient phenomena on the data are discussed.

  8. Covariance of engineering management characteristics with engineering employee performance

    NASA Astrophysics Data System (ADS)

    Hesketh, Andrew Arthur

    1998-12-01

    As business in the 1990's grapples with the impact of continuous improvement and quality to meet market demands, there is an increased need to improve the leadership capabilities of our managers. Engineers have indicated desire for certain managerial characteristics in their leadership but there have been no studies completed that approached the problem of determining what managerial characteristics were best at improving employee performance. This study addressed the idea of identifying certain managerial characteristics that enhance employee performance. In the early 1990's, McDonnell Douglas Aerospace in St. Louis used a forced distribution system and allocated 35% of its employees into a "exceeds expectations" category and 60% into a "meets expectations" category. A twenty-question 5 point Likert scale survey on managerial capabilities was administered to a sample engineering population that also obtained their "expectations" category. A single factor ANOVA on the survey results determined a statistical difference between the "exceeds" and "meets" employees with four of the managerial capability questions. The "exceeds expectations" employee indicated that supervision did a better job of supporting subordinate development, clearly communicating performance expectations, and providing timely performance feedback when compared to the "meets expectations" employee. The "meets expectations" employee felt that their opinions, when different from their supervisor's, were more often ignored when compared to the "exceeds expectations" employee. These four questions relate to two specific managerial characteristics, "gaining (informal) authority and support" or "control" characteristic and "providing assistance and guidance" or "command" characteristic, that can be emphasized in managerial training programs.

  9. Smagglce: Surface Modeling and Grid Generation for Iced Airfoils: Phase 1 Results

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Braun, Donald C.; Baez, Marivell; Gnepp, Steven

    1999-01-01

    SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils) is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils with grid-based Computational Fluid Dynamics (CFD). It includes tools for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. SmaggIce provides the underlying computations to perform these functions, a GUI (Graphical User Interface) to control and interact with those functions, and graphical displays of results, it is being developed at NASA Glenn Research Center. This paper discusses the overall design of SmaggIce as well as what has been implemented in Phase 1. Phase 1 results provide two types of software tools: interactive ice shape probing and interactive ice shape control. The ice shape probing tools will provide aircraft icing engineers and scientists with an interactive means to measure the physical characteristics of ice shapes. On the other hand, the ice shape control features of SmaggIce will allow engineers to examine input geometry data, correct or modify any deficiencies in the geometry, and perform controlled systematic smoothing to a level that will make the CFD process manageable.

  10. Design of a two-element airfoil in a range of angles of attack

    NASA Astrophysics Data System (ADS)

    Abzalilov, D. F.

    2008-11-01

    A numerical-analytical solution of an inverse boundary-value problem of aerohydrodynamics is obtained for a two-element airfoil in the full formulation, based on the velocity distribution defined on the sought airfoil contours in a range of angles of attack. It is demonstrated that flow separation does not occur in the entire range considered for a specified non-separated velocity distribution on the upper surfaces at the maximum angle of attack and on the lower surface at the minimum angle of attack. An example of constructing a sectional airfoil is given; verification of the results obtained is performed with the use of the Fluent software package.

  11. New airfoil sections for general aviation aircraft. [cruising and flap development tests

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.

    1973-01-01

    A program has been undertaken to develop new airfoil sections suitable for general aviation aircraft, utilizing theoretical and experimental advanced technology developed in recent years primarily for subsonic jet transport and military aircraft. The airfoil development program is one component of the Advanced Technology Light Twin program sponsored by NASA Langley Research Center. Two-dimensional tests of a new airfoil have demonstrated high cruising performance over a fairly wide C sub 1 range, and a C sub 1 max value of 3.69 with Fowler flap and no leading-edge devices. Experimental and theoretical development of additional configurations is under way.

  12. OUT Success Stories: Advanced Airfoils for Wind Turbines

    DOE R&D Accomplishments Database

    Jones, J.; Green, B.

    2000-08-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.

  13. Effect of an extendable slat on the stall behavior of a VR-12 airfoil

    NASA Technical Reports Server (NTRS)

    Dehugues, P. Plantin; Mcalister, K. W.; Tung, C.

    1993-01-01

    Experimental and computational tests were performed on a VR-12 airfoil to determine if the dynamic-stall behavior that normally accompanies high-angle pitch oscillations could be modified by segmenting the forward portion of the airfoil and extending it ahead of the main element. In the extended position the configuration would appear as an airfoil with a leading-edge slat, and in the retracted position it would appear as a conventional VR-12 airfoil. The calculations were obtained from a numerical code that models the vorticity transport equation for an incompressible fluid. These results were compared with test data from the water tunnel facility of the Aeroflightdynamics Directorate at Ames Research Center. Steady and unsteady flows around both airfoils were examined at angles of attack between 0 and 30 deg. The Reynolds number was fixed at 200,000 and the unsteady pitch oscillations followed a sinusoidal motion described by alpha = alpha(sub m) + 10 deg sin(omega t). The mean angle (alpha(sub m)) was varied from 10 to 20 deg and the reduced frequency from 0.05 to 0.20. The results from the experiment and the calculations show that the extended-slat VR-12 airfoil experiences a delay in both static and dynamic stall not experienced by the basic VR-12 airfoil.

  14. Validation of the CQU-DTU-LN1 series of airfoils

    NASA Astrophysics Data System (ADS)

    Shen, W. Z.; Zhu, W. J.; Fischer, A.; Garcia, N. R.; Cheng, J. T.; Chen, J.; Madsen, J.

    2014-12-01

    The CQU-DTU-LN1 series of airfoils were designed with an objective of high lift and low noise emission. In the design process, the aerodynamic performance is obtained using XFOIL while noise emission is obtained with the BPM model. In this paper we present some validations of the designed CQU-DTU-LN118 airfoil by using wind tunnel measurements in the acoustic wind tunnel located at Virginia Tech and numerical computations with the inhouse Q3uic and EllipSys 2D/3D codes. To show the superiority of the new airfoils, comparisons with a NACA64618 airfoil are made. For the aerodynamic features, the designed Cl and Cl/Cd agrees well with the experiment and are in general higher than those of the NACA airfoil. For the acoustic features, the noise emission of the LN118 airfoil is compared with the acoustic measurements and that of the NACA airfoil. Comparisons show that the BPM model can predict correctly the noise changes.

  15. Experimental Droplet Impingement on Several Two-Dimensional Airfoils with Thickness Ratios of 6 to 16 Percent

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Smyers, William H., Jr.; VonGlahn, Uwe

    1956-01-01

    The rate and area of cloud droplet impingement on several two-dimensional swept and unswept airfoils were obtained experimentally in the NACA Lewis icing tunnel with a dye-tracer technique. Airfoil thickness ratios of 6 to 16 percent; angles of attack from 0 deg to 12 deg, and chord sizes from 13 to 96 inches were included in the study. The data were obtained at 152 knots and are extended to other conditions by dimensionless impingement parameters. In general, the data show that the total and local collection efficiencies and impingement limits are primary functions of the modified inertia parameter (in which airspeed, droplet size, and body size are the most significant variables) and the airfoil thickness ratio. Local collection efficiencies and impingement limits also depend on angle of attack. Secondary factors affecting impingement characteristics are airfoil shape, camber, and sweep angle. The impingement characteristics obtained experimentally for the airfoils were within +/-10 percent on the average of the characteristics calculated from theoretical trajectories. Over the range of conditions studied, the experimental data demonstrate that a specific method can be used to predict the impingement characteristics of swept airfoils with large aspect ratios from the data for unswept airfoils of the same series.

  16. Turbulent separated flow over and downstream of a two-element airfoil

    NASA Technical Reports Server (NTRS)

    Adair, D.; Horne, W. C.

    1989-01-01

    Flow characteristics in the vicinity of the flap of a single-slotted airfoil are presented and analyzed. The flow remained attached over the model surfaces, except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8 x 10 to the 6th in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The flow was complicated by the presence of a strong, initially inviscid, jet, emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer.

  17. Turbulent separated flow over and downstream of a two-element airfoil

    NASA Astrophysics Data System (ADS)

    Adair, D.; Horne, W. C.

    1993-07-01

    Flow characteristics in the vicinity of the flap of a single-slotted airfoil are presented and analysed. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7% of flap chord. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8 × 106 in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The flow was complicated by the presence of a strong, initially inviscid, jet, emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer.

  18. Turbulent separated flow over and downstream of a two-element airfoil

    NASA Astrophysics Data System (ADS)

    Adair, D.; Horne, W. C.

    1989-09-01

    Flow characteristics in the vicinity of the flap of a single-slotted airfoil are presented and analysed. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7% of flap chord. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8 × 106 in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The flow was complicated by the presence of a strong, initially inviscid, jet, emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer.

  19. Analysis of the development of dynamic stall based on oscillating airfoil experiments

    NASA Technical Reports Server (NTRS)

    Carr, L. W.; Mcalister, K. W.; Mccroskey, W. J.

    1977-01-01

    The effects of dynamic stall on airfoils oscillating in pitch were investigated by experimentally determining the viscous and inviscid characteristics of the airflow on the NACA 0012 airfoil and on several leading-edge modifications. The test parameters included a wide range of frequencies, Reynolds numbers, and amplitudes-of-oscillation. Three distinct types of separation development were observed within the boundary layer, each leading to classical dynamic stall. The NACA 0012 airfoil is shown to stall by the mechanism of abrupt turbulent leading-edge separation. A detailed step-by-step analysis of the events leading to dynamic stall, and of the results of the stall process, is presented for each of these three types of stall. Techniques for flow analysis in the dynamic stall environment are discussed. A method is presented that reduces most of the oscillating airfoil normal force and pitching-moment data to a single curve, independent of frequency or Reynolds number.

  20. Performance characteristics of multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The multi-anode microchannel arrays (MAMAs) are state-of-the-art, pulse-counting, photoelectric array detectors designed specifically for use in space astrophysics instruments. The present paper provides a description of recent progress related to the development of ultraviolet and visible-light versions of the MAMA detectors, taking into account a comparison of the operating characteristics of these devices with those of photoconductive array detectors, such as the CCDs. Attention is given to MAMA detector system design parameters, the operating characteristics of MAMAs and CCDs, MAMA performance characteristics, and future developments.

  1. High-Lift Separated Flow About Airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1982-01-01

    TRANSEP Calculates flow field about low-speed single-element airfoil at high-angle-of-attack and high-lift conditions with massive boundary-layer separation. TRANSEP includes effects of weak viscous interactions and can be used for subsonic/transonic airfoil design and analysis. The approach used in TRANSEP is based on direct-inverse method and its ability to use either displacement surface or pressure as airfoil boundary condition.

  2. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  3. Airfoil seal system for gas turbine engine

    DOEpatents

    Diakunchak, Ihor S.

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  4. Root region airfoil for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1995-05-23

    A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.

  5. Preliminary Investigation of Cyclic De-Icing of an Airfoil Using an External Electric Heater

    NASA Technical Reports Server (NTRS)

    Lewis, James P.; Bowden, Dean T.

    1952-01-01

    An investigation was conducted in the NACA Lewis icing research tunnel to determine the characteristics and requirements of cyclic deicing of a 65,2-216 airfoil by use of an external electric heater. The present investigation was limited to an airspeed of 175 miles per hour. Data are presented to show the effects of variations in heat-on and heat-off periods, ambient air temperature, liquid-water content, angle of attack, and. heating distribution on the requirements for cyclic deicing. The external heat flow at various icing and heating conditions is also presented. A continuously heated parting strip at the airfoil leading edge was found necessary for quick, complete, and consistent ice removal. The cyclic power requirements were found to be primarily a function of the datum temperature and heat-on time, with the other operating and meteorological variables having a second-order effect. Short heat-on periods and high power densities resulted in the most efficient ice removal, the minimum energy input, and the minimum runback ice formations. The optimum chordwise heating distribution pattern was found to consist of a uniform distribution of cycled power density in the impingement region. Downstream of the impingement region the power density decreased to the limits of heating which, for the conditions investigated, extended from 5.7 percent chord on the upper surface of the airfoil to 8.9 percent chord on the lower surface. Ice removal did not take place at a heater surface temperature of 32 F; surface temperatures of approximately 50 to 100 F were required to effect removal. Better de-icing performance and greater energy savings would be possible with a heater having a higher thermal efficiency.

  6. Study of Unsteady Flow Actuation Produced by Surface Plasma Actuator on 2-D Airfoil

    NASA Astrophysics Data System (ADS)

    Phan, Minh Khang; Shin, Jichul

    2014-10-01

    Effect of flow actuation driven by low current continuous or pulsed DC surface glow discharge plasma actuator is studied. Schlieren image of induced flow on flat plate taken at a high repetition rate reveals that the actuation is mostly initiated near the cathode. Assuming that the actuation is mostly achieved by ions in the cathode sheath region, numerical model for the source of flow actuation is obtained by analytical estimation of ion pressure force created in DC plasma sheath near the cathode and added in momentum equation as a body force term. Modeled plasma flow actuator is simulated with NACA0012 airfoil oscillating over a certain range of angle of attack (AoA) at specific reduced frequencies of airfoil. By changing actuation authority according to the change in AoA, stabilization of unsteady flow field is improved and hence steady aerodynamic performance can be maintained. Computational result shows that plasma actuation is only effective in modifying aerodynamic characteristics of separated flow. It turns out that plasma pulse frequency should be tuned for optimal performance depending on phase angle and rotating speed. The actuation authority can be parameterized by a ratio between plasma pulse frequency and reduced frequency.

  7. Wind-Tunnel Investigation of an NACA 23021 Airfoil with a 0.32-Airfoil-Chord Double Slotted Flap

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Riebe, John M

    1944-01-01

    An investigation was made in the LMAL 7- by 10-foot wind tunnel of a NACA 23021 airfoil with a double slotted flap having a chord 32 percent of the airfoil chord (0.32c) to determine the aerodynamic section characteristics with the flaps deflected at various positions. The effects of moving the fore flap and rear flap as a unit and of deflecting or removing the lower lip of the slot were also determined. Three positions were selected for the fore flap and at each position the maximum lift of the airfoil was obtained with the rear flap at the maximum deflection used at that fore-flap position. The section lift of the airfoil increased as the fore flap was extended and maximum lift was obtained with the fore flap deflected 30 deg in the most extended position. This arrangement provided a maximum section lift coefficient of 3.31, which was higher than the value obtained with either a 0.2566c or a 0.40c single-slotted-flap arrangement and 0.25 less than the value obtained with a 0.4c double-slotted-flap arrangement on the same airfoil. The values of the profile-drag coefficient obtained with the 0.32c double slotted flap were larger than those for the 0.2566c or 0.40c single slotted flaps for section lift coefficients between 1.0 and approximately 2.7. At all values of the section lift coefficient above 1.0, the 0.40c double slotted flap had a lower profile drag than the 0.32c double slotted flap. At various values of the maximum section lift coefficient produced by various flap defections, the 0.32c double slotted flap gave negative section pitching-moment coefficients that were higher than those of other slotted flaps on the same airfoil. The 0.32c double slotted flap gave approximately the same maximum section lift coefficient as, but higher profile-drag coefficients over the entire lift range than, a similar arrangement of a 0.30c double slotted flap on an NACA 23012 airfoil.

  8. Unsteady aerodynamics of conventional and supercritical airfoils

    NASA Technical Reports Server (NTRS)

    Davis, S. S.; Malcolm, G. N.

    1980-01-01

    The unsteady aerodynamics of a conventional and a supercritical airfoil are compared by examining measured chordwise unsteady pressure time-histories from four selected flow conditions. Although an oscillating supercritical airfoil excites more harmonics, the strength of the airfoil's shock wave is the more important parameter governing the complexity of the unsteady flow. Whether they are conventional or supercritical, airfoils that support weak shock waves induce unsteady loads that are qualitatively predictable with classical theories; flows with strong shock waves are sensitive to details of the shock-wave and boundary-layer interaction and cannot be adequately predicted.

  9. Wavy flow cooling concept for turbine airfoils

    DOEpatents

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  10. Performance characteristics of the Cooper PC-9 centrifugal compressor

    SciTech Connect

    Foster, R.E.; Neely, R.F.

    1988-06-30

    Mathematical performance modeling of the PC-9 centrifugal compressor has been completed. Performance characteristics curves have never been obtained for them in test loops with the same degree of accuracy as for the uprated axial compressors and, consequently, computer modeling of the top cascade and purge cascades has been very difficult and of limited value. This compressor modeling work has been carried out in an attempt to generate data which would more accurately define the compressor's performance and would permit more accurate cascade modeling. A computer code, COMPAL, was used to mathematically model the PC-9 performance with variations in gas composition, flow ratios, pressure ratios, speed and temperature. The results of this effort, in the form of graphs, with information about the compressor and the code, are the subject of this report. Compressor characteristic curves are featured. 13 figs.

  11. A recontoured, upper surface designed to increase the maximum lift coefficient of a modified NACA 65 (0.82) (9.9) airfoil section

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.

    1984-01-01

    A recontoured upper surface was designed to increase the maximum lift coefficient of a modified NACA 65 (0.82)(9.9) airfoil section which was tested at Mach numbers of 0.3 and 0.4 and Reynolds numbers of 2.3x10(6) and 4.3x10(6). The original 6-series section was tested for comparison with the recontoured section. The recontoured profile was found to have a higher maximum lift coefficient at all test conditions than the original airfoil. The recontoured airfoil showed less drag and nearly the same pitching moment characteristics as the original 6-series airfoil at all test conditions. The improvements found for the recontoured airfoil of the present study are similar to those found during previous investigations of recontoured 6-series airfoils with less camber.

  12. Development of two supercritical airfoils with a thickness-to-chord ratio of 0.20 and design lift coefficients of 0.3 and 0.4

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1976-01-01

    Two supercritical airfoils were developed specifically for application to span distributed loading cargo aircraft. These airfoils have a thickness-to-chord ratio of 0.20 and design lift coefficients of 0.3 and 0.4, and were derived by modifying a recently developed supercritical airfoil having a thickness-to-chord ratio of 0.18 and a design lift coefficient of 0.5. The aerodynamic characteristics were calculated using a theoretical method which computes the flow field about an airfoil having supercritical surface velocities.

  13. Performance characteristics of high-MTF screen-film systems

    NASA Astrophysics Data System (ADS)

    Bunch, Phillip C.

    1994-05-01

    The development of specialized dyes that essentially prevent light from crossing the film base in double-coated gadolinium oxysulfide (GOS) phosphor-based radiographic systems has made it possible to design screen-film combinations with significantly improved MTF characteristics. Specifically, by using GOS-based screens with reduced light diffusion properties in combination with near-zero-crossover radiographic films, significantly improved MTF can be obtained at competitive speed and effective x-ray attenuation levels. The basic performance characteristics of such screen-film systems are described in some detail, including x-ray attenuation properties, sensitivity to scattered x-radiation, sensitometric data, contrast transfer functions, noise equivalent quanta, and detective quantum efficiency. It is also shown that high-MTF GOS screens are available that meet or exceed the performance characteristics of comparable UV-emitting yttrium tantalate phosphor-based materials.

  14. Geometry Modeling and Grid Generation for "Icing Effects" and "Ice Accretion" Simulations on Airfoils

    NASA Technical Reports Server (NTRS)

    Choo, Yung; Vickerman, Mary; Lee, Ki D.; Thompson, David S.

    2000-01-01

    There are two distinct icing-related problems for airfoils that can be simulated. One is predicting the effects of ice on the aerodynamic performance of airfoils when ice geometry is known ("icing effects" study). The other is simulating ice accretion under specified icing conditions ("ice accretion" simulation). This paper will address development of two different software packages for two-dimensional geometry preparation and grid generation for both "icing effects" and "ice accretion" studies.

  15. Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability

    NASA Technical Reports Server (NTRS)

    Noonan, K. W. (Inventor)

    1983-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.

  16. Input description for Jameson's three-dimensional transonic airfoil analysis program

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Davis, R. M.

    1974-01-01

    The input parameters are presented for a computer program which performs calculations for inviscid isentropic transonic flow over three dimensional airfoils with straight leading edges. The free stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where they occur in the flow. The finite difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane.

  17. The structure of separated flow regions occurring near the leading edge of airfoils, including transition

    NASA Technical Reports Server (NTRS)

    Mueller, T. J.

    1985-01-01

    The structure and behavior of the separation bubble including transition and the redeveloping boundary layer after reattachment over an airfoil at low Reynolds numbers was studied. The intent is to further the understanding of the complex flow phenomena so that analytic methods for predicting their formation and development can be improved. These analytic techniques have applications in the design and performance prediction of airfoils operating in the low Reynolds number flight regime.

  18. Performance characteristics of proximity focused ultraviolet image converters

    NASA Technical Reports Server (NTRS)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for ultraviolet to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs - Te photocathodes, and P-11 phosphors on fiber optic output windows.

  19. Performance characteristics of proximity focused ultraviolet image converters

    NASA Technical Reports Server (NTRS)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for UV to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs-Te photocathodes and P-11 phosphors on fiber optic output windows.

  20. Do the Managerial Characteristics of Schools Influence Their Performance?

    ERIC Educational Resources Information Center

    Agasisti, Tommaso; Bonomi, Francesca; Sibiano, Piergiacomo

    2012-01-01

    Purpose: The purpose of this paper is to investigate the role of governance and managerial characteristics of schools. More specifically, the aim is to individuate the factors that are associated to higher schools' performances, as measured through student achievement. Design/methodology/approach: The research is conducted by means of a survey in…

  1. Performance and carcass characteristics of growing pigs fed crude glycerol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance and carcass characteristics of growing pigs fed crude glycerol, a co-product of biodiesel production, were determined in a 138-d feeding trial conducted at the Iowa State University Swine Nutrition Research Farm, Ames, IA. Pigs were weaned at 21d of age and were fed a commercial starter-...

  2. Influence of hinge point on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Wu, P.; Li, C.

    2013-12-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon.

  3. Advancements in adaptive aerodynamic technologies for airfoils and wings

    NASA Astrophysics Data System (ADS)

    Jepson, Jeffrey Keith

    Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as

  4. Parametric Investigation of a High-Lift Airfoil at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Dominik, Chet J.

    1997-01-01

    A new two-dimensional, three-element, advanced high-lift research airfoil has been tested in the NASA Langley Research Center s Low-Turbulence Pressure Tunnel at a chord Reynolds number up to 1.6 x 107. The components of this high-lift airfoil have been designed using a incompressible computational code (INS2D). The design was to provide high maximum-lift values while maintaining attached flow on the single-segment flap at landing conditions. The performance of the new NASA research airfoil is compared to a similar reference high-lift airfoil. On the new high-lift airfoil the effects of Reynolds number on slat and flap rigging have been studied experimentally, as well as the Mach number effects. The performance trend of the high-lift design is comparable to that predicted by INS2D over much of the angle-of-attack range. However, the code did not accurately predict the airfoil performance or the configuration-based trends near maximum lift where the compressibility effect could play a major role.

  5. Job characteristics, flow, and performance: the moderating role of conscientiousness.

    PubMed

    Demerouti, Evangelia

    2006-07-01

    The present article aims to show the importance of positive work-related experiences within occupational health psychology by examining the relationship between flow at work (i.e., absorption, work enjoyment, and intrinsic work motivation) and job performance. On the basis of the literature, it was hypothesized that (a) motivating job characteristics are positively related to flow at work and (b) conscientiousness moderates the relationship between flow and other ratings of (in-role and out-of-role) performance. The hypotheses were tested on a sample of 113 employees from several occupations. Results of moderated structural equation modeling analyses generally supported the hypotheses. Motivating job characteristics were predictive of flow, and flow predicted in-role and extra-role performance, for only conscientious employees. PMID:16834474

  6. Performance characteristics of brush seals for limited-life engines

    SciTech Connect

    Chupp, R.E. ); Dowler, C.A. )

    1993-04-01

    Brush seals are potential replacements for air-to-air labyrinth seals in gas turbine engines. An investigation has been conducted to determine the performance characteristics of brush seals for application in limited-life gas turbine engines. An elevated temperature, rotating test rig was designed and built to test labyrinth and brush seals in simulated subsonic and supersonic engine conditions. Results from initial tests for subsonic applications demonstrated that brush seals exhibit appreciably lower leakage compared to labyrinth seals, and thus offer significant engine performance improvements. Performance results have been obtained showing the effect of various brush seal parameters, including: initial interference, backplate gap, and multiple brush seals in series.

  7. Parametric study of geohydrologic performance characteristics for geologic waste repositories

    SciTech Connect

    Bailey, C.E.; Marine, I.W.

    1980-11-01

    One of the major objectives of the National Waste Terminal Storage Program is to identify potential geologic sites for storage and isolation of radioactive waste (and possibly irradiated fuel). Potential sites for the storage and isolation of radioactive waste or spent fuel in a geologic rock unit are being carefully evaluated to ensure that radionuclides from the stored waste or fuel will never appear in the biosphere in amounts that would constitute a hazard to the health and safety of the public. The objective of this report is to quantify and present in graphical form the effects of significant geohydrologic and other performance characteristics that would influence the movement of radionuclides from a storage site in a rock unit to the biosphere. The effort in this study was focused on transport by groundwater because that is the most likely method of radionuclide escape. Graphs of the major performance characteristics that influence the transport of radionuclides from a repository to the biosphere by groundwater are presented. The major characteristics addressed are radioactive decay, leach rate, hydraulic conductivity, porosity, groundwater gradient, hydrodynamic dispersion, ion exchange, and distance to the biosphere. These major performance characteristics are combind with each other and with the results of certain other combinations and presented in graphical form to provide the interrelationships of values measured during field studies. The graphical form of presentation should be useful in the screening process of site selection. An appendix illustrates the use of these graphs to assess the suitability of a site.

  8. The structure of separated flow regions occurring near the leading edge of airfoils - including transition

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Laser Doppler Velocimeter data, static pressure data, and smoke flow visualization data was obtained and analyzed to correlate with separation bubble data. The Eppler 387 airfoil was focused on at a chord Reynolds number of 100,000 and an angle of attack of 2 deg. Additional data was also obtained from the NACA 663-018 airfoil at a chord Reynolds number of 160,000 and an angle of attack of 12 deg. The structure and behavior of the transition separation bubble was documented along with the redeveloping boundary layer after reattachment over an airfoil at low Reynolds numbers. The understanding of the complex flow phenomena was examined so that analytic methods for predicting their formation and development can be improved. These analytic techniques have applications in the design and performance prediction of airfoils operating in the low Reynolds number flight regime.

  9. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1994-01-01

    A unique active flow-control device is proposed for the control of unsteady separated flow associated with the dynamic stall of airfoils. The device is an adaptive-geometry leading-edge which will allow controlled, dynamic modification of the leading-edge profile of an airfoil while the airfoil is executing an angle-of-attack pitch-up maneuver. A carbon-fiber composite skin has been bench tested, and a wind tunnel model is under construction. A baseline parameter study of compressible dynamic stall was performed for flow over an NACA 0012 airfoil. Parameters included Mach number, pitch rate, pitch history, and boundary layer tripping. Dynamic stall data were recorded via point-diffraction interferometry and the interferograms were analyzed with in-house developed image processing software. A new high-speed phase-locked photographic image recording system was developed for real-time documentation of dynamic stall.

  10. The influence of laminar separation and transition on low Reynolds number airfoil hysteresis

    NASA Technical Reports Server (NTRS)

    Mueller, T. J.

    1984-01-01

    An experimental study of the Lissaman 7769 and Miley MO6-13-128 airfoils at low chord Reynolds numbers is presented. Although both airfoils perform well near their design Reynolds number of about 600,000, they each produce a different type of hysteresis loop in the lift and drag forces when operated below chord Reynolds numbers of 300,000. The type of hysteresis loop was found to depend upon the relative location of laminar separation and transition. The influence of disturbance environment and experimental procedure on the low Reynolds number airfoil boundary layer behavior is also presented. The use of potential flow solutions to help predict how a given airfoil will behave at low Reynolds numbers is also discussed.

  11. Auditory virtual environment with dynamic room characteristics for music performances

    NASA Astrophysics Data System (ADS)

    Choi, Daniel Dhaham

    A room-adaptive system was designed to simulate an electro-acoustic space that changes room characteristics in real-time according to the content of sound. In this specific case, the focus of the sound components is on the different styles and genres of music. This system is composed of real-time music recognition algorithms that analyze the different elements of music, determine the desired room characteristics, and output the acoustical parameters via multi-channel room simulation mechanisms. The system modifies the acoustic properties of a space and enables it to "improvise" its acoustical parameters based on the sounds of the music performances.

  12. Performance characteristics of an S-600 portable atomic absorption spectrophotometer

    SciTech Connect

    Pelieva, L.A.; Dyndar, Zh.I.

    1995-12-01

    Performance characteristics of an S-600 portable atomic absorption spectrophotometer are discussed. The optimum analysis conditions, characteristic mass, and detection limit for determining Be, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in solutions and in powders are specified. Direct analysis of solid-state samples (standard soil samples) is described. The relative error of measurement by the calibration graph method lies, with few exceptions, within 7-30%, and by the addition method, within 4-20%. The time needed for a single element determination is 10-20 min.

  13. Prediction of Film Cooling on Gas Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1994-01-01

    A three-dimensional Navier-Stokes analysis tool has been developed in order to study the effect of film cooling on the flow and heat transfer characteristics of actual turbine airfoils. An existing code (Arnone et al., 1991) has been modified for the purpose. The code is an explicit, multigrid, cell-centered, finite volume code with an algebraic turbulence model. Eigenvalue scaled artificial dissipation and variable-coefficient implicit residual smoothing are used with a full-multigrid technique. Moreover, Mayle's transition criterion (Mayle, 1991) is used. The effects of film cooling have been incorporated into the code in the form of appropriate boundary conditions at the hole locations on the airfoil surface. Each hole exit is represented by several control volumes, thus providing an ability to study the effect of hole shape on the film-cooling characteristics. Comparison is fair with near mid-span experimental data for four and nine rows of cooling holes, five on the shower head, and two rows each on the pressure and suction surfaces. The computations, however, show a strong spanwise variation of the heat transfer coefficient on the airfoil surface, specially with shower-head cooling.

  14. Numerical study of the Interaction between Nonsteady Transition and Separation on Oscillating Airfoils

    NASA Astrophysics Data System (ADS)

    Nandi, Tarak; Jayaraman, Balaji; Lavely, Adam; Vijayakumar, Ganesh; Paterson, Eric; Brasseur, James

    2013-11-01

    Strong correlation between vertical and horizontal turbulent motions in a daytime atmospheric boundary layer can produce > 50 % variability in local angle of attack (AoA) on commercial wind turbine blade sections. Lee and Gerontakos (JFM 2004) reported an unique experiment where nonsteady transition and boundary layer (BL) separation were estimated on an oscillating airfoil at Re ~105 and reduced frequencies upto 0.2. We use the k - ω SST URANS model and the γ - Reθ transition model to explore the predictive capability of these models,and to study the dynamic interactions between transition and separation on an oscillating airfoil with focus on the 3D time-dependent BL characteristics. The calculations are done in OpenFOAM on a wing section of aspect ratio 1 and periodic spanwise boundary conditions. Grid resolution analysis shows that 6M cells are required to resolve the viscous sublayer and capture separation. Fixed AoA cases show good lift comparison but the transition model performs better at higher AoA's when separation-induced transition occurs;fully turbulent URANS mispredicts separation and lift. Prediction of the oscillating cases show differences with experiment in hysteresis loops of the force coefficients. These and related issues will be discussed. This work is being supported by the DOE.

  15. Nonlinear effects of flow unsteadiness on the acoustic radiation of a heaving airfoil

    NASA Astrophysics Data System (ADS)

    Manela, Avshalom

    2013-12-01

    The study considers the combined effects of boundary animation (small-amplitude heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic signature of a thin rigid airfoil in low-Mach number flow. The potential-flow problem is analysed using the Brown and Michael equation, yielding the incident vortex trajectory and time evolution of trailing edge wake. The dynamical description serves as an effective source term to evaluate the far-field sound using Powell-Howe analogy. The results identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance of nonlinear eddy-airfoil interactions on the acoustic radiation. Based on the value of scaled heaving frequency ωa/U (with ω the dimensional heaving frequency, a the airfoil half-chord, and U the mean flow speed), the system behaviour can be divided into two characteristic regimes: (i) for ωa/U≪1, the effect of heaving is minor, and the acoustic response is well approximated by considering the interaction of a line vortex with a stationary airfoil; (ii) for ωa/U≫1, the impact of heaving is dominant, radiating sound through an “airfoil motion” dipole oriented along the direction of heaving. In between (for ωa/U~O(1)), an intermediate regime takes place. The results indicate that trailing edge vorticity has a two-fold impact on the acoustic far field: while reducing pressure fluctuations generated by incident vortex interaction with the airfoil, trailing edge vortices transmit sound along the mean-flow direction, characterized by airfoil heaving frequency. The “silencing” effect of trailing edge vorticity is particularly efficient when the incident vortex passes close to the airfoil trailing edge: at that time, application of the Kutta condition implies the release of a trailing edge vortex in the opposite direction to the incident vortex; the released vortex then detaches from the airfoil and follows the incident vortex, forming a “silent” vortex pair

  16. Experimental investigation of a 10-percent-thick helicopter rotor airfoil section designed with a viscous transonic analysis code

    NASA Technical Reports Server (NTRS)

    Noonan, K. W.

    1981-01-01

    An investigation was conducted in the Langley 6- by 28-Inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics of a 10-percent-thick helicopter rotor airfoil at Mach numbers from 0.33 to 0.87 and respective Reynolds numbers from 4.9 x 10 to the 6th to 9.8 x 10 to the 6th. This airfoil, designated the RC-10(N)-1, was also investigated at Reynolds numbers from 3.0 x 10 to the 6th to 7.3 x 10 to the 6th at respective Mach numbers of 0.33 to 0.83 for comparison wit the SC 1095 (with tab) airfoil. The RC-10(N)-1 airfoil was designed by the use of a viscous transonic analysis code. The results of the investigation indicate that the RC-10(N)-1 airfoil met all the design goals. At a Reynolds number of about 9.4 x 10 to the 6th the drag divergence Mach number at zero normal-force coefficient was 0.815 with a corresponding pitching-moment coefficient of zero. The drag divergence Mach number at a normal-force coefficient of 0.9 and a Reynolds number of about 8.0 x 10 to the 6th was 0.61. The drag divergence Mach number of this new airfoil was higher than that of the SC 1095 airfoil at normal-force coefficients above 0.3. Measurements in the same wind tunnel at comparable Reynolds numbers indicated that the maximum normal-force coefficient of the RC-10(N)-1 airfoil was higher than that of the NACA 0012 airfoil for Mach numbers above about 0.35 and was about the same as that of the SC 1095 airfoil for Mach numbers up to 0.5.

  17. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  18. Measuring Lift with the Wright Airfoils

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  19. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  20. AFSMO/AFSCL- AIRFOIL SMOOTHING AND SCALING

    NASA Technical Reports Server (NTRS)

    Morgan, H. L

    1994-01-01

    Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.

  1. Aerodynamic data banks for Clark-Y, NACA 4-digit and NACA 16-series airfoil families

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Camba, J., III; Morris, P. M.

    1986-01-01

    With the renewed interest in propellers as means of obtaining thrust and fuel efficiency in addition to the increased utilization of the computer, a significant amount of progress was made in the development of theoretical models to predict the performance of propeller systems. Inherent in the majority of the theoretical performance models to date is the need for airfoil data banks which provide lift, drag, and moment coefficient values as a function of Mach number, angle-of-attack, maximum thickness to chord ratio, and Reynolds number. Realizing the need for such data, a study was initiated to provide airfoil data banks for three commonly used airfoil families in propeller design and analysis. The families chosen consisted of the Clark-Y, NACA 16 series, and NACA 4 digit series airfoils. The various component of each computer code, the source of the data used to create the airfoil data bank, the limitations of each data bank, program listing, and a sample case with its associated input-output are described. Each airfoil data bank computer code was written to be used on the Amdahl Computer system, which is IBM compatible and uses Fortran.

  2. Computational Fluid Dynamic simulation of airfoils in unsteady low Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Amiralaei, Mohammadreza

    The inherent complexity of low Reynolds number (LRN) flows and their respective viscous vortical patterns demand an accurate solution method to achieve the desired accuracy. This complicated flow field needs even more robust methods when the flow is unsteady. The flow field of unsteady airfoils and wings in LRN regime is challenging to solve and Computational Fluid Dynamics (CFD) simulations stand out as solid solution techniques in this area. This thesis is motivated by an existing rotating-flapping mechanism, whose kinematics components can be broken into pitching, plunging and a novel figure-of-eight-like flapping motion of its blades and each blade's cross section. The focus is on two-dimensional low Reynolds number (LRN) flows using Computational Fluid Dynamics (CFD) and a Finite Volume Method (FVM). As one of the targets is to simulate a pair of blades, and consequently a pair of airfoils, a mesh motion library is developed to perform rotational and translational motions of multi-body configurations. The library and its sub-routines are tested on pairs of pitching, plunging and flapping airfoils, where the moving mesh problem is performed with a significant gain in the computational time compared to other moving mesh techniques such as Laplacian smoothing algorithm. The simulations of a single airfoil under harmonic and the novel figure-of-eight-like flapping motions, respectively, are conducted within 67% and 80% time it took to obtain a steady solution using the Laplace smoothing mesh motion algorithm, while the calculated force coefficients were in reasonably close agreement. Flow fields of single unsteady airfoils under pitching, plunging and figure-of-eight flapping motions are also simulated in this thesis accompanied with extensive parametric studies. The simulations of the considered figure-of-eight flapping pattern shows that its highly inclined asymmetrical kinematics results in higher vertical lift coefficients than the existing flapping patterns

  3. Wind powered generator with cyclic airfoil latching

    SciTech Connect

    Bair, P.

    1981-12-01

    A wind powered generator rotatable about a vertical axis is described. A plurality of vertically disposed airfoils are provided, the airfoils being rotatable about a vertical axis parallel to the axis of the generator. The airfoils are selectively latched to be disposed perpendicularly of the wind direction during one phase of their revolution about the generator axis and are selectively unlatched to be permitted to rotate into a position generally parallel to the wind direction during other phases of their revolution. The latching and unlatching of the airfoils is determined by the wind direction and is effected by electronic means which determine the point of latching and unlatching as a function of the wind direction measured by a wind vane. The airfoils may comprise sails composed of a flexible material stretched into a predetermined shape on a frame.

  4. Transonic flow past an airfoil with condensation

    NASA Technical Reports Server (NTRS)

    Schmidt, B.

    1978-01-01

    In connection with investigations conducted to determine the influence of water vapor on experiments in wind tunnels, the question arose as to what changes due to vapor condensation might be expected in airfoil measurements. Density measurements on circular-arc airfoils aided by an interferometer in choked tunnels with parallel walls show that increasing humidity produces increasing changes in the flow field. The flow becomes nonstationary at high humidity. At the airfoil, however, the influence of the condensation is only felt, inasmuch as the shock bounding the local supersonic region moves upstream with increasing humidity while its intensity decreases. The density distribution upstream of the shock remains unchanged. Even if the flow becomes nonstationary in the vicinity of the airfoil, no changes occur at the airfoil.

  5. Viscous Transonic Airfoil Workshop compendium of results

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1987-01-01

    Results from the Viscous Transonic Airfoil Workshop held at the AIAA 25th Aerospace Sciences Meeting at Reno, NV in January 1987, are compared with each other and with experimental data. Test cases used in this workshop include attached and separated transonic flows for three different airfoils: the NACA 0012 airfoil, the RAE 2822 airfoil, and the Jones airfoil. A total of 23 sets of numerical results from 15 different author groups are included. The numerical methods used vary widely and include: 16 Navier-Stokes methods, 2 Euler/boundary-layer methods, and 5 full-potential/boundary-layer methods. The results indicate a high degree of sophistication among the numerical methods with generally good agreement between the various computed and experimental results for attached or moderately-separated cases. The agreement for cases with larger separation is only fair and suggests additional work is required in this area.

  6. Aerodynamic sound of flow past an airfoil

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  7. Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Yuan, Lin; Wang, Yueke; Sang, Tian; Yang, Guofeng

    2016-08-01

    We investigate the transmittance characteristics of graphene ribbons numerically. It is found that the transmission dips originate from the transverse and longitudinal resonances of edge graphene plasmon modes, supported by the graphene ribbon resonator. The environmental refractive index changes are detected by measuring the resulting spectral shifts of the resonant transmission dip, so the graphene ribbons can be applied to plasmonic sensor in infrared. Simulation results show that sensing performances for each resonant mode are similar, and figure of merit can be up to 6. Beside, thanks to the tunable permittivity of graphene by bias voltages, the transmittance spectra and sensor performances can be easily tuned.

  8. Internal performance characteristics of short convergent-divergent exhaust nozzles designed by the method of characteristics

    NASA Technical Reports Server (NTRS)

    Krull, H George; Beale, William T

    1956-01-01

    Internal performance data on a short exhaust nozzle designed by the method of characteristics were obtained over a range of pressure ratios from 1.5 to 22. The peak thrust coefficient was not affected by a shortened divergent section, but it occurred at lower pressure ratios due to reduction in expansion ratio. This nozzle contour based on characteristics solution gave higher thrust coefficients than a conical convergent-divergent nozzle of equivalent length. Abrupt-inlet sections permitted a reduction in nozzle length without a thrust-coefficient reduction.

  9. Design optimization of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Joh, C.-Y.; Grossman, B.; Haftka, R. T.

    1991-01-01

    Numerical optimization procedures were considered for the design of airfoils in transonic flow based on the transonic small disturbance (TSD) and Euler equations. A sequential approximation optimization technique was implemented with an accurate approximation of the wave drag based on the Nixon's coordinate straining approach. A modification of the Euler surface boundary conditions was implemented in order to efficiently compute design sensitivities without remeshing the grid. Two effective design procedures producing converged designs in approximately 10 global iterations were developed: interchanging the role of the objective function and constraint and the direct lift maximization with move limits which were fixed absolute values of the design variables.

  10. Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1996-01-01

    An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

  11. Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin

    Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated

  12. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Kaza, Krishna Rao V.

    1992-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  13. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    NASA Technical Reports Server (NTRS)

    Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.

    1993-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  14. Airfoil design: Finding the balance between design lift and structural stiffness

    NASA Astrophysics Data System (ADS)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik; Vronsky, Tomas

    2014-06-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup, airfoils were designed with relative thicknesses between 18% and 36%, a structural box height of 85% of the relative thickness, and varying box widths in chordwise direction between 20% and 40% of the chord length. The results from these airfoil designs showed that for a given flapwise stiffness, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were supported by an analysis of the three airfoil families Riso-C2, DU and FFA, where the lift-drag ratio as a function of flapwise stiffness was decreasing, but relatively independent of the airfoil design, and the design lift coefficient was varying depending on the design philosophy. To make the analysis complete also design lift and lift- drag ratio as a function of edgewise and torsional stiffness were shown.

  15. Two-dimensional wind-tunnel tests of a NASA supercritical airfoil with various high-lift systems. Volume 1: Data analysis

    NASA Technical Reports Server (NTRS)

    Omar, E.; Zierten, T.; Mahal, A.

    1977-01-01

    High-lift systems for a NASA, 9.3%, method for calculating the viscous flow about two-dimensional multicomponent airfoils was evaluated by comparing its predictions with test data. High-lift systems derived from supercritical airfoils were compared in terms of performance to high-lift systems derived from conventional airfoils. The high-lift systems for the supercritical airfoil were designed to achieve maximum lift and consisted of: a single-slotted flap; a double-slotted flap and a leading-edge slat; and a triple-slotted flap and a leading-edge slat. Agreement between theoretical predictions and experimental results are also discussed.

  16. Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range

    NASA Technical Reports Server (NTRS)

    Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.

  17. A critical assessment of UH-60 main rotor blade airfoil data

    NASA Technical Reports Server (NTRS)

    Totah, Joseph

    1993-01-01

    Many current comprehensive rotorcraft analyses employ lifting-line methods that require main rotor blade airfoil data, typically obtained from wind tunnel tests. In order to effectively evaluate these lifting-line methods, it is of the utmost importance to ensure that the airfoil section data are free of inaccuracies. A critical assessment of the SC1095 and SC1094R8 airfoil data used on the UH-60 main rotor blade was performed for that reason. Nine sources of wind tunnel data were examined, all of which contain SC1095 data and four of which also contain SC1094R8 data. Findings indicate that the most accurate data were generated in 1982 at the 11-Foot Wind Tunnel Facility at NASA Ames Research Center and in 1985 at the 6-inch by 22-inch transonic wind tunnel facility at Ohio State University. It has not been determined if data from these two sources are sufficiently accurate for their use in comprehensive rotorcraft analytical models of the UH-60. It is recommended that new airfoil tables be created for both airfoils using the existing data. Additional wind tunnel experimentation is also recommended to provide high quality data for correlation with these new airfoil tables.

  18. A two dimensional study of rotor/airfoil interaction in hover

    NASA Technical Reports Server (NTRS)

    Lee, Chyang S.

    1988-01-01

    A two dimensional model for the chordwise flow near the wing tip of the tilt rotor in hover is presented. The airfoil is represented by vortex panels and the rotor is modeled by doublet panels. The rotor slipstream and the airfoil wake are simulated by free point vortices. Calculations on a 20 percent thick elliptical airfoil under a uniform rotor inflow are performed. Variations on rotor size, spacing between the rotor and the airfoil, ground effect, and the influence upper surface blowing in download reduction are analyzed. Rotor size has only a minor influence on download when it is small. Increase of the rotor/airfoil spacing causes a gradual decrease on download. Proximity to the ground effectively reduces the download and makes the wake unsteady. The surface blowing changes the whole flow structure and significantly reduces the download within the assumption of a potential solution. Improvement on the present model is recommended to estimate the wall jets induced suction on the airfoil lower surface.

  19. Wind tunnel evaluation of a truncated NACA 64-621 airfoil for wind turbine applications

    SciTech Connect

    Law, S.P.; Gregorek, G.M.

    1987-07-01

    An experimental program to measure the aerodynamic performance of a NACA 64-621 airfoil with a truncated trailing edge for wind turbine applications has been conducted in the Ohio State University Aeronautical and Astronautical Research Laboratory 6 in. x 22 in. pressurized wind tunnel. The blunted or trailing edge truncated (TET) airfoil has an advantage over similar sharp trailing edge airfoils because it is able to streamline a larger spar structure, while also providing aerodynamic properties that are quite good. Surface pressures were measured and integrated to determine the lift, pressure drag, and moment coefficients over angles of attack ranging from -14 to +90 at Mach 0.2 and Reynolds numbers of 1,000,000 and 600,000. Results are compared to the NACA 0025, 0030, and 0035 thick airfoils with sharp trailing edges. Comparison shows that the 30% thick NACA 64-621-TET airfoil has higher maximum lift, higher lift curve slope, lower drag at higher lift coefficients, and higher chordwise force coefficient than similar thick airfoils with sharp trailing edges.

  20. Effect of cavity on shock oscillation in transonic flow over RAE2822 supercritical airfoil

    NASA Astrophysics Data System (ADS)

    Rahman, M. Rizwanur; Labib, Md. Itmam; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Setoguchi, T.

    2016-07-01

    Transonic flow past a supercritical airfoil is strongly influenced by the interaction of shock wave with boundary layer. This interaction induces unsteady self-sustaining shock wave oscillation, flow instability, drag rise and buffet onset which limit the flight envelop. In the present study, a computational analysis has been carried out to investigate the flow past a supercritical RAE2822 airfoil in transonic speeds. To control the shock wave oscillation, a cavity is introduced on the airfoil surface where shock wave oscillates. Different geometric configurations have been investigated for finding optimum cavity geometry and dimension. Unsteady Reynolds averaged Navier-Stokes equations (RANS) are computed at Mach 0.729 with an angle of attack of 5°. Computed results are well validated with the available experimental data in case of baseline airfoil. However, in case of airfoil with control cavity; it has been observed that the introduction of cavity completely suppresses the unsteady shock wave oscillation. Further, significant drag reduction and successive improvement of aerodynamic performance have been observed in airfoil with shock control cavity.

  1. Wind tunnel evaluation of a truncated NACA 64-621 airfoil for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Law, S. P.; Gregorek, G. M.

    1987-01-01

    An experimental program to measure the aerodynamic performance of a NACA 64-621 airfoil with a truncated trailing edge for wind turbine applications has been conducted in the Ohio State University Aeronautical and Astronautical Research Laboratory 6 in. by 21 in. pressurized wind tunnel. The blunted or trailing edge truncated (TET) airfoil has an advantage over similar trailing edge airfoils because it is able to streamline a larger spar structure, while also providing aerodynamic properties that are quite good. Surface pressures were measured and integrated to determine the lift, pressure drag, and moment coefficients over angles of attack ranging from -14 to +90 deg at Mach 0.2 and Reynolds numbers of 1,000,000 and 600,000. Results are compared to the NACA 0025, 0030, and 0035 thick airfoils with sharp trailing edges. Comparison shows that the 30 percent thick NACA 64-621-TET airfoil has higher maximum lift, higher lift curve slope, lower drag at higher lift coefficients, and higher chordwise force coefficient than similar thick airfoils with sharp trailing edges.

  2. A critical assessment of UH-60 main rotor blade airfoil data

    NASA Technical Reports Server (NTRS)

    Totah, Joseph

    1993-01-01

    Many current comprehensive rotorcraft analyses employ lifting-line methods that require main rotor blade airfoil data, typically obtained from wind tunnel tests. In order to effectively evaluate these lifting-line methods, it is of the utmost importance to ensure that the airfoil section data are free of inaccuracies. A critical assessment of the SC1095 and SC1094R8 airfoil data used on the UH-60 main rotor blade was performed for that reason. Nine sources of wind tunnel data were examined, all of which contain SC1095 data and four of which also contain SC1094R8 data. Findings indicate that the most accurate data were generated in 1982 at the 11-Foot Wind Tunnel Facility at NASA Ames Research Center and in 1985 at the 6-inch-by-22-inch transonic wind tunnel facility at Ohio State University. It has not been determined if data from these two sources are sufficiently accurate for their use in comprehensive rotorcraft analytical models of the UH-60. It is recommended that new airfoil tables be created for both airfoils using the existing data. Additional wind tunnel experimentation is also recommended to provide high quality data for correlation with these new airfoil tables.

  3. Wind-Tunnel Investigation of Perforated Split Flaps for Use as Dive Brakes on a Tapered NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Purser, Paul E.; Turner, Thomas R.

    1941-01-01

    Aerodynamic characteristics of a tapered NACA 23012 airfoil with single and double perforated split flaps have been determined in the NACA 7- by 10-foot wind tunnel. Dynamic pressure surveys were made behind the airfoil at the approximate location of the tail in order to determine the extent and location of the wake for several of the flap arrangements. In addition, computations have been made of an application of perforated double split flaps for use as fighter brakes. The results indicated that single or double perforated split flaps may be used to obtain satisfactory dive control without undue buffeting effects and that single or double perforated split flaps may also be used as fighter brakes. The perforated split flaps had approximately the same effects on the aerodynamic and wake characteristics of the tapered airfoil as on a comparable rectangular airfoil.

  4. Aerodynamic Control of a Pitching Airfoil by Distributed Bleed Actuation

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2013-11-01

    The aerodynamic forces and moments on a dynamically pitching 2-D airfoil model are controlled in wind tunnel experiments using distributed active bleed. Bleed flow on the suction surface downstream of the leading edge is driven by pressure differences across the airfoil and is regulated by low-power louver actuators. The bleed interacts with cross flows to effect time-dependent variations of the vorticity flux and thereby alters the local flow attachment, resulting in significant changes in pre- and post-stall lift and pitching moment (over 50% increase in baseline post-stall lift). The flow field over the airfoil is measured using high-speed (2000 fps) PIV, resolving the dynamics and characteristic time-scales of production and advection of vorticity concentrations that are associated with transient variations in the aerodynamic forces and moments. In particular, it is shown that the actuation improves the lift hysteresis and pitch stability during the oscillatory pitching by altering the evolution of the dynamic stall vortex and the ensuing flow attachment during the downstroke. Supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  5. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  6. Leading edge embedded fan airfoil concept -- A new powered high lift technology

    NASA Astrophysics Data System (ADS)

    Phan, Nhan Huu

    input. The CFD results show that airfoil circulation control is achieved by the varying the CFF intake flow rate and the momentum of the CFF exhaust jet (e.g. through airfoil AoA or fan rotational speed). The presence of the CFF has the effect of moving the stagnation point on the airfoil pressure surface from the CFF airfoil LE region near the CFF to as far back as the airfoil trailing edge. At high AoA operation, LE flow separation on the airfoil suction surface is delayed by flow entrainment of the high-energy jet leaving the CFF. Detailed analysis of the flow field through the crossflow fan and its housing were carried out to understand its fluid-dynamics behavior, and it is found that the airfoil geometry acts as inlet guide vanes to the crossflow fan as the angle-of-attack is varied, thus introducing pre-swirl or co-swirl into the first stage of the crossflow fan. An experimental study of the LEEF concept confirmed that the concept works and it is robust. Finally, as application examples, the LEEF technology is applied to a Remote Control model and to a generic tiltrotor aircraft similar in characteristics to DARPA's Aerial Reconfigurable Embedded System. These aircraft configurations were analyzed using 2D and 3D CFD.

  7. High Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.; Ray, E. J.; Rozendaal, R. A.; Butler, T. W.

    1982-01-01

    A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  8. Wind-tunnel investigation of an NACA 23012 airfoil with several arrangements of slotted flaps with extended lips

    NASA Technical Reports Server (NTRS)

    Lowry, John G

    1941-01-01

    An investigation was made in the NACA 7- by 10-foot wind tunnel to determine the effect of slot-lip location on the aerodynamic section characteristics of an NACA 23012 airfoil with a 30-percent-chord slotted flap. Tests were made with slot lips located at 90 and 100 percent of the airfoil chord and with two different flap shapes. The results are compared with a slotted flap previously developed by the National advisory Committee for Aeronautics with a slot lip located at 83 percent of the airfoil chord. The extension of the slot lip to the rear increased the section lift and pitching-moment coefficients. Comparisons made on a basis of pitching moment for a given tail length show that the Fowler type flap, lip extended to trailing edge of the airfoil, has the greatest section lift coefficient. For moderate tail lengths, 2 to 3 chord lengths, there was only a slight difference between the previously developed slotted flap and the slotted flap with slot lip extended to 90 percent of the airfoil chord. Of the three flaps tested, the Fowler flap had the lowest drag coefficient at high lift coefficients. The extension of the lower surface at the leading edge of the slot had a negligible effect on the profile drag of the airfoil-flap arrangement with the flap deflected when the lip terminated at 90 percent of the airfoil chord.

  9. Airfoil shape for a turbine bucket

    DOEpatents

    Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy

    2005-06-28

    Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.

  10. Wavelet diagnostics of the flow control of unsteady separation on a 2D Wind Turbine Airfoil

    NASA Astrophysics Data System (ADS)

    Bai, Zhe; Lewalle, Jacques; Wang, Guannan; Glauser, Mark

    2013-11-01

    We investigated the aerodynamic characteristics of a 2D wind turbine airfoil. Unsteadiness was associated with the wake of a cylinder upstream of the airfoil. The experiments were conducted in both the baseline case, and with active closed-loop control on the suction surface of the airfoil. The data consisted of surface pressure time series. Continuous wavelet analysis gave the phase, band-pass filtered signals and envelope of harmonics of the fundamental shedding frequency. Coherence of pairs of signals was also used to map the flow characteristics. For the baseline and controlled case, we will report on the relation between phase of the leading edge fluctuations, unsteady flow separation and lift and drag coefficients. Our goal is to develop a more effective controller. The experiment was funded by DoE through University of Minnesota Wind Energy Consortium. Thanks for the support from the MAE department of Syracuse University.

  11. Wind-Tunnel Investigation of an NACA 23012 Airfoil with Various Arrangements of Slotted Flaps

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Harris , Thomas A

    1939-01-01

    An investigation was made in the 7 by 10-foot wind tunnel and in the variable-density wind tunnel of the NACA 23012 airfoil with various slotted-flap arrangements. The purpose of the investigation in the 7 by 10-foot wind tunnel was to determine the airfoil section aerodynamic characteristics as affected by flap shape, slot shape, and flap location. The flap position for maximum lift; polars for arrangements favorable for take-off and climb; and complete lift, drag, and pitching-moment characteristics for selected optimum arrangements were determined. The best arrangements were tested in the variable-density tunnel at an effective Reynolds number of 8,000,000. In addition, data from both wind tunnels are included for plain, split, external-airfoil, and Fowler flaps for purposes of comparison.

  12. Characteristics and Performance of Existing Load Disaggregation Technologies

    SciTech Connect

    Mayhorn, Ebony T.; Sullivan, Greg P.; Butner, Ryan S.; Hao, He; Baechler, Michael C.

    2015-04-10

    Non-intrusive load monitoring (NILM) or non-intrusive appliance load monitoring (NIALM) is an analytic approach to disaggregate building loads based on a single metering point. This advanced load monitoring and disaggregation technique has the potential to provide an alternative solution to high-priced traditional sub-metering and enable innovative approaches for energy conservation, energy efficiency, and demand response. However, since the inception of the concept in the 1980’s, evaluations of these technologies have focused on reporting performance accuracy without investigating sources of inaccuracies or fully understanding and articulating the meaning of the metrics used to quantify performance. As a result, the market for, as well as, advances in these technologies have been slowly maturing.To improve the market for these NILM technologies, there has to be confidence that the deployment will lead to benefits. In reality, every end-user and application that this technology may enable does not require the highest levels of performance accuracy to produce benefits. Also, there are other important characteristics that need to be considered, which may affect the appeal of NILM products to certain market targets (i.e. residential and commercial building consumers) and the suitability for particular applications. These characteristics include the following: 1) ease of use, the level of expertise/bandwidth required to properly use the product; 2) ease of installation, the level of expertise required to install along with hardware needs that impact product cost; and 3) ability to inform decisions and actions, whether the energy outputs received by end-users (e.g. third party applications, residential users, building operators, etc.) empower decisions and actions to be taken at time frames required for certain applications. Therefore, stakeholders, researchers, and other interested parties should be kept abreast of the evolving capabilities, uses, and characteristics

  13. Anthropometrics, Physical Performance, and Injury Characteristics of Youth American Football

    PubMed Central

    Caswell, Shane V.; Ausborn, Ashley; Diao, Guoqing; Johnson, David C.; Johnson, Timothy S.; Atkins, Rickie; Ambegaonkar, Jatin P.; Cortes, Nelson

    2016-01-01

    Background: Prior research has described the anthropometric and physical performance characteristics of professional, collegiate, and high school American football players. Yet, little research has described these factors in American youth football and their potential relationship with injury. Purpose: To characterize anthropometric and physical performance measures, describe the epidemiology of injury, and examine the association of physical performance measures with injury among children participating within age-based divisions of a large metropolitan American youth football league. Study Design: Case-control study; Level of evidence, 3. Methods: Demographic, anthropometric, and physical performance characteristics and injuries of 819 male children were collected over a 2-year period (2011-2012). Injury data were collected by the league athletic trainer (AT) and coaches. Descriptive analysis of demographic, anthropometric, and physical performance measures (40-yard sprint, pro-agility, push-ups, and vertical jump) were conducted. Incidence rates were computed for all reported injuries; rates were calculated as the number of injuries per 1000 athlete-exposures (AEs). Multinomial logistic regression was used to identify whether the categories of no injury, no-time-loss (NTL) injury, and time-loss (TL) injury were associated with physical performance measures. Results: Of the 819 original participants, 760 (92.8%) completed preseason anthropometric measures (mean ± SD: age, 11.8 ± 1.2 years; height, 157.4 ± 10.7 cm; weight, 48.7 ± 13.3 kg; experience, 2.0 ± 1.8 years); 640 (78.1%) players completed physical performance measures. The mean (±SD) 40-yard sprint and pro-agility measures of the players were 6.5 ± 0.6 and 5.7 ± 0.5 seconds, respectively; the number of push-ups and maximal vertical jump height were 16.5 ± 9.3 repetitions and 42.3 ± 8.4 cm, respectively. Players assigned to different teams within age divisions demonstrated no differences in

  14. Turbine Airfoil Deposition Models

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.

    1984-01-01

    Gas turbine failures associated with sea-salt ingestion and sulfur-containing fuel impurities have directed attention to alkali sulfate deposition and the associated hot corrosion of gas turbine (GT) blades under some GT operating conditions. These salt deposits form thin, molten films which undermine the protective metal oxide coating normally found on GT blades. The prediction of molten salt deposition, flow and oxide dissolution, and their effects on the lifetime of turbine blades are examined. Goals include rationalizing and helping to predict corrosion patterns on operational GT rotor blades and stators, and ultimately providing some of the tools required to design laboratory simulators and future corrosion-resistant high-performance engines. Necessary background developments are reviewed first, and then recent results and tentative conclusions are presented along with a brief account of the present research plans.

  15. Aerodynamic Control of a Dynamically Pitching Airfoil using Transitory Pulsed Actuation

    NASA Astrophysics Data System (ADS)

    Tan, Yuehan; Crittenden, Thomas; Glezer, Ari

    2015-11-01

    Transitory control and regulation of trapped vorticity concentrations are exploited for control of the aerodynamic loads on an airfoil that is dynamically pitching beyond the dynamic stall margin in wind tunnel experiments. Actuation is effected using a spanwise array of integrated miniature chemical (combustion based) high impulse actuators that are triggered intermittently relative to the airfoil's motion on characteristic time scales that are an order of magnitude shorter than the airfoil's convective time scale. The effects of the actuation on the aerodynamic characteristics of the airfoil are assessed using time-dependent measurements of the lift force and pitching moment coupled with time-resolved particle image velocimetry that is acquired phased-locked to the motion of the airfoil. The aerodynamic loading can be significantly altered by a number of actuation programs using multiple actuation bursts during the pitch cycle. While actuation during the upstroke primarily affects the formation, evolution, and advection of the dynamic stall vortex, actuation during the downstroke accelerates flow attachment. Superposition of such actuation programs leads to enhancement of cycle lift and pitch stability, and reduced cycle hysteresis.

  16. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  17. An Evaluation of Performance Characteristics of Primary Display Devices.

    PubMed

    Ekpo, Ernest U; McEntee, Mark F

    2016-04-01

    The aim of this study was to complete a full evaluation of the new EIZO RX850 liquid crystal display and compare it to two currently used medical displays in Australia (EIZO GS510 and Barco MDCG 5121). The American Association of Physicists in Medicine (AAPM) Task Group 18 Quality Control test pattern was used to assess the performance of three high-resolution primary medical displays: EIZO RX850, EIZO GS510, and Barco MDCG 5121. A Konica Minolta spectroradiometer (CS-2000) was used to assess luminance response, non-uniformity, veiling glare, and color uniformity. Qualitative evaluation of noise was also performed. Seven breast lesions were displayed on each monitor and photographed with a calibrated 5.5-MP Olympus E-1 digital SLR camera. ImageJ software was used to sample pixel information from each lesion and surrounding background to calculate their conspicuity index on each of the displays. All monitor fulfilled all AAPM acceptance criteria. The performance characteristics for EIZO RX850, Barco MDCG 5121, and EIZO GS510 respectively were as follows: maximum luminance (490, 500.5, and 413 cd/m(2)), minimum luminance (0.724, 1.170, and 0.92 cd/m(2)), contrast ratio (675:1, 428:1, 449:1), just-noticeable difference index (635, 622, 609), non-uniformity (20, 5.92, and 8.5 %), veiling glare (GR = 2465.6, 720.4, 1249.8), and color uniformity (Δu'v' = +0.003, +0.002, +0.002). All monitors demonstrated low noise levels. The conspicuity index (χ) of the lesions was slightly higher in the EIZO RX850 display. All medical displays fulfilled AAPM performance criteria, and performance characteristics of EIZO RX850 are equal to or better than those of the Barco MDCG 5121 and EIZO GS510 displays. PMID:26438424

  18. Airfoil Lift with Changing Angle of Attack

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1927-01-01

    Tests have been made in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics to determine the effects of pitching oscillations upon the lift of an airfoil. It has been found that the lift of an airfoil, while pitching, is usually less than that which would exist at the same angle of attack in the stationary condition, although exceptions may occur when the lift is small or if the angle of attack is being rapidly reduced. It is also shown that the behavior of a pitching airfoil may be qualitatively explained on the basis of accepted aerodynamic theory.

  19. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  20. Performance characteristic of thermosyphon heat pipe at radiant heat source

    NASA Astrophysics Data System (ADS)

    Hrabovský, Peter; Papučík, Štefan; Kaduchová, Katarína

    2016-06-01

    This article discusses about device, which is called heat pipe. This device is with heat source with radiant heat source. Heat pipe is device with high efficiency of heat transfer. The heat pipe, which is describe in this article is termosyphon heat pipe. The experiment with termosyphon heat pipe get a result. On the base of result, it will be in future to create mathematical model in Ansys. Thermosyphon heat pipe is made of copper and distilled water is working fluid. The significance of this experiment consists in getting of the heat transfer and performance characteristic. On the basis of measured and calculated data can be constructed the plots.

  1. Performance characteristics of the DIII-D advanced divertor cryopump

    SciTech Connect

    Menon, M.M.; Maingi, R.; Wade, M.R.; Baxi, C.B.; Campbell, G.L.; Holtrop, K.L.; Hyatt, A.W.; Laughon, G.J.; Makariou, C.C.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Schaubel, K.M.; Scoville, J.T.; Smith, J.P.; Stambaugh, R.D.

    1993-10-01

    A cryocondensation pump, cooled by forced flow of two-phase helium, has been installed for particle exhaust from the divertor region of the DIII-D tokamak. The Inconel pumping surface is of coaxial geometry, 25.4 mm in outer diameter and 11.65 m in length. Because of the tokamak environment, the pump is designed to perform under relatively high pulsed heat loads (300 Wm{sup {minus}2}). Results of measurements made on the pumping characteristics for D{sub 2}, H{sub 2}, and Ar are discussed.

  2. Aerodynamic Forces and Loadings on Symmetrical Circular-Arc Airfoils with Plain Leading-Edge and Plain Trailing-Edge Flaps

    NASA Technical Reports Server (NTRS)

    Cahill, Jones F; Underwood, William J; Nuber, Robert J; Cheesman, Gail A

    1953-01-01

    An investigation has been made in the Langley two-dimensional low-turbulence tunnel and in the Langley two-dimensional low-pressure tunnel of 6- and 10-percent-thick symmetrical circular-arc airfoil sections at low Mach numbers and several Reynolds numbers. The airfoils were equipped with 0.15-chord plain leading-edge flaps and 0.20-chord plan trailing-edge flaps. The section lift and pitching-moment characteristics were determined for both airfoils with the flaps deflected individually and in combination. The section drag characteristics were obtained for the 6-percent-thick airfoil with the flaps partly deflected as low-drag-control flaps and for airfoils with the flaps neutral. Surface pressures were measured on the 6-percent-thick airfoil section with the flaps deflected either individually or in appropriate combination to furnish flap load and hinge-moment data applicable to the structural design of the airfoil. A generalized method is developed that permits the determination of the chordwise pressure distribution over sharp-edge airfoils with plain leading-edge flaps and plain trailing-edge flaps of arbitrary size and deflection.

  3. Performance characteristics of the Cray X1 and their implicationsfor application performance tuning

    SciTech Connect

    Shan, Hogzhang; Strohmaier, Erich

    2004-05-11

    During the last decade the scientific computing community has optimized many applications for execution on superscalar computing platforms. The recent arrival of the Japanese Earth Simulator has revived interest in vector architectures especially in the US. It is important to examine how to port our current scientific applications to the new vector platforms and how to achieve high performance. The success of porting these applications will also influence the acceptance of new vector architectures. In this paper, we first investigate the memory performance characteristics of the Cray X1, a recently released vector platform, and determine the most influential performance factors. Then, we examine how to optimize applications tuned on superscalar platforms for the Cray X1 using its performance characteristics as guidelines. Finally, we evaluate the different types of optimizations used, the effort for their implementations, and whether they provide any performance benefits when ported back to superscalar platforms.

  4. Internal performance characteristics of thrust-vectored axisymmetric ejector nozzles

    NASA Technical Reports Server (NTRS)

    Lamb, Milton

    1995-01-01

    A series of thrust-vectored axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at the Langley research center. This study indicated that discontinuities in the performance occurred at low primary nozzle pressure ratios and that these discontinuities were mitigated by decreasing expansion area ratio. The addition of secondary flow increased the performance of the nozzles. The mid-to-high range of secondary flow provided the most overall improvements, and the greatest improvements were seen for the largest ejector area ratio. Thrust vectoring the ejector nozzles caused a reduction in performance and discharge coefficient. With or without secondary flow, the vectored ejector nozzles produced thrust vector angles that were equivalent to or greater than the geometric turning angle. With or without secondary flow, spacing ratio (ejector passage symmetry) had little effect on performance (gross thrust ratio), discharge coefficient, or thrust vector angle. For the unvectored ejectors, a small amount of secondary flow was sufficient to reduce the pressure levels on the shroud to provide cooling, but for the vectored ejector nozzles, a larger amount of secondary air was required to reduce the pressure levels to provide cooling.

  5. ICEG2D (v2.0) - An Integrated Software Package for Automated Prediction of Flow Fields for Single-Element Airfoils With Ice Accretion

    NASA Technical Reports Server (NTRS)

    Thompson David S.; Soni, Bharat K.

    2001-01-01

    An integrated geometry/grid/simulation software package, ICEG2D, is being developed to automate computational fluid dynamics (CFD) simulations for single- and multi-element airfoils with ice accretions. The current version, ICEG213 (v2.0), was designed to automatically perform four primary functions: (1) generate a grid-ready surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generate high-quality structured and generalized grids starting from a defined surface definition, (3) generate the input and restart files needed to run the structured grid CFD solver NPARC or the generalized grid CFD solver HYBFL2D, and (4) using the flow solutions, generate solution-adaptive grids. ICEG2D (v2.0) can be operated in either a batch mode using a script file or in an interactive mode by entering directives from a command line within a Unix shell. This report summarizes activities completed in the first two years of a three-year research and development program to address automation issues related to CFD simulations for airfoils with ice accretions. As well as describing the technology employed in the software, this document serves as a users manual providing installation and operating instructions. An evaluation of the software is also presented.

  6. Characteristic Evaluation on Cooling Performance of Thermoelectric Modules.

    PubMed

    Seo, Sae Rom; Han, Seungwoo

    2015-10-01

    The aim of this work is to develop a performance evaluation system for thermoelectric cooling modules. We describe the design of such a system, composed of a vacuum chamber with a heat sink along with a metal block to measure the absorbed heat Qc. The system has a simpler structure than existing water-cooled or air-cooled systems. The temperature difference between the cold and hot sides of the thermoelectric module ΔT can be accurately measured without any effects due to convection, and the temperature equilibrium time is minimized compared to a water-cooled system. The evaluation system described here can be used to measure characteristic curves of Qc as a function of ΔT, as well as the current-voltage relations. High-performance thermoelectric systems can therefore be developed using optimal modules evaluated with this system. PMID:26726381

  7. Performance characteristics of ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Shen, D.; Subbarao, S.; Whitcanack, L.; Halpert, G.

    1988-01-01

    State of art ambient temperature secondary lithium cells were evaluated to determine their performance capability and limitations and to assess the present status of the technology of these cells. Li-MoS2, Li-NbSe3 and Li-TiS2 cells were evaluated for their charge/discharge characteristics, rate capability, and cycle life performance. The cells evaluated have a cycle life of 100-250 cycles at moderate discharge rates (C/5). The specific energy of these cells is between 50 and 100 Wh/Kg, depending upon the system. This paper describes the details of the cell designs, the test procedures, and the results of the evaluation studies.

  8. Characteristics and Applications of a High Performance, Miniaturized, Infrasound Sensor

    NASA Astrophysics Data System (ADS)

    Rothman, J. L.; Marriott, D. A.

    2015-12-01

    Infrasound Sensors have been used for many years to monitor a large number of geophysical phenomena and manmade sources. Due to their large size and power consumption these sensors have typically been deployed in fixed arrays, portable arrays have required trucks to transport the sensors and support equipment. A high performance, miniaturized, infrasound microphone has been developed to enable mobile infrasound measurements that would otherwise be impractical. The new device is slightly larger than a hockey puck, weighs 200g, and consumes less than 150mW. The sensitivity is 0.4V/Pa and self noise at 1Hz is less than 0.63μPa²/Hz. The characteristics were verified using a calibrator tracable to the Los Alamos calibration chamber. Field tests have demonstrated the performance is comparable to a Chaparral model 25. Applications include man portable arrays, mobile installations, and UAV based measurements.

  9. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 2: Data and performance for stage A

    NASA Technical Reports Server (NTRS)

    Brent, J. A.

    1972-01-01

    Stage A, comprised of a conventional rotor and stator, was designed and tested to establish a performance baseline for comparison with the results of subsequent tests planned for two tandem-blade stages. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. At design equivalent rotor speed, rotor A achieved a maximum adiabatic efficiency of 85.1 percent at a pressure ratio of 1.29. The stage maximum adiabatic efficiency was 78.6 percent at a pressure ratio of 1.27.

  10. Determination of forced convective heat transfer coefficients for subsonic flows over heated asymmetric NANA 4412 airfoil

    NASA Astrophysics Data System (ADS)

    Dag, Yusuf

    Forced convection over traditional surfaces such as flat plate, cylinder and sphere have been well researched and documented. Data on forced convection over airfoil surfaces, however, remain very scanty in literature. High altitude vehicles that employ airfoils as lifting surfaces often suffer leading edge ice accretions which have tremendous negative consequences on the lifting capabilities and stability of the vehicle. One of the ways of mitigating the effect of ice accretion involves judicious leading edge convective cooling technique which in turn depends on the accuracy of convective heat transfer coefficient used in the analysis. In this study empirical investigation of convective heat transfer measurements on asymmetric airfoil is presented at different angle of attacks ranging from 0° to 20° under subsonic flow regime. The top and bottom surface temperatures are measured at given points using Senflex hot film sensors (Tao System Inc.) and used to determine heat transfer characteristics of the airfoils. The model surfaces are subjected to constant heat fluxes using KP Kapton flexible heating pads. The monitored temperature data are then utilized to determine the heat convection coefficients modelled empirically as the Nusselt Number on the surface of the airfoil. The experimental work is conducted in an open circuit-Eiffel type wind tunnel, powered by a 37 kW electrical motor that is able to generate subsonic air velocities up to around 41 m/s in the 24 square-inch test section. The heat transfer experiments have been carried out under constant heat flux supply to the asymmetric airfoil. The convective heat transfer coefficients are determined from measured surface temperature and free stream temperature and investigated in the form of Nusselt number. The variation of Nusselt number is shown with Reynolds number at various angles of attacks. It is concluded that Nusselt number increases with increasing Reynolds number and increase in angle of attack from 0

  11. The performance characteristics of a piezoelectric ultrasonic dental scaler.

    PubMed

    Pecheva, E; Sammons, R L; Walmsley, A D

    2016-02-01

    The objective of this work was to investigate the performance characteristics of a piezoelectric ultrasonic dental scaler using scanning laser vibrometry. The vibration characteristics of three standard piezoelectric tips were assessed with scanning laser vibrometry under various conditions: unconstrained, under a stream of flowing water, in a water tank, as well as subjected to loads to simulate clinical conditions. Subsequently, the tips were used to disrupt an in-vitro biofilm model of dental plaque, developed using a non-pathogenic Gram-negative species of Serratia (NCIMB40259). The laser vibrometry data showed that the oscillation pattern of the ultrasonic tip depends primarily on its shape and design, as well as on the generator power. Thin tips and high power settings induce the highest vibrations. Water irrigation of the tip and loads influence the tip performance by diminishing its vibration, while water volume increases it. Serratia biofilm was disrupted by the cavitation bubbles occurring around the scaler tip. The most effective biofilm removal occurred with the thinner tip. Understanding how the ultrasonic tip oscillates when in use and how it removes dental plaque is essential for gaining more knowledge regarding the cleaning mechanisms of the ultrasonic system. Cavitation may be used to remove plaque and calculus without a mechanical contact between the dental tip and the teeth. Better knowledge would enable dental specialists to understand and improve their techniques during routine cleaning of teeth. It will also lead to improving tip design and to the production of more effective instruments for clinical use. PMID:26654578

  12. Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Napolillo, Zachary G.

    The desire and demand to fly farther and faster has progressively integrated the concept of optimization with airfoil design, resulting in increasingly complex numerical tools pursuing efficiency often at diminishing returns; while the costs and difficulty associated with fabrication increases with design complexity. Such efficiencies may often be necessary due to the power density limitations of certain aircraft such as small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs). This research, however, focuses on reducing the complexity of airfoils for applications where aerodynamic performance is less important than the efficiency of manufacturing; in this case a Hybrid Projectile. By employing faceted sections to approximate traditional contoured wing sections it may be possible to expedite manufacturing and reduce costs. We applied this method to the development of a low Reynolds number, disposable Hybrid Projectile requiring a 4.5:1 glide ratio, resulting in a series of airfoils which are geometric approximations to highly contoured cross-sections called ShopFoils. This series of airfoils both numerically and experimentally perform within a 10% margin of the SD6060 airfoil at low Re. Additionally, flow visualization has been conducted to qualitatively determine what mechanisms, if any, are responsible for the similarity in performance between the faceted ShopFoil sections and the SD6060. The data obtained by these experiments did not conclusively reveal how the faceted surfaces may influence low Re flow but did indicate that the ShopFoil s did not maintain flow attachment at higher angles of attack than the SD6060. Two reasons are provided for the unexpected performance of the ShopFoil: one is related to downwash effects, which are suspected of placing the outer portion of the span at an effective angle of attack where the ShopFoils outperform the SD6060; the other is the influence of the tip vortex on separation near the wing tips, which possibly

  13. Dynamics of a wind turbine airfoil in turbulent inflow

    NASA Astrophysics Data System (ADS)

    Heisselmann, Hendrik; Peinke, Joachim; Hoelling, Michael

    2015-11-01

    An experimental investigation of the aerodynamics of a wind turbine airfoil model was performed for laminar inflow and three different turbulent inflow conditions at Re ~ 500,000. Particular turbulent inflow conditions were generated with an active grid, which allows for a repetition of the same turbulence pattern for each investigated airfoil configuration. The inflow wind fields comprise a laminar baseline case, a quasi-2D sinusoidal angle of attack (AoA) variation and an intermittent AoA variation. Additionally, AoA variations as obtained from a 5-hole Pitot probe during a field experiment were emulated. High-resolution time series of the pressure distributions and acting forces on a DU00-W-212 airfoil model were measured under the various inflow conditions for an AoA range of +/-35°. The obtained data was analyzed using time averages of first order quantities (mean, std. deviation) as well as more complex stochastic methods. The analysis of the laminar and turbulent cases indicates higher AoAs for maximum lift under turbulent conditions, while the drop-off in the post-stall regime is flattened. The presented work was funded from the European Union's Seventh Program for research, technological development and demonstration under grand agreement No FP7-ENERGY-2013-1/n° 608396.

  14. Low speed airfoil design and analysis

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Somers, D. M.

    1979-01-01

    A low speed airfoil design and analysis program was developed which contains several unique features. In the design mode, the velocity distribution is not specified for one but many different angles of attack. Several iteration options are included which allow the trailing edge angle to be specified while other parameters are iterated. For airfoil analysis, a panel method is available which uses third-order panels having parabolic vorticity distributions. The flow condition is satisfied at the end points of the panels. Both sharp and blunt trailing edges can be analyzed. The integral boundary layer method with its laminar separation bubble analog, empirical transition criterion, and precise turbulent boundary layer equations compares very favorably with other methods, both integral and finite difference. Comparisons with experiment for several airfoils over a very wide Reynolds number range are discussed. Applications to high lift airfoil design are also demonstrated.

  15. Airfoil self-noise and prediction

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.

    1989-01-01

    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

  16. Third-stage turbine bucket airfoil

    DOEpatents

    Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart

    2002-01-01

    The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  17. Second-stage turbine bucket airfoil

    DOEpatents

    Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie

    2002-01-01

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.

  18. Turbine airfoil to shroud attachment method

    DOEpatents

    Campbell, Christian X; Kulkarni, Anand A; James, Allister W; Wessell, Brian J; Gear, Paul J

    2014-12-23

    Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) of the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.

  19. Pressure Distribution Over Airfoils with Fowler Flaps

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Anderson, Walter B

    1938-01-01

    Report presents the results of tests made of a Clark y airfoil with a Clark y Fowler flap and of an NACA 23012 airfoil with NACA Fowler flaps. Some of the tests were made in the 7 by 10-foot wind tunnel and others in the 5-foot vertical wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section both on the main airfoils and on the flaps for several angles of attack with the flaps located at the maximum-lift settings. A test installation was used in which the model was mounted in the wind tunnel between large end planes so that two-dimensional flow was approximated. The data are given in the form of pressure-distribution diagrams and as plots of calculated coefficients for the airfoil-and-flap combinations and for the flaps alone.

  20. Numerical studies of the application of active flow control to subsonic and transonic airfoil flows using a synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Vadillo, Jose L.

    2005-07-01

    Active control of flow over airfoils is currently an area of heightened interest in the aerospace community because of its potential in reducing drag, eliminating separation at high angles of attack, and modulating the aerodynamic forces and moments. We study these possibilities by performing several numerical simulations. Numerical simulations are performed by employing an Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations solver in conjunction with a two-equation Shear-Stress-Transport (SST) turbulence model. In particular, the computations are performed for the following three classes of flows: (1) Subsonic flow past a 24% thick Clark-Y airfoil with a triangular bump on the upper surface with and without a synthetic jet actuator. The goal is to perform numerical simulations of this experimentally observed fluidic modification of airfoil pressure distributions leading to reduced pressure drag. The computations are compared with experiments performed at Georgia Tech. (2) Transonic flow past a NACA64A010 airfoil with a synthetic jet actuator. The goal is to control the shock/boundary layer interaction on the airfoil using a synthetic jet actuator to reduce drag as well to achieve desired modulation of aerodynamic forces and moments. (3) Subsonic flow past a commercial supercritical airfoil leveraging the presence of a Gurney flap with a synthetic jet actuator. The goal is again to improve the aerodynamic performance (increase or maintain lift and reduce drag) by using a synthetic jet actuator integrated in a bump on the pressure surface of the airfoil near the trailing edge. The computations are compared with the experiments performed at Georgia Tech. The computations as well as the experiments show the feasibility of active flow control in reducing the drag of airfoils and in achieving the desired modulation of aerodynamic forces and moments.